
Sentiment Classification Using Machine Learning
Techniques with Syntax Features

Huang Zou
School of Software Engineering
Shanghai Jiao Tong University

Shanghai, China
zhstevenash@sjtu.edu.cn

Xinhuai Tang
School of Software Engineering
Shanghai Jiao Tong University

Shanghai, China
tang-xh@cs.sjtu.edu.cn

Bin Xie

The thirty-second Research Institute
China Electronic Technology Group

Corporation
Shanghai, China

xiebin_sh@163.com

Bing Liu

Shijiazhuang Institute
Engineering College
Shijiazhuang, China

liubbb@163.com

Abstract—Sentiment classification has adopted machine
learning techniques to improve its precision and efficiency.
However, the features are always produced by basic words-bag
methods without much consideration for words’ syntactic
properties, which could play an important role in the judgment
of sentiment meanings. To remedy this, we firstly generate syntax
trees of the sentences, with the analysis of syntactic features of
the sentences. Then we introduce multiple sentiment features into
the basic words-bag features. Such features were trained on
movie reviews as data, with machine learning methods (Naive
Bayes and support vector machines). The features and factors
introduced by syntax tree were examined to generate a more
accurate solution for sentiment classification.

Keywords—Sentiment classification; Syntax tree; POS features;
Machine learning

I.� INTRODUCTION
 Sentiment classification is a useful technique to analyze the
huge amount text on web. Traditionally, unlike the rating
information, natural text can not be properly used in analysis.
However, with the help of sentiment classification, which is
usually conducted on the most normal words (such as movie
and book reviews), more information about users and items can
be provided.

 One typical approach for sentiment classification is to
analyze the words-bag features of text with supervised machine
learning algorithms [1]. In such approach, all the words, which
can also be filtered, form a words-bag vector. For each text, the
appearance of words in such vector will be represented as the
feature of the text. Besides, n-gram, negation-tags and POS
tags are often used to optimize it. N-gram and negation-tags are
supposed to improve the precision of the algorithm while POS
tags can rule out the ambiguity different POS of one word
bring.

 Another approach to build a sentiment classifier is based on
sentence syntax tree [2]. The sentences are parsed to construct
a syntax tree to represent the relationship between words. Then

the model, or pattern of sentiment classifier could be generated
using the polarity of words, their POS features and their syntax
relations.

 Surely syntax features can paly a great role in the sentiment
behind the sentence. For example, we would normally think the
words in the main clauses would have more sentiment
significance than those in the subordinate clauses, for people
would always express their emotion directly, especially in the
comments of books and movies, etc. However, such features
have been seldom used in the words-bag classifiers. So we
incorporate the syntax features into the implementation of
words-bag sentiment classifier. Moreover, we proved that the
words dependencies can also be reliable improvement for
sentiment classification.

 We use the Stanford Parser to generate syntax tree, words
dependencies as well as the POS tags for sentences and words.
Then we go through the trees for different syntax features – for
example, the kind of the syntactic part (noun phrase, verb
phrase, simple declarative clause, etc.).

 Our unique features mainly come from three aspects. 1)
The location of the word – whether it is in the main clause or
the subordinate clause, can make a difference in the process of
sentiment classification. 2) Words dependencies, or
grammatical relationship between words also reveal
information about emotions. 3) Lastly, as many pre-works have
mentioned, POS of words are employed to build our classifier.

 We use the data published by Pang and Lee [1] to
experiment our method. The text was firstly used as input for
Syntax Parser to generate syntax tree, which contains POS and
syntax features. Then such features were used as the final
vector features of the text. The experiment was conducted on
two machine learning methods -- Naive Bayes and support
vector machines (SVM).

 The rest of this paper is organized as follows: Section 2
describes the related work of sentiment classification; Section 3
focuses on the Syntax Tree and its generation; Section 4 mainly
talks about our methods to generate the features with the
combination of POS and syntax tags; Section 5 shows the
experiments, the results, and our conclusion.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.44

176

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.44

175

TABLE I. Precision of Stanford Parser in the generated syntax tree about POS tags and Syntactic tags of words in different clauses.

All clauses Main clauses Main clauses + 1st-level subordinate sentences

POS tags 95.3% 95.7% 94.9%

Syntactic tags 91.4% 96.4% 93.5%

II.� RELATED WORKS.
Words-bag is a widely used method to conduct sentiment

classification along with machine learning methods. Pang and
Lee [1] select the words in movie reviews as features and
examine those features through different machine learning
methods. Also, they explore different ways to generate words-
bag and words feature vectors. Dave, Lawrence and Pennock
[3] also use machine learning methods to explore sentiment
classification. However, they select top words according to
their generated points instead of using all the words. Tony
Mullen and Nigel Collier [4] use SVM to analyze sentiment
orientation of words as well as topic-oriented and artist-
oriented information. Pak and Paroubek [5] develop a
sentiment classifier for twitter data using words-bag method
relying on features from twitter corpus, which shows the
application of sentiment analysis in social network.

Syntax trees are also developed by many in order to extract
more internal relationship between words. Maximum entropy
models are used by Adwait Ratnaparkhi [6] to parse syntax
trees. The main target of such method is to find the patterns
behind syntax tree. Wilson, Wiebe and Hoffman [7] develop
some sentence features and structure features and set some
rules to judge prior polarity. Zhan, Li and Zhu [8] also focuse
on parsing the syntax tree with rules and patterns, which
greatly improves the accuracy.

Some other models are also used to classify sentiment.
Nakagawa, Inui and Kurohashi [9] make use of CRF with
hidden variables to generate the dependency of sentiment on
words, and then the sentiment of sentences. Duric and Song [10]
also construct HMM model to analyze the content and syntax
of sentences.

Domain issue is also a problem for sentiment classification.
The model or classifier trained in one domain often does not
perform well on another domain. To remedy this problem, Aue
and Gamon [11] try to limit text features to those observed in
the target domain. Yang, Callan and Si [12] rely on knowledge
transfer with opinion word dictionary. Dunning [13] develops a
measure based on likelihood ratios to analyze cross-domain
text.

There’re other methods for sentiment classification.
Whitelaw, Garg and Argamon [14] constructs lexicon
structures for words and their sentiments, which leads to a rule
for classification. Prabowo and Thelwall [15] combine
different classifiers to ensure taking the advantages of every
classifier. When one classifier fails to return a right sentiment,
the algorithm can employ another classifier to accomplish the
task. Turney and Littman [16] determined the words’ similarity
with NEAR operation on web searches and build classifier
based on the words polarity already known. Such method has
been widely used.

III.� PREPARE YOUR PAPER BEFORE STYLING
To accomplish our idea to make use of the syntactic

features, we need to generate syntax trees firstly. We use the
Stanford Parser to help us finish such target. Below is the
sample of one sentence and its generated syntax tree from the
website of Stanford Parser in Fig. I:

“The strongest rain ever recorded in India shut down the
financial hub of Mumbai, snapped communication lines,
closed airports and forced thousands of people to sleep in
their offices or walk home during the night, officials said
today.”

Fig. I. Sample of one generated syntax tree by Stanford Parser.

Clearly, with the help of Stanford Parser, we can easily get
a syntax tree with POS and syntactic information. To ensure
the precision of Stanford Parser, we collect 500 sentences and
judge the POS and syntactic tags of every word manually to
examine whether it works efficiently. Taking out empirical
situation into account, details in subordinate clauses is not the
same important as the information in main clauses. So we
conduct the same experiment after we rule out the subordinate

177176

clauses which is too deep. The results are shown in Table I.
From the results we can see that Stanford Parser has a high
precision in POS and syntactic tags determination. Also, the
depth of subordinate clause has an influence on the precision of
syntactic tags. But such difference is little as for the POS tags.

IV.� FEATURE EXTRACTION
Firstly, we assume that we have applied Stanford Parser to

the dataset text and generate syntax POS tags for every word,
and syntactic tags for words and sentences successfully. Then
we can focus on how to extract features from such syntax trees.
We try to capture features from the following aspects.

A.� Main Clauses vs. Subornidate Clauses.
Intuitively, we would think that words in the main clauses

have a difference with words in subordinate clauses as for their
underlying sentiment. People always express their overall
emotions directly in the main clauses, especially in those
reviews on books and movies, while the subordinate clauses
are mostly used to provide more detailed information about the
subjects.

Taking such feature into consideration, we go through
syntax trees to identify whether the words are in the main
clauses or subordinate clauses. According to the syntactic tags
from Peen Treebank, we can set “SBAR” and “SBARQ” to be
the sign of a new subordinate clause. Thus the depth of every
sentence can be known. In our case, for every new word “W”
in the text, if it is in the main clause, we will add “W-m” to the
words-bag collection; if it is in the subordinate clauses, then we
will add “W-s” to the words-bag collection. Through such
method, we can generate a new kind of words-bag compared
with the traditional words-bag method.

B.� Main Clauses vs. Subornidate Clauses.
Words dependencies give a description of the grammatical

relationships in the words in a sentence. This can be quite
useful when applied in generating the bigrams for words-bag.
Normally, bigram words-bag are generated by selecting every
two adjacent words into words-bag collection. The primary
motivation for bigram is to identify logistic relation between
words, which unigram method can’t present. However, the
bigram method now is not efficient, because it ignores all the
underlying relationship between those words which are not
adjacent. With words dependencies, we can remedy such
problem because real logistic relationship can be found in
words dependencies, even when words are not adjacent.

We use the words dependencies result generated along with
syntax tree. For example, below is one sample sentence and its
words dependencies:

“As an audience, we're also given a situation where two
wonderfully talented actors are thrown into a movie, and we'd
like to see if one will dominate the film. Both provide some
pretty good entertainment.”

nmod(given-8, as-1)
det(audience-3, an-2)
dep(as-1, audience-3)

nsubjpass(given-8, we-5)
auxpass(given-8, 're-6)
advmod(given-8, also-7)
root(ROOT-0, given-8)
det(situation-10, a-9)
dobj(given-8, situation-10)
advmod(thrown-17, where-11)
nummod(actors-15, two-12)
amod(actors-15, wonderfully-13)
amod(actors-15, talented-14)
nsubjpass(thrown-17, actors-15)
auxpass(thrown-17, are-16)
advcl(given-8, thrown-17)
nmod(thrown-17, into-18)
det(movie-20, a-19)
dep(into-18, movie-20)
cc(given-8, and-22)
nsubj(like-25, we-23)
nsubj(see-27, we-23)
aux(like-25, 'd-24)
conj:and(given-8, like-25)
mark(see-27, to-26)
xcomp(like-25, see-27)
mark(dominate-31, if-28)
nsubj(dominate-31, one-29)
aux(dominate-31, will-30)
advcl(see-27, dominate-31)
det(film-33, the-32)
dobj(dominate-31, film-33)
dep(see-27, both-35)
conj(see-27, provide-36)
det(entertainment-40, some-37)
advmod(good-39, pretty-38)
amod(entertainment-40, good-39)
dobj(provide-36, entertainment-40)

 For every words dependency pair, we can simply add them

into the collection of traditional bigram words-bag. Or we can
also just build our words-bag collection only with words-
dependencies data. We implement both methods and compare
their precision in our experiment.

C.� POS Tags of Words or Subjective vs. Objective
POS has long been a useful feature for many sentiment

classifiers. Normally, POS can be used to remove ambiguity
for words with different meanings.

Objective and subjective is a big problem for sentiment
classification. Almost all the sentiment classifier focus on
subjective text, because objective text normally has no
relationship with author’s emotions – they are just talking
about the plot of the movie, or about another story. Thus,
taking the objective text into the judgment of sentiment can be
inaccurate. However, distinguishing between subjective and
objective can be even harder than sentiment classification.

To some extent we can use POS tags to reduce the impact
of subjective text. According to Pak and Paroubek [5], there
exists a relationship between the POS of words and its feature

178177

as subjective or objective. Subjective texts contain more
personal pronouns, verbs in first person and especially, verbs in
base form along with modal verbs. Objective texts contain
more common and proper nouns and verbs in third person. We
go through all the text in our dataset to calculate the algebraic
relationship between every word and their polarity for
subjective and objective. Thus we simply generate 5 patterns:

�������	
�

���������������

����	���	��������

�
����	������������	���������
���

���������
������	��	��
��
���	��	

������	�������
���	
Then we go through the texts to exam every word to see if

it is in the five patterns. If the word belongs to the structure of
subjective patterns, the word’s value will be set to 1, while if
the word belongs to the structure of objective patterns, its value
will be set to -1.

V.� CLASSIFIER
We use two methods to build classifier for the features

extracted: SVM and Naïve Bayes. For SVM it’s simple to
make use of the features generated in section 4.1 to calculate.
As for the Naïve Bayes:

� � � � �

� � �������

���� (1)

It seems hard to directly apply our feature vector into Bayes
rules. We can simplify our classifier by comparing �������	

and �������	
 . In such situation, 	
�� will make no difference
for the result. Again we notice that our datasets contains same
amount of positive reviews and negative reviews, so � � also
can be ignored. Thus:

 � � � ��������� (2)

To calculate ��	��	 , we go through all the features vectors
in train set and get ������� for each feature ��. Thus we get the
final simplification of Naïve Bayes in our experiment as in (3):

� � � �� � ���	��

�

	�

 (3)

VI.� EXPERIMENT & RESULT

A.� Data and Preprocess
We use the movie review data set published by Pang and

Lee [1] to conduct our experiment. The dataset contains 1000
positive and 1000 negative reviews about movies.

In order to make our classifier more accurate, we conduct
some preprocess on the dataset.

1)� We remove some unrecognized words, and words that
appear no more than once.

2)� We extend those short forms. For example, “don’t”
will be transformed into “do not”. Thus words can be more
comparable.

3)� We correct the words which were apparently spelled
wrong.

Then, we execute syntax parse on every data and generate
syntax trees for every file. One file contains one movie review.
We separate the data into train sets and test sets. The train sets
take 80%, namely 1600, while the test sets take 20%, namely
400. With all these preprocesses, we now can apply our
machine learning methods on theses files.

B.� Experiment
We evaluate the result by calculating the accuracy on test

set (200 files). There are two aspects we need to change in
order to generate different test cases:

1) Words-bag: We apply three methods to generate words-
bag collection – unigrams, bigrams and bigrams plus words
dependencies. For each aspect we also combine clause tags to
generate words-bag. Such tags mean when a word is in the
main clause, it will be added a “-m”. Meanwhile, if it is in a
subordinate clause, it will be added a “-s”. So we can generate
different words-bag for the same word according to its position
in the sentence.

2) Features: Again, we employ two methods to generate it
– normal, normal + POS. In such situation, normal method
means generating features according to the presence of words.
We use presence instead of frequency because Pang [1] has
proven that presence performs better than frequency. POS
means variable values for each word according to its POS.
Thus by using POS feature we can distinguish different POS of
words in the words’ feature vectors. The results are shown in
Table II.

C.� Result
1)�Unigrams vs. Bigrams:
In the TABLE II, comparing row (1) with (4), (2) with (5),

(3) with (6), we can see that firstly plain bigrams work poorer
than plain unigrams. However, after we apply clause tags into
words-bag collection and POS features into feature vector,
bigrams method works almost the same with unigrams method.

2)�Bigrams vs. Bigrams + Words Dependencies:
Comparing row (4) with (7), (5) with (8) and (6) with (9),

we can observe an obvious variety between the accuracy of
bigrams method and that of bigrams + words dependencies
method. It is believed that the words dependencies really make
the logistic relationship between words function in the
sentiment classification.

3)�Clause Tags and POS:
As can be seen from contraction in data from TABLE II,

clause tags do not show much value as for the improvement of
accuracies of algorithm. However, POS help the classifier
improve much in its accuracy.

4)�NB vs. SVM:

179178

TABLE II. Precision of sentiment classifier on different words-bag, different features and different machine learning methods.
 Words-bag Features NB SVM

(1) unigrams normal 80.0% 81.5%
(2) unigrams normal + POS 82.0% 84.5%
(3) unigrams + clause tags normal + POS 80.0% 85.5%
(4) bigrams normal 77.5% 79.0%
(5) bigrams normal + POS 82.5% 84.0%
(6) bigrams + clause tags normal + POS 81.0% 84.0%
(7) bigrams + words dependencies normal 81.0% 83.5%
(8) bigrams + words dependencies normal + POS 84.0% 85.5%
(9) bigrams + words dependencies + clause tags normal + POS 85.5% 86.0%

In the overall results, Naïve Bayes can’t beat SVM in our

experiment. This could result from the fact that both the
bigrams and unigrams are not conditionally independent, which
could violate the conditional independence assumption of
Naïve Bayes.

VII.� CONCLUSION
Words-bag method with machine learning techniques has

long been widely used for sentiment classification. However,
most classifiers have not taken syntactic features of text into
consideration. They rely more on POS and other statistics
features. We introduce syntactic features into our classifier,
along with POS tags.

We use the dataset published by Pang and Lee [1]. The
dataset contains 2000 movie reviews, half of which are positive
while the other half are negative. Preprocess are conducted
firstly to remove unrecognized words in English, extend short
form words, and correct wrongly spelled words.

Syntax trees are constructed firstly and words dependencies
are also generated to reveal the grammatical and logistic
relationship between words in sentences. Then features about
clause information as well as POS tags can be generated, and
words-bag collection can be optimized by using bigrams with
words dependencies. Then SVM and Naïve Bayes are applied
in our experiment. From the result we observe that words
dependencies and POS tags does improve the accuracy of
bigram method. As for the clause features, we don’t see much
optimization.

REFERENCES
[1]� Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?:

sentiment classification using machine learning techniques."
Proceedings of the ACL-02 conference on Empirical methods in natural
language processing-Volume 10. Association for Computational
Linguistics, 2002.

[2]� Socher, Richard, et al. "Recursive deep models for semantic
compositionality over a sentiment treebank." Proceedings of the

conference on empirical methods in natural language processing
(EMNLP). Vol. 1631. 2013.

[3]� Dave, Kushal, Steve Lawrence, and David M. Pennock. "Mining the
peanut gallery: Opinion extraction and semantic classification of product
reviews." Proceedings of the 12th international conference on World
Wide Web. ACM, 2003.

[4]� Mullen, Tony, and Nigel Collier. "Sentiment Analysis using Support
Vector Machines with Diverse Information Sources." EMNLP. Vol. 4.
2004.

[5]� Pak, Alexander, and Patrick Paroubek. "Twitter as a Corpus for
Sentiment Analysis and Opinion Mining." LREC. Vol. 10. 2010.

[6]� Ratnaparkhi, Adwait. "Learning to parse natural language with
maximum entropy models." Machine learning 34.1-3 (1999): 151-175.

[7]� Wilson, Theresa, Janyce Wiebe, and Paul Hoffmann. "Recognizing
contextual polarity in phrase-level sentiment analysis." Proceedings of
the conference on human language technology and empirical methods in
natural language processing. Association for Computational Linguistics,
2005.

[8]� Zhan, Wei, Peifeng Li, and Qiaoming Zhu. "Sentiment classification
based on syntax tree pruning and tree kernel." Web Information Systems
and Applications Conference (WISA), 2010 7th. IEEE, 2010.

[9]� Nakagawa, Tetsuji, Kentaro Inui, and Sadao Kurohashi. "Dependency
tree-based sentiment classification using CRFs with hidden variables."
Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, 2010.

[10]� Duric, Adnan, and Fei Song. "Feature selection for sentiment analysis
based on content and syntax models." Decision Support Systems 53.4
(2012): 704-711.

[11]� Aue, Anthony, and Michael Gamon. "Customizing sentiment classifiers
to new domains: A case study." Proceedings of recent advances in
natural language processing (RANLP). Vol. 1. No. 3.1. 2005.

[12]� Yang, Hui, Jamie Callan, and Luo Si. "Knowledge Transfer and Opinion
Detection in the TREC 2006 Blog Track." TREC. 2006.

[13]� Dunning, Ted. "Accurate methods for the statistics of surprise and
coincidence." Computational linguistics 19.1 (1993): 61-74.

[14]� Whitelaw, Casey, Navendu Garg, and Shlomo Argamon. "Using
appraisal groups for sentiment analysis." Proceedings of the 14th ACM
international conference on Information and knowledge management.
ACM, 2005.

[15]� Prabowo, Rudy, and Mike Thelwall. "Sentiment analysis: A combined
approach." Journal of Informetrics 3.2 (2009): 143-157.

[16]� Turney, Peter, and Michael L. Littman. "Unsupervised learning of
semantic orientation from a hundred-billion-word corpus." (2002).

180179

