
Evolutionary Ensemble Strategies for Heuristic Scheduling

Thomas Philip Runarsson

School of Engineering and Natural Science

University of Iceland, Iceland

Email: tpr@hi.is

Abstract—An ensemble of single parent evolution strategies
voting on the best way to construct solutions to a scheduling
problem is presented. The ensemble technique applied is analo-
gous to those described in the machine learning literature. A set
of individuals vote on the best way to construct solutions and so
collaborate with one another. An experimental study illustrates
the superiority of the ensemble strategy over evolutionary
strategies where individuals do not collaborate.

Keywords-Evolutionary algorithms; ensembles; scheduling;

I. INTRODUCTION

Scheduling is the task of allocating a set of jobs to a set of

machines to meet a predefined criteria. Due to its importance

in production management, scheduling has been widely re-

searched since the industrial revolution. For some scheduling

problems, such as the job-shop problem considered here, the

computational complexity increases exponentially with the

increasing number of jobs and machines. For this reason

numerous heuristic methods for finding approximate solu-

tions have been proposed. A popular approach is to apply

handcrafted dispatching rule, construction heuristics, for a

given scheduling task [1]. Dispatching heuristics essentially

assign jobs based on attributes of the current partial schedule

or attributes of the resulting partial schedule resulting from

the job dispatched. For example, the job dispatched may

be the one with the shortest processing time, most work

remaining or a combination of different attributes (composite

dispatching rules). Dispatching rules can therefore be con-

sidered to be a hypothesis, a classifier, for choosing the most

appropriate job to dispatch, given the attributes of the current

partially constructed schedule.

In machine learning ensemble methods use a finite set of

alternative hypothesis resulting from the same base learning

algorithm [2]. Perhaps one the best examples of this is the

random forest [3], where an ensemble of decision trees are

applied. The idea with the ensemble is that a set of weak

hypothesis combined together can achieve a better classifi-

cation accuracy. Multiple-classifiers are a similar technique

where the hypothesis are produced using different machine

learning algorithms. The general idea of using an ensemble

of algorithms in optimization is that the performance of a

single algorithm is sensitive to its various parameter settings.

Using an ensemble of algorithms or even the same algorithm

with different parameter settings would then compensate

for this lack of performance. In the case of an ensem-

ble classifiers each hypothesis will contribute towards the

classification. Ensembles in evolutionary algorithms produce

points in the search space which are either copied to the

next generation or deleted based on a performance criteria

[4]. This ensemble of algorithms essentially compete or

complement each other but do not collaborate.

For the work presented here the term ensemble is used

in the same context as in the machine learning literature.

The same base learning algorithms, the evolution strategy

(1+ 1)CMA-ES, is applied to generate composite dispatch-

ing rules for the construction of solutions to the job-shop

scheduling problem. The base learners are λ evolution strate-

gies running in parallel, each one itself a single composite

dispatching rule (hypothesis) for constructing a schedule at

each generation (iteration of the evolution strategy). The

ensembles are created by taking a random sub-sample, with-

out replacement, from the λ dispatching rules represented

by the population of evolution strategies. This ensemble of

dispatching rules is then used to build schedules. The aim

is to obtain better performance using an ensemble which

could not be achieved by a single dispatching rule. That

is, an individual evolution strategy. The goal is to produce

an ensemble evolution strategy which collaborates in order

to make up for their individual weaknesses. The applica-

tion under consideration essentially involved a classifier for

constructing solutions. However, unlike ensemble machine

learning algorithms, such as AdaBoost [5], there is no

supervisor available to label the job dispatches for training.

Training will be achieved by selective pressure alone, in the

usual evolutionary manner.

The paper is organized as follows. First we formally define

the job shop scheduling problem and heuristics used to

construct solutions. This is followed by a brief description

of the (1+1)CMA-ES as implemented in [6]. The proposed

ensemble evolution strategy developed is described in sec-

tion IV. This is followed by an experimental study of its

performance on some 30 medium size scheduling problems.

The paper concludes with a summary and main conclusions.

II. SCHEDULING HEURISTICS

The scheduling problem considered here is the job-shop

problem. It consists of a set of jobs that need to be processed

on a set of machines. The problem assumes that a machine

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.91

153

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.91

153

can only process one job at a time and that the processing of

a job, referred to as an operation, cannot be interrupted. In an

n′×m′ job-shop problem, n′ jobs must be processed on m′

machines [1]. The jobs are scheduled as a chain of operations

where each operation needs to be processed during a given

time period on each machine. The objective is to find the set

of operations (a schedule) that gives the shortest completion

time.

Heuristics algorithms for scheduling are typically either

a construction or improvement heuristics. The improvement

heuristic starts with a complete schedule and then tries to

find similar, but better schedules. A construction heuristic

starts with an empty schedule and adds one job at a time

until the schedule is complete. This is the approach taken

here.

In order to apply a dispatching rule a number of attributes

of the schedule being built must be computed. Figure 1

shows an example of such a partial schedule for a six job

and six machine job-shop problem. The numbers in the

boxes represent the job identification j. The width of the

box illustrates the processing times for a given job for a

particular machine Mi (on the vertical axis). The dashed

boxes represent the resulting partial schedule for when a

particular job is scheduled next. For example, if the job with

the shortest processing time were to be scheduled next then

job 4 would be dispatched. The placement of the job is

such that it is placed in the earliest possible time in the

current partial schedule. Attributes are used to grasp the

essentials of the current state of the schedule. The attributes

of particular interest were obtained from commonly used

single priority-based dispatching rules [7]. Some attributes

are directly observed from the partial schedule. The temporal

scheduling attributes applied here for a job j to be dispatched
on machine Mi are given in Table I. A dispatching rule may

0 100 200 300 400 500 600 700 800

M1

M2

M3

M4

M5

M6 1

1

1

1

1

2

2

2

2

3

3

3

3

3

4

4

5

5

5

6

6

6

Time

Figure 1. Gantt chart representing a partial schedule. The solid labelled
boxes represent scheduled jobs and their job identification. The dashed
boxes represent possible next step dispatches.

Table I
ATTRIBUTES FOR THE JSP WHERE JOB j ON MACHINE Mi GIVEN THE

RESULTING TEMPORAL SCHEDULE AFTER DISPATCHING.

φ(j) Feature description

φ1(j) processing time
φ2(j) start-time
φ3(j) end-time
φ4(j) when machine is next free
φ5(j) current makespan
φ6(j) work remaining
φ7(j) most work remaining
φ8(j) slack time for machine
φ9(j) slack time for all machines
φ10(j) slack weighted w.r.t. number of tasks assigned
φ11(j) time job had to wait
φ12(j) size of slot created by assignment
φ13(j) total processing time for job

need to perform a one-step look-ahead and observe attributes

of the partial schedule in order to make a decision, for

example by observing the current makespan for the partially

completed schedule. Other dispatching rules use attributes

directly from the current partial schedule, for example by

assigning jobs with most total processing time remaining.

A composite dispatching rule combines the attributes of the

post-decision schedule to create an evaluation function for

each job j dispatched. That is,

eval(j) =

13
∑

i=1

yiφi(j) (1)

and the job whose evaluation value is highest is the one

dispatched (breaking ties randomly). We will now describe

an evolution strategy used to search for an effective set of

weights y.

III. (1 + 1)CMA-ES

The (1 + 1) Covariance Matrix Adaptation Evolutionary

Strategy, (1+1)CMA-ES, is a single parent search strategy.

A single iterations of this search strategy will now be

described, but the reader is referred to [6] for a more com-

plete description. The parent x is replicated (imperfectly)

to produce an offspring y = x + σN (0,C), where σ is a

global step size and C the covariance matrix of the zero

mean Gaussian distribution. The replication is implemented

as follows:

z = N (0, I) (2)

s = Az (3)

y = x+ σs (4)

where the covariance matrix has been decomposed into

Cholesky factors AA
⊺. The normally distributed random

vector z is sampled from the standard normal distribution

N (0, I). The success probability of this replication is up-

dated by

p̄succ ← (1− cp)p̄succ + cp1
[

f(y) ≤ f(x)
]

(5)

154154

where f(·) if the objective (fitness) function which will be

minimized. Here 1[·] is the indicator function and takes

the value one if its argument is true otherwise zero. The

parameter cp is the learning rate (0 < cp ≤ 1) and is set to

1/12. The initial value for p̄succ = 2/11 which is also the

target success probability ptsucc. Following the evaluation of

the success probability the global step size is updated by

σ ← σ exp

(

p̄succ − ptsucc
d(1− ptsucc)

)

(6)

where d = 1+n/2 and n the number of objective variables.

The initial global step size will be problem dependent but

should cover the intended search space. All of these default

parameter setting are discussed in [6].

If the replication was successful, that is f(y) ≤ f(x),
then y will replace the parent search point x. Furthermore,

the Cholesky factorsA will be updated. InitiallyA andA−1

are set to the identity matrix and s set to 0. The update is

then as follows [6]:

1. If p̄succ < ptsucc then s ← (1 − c)s +
√

c(2− c)Az

and set α← (1− ccov)
else s← (1− c)s and set α← 1− c2covc(2− c).

2. Compute w← A
−1

s and set a =
√

1 + ccov‖w‖2/α
3. A← √αA+

√
α(a− 1)sw⊺/‖w‖2

4. A
−1 ← 1√

α
A

−1 − 1√
α‖w‖2

(

1− 1/a
)

w
[

w⊺A
−1

]

.

The default setting for the covariance weight factor ccov =
2/(n2 + 6) and c = 2/(2 + n). A−1 requires Θ(n2) time,

whereas a factorization of the covariance matrix requires

Θ(n3) time. The Cholesky version of the (1 + 1)CMA-ES

is therefore computationally more efficient.

A set of λ such (1 + 1)CMA-ES will now be used to

construct an ensemble evolution strategy.

IV. ENSEMBLE EVOLUTIONARY SEARCH

Consider a population of covariance matrix adaptation

evolutionary strategy algorithms described in the previous

section. Each individual strategy will adapt its search dis-

tribution, its search strategy, independently of one another.

These strategies will also compete and successful (1 +
1)CMA-ESs overwrite unsuccessful ones. This approach to

search may in itself be considered an ensemble strategy since

each (1+ 1)CMA-ES will be using its own search distribu-

tion. One could then also argue that evolutionary algorithms

should be considered to be an ensemble search strategy.

The population is after all an ensemble. Furthermore, one

may consider recombination as a form of collaboration and

boosting. This is, however, not the approach pursued here.

The ensemble created at each generation will be a subset

S of the point vectors y1, . . . ,yλ proposed by each of the λ
(1+ 1)CMA-ES in parallel. A given vector k within S will

vote for the job to be dispatched by performing a one-step

lookahead for a given job dispatch. That is, a classifier Ck

Ck = argmax
j

13
∑

i=1

yki φi(j), k ∈ S ⊂ {1, . . . , λ} (7)

that returns the job to dispatch by the k-th composite

dispatching rule. However, the actual job dispatched will be

the one proposed by a majority vote. Majority vote is perhaps

the simplest to implement and assumes no prior knowledge

of the composite dispatching rules used. The majority vote

is the one with the most predicted job label j,

C∗ = argmax
j

∑

k:Ck=j

1 (8)

where ties are broken randomly.

One must now consider how to generate the subset S
and decide on the fitness for the k-th composite dispatching

rule f(yk). Its fitness will clearly depend on the quality

of the schedule constructed by the ensemble. The size of

the ensemble m = |S| must also be considered and how

the set is sampled. Since no prior knowledge of what type

of ensemble is most likely to succeed, the ensemble will be

sampled randomly from the population without replacement.

The performance of any given (1 + 1)CMA-ES will now

critically depend on the ensemble. In order to minimize the

noise created by such an evaluation, each (1 + 1)CMA-ES

will participating inm such independently drawn ensembles.

The number of schedules built will then be in total λ. Let
us denote the ensembles having the k-th (1 + 1)CMA-ES

by the sets of ensembles Se, e = 1, . . . ,m. Furthermore,

let the quality of the schedule build by the ensemble be

denoted by fe (the resulting makespan). Then, let the fitness

of point vector yk be the best schedule created by the set

of ensembles it participated within, that is

f(yk) = min
e:k∈Se

fe(y
k) (9)

This is then also the fitness used to update the success rate

p̄succ and when successful will replace the parent point x.

Once each (1 + 1)CMA-ES has been evaluated a simple

truncation selection is performed on all the strategies. This

is where the worse half of the population of (1+1)CMA-ES

is deleted and the better half is doubled.

V. EXPERIMENTAL STUDY

The goal of this experimental study is to demonstrate

the performance boost achieved when individual composite

dispatching rules work together in an ensemble. More impor-

tantly how the individual benefits when collaborating with

other individuals within the population. The collaborative

population of individuals will work together in building so-

lutions to scheduling problems. Each individual is basically a

linear classifier and votes on the particular job to dispatch.

A set on m individuals are taken from the population of

λ individuals, here we will use λ = 100 and m = 5,
and each will collaborate with different individuals each

time exactly m times. This ensemble is sampled from the

population, each time without replacement. The ensembles

build solution using a majority vote and the performance

155155

of a single individual will be based on its best ensemble

performance.

As an additional comparison individual ensembles will

be evolved. That is, each (1 + 1)CMA-ES will evolve an

ensemble of m composite dispatching rules. The number

of variables will, therefore, be 13 × 5 = 65. Given that

ensembles boost the performance of the individuals, one

would expect this approach to work equally so.

A. Experimental Setup

The test problems used in the study were created using

the methodology proposed by [8]. The goal is to minimize

the makespan, Cmax. The processing time of the jobs, on

all the machines and all problems, is an integer uniformly

distributed between 1 and 100. The processing order of every
job is a random permutation. Every job has to visit every

machine once. For our experiments we will generate 30
independent 10× 10 problems. The problems are solved to

optimality using a branch and bound algorithm developed

by [9]. The optimum makespan is denoted Copt
max. Since

the optimal makespan varies between problem instances the

performance measure is the following,

ρ =
Cmax − Copt

max

Copt
max

(10)

which indicates the relative deviation from optimality.

The three evolutionary algorithms compared are as fol-

lows.

1) Composite Dispatching Heuristic (CDH): The CDH

is the direct parallel search of 100 (1 + 1)CMA-ES for a

single composite dispatching rule. That is, 100 independent

(1+1)CMA-ES runs are made. There is no communication

between the different (1 + 1)CMA-ES of any form. The

quality of an individual is based solely on its performance

in building a schedule.

2) Ensemble Evolutionary Search (EES: The EES is also

a direct parallel search of 100 (1 + 1)CMA-ES for a single

composite dispatching rule. However, the quality of the

individual is based on its best ensemble performance. An

ensemble of 5 individuals will vote on how best to build a

schedule. The best out of 5 such ensembles will define the

individual’s performance.

3) Ensemble of Composite Dispatching Heuristic

(ECDH): The ECDH is direct parallel search of 100

(1+1)CMA-ES for an ensemble of 5 composite dispatching

rule. There is no communication between the different

(1 + 1)CMA-ES. The quality of an individual is based

solely on the performance of the ensemble within a single

individual evolution strategy. This ensemble uses also

majority voting when dispatching jobs.

B. Comparison and results

Each of the algorithms is run 30 times on the 30 in-

dependently generated test problems. All search methods

0 100 200 300 400 500

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

Iteration (generation)

D
ev
ia
ti
o
n
fr
o
m

o
p
ti
m
al
it
y

EES

ECDH

CDH

Figure 2. Average deviance from optimality as a function of generations
for the three evolutionary algorithms compared.

are terminated after 500 generations. The average deviance

from optimality of the best offspring y for all problems

and runs is depicted in figure 2. From the figure one can

see that the CDH algorithm produces the best individuals

on average and its convergence is the fastest. A slightly

slower convergence speed is observed for the EES with on

average worse individuals. The reason for this is that the EES

evaluation is noisy. An individual in the EES may be lucky

and participate with successful ensembles in one generation

and not so in the next. Furthermore, ties in the majority

voting scheme will be broken randomly. The statistics reflect

this and does not mean that the best schedule found for an

EES run is on average worse than the CDH. On the contrary

it will be better. The average performance of the best ECDH

also experiences the same noise as the EES. However, its

convergence is slower than the EES and will in the end

surpass the EES. The slow convergence is due to the fact

that its uses 5 times the number of parameters, i.e. 5×13. It
surpassed the EES in the end as it uses consistently the same

ensemble, unlike the EES which uses a random sample from

the population. The ECDH is, therefore, less noisy than the

EES.

It is interesting to investigate the average performance for

particular problem instances. For sake of brevity only the

first four out of thirty will be illustrated. Box plots for the

deviation from optimality is shown in figure 3. There are

in total 3 × 4 boxplots illustrated. The first three, from the

left, are for the first problem instance for algorithms CDH,

ECDH and EES respectively. Problems two to four follow in

the same order. This figure illustrates first of all what is well

known in the scheduling literature about dispatching rules,

they can be successful but also fail terribly. In general a sin-

156156

0
.0
0

0
.0
2

0
.0
4

P1 P2 P3 P4

CDH

ECDH

EES

Figure 3. Comparison of the three different methods on the first four
problem instances. Result are shown as box plots for the deviation from
optimality.

gle composite dispatching rule (CDH) performs worse than

the ensemble strategies. However, there will be exceptions,

like problem P3. The performance distribution for EES and

ECDH also appears different.

In order to determine the difference in performance over

the 30 different problems, based on the 30 independent

runs, a Wilcoxon rank sum test is used to see if any two

performance distributions have equal medians. The num-

ber of times the three different algorithms are statistically

different, and have a better median, is given in table II.

When comparing the two ensemble strategies with the non-

ensemble strategy the results for more than half the problems

are statistically different and the majority are in favour of

the ensemble methods. When comparing the two ensemble

methods only 5 out of 30 are statistically different and all

are in favour of ECDH.

VI. SUMMARY AND DISCUSSION

The preliminary results presented here indicate that a sig-

nificant performance boost may be achieved using an ensem-

ble of dispatching rules to construct solution to scheduling

problems. The approach taken is quite different to what has

been proposed previously with ensembles in evolutionary

computation [10]. The scheme is collaborative and in some

sense co-evolutionary as the fitness of any given algorithm

depends on the population of evolutionary algorithms. The

Table II
THE TIMES A METHOD HAS A BETTER MEDIAN PERFORMANCE WHEN

THE MEDIANS ARE STATISTICALLY DIFFERENT FOR THE 30 PROBLEMS.

EES ECDH CHD

EES - 0/5 11/16
ECDH 5/5 - 18/23
CDH 3/16 3/23 -

ensemble evolution strategy draws on principles of ensem-

bles in ensemble machine learning [4].

The direct evolution of the ensemble set (ECDH) has a

slight advantage over the collaborative or co-evolutionary

ensemble EES algorithm. This indicates that a still better

design of the EES should be possible. This will require

a better understanding of how the individuals co-evolve

and is currently under investigation. Furthermore, how this

approach may be extended to other problem domains in

general is of particular interest.

REFERENCES

[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems,
3rd ed. Prentice Hall, 2008.

[2] D. Opitz and R. Maclin, “Popular ensemble methods: An
empirical study,” Journal of Artificial Intelligence Research,
pp. 169–198, 1999.

[3] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[4] R. Mallipeddi, S. Mallipeddi, and P. N. Suganthan, “Ensemble
strategies with adaptive evolutionary programming,” Informa-
tion Sciences, vol. 180, no. 9, pp. 1571–1581, 2010.

[5] Y. Freund and R. E. Schapire, “A decision-theoretic gener-
alization of on-line learning and an application to boosting,”
Journal of computer and system sciences, vol. 55, no. 1, pp.
119–139, 1997.

[6] T. Suttorp, N. Hansen, and C. Igel, “Efficient covariance ma-
trix update for variable metric evolution strategies,” Machine
Learning, vol. 75, no. 2, pp. 167–197, 2009.

[7] S. S. Panwalkar and W. Iskander, “A survey of scheduling
rules,” Operations Research, vol. 25, no. 1, pp. 45–61, 1977.

[8] E. Taillard, “Benchmarks for basic scheduling problems,”
European Journal of Operational Research, vol. 64, no. 2,
pp. 278–285, 1993.

[9] P. Brucker, Scheduling algorithms, 5th ed. Springer, 2007.

[10] G. Karafotias, M. Hoogendoorn, and A. Eiben, “Parameter
control in evolutionary algorithms: Trends and challenges,”
Evolutionary Computation, IEEE Transactions on, vol. 19,
no. 2, pp. 167–187, April 2015.

157157

