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Abstract— It becomes interesting to analyze and apply the features of reconfigurable computations because the concept
allows algorithm creation. An important algorithm that resulted from this concept is the known matrix inverse computation.
This algorithm is becoming common for matrix based computations because it is free from singularities in comparison
with other "Gauß" methods. However, this extreme ease computational requirement has a limitation. The generated matrix
inverse are all upper triangular or lower triangular. Since there is a need to extend computations to any matrix, we then
present some implementation aspects of the reconfigurable matrix inverse and an extension of the process that handles
full matrix inverse. This research uses the results of the reconfigurable matrix inverse computations completes them and
makes the process capable of generating full matrix inverse.
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INTENSIVE research on reconfiguration systems and com-
putations have been deployed in the past years. Many of

these techniques concentrate on hardware [1]–[3] and applied
in On Chip-Networks and operating systems [4], [5]. Most
recently significant research has been achieved in algorithms
and computations reconfiguration [6]–[9]. In most of these
applications it is not described effectively how their process
are constructed, this is due to the fact that, they emphasize on
their specific applications. This paper will consider the dynamic
equations of the linear recursive process summarized by the
following extended state equation.
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(1)
We admit the given process and the proposed algorithm with-
out demonstrations for more details see http://world-comp.
org/p2013/PDP.html. We also admit that all matrix and vector
operations are all well defined and the size of all provided
matrices and vectors in all cases is suitable for computations.
We also admit that any n× n matrix
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can be reconfigured in two inverse matrices R and V of
the same size. For more details on the mathematical back-
ground please consult [9]. We will admit furthermore without
demonstration that any matrix inverse can be transposed. The
transpose of a row vector Aj is the column vector Atj and the

transposed of a matrix A is denoted At.

1 INSTRUCTIONS FOR IMPLEMENTATION

1.1 Programming Features
The reconfiguration of the Recursive Linear Process gives the
matrix inverse computation. In Programming this inverse ma-
trix computations parallel features have been considered. To
guarantee the efficiency, all program fragments have been first
checked by hand and our programming approach subscribes
to the following universal criteria:
1) Comfortably and easy and ready to use

2) Standard and permits the re-entrance of data and can
be easily used by language programmers

3) Easily translate-able to any programming language.
The listing that follows represent the code that we generated
by using the "generated by Norcroft ARM C". Describing this
code reveals the following architectural information: we count
number of registers in the implementation to be fifteen see
Table 1. These are divided into three groups. The first group
contains arguments variables specified in the code by letter
a. The second group is made of register variables labelled v.
The third group is divided into static base register variables
named sb, v6 as stack limit register variable, the frame pointer
register variable is fp the stack pointer frame sp, the link
address register lr and the program counter labelled pc. The
intructions are divided from 1 to 5 arguments instruction. The
instruction LDMDB for instance takes the following arguments
fp,v1-v6,fp,sp,pc. The values of these registers are summarized
in the coming table and for this application, the value of the
program counter is set to pc=0x00008ce0. The last part of the
implementation is reserved to the data entries. For demonstra-
tive purpose, we assume that these entries are limited to 25
real numbers summarized into A and B.
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r0 0xffffffff

r1 0x00000000
r2 0x00000000
r3 0x00000000
r4 0x00000000
r5 0xffffffff
r6 0x00000f0f
r7 0x00000000
r8 0x00000001
r9 0x0000000e
r10 0x7ffff230
r11 0x00000000
r12 0x00000000
r13 0x80000000
r14 0x00008d18

TABLE 1: Values of the Fifteen Registers.

The values of the codes around some addresses can be
viewed, in Figure 1. Figure 1 presents the assembly code
at the following chosen addresses: 0x00000000, 0x00008008,
0x0000a44.

Listing 1: Implementation
1 main
2 MOV ip,sp
3 STMDB sp!,{v1-v6,fp,ip,lr,pc}
4 SUB fp,ip,#4
5 CMP sp,sl
6 BLMI __rt_stkovf_split_small
7 SUB sp,sp,#8
8 MOV v1,#5
9 MOV v2,#0
10 |L000020.J4.main|
11 MOV a1,#0
12 CMP v1,#0
13 BLE |L00005c.J8.main|
14 LDR lr,[pc, #L0002cc-.-8]
15 LDR v6,[pc, #L0002d0-.-8]
16 |L000034.J7.main|
17 ADD a2,a1,a1,LSL #2
18 ADD a3,v6,a2,LSL #3
19 ADD a3,a3,v2,LSL #3
20 ADD a2,lr,a2,LSL #3
21 ADD a2,a2,v2,LSL #3
22 LDMIA a2,{a4,ip}
23 STMIA a3,{a4,ip}
24 ADD a1,a1,#1
25 CMP a1,v1
26 BLT |L000034.J7.main|
27 |L00005c.J8.main|
28 MOV v3,#0
29 SUBS a1,v2,#1
30 STR a1,[sp,#4]
31 BMI |L000144.J12.main|
32 |L00006c.J11.main|
33 ADD a1,pc,#L0002d4-.-8
34 MOV v6,#0
35 CMP v1,#0
36 LDR v4,[a1,#4]
37 LDR v5,[a1,#0]
38 BLE |L0000cc.J15.main|
39 |L000084.J14.main|
40 ADD a1,v6,v6,LSL #2
41 LDR a2,[pc, #L0002dc-.-8]
42 ADD a2,a2,a1,LSL #3
43 ADD a4,a2,v2,LSL #3
44 LDR a2,[pc, #L0002d0-.-8]

45 ADD a1,a2,a1,LSL #3
46 ADD a2,a1,v3,LSL #3
47 LDMIA a2,{a1,a2}
48 LDMIA a4,{a3,a4}
49 BL _dmul
50 MOV a3,v5
51 MOV a4,v4
52 BL _dadd
53 MOV v5,a1
54 MOV v4,a2
55 ADD v6,v6,#1
56 CMP v6,v1
57 BLT |L000084.J14.main|

We used the ARM Toolkit v2.02, to implement the Matrix
Inverse Method and generated the standalone code. Listing 1 is
a peace of the generated code. We used the algorithm proposed
in [9] to ensure that the code generated is correct. We have
generated a listing as an assembly code of the process. The
complete listing initializes the matrices A and B as input argu-
ments. The matrices that have been input as test are organized
in a pascal matrix of order 5 and identity matrix of order 5.
Arrays of size 5×5 are reserved to the variables R, V. They will
contain the matrix entries of the matrix inverse computations.
We created variables R1 and R2 that are initialized with zeros.
The main part of the program in the complete listing is made
of a for loop that iterates on the index variable k. There are 8
other for loops that will compute the following data:
1) The variable V[s][k] is assigned the value of B[s][k] in

the first subloop

2) In the second subloop, we iterate through the index
variable j incrementing it by one each time and stop if
the index variable reaches n-1. If the variable is increased
up to n then this will result in unexpected computations
and the objectives matrices will not be reached. This for
loop contains two other subloops:
a) The first subloop is design to fill inside the variable

V[s][k] values of B[s][k]

b) The second subloop we want to reach stage n-1
that is we iterate through the index j

c) The third subloop will provide the computations
of the diagonal of the matrix R

d) The fourth and last for subloop computes the
matrix V

3) The sixth for loop is a print statement that will output
the matrix R

4) The seventh and eight last for loops prints out the matrix
V and complete the Assembly description of the Listing.

The generated listing can also be used for the Recursive Linear
Process. The number of loops and subloops will be the same.

2 COMPLETNESS METHOD

The previous sections points at partial reconfiguration and
matrix inverse computation. The state-of-the-art implementa-
tion is performed using [9]. This makes use of the recursive
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1.00000e+ 00 1.00000e+ 00 1.00000e+ 00 1.00000e+ 00 1.00000e+ 00
0.00000e+ 00 1.41421e+ 00 1.41421e+ 00 2.12132e+ 00 2.82843e+ 00
0.00000e+ 00 0.00000e+ 00 1.41421e+ 00 4.24264e+ 00 7.07107e+ 00
0.00000e+ 00 0.00000e+ 00 0.00000e+ 00 3.53553e+ 00 −5.65685e− 01
0.00000e+ 00 0.00000e+ 00 0.00000e+ 00 0.00000e+ 00 6.53605e+ 00

0x00000a44 : 0x00000b90 muleq r0, r0, r11

0x00000a48 : 0x00000ba0 andeq r0, r0, r0, lsr#23
0x00000a4c : 0x00000bb0 streqh r0, [r0],−r0
0x00000a50 : 0x00000bc0 andeq r0, r0, r0, asr#23
0x00000a54 : 0x00000bd0 andeq r0, r0, r0, asrr11
0x00000a58 : 0x00000be0 andeq r0, r0, r0, ror#23
0x00000a5c : 0x00000bf0 andeq r0, r0, r0, rorr11
0x00000a60 : 0x00000c00 andeq r0, r0, r0, lsl#24
0x00000a64 : 0x00000000 andeq r0, r0, r0
0x00000a68 : 0x00000000 andeq r0, r0, r0
0x00000a6c : 0x00000000 andeq r0, r0, r0
0x00000a70 : 0x00000000 andeq r0, r0, r0
0x00000a74 : 0x00000000 andeq r0, r0, r0
0x00000a78 : 0x00000000 andeq r0, r0, r0
0x00000a7c : 0x00000000 andeq r0, r0, r0
0x00000a80 : 0x00000000 andeq r0, r0, r0

+800c0x0000800c : 0xeb00001b.... : bl main

+80100x00008010 : 0xef000011.... : swi 0x11
+80140x00008014 : 0x00006c18.l.. : andeq r6, r0, r8, lslr12
+80180x00008018 : 0x00000408.... : andeq r0, r0, r8, lsl#8
+801c0x0000801c : 0x00002610.&.. : andeq r2, r0, r0, lslr6
+80200x00008020 : 0x00000770p... : andeq r0, r0, r0, rorr7
+80240x00008024 : 0x00000001.... : andeq r0, r0, r1
+80280x00008028 : 0x00008000.... : andeq r8, r0, r0
+802c0x0000802c : 0x00000000.... : andeq r0, r0, r0
+80300x00008030 : 0x00000020... : andeq r0, r0, r0, lsr#32
+80340x00008034 : 0x00000000.... : andeq r0, r0, r0
+80380x00008038 : 0x00000000.... : andeq r0, r0, r0
+803c0x0000803c : 0x00000000.... : andeq r0, r0, r0
+80400x00008040 : 0xe1a00000.... : nop
+80440x00008044 : 0xe04ec00f..N. : sub r12, r14, pc

0x00000000 : 0xe59ffa388... : ldr pc, 0x00000a40;= #0x00000b80

0x00000004 : 0xea000502.... : b 0x1414
0x00000008 : 0xe59ffa388... : ldr pc, 0x00000a48;= #0x00000ba0
0x0000000c : 0xe59ffa388... : ldr pc, 0x00000a4c; = #0x00000bb0
0x00000010 : 0xe59ffa388... : ldr pc, 0x00000a50;= #0x00000bc0
0x00000014 : 0xe59ffa388... : ldr pc, 0x00000a54;= #0x00000bd0
0x00000018 : 0xe59ffa388... : ldr pc, 0x00000a58;= #0x00000be0
0x0000001c : 0xe59ffa388... : ldr pc, 0x00000a5c; = #0x00000bf0
0x00000020 : 0x00000000.... : andeq r0, r0, r0
0x00000024 : 0x00000000.... : andeq r0, r0, r0
0x00000028 : 0x00000000.... : andeq r0, r0, r0
0x0000002c : 0x00000000.... : andeq r0, r0, r0
0x00000030 : 0x00000000.... : andeq r0, r0, r0
0x00000034 : 0x00000000.... : andeq r0, r0, r0
0x00000038 : 0x00000000.... : andeq r0, r0, r0
0x0000003c : 0x00000000.... : andeq r0, r0, r0

0x00000000

0x0000a44 0x00008008

Fig. 1: Reconfigurable Matrix Inverse. Upper side, the Code around location 0x00000000. The right down side identifies the
code around location 0x00008008. The left down side is the code around location 0x0000a44.

linear process stated in equation 1. In this section, we propose
the general matrix inverse computation. We consider discrete
matrices given by:

1) B1 =
(
B
1 j B1 1

)
j = 1, 2, 3, · · · ,n
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2) B2 =

⎛
⎜⎜⎜⎜⎝

B1 1B1 2

B1 2B1 2 + B2 2B2 2

B
1 jB1 2 + B

2 jB2 2

⎞
⎟⎟⎟⎟⎠

j = 3, 4, · · · ,n

3) B3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 1B1 3

B1 2B1 3 + B2 2B2 3

B1 3B1 3 + B2 3B2 3 + B3 3B3 3

B
1 jB1 3 + B

2 jB2 3 + B
3 jB3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

j = 3, 4, · · · ,n

4) Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 1B1 n

B1 2B1 n + B2 2B2 n

...

B1 n−2B1n + · · ·+ Bn−2 n−2Bn−2 n

B1 n−1B1n + B2 n−1B2 n + · · ·+ Bn−1 n−1Bn−1 n

B1 nB1n + B2 nB2 n + · · ·+ Bn−1 n−1Bn−1 n−1 + Bn nBn n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We can summarize the provided process in an equivalent
process B =

(
Bk

)
k = 1, 2, 3, · · · ,n given by:

B = [B1B2 · · ·Bn] .

That is steps 1 to n characterize the behavior of the process
with a decreasing index j. This is a reconfiguration version of
the matrix inverse computation and we then use it to state the
following theorem:

Theorem 2.1: The generelized reconfigurable matrix inverse
process method can compute full n × n matrix inverse A and
B by using the reconfigurable matrix inverse computations.
The proof idea of this theorem is based on the fact that, if
such a process really exist. Then there are two such similar
processes that is we can find them by using the reconfigurable
matrix inverse computations. The two constructed processes
are symmetric. Let denote them by A and B. Combining these
two processes comes to the following two cases:

A · B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vt · V · R · Rt if V = Vt

Rt · R · V · Vt if R = Rt

Using the state-of-the-art reconfigurable matrix inverse

V · R = R · V = Identity,

then A · B must be the identity. Because the n × n matrices
specified by A and B are full matrices and not upper triangular
nor lower triangular. The provided process generalises the
reconfigurable matrix inverse computations.

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 −0.8944 −0.9621 −0.9816 −0.9869 −0.9886 −0.9892
−0.8944 1.0000 0.9058 0.9275 0.9340 0.9363 0.9372
−0.9621 0.9058 1.0000 0.9721 0.9782 0.9802 0.9810
−0.9816 0.9275 0.9721 1.0000 0.9904 0.9923 0.9931
−0.9869 0.9340 0.9782 0.9904 1.0000 0.9960 0.9968
−0.9886 0.9363 0.9802 0.9923 0.9960 1.0000 0.9981
−0.9892 0.9372 0.9810 0.9931 0.9968 0.9981 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.6189 −0.9504 −0.5100 −0.2349 −0.1172 −0.0648 −0.0391
−0.9504 0.2630 0.0567 0.0270 0.0137 0.0076 0.0046
−0.5100 0.0567 0.0823 0.0159 0.0080 0.0045 0.0027
−0.2349 0.0270 0.0159 0.0231 0.0038 0.0021 0.0013
−0.1172 0.0137 0.0080 0.0038 0.0079 0.0011 0.0007
−0.0648 0.0076 0.0045 0.0021 0.0011 0.0032 0.0004
−0.0391 0.0046 0.0027 0.0013 0.0007 0.0004 0.0016

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

140.0000 −44.7214 −51.3459 −32.8015 9.0102 77.3491 177.1609
−44.7214 23.0000 19.8375 13.3795 −2.1784 −28.5140 −67.9104
−51.3459 19.8375 47.3538 18.1791 −2.9598 −38.7429 −92.2720
−32.8015 13.3795 18.1791 84.1891 −3.2370 −42.3707 −100.9123
9.0102 −2.1784 −2.9598 −3.2370 165.7355 −43.8292 −104.3860
77.3491 −28.5140 −38.7429 −42.3707 −43.8292 333.6883 −106.0481
177.1609 −67.9104 −92.2720 −100.9123 −104.3860 −106.0481 640.5305

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000
2.0000 9.0000 4.0000 5.0000 6.0000 7.0000 8.0000
3.0000 4.000025.4000 6.0000 7.0000 8.0000 9.0000
4.0000 5.0000 6.0000 71.3077 8.0000 9.0000 10.0000
5.0000 6.0000 7.0000 8.0000 178.0839 10.0000 11.0000
6.0000 7.0000 8.0000 9.0000 10.0000 389.2154 12.0000
7.0000 8.0000 9.0000 10.0000 11.0000 12.0000 760.4902

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Matrix A1 and B1 and A2 and B2 are computations using
the presented extended method. The iteration matrix that was
used to achieve the provided inverse is:

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
7 8 9 10 11 12 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The process computes matrices provided as matrix A and B
that are inverse. They are in accordance with conventional
matrix inverse results. The implementation is provided in the
following listing:

Algorithm 2.2:
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function COMPLETENESSMETHOD(A,B)
[m,n]← size(A)
[p, q]← size(B)
R← zeros(n,n)
if m = p or q = n then

R← zeros(n,n)
for j = 2, 3, · · · ,n do

V(:, j) = B(:, j)
for i = 1 : j− 1 do

R(i, j)←
V(:, i)t ∗A(:, j)
V(:, j)←
V(:, j)− R(i, j) ∗ V(:, i)

end for
R(j, j)← ‖V(:, j)‖
V(:, j) = V(:,j)

R(j,j)
end for

end if
for j = 1, 2, 3, · · · ,n do

for i = 1, 3, · · · ,n do
B1(i, j)←
V(i, j) ∗ V(i, j)t
B2(i, j)←
V(i, j)t ∗ V(i, j)t

end for
end for

end function

3 DISCUSSION

Some advanced literature has been helpful to conduct our
research. We can cite among others
1) From Numerical Recipes in C, the Art of Scientific

Computing Second Edition of William H. Press
Harvard-Smithsonian Center for Astrophysics and Saul
A. Teukolsky Department of Physics, Cornell University
and William T. Vetterling Polaroid Corporation and
Brian P. Flannery EXXON Research and Engineering
Company, available at http://www2.units.it/ipl/
students_area/imm2/files/Numerical_Recipes.pdf

2) Algorithms in Matlab [10]

3) Understanding the QR decomposition has been helpful
too see [8], as well as the non modified and modified
Gram Schmidt orthogonalization method that is closed
to the presented implementation although they perform
different computations.

Our implementation resulted in the above described architec-
ture. We have used the vectorization features and handled all
matrix entries as arrays. So matrix A will be an n×n-size array
A[n][n] and matrix B will be an n×n-size array B[n][n] . For the
description of the reconfigurable matrix inverse please refere to
[9]. R2 and R1 are double variable inside which the values of
R[j][k] and R[k][k] are accumulated. The vectorization method
used has been possible with accumulators R1 and R2 to enable
mathematical description transformed into computations. Most
of the research connected to this topic use the technique of
reconfiguration [11]–[13]. Our analysis although using an algo-
rithm that is deduced from this reconfiguration technique pic-
tures out the implementation and proposes a microarchitecture

analysis. The analysis on matrix inversion computation is quite
new and to the best of our knowledge, there are no existing
standard implementations of these algorithms and no other
implementation has been presented so far that will compute
the inverse matrix by mean of reconfiguration and the overall
execution time of the proposed assembly code provided is
0.0147 seconds. This is the actual standard of the performance
of such an implementation. It is difficult to make an objective
comparison on how efficient this implementation is since the
Recursive Linear Process has not been yet widely applied as
new process. The implementation that has been carried is ef-
fective and based on reference [9]. We can start with any matrix
called the reconfiguration starting matrix and generate through
iterations two new matrices that will be inverse. This research is
very interesting if we can with the used of the reconfiguration
carry many computations and create such new algorithms.
The Xilinx hardware implementation has not been yet been
conducted. This will be a difficult task since the matrices are not
only restricted to integer values. Such an implementation will
not be trivial with the Xilinx technology. The prediction of the
partial reconfiguration matrix inverse is also very important.
One might wish to get two computed inverse matrices, what
will be the starting matrix on which we wish to iterate. A
general idea has been thought but the implementation has not
already been conducted to validate this idea. This concept of re-
configuration combined with the proposed architecture is very
important and this implementation can be used as guideline
for reconfigurable algorithms. The size of the provided matrix
plays no role. The construction of hardware with the Xilinx
Technology can be easily carried with the provided analysis
but the implementation there will be difficult. One of the main
advantages of this implementation is that, no restrictions on the
input matrices are set. Any matrix can act as iteration starting
matrix and the necessary calculations will be performed.

4 CONCLUSIONS

We have presented the descriptive implementation of the re-
configurable matrix inverse computations and extended the
process that can now handle all kind of matrix inverse. Because
of the technical approach in this paper, we have proposed
a way how to implement the reconfigurable matrix inverse
process. Our scientific approach basically intends to connect
the concept of reconfiguration to process creation. The classical
study of algorithms and computational method see [10], [14]–
[21] has been achieved at the same time. This paper provides
implementation aspects of the developed process. From the
point of view of our analysis, this investigation is general
and by this way many matrix computations will be achieved
by reconfiguration on a specific matrix. There are concrete
applications of our analysis. A few of them are listed in the
field of matrix based engineering and mathematical matrix
computations. That is iterating on matrices using reconfigu-
ration to achieve computations in a non standard way. Some
mathematical backgrounds [20]–[22] have been necessary for
the accomplishment of this paper. Our research extends at
the meantime conventional way how to handle matrix based
computations and analysis. The following books [22]–[27] [28]–
[30] have been helpful to the implementation and thus, for
translation of the process into codes. We have taken advantage
of the ARM technology for the validation of the provided
micro-architecture description and the provided assembler list-
ing. Although our implementation is based on the ARM test
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R2 = 0;

for(s = 0; s < n; s++)

{

R2 = R2 + V [s][k] ∗ V [s][k]

}

R1 = 0;

for(s = 0; s < n; s++)

{

R1 = R1 + V [s][j] ∗ A[s][k]

}

�[�][�] �[�][�]

�������� ��������,	
[m,n]← size[A]
[p, q]← size[B]
R← zeros[n, n]
�� m = p = q = n ��	�

R← zeros[n, n]
��
 j = 2, 3, · · · , n ��

V [:][j] = B[:][j]
��
 i = 1 : j − 1 ��

R[i][j]← V [:][i] ∗A[:][j]
V (:, j)← V [:][j]−R[i][j]∗V [:][i]

	�� ��


R[j][j]← ‖V [:][j]‖
V [:][j] = V [:][j]

R[j][j]

	�� ��


	�� ��

	�� ��������




Fig. 2: Reconfigurable Matrix Inverse Implementation the Last two Frames Picture out the Computations of R[k][k] and R[j][k]

environment, the description provided is universal. Due to the
technical approach in this paper, we have avoided simulations

for since a wide range of matrices has been used to test our
implementation. Our concentration was instead drawn on the
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realization of the process in codes. Listing 1 pictures out a piece
[2] Xilinx, “Xilinx documentation web site,” 2012. [Online].

Available: http://www.xilinx.com/support/documentation/
white-papers/wp374-partial-reconfig-xilinx-FPGAs.pdf

[3] E. Mbock, “FPGA Implementation of the Kalman Filter,” 2011.
[Online]. Available: http://www.dpg-verhandlungen.de

[4] T. T. Andreas G. Savva and V. Soteriou, “Intelligent on/off
dynamic link management for on-chip networks,” Journal of
Electrical and Computer Engineering, 2012.

[5] M. D. S. A. Donato, F. Ferrandi and D. Sciuto, “Operating system
support for dynamically reconfigurable soc architectures,” IEEE
International Soc Conference, pp. 233–238, 2005.

[6] A.Brzezinski and E.Modiano, “Dynamic reconfiguration and
routing algorithms for ip-over-wdm networks with stochastic
traffic,” In Proceeding of IEEE Infocom, 2005.

[7] E. Mbock, “Dynamic Partial Reconfiguration based on the
Kalman Filter Method,” Proc. of Iasted on Control and Applications,
2013.

[8] ——, “Partial Reconfiguration of a Linear Recursive Process and
Application on [Q,R]-Decomposition,” The 2013 Int. Conf. on
Parallel and Distributed Processing Techniques and Applications, 2013.

[9] E. M. Mbock, Algorithm Based Partial Reconfiguration with Appli-
cation on Matrix Inverse Computations:Transactions on Engineering
Technologies. Springer, 2014.

[10] E. Mbock, Algorithms in Matlab, the Reality of Abstraction and the
Power of Pseudocodes. Göttingen: Optimus Verlag, 2012.

[11] F. M.D.Santambrogio A.Donato and D.Sciuto, “Operating system
support for dynamically reconfigurable soc architecture,” IEEE
International Soc Conference, p. 233238, 2005.

[12] J. Hillman and I.Warren, “Quantitative analysis of dynamic re-
configuration algorithms,” Proc. Int. Conf. Design, Analysis and
Simulation of Distributed Systems, 2004.

[13] Vaidyanathan and J.Trahan, “Dynamic reconfiguration: Architec-
tures and algorithms,” Springer, Berlin, Germany, 2004.

[14] J. Demmel, Applied Numerical Linear Algebra. Philadelphia, pa:
Siam, 1997.

[15] G. Golub and C. V. Loan, Matrix Computations, 2nd ed. Baltimore,
md: Johns Hopkins University press, 1989.

[16] M. A. M. Forsythe, George E. and C. B. Moler, Computer methods
for Mathematical Computations. Englewood Cliffs, nj: Prentice
Hall, 1977.

[17] M. Heath, Scientific Computing: an Introductory Survey. Boston,
ma: Mcgraw-hill, 1997.

[18] J. F. R.L. Burden, Numerical analysis. Brooks/Cole Publishing
Company, 1997-2001.

[19] N. Higham, Accuracy and Stability of Numerical Algorithms.
Philadelphia, pa: Siam, 1996.

[20] M. Heath, Scientific Computing: an Introductory Survey, 2nd ed.
Boston, ma: Mcgraw-hill, 1997.

[21] N. Higham, Accuracy and Stability of Numerical Algorithms.
Philadelphia, pa: Siam, 1996.

[22] R. Skeel and J. Keiper, Elementary numerical Computing with
Mathematica. New York, ny: Mcgraw-hill, 1993.

[23] B. Hahn, Essential Matlab for Scientists and Engineers. New York,
ny: John Wiley Sons, 1997.

[24] D. Hill and D. Zitarelli, Linear Algebra Labs with Matlab, 2nd ed.
Upper Saddle River, nj: Prentice Hall, 1996.

[25] R. Larson and B. Edwards, Elementary Linear Algebra, 3rd ed.
Lexington, ma: D.C.Heath and Company, 1996.

of such codes. The approach in this paper is technical and will
help many process and algorithm designers and computational
engineers.
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