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Abstract—In transportation networks for extractive 
industries there are typically several uncertain factors including 
the volume of deposits, the duration of logistics operations, and 
the methods of delivery. All transportation networks have a 
unique outlet, usually a single cargo station for shipping all 
extracted products to other regions. In this paper, the authors 
demonstrate how methods of interval analysis and fuzzy sets 
theory are used for designing structures of such networks.  
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I. INTRODUCTION  
      In this paper, methods are developed for designing 
structures of transportation networks under the conditions of 
uncertainty of the initial information. As a rule, the initial 
information is imprecise for any type of transportation 
network, but the degree of uncertainty and the number of 
undetermined factors are especially noticeable when designing 
networks for extractive industries. Networks for extractive 
industries are meant to be transportation networks that are 
created for development and operation of deposits of minerals 
in regions without infrastructure. For these networks, the 
following undetermined factors are typical: the volume of 
deposit reserves, the duration of network operations, 
information about engineering-geological construction 
conditions, the directions of network development, the 
methods of construction, etc. A special feature of the 
construction of networks for extractive industries is the 
existence of a unique outlet (since there is no consumption 
inside the local region, and all the extracted product is 
transported to other regions from a single cargo station which 
is the network outlet).   
 Two types of factors cause indeterminacy of 
parameters:       
 1) Factors that are externally relative to the models 
and directly affect model's parameters equally. These are: 
duration of network utilization, capacity of deposits, 
construction methods and so on.      
  2) Factors that are not completely determined due to 
incompleteness of the engineering-geological information 
about construction conditions and of network exploitation, 
which affect the internal parameters of the model. The first 

group of factors determines the external indeterminacy of the 
model, while the second determines the internal.       
 For describing external as well as internal 
indeterminacy, methods of interval analysis [1] and the theory 
of fuzzy sets [2] are used in this paper. The procedure of 
choosing optimal versions of structures of networks is based 
on introducing a preference relation and using a 
decomposition approach [3].      
  In the second section, two types of indeterminacy in 
networks for extractive industries are presented. In the third 
section, preference relations are introduced on the set of 
versions of structures of the network, and a model of 
decomposition of the problem is described. In the fourth 
section, algorithms for designing transportation networks 
based on the decomposition approach are described. In 
conclusion, practical utilization of the results obtained are 
outlined.  

II. STATEMENT OF THE PROBLEM 
Usually, the initial information for the design of the 
transportation network is presented in the form of a connected 
graph, G = (I ∪{i0}, E), where I is the set of sources and i0 is 
the sink. E is the set of edges corresponding to the admissible 
communications; the following are specified ∀ (i, j) ∈ E: the 
cost of building an edge wij ≥0, the cost of transporting a unit 
of product across an edge vij ≥0 .  
For each source, i ∈ I its capacity pi≥0 is provided.      
  The problem of designing the transportation network 
is to minimize the objective function. 
F T w v y T Tij ij iji j T( ) ( ( )) min , ,( , )= +� → ∈∈ Ω                 (2.1)                 
where T is the spanning tree of the graph G, yij is the flow 
over the edge (i, j) ∈  T which is uniquely determined for a 
given sink i0, T is the set of spanning trees of the graph G.            
 In the case of external indeterminacy, the problem of 
designing transportation networks can be posed in the form of 
‘‘minimizing’’ the following objective function: 
F T w v y T Tij ij iji j T( ~,

~
, ) ( ~ ~

( )) min , ,( , )α β α β= +� → ∈∈ Ω   (2.2) 

where ~,
~

α β  are indeterminate parameters 
Under internal indeterminacy, it is required "to minimize" the 
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objective function 
F T w v y T Tij ij iji j T( ) ( ~ ~ ~ ( )) min , ,( , )= +� → ∈∈ Ω                 (2.3)           

where ~ ,~ ,~w v yij ij ij  are indeterminate parameters defined on the 
edges of the graph G. 
 The indeterminate parameters are modeled by 
interval numbers or fuzzy sets.  
 

III. PREFERENCE RELATIONS AND THE DECOMPOSITION 
APPROACH TO THE PROBLEM WITH INTERVAL AND 

FUZZY ESTIMATES 
 To solve the problem (2.1) in [4] a decomposition 
model is proposed based on the approach [3]. The basic idea 
of the decomposition approach is as follows: instead of the 
initial, complex optimization criterion in the problem, several 
particular simpler criteria are introduced. If the partial criteria 
are monotonically coordinated with the global one (i.e., the 
fact that an alternative is superior with respect to the partial 
criteria implies its superiority with respect to the global one), 
then the solution of the initial problem is contained in the 
Pareto set of the coordinated multi-criterion problem. An 
application of the decomposition approach is most advisable 
when the global problem and the problems with partial criteria 
have different classes of complexity [4]. This model allows us 
to reduce the solution of the initial NP-complex problem (2.1) 
to a solution of the sequence of partial problems of polynomial 
complexity. In this paper, we propose application of the model 
[4] for solving problems (2.2) and (2.3).        
 Since an estimate of the alternative in problems (2.2) 
and (2.3) is either an interval or a fuzzy set, it is necessary for  
solving these problems to introduce scalar and vector 
preference relations (PR) on the set of alternatives, and to 
generalize  the decomposition model to the case of these PR- 
For the problem (2.2), the partial criteria which are introduced 
are  deterministic. A decomposition scheme for problem ( 2.2) 
with fuzzy estimates is described in [4]. Evidently, this method  
is applicable for solving the problem (2.2) with interval 
estimates. Unlike the problem (2.2), in problem (2.3) partial 
criteria are also undetermined and are defined by a certain PR. 
Hence, for application of the decomposition approach, it is 
necessary to formulate a condition of compatibility of the 
global PR and partial PRs. The compatibility condition is a 
generalization of the condition of monotonicity of the criteria 
in the deterministic case [3] namely PRη is compatible with 
relations ν1,…,νm if and only if the fact that ∀ i, x' dominates 
x" with respect to the PR implies that x' dominates x" with 
respect to the PR η. It is easy to  verify that, in the case of 
compatible PRs, the set of non-dominated solutions with 
respect to the PR η. It is contained in the set of non-dominated 
solution with respect to vector PR (ν1,…,νm).  

A. Preference relation for the case of interval estimates 
In the case of a single criterion, PR is introduced naturally: 
two intervals I1 = [a1, b1] and I2 = [a2, b2] are incomparable if 
and only if (b1- a2) (a1 - b2) ≤0, I1 dominates I2 (I1< I2) if and 
only if a2 > b1. A solution of the problem constitutes the set of 

non- dominating intervals (which are incomparable with each 
other). For multi-criteria problems with indeterminacy, several 
PR are introduced in [5], but their application in problems 
with interval indeterminacy is not advisable, since the problem 
becomes completely deterministic which results in a partial 
loss of information contained in the model and an unjustified 
narrowing down of the selection region.      
 We introduce a vector PR for the multi-criteria 
problem with interval parameters  
( U1 (x), U2 (x), …, Um (x) ) →min, x∈X 
In the following manner: to each alternative x there 
corresponds an m-dimensional parallelepipeds in the space of 
criteria [ai, bi], where D(x) = [a1, b1]× [a2, b2]×… × [am, bm], 
and [ai, bi]  is the interval of the values of the criterion Ui (x). 
Parallelepipeds D(x′) dominates parallelepipeds D (x′') if and 
only if ∀i bi′′ < ai′′.    

B. PR for the case of fuzzy estimates  
A scalar PR for fuzzy sets is determined in [2] as a PR 
induced by the natural order (<) on the real axis. The vector 
PR in this case is described in [3]. However, the given PR do 
not allow us to take into account the form of the curves 
described by membership functions and depend only on the 
mutual disposition of regions with maximal values of 
membership functions. In this paper, it is proposed to express 
these PR in terms of PR for interval estimators.       
 Let a fuzzy set be given by the membership function 
ν:Rl → [0, 1]. Following [2] we shall call the set Xα

ν = 
{x⏐x∈U Rl , ν (x) ≥α}, 0< α < 1 an α-level set of the fuzzy 
set ν. Evidently, for convex fuzzy sets, Xα

ν  is an interval. A 
fuzzy set ν dominates a fuzzy set μ at level α if and only if 
Xα

ν  dominates Xα
μ. The sets ν and μ are incompatible if and 

only if the corresponding intervals are incompatible. A vector 
PR at level α is introduced analogously. Note that for the 
normal convex fuzzy subsets, the PR introduced herein for the 
case α = 1 coincides with the PR in [2], while the set of non-
dominated alternatives with respect to a given PR 
monotonically increases as a decreases.       
 When the estimates are nonconvex (Xα

ν is not 
continuous), we take instead of Xα

ν   an approximating 
interval whose lower bound coincides with the minimal lower 
bound, while the upper bound coincides with the maximal 
upper bound of intervals comprising Xα

ν . In this case, the set 
of non-dominated solutions can only increase.  

IV. AN ALGORITHM FOR SYNTHESIZING TRANSPORTAION 
NETWORKS UNDER INDETERMINACY CONDITIONS  

An algorithm for solving problem (2.2) for the case of fuzzy 
estimators was described in [5]. Since an interval estimate is a 
particular case of a fuzzy set, this algorithm can be applied 
also for solving problem (2.2) with interval estimates.       
 To solve the problem (2.3) with interval estimates, 
partial problems of polynomial complexity are distinguished:  
U T w Tiji j T1( ) ~ min , ,( , )= � → ∈∈ Ω                        (4.1) 

U T v y T Tij iji j T2 ( ) ~ ~ ( ) min , ,( , )= � → ∈∈ Ω                      (4.2)          
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A solution of the problem can be obtained in the course of 
constructing a set of efficient solutions P, of the problem 
(U1(T), U2(T)) →min, T∈Ω. 

  To each solution Ti of problem (2.3) in the space of 
the criteria there corresponds a region D (Ti) = [a1

i, b1
i] x [a2

i, 
b2

i] where Ul (Ti) = [a1
i, b1

i],  U2 (Ti) = [a2
i, b2

i].          

By definition, Ti∈Pu  if there exists no Tj such that Ul (Tj) ≤ 
Ul (Ti) and U2(Tj) ≤ U2(Ti) and one of the inequalities is strict.          

 Solution of problem (2.3) is reduced to the following.          

1. A set of trees of shortest paths {Ti'} possessing non-
dominated estimates is constructed (i.e., the interval problem  
(4.2) is solved). To construct the set {Ti'} it is proposed to use 
Dykstra's algorithm modified for the case of interval lengths of 
edges: 

bk'=max {bi'}, where Ul(Ti')=[ai', bi']. 
      {Ti} 

 2. The spanning trees Ti"∈Ω are generated in order of 
increase of ai", where Ul(Ti")=[ a i", bi"], as long as a i" < bk'. 
The algorithm given in [6] is used for generation. 

 All the remaining spanning trees are certainly not 
efficient solutions. In the course of generating spanning trees, a 
set of solutions is formed which are not dominant with respect 
to cost of construction and operation of the transportation 
networks.  

 As follows from Section B, problem (2.3) with fuzzy 
estimates of alternatives can be reduced to the problem (2.3) 
with interval estimates. As far as the choices of the level α at 

which a comparison of fuzzy estimates is carried out is 
concerned, it is difficult to provide specific recommendations 
in the general case. It should be noted that as α decreases, the 
number of non-dominating alternatives increases 
monotonically. In a specific problem, the choice of (x must be 
made empirically originating from the required capacity of the 
set of non-dominated alternatives.  

V. CONCLUSION 
Based on the proposed approach, a package of programs has 
been developed which allows generation of a set of non-
dominating versions of networks in the case of internal and 
external indeterminacy.  
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