
Towards an Ontology Design Architecture

Jason Jaskolka∗

St. Francis Xavier University
Antigonish, Nova Scotia, Canada

Email: jjaskolk@stfx.ca

Wendy MacCaull

St. Francis Xavier University
Antigonish, Nova Scotia, Canada

Email: wmaccaul@stfx.ca

Ridha Khedri

McMaster University
Hamilton, Ontario, Canada
Email: khedri@mcmaster.ca

Abstract—As the world enters the age of “big data”, new
ways to represent and reason on enormous amounts of data
are demanded and expected. Work in developing ontologies
and reasoning approaches have taken steps towards addressing
these needs. However, ontology development is not usually
perceived as an engineering activity. Developers often overlook
fundamental questions and concerns of ontology design and an
ad hoc “one-time use” mentality has emerged. In this position
paper, we address this lack of design consideration in ontology
development by adapting existing software design patterns. We
propose an ontology design architecture based on the model-
view-controller (MVC-II) architectural style in an effort to
present a new engineering view of designing ontologies.

Keywords-ontology design, ontology engineering, MVC-II
architecture, knowledge representation, separation of concerns.

I. INTRODUCTION AND MOTIVATION

Today’s world is filled with a plethora of information

and new and updated ways to represent and reason on vast

amounts of data are required. The emergence of ontologies

and reasoning approaches has led to improvements in the

ability to reason on large amounts of information. However,

appropriately designing and developing ontologies suitable

for the emerging reasoning needs in the age of “big data”

still faces many difficulties. There does not exist a set

of agreed-upon guidelines and methods for designing and

developing ontologies [1]. Developers often make leaps from

knowledge acquisition phases straight to implementation

phases, often overlooking fundamental questions and con-

cerns of ontology design. Consequently, developers quickly

reach a number of roadblocks in their quest to develop

ontologies that are modifiable, extendable, and reusable [2].
Throughout this paper, an ontology is perceived as a

complete system that provides an understanding of a world.

Based on this understanding, we propose an ontology design

architecture based on a variation of the existing model-view-

controller (MVC-II) style inspired from the area of software

engineering. The architecture aims to provide a clear sepa-

ration of concerns with respect to the knowledge represen-

tation and the reasoning abilities of the ontologies devel-

oped. It also looks to provide a separation of the domain-

independent and domain-specific knowledge required of an

∗Corresponding Author Current Address: McMaster University, Hamil-
ton, Ontario, Canada, Email: jaskolj@mcmaster.ca

ontology to capture particular views of the possible worlds

that it needs to consider. Overall, our architecture provides a

systematic way to guide ontology design and development.

We do not claim to provide a new methodology for

developing ontologies from start to finish, or that existing

methodologies for developing ontologies are not important.

Rather, we target a framework that supplements the ontology

development phases of existing methodologies. The views

in this paper intend to break down the current convention

of developing ontologies in an ad hoc manner without

sufficient assessment of the questions and concerns required

of designing an ontology for practical use and reuse.

This paper is organised as follows. Section II discusses

the related work. Section III presents the proposed ontology

design architecture. Section IV discusses the benefits and

drawbacks of the proposed architecture. Section V concludes

and gives the highlights our current and future work.

II. RELATED WORK

A. Methodologies for Ontology Development

Developing an ontology from scratch has largely been

considered more of an art rather than an engineering ac-

tivity [3]. Different groups build ontologies with a variety

of different approaches, methods, and techniques. There is

no universal agreement on the overall landscape of existing

ontologies [4]. There is a lack of standardisation with regard

to the activities, life-cycles, methodologies, and sets of well-

defined design criteria, techniques, and tools to realise the

development of ontologies as an engineering activity [1], [3].

The characterisation of the ontology development life-

cycle has received much attention in the past. A detailed

summary of existing methodologies can be found in [3]. Of

these, METHONTOLOGY [5] has become the most preva-

lent. While METHONTOLOGY outlines many of the phases

required when developing an ontology, it is missing the no-

tion of a design phase. By omitting design phases, resulting

ontologies are often poorly thought-out in terms of their

maintainability, modifiability, extendability, and reusability.

As with the development of any other engineering system, a

proper design phase is required in the ontology development

life-cycle to ensure that a developed ontology is fit for

purpose, that it meets its requirements and objectives, and

that it exhibits a set of desirable quality attributes.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.48

132

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.48

132

B. Archetypes

The idea of archetypes has gained popularity in the health-

care domain, particularly with the rise of electronic health

records and the advent of the openEHR framework [6].

Within the healthcare domain, an archetype refers to a

detailed and domain-specific definition of a clinical concept

in the form of structured and constrained combinations of the

data entities, such as blood pressure [7]. However, there does

not appear to be any reason why the notion of archetypes

should be limited to the healthcare domain. If we consider

the idea of archetypes in a more domain-independent con-

text, then an archetype refers to a knowledge-level model

that defines valid information structures [8]. In this way,

archetypes can offer general and reusable terminologies that

can be adapted to many domains. In this paper, we use the

idea of archetypes to provide characterisations of general

concepts and the attributes most commonly associated with

them. For instance, a Person archetype may specify the

general concept of a person with the attributes: name,
address, and phone number. We assume this understanding

of the term archetype for the rest of this paper.

C. Ontology Design Patterns

An ontology design pattern is a reusable successful so-

lution to a recurrent modelling problem (e.g., [9], [10]).

As such, it serves the same purpose as design patterns in

other fields of engineering where the intention is to provide

modular, reusable, and replaceable building blocks for larger

systems. While much research into developing ontology

design patterns has been done in recent years, there is yet

to be a wide adoption of the design pattern approach by

practitioners, largely due to the poor documentation and

large number of proposed ontology design patterns [10].

Consequently, it is often difficult for a practitioner to select

and adapt a design pattern that models the concepts and

phenomena that are relevant to their needs. The question of

whether there is a need for new design patterns specific to

ontologies arises. To the best of our knowledge, there does

not appear to be any evidence against adapting the current

widely-used engineering design patterns, such as those found

in the software engineering field, for ontologies.

III. THE PROPOSED ARCHITECTURE

We propose to design and develop an ontology from an

engineering perspective as one would approach the design

and development of any other engineering system, such as

a bridge, a building, or a software system. Our architecture

is based on a variation of the MVC-II architectural style

adapted from the area of software engineering.

MVC-II is a variant of the model-view-controller (MVC)

architecture where the controller and view components are

separated. It is best suited for interactive applications where

multiple views are required for a single data model and

where its interfaces are prone to frequent changes [11].

Knowledge

Coordinator

(KC)

Ontology

Coordinator

(OC)

Reasoning

Engine

(RE)

Data

Component

(DC)

Interpretations

Component

(IC)

Archetypes

Component

(AC)

domain-independent

knowledge

. . .

Domain-

Specification

Component (DS1)

Domain-

Specification

Component (DSn)

domain-specific

knowledge

knowledge representation

reasoning concerns

MVC-II

Knowledge

Instance

MVC-II

Ontology

Instance

Figure 1. A nested MVC-II architecture for ontology design

The MVC-II architectural style consists of three primary

components. The model (white components in Figure 1)

provides all of the core functional services and encapsulates

all data details, independent of the other components in the

system. The view (grey components in Figure 1) provides

particular views of the model component. The controller
(black components in Figure 1) manages all of the initial-

isation, instantiation, and registration of the other system

components and is responsible for selecting desired views

and managing user input requests. Because an ontology can

be seen as an interactive system where multiple views of the

knowledge representation are required in order to complete

reasoning tasks, it fits the application domain of the MVC-II

architectural style. Due to its modularity, MVC-II can offer

enhanced modifiability, extendability, and maintainability.

We propose a nested MVC-II architecture, shown in

Figure 1. It consists of two instances of the MVC-II ar-

chitectural style. The inner Knowledge Instance (elliptical

components), provides an MVC-II-based architecture for the

knowledge representation of the ontology and offers separa-

tion between domain-independent knowledge and domain-

specific knowledge. The outer Ontology Instance (rectan-

gular components), provides an MVC-II-based architecture

offering separation between the knowledge representation

and the reasoning concerns of the ontology.

A. The Knowledge Instance

The Knowledge Instance model component encompasses

the domain-independent knowledge representation of the

ontology and consists of the Archetypes Component, Data
Component, and Interpretations Component.

The Archetypes Component (AC) is concerned with iden-

tifying the set of concepts and their respective attributes

required to model the world dictated by the requirements

of the ontology being developed. AC is related to iden-

tifying and/or developing suitable archetypes that capture

133133

the general structure of the conceptual knowledge of the

world being be modelled. This involves specifying the

types of attributes that describe each concept. For example,

an ontology related to students and grades may contain

a Person archetype with attributes name : PersonName
and id : Integer, a PersonName archetype with attributes

first : String and last : String, and a Grade archetype with

an attribute grade : GradeType. AC is suitable for use or

reuse in many domains as the archetypes for the required

concepts are persistent in all possible worlds.

The Data Component (DC) is concerned with the data

provided by the problem and the requirements of the on-

tology being developed. It provides a collection of facts by

identifying instances of the concepts, and their attributes,

provided by AC. One can think of DC as an interface to the

data sources providing the facts for the given problem. An

example data source may be a table of grades achieved by

a student. The idea is to have the ability to “plug-in” new

data sources as they become available or as they are needed.

It is through these data sources that the concepts defined in

AC and each Domain-Specification Component (DS) can be

instantiated with assertions about the domain of interest.

The Interpretations Component (IC) is concerned with

providing concrete interpretations for the abstract types that

are specified in AC and instantiated by DC. For example,

the abstract GradeType identified from the above mentioned

Grade archetype can have different interpretations. A grade

can be represented as a letter-grade (e.g., B+), as a percent-
age (e.g., 85%), or as a grade-point-average normalised to

some standard (e.g., 3.5/4.0). IC allows the ontology being

developed to contain concepts and relationships that have

different embodiments in different possible worlds which

is not currently considered in the literature. It allows for

different independent interpretations to be considered when

reasoning on the knowledge contained within the ontology.

The Knowledge Instance view component consists

of a collection of Domain-Specification Components
(DS1, . . . , DSn), each of which is concerned with providing

domain-specific knowledge, giving specific viewpoints of

the domain-independent knowledge contained within AC,

DC, and IC. Each viewpoint is encapsulated in a single

DS responsible for providing the interpretations of concepts

and relationships within its specific viewpoint. Moreover,

each DS is concerned with identifying specialisations of

the archetypal concepts identified in AC. For example, in

a domain involving students and grades, we can identify

a student viewpoint as a specialisation of the Person
archetype from AC. The viewpoint will inherit the at-

tributes specified by the Person archetype and will extend

it with domain-specific attributes. For instance, a Student
viewpoint can be specified with attributes student : Person
and gradesEarned : ItemsType〈Grade〉 where the abstract

ItemsType will have a concrete interpretation, provided by

IC, such as Set, List, or Bag.

Lastly, the Knowledge Instance controller component con-
sists of the Knowledge Coordinator (KC) which is concerned

with managing and coordinating the domain-independent

knowledge contained within AC, DC, and IC, and the

domain-specific knowledge contained within each DS. As

such, KC maintains a registry of the possible concepts, data,

and interpretations, as well as possible domains through the

registration and initialisation of the other components in the

Knowledge Instance. KC allows for the ability to state that

Joe Smith is a Student and has earned a Grade of 76%
which is interpreted as a percentage, for example.

B. The Ontology Instance

The Ontology Instance model component provides the

knowledge representation of the ontology being developed

and is comprised of the Knowledge Instance (denoted by the

elliptical components at the bottom of Figure 1).

The Ontology Instance view component consists of the

Reasoning Engine (RE) which is responsible for interfacing

with existing reasoning tools and for defining particular

understandings of the world in which to reason about, in

order to answer questions posed to the ontology. It provides

the capability to set up reasoning tasks, based on the input

of the user and the requirements of the ontology, to allow

for different configurations of the knowledge representation

in the form of different interpretations and/or viewpoints in

order to reason on multiple possible worlds. Furthermore,

RE admits the specification of knowledge and information

management approaches that ought to be considered in order

to address issues of inconsistent or conflicting information

contained within the ontology knowledge representation.

Finally, the Ontology Instance controller component is

comprised of the Ontology Coordinator (OC) which en-

compasses the initialisation, instantiation, registration, and

coordination of the Ontology Instance model and view com-
ponents to facilitate the interaction between the reasoning

tasks and the knowledge representation for the ontology

being developed. OC is the main controller responsible for

selecting the appropriate domain-specific viewpoints, con-

crete interpretations, data sources, etc., that are required to

answer the questions from RE. For instance, in a domain of

students and grades, consider the question: “Which student

has the highest average grade?” For this example, suppose

that the user indicates that it only wishes to consider the

Bag interpretation offered by IC for the collection of grades.

In this case, OC is responsible for handling the user input

passed from RE in order to decide how to communicate the

requirements of the reasoning task to KC so that the student

domain-specific viewpoint, and the Bag interpretation of the

collection of each student’s grades can be selected and used

to find the name of the Student with the maximum average

grade using the data provided by DC. In simple terms, OC
provides the bridge between the knowledge representation

and the reasoning concerns of the developed ontology.

134134

IV. ASSESSMENT OF THE PROPOSED ARCHITECTURE

A. Benefits of the Proposed Architecture

There may be a number of different ways in which

to design an ontology to meet its requirements. How-

ever, by following the proposed architectural framework,

we conjecture that the developed ontologies will have a

number of beneficial qualities. Specifically, the proposed

architecture provides a separation of concerns at multiple

levels. First, the Ontology Instance separates the knowledge

representation and the reasoning concerns of the ontology

being developed. Second, the Knowledge Instance separates

the domain-independent and domain-specific knowledge, en-

abling the relatively stable domain-independent knowledge

to be designed and developed independent of the more

volatile domain-specific knowledge. Finally, the Knowledge
Instance view component separates the different possible

viewpoints of the domain-independent knowledge. As a re-

sult, developed ontologies can exhibit enhanced modifiabil-

ity, extendability, and maintainability. When a modification

or extension is required, a developer only needs to identify

the concern of the proposed changes in order to locate which

components need to be modified or extended. This enables

the developed ontologies to be maintained over an extended

period of time. Also, the developed ontologies can benefit

from enhanced reusability. For example, AC, DC, and IC can

be reused in a variety of application domains driven by the

requirements and context of the ontology to be developed.

Moreover, the knowledge representation (Ontology Instance
model component) of the developed ontologies can be reused

to address different reasoning concerns and to answer differ-

ent questions in the domain of interest. Lastly, the proposed

architecture can be extended to enable many concurrent KCs,

by extending the MVC architecture into a PAC architecture.

The latter is developed from MVC to support multitasking

and concurrency. Therefore, it is straightforward to take the

proposed architecture and extend it to handle large data sets.

B. Drawbacks of the Proposed Architecture

The drawbacks of the proposed architecture are related to

the amount of communication overhead and the complexity

of the controller components. The design of KC and OC is

a tricky problem. Much effort is required in order to handle

the communication necessary to coordinate the other compo-

nents in the system. This additional controller complexity is

an inherent drawback of the use of the MVC-II architectural

style [11]. Much care needs to be taken in designing the

controller components to ensure that the correct knowledge

and information is available to, and communicated by, KC
and OC so that queries can be answered properly. Poorly

designed controllers can effectively render the system unus-

able and is a problem that must be investigated. However,

it should be noted that controller components are relatively

stable and are not prone to frequent changes.

V. CONCLUSION AND FUTURE WORK

We proposed an ontology design architecture that adopts a

nested MVC-II-based architectural style supporting separa-

tion of concerns. Ontologies designed using the proposed

architecture can benefit from enhanced modifiability, ex-

tendibility, and reusability, which addresses some criticisms

of the state-of-the-art and helps to eliminate the current ad

hoc “one-time use” mentality of ontology development.

The proposed architectural framework can be adopted to

systemically design ontologies in a structured way. This

leads to a more refined engineering approach to ontology

development. We have further illustrated the usage and

benefits of the proposed architecture, including support for

concurrent and distributed reasoning, in [12]. However, the

practical use of the proposed architectural framework to

design real-world ontologies requires more study. A user

study is needed to evaluate the effectiveness and impact of

the proposed architecture on ontology development.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and

Engineering Research Council of Canada through the grant

RGPIN-2014-06115.

REFERENCES

[1] V. Devedžić, “Understanding ontological engineering,”
Comm. of the ACM, vol. 45, no. 4, pp. 136–144, Apr. 2002.

[2] O. Corcho, “10 basic rules to overcome ontology engineer-
ing deadlocks in collaborative ontology engineering tasks,”
Ontology Summit 2014 Track-C: Overcoming Ontology En-
gineering Bottlenecks - II, Mar. 2014.

[3] A. Gómez-Pérez, “Ontological engineering: A state of the
art,” Expert Update, vol. 2, no. 3, pp. 33–43, 1999.

[4] J. Geller, Y. Perl, and J. Lee, “Ontology challenges: A
thumbnail historical perspective,” Knowledge and Information
Systems, vol. 6, no. 4, pp. 375–379, 2004.

[5] M. Fernández, A. Gómez-Pérez, and N. Juristo, “METHON-
TOLOGY: From ontological art towards ontological engineer-
ing,” in Proc. of the AAAI Spring Symposium on Ontological
Engineering. AAAI Press, 1997, pp. 33–40.

[6] openEHR Foundation, “What is openEHR?” Available: http:
//www.openehr.org/what_is_openehr (June 25, 2015), 2015.

[7] C. Martínez-Costa, M. Menárguez-Tortosa, and J. T.
Fernández-Breis, “An approach for the semantic interoper-
ability of ISO EN 13606 and OpenEHR archetypes,” Journal
of Biomedical Informatics, vol. 43, no. 5, pp. 736–746, 2010.

[8] T. Beale, “Archetypes: Constraint-based domain models for
future-proof information systems,” in Proc. of the 11th OOP-
SLA Workshop on Behavioral Semantics: Serving the Cus-
tomer, K. Baclawski and H. Kilov, Eds., 2002, pp. 16–32.

[9] A. Gangemi and V. Presutti, Handbook on Ontologies, 2nd ed.
Springer, 2009, ch. Ontology Design Patterns.

[10] K. Hammar, “Ontology design patterns: Adoption challenges
and solutions,” in Proc. of WaSABi 2014, vol. 1240, 2014.

[11] K. Qian, Software Architecture and Design Illuminated.
Jones & Bartlett Learning, 2010.

[12] J. Jaskolka, W. MacCaull, and R. Khedri, “Towards an archi-
tectural framework for systematically designing ontologies,”
McMaster University, Tech. Rep. CAS-15-09-RK, Nov. 2015.

135135

