
A Reachability Query Method Based on Labeling
Index on Large-Scale Graphs

Yuqing Duan1
Department of Electronic & Computer Engineering
 Hong Kong University of Science and Technology

Hong Kong, China

Xuecheng Li2, Linlin Ding2+
School of Information
Liaoning University

Shenyang, China
dinglinlin@lnu.edu.cn

Abstract—As a general data structure, graphs have been
applied widely in many fields, for instance, geographical
navigation, web semantic analysis, XML databases, etc. With the
successful application of graphs in various fields, the rampant
growth of graph data, and the structures of graph data becoming
more complex, the analysis, storage and management for graph
data are facing the unprecedented challenge. As a common
analysis technology on large-scale DAG data, reachability query
has been widely studied. Whereas, the existing reachability query
mechanisms on large-scale graphs have some problems such as
index creation requires a lot of time consumption and large
storage space, query efficiency is low and so on. Therefore, in
order to solve the above problems and implement efficient
reachability query, we propose a labeling index method based on
graph stratification (GSL), this method utilizes the properties of
bipartite graph to link all vertexes into a mutually disjoint chain
structure, creates unique chain-in label and chain-out label for
each vertex; Besides this paper proposes two kinds of
reachability query methods: chain-in reachability query and
chain-out reachability query; Extensive experimental results
verify the reachability query methods we propose have good
query performance on the real-world networks, large-scale
sparse graphs and dense graphs, increase efficiency of
reachability query on large-scale DAG vastly.

Keywords—large-scale DAG; reachability query; graph
stratification; maximum matching graphs; labeling index scheme

I. INTRODUCTION
In recent years, with the advent of big data era, more and

more scientific branches use graph data to model, utilize graph
data to record the relationship between various entities and
their attributes. A complex data structure emerges which has
been widely applied in some emerging fields such as XML
databases, social networks, geographical navigation, etc. With
application and promotion of online communication platform
such as Facebook, registration amount and usage amount are
increasing at an alarming rate which drives rapid expansion of
graph data scale. Graph data structure is getting more and more
complexity that leads to new challenges for managing large-
scale graphs effectively. However it has important significance
for theoretical study and practical application.

With population growth in social platforms, strangers can
contact each other through their respective circle of friends,
then know and concern each other that makes more and more
unfamiliar people communicate with each other. The
relationship of two people is reflected by reachability, if the
reachability is true, it illustrates these two have friend relation
directly or indirectly, and they can even recommend their
respective friends for each other, thus expand their circle of
friends. In theoretical research of graphs, reachability is widely
mentioned to reflect the capacity of one vertex to another.
Therefore reachability query plays the fundamental role in
large-scale graph analysis. However, the existing research
about index and query are more applicable to the management
of small and medium-scale graphs, the methods of handling
large-scale graphs are insufficient. Whether large-scale graphs
can be effective queried and optimized are critical to the
management of graph databases. Meanwhile, many emerging
areas have urgent need to handle reachability query effectively
on graphs. Hence it has become new research hot.

So far, except traditional query methods, reachability query
algorithms are applied to graphs could be classified to three
categories roughly: transitive closure [1], online index [2] and
hop encoding [3].

Paper [4] proposes tree index structure which can compress
parts of transitive closure preferably. Whereas, this method
need precompute transitive closure of each vertex, so space
cost is quite expensive even creating index on small-scale
graphs. Paper [5] improves storage overhead through removing
single-source transitive closure, but this method still need
oversize time and space cost. Although online index can realize
the reachability query on large-scale graphs, but it has low
query efficiency and poor reliability. Paper [6] proposes
GRIPP, which needs little extra work during the process of
query that increases response time of query immensely. Paper
[7] proposes a reachability index (GRALL) on directed graphs,
and this method is suitable for large-scale graphs, whereas
interval inclusion relation is the need not sufficient condition
for reachability, that influences reliability of reachability query
seriously. Paper [8] proposes a 3-hop index strategy, and it has
compressed index space and reduced the index creation time,
whereas its extensibility is poor.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.100

77

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.100

77

 To sum up, existing reachability query index mechanism
on large-scale graphs presents the following problems:
expensive storage overhead, too long index creation time and
low query efficiency. To solve the above problems, this paper
proposes an index method based on graph stratification, it
decomposes large-scale DAG to create reasonable label
indexes for different types of vertexes to realize effective and
efficient query. Meanwhile we propose two reachability query
methods according to the types of vertexes so as to reduce the
query response time further.

The rest of the paper is organized as follows. In Section 2
we review related work of existing reachability query. In
Section 3 we present the index method based on graph
stratification (GSL) in detail. We present two reachability
query methods based on GSL in Section 4. Section 5 reports
the experimental results and Section 6 concludes the paper.

II. RELATED WORK
At present, the existing reachability query on small and

medium-scale graphs could mainly divided into several
categories as follows: chain-decomposition, tree cover, path
tree and hop encoding.

Reachability query based on chain-decomposition mainly
applies path decomposition to improve computing efficiency of
transitive closure and reduce its storage space. Chen Y et.al [9]
propose an algorithm based on chain-decomposition that its

time complexity is
2()O n bn b+ , thereinto n is the amount

of vertexes, and b is the depth of DAG. This method uses a
mass of virtual vertexes to create chain structure that leads to
oversize storage cost and needs large volume of memory
support. With the decomposing of DAG, these neighbor
vertexes will be assigned into different chains arbitrarily that
will significantly affect the compression ratio of graphs and
cause more expensive storage cost. Hence methods based on
chain-decomposition are not suitable for large-scale graphs.

There are some other methods are based on the thought of
tree cover. These methods transform a graph to a spanning
tree, then utilize parent-child relationship of the spanning tree
to allocate interval label for each vertex. Making use of
inclusion relation of interval labels, reachability query can be
realized. Paper [10] proposes interval-based method, which
creates a mass of virtual coding that will lead to too long index
creation time so that it cannot satisfy the reachability
requirement of large-scale graphs.

Based on the thought of path tree, paper [11] proposes a
novel efficient reachability query method on medium-scale
graphs. The method partitions the original graph into several
small-scale subgraphs, and then creates a ternary reachability
label y for each vertex of the graph to identify the reachability
between vertexes. Ruoming Jin et.al[12] propose a path-tree
reachability query algorithm. Path-tree tries to find the most
eclectic size of labels to reduce index storage cost.

With the advent of big data era, in recent years, many
reachability query methods on large-scale graphs are proposed
one after another, they mainly execute the query through online
query [13]. For example, Hilmi Yildirim et.al first propose

GRALL [14, 15] which supports online query. This method
creates multiple reachability interval labels for each vertex
based on the thought of random interval reachability index
label, and through judging the relationship of interval labels,
unreachable vertexes will be pruned. We can see that GRALL
is more suitable for identifying the negative query between
vertexes (unreachability), but for solving practical query paths
between vertexes is still the bottleneck which is difficult to
break through. Ruoming Jin et.al propose a novel reachability
query frame named SCARAB [16]. It not only could make the
reachability index extensible, but also accelerate online
reachability query, so it is more suitable for large-scale graphs.
But this method is not suitable for reachability query of
dynamic graphs and the cases that query conditions are
restricted. For finding better solution to positive query (i.e.,
directly identify reachability between vertexes), Stephan
Seufert et al propose a reachability index method named
FERRARI [17] which has adaptability, the primary innovation of
this method is to set the range of spatial domain and two kinds
of interval labels. Through two kinds of interval labels, it can
optimize GRALL index structure, so as to query large-scale
graphs more efficiently. Though it can identify reachability
quickly through the two interval labels, but it is equivalent to
create double interval labels for each vertex that leads to
enormous increase of index creation cost, and the space
complexity of index is O (n2) in the best case.

Through the analysis of above methods, we can see the
existing methods mostly are not suitable for large-scale graphs,
and there are some problems such as oversize storage cost, too
long index creation time and low query efficiency. It also
provide direction for our research, in this paper we try to
propose a method which can both reduce index creation time or
index cost and proceed reachability query efficiently on large-
scale graphs.

III. A LABELING INDEX METHOD BASED ON GRAPH
STRATIFICATION

In this paper we mainly research reachability query on
large-scale directed acyclic graphs (DAG). Because large-scale
graphs often have thousands of vertexes, so we propose a
labeling index method based on graph stratification named
GSL, it transforms a large-scale DAG into a kind of chain
structure which can represent reachability relationship between
vertexes, and then creates reachability labels for each vertex on
chains. GSL first applies graph stratification into the
preprocessing stage, and decomposes the original graph into
the chain structure utilizing the maximum matching graph of
the bipartite graph. Then on the basis of generated chain
structure, it creates independent reachability labels for vertexes
on each chain by hierarchy. It creates relational reachability
labels for vertexes on different chains according to the mutual
relation between vertexes. Then the reachability relations
between vertexes are preserved completely, and it can
efficiently response reachability query in linear time.

A. Graph Stratification
Definition 1(Graph stratification): G=(V,E) represent a

DAG ,The stratification of G is the decomposition of V into

7878

one or more subsets V1,V2….Vh(i.e. 1 2 ... hV V V V= ∪ ∪),
and subnodes of each vertex in Vi only appear in

()1 1.., ., 2 , ,iV V i h− = … , where h is the length of the longest
path in G, i.e., the number of layers after stratification.

The common symbols and descriptions are listed in table I.

TABLE I. SYMBOLS AND DESCRIPTIONS

symb
ols

descriptions

G DAG
V1,V2,...,Vh Subsets of vertex sets after strtification
Level(v)=i Vertex v’s layer number in Vi is i
Cj(v) (j < i) The set that v points to and these subnodes belong to subsets Vj
G1 / G2 Subgraph that G1 cuts out edges of G2
G1 G2 Subgraph that adds edges of G1 and G2

v, u The edge from v to u
d(v) Outdegree of v

The stratification method in this paper first finds all
vertexes at the lowest layer, i.e., the vertexes that the outdegree
are 0; Secondly it finds parent vertexes linking to these bottom
vertexes, and judges whether other child vertexes of these
parent vertexes belong to the lowest layer vertex sets, then gets
the subnode sets of second layer; After that, it partitions large-
scale directed acyclic graphs by iteration. The method of graph
stratification is presented in Algorithm 1.

Algorithm 1: Graph Stratification

Input DAG G
Output results of graph stratification
(1) V1 := all edges that its outdegree is 0;
(2) for i = 1 to h-1 do
(3) { T := all the vertexes which have one least child in Vi;
(4) for each vertex v in T do
(5) { let v1, ..., vk be v’s children and storage in Vi;
(6) Ci(v) := {links to v1, ..., vk};
(7) if d(v) > k then remove v from T;
(8) G := G/{(v, v1), ..., (v, vk)};
(9) d(v) := d(v) - k;
(10) end if
(11) }
(12) Vi+1 := T;
(13) end for}

Known from the above algorithm, we can see that the
features of vertexes generated by graph stratification method as
follows: (1) The vertexes are mutual independence and cannot
reach each other at the same layer; (2) The vertexes in i layer
only point to the vertex in the next layer or the vertex which the
layer number is less than i. And the vertexes at any layer
cannot reach vertexes at their upper layer.

Fig. 1. DAG G Fig. 2.The result of G stratification

As an example, in Fig.1, there are 9 vertexes in G. Fig.2
presents the stratification result by the above algorithm, the
figure only shows the stratification result of vertexes. The
vertexes in Fig.1 are divided into 4 layers: V1={4,5,9},
V2={3,8} V3={2,7} and V4={1,6}. We can see that, for the
vertexes at each layer, their pointing vertexes are all allocated
to other layers.

B. Creating Maximum Matching Graph
Generating independent layers of vertex sets through graph

stratification, and any two vertex sets have not intersection.
Then it links vertexes of different layers based on maximum
matching graph of bipartite graphs to generate a cluster of
disjoint chains, so it convenient for creating reachability labels
and compressing transitive closure.

Definition 2.2(Bipartite graph): Given an undirected graph
G(V,E), its vertex sets can be divided into two subsets P and Q,
and it meets two conditions:(1) V=P Q; (2) P�Q=�

,u v E∀ ∈ u P v Q

If a graph meets above conditions, it is bipartite graph,
represented by G (P, Q, E).

Definition 2.3(Matching): For a bipartite graph G, X is a
subgraph of G, if any two edges in the edge sets of X do not
connect to the same vertex, then it will be named a matching of
the bipartite graph. The subgraph with the most edges is called
the maximum matching subgraph.

The main idea of creating maximum matching graph is as
follows: first to get the maximum matching graph, it regards
the vertex sets in the lowest two layers as two subsets of the
bipartite graph. And then the generated maximum matching
graph is combined with the vertex set in the third layer into a
new bipartite graph, and continues getting the second
maximum matching graph, by this analogy. Finally merging all
generated maximum matching graphs to get the maximum
matching graph of the original graph, the generated structure
contains n disjoint chains and the information of all vertexes
and edges on the original graph. The process of creating
maximum matching graph need virtual vertexes [18], but these
vertexes don’t participate creating reachability labels, so it
won’t occupy any index storage space, it only affects a little
index creation time. The method of creating maximum
matching graph is shown in Algorithm 2.

Algorithm 2: Creating Maximum Matching Graph
input result of stratification of G
output the maximum matching
(1) find M1 of G(V2, V1: C1); M1’:= M1; V1’:= V1; C1 := C1;
(2) for i = 2 to h - 1 do
(3) { construct virtual vertexes for Vi according to Mi-1;
(4) let U be the set of the virtual vertexes added into Vi;
(5) let W be the newly generated edges incident to the new

vertexes in Vi
(6) let W’ be a subset of W, containing the edges from Vi+1

to U;
(7) Vi’ := Vi U; Ci’ := Ci W’;
(8) find a maximum matching Mi’

 of G(Vi+1, Vi’; Ci’);
(9) }
(10) end for
(11) return M1’ M2’ … Mh-1’.

7979

C. Generating Reachability Labels
If large-scale graphs aren’t decomposed, their transitive

closure is tremendous. Whereas this paper decomposes the
original graph into a cluster of disjoint chains through
stratification and generating maximum matching graph of
bipartite graphs, and the generated chains contain all
information about vertexes and edges. Because the graphs in
this paper are presented by chain structure, each vertex just
exists in one chain, so as to better create reachability labels.
The paper sets two kinds of reachability labels: chain-in label
and chain-out label according to the location on chains and
relatedness between vertexes.

We can see that each vertex has one and only one chain-
in label, because each vertex just exist in one chain;
Secondly according to the thought of stratification, the
bottom vertexes in each chain (i.e., the vertex which the
outdegree is 0) haven’t chain-out labels, and the vertex in
non-bottom chains has least one chain-out label. In this
process, the reachability information of any edge could be
preserved essentially, and its time complexity could be
minimized to O (nh2), where n is the amount of vertexes,
and h is the amount of chains.

For example, we still take Fig.1 creating reachability labels
for all vertexes in the new chains by the above mentioned
algorithm. The result is shown in Fig. 3.

Fig.3.Result of creating reachability label

IV. REACHABILITY QUERY BASED ON THE GSL
In allusion to the chain-in label and chain-out label, this

section will propose Chain-in Reachability Query (CIRQ)
method and Chain-Out Reachability Query (CORQ) method.

A. Chain-in Reachability Query
For the reachability query of two vertexes u and v, we need

compare the chain numbers of vertex u and v, if the chain
number of vertex u equals vertex v’s, we know that two
vertexes exist in the same chain, chain-in reachability query
can be proceeded directly.

In this paper, the graph stratification of DAG is bottom-up
on the basis of the reachability relation between vertexes, that
is to say lower layer vertexes cannot reach upper layer vertexes.
Therefore, if two vertexes are in the same chain, the
reachability of vertexes can be determined just by the layer
number. It is not necessary to compare the chain-out label of
two vertexes. In other words, in the case of the reachability
query of vertexes that are in the same chain, moreover the
amount of vertexes in the chain is oversize, and the CIRQ can
finish the judgment just by once reachability query. Hence, the

time complexity of CIRQ is O (1). It will reduce the time of
reachability query enormously and increase the efficiency of
reachability query effectually.

B. Chain-out Reachability Query
For two vertexes that the chain numbers are unequal, this

paper proposes Chain-out Reachability Query (CORQ)
method, the concrete operations as follows:

First, comparing the chain numbers iu and iv of vertex u and
v (assume the labels of vertex u and v are (iu, ju), (iv, jv)).if iu
iv, then it illustrates that the vertex u and v are not in the same
chain, chain-out reachability query is needed.

Secondly, comparing the containment of chain-in labels
(iu,ju), (iv,jv) and chain-out labels {(iu,vu), (ju,wu)},{(iv,vv),
(jv,wv)}. If one chain-out label of vertex u contains the chain-in
label of vertex v, then it illustrates vertex u and v are reachable;
If anyone chain-out label of vertex u doesn’t contain the chain-
in label of vertex v, then it illustrates vertex u and v aren’t
reachable.

It is known by the character of the maximum matching
graph, the maximal length of each chain is k that is to say after
graph stratification, the maximal number of stratification is k.
And then it is known that for each vertex on the graph, the
maximal number of the chain-out label is (k-1)(n-1),n is the
number of chain-in the maximum matching graph. In the other
words, the chain-out reachability query of two vertexes that in
different chains need the judgment of containment at most (k-
1)(n-1). Hence, the time complexity of CORQ is O (kn).

V. EXPERIMENTAL EVALUATION
We present the evaluation results of reachability query

method based on GSL in this section. In terms of execution
efficiency and performance, we compare our method with
other existing reachability query methods of DAG, such as
Optimal-chain, Dual-Labeling, 2-Hop, Tree-Path and
FERRARI. We compare the index creation time, storage
overhead and reachability query time on the different data
volume levels, and analyze the experimental results.

A. Experiment Environment
The experiments are evaluated on a commodity computer

which has two Intel Core2 T6400@2.00GHz CPUs, 4GB
memory and 1TB hard disk. It can process large-scale DAG
graph datasets that are set in this paper. The operation system is
Windows 7 Ultimate (32 bit/SP1). Visual Studio2012 is
installed on the computer, and all the algorithms are
implemented in java.

B. Datasets
We conduct our experiments on simulated datasets and

real-world datasets [21, 22], whose statistics are described in table
II. However, simulated datasets and large-scale DAG graph are
generated by Scale-Free Model [20] and Gtgraph [21] randomly.

8080

TABLE II. BASIC INFORMATION OF REAL-WORLD DATASETS

Dataset #vertexes #edges

Wiki 478467 889361
EuAll 578042 1870425
Facebook 489214 1092482
Google 842371 4329532

C. Experiment Results Analysis
In this paper, our experiments are evaluation through two

aspects. On the one hand we verify whether the index creation
time and storage overhead for large-scale DAG with GSL
method are reasonable. On the other hand we verify whether
the methods we propose can realize the reachability query
between vertexes on the large-scale DAG.

Experiment 1: Simulated sparse graph experiment

Table III lists the comparison of index creation time and
storage overhead on sparse graph with GSL method and other
five methods. It is observed that GSL and Tree-path method
have more obvious advantage in index creation time. GSL
method transforms the large-scale DAG into a chain,
distributes the relational vertexes and edges in the same chain,
and then that is convenient to create the effective index for
each vertex on the graph. On the aspect of storage overhead,
GSL method is not optimal, but comparing with 2-Hop
method, the occupied storage space is much less.

TABLE III. TIME OF INDEX CREATION AND STORAGE OVERHEAD ON
SPARSE GRAPH

Method Index creation time(s) Storage overhead(16bits)

Optimal-chain 75.450 198273
Dual-Labeling 53.932 420893
2-Hop 298.357 1092482
Tree-Path 23.345 401233
FERRARI 40.426 163574
GSL 28.345 468425

Fig.4(a). shows the average running time of reachability
query on the sparse graph with GSL method and other methods.
It is observed that GSL method is optimal, this is because the
large-scale graph in this paper is decomposed into the
minimized chain structure (that is to say the owned the number
of the chain is least), moreover vertexes with reachability
relation are distributed in the same chain as much as possible,
therefore it improves the query efficiency.

Experiment 2: Simulated dense graph experiment

Table IV lists the comparison of index creation time and
storage overhead on dense graph with GSL method and
Optimal-chain method, Dual-Labeling method, Tree-Path
method and FERRARI method. Because 2-Hop method only
compresses the transitive closure between vertexes, ignores
labels of edges, it is not suitable for the dense graph. As shown
in table IV, using GSL method on the dense graph is average
level. This is because dense graph has major edges, that is to
say there are major pairs of reachability relation between
vertexes, and it is needed to create major chain-out labels. But
if vertexes on the dense graph can be gathered into several
groups nicely and the reachability relations between vertexes
are distributed in several concentrated subgraphs, then vertexes
on each subgraph will better exist in the same chain among

chain structure and chain-out labels between vertexes will be
less, so index creation time and storage overhead will be
optimized and reachability query is more efficient.

TABLE IV. TIME OF INDEX CREATION AND STORAGE OVERHEAD ON
DENSE GRAPH

Method Index creation time(s) Storage overhead(16bits)

Optimal-chain 223.921 406698
Dual-Labeling 2083.341 980642
Tree-Path 94.019 174804
FERRARI 1763.01 372821
GSL 1437.264 680192

Fig.4 (b) shows the comparation of reachability query on
the dense graph with GSL method and other four methods. It is
observed intuitively that the query performance of GSL method
is optimal, and this is because if the query proceeds in vertexes
that are in the same chain, the time complexity of query is O
(1). So among the existing reachability query methods aiming
at large-scale DAG, and the query time using the method we
propose is minimum.

(a) (b)

Fig.4 Time of reachability query on the sparse graph

Experiment 3: Real-world datasets experiment

The comparison of index creation time shows in Fig.5(a),
which is tested on real-world datasets using GSL method,
Optimal-chain method, Dual-Labeling method, 2-Hop method,
Tree-Path method and FERRARI method. It can be found that
index creation time using six methods presents the trend of
rising with the expansion of real-world datasets.

The comparison of reachability query time on real-world
datasets of different scale using GSL method in this paper and
other five methods shows in Fig.5(b). When the amount of
edges on the original graph is less, the query efficiency of six
methods is approximate. Moreover, query time shows obvious
change with the increase of graph scale. Therein reachability
query time using GSL method is minimum Dual-Labeling
and Tree-Path take second place, Optimal-chain and FERRARI
are closely, and 2-Hop is worst. GSL method we propose has
obvious advantage that is because when the reachability query
is processed, if two vertexes are in the same chain, then the
judgment of reachability can be processed through the size of
labels. It will save query time immensely.

8181

(a) (b)

Fig.5 Time of reachability query on real-world datasets

Synthesizing the above two sets of experiment data, we
know that Optimal-chain, Dual-Labeling, 2-Hop and Tree-Path
are more suitable for small-scale DAG, moreover GSL and
FERRARI can be well applied to reachability query on large-
scale DAG, meanwhile query efficiency of GSL is optimal.

VI. CONCLUSIONS
We propose a labeling index method based on graph

stratification (GSL, Graph Stratification Labeling), utilizing
this method can create standalone chain-in reachability label
and chain-out reachability label for each vertex effectively
Then based on the GSL method, we propose two kinds of
reachability query methods that use for adapting the
requirement of reachability query on large-scale DAG.
Through a mass of simulation experiment analysis aiming at
different kinds of graph, it illuminates that the method we
propose is efficient and feasible. It can increase the efficiency
of reachability query on large-scale DAG on the premise of
guaranteeing accuracy of reachability judging results.

ACKNOWLEDGMENT
This work was supported by National Natural Science

Foundation of China under Grant (Nos.61472169, 61502215);
Science Research Normal Fund of Liaoning Province Educatio
n Department (No.L2015193);Doctoral Scientic Research Star
t Foundation of Liaoning Province(No.201501127);Young Re
search Foundation of Liaoning University under Grant (No. L
DQN201438).

REFERENCES

[1] van Schaik S J, de Moor O. A memory efficient reachability data
structure through bit vector compression[C]//Proceedings of the 2011
ACM SIGMOD International Conference on Management of data.
ACM, 2011: 913-924.

[2] Y�ld�r�m H, Chaoji V, Zaki M J. GRAIL: a scalable index for
reachability queries in very large graphs[J]. The VLDB Journal—The
International Journal on Very Large Data Bases, 2012, 21(4): 509-534.

[3] Cai J, Poon C K. Path-hop: efficiently indexing large graphs for
reachability queries[C]// Proceedings of the 19th ACM international

conference on Information and knowledge management. ACM, 2010:
119-128.

[4] Jin R, Hong H, Wang H, et al. Computing label-constraint reachability
in graph databases[C]//Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. ACM, 2010: 123-134.

[5] Xu K, Zou L, Yu J X, et al. Answering label-constraint reachability in
large graphs[C]// Proceedings of the 20th ACM international conference
on Information and knowledge management. ACM, 2011: 1595-1600.

[6] Trißl S, Leser U. Fast and practical indexing and querying of very large
graphs[C]// Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. ACM, 2007: 845-856.

[7] Yildirim H, Chaoji V, Zaki M J. Grail: Scalable reachability index for
large graphs[J]. Proceedings of the VLDB Endowment, 2010, 3(1-2):
276-284.

[8] Jin R, Xiang Y, Ruan N, et al. 3-hop: a high-compression indexing
scheme for reachability query[C]//Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. ACM,
2009: 813-826.

[9] Chen Y, Chen Y. An efficient algorithm for answering graph
reachability queries[C]//Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference on. IEEE, 2008: 893-902.

[10] Wang H, Li J, Luo J, et al. Hash-base subgraph query processing method
for graph-structured XML documents[J]. Proceedings of the VLDB
Endowment, 2008, 1(1): 478-489.

[11] Jin R, Xiang Y, Ruan N, et al. Efficiently answering reachability queries
on very large directed graphs[C]// Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM, 2008:
595-608.

[12] Jin R, Ruan N, Xiang Y, et al. Path-tree: An efficient reachability
indexing scheme for large directed graphs[J]. ACM Transactions on
Database Systems (TODS), 2011, 36(1): 7.

[13] van Schaik S J, de Moor O. A memory efficient reachability data
structure through bit vector compression[C]//Proceedings of the 2011
ACM SIGMOD International Conference on Management of data.
ACM, 2011: 913-924.

[14] Y�ld�r�m H, Chaoji V, Zaki M J. GRAIL: a scalable index for
reachability queries in very large graphs[J]. The VLDB Journal—The
International Journal on Very Large Data Bases, 2012, 21(4): 509-534.

[15] Yildirim H, Chaoji V, Zaki M J. Grail: Scalable reachability index for
large graphs[J]. Proceedings of the VLDB Endowment, 2010, 3(1-2):
276-284.

[16] Jin R, Ruan N, Dey S, et al. SCARAB: scaling reachability computation
on large graphs[C]//Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. ACM, 2012: 169-
180.

[17] Seufert S, Anand A, Bedathur S, et al. Ferrari: Flexible and efficient
reachability range assignment for graph indexing[C]//Data Engineering
(ICDE), 2013 IEEE 29th International Conference on. IEEE, 2013:
1009-1020.

[18] Chen Y, Chen Y. An efficient algorithm for answering graph
reachability queries[C]//Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference on. IEEE, 2008: 893-902.

[19] Wang H. Managing and mining graph data[M]. New York: Springer,
2010.

[20] Madduri K, Bader D A. GTgraph: A suite of synthetic random graph
generators[J]. 2012.

[21] Jin R, Ruan N, Dey S, et al. SCARAB: scaling reachability computation
on large graphs[C]//Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. ACM, 2012: 169-
180.

[22] Cheng J, Shang Z, Cheng H, et al. K-reach: who is in your small
world[J]. Proceedings of the VLDB Endowment, 2012, 5(11): 1292-
1303.

8282

