
A Model-Driven Engineering Transition-Based GUI Testing Technique

Eman M. Saleh
Software Engineering Department

Applied Science University
 Amman, Jordan

e_saleh@asu.edu.jo

Omar Al Sheik Salem
 Software Engineering Department

 Applied Science University
 Amman, Jordan

O_alsheiksalem@asu.edu.jo

Abstract—Model Driven Engineering (MDE) have arisen
as a new software development paradigm which is based on
creating a set of models that represent the GUI; afterwards to
generate the GUI based on these models using a series of
transformations to convert the models between the different
levels of abstractions, which enables the automation of the
development process. This inspires us to think of a model-
based testing technique that is able to test the GUIs that are
designed using Model-Driven engineering by finding the
proper model that can serve as a testing model.

This paper proposes model-based testing technique that is
derived from the design models used to develop the GUI in
the Model-Driven Engineering paradigm.

Keywords-Concur Task Trees; Model-based testing; Model-
Driven Engineering; Task models.

I. INTRODUCTION

Model-Driven Engineering (MDE) and Multi-
Platform User Interface Development (MPUID) is a well
known paradigm that is targeted toward creating the user
interface out of a set of predefined models [1]. The
excessive work that had been done in MDE aimed at
reducing the time needed to re-implement the GUI of an
application for every target platform or context of use
(i.e. IOS, Windows …). The idea is based on creating a
number of models, starting from abstract models that are
gradually customized with platform dependent
information until a final interface that is targeted to a
specific platform is reached [2]. Different contributors
have used different models in order to define the user
interface aspects. The literature review showed that most
of the contributors and successful work such as TERESA
[3] and UsiXML [4]. It is clear that most of the work in
MDE was based on task models. Recently a general
framework, namely the CAMELEON reference
framework [5], was set and followed to standardize the
work in the area of model-driven engineering. The
framework is based on defining four levels of abstraction
as shown in Fig. 1 [6].

Each level is then refined by adding a more specific
platform information until the final user interface which
is the platform specific model is reached. Model-based
testing methods aim to the automation of test case
generation based on a model of the system under test
(SUT) [7][8]. This needs a deep investigation on the
properties of the chosen model [9] and poses a new
difficulty of the need to implement a new model for

testing purposes. To avoid creating a new model, we
have chosen the task model as a base of the testing
criterion, as well as, to conform to the CAMELEON
reference framework.

In [10] we proposed to use the DSM [11] in order to

derive some test cases. The DSM is based on State
Charts, were each state represents a presentation unit
(Window or screen) the initial dialog states model is
generated automatically from the task model; The model
was a step in the MDE approach for designing multi-
platform UIs and to suit devices with small screen sizes
[2], this leads to a conclusion that the DSM is not much
suitable as a test oracle because of the large number of
states and transitions that may lead to a test case
explosion problem.

In this paper we have used an extended version of
the DSM to minimize the number of test cases and
introduce a model-based GUI testing technique that suits
GUIs which are developed using an MDE approach. The
testing technique in this paper takes into consideration
all main requirements of the Model-Based testing: The
test oracle, the test coverage criteria and the derived test
sets.

II. RELATED WORK

The testing technique of this paper is based on the
Concur Task Tree formalism (CTT)[12] and the
navigation model which works as the test oracle. The
following subsections briefly explain these models.

A. CTT Task Model

CTT notation is a hierarchical task model that
provides a graphical syntax, a hierarchical structure and

Figure 1. CAMELEON reference framework [6]

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.109

108

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.109

108

a notation to specify the temporal relation between tasks
[12], an example of CTT task model is shown in Fig. 2.
With this notation, tasks can be classified into four
categories: abstract tasks , interaction tasks , user
tasks and application tasks . Tasks at the same level
can be connected by temporal operators like choice ([]),
independent concurrency (|||), concurrency with
information exchange (|[]|), disabling ([>) , enabling
(>>), enabling with information exchange ([]>>),
suspend/resume (|>) and order independence (|=|).[12].

Figure 2. CTT

B. The navigation model (EDSM)

The CTT is not suitable as a test oracle or to derive

test cases due to its high level of GUI abstraction, and it
does not represent many aspects of the dynamic behavior
of the GUI such as: inputs, events, and transitions to
new states. For this purpose we use the EDSM as the test
oracle.

The Navigation model (EDSM) is an extended
version of the DSM [11]. The EDSM is a state chart
model that is created in an algorithmic way based on the
CTT model. For the purpose of using the model as a test
oracle, the model is derived using the semantics of the
temporal operations and the facets of the tasks in CTT
model. Besides that, the algorithm has been extended to
take into consideration the guards and conditions more
precisely also the states of the EDSM are annotated with
abstract dynamic events that are to be mapped to the
abstract and concrete GUI properties. Compared to the
DSM, the EDSM has less number of states and
transitions. The EDSM that is extracted from the CTT in
Fig. 1 is shown in Fig. 3.

Figure 3. The EDSM for the CTT in Fig. 1

The details of the algorithm are out of the scope of
this paper and are defined in [11]. The EDSM features
that are most relevant to this paper are:
1. EDSM elements are annotated with mapping
information to next reification model elements, i.e. the
abstract UI model, and these are mapped accordingly to
next models until reaching a final UI level of actual
windows of the system. This governs test case execution.
2. Transitions between the states in the EDSM are
defined using the semantics of the temporal operators
and the facets of the tasks; these transitions are mapped
to abstract events at the abstract UI level.

Fig. 4 shows the position of the test oracle EDSM in
a multi-platform (MDE) technique [2]. The EDSM does
not affect other transformations. We have added event
transformations from abstract events to final events in
order to conform to the CAMELEON reference
framework and MDE transformations. The abstract
events are used in the test oracle (EDSM) to derive state
transitions in parallel to their equivalent Final events that
govern the actual GUI navigation. This shows that our
MDE testing criteria is a multi-platform testing
technique.

Figure 4. The test oracle EDSM within an MDE approach, modified
from [2]

III. THE TESTING TECHNIQUE

In order to generate test cases automatically we need

to define the three main requirements for the automated
model-Based Criterion. Basically, (1) The test oracle (2)
A coverage Criteria and (3) a test case generator.
In this paper the EDSM is the test oracle, the coverage
criterion is transition coverage and the teat cases are
generated based on the EDSM and represented in a
transition table.
 Following are the steps of the proposed testing
technique:

1) According to MDE and the CAMELELEON
reference framework, the designer starts by creating
(drawing) the task and domain models. The CTT
elements specify the type of the task (Abstract,

109109

interaction, application) and the temporal relation of
every task with its neighbour siblings. Then the designer
builds the domain model Using UML class diagrams.
2) Annotating the CTT task model and Mapping to
Domain Model: Leaf tasks of the CTT represent the
objects or widgets that appear on the user interface, these
tasks are either interaction tasks or application tasks.
Annotation of leaf tasks is necessary to build the new
model that serves as the test oracle. Each leaf task should
be annotated with two main attributes: facets and task
item.

- Facets identify the role of task in the GUI, as whether
it is an input, output, navigation or a control task.
These are similar to task properties (attributes) defined
by IdealXML [13]. Currently we'll use the facets
defined by IdealXML. We are using a similar
annotation by allowing the designer to specify these
task facets and task item attributes when building the
CTT model in contrast to IdealXML [13] where these
facets were specified at the Abstract user interface
model. We added facets at an earlier stage of the
design namely as an attribute of tasks in the task model
in order to derive the navigation model and the
transition between the states in the navigation model
which represents our test oracle.

- The task item attribute, represents a mapping between
the task model (CTT) and the domain model (class
diagram). This attribute is needed to link the task with a
corresponding affected element of the domain model and
hence to the application code elements later in the design
process. Part of the annotations for the task model in
Fig. 2 is shown in table 1.
3) The EDSM is generated automatically from the CTT
model, see Fig 3.

TABLE1. Annotations of CTT in Fig.3

Task Type Facet Task item

EnterName Interaction Input Student.name

EnterDepartment Interaction Input Student.Department

SubmitRequest Interaction Navigation ResultWindow

ShowResults Application Control SearchAnd
displayResults()

Every state of the EDSM is mapped to an abstract

container in the next level of abstractrion; until reaching
the final GUI constructs. For example states S0 and S1
in EDSM in Fig. 3 are mapped to windows: Results and
EnterParameters, respectively, of the final UI (Fig. 5).
In MDE a main goal of the modeling (using abstractions
and refications) is to develop GUIs for many target
platforms [1] without reimpleming the GUI for every
target patform. Hence; following set of transformations,
many representations may be extracted from the CTT
and EDSM depending on the target platform. For
example Fig. 4 shows two possible representations of the

final UI. The final UI representation does not affect the
testing process since we rely on a more abstract model
namely the EDSM which is later annotated with
mappings to actual windows. On the other hand; tasks
with navigation and control facets (in the CTT) are
hmapped using transformations to actual events of the

final UI. For our example the task SubmitRequest has a
navigation facet accordingly, it was mapped to a
transition the EDSM (Figure 3) further transformations
will map this event to the actual GUI event for example
a mouse click on the button SubmitRequest in the final
UI.
4) Creating the State Transition table: This table contains
the states of the EDST at the rows and the events at the
columns. The entries of the table show the target state
when the event is executed in the source state. This table
is used to derive test cases.
5) Executing the test: In traditional software testing test
oracles might be used after executing the system to
compare the actual results with the expected results
(defined in the test oracle). This does not work in testing
GUIs due to the huge input space and nature of the GUI;
where the same action may lead to different states of the
system depending on the current executing state. Hence;
the test oracle usage is interleaved with the execution of
the system.

The test starts with executing the main screen of the
system on parallel to executing state S0 of the EDSM. A
test case is picked from the state transition table;
applying the event on the table to current window and
comparing the target window in the actual GUI with the
target state in the oracle (the EDSM).

IV. COVERAGE CRITERIA AND TEST CASE

EXTRACTION

Different state based testing criteria exists, one
criterion requires that the tests visit every state or every
transition. Another potentially higher coverage is the
switch coverage criterion [7] requires that at least one
test cover each transition sequence of N or less length. If
you cover all transitions of length one, then “N-1 switch
coverage” means “0 switch coverage.” Notice that this is

(a) Final UI for a mobile device (b) Final UI for a PC
Figure 5. Final UI

110110

the same as the lowest level of coverage; visiting every
transition.

The idea of this work requires the test oracle and the
GUI under test to be executed simultaneously. The test
oracle (EDSM) starts at state S0 which is already
mapped to the main window of the GUI. The test starts
by the first row of the transition table and executes
events in order; when it picks the first event from the
transition table, this event corresponds to a transition in
the EDSM (Recall that events are extracted from tasks
with navigation or control facet) and the EDSM will
move to the corresponding next state and the GUI will
show a new window according to the actual event. If the
shown window corresponds to the new state of EDSM
the test will continue by picking the next event until
reaching the final state of the EDSM. In case of
mismatching between the target state and its
corresponding actual shown window a test failure is
reported. It is easy detect the location of the error in
terms of the window and the event that causes the error
by using state mapping to actual window and transition
to actual event mappings.

The coverage criterion in this paper is a transition-
based testing criterion that is higher than N-switch
criteria as we choose the test cases from the transitions
table which is defined by tasks that derive transition.
This is similar to transition table based testing and
covering every row in the table. The transitions table for
our example will show one row because we have only
one task with a navigation face (SubmitRequest) which
will exercise the navigation from the window
EnterParameters to the window ShowResults causing
visiting the target window. Picking events from the
transition table, guarantees exercising all valid events,
and hence visiting all states and all transitions.

V. CASE STUDY

In this section we present a portion of the case study
"Rent a car" to illustrate the transition–based testing
technique.

When following the MDE technique, the designer
draws and annotates the CTT, see Fig. 6. The
annotations of the tree in Fig. 6 are shown in table 2.
Note that these annotation connect the tasks to the
corresponding implementation aspects, for example the
task InputFirstname will input data that is saved in the
attribute name of class Cust, while the task Submit will
lead to opening the window named ShowConfirm in
class Main. Many other actions can be considered such

as the task SubmitResults in CTT in Fig. 1 has a control
facet (see table1) which means that execution of this task
must lead to calling the function SearchStudent of class
Student. This information has been embedded into the
different mappings within the MDE design process and
can be used on different testing criteria. We only
consider tasks with navigation facets which are
necessary for transition-based testing of this paper.

TABLE 2: Annotations of CTT in Fig. 6

Task Type Facet Domain element

InputFirstName Interaction Input Cust..name

InputlastName Interaction Input Cust.Last

SelectCarClass Interaction Input Car.Class

SelectTransmType Interaction Input Car.Transm

SelectCardType Interaction Input Card.Type

SelectYear Interaction Input Car.Date.year

SelectMonth Interaction Input Car.Date.year

Submit Interaction Navigation Main.showConfirm

Cancel Interaction Navigation Main.PersonalInfo

Next Interaction Navigation Main.Carinfo

Next Interactiom Navigation Main.PaymentInfo

After annotating the task model and deriving the
annotation matrix the EDSM is automatically derived in
an algorithmic way. For our case study the EDSM is
shown in Fig. 7. Note the addition of the next task to
both the annotation table and the states S0 and S1 in the
EDSM, this is due to creating a new state when an
enabling operator (<<) or an enabling with information
exchange operator (<<[]) is encountered [11]; this new
state needs a transition to the next state in the EDSM and
hence a navigation to the next window in the final UI.

Figure 6. Car rental CTT

111111

Figure 7. EDSM for CTT in Figure 6

The last step in the testing method is to create the
state transition table. Table 3 shows the transition table
for our study, each state is represented by a row in the
table, where events are at the columns and entries show
the target state on that event. The number of test cases
equals the number on none empty table cells.

TABLE 3 State Transition table for EDSM in Fig 7

 Next Submit Cancel

S0 S1 - -

S1 S2 - -

S2 - Sfinal S0

The mapping information includes mapping states of
the EDSM to windows in the final UI and mapping
abstract events (transitions) to actual GUI events.
Suppose that S0 is mapped to window PersonalInfo, S1
is mapped to window CarInfo, and S2 is mapped to
window PaymentInfo. The tasks with navigation facets
(Next and cancel) are mapped to actual widgets on the
windows, currently let's assume command buttons Ok
and Cancel appear on each final UI window. At this case
the mapping info will map the abstract event next to the
action performed on button Ok which let's say a left
mouse click.

The EDSM starts at the initial state at the same time
the GUI starts at its main window. The testing starts
traversing the transition table in row wise fashion.
Picking the first event (next), executing it on EDSM and
executing the corresponding actual event on the window
PersonalInfo. If the window CarInfo executes (appears
on the screen) the testing goes back to S0 repeating the
same steps with the next event. If the actual GUI
window fails to open or another window has been
appeared; a test failure is reported registering the
window name and the event that causes the error.

VI. CONCLUSION

We presented a transition based testing criteria that
is applicable in the MDE environment, the technique
avoids putting more effort in creating the testing model
by extracting this model from the basic CTT model that
is already created in the development process.

Test oracles contribute significantly to test
effectiveness and cost. The frequency of comparison is
ignored except at two important points, Oall and Olast. Oall
requires checking the equality of expected output and the
actual output after every event, while Olast requires
checking the equality of expected output and the actual
output after the last event of the test case [14].

Given the fact that most errors in the GUI occur
after opening a new window or terminating an existing
window; our test oracle (EDSM) is comparable to Oall in
effectiveness and Olast in cost. This is due to the fact that
the EDSM includes only the transitions (events) that
correspond to tasks with navigation or control facet,
which actually enforces opening a new window after
closing a previous one. This minimizes the number of
test cases and focuses on most common errors locations.

Due to simultaneous execution of the test oracle and
the GUI, the technique can easily detect the error
location by finding the corresponding window that is
mapped to the current state, and the actual event at the
point of transaction.

Another important feature of the technique is its
applicability in the MDE approach and more specifically
in multi-platform user interface development, as the
EDSM is an abstract model that can be annotated and
transformed to any next level of reification depending on
the target platform.

Future work will focus on more detailed mapping to
different levels of abstractions in the CAMELEON
reference framework and considering invalid input space
into consideration.

ACKNOLEDGMENT

The authors are grateful to the Applied Science
Private University, Amman, Jordan, for the full financial
support granted to this research.

REFERENCES
[1] J. Vanderdonckt, “Model-Driven Engineering of User
Interfaces: Promises, Successes, and Failures”, Proc. of 5th Annual
Romanian Conf. on Human-Computer Interaction ROCHI’2008 ,
Bucharest, pp. 1-10, 2008.
[2] Eman Saleh, Amr Kamel and Aly Fahmy, “An MDE Design
Approach for Developing Multi-Platform User Interfaces”, WSEAS
Transactions On Computers Journal, Issue 5, Volume 9, ISSN: 1109-
2750, ACM press, pp. 536-545, May, 2010.
[3] F. Paterno, and C. Santoro, “One model, many interfaces,” In
Christophe Kolski and Jean Vanderdonckt, editors, CADUI 2002,
volume 3, pp. 143-154, 2002.
[4] Q. Limbourg, J. Vanderdonckt, B. Michotte, and V. López ,
“UsiXML: a Language Supporting Multi-Path Development of User
Interfaces,” Lecture Notes in Computer Science, Vol. 3425, Springer-
Verlag, Berlin, pp. 200-220, 2005.

112112

[5] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon,
L., Vanderdonckt, J., A Unifying Reference Framework for Multi-
Target User Interfaces, Interacting with Computers, Vol. 15, No. 3, pp.
289-308, June 2003.
[6] Introduction to Model-Based User Interfaces, W3C Working
Group Note 07, available at: http://www.w3.org/TR/mbui-intro/,
January 2014.
[7] A.P. Mathur, “Foundation of Software Testing,” Pearson
Education India, 81-317-0795-4, 1st Ed, 2010.
[8] Marlon Vieira, et. al. "Automation of GUI testing using a
model-driven approach", Proceedings of the 2006 international
workshop on Automation of software test, pp. 9-14, ACM, 2006.
[9] Catherine Dubois, Michalis Famelis, Martin Gogolla, Leonel
Nobrega, Ileana Ober, et al., Research Questions for Validation and
Verication in the Context of Model-Based Engineering. International
Workshop on Model Driven Engineering, Verication and Validation –
MoDeVVA 2013, Oct 2013, Miami, United States. 1069, pp. 67-76,
2014.
[10] Eman Saleh, "Towards Automatic GUI Testing Using Task and
Dialog Models", Proceeding of SERP'14, Las Vegas, 2014.
[11] Eman Saleh, Aly Fahmy and Amr Kamel, “Dialog States a
Multi-Platform Dialog Model”, ECS journal, vol. 33, No. 2, Egypt,
Sep. 2009, pp 1-9.
[12] F. Paternò, C. Mancini, and S. Meniconi, "ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models", in Proceedings
of the Interact'97, 1997.
[13] F. Montero, V. Víctor López Jaquero, J. Vanderdonckt, P.
Gonzalez, M. Lozano, and Q. Limbourg, “Solving the Mapping
Problem in User Interface Design by Seamless Integration in
IdealXML”, Lecture Notes in Computer Science, Vol. 3941, Springer-
Verlag, Berlin, pp. 161-172, 2005.
[14] A. M. Memon and Q. Xie. Using transient/persistent errors to
develop automated test oracles for event-driven software. In
Proceedings of The International Conference on Automated Software
Engineering 2004 (ASE’04), pages 186–195, 2004.

113113

