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Abstract—Application of reconfigurable systems is very impor-
tant in computer technology and computational sciences. The
theoretical advantage of this concept is that we can reconstruct
computations and create new hardware based on these com-
putations. The discovery of the matrix inverse computations
with help the provided concept denotes its importance in
computer science. The problem that we need to solve is how
to predict the two inverse matrices that have been generated
via reconfiguration. This article will provide this approach and
improve this method for the computation of any two n × n
matrix inverse.

Index Terms—Partial, Reconfiguration, Linear, Matrix Recur-
sion, Hardware, Control, Computations

I. Introduction

RECONFIGURATION of algorithms in computations

is nowadays unavoidable in basic science fields. This

concept is especially used in computer technology [1], [2],

[8], [9] and is now being deployed in computational sciences.

Classically this subject addresses Xilinx technologies and

FPGAs related topics [2], [3], [10]. This concept has grown

up with applications in control theory with the porting of

the Kalman Filter algorithm on FPGA. Most recently many

goals have been achieved. The recursive dynamic process

creation with optimization goals. If partial reconfiguration

technologies allow designers to change functionalities of

their hardware devices, then this feature can be adapted

in algorithm design and computing. The consequence in

computer science will be algorithm optimization. The benefits

of this concept are few, including among others performance

development, hardware complexity reduction from techno-

logical point of view. For this research article, we suppose

the existence of partial reconfiguration of algorithms [5], [6].

This reconfiguration is guaranteed by theorems on dynamic

partial reconfiguration of algorithms. We admit that the

general recursive linear process, specified by:{
q1, qj =

∑j−1

i=1
αjiqi, j ∈ {2, 3, · · · ,N}

}
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is given. We admit the following inverse matrix hardware

construction provided by [5] . The hardware solves the matrix
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Hardware Construction

inversion construction problem. That is, given two matrices

A and B represented by their respective column entries(
Aj, Bj, j ∈ {1, 2, · · · , n}

)

construct with the partial reconfiguration, two matrices that

are inverse to each other. The hardware will construct all

n×n two matrices that are inverse to each other. According

to this hardware upper or lower triangular matrices will be

constructed. This research article assumes some results on re-

configuration of algorithms, matrix analysis and computation

basic results [13]–[18]. The research article will suppose the

existence of the n-dimensional vector space and will extend
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the hardware proposed by Mbock see [6]. The objective of

our investigations is to construct all two inverse matrices.

The inversion matrices will have the following expansion

R1,1 R1,2 · · · R1,k · · · R1,n

R2,1 R2,2 · · · · · · · · · R2,n
...

...
. . .

. . .
. . .

...
...

...
. . . Rk−1,k · · · Rk−1,n

...
...

. . .
. . .

...

Rn,1 Rn,2 · · · Rnk Rn,n

V1,1 V1,2 · · · V1,k · · · V1,n

V2,1 V2,2 · · · · · · · · · V2,n
...

...
. . .

. . .
. . .

...
...

...
. . . Vk−1,k · · · Vk−1,n

...
...

. . .
. . .

...

Vn,1 Vn,2 · · · Vn,k Vn,n

With our investigations on that task we propose a scheme that

will control the two inverse matrix output that is predicting

the two computed matrix inverse.

II. Reconfiguration of Algorithms Overview

The study of reconfiguration of algorithm led to the discovery

of the linear recursive process. This process could be imple-

mented in hardware in the special case of integer input values.

The Kalman Filter algorithm can also be optimized with this

reconfiguration concept. The recent research about algorithm

reconfiguration solves the matrix inverse computations. The

provided inverse matrices will be all upper or lower triangular

matrices with the main diagonal entries of the matrices not all

being zero valued. This linear recursive process will have an

impact on all matrix based computations. The reconfiguration

analysis applied to this process can give a new vision on

orthogonal matrix creation and [Q R]-decomposition. The

reconfiguration time of the process is Θ(n2). The pro-

cess can be easily extended with new matrix computation

functionalities. Some achievements of the reconfiguration of

algorithms are:

1) Linear Recursive Process Creation and Optimization

2) Matrix [Q,R]-Decomposition

3) Reconfiguration Speed Problem Resolution

4) Real Vectors Coding

The improvements that we listed are more related to al-

gorithms and computational optimization, this concept of

reconfiguration has also been applied in robotics [19], [20].

The idea of partial reconfiguration of algorithms aims at

the algorithms functionalities extension and this in turn still

alters the true hardware complexity of the algorithm. The

previously cited advantages of partial reconfiguration are very

significant in computer sciences and the recent matrix inverse

computations are now a point of interest. In this research

article we want to provide a way of controlling the inverse

matrices that have been computed.

III. Principles and Theorems

Theorem III.1. The control of the matrix inverse computa-
tions is given by any Gauß method under the existence of
two matrices that are upper and lower matrices and inverse
to each other, applied to the following given equations.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

l=1

v(k)jl
·v(k)j1

· vjl
n∑

l=1

v(k)jl
·v(k)j

2

· vjl
...

n∑

l=1

v(k)jl
·v(k)jn

· vjl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

αv(k)j
1

+ βv(k−1)

j
1

αv(k)j
2

+ βv(k−1)

j
2

...

αv(k)jn
+ βv(k−1)

jn

⎤
⎥⎥⎥⎥⎥⎥⎦

for all

j ∈ {1, 2, · · · , n} .

There exists at least two n× n matrix classes for which the
knowledge of the n× n inverse matrices Ri,j and Vj
determine all other p× p matrices Ri,j and Vj with
p < n

Proof:

1) We assume that there are two matrices that are upper

or lower matrices and inverse to each other.

2) Given such n × n matrices R and V. The

constructed hardware allows the following equations

for all

j ∈ {1, 2, · · · , n}

V
(k)

j
+ V

(k−1)

j
= V(k)Ak

j · V
(k)

i

for all j ∈ {1, 2, · · · , n}, since the matrices R

with entries Ri,j and the input column matrix A

are related to each other according to the following

scheme

Rk,j =

⎧⎪⎪⎨
⎪⎪⎩

V
(k)

j
· Aj if k �= j

∥∥∥Vk
j

∥∥∥ if k = j

3) Apply any Gaußalgorithm and stop

4) Assuming that there are such n × n matrices,

according to the provided hardware construction the

hardware construction, the following matrices will be

124124



provided:

R|V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,1|V1,1 R1,2|V1,2 R1,3|V1,3 · · · R1,k−1|V1,k−1 · · · R1,n|V1,n

0
. . .

. . .
. . .

...
... · · ·

. . .
. . .

. . . Rk−1,k−1|Vk−1,k−1 · · · Rk−1,n|Vk−1,n
... 0

...
...

...

0 · · · 0 · · · Rn,n|Vn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5) Suppose that the last row

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,n|V1,n
R2,n|V2,n

...

Rk−1,nVk−1,n
...

Rn,n|Vn.n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

has been computed. Knowing that these computations

are based on the linear recursive process, the following

submatrix computations must be stored by the process

R|V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,1|V1,1 R1,2|V1,2 R1,3|V1,3 · · · R1,k−1|V1,k−1

0
. . .

. . .
...

. . .
. . .

. . . Rk−1,k−1|Vk−1,k−1
... 0

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6) This completes this proof

A. Simulations of the Computations and Devices
Construction

The simulation shown in figure 4 is made of four tables.

The last two tables represent the matrix inverse R and

V. The two inverse matrices satisfy the specifications of the

algorithm, they will be upper triangular. The values of these

matrices are given by just considering the diagonal entries.

Let us consider the last table of figure 4 the first diagonal

concentrates on 1 , all other concentration numbers are

zero. The second diagonal will concentrate on negative real

numbers closed to −0.5 and a positive value closed to 1
as pictured in the last table of figure 4. These tables represent

the matrix V and R whose exact entries are given in

the following triangle

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−0.4472 0.8944
−0.2868 −0.0637 0.9559
−0.1940 −0.0540 −0.0699 0.9770

... · · · · · · ... · · · . . .

... · · · ...
... · · · · · · . . .

−0.0815 −0.0319 · · · · · · · · · · · · −0.0459 0.9918

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly the numerical values of the matrix R are given

below:

TABLE I: Matrix Control Entries

A1 A2 A3 A4 A5 A6 A7

1 0.5 0.33 0.25 0.20 0.1667 0.1429

0.5 0.333 0.25 0.20 0.1667 0.1429 0.125
0.333 0.25 0.20 0.1667 0.1429 0.125 0.1111
0.25 0.20 0.1667 0.1429 0.125 0.1111 0.1
0.2 0.1667 0.1429 0.1250 0.1111 0.1 0.0909

0.1667 0.1429 0.1250 0.111 0.100 0.0909 0.0833
0.1429 0.1250 0.1111 0.1 0.0909 0.833 0.0769

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5 0.8944
0.33 1.1180 0.9559
0.25 0.074450 0.0671 0.0596

... · · · · · · ... · · · . . .

... · · · ...
... · · · · · · . . .

0.1429 0.0479 · · · · · · · · · · · · 0.0468 1.0083

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The simulated values of the control matrix are given in the

following table. The second table of figure 4 is used to

initialize the vector V
(0)

j
for j ∈ {1, 2, · · · , n}

IV. Conclusion

This research article extends the partial reconfiguration and

the matrix inverse computation method. The computations

that we provide in this paper propose a method to control

the computed matrix inverse. This means, given two inverse

matrices computed per “algorithm reconfiguration”, what are

the entries of the starting n×n matrices A|B used by the

reconfiguration algorithm. Some of the devices constructed

with this research have been presented in figure 3. This article

also analyzes the case in which the knowledge of the real

entries of n × n R|V inverse matrices determines the

n-1×n-1 R|V inverse matrices. For this special case of the

computations, the proof has taken advantage of the recursive

dynamic process. The concept of partial reconfiguration that

basically addresses hardware systems is now adapting to

algorithms, processes and computations. The approach in

this research article is computational and matrix based [21]–

[29], the concept will be advantageous in all algorithm fields

and computational optimizations [2], [5], [6]. The control

of the matrix inverse computations will have the following

advantages in addition to its theoretical foundation:

1) New vision of Matrix Computations Analysis

2) Computational Complexity Θ(n2)
3) Coding Matrices

This article is based on the previous resulting research [5],

the inverse computation control is now provided. The main

task of our research remains the hardware construction of

this algorithm and the inverse matrices completeness. The

analysis developed in this paper will be significant for

computer scientists and computer engineers. The results will

particularly be applied in computer algorithms and numerical

matrix based computations.
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Fig. 2

Special Application

Fig. 3

Special Application
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Fig. 4

Simulations for the Control Matrix
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