
Collaborative Working: Understanding Mobile
Applications Requirements

Lizbeth Gallardo-López, Beatriz A. Gónzalez-Beltrán, Roberto Garcı́a-Madrid
Marco Ferruzca, Irma A. Zafra-Ballinas† and José A. Reyes-Ortı́z

Universidad Autónoma Metropolitana, Azcapotzalco Campus

Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Del. Azcapotzalco, C.P. 02200, México, D.F.

Email: {glizbeth, bgonzalez, grma, mvfn, azb, jaro}@correo.azc.uam.mx

Abstract—The Rational Unified Process (RUP) as well as the
related work embrace the importance of collaborative working
teams during software development; but, user-interface designers
and system analysts work in parallel or in sequential mode.
However, this kind of relationship may not be effective, resulting
on functional software but not meeting usability issues. Our
proposal is that in order to understand mobile applications
requirements work should be made collaboratively between
analysts and user-interface designers through sharing artifacts
like use-case scenarios, sketching and mock-up. In this paper,
we propose a collaborative work framework to meet mobile
applications requirements. Also, we show preliminary results of
a case study to assess this approach. Results suggest that the
collaborative team got a common understanding about system
limits and functional and usability requirements.

I. INTRODUCTION

The Rational Unified Process (RUP) is a software devel-

opment process, which is divided into four phases: Inception,

Elaboration, Construction and Transition [2]. In this phases,

working teams loop under six sets of activities called process

workflows: Business Modeling, Requirements, Analysis and

Design, Implementation, Test and Deployment. This paper

focuses on requirements workflow, under the Inception and

Elaboration phases; the artifacts that must be generated in this

workflow are: Vision document, Supplementary specification

document, Use-case model and Glossary.

The RUP considers different working teams: the system

analyst team, the user-interface team and the technical team.

Inside each team work is made collaboratively but each team

work in a sequential way [2]. Thus, the system analyst team

propose a system specification in the Elaboration phase; the

user-interface design team propose a user-interface model or

prototype during Inception phase or in the beginning of the

Elaboration phase; and the technical team propose the code

of the system during the Construction phase [6]. According to

Obendorf and Finck [4] “this sequential division may affect

the resulting software product so that it is functional but not

very usable”.

We consider that RUP proposes a good process for the

development of mobile applications because it clearly states

phases and workflows through an incremental and iterative

development. Moreover, it specifies the artifacts that are part

of the project memory easing the communication between

working teams. However, the sequential work between user-

interface designers and system analysts hinder the mobile

software development with a strong usability component.

Therefore, we propose to use RUP as a software develop-

ment process but promoting collaborative work between user-

interface designers and system analysts to understand mobile

applications requirements through sharing artifacts like use-

case scenarios, sketching and mock-up.

We believe that this collaborative work allow to develop

functional mobile applications that takes into account usability

issues, particularly interaction and navigation. Collaboration

must be guided by a framework organizing a team and plan-

ning a series of meetings in the requirements workflow, mainly

in the Inception and elaboration phases. We think that use-

case scenarios foster functional requirements but that sketching

and mock-ups are artifacts that foster the creativity and they

facilitate the discussion among user-interface designers and

system analysts, allowing them to have a more accurate system

model and to have a quick idea about the interaction and

navigation of the user interface.

In the following sections, we present some related work,

section II. Later, we explain our proposal, section III. Also,

we show preliminary results, section IV. Finally, we describe

conclusions and future work of this research, section V.

II. RELATED WORK

This section surveys previous work in software development

methodologies to find how collaboration work is done. Three

features will be highlighted: the methodology approach, the

level of collaboration between working teams and the artifacts

applied.

Song et al [6] explore a methodology of designing user

interfaces of handheld devices based on the Android platform.

The method was divided into three parts from the perspective

of the task carried out by three major roles in different stages

of development: 1) requirements analyst, 2) UI designer, and

3) software engineer. The methodology proposed is role and

task oriented and each part is made in chronological order.

However, it is not clear which artifacts are built in each stage.

Rahimian and Ramsin [5] propose an hybrid methodology

for mobile software development as an agile risk-based ap-

proach and influenced by the Adaptive Software Develop-

ment Methodology and new Product Development. This work

proposes the following phases: 1) idea generation, 2) project

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.86

139

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.86

139

initiation, 3) detailed analysis with prototyping, 4) architec-

tural design, 5) development, and 6) commercialization. This

methodology is oriented towards product development. As

they incorporate ideas from Adaptive Software Development,

they argue that collaboration is needed for unpredictable parts

of the project, but it is not specified the level of collaboration.

Although they propose prototyping within detailed analysis, it

is not clear which artifacts are built.

Obendorf and Finck [4] propose an integrated process com-

bining Extreme Programming and Scenario-Based Usability

Engineering. They adopted techniques from Scenario-Based

Engineering [3] and Rapid Contextual Design [1]. They argue

that the use of use-case scenarios can induce the beneficial

effect of connecting development task to the use context, and

thus indirectly even decisions concerning software architecture

to the question of how to best support documented use

scenarios. Contextual investigation was a method for gathering

information about the use context and users roles and responsi-

bilities. Requirements scenario was a technique for collecting

requirements. Use scenario was an artifact resulting of mixing

activities with sketches.Their notion of stories included paper

prototyping in the re-design process. Tasks were used to

differentiate between sequential development tasks, but also

to divide the labor between different teams.

III. COLLABORATIVE-WORKING:UNDERSTANDING

MOBILE APPLICATIONS REQUIREMENTS

A. Research questions and Findings

Our research question is: The collaborative work between

user-interface designers and system analysts, through the use-

case scenarios, sketching and mock-up, allow a common un-

derstanding of requirements in order to develop useful mobile

applications?

The findings are: The RUP as well as the related work,

embrace the importance of collaborative working teams during

software development; however, system analyst and user-

interface teams work in parallel or sequential mode. We

observe that the related work support sketching and mockup

as useful artifacts in the software design. However, we have

not found a proposal where team members work in a closed

collaboration.

We hold that the collaboration will allow teams to under-

stand the problem, the system limits and will promote the

building of a common functional and usability vision about

mobile applications requirements. We believe that the collab-

orative work through sharing artifacts facilitate the generation

of ideas; also, we think that sketching and mock-up help to

define better use-case scenarios, because the feedback between

system analysts and user-interface designers is provided im-

mediately.

B. Framework

In order to establish a collaborative work between system

analysts and user-interface designers, we propose a framework

based in three concepts: team, working sessions and rules.

1) Team: The working team is formed by persons which

roles are: i) System analyst that build the following artifacts:

vision, supplementary-specification, glossary, use-case dia-

gram and use-case scenarios; and ii) User-interface designer

that build artifacts: sketching and mock-up. The user is an

important role in the development process, but we do not

consider him part of the team.

Each team must name a coordinator: i) a system analyst

coordinator ii) An user-interface designer coordinator. Each

coordinator assign responsibilities to their members; also he

chairs working sessions.

2) Working sessions: The goal of working sessions is that

the working team build collaboratively a solution, sharing

artifacts that describe the functional requirements and usability

issues, particularly interaction and navigation.

We propose three kinds of working sessions in requirements

workflow. We recommend to assign an hour and a half

maximum to a working session, in order to capture the best

performance of team members and users. Also, we recommend

defining an iterative process (iteration) by a week (five days)

to mobile applications.

a) Meeting: The team and users work together. Meet-

ings serve to capture the user requirements and validate the

functional requirements.

• Capture user requirements. The team employs interviews

to the users.

• Validate the functional requirements. The team employs

visual elements to communicate with the user, like: use-

case diagram, sketching and mock-up. However, they

should have at work artifacts like: use-case scenarios,

vision and supplementary-specification.

In a meeting, team members take note of users comments

and they sketch ideas that will be taken up in the next

workshop, or that will be assigned to a team member.

b) Workshop: The working team makes analysis of inter-

views, notes and sketches that have been taken in a meeting,

and defines a new set of tasks. Each coordinator assigns tasks

that will be performed in pairs or individually. The working

team starts these tasks in the workshop.

The working team explores potential solutions using arti-

facts constructed previously in a workshop or individually, and

builds one or several proposals, which are expressed in a new

version of artifacts.

c) Individual work: System analysts and user-interface

designers work individually in an artifact. This task could be

assigned in a workshop or in a meeting.

3) Rules: Two important rules to team members: i) The

responsible to make an artifact must share it, at least one

day before a meeting or a workshop, and ii) The others

team members, users included, must review it before the next

meeting or the next workshop.

IV. RESULTS

This research project is ongoing. We perform a case study

with the MOCA system, in order to test this framework.

MOCA will be a system for cancer symptoms monitoring.

140140

Fig. 1. MOCA system: First sketching to register symptom

It is defined by use-cases: i) register a symptom, ii) modify

a symptom, iii) remove a symptom, and iv) view symptoms

summary. From this case study, we answer partially our re-

search question: The collaborative work between user-interface

designers and system analysts, through the use of shared

artifacts, allow a common understanding of requirements in

order to develop useful mobile applications? We contrast

versions of artifacts: use-case scenario and sketching about

“Register symptom”.

A. Team and working sessions

1) Team: The working team was formed by three system

analysts and three user-interface designers. Team attended

two users: patients diagnosed with cancer. The working team

defined an iterative process (iteration) by a week (five days).

In the inception phase, the team performed two iterations and

in the elaboration phase team perform three iterations.

2) Working sessions: A iteration included: a workshop at

Monday, individual work at Tuesday and Wednesday, work-

shop at Thursday, if necessary, and a meeting at Friday. The

time assigned to working sessions was one hour and a half.

The table I shows the initial use-case scenario “Register

symptom”. Team and users found some disadvantages:

1) This use-case scenario does not describe clearly the

functionality. Team asks: Does the list of symptoms

include all the symptoms registered in the application?

2) This use-case scenario does not offer a functional al-

ternative in order to search a symptom. For example,

searching a symptom by typing it on the keyword or by

choosing words in a dictionary (ABC).

The sketch (see figure 1) shows an idea oriented to search

a symptom by keyword. The application filters the symptom

through the letters introduced by the user. The team build a

mock-up shows the navigation that the user must follow in

order to register a symptom. Team and users observed some

disadvantages of this proposal:

1) When the user chooses a symptom, he must specify the

symptom features: i) intensity, ii) initial date and iii)
initial hour, iv) final date and v) final hour, and vi)
behavior. This is not suitable. First, the user may be

feel sick at that moment. Second, the user still does not

know date and hour finals, nor the symptom behavior.

2) User is forced to interact with MOCA in a window-like

environment. This design does not provide opportunities

to employ touch screens because several clicks are

needed before register a symptom.

TABLE I
INITIAL USE-CASE

Use-case: Register symptom
Summary: This use-case describes the option to register a symptom.
Actors: patient
Pre-conditions: The patient must be recorded and must be authenticated
in the system.
Post-condition: A new symptom was recorded in the system.
Trigger: Registering a symptom start when the patient chooses the option
”new symptom“.
Principal flow:

1) The system shows the symptom list.
2) The patient chooses one symptom.
3) The patient chooses the option ”symptom features”
4) The system shows a form to register symptom features.
5) The patient registers:

a) Initial date.
b) Initial hour.
c) Symptom intensity (range 1-10).
d) Final date.
e) Final hour.
f) Behavior (constant, increase or decrease).

6) The patient chooses the option “OK”
7) The system shows a symptoms summary.
8) The system enables the option ”save”.
9) The patient chooses the option ”save”.

10) The system saves symptom features.
11) The system returns to the main view.

Alternative flow:

a. The patient can in any moment of their edition to cancel the record.

5.1 The patient did not register symptom features.
5.2 The patient chooses the option “OK”
5.3 The system notifies to patient ”The symptom features are not be

registered”.

The use-case continues to step 8 of main flow.

The sketch (see figure 2) shows another idea oriented to

search a symptom through the human anatomy. The team build

a mock-up to show the navigation that the user must follow

to register a symptom. The user must choose one anatomical

region, for example, the stomach. The application respond with

a list of symptoms associated with-it. When the user choose a

symptom, the intensity is increase while the finger is swiped

to the right, and it is decrease while the finger is swiped to

the left. The application register the following features: i)
symptom name ii) intensity iii) date and iv) hour of these

moment. The team and users observed some advantages of

this interface:

1) When the user chooses a symptom, he must only specify

the intensity. The others symptom features will be speci-

fied as from the symptoms summary, where the features,

excluding symptom name, will be modified.

2) The interface where the user must choose the symptom

features is now a sliding panel, which head shows a

pictograph associated to each feature. Under the panel,

the system shows the list of symptoms recorded. A

symptom in blue color indicates that the symptom is

completed. A symptom in orange color indicates that

the symptom is not completed, i.e. lacking features. The

final option of the panel is “delete” a symptom.

141141

Fig. 2. MOCA system: Second sketching to register symptom

TABLE II
FINAL USE-CASE

Use-case: Register symptom
Summary: This use-case describes the option to register a symptom.
Actors: Patient
Pre-conditions: The patient must be recorded and must be authenticated
in the system.
Post-condition:A new symptom was registered in the system
Trigger: Registering a symptom start when the patient chooses the option
”new symptom“.
Principal flow:

1) The system shows a human anatomy (frontal or behind) by patient
gender.

2) The patient chooses an anatomical region.
3) The system shows the list of symptoms associated with this

anatomical region.
4) The patient chooses a symptom.
5) The system asks for the ”symptom intensity and description”.
6) The patient chooses the intensity (range 1-10).
7) The patient writes a brief description of the symptom (optional).
8) The patient chooses the option “OK”.
9) The system save the following symptom features:

• Name.
• Intensity.
• Description.
• Current date and hour.

10) The system shows a symptoms summary in a emergent window.

Alternative flow:

a. The patient can cancel the register at any time.
b. The patient can in any moment to choose the option ”summary”.

The use-case View symptoms summary will be triggered.

1.1 The patient chooses the textual view.
1.2 The system shows the list of symptoms.
1.3 The system provides two search mode:

• The patient searches by dictionary (ABC).
• The patient searches by typing letters.

1.4 The system shows symptoms filtered by the search criteria (ABC
dictionary or typing letters).

The use-case continues in the step 5 of the main flow.

3) This interface employs gestures provided by a mobile

device.

The use-case scenario modified after the collaborative work

is showing in the table II). Team observed the following

advantages:

1) This use-case scenario describes details about expected

functionalities. The list of symptoms shows only the

symptoms that match to the user search. The use-case

scenario describes a filtering operation.

2) This use-case scenario offer three functional alternatives

in order to search a symptom: i) Typewriting it, ii)
dictionary (ABC), and iii) choosing from anatomical

region.

Results suggest that the team got a common understanding

of requirements. This is reveled by use-case scenarios I

and II. The system limits were established through working

sessions with users, these limits were shown by a use-case

diagram. Usability issues like: interaction and navigation were

established in sketches and mock-ups, which improved the

use-case scenario. Functionalities not considered in the initial

version, were reveled by artifacts (sketching and mock-up)

build in a collaborative work.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a framework to collabora-

tive work between system analysts and user-interface designers

to understand mobile applications requirements. We have

an empirical evidence about the efficiency of collaborative

work, through a case study. The preliminary results, based

in contrasting first and final artifacts suggest that the team

got a common understanding about functional and usability

requirements and system limits.

ACKNOWLEDGMENT

The authors would like to thank the support of Universidad

Autónoma Metropolitana, Azcapotzalco campus.

REFERENCES

[1] Beyer, H., Holtzblatt, K., Baker, L.: An agile customer-centered method:
Rapid contextual design. In: Zannier, C., Erdogmus, H., Lindstrom, L.
(eds.) Extreme Programming and Agile Methods - XP/Agile Universe
2004, Lecture Notes in Computer Science, vol. 3134, pp. 50–59. Springer
Berlin Heidelberg (2004), http://dx.doi.org/10.1007/978-3-540-27777-4
6

[2] Larman, C.: Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Prentice Hall PTR, Upper Saddle River, NJ, USA (2004)

[3] McGraw, K., Harbison, K.: User-centered Requirements: The Scenario-
based Engineering Process. L. Erlbaum Associates Inc. (1997)

[4] Obendorf, H., Finck, M.: Scenario-based usability engineering techniques
in agile development processes. In: CHI ’08 Extended Abstracts on
Human Factors in Computing Systems. pp. 2159–2166. CHI EA ’08,
ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1358628.
1358649

[5] Rahimian, V., Ramsin, R.: Designing an agile methodology for mobile
software development: A hybrid method engineering approach. In: Re-
search Challenges in Information Science, 2008. RCIS 2008. Second
International Conference on. pp. 337–342. IEEE (June 2008)

[6] Song, M., Song, H., Fu, X.: Methodology of user interfaces design
based on android. In: Multimedia Technology (ICMT), 2011 International
Conference on. pp. 408–411. IEEE (July 2011)

142142

