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Abstract—Quantum cost is the most important criteria to
evaluate reversible and quantum circuits. Also the fundamen-
tal building blocks of reversible and quantum circuits are
Multiple-Control Toffoli (MCT) gates. The synthesis of MCT
based reversible circuits are usually conducted into two steps.
First, MCT circuits are decomposed into quantum circuits
and then they are optimized using various techniques such as
template matching, moving rules to reduce the quantum cost
of reversible circuits. In this paper, we propose new techniques
to decompose the Toffoli gates, in which MCT based circuits
are mapped into a corresponding quantum realization. The
main improvement is that the resulting quantum realization
of MCT based circuits makes significantly better realization
than those achieved in the earlier approaches and further
reduction is possible using some other optimization techniques.
Experimental results show that our new techniques enable
to get sub-optimal realization of the MCT based reversible
circuits in decomposition stage and quantum cost reduction of
the reversible circuits is achieved by using that sub-optimal
realization.

Keywords-Reversible circuits; Quantum Circuits; Quantum
Cost; Toffoli Decomposition;

I. INTRODUCTION

Synthesis of reversible logic has been an active research

area since power dissipation due to the information loss

can be avoided, according to Landauer’s principle. More

recently, synthesis of quantum circuits has taken the great

attentions, motivated by the promise of exponential speed-

up in quantum computation. Now the question is how to

construct the quantum circuit and what savings can be

achieved if one compare such circuit with the circuit having

the minimal number of elementary quantum gates. Such

research have been already performed in [1]. However,

its authors apply quantum decomposition directly to 3-bit

Toffoli gates, while larger Toffoli gates are first decomposed

into an equivalent circuits built from small Toffoli gates. In

[2], a whole 4-bit reversible circuit is constructed directly

from the quantum gates. In this way they have found a

new quantum decompositions for some pairs of MCT gates.

Those pairs lead to significant savings in the number of

elementary quantum gates required for their realizations.

Many methods of reversible circuit synthesis have been

developed [3], [4]. Most of them build circuits from MCT

gates, which are then decomposed into cascades of the

elementary quantum gates. A number of papers have been

published on constructing such decompositions for any size

of the reversible gates [5], [6], [7], [8], [9], [10]. There are

also papers that focus on reducing the number of elementary

quantum gates in the given reversible or quantum circuit

[1], [10], [11], [12]. The number of elementary quantum

gates required to build the circuit is a common metric called

quantum cost (QC). One of the well known examples of

savings in quantum cost of the reversible circuit is the Peres

gate [13], [14]. Peres gate can be considered as a pair of

Toffoli and CNOT gates. The sum of quantum costs of those

two gates is 6, however the reversible function of Peres gate

can be implemented with only 4 elementary quantum gates.

Maslov [15] used a mixture of different techniques (includ-

ing MMD algorithm, Reed-Muller spectra based algorithm,

template application and resynthesis) to improve either gate

count or quantum cost which led to improving results for

some benchmarks from [16]. However, exact minimization

of QC was not the aim of this approach. Donald and

Jha [17] added a new option for optimizing QC to their

earlier algorithm. They performed similar experiments for an

extended library of gates including also SWAP, Fredkin and

Peres gates. Wille [18] formulated a synthesis problem as a

quantified Boolean formula and then solved it by applying

Binary Decision Diagrams. This enabled to find the minimal

as well as the maximal QCs for the specified number of

gates up to seven gates. Grosse [19] considered synthesis

for networks made of multiple control Toffoli gates using

SAT-like engines. Their approach to reducing quantum cost

was the same, i.e. minimization of the number of gates as the

first step and only then trying to reduce quantum cost with

the fixed gate count. Some efforts have been recently made

to reduce QCs of designs. One of the recent approaches

consists in looking for circuit realizations using quantum

elementary gates like NOT, controlled NOT, two square roots

of NOT [1], [6], [7], [20] or Hadamard gates [21]. The

paper [11] shows that significant reduction of QC can also
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be obtained without considering elementary quantum gate

library.

In this paper, we propose a new techniques to decom-

pose the Toffoli, gate in which MCT based circuits are

mapped into a corresponding quantum realization. This new

techniques give the sub-optimal realization of the MCT

based circuits compared to other existing techniques and we

show that after applying merge rules into the newly formed

quantum circuits further reduction is possible.

The paper is organized as follows. Section II recalls basic

concepts of reversible logic and quantum logic. Section

III presents the techniques to decompose the Toffoli gate

with an algorithm. Sections IV presents an algorithm to

optimize the reversible circuits in terms of quantum cost or

elementary gate count using the proposed techniques with

some examples. In Section V our experimental results are

collected and compared to known circuits from benchmark

pages and from the literature. Section VI summarizes the

paper with conclusions and suggestion for further research.

II. PRELIMINARIES

We present the basic concepts of reversible circuits and

logic operations in quantum circuits in this section.

In a binary boolean context, a reversible gate is an

elementary circuit component that realizes a bijection. To

satisfy this requirement, the function must have the same

number of inputs and outputs. A reversible function can be

realized by cascading reversible gates with fanout-free and

feedback-free realization. Many reversible gates have been

proposed and Toffoli, Peres and Fredkin are conventionally

used to synthesize reversible circuits.

In particular cascade of the generalized Multiple Control

Toffoli (MCT) gates is called an MCT based reversible

circuit. An MCT gate with no control line is called a

NOT gate, with a single control line is called a controlled-

NOT(CNOT) gate and with two control lines is the original

Toffoli gate as shown in Fig. 1.

On the other hand, the logic representation in quantum

computation is quite different from the logic representation

in classical computation. The basic unit of information in

quantum computation is a qubit represented by a state vector.

The states |0〉 or |1〉 are known as the computational basic

states. The state of an arbitrary qubit is described by the

following vector

|Ψ〉 = α |0〉+ β |1〉 =
(
α
β

)
, (1)

    (a)    (b)      (c)

Figure 1. (a) NOT, (b) CNOT, (c) Toffoli

where α and β are complex numbers which satisfy the

constraint
∣∣α2

∣∣+∣∣β2
∣∣ = 1. The measurement of qubit results

in either 0 with probability
∣∣α2

∣∣, that is, the state |0〉 =
(
1
0

)

or 1 with probability
∣∣β2

∣∣, that is, the state |1〉 =

(
0
1

)
.

Contrary, a classical bit has a state either 0 or 1, which is

analogous to the measurement of a qubit state either |0〉 or

|1〉 respectively. The main difference between bits and qubits

is that a bit can be either state 0 or 1 whereas a qubit can

be a state other than |0〉 or |1〉 according to (1).
Similarly a generalized two qubit state can be described

as

|Ψ〉 = λ1 |00〉+ λ2 |01〉+ λ3 |10〉+ λ4 |11〉 =

⎛
⎜⎜⎝
λ1

λ2

λ3

λ4

⎞
⎟⎟⎠ , (2)

where λ1λ4 = λ2λ3. If λ1λ4 �= λ2λ3 then the state |Ψ〉 is

referred to as an entangled state that is not separable as the

tensor product of two single qubit.
Many quantum gates have been defined and studied but we

concentrate on the elementary quantum gates NOT, CNOT,

Controlled-V , and Controlled-V †, also known as quantum

primitives. These gates have been widely used to synthesize

binary reversible functions.
A single-qubit NOT and CNOT (and generally every MCT

gate) are self-inverse gates. The 2-line controlled-V gate

changes the target line using the transformation defined by

the matrix V = 1+i
2

(
1 −i
−i 1

)
if the single control line

has the value 1. The 2-line controlled-V † gate changes the

target line using the transformation defined by the matrix

V † = V −1 = 1+i
2

(
1 i
i 1

)
if the single control line has

the value 1. Gates V and V † are referred to as square-

root-of-NOT gates since V 2 = (V †)2 =

(
0 1
1 0

)
and there-

fore, Controlled-V and Controlled-V † are inverse of each

other. Therefore, two adjacent identical MCT gates can be

removed, an adjacent V , V † pair (any order) with the same

target and control can be removed, two adjacent V ( or V †)
gates with the same target and control can be replaced by a

CNOT. Any one primitive among these three can be formed

by cascading the other two primitives, referred to as splitting

rules that are shown in Fig. 2 (a) and (b) respectively.

Moreover, Controlled-V and Controlled-V † can be replaced

with each other resulting in two more splitting rules shown

in Fig. 2 (c) and (d) respectively. The inverse of splitting

rules is referred to as merge rules. However, in quantum

computation, the splitting of a quantum primitives does not

increase the number of two-qubit operations.
Definition 1: The size of a circuit c is defined as the

number of its gates and denoted by |c|. The size of an NCV

circuit is also known as quantum cost.
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(c) (d)

Figure 2. Splitting and Merging rules in Quantum Primitives

The mobility of gates is determined by the moving rule that

relies on the following property [22]:

Property 1: Two adjacent gates g1 and g2 with controls c1
and c2 and targets t1 and t2 can be interchanged if c1∩t2 = ∅
and c2 ∩ t1 = ∅.

III. PROPOSED DECOMPOSITION TECHNIQUES OF

TOFFOLI GATE

Quantum cost (QC) of a quantum circuit is usually

defined by the number of quantum primitives in the quantum

circuit. There are three possible Toffoli-3 gates for 3-bit

reversible circuits and the circuit representation is shown

in Fig. 3. For each case, exactly five elementary quantum

gates are required and the circuit representation for the

decomposition of the Toffoli-3 gate varies depending on the

order of selection of the control bits. According to Lemma

6.1 in [23], the classical reversible Toffoli-3 gate has a

quantum implementation of five quantum primitives. The

realization of a Toffoli-3 gate can be used in four distinct

ways: as given, reversed, and in both those cases with the

V and V † gates interchanged. We note further that, the

right most Controlled-V gate can be move anywhere into

the circuit. Therefore, different arrangements of quantum

implementations of Toffoli-3 are shown in Fig. 4, 5 and 6

respectively, and any one of these quantum implementations

of Toffoli-3 can be used in decomposing reversible circuits

into quantum circuits without changing the functionality of

reversible circuits.

Decomposition of Toffoli gate in MCT based reversible

circuit has a significant role to optimize the reversible circuit.

The decomposition of Toffoli-3 and n-bit Toffoli network

has been studied for decades. But there is no clear direction

and specification for the better realization of decomposition

of Toffoli gate when the MCT based circuit is decomposed

into quantum circuit. Interestingly, it has significant impact

into the MCT based circuit to reduce the quantum cost

 

x 1
 

x 2
 

x 3

TOF
1,2,3
3

TOF
2,3,1
3TOF

1,3,2
3

Figure 3. Three possible Toffoli-3 gate representation for 3-bit reversible
circuit
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Figure 4. Decomposition of TOF 3
1,2,3 when (a) first controller is x1 and

second controller is x2, and (b) first controller is x2 and second controller
is x1.
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Figure 5. Decomposition of TOF 3
1,3,2 when (a) first controller is x1 and

second controller is x3, and (b) first controller is x3 and second controller
is x1.
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Figure 6. Decomposition of TOF 3
3,2,1 when (a) first controller is x2 and

second controller is x3, and (b) first controller is x3 and second controller
is x2.

of the reversible circuit. Here we propose an algorithm to

decompose the Toffoli gate which shows the reduction of

quantum cost of the reversible circuit. Fig. 7 shows the six

possible CNOT gates for 3-bit reversible circuits.

As we shown that three possible Toffoli gates for 3-bit

reversible circuits can be realized into two different ways.

Choosing the optimal representation for each Toffoli gate in

the MCT based circuit depends on its adjacent gates. Table

I shows the best ways for decomposing the Toffoli gate with

minimal quantum cost depending on the adjacent gates into

MCT based circuits. If we apply this circuit decomposition

depending on its adjacent gates in the MCT based circuit, it

will provide sub-optimal representation for the circuit. The

Figure 7. Six possible CNOT gate representation for 3-bit reversible circuit

6161



algorithm to decompose the Toffoli gate is as follows.

1: procedure TOFFOLI GATE DECOMPOSITION ALGORITHM: �
Input: TR is the set of all possible realization of Toffoli gate
and CNT is the set of all possible realization of CNOT gate.

� Output: OptReal is the set
of all optimized realization of Toffoli gates depending on its
adjacent gates and OptCost is corresponding new quantum
cost.

2: var OptReal← ∅, OptCost← 0 ; � Initialize all the
possible realization of toffoli gate

3: var M ← length(TR), N ← length(CNT );
4: for i← 1toM do
5: for j ← 1toN do
6: for k ← 1to all possible realization of TR[i]

do
7: if Is Optimized Realization? then �

We consider minimum number elementary gates required to
the quantum representation as optimized circuit

8: Update OptReal and OptCost
9: end if

10: end for
11: end for
12: for x← 1toM do
13: if TR[i] �= TR[x] then
14: Do nothing
15: else if Is Optimized Realization? then
16: Update OptReal and OptCost
17: end if
18: end for
19: end for
20: end procedure
Remark : In Table I CNOT is denoted by CN for convenience.

IV. QUANTUM COST REDUCTION USING PROPOSED

TOFFOLI DECOMPOSITION

This section describes how to decompose the Toffoli-

3 gates to reduce the quantum cost of reversible circuits

using the new techniques. For circuit optimization we apply

our new gate library and new techniques to decompose the

Toffoli gate in the MCT based circuit depending on its

adjacent gate. For some cases, we need to realize the Toffoli

gate with interchanging V and V+ gates.

Consider the function 4mod5 v0 18 (taken from the

RevLib [24]). Its MCT realization with quantum cost 25

are shown in Fig. 8(a) and the decomposition of Toffoli-3

depending on its adjacent gates is shown in Fig. 8(b). We

can apply moving rules and reorder the obtained circuit in

Fig. 8(c). Gates 1 and 4 form a new two-qubit gate and

gates 2 and 13 form another new two-qubit gate. Gates 7

and 8, 11 and 12, and 15 and 16 will be deleted according

to deletion rule. The cost of the circuit is reduced by 14.

That is, the total quantum cost of the circuit after applying

gate library and the new techniques of decomposition is 11,

whereas paper [25] found quantum cost of 17 for the same

circuit.

The following example shows what is the impact to

decompose the Toffoli gates depending on the order of

selection of the control bits and the new techniques to

Table I
NEW CIRCUIT DECOMPOSITION OF TOFFOLI GATE DEPENDING ON

ADJACENT GATES

Gate Adjacent
Gate

New Circuit Decomposition New
QC

TOF 3
a,b,c CNa,b Vb,cCNa,bV

†
b,cVa,c 4

TOF 3
a,b,c CNa,c Vb,cCNa,bV

†
b,cCNa,bV

†
a,c 5

TOF 3
a,b,c CNb,c Va,cCNa,bV

†
b,cCNa,bV

†
b,c 5

TOF 3
a,b,c CNb,a Va,cCNb,aV

†
a,cVb,c 4

TOF 3
a,b,c CNc,a Vb,cCNa,bV

†
b,cCNa,b[Va,cCNc,a] 5

TOF 3
a,b,c CNc,b Va,cCNa,bV

†
b,cCNa,b[Vb,cCNc,b] 5

TOF 3
a,c,b CNa,b Vb,cCNa,cV

†
b,cCNa,cV

†
a,b 5

TOF 3
a,c,b CNa,c Vb,cCNa,cV

†
b,cVa,b 4

TOF 3
a,c,b CNb,c Va,bCNa,cV

†
c,bCNa,c[Vc,bCNb,c] 5

TOF 3
a,c,b CNb,a Vb,cCNa,cV

†
b,cCNa,c[Va,bCNb,a] 5

TOF 3
a,c,b CNc,a Va,bCNc,aV

†
a,bVc,b 4

TOF 3
a,c,b CNc,b Va,bCNa,cV

†
b,aCNa,cV

†
c,b 5

TOF 3
b,c,a CNa,b Vc,aCNc,bV

†
b,aCNc,b[Vb,aCNa,b] 5

TOF 3
b,c,a CNa,c Vb,aCNc,bV

†
b,aCNc,b[Vc,aCNa,c] 5

TOF 3
b,c,a CNb,c Vc,aCNc,bV

†
c,aVb,a 4

TOF 3
b,c,a CNb,a Vc,aCNc,bV

†
b,aCNc,bV

†
b,a 5

TOF 3
b,c,a CNc,a Vb,aCNc,bV

†
b,aCNc,bV

†
c,a 5

TOF 3
b,c,a CNc,b Vb,aCNc,bV

†
b,aVc,a 4

TOF 3
a,b,c TOF 3

a,c,b Vb,cVa,cCNa,b[V
†
b,cVc,b]V

†
a,bCNa,c

V †
c,bCNa,c

8

TOF 3
a,b,c TOF 3

b,c,a Va,cVb,cCNb,a[V
†
a,cVc,a]V

†
b,aCNc,b

V †
b,aCNc,b

8

TOF 3
a,c,b TOF 3

b,c,a Vc,bVa,bCNc,a[V
†
a,bVb,a]V

†
c,aCNb,c

V †
c,aCNb,c

8

TOF 3
a,c,b TOF 3

a,b,c V †
c,bCNc,aVa,b[CNc,aVa,c]Va,bV

†
b,c

CNa,bVb,c

8

TOF 3
b,c,a TOF 3

a,b,c Vc,aVb,aCNb,c[V
†
c,aVa,c]V

†
b,cCNa,b

V †
b,cCNa,b

8

TOF 3
b,c,a TOF 3

a,c,b Vb,aVc,aCNc,b[V
†
b,aVa,b]V

†
c,bCNc,a

V †
a,bCNc,a

8

decompose the Toffoli gate in the MCT based circuit de-

pending on its adjacent gate. First we decomposed each

toffoli gate to obtained the optimized quantum circuit. After

that we will apply new techniques to show the efficiency

of our techniques. Consider the function ham3 102 (taken

from the RevLib [24]). The MCT realization of the func-

tion ham3 102 is shown in Fig. 9(a).Fig. 9(b) shows the

elementary quantum gate realization of the function after

decompose the TOF 3
3,2,1, in which first controller is x3 and

a

b

c

d

0

(a)

1 2

V

3 4

V

+

5 6

V

7

V

+

8 9

V

10

V

+

11

V

12 13

V

+

14

V

15

V

+

16 17

V

18

V

+

19

(b)

1 4

V

3

V

+

5 6

V

7

V

+

8 9

V

10

V

+

11

V

12 2 13

V

+

14

V

15

V

+

16 17

V

18

V

+

19

(c)

Figure 8. (a) MCT representation of 4mod5 v0 18 circuit, (b) decompose
Toffoli gates depending on its adjacent gates, (c) deletion and merge rules
applied two gates after applying moving rules.
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second controller is x2. The implementation shown in Fig.

9(b) has quantum cost 9. We reorder the gates shown in Fig.

9(c) so that they can be realized into two-qubit gates in our

new quantum gate library. Gate pairs 4, 6 and 7,9 form new

two qubit gates and the cost of the circuit shown in Fig.

9(b) is reduced by 2. Using straight forward methods the

total quantum cost of the circuit in Fig. 9(c) is 7.

Now, consider the decomposition of TOF 3
3,2,1 according

to our new techniques as shown in Table III and the ele-

mentary quantum gate realization of the function ham3 102
shown in Fig. 9(d). The implementation shown in Fig. 9(d)

has quantum cost 7, which is already lower than Fig. 9(b).

After that we reorder the gates of Fig. 9(d) for further

reduction. We reorder in that way, so that they can be also

realized into two qubit gates in our new quantum gate library.

The new obtained quantum circuit after reordering gates is

shown in Fig. 9(e). Gates 4 and 6 form another new two

qubit gate as well as gates 5 and 7 form a further one. The

cost of the circuit is reduced by 4. That is, the total quantum

cost of the circuit in Fig. 9(e) is 5, which is lower than shown

in Fig. 9(c).

From the above two examples, we can say that the

decomposition of the Toffoli gate in MCT based reversible

circuit can play a very important role such as reducing the

quantum cost of the reversible circuit. The algorithm for

circuit optimization is as follows.

1: procedure CIRCUIT-OPTIMIZATION ALGORITHM:
2: Decompose the Toffoli gates.
3: Apply moving rules and find out the following rules to

reduce the quantum cost.
4: Apply Deletion Rule: If two adjacent gates are identity

then delete two gates.
5: Apply Merge Rule: If two adjacent gates can merged then

replace into a single one.
6: Apply Gate Library: Create the sequences of gates which

match with the new two-qubit gate library.
7: end procedure

After decomposing the Toffoli gate according to new

techniques, we use the moving rule with the adjacent gate

to create sequences of two qubit gates that operate on the

same two qubit lines. Two adjacent gates g1 and g2 with

x

x

x1

2

3

+

V

1 2 4

V

5 6 7 8 9

V

3

+

V

1 2

V

3

+

V

5 4 6 8 7 9

(a) (b) (c)

V

1 2

V

+

3

V

4 5 6 7

V

1 2

V

+

3

V

4 6 5 7

(d) (e)

Figure 9. (a) ham3 102 circuit, (b) decompose Toffoli gate when first
controller is x3 and second controller is x2, (c) merge two gates into one
after applying moving rules, (d) decompose Toffoli gate depending on its
adjacent gate, (e) merge gates after applying moving rules.

controls c1 and c2 and targets t1 and t2 can be interchanged

if c1∩ t2 = ∅ and c2∩ t1 = ∅. These sequences of two qubit

gates can be deleted if they are identity, and can be merged

into a single one according to the new two-qubit gate library.

V. EXPERIMENTAL RESULTS

We used Lemma 6.1 in [23], decomposition method to

decompose the reversible circuit into quantum circuits using

only quantum primitives. Using MATLAB, we wrote a pro-

gram to get new decomposition circuit for the decomposition

of Toffoli gate in the MCT based circuits depending on

its adjacent gates. We used reversible circuits with MCT

gates reported in RevLib [24] to verify the power of our

new techniques. After the decomposition of Toffoli gate

considering both two ways, the moving rule was used to

reduce the quantum costs of reversible circuits. We showed

in the previous section with example that how the new

techniques of decomposing the Toffoli gates can further

reduce the quantum cost of the reversible circuits. The results

are shown in Table II. Columns 2 and 3 represent the number

of MCT gates and lines in the original circuits needed to

decompose the circuit into quantum circuits respectively.

Columns 4, 5 and 6 show the number of elementary

quantum gates required in the original MCT circuits before

optimization, in paper [25] and after optimization for the

quantum implementation of reversible circuits respectively

for benchmark functions reported in RevLib [24].

VI. CONCLUSIONS

New decomposition techniques of Toffoli gate in MCT

based circuit have been proposed that play a significant role

in reducing quantum costs of reversible circuits. Proposed

techniques for decomposing the Toffoli gate depend on

its adjacent gate and the order of selection of the control

Table II
QUANTUM COST REDUCTION OF REVLIB BENCHMARK CIRCUITS

Benchmark Lines Gates QC QC QC
[1] [12] [This Work]

3 17 1 3 6 14 9 8

4mod5-V0 18 5 9 25 17 11

3 17 14 3 6 14 10 9

mod5d2 70 5 8 16 12 11

4gt11 83 5 8 12 9 8

rd32-V1 68 4 5 13 10 9

alu-V3 34 5 7 19 15 14

alu-V1 28 5 7 15 12 11

4mod5-V1 23 5 8 24 20 19

rd32-V0 66 4 4 12 10 8

decod24-enable 125 6 9 21 18 17

4gt11-V1 85 5 4 8 7 6

4mod5-V0 20 5 5 9 8 6

ham3 102 3 5 9 8 5

toffoli double 4 4 2 10 9 8

one-two-three-V2 101 5 8 24 22 21

mod5mils 65 5 5 13 12 10

mod5mils 71 5 5 13 12 10

hwb4 52 4 11 23 23 22

peres 9 3 2 6 6 4
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bits. The main improvement of this new techniques is that

the resulting quantum realization of MCT based circuits is

significantly better than those achieved in the earlier ap-

proaches when MCT based reversible circuits is decomposed

into quantum realization. The experimental results show

the efficiency of the new decomposition techniques. Still

there is enough room to improve this techniques for further

development in the area of reversible logic and quantum

logic. Limited interaction distance between gate qubits is

one of the most common limitations of the current tech-

nologies. For example, trapped ions, liquid nuclear magnetic

resonance (NMR), and the original Kane model have been

designed based on the interactions between linear nearest

neighbor (LNN) qubits. Our next aim is to develop an

algorithm for n*n-input reversible circuits and transform

the optimized quantum circuits into LNN architecture for

physical developments of this emerging technology.
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