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Abstract—As a general data structure, graphs have been 
applied widely in many fields, for instance, geographical 
navigation, web semantic analysis, XML databases, etc. With the 
successful application of graphs in various fields, the rampant 
growth of graph data, and the structures of graph data becoming 
more complex, the analysis, storage and management for graph 
data are facing the unprecedented challenge. As a common 
analysis technology on large-scale DAG data, reachability query 
has been widely studied. Whereas, the existing reachability query 
mechanisms on large-scale graphs have some problems such as 
index creation requires a lot of time consumption and large 
storage space, query efficiency is low and so on. Therefore, in 
order to solve the above problems and implement efficient 
reachability query, we propose a labeling index method based on 
graph stratification (GSL), this method utilizes the properties of 
bipartite graph to link all vertexes into a mutually disjoint chain 
structure, creates unique chain-in label and chain-out label for 
each vertex; Besides this paper proposes two kinds of 
reachability query methods: chain-in reachability query and 
chain-out reachability query; Extensive experimental results 
verify the reachability query methods we propose have good 
query performance on the real-world networks, large-scale 
sparse graphs and  dense graphs, increase efficiency of 
reachability query on large-scale DAG vastly. 

Keywords—large-scale DAG; reachability query; graph 
stratification; maximum matching graphs; labeling index scheme 

I.  INTRODUCTION  
In recent years, with the advent of big data era, more and 

more scientific branches use graph data to model, utilize graph 
data to record the relationship between various entities and 
their attributes. A complex data structure emerges which has 
been widely applied in some emerging fields such as XML 
databases, social networks, geographical navigation, etc. With 
application and promotion of online communication platform 
such as Facebook, registration amount and usage amount are 
increasing at an alarming rate which drives rapid expansion of 
graph data scale. Graph data structure is getting more and more 
complexity that leads to new challenges for managing large-
scale graphs effectively. However it has important significance 
for theoretical study and practical application. 

With population growth in social platforms, strangers can 
contact each other through their respective circle of friends, 
then know and concern each other that makes more and more 
unfamiliar people communicate with each other. The 
relationship of two people is reflected by reachability, if the 
reachability is true, it illustrates these two have friend relation 
directly or indirectly, and they can even recommend their 
respective friends for each other, thus expand their circle of 
friends. In theoretical research of graphs, reachability is widely 
mentioned to reflect the capacity of one vertex to another. 
Therefore reachability query plays the fundamental role in 
large-scale graph analysis. However, the existing research 
about index and query are more applicable to the management 
of small and medium-scale graphs, the methods of handling 
large-scale graphs are insufficient. Whether large-scale graphs 
can be effective queried and optimized are critical to the 
management of graph databases. Meanwhile, many emerging 
areas have urgent need to handle reachability query effectively 
on graphs. Hence it has become new research hot.  

So far, except traditional query methods, reachability query 
algorithms are applied to graphs could be classified to three 
categories roughly: transitive closure [1], online index [2] and 
hop encoding [3]. 

Paper [4] proposes tree index structure which can compress 
parts of transitive closure preferably. Whereas, this method 
need precompute transitive closure of each vertex, so space 
cost is quite expensive even creating index on small-scale 
graphs. Paper [5] improves storage overhead through removing 
single-source transitive closure, but this method still need 
oversize time and space cost. Although online index can realize 
the reachability query on large-scale graphs, but it has low 
query efficiency and poor reliability. Paper [6] proposes 
GRIPP, which needs little extra work during the process of 
query that increases response time of query immensely. Paper 
[7] proposes a reachability index (GRALL) on directed graphs, 
and this method is suitable for large-scale graphs, whereas 
interval inclusion relation is the need not sufficient condition 
for reachability, that influences reliability of reachability query 
seriously. Paper [8] proposes a 3-hop index strategy, and it has 
compressed index space and reduced the index creation time, 
whereas its extensibility is poor. 
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 To sum up, existing reachability query index mechanism   
on large-scale graphs presents the following problems:  
expensive storage overhead, too long index creation time and 
low query efficiency. To solve the above problems, this paper 
proposes an index method based on graph stratification, it 
decomposes large-scale DAG to create reasonable label 
indexes for different types of vertexes to realize effective and 
efficient query. Meanwhile we propose two reachability query 
methods according to the types of vertexes so as to reduce the 
query response time further. 

The rest of the paper is organized as follows. In Section 2 
we review related work of existing reachability query. In 
Section 3 we present the index method based on graph 
stratification (GSL) in detail. We present two reachability 
query methods based on GSL in Section 4. Section 5 reports 
the experimental results and Section 6 concludes the paper. 

II. RELATED WORK 
At present, the existing reachability query on small and 

medium-scale graphs could mainly divided into several 
categories as follows: chain-decomposition, tree cover, path 
tree and hop encoding. 

Reachability query based on chain-decomposition mainly 
applies path decomposition to improve computing efficiency of 
transitive closure and reduce its storage space. Chen Y et.al [9] 
propose an algorithm based on chain-decomposition that its 

time complexity is
2( )O n bn b+ , thereinto n is the amount 

of vertexes, and b is the depth of DAG. This method uses a 
mass of virtual vertexes to create chain structure that leads to 
oversize storage cost and needs large volume of memory 
support. With the decomposing of DAG, these neighbor 
vertexes will be assigned into different chains arbitrarily that 
will significantly affect the compression ratio of graphs and 
cause more expensive storage cost. Hence methods based on 
chain-decomposition are not suitable for large-scale graphs. 

There are some other methods are based on the thought of 
tree cover.  These methods transform a graph to a spanning 
tree, then utilize parent-child relationship of the spanning tree 
to allocate interval label for each vertex. Making use of 
inclusion relation of interval labels, reachability query can be 
realized. Paper [10] proposes interval-based method, which 
creates a mass of virtual coding that will lead to too long index 
creation time so that it cannot satisfy the reachability 
requirement of large-scale graphs. 

Based on the thought of path tree, paper [11] proposes a 
novel efficient reachability query method on medium-scale 
graphs. The method partitions the original graph into several 
small-scale subgraphs, and then creates a ternary reachability 
label y for each vertex of the graph to identify the reachability 
between vertexes. Ruoming Jin et.al[12] propose a path-tree 
reachability query algorithm. Path-tree tries to find the most 
eclectic size of labels to reduce index storage cost. 

With the advent of big data era, in recent years, many 
reachability query methods on large-scale graphs are proposed 
one after another, they mainly execute the query through online 
query [13]. For example, Hilmi Yildirim et.al first propose 

GRALL [14, 15] which supports online query. This method 
creates multiple reachability interval labels for each vertex 
based on the thought of random interval reachability index 
label, and through judging the relationship of interval labels, 
unreachable vertexes will be pruned. We can see that GRALL 
is more suitable for identifying the negative query between 
vertexes (unreachability), but for solving practical query paths 
between vertexes is still the bottleneck which is difficult to 
break through. Ruoming Jin et.al propose a novel reachability 
query frame named SCARAB [16]. It not only could make the 
reachability index extensible, but also accelerate online 
reachability query, so it is more suitable for large-scale graphs. 
But this method is not suitable for reachability query of 
dynamic graphs and the cases that query conditions are 
restricted. For finding better solution to positive query (i.e., 
directly identify reachability between vertexes), Stephan 
Seufert et al propose a reachability index method named 
FERRARI [17] which has adaptability, the primary innovation of 
this method is to set the range of spatial domain and two kinds 
of interval labels. Through two kinds of interval labels, it can 
optimize GRALL index structure, so as to query large-scale 
graphs more efficiently. Though it can identify reachability 
quickly through the two interval labels, but it is equivalent to 
create double interval labels for each vertex that leads to 
enormous increase of index creation cost, and the space 
complexity of index is O (n2) in the best case. 

Through the analysis of above methods, we can see the 
existing methods mostly are not suitable for large-scale graphs, 
and there are some problems such as oversize storage cost, too 
long index creation time and low query efficiency. It also 
provide direction for our research, in this paper we try to 
propose a method which can both reduce index creation time or 
index cost and proceed reachability query efficiently on large-
scale graphs. 

III. A LABELING INDEX METHOD BASED ON GRAPH 
STRATIFICATION 

In this paper we mainly research reachability query on 
large-scale directed acyclic graphs (DAG). Because large-scale 
graphs often have thousands of vertexes, so we propose a 
labeling index method based on graph stratification named 
GSL, it transforms a large-scale DAG into a kind of chain 
structure which can represent reachability relationship between 
vertexes, and then creates reachability labels for each vertex on 
chains. GSL first applies graph stratification into the 
preprocessing stage, and decomposes the original graph into 
the chain structure utilizing the maximum matching graph of 
the bipartite graph. Then on the basis of generated chain 
structure, it creates independent reachability labels for vertexes 
on each chain by hierarchy. It creates relational reachability 
labels for vertexes on different chains according to the mutual 
relation between vertexes. Then the reachability relations 
between vertexes are preserved completely, and it can 
efficiently response reachability query in linear time. 

A. Graph Stratification 
Definition 1(Graph stratification): G=(V,E) represent  a 

DAG ,The stratification of G is the decomposition of V into 
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one or more subsets V1,V2….Vh( i.e. 1 2 ... hV V V V= ∪ ∪ ), 
and subnodes of each vertex in Vi only appear in 

( )1 1.., ., 2 , ,iV V i h− = … , where h is the length of the longest 
path in G, i.e., the number of layers after stratification. 

The common symbols and descriptions are listed in table I. 

TABLE I.  SYMBOLS AND DESCRIPTIONS 

symb
ols 

descriptions 

G DAG 
V1,V2,...,Vh Subsets of vertex sets  after strtification 
Level(v)=i Vertex v’s layer number in Vi is i 
Cj(v) (j < i) The set that v points to and these subnodes belong to subsets Vj 
G1 / G2 Subgraph that G1 cuts out  edges of G2 
G1 G2 Subgraph that adds edges of G1 and G2 

v, u  The edge from v to u 
d(v) Outdegree of v 

The stratification method in this paper first finds all 
vertexes at the lowest layer, i.e., the vertexes that the outdegree 
are 0; Secondly it finds parent vertexes linking to these bottom 
vertexes, and judges whether other child vertexes of these 
parent vertexes belong to the lowest layer vertex sets, then gets 
the subnode sets of second layer; After that, it partitions large-
scale directed acyclic graphs by iteration. The method of graph 
stratification is presented in Algorithm 1. 

Algorithm 1: Graph Stratification 

Input DAG G 
Output results of graph stratification 
(1) V1 := all edges that its outdegree is 0; 
(2) for i = 1 to h-1 do 
(3) { T := all the vertexes which have one least child in Vi; 
(4) for each vertex v in T do 
(5) { let v1, ..., vk be v’s children and storage in Vi; 
(6) Ci(v) := {links to v1, ..., vk}; 
(7) if d(v) > k then remove v from T; 
(8) G := G/{(v, v1), ..., (v, vk)}; 
(9) d(v) := d(v) - k; 
(10) end if 
(11) } 
(12) Vi+1 := T; 
(13) end for} 

Known from the above algorithm, we can see that the 
features of vertexes generated by graph stratification method as 
follows: (1) The vertexes are mutual independence and cannot 
reach each other at the same layer; (2) The vertexes in i layer 
only point to the vertex in the next layer or the vertex which the 
layer number is less than i. And the vertexes at any layer 
cannot reach vertexes at their upper layer. 

                

Fig. 1.     DAG G                          Fig. 2.The result of G stratification 

As an example, in Fig.1, there are 9 vertexes in G. Fig.2 
presents the stratification result by the above algorithm, the 
figure only shows the stratification result of vertexes. The 
vertexes in Fig.1 are divided into 4 layers: V1={4,5,9}, 
V2={3,8} V3={2,7} and V4={1,6}. We can see that, for the 
vertexes at each layer, their pointing vertexes are all allocated 
to other layers. 

B. Creating Maximum Matching Graph 
Generating independent layers of vertex sets through graph 

stratification, and any two vertex sets have not intersection. 
Then it links vertexes of different layers based on maximum 
matching graph of bipartite graphs to generate a cluster of 
disjoint chains, so it convenient for creating  reachability labels 
and compressing transitive closure. 

Definition 2.2(Bipartite graph): Given an undirected graph 
G(V,E),  its vertex sets can be divided into two subsets P and Q, 
and it meets two conditions:(1) V=P Q; (2) P�Q=� 

,u v E∀ ∈  u P v Q 

If a graph meets above conditions, it is bipartite graph, 
represented by G (P, Q, E). 

Definition  2.3(Matching): For a bipartite graph G, X is  a 
subgraph of G, if any two edges in the edge sets of X do not 
connect to the same vertex, then it will be named a matching of 
the bipartite graph. The subgraph with the most edges is called 
the maximum matching subgraph. 

The main idea of creating maximum matching graph is as 
follows: first to get the maximum matching graph, it regards 
the vertex sets in the lowest two layers as two subsets of the 
bipartite graph. And then the generated maximum matching 
graph is combined with the vertex set in the third layer into a 
new bipartite graph, and continues getting the second 
maximum matching graph, by this analogy. Finally merging all 
generated maximum matching graphs to get the maximum 
matching graph of the original graph, the generated structure 
contains n disjoint chains and the information of all vertexes 
and edges on the original graph. The process of creating 
maximum matching graph need virtual vertexes [18], but these 
vertexes don’t participate creating reachability labels, so it 
won’t occupy any index storage space, it only affects a little 
index creation time. The method of creating maximum 
matching graph is shown in Algorithm 2. 

Algorithm 2: Creating Maximum Matching Graph 
input result of stratification of G 
output the maximum matching  
(1) find M1 of G(V2, V1: C1); M1’:= M1; V1’:= V1; C1 := C1; 
(2) for i = 2 to h - 1 do 
(3) { construct virtual vertexes for Vi according to Mi-1; 
(4) let U be the set of the virtual vertexes added into Vi; 
(5) let W be the newly generated edges incident to the new 

vertexes in Vi 
(6) let W’ be a subset of W, containing the edges from Vi+1 

to U; 
(7) Vi’ := Vi U; Ci’ := Ci W’; 
(8) find a maximum matching Mi’

 of G(Vi+1, Vi’; Ci’); 
(9) } 
(10) end for 
(11) return M1’ M2’ … Mh-1’. 
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C. Generating Reachability Labels 
If large-scale graphs aren’t decomposed, their transitive 

closure is tremendous. Whereas this paper decomposes the 
original graph into a cluster of disjoint chains through 
stratification and generating maximum matching graph of 
bipartite graphs, and the generated chains contain all 
information about vertexes and edges. Because the graphs in 
this paper are presented by chain structure, each vertex just 
exists in one chain, so as to better create reachability labels. 
The paper sets two kinds of reachability labels: chain-in label 
and chain-out label according to the location on chains and 
relatedness between vertexes. 

We can see that each vertex has one and only one chain-
in label, because each vertex just exist in one chain; 
Secondly according to the thought of stratification, the 
bottom vertexes in each chain (i.e., the vertex which the 
outdegree is 0) haven’t chain-out labels, and the vertex in 
non-bottom chains has least one chain-out label. In this 
process, the reachability information of any edge could be 
preserved essentially, and its time complexity could be 
minimized to O (nh2), where n is the amount of vertexes, 
and h is the amount of chains. 

For example, we still take Fig.1 creating reachability labels 
for all vertexes in the new chains by the above mentioned 
algorithm. The result is shown in Fig. 3. 

 

Fig.3.Result of creating reachability label 

IV. REACHABILITY QUERY BASED ON THE GSL 
In allusion to the chain-in label and chain-out label, this 

section will propose Chain-in Reachability Query (CIRQ) 
method and Chain-Out Reachability Query (CORQ) method. 

A. Chain-in Reachability Query 
For the reachability query of two vertexes u and v, we need 

compare the chain numbers of vertex u and v, if the chain 
number of vertex u equals vertex v’s, we know that two 
vertexes exist in the same chain, chain-in reachability query 
can be proceeded directly.  

In this paper, the graph stratification of DAG is bottom-up 
on the basis of the reachability relation between vertexes, that 
is to say lower layer vertexes cannot reach upper layer vertexes. 
Therefore, if two vertexes are in the same chain, the 
reachability of vertexes can be determined just by the layer 
number. It is not necessary to compare the chain-out label of 
two vertexes. In other words, in the case of the reachability 
query of vertexes that are in the same chain, moreover the 
amount of vertexes in the chain is oversize, and the CIRQ can 
finish the judgment just by once reachability query. Hence, the 

time complexity of CIRQ is O (1). It will reduce the time of 
reachability query enormously and increase the efficiency of 
reachability query effectually. 

B. Chain-out Reachability Query 
For two vertexes that the chain numbers are unequal, this 

paper proposes Chain-out Reachability Query (CORQ) 
method, the concrete operations as follows: 

First, comparing the chain numbers iu and iv of vertex u and 
v (assume the labels of vertex u and v are (iu, ju), (iv, jv)).if iu
iv, then it illustrates that the vertex u and v are not in the same 
chain, chain-out reachability query is needed. 

Secondly, comparing the containment of chain-in labels 
(iu,ju), (iv,jv) and chain-out labels {(iu,vu), (ju,wu)},{(iv,vv), 
(jv,wv)}. If one chain-out label of vertex u contains the chain-in 
label of vertex v, then it illustrates vertex u and v are reachable; 
If anyone chain-out label of vertex u doesn’t contain the chain-
in label of vertex v, then it illustrates vertex u and v aren’t 
reachable.  

It is known by the character of the maximum matching 
graph, the maximal length of each chain is k that is to say after 
graph stratification, the maximal number of stratification is k. 
And then it is known that for each vertex on the graph, the 
maximal number of the chain-out label is (k-1)(n-1),n is the 
number of chain-in the maximum matching graph. In the other 
words, the chain-out reachability query of two vertexes that in 
different chains need the judgment of containment at most (k-
1)(n-1). Hence, the time complexity of CORQ is O (kn). 

V. EXPERIMENTAL EVALUATION 
We present the evaluation results of reachability query 

method based on GSL in this section. In terms of execution 
efficiency and performance, we compare our method with 
other existing reachability query methods of DAG, such as 
Optimal-chain, Dual-Labeling, 2-Hop, Tree-Path and 
FERRARI. We compare the index creation time, storage 
overhead and reachability query time on the different data 
volume levels, and analyze the experimental results. 

A. Experiment Environment 
The experiments are evaluated on a commodity computer 

which has two Intel Core2 T6400@2.00GHz CPUs, 4GB 
memory and 1TB hard disk. It can process large-scale DAG 
graph datasets that are set in this paper. The operation system is 
Windows 7 Ultimate (32 bit/SP1). Visual Studio2012 is 
installed on the computer, and all the algorithms are 
implemented in java. 

B. Datasets 
We conduct our experiments on simulated datasets and 

real-world datasets [21, 22], whose statistics are described in table 
II. However, simulated datasets and large-scale DAG graph are 
generated by Scale-Free Model [20] and Gtgraph [21] randomly. 
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TABLE II.  BASIC INFORMATION OF REAL-WORLD DATASETS 

Dataset #vertexes #edges

Wiki 478467 889361 
EuAll 578042 1870425 
Facebook 489214 1092482 
Google 842371 4329532 

C. Experiment Results Analysis 
In this paper, our experiments are evaluation through two 

aspects. On the one hand we verify whether the index creation 
time and storage overhead for large-scale DAG with GSL 
method are reasonable. On the other hand we verify whether 
the methods we propose can realize the reachability query 
between vertexes on the large-scale DAG.    

Experiment 1: Simulated sparse graph experiment 

Table III lists the comparison of index creation time and 
storage overhead on sparse graph with GSL method and other 
five methods.  It is observed that GSL and Tree-path method 
have more obvious advantage in index creation time. GSL 
method transforms the large-scale DAG into a chain, 
distributes the relational vertexes and edges in the same chain, 
and then that is convenient to create the effective index for 
each vertex on the graph. On the aspect of storage overhead, 
GSL method is not optimal, but comparing with 2-Hop 
method, the occupied storage space is much less. 

TABLE III.  TIME OF INDEX CREATION AND STORAGE OVERHEAD ON 
SPARSE GRAPH 

Method Index creation time(s) Storage overhead(16bits)

Optimal-chain 75.450 198273 
Dual-Labeling 53.932 420893 
2-Hop 298.357 1092482 
Tree-Path 23.345 401233 
FERRARI 40.426 163574 
GSL 28.345 468425 

Fig.4(a). shows the average running time of reachability 
query on the sparse graph with GSL method and other methods. 
It is observed that GSL method is optimal, this is because the 
large-scale graph in this paper is decomposed into the 
minimized chain structure (that is to say the owned the number 
of the chain is least), moreover vertexes with reachability 
relation are distributed in the same chain as much as possible, 
therefore it improves the query efficiency. 

Experiment 2: Simulated dense graph experiment 

Table IV lists the comparison of index creation time and 
storage overhead on dense graph with GSL method and 
Optimal-chain method, Dual-Labeling method, Tree-Path 
method and FERRARI method. Because 2-Hop method only 
compresses the transitive closure between vertexes, ignores 
labels of edges, it is not suitable for the dense graph. As shown 
in table IV, using GSL method on the dense graph is average 
level. This is because dense graph has major edges, that is to 
say there are major pairs of reachability relation between 
vertexes, and it is needed to create major chain-out labels. But 
if vertexes on the dense graph can be gathered into several 
groups nicely and the reachability relations between vertexes 
are distributed in several concentrated subgraphs, then vertexes 
on each subgraph will better exist in the same chain among 

chain structure and chain-out labels between vertexes will be 
less, so index creation time and storage overhead will be 
optimized and reachability query is more efficient. 

TABLE IV.  TIME OF INDEX CREATION AND STORAGE OVERHEAD ON 
DENSE GRAPH 

Method Index creation time(s) Storage overhead(16bits)

Optimal-chain 223.921 406698 
Dual-Labeling 2083.341 980642 
Tree-Path 94.019 174804 
FERRARI 1763.01 372821 
GSL 1437.264 680192 

Fig.4 (b) shows the comparation of reachability query on 
the dense graph with GSL method and other four methods. It is 
observed intuitively that the query performance of GSL method 
is optimal, and this is because if the query proceeds in vertexes 
that are in the same chain, the time complexity of query is O 
(1). So among the existing reachability query methods aiming 
at large-scale DAG, and the query time using the method we 
propose is minimum. 

  
(a)                                                    (b) 

Fig.4 Time of reachability query on the sparse graph 

Experiment 3: Real-world datasets experiment 

The comparison of index creation time shows in Fig.5(a), 
which is tested on real-world datasets using GSL method, 
Optimal-chain method, Dual-Labeling method, 2-Hop method, 
Tree-Path method and FERRARI method. It can be found that 
index creation time using six methods presents the trend of 
rising with the expansion of real-world datasets. 

The comparison of reachability query time on real-world 
datasets of different scale using GSL method in this paper and 
other five methods shows in Fig.5(b). When the amount of 
edges on the original graph is less, the query efficiency of six 
methods is approximate. Moreover, query time shows obvious 
change with the increase of graph scale. Therein reachability 
query time using GSL method is minimum Dual-Labeling 
and Tree-Path take second place, Optimal-chain and FERRARI 
are closely, and 2-Hop is worst. GSL method we propose has 
obvious advantage that is because when the reachability query 
is processed, if two vertexes are in the same chain, then the 
judgment of reachability can be processed through the size of 
labels. It will save query time immensely. 
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(a)                                                    (b) 

Fig.5 Time of reachability query on real-world datasets 

Synthesizing the above two sets of experiment data, we 
know that Optimal-chain, Dual-Labeling, 2-Hop and Tree-Path 
are more suitable for small-scale DAG, moreover GSL and 
FERRARI can be well applied to reachability query on large-
scale DAG, meanwhile query efficiency of GSL is optimal. 

VI. CONCLUSIONS 
We propose a labeling index method based on graph 

stratification (GSL, Graph Stratification Labeling), utilizing 
this method can create standalone chain-in reachability label 
and chain-out reachability label for each vertex effectively 
Then based on the GSL method, we propose two kinds of 
reachability query methods that use for adapting the 
requirement of reachability query on large-scale DAG. 
Through a mass of simulation experiment analysis aiming at 
different kinds of graph, it illuminates that the method we 
propose is efficient and feasible. It can increase the efficiency 
of reachability query on large-scale DAG on the premise of 
guaranteeing accuracy of reachability judging results. 
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