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Abstract—Searching for similar entities within a database is a 
common and a daily, billions of times, performed task. Generally, 
similarities are calculated using common distance measures like 
Manhatten, Euclidian, Levenshtein, Mahalanobis or Dynamic 
Time Warping (DTW). In this paper, we present a similarity 
measure for time interval data, which allows searching for similar 
sets of time interval records bounded by a time window (e.g., a day, 
a week, or a month). We introduce three different groups of 
distance measures i.e., temporal order, temporal measure, and 
temporal relation distances. In addition, we present bitmap-based 
implementations for algorithms of each of the three types. We 
designed our solutions to perform well on large datasets and 
support distributed calculations. Evaluations show the out-
standing performance regarding other interval related similarity 
measures, i.e., ARTEMIS and IBSM.  

Keywords—Similarity Search, Time Interval Data Analysis, 
Time Series, k-nearest-neighbors 

I. INTRODUCTION AND MOTIVATION 

The utilization of similarity measures within large data sets 
is a common task in the field of knowledge discovery. Especially 
when applying categorization or clustering algorithms, a 
similarity measure is of great importance to determine the 
distance between different entities and thereby to categorize 
entities or to determine a cluster belonging. Over the last years, 
several similarity measures in various fields and for different 
types of entities have been proposed, e.g., text, sequences, time 
series, audio, or ontologies [1–5]. 

In this paper, we introduce a similarity measure for bounded 
time interval data sets (bounded TIDASETS). Thereby, a bounded 
TIDASET is a set of multiple labeled time intervals bounded to a 
specified time window, e.g. a day, a month, or any range tw = [t1, 
t2] with t1 < t2. Fig. 1 exemplifies a bounded TIDASET using a 

time window based on the time unit day. In addition, the figure 
illustrates the idea behind the utilization of a similarity measure. 
Given a query TIDASET of a day, the goal of the similarity search 
is to determine similar days stored in the underlying time 
interval database (i.e., 2015-12-07). This enables analyst to get 
answer to query like “Find the most common days to yesterday 
regarding the utilization of our resources”. Such query, is one 
example for similarity related queries, that are daily formulated 
in several industrial areas like production, aviation, logistics, 
call centers or gastronomy [6, 7]. As we will show, the definition 
of “common” regarding time interval data is not trivial. First, it 
can be based on simple counts [7, 8] (e.g., five resources were 
used in the last hour). Second, it can be based on a measure [8] 
(e.g., the average income for each minute within the last hour 
was 52.17 $), or third it can be based on the order of the intervals 
[9–11] (e.g., the intervals are all following each other). 
Supporting these kinds of calculations, we introduce three 
different types of distance measures, namely temporal order, 
temporal measure, and temporal relation distance (cf. Fig. 1 

Fig. 1.  A daily bounded TIDASET (top) and its most similar daily bounded 

TIDASETS (bottom), one for each type different distance type. 
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shows a most similar result for each of the mentioned types). In 
addition, depending on the specified range, we discuss the 
matching between different TIDASETS (e.g. comparing January 
with February). We further present possible solutions for such 
matching problems. 

Summarized, the paper is organized as follows: Section II 
introduces the problem of finding similar bounded TIDASETS

within a time interval database, accordingly. In section III we 
present the related work regarding time interval data and 
similarity. Furthermore, in section IV, we discuss the matching 
problem and present a solution utilizing mapping functions. In 
section V different distance measures, a weighted combination, 
performance improvements utilizing pruning techniques, as well 
as a distributed calculation for large databases of time interval 
data are presented. Section VI shows experimental results 
regarding the performance on different sized databases, different 
partitions, and weighted combinations. Last, the results 
presented in this paper are summarized in section VII. 

II. PROBLEM STATEMENT 

Assuming we have a time axis � and a time interval database 
� (cf. [6]). The time axis � specifies the beginning and end of 
time regarding the time interval database, i.e., the valid time 
points of the database as totally ordered set, ��:= {t1, …, tn}. Each 

record � stored in the database (i.e., � � �) consists of at least 
two fields, representing the start and the end, so that each 
representing a time point on � ��������������	�
���Thereby, we 
denote the start field of the record � by �start, and respectively the 
end field by �end. Additionally, each record may have one or 
multiple descriptive values, associating additional information 
to the interval, e.g., a person’s name annotating the task 
performed during the interval, or a list of words said within the 
time interval. The associated information is assumed valid 
during the interval defined by [�start, �end]. 

We define a TIDASET as a filtered subset of records stored in 

the database and denote it by � (i.e., � � �). The term filtered 
states that there is a logical clause specifying which records are 
elements of �, e.g., person = “Diane”. Furthermore, we define a 
bounded TIDASET ��s, e], with s and e being time points on � and 

s < e, as a filtered subset of � so that for all � � ��s, e]: �start 	 e 
and pend � s. Further, we refer to the interval [s, e] as the time 
window of a bounded TIDASET. 

Example: Fig. 2 exemplifies a database � with eight records. 
Each record has two descriptive information associated. The 
first one defines the type of a task (i.e., A or B) performed within 
the interval, whereby the second defines the amount of resources 
utilized to perform the task. The illustration uses the time axis 

� := {2015-12-01 00:00, …, 2015-12-31 23:59} 

(i.e., the time axis contains all the minutes of December 2015). 
Using the depicted database, the following exemplified bounded 
TIDASETS  are valid: 

��2015-12-01 00:00, 2015-12-01 23:59] = {} 
��2015-12-03 00:00, 2015-12-03 23:59] = {ID: 1} 
��2015-12-21 00:00, 2015-12-21 23:59] = {ID: 6, ID: 7} 

Based on the definitions of a time interval database �, a 
bounded TIDASET ��s, e], and a time axis �, we define �� as a 

partition of � so that [s, e] � �� and � is split into subsets keeping 
the total order, i.e., �� := {[t1, tx], [tx+1, ty], …, [tz, tn]}. Thereby, 
a logical time unit (e.g., a day, a month, or a week) may define 
the partition. 

Example: Using the time axis shown in Fig. 2 a valid 
partition of the time axis, using logical time units, could be: 

	 a daily partition:  

�� := {[2015-12-01 00:00, 2015-12-01 23:59], 
            [2015-12-02 00:00, 2015-12-02 23:59],  
                                        …,  
            [2015-12-31 00:00, 2015-12-31 23:59]} 

	 a hourly partition:  

�� := {[2015-12-01 00:00, 2015-12-01 00:59],  
            [2015-12-01 01:00, 2015-12-01 01:59],  
                                        …,  
            [2015-12-31 23:00, 2015-12-31 23:59]} 

Given a time interval database �, a bounded TIDASET ��s, e], 
a time axis �, and a partition ��, the problem of searching for 
the k most similar bounded TIDASETS is to find k entities �
 with 


 � �� \ [s, e], so that the dist(��s, e], �
) is minimal. 

Thereby, dist is the distance function (i.e., a similarity 
measure). Regarding the utilized distance function, we introduce 
three different types: temporal order, temporal measure and 
temporal relation distance. Each of these types cover a different 
aspect of similarity when dealing with interval data. Fig. 3 
illustrates the different types and aspects. The figure shows a 
similar example for each of type and gives a short explanation: 

Fig. 2.  A sample database � containing eight time interval records, each
associated with the amount of resources utilized to perform the task

and the type of task. 

Fig. 3.  Illustration of the three different types of distances. For each distance,
we present an example showing equality, as well as a visual or textual

explanation. 
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	 A temporal order distance (cf. [8, 12]) is based on the amount 
of intervals being active at a specific time point (i.e., the 
record’s interval includes the time point). In the example, 
both sets are assumed equal because the count of active 
intervals is equal in each time point. The line chart on the left 
illustrates this equality.  

	 A temporal relation distance (cf. [9, 11]) is based on the 
relations between the different intervals of a set. The 
example shows an implementation, which transforms each 
set into a feature vector (cf. section V). In the example, the 
sets are assumed equal, because the resulting feature vector 
are the same. 

	 A temporal measure distance (cf. [6, 8, 13]) is based on a 
measure (i.e., a mathematical function) which uses the fields 
of a record, temporal information, or aggregated dimensional 
values to determine a value for each time point. The distance 
aims to determine the difference between the measures 
resulting from a set of intervals. In the example, a sum 
measure is utilized and the resulting time series are equal, 
thus the sets are assumed equal. 

III. RELATED WORK 

Time interval data is in the focus of research for several 
decades. Allen [9] specified different relationship between two 
intervals, which were applied, ambiguously discussed, 
enhanced, and modified by several researches (cf. [10] for an 
overview). In addition, different mining algorithms aiming to 
discover patterns within a (time) interval database were 
presented in the past [14–19]. 

Kostakis et al. [11] and Kotsifakos et al. [12] presented three 
different approaches, regarding the similarity between time 
interval sets, namely a DTW-based approach [20], ARTEMIS 
and IBSM. The presented solutions search similar e-sequences 
within a database. They define an e-sequence (or event-
sequence) as a pre-defined set of intervals. The presented 
algorithms based on the assumption that the e-sequence, e.g., the 
set of intervals, is pre-defined and known when the sequence is 
added to the database. Regarding the introduced problem of 
searching for similar bounded TIDASETS, this assumption is not 
valid, because the user specified the set by a query. Thus, the 
similarity search has to be flexible regarding the query and result 
sets. Nevertheless, as we will show, some of the ideas introduced 
by Kostakis et al. and Kotsifakos et al. can be adapted to support 
TIDASETS.  

Recently, systems specialized to analyze time interval data 
have been published. In [8] we introduced a bitmap-based 
implementation utilizing different index techniques to increase 
the performance when accessing and aggregating time interval 
data. Additionally, we presented an extendable query language 
to analyze time interval data in [13], which processes fastest on 
the bitmap-based approach of [8]. Koncilia et al. describe 
I-OLAP [7], which utilizes a relational database to store time 
interval data and provides interfaces to translate queries 
regarding time interval related operations into several relational 
queries. The system, is based on S-OLAP presented by Chui et 
al. [21], but does not support any similarity measures regarding 
sets of time intervals. 

Closest to the problem of finding similar sets of bounded 
TIDASET instances within a time interval data base, is the 
problem of full sequence matching addressed by Kostakis et al. 
and Kotsifakos et al. As mentioned earlier the introduced 
solutions for e-sequences are not directly applicable to our 
problem, but provide interesting approaches. In addition, the 
presented bitmap-based approaches and processing algorithms 
are promising regarding performance and bear the capability of 
distributed calculation. Thus, we implemented the algorithms as 
extensions for our bitmap-based solution. 

IV. THE MATCHING PROBLEM 

Prior to presenting similarity measures useful to solve the 
problem stated in section II, we introduce the matching problem. 
The matching problem addresses the issue arising when 
comparing the different values associated to the time points of a 
partition.  

Given two bounded TIDASETS �
� and �
� with 
1, 
2 � � 

and 
1 � 
2. The matching problem states how the different time 
points of each set 
1 and 
2 are related to each other. In general, 
different strategies, depending on the domain and the context, 
may be applied. In this paper, we discuss the following mapping 
strategies to solve the matching problem: 

	 matching functions f: 
1 � 
��� {null}, 

	 bilinear interpolation, and 
	 special techniques like dynamic time warping. 

Regarding temporal data, the bilinear interpolation or the 
usage of special technique like DTW is typically a bad choice. 
The reasons lie above all in distortion across the temporal 
boundaries, e.g., the technique should not partly recognize a 
value measured on a Monday on a Thursday or warp it to another 
day. In this paper, we focus on matching functions and refer for 
strategies like bilinear interpolation [12] or DTW [11] to the 
related publications.  

A matching function is a function : 
1 � 
��� {null}. The 
function explicitly allows the matching of a value to null, i.e., 
mark the value as unmatchable. We thereby assume an 
unmatchable value with a distance of zero, i.e., it does not affect 
the distance negatively. Fig. 4 illustrates two examples of 
matching functions, a weekday match and an ordered match. 
The weekday match ensures that the first day (e.g., Thursday) of 
the source set is matched to the same first day of the comparing 
set. Thus, it may be necessary to skip several days and leave 
these unmatched. Contrary, the order match associates each day 
of the source set with the corresponding day regarding the total 
order of the comparing set. 

In general, we assume the definition of a matching function 
non-strict, i.e., it is possible to match every day of the one set to 
the same day of the other. Depending on the context, each 
definable matching function may be meaningful. 

V. TIDADISTANCE: SIMILARITY OF TIDASETS 

A. Temporal Order, Measure, and Relation Distance 
Based on the definition of a time interval database �, a time 

axis �, a time axis partition ��, and a matching function , we 
define three distance measures, one for each type of distance (cf. 
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Fig. 3). In addition, we define a labeling function 
�: � � {l1, …, ln}, which is used to categorize a record into a 
group. We denote the set of all labels by L := {l1, …, ln}. 

Temporal Order Distance: Let the function 

cnt: L × ( {�
�} × 
1, {�
�} × 
2 � {null} ) � �0 

be the function used to count the intervals with a specific label 
at a specific time point. We define the distance TODist between 

two bounded TIDASETS �
� and �
� as 

TODist  �= � todist(l, t)
	 � 
, t � 
1

 

with 

 todist  �= �cnt�l, (�
�, t) � cnt �l, ��
2, (t)��   

Temporal Measure Distance: Let the function 

msr: L × ( {�
�} × 
1, {�
�} × 
2 � {null} ) � �

be the function used to determine the value of a measure of the 
intervals with a specific label at a specific time point (using a 
specified aggregation function). We define the distance TMDist

between bounded TIDASETS �
� and �
� as 

TMDist  �= � tmdist(l, t)
l � L, t � 
1

 

with 

 tmdist  �= �msr�l, (�
�, t) � msr �l, ��
�, (t)�� 

The definition of the temporal measure distance is a 
generalized version of the temporal count distance. However, 
using the count function as measure, implicitly adds several 
temporal aspects (e.g., temporal order) to the distance. On the 
other hand, the existence of a temporal measure distance allows 

the comparison of specific, e.g., business-related, measures 
(e.g., find a day with a similar production flow). 

Temporal Relation Distance: The relation distance 
represents the idea to create a feature vector representing the 
relations valid at a specific time point (cf. [9]). For this purpose, 
it is necessary to specify which relations are valid, regarding the 
set of intervals, at the specific time point. TABLE I lists the time 
points covered by an relation. 

TABLE I. OVERVIEW OF THE COVERED TIME POINTS  

relation covered time points 
rel A � [a1, a2], B � [b1, b2] with A rel B 

overlaps [b1, a2] 

begins [b1, b2] 

includes [b1, b2] 

ends directly before [a2, b1] 

ends [b1, b2] 

equal [b1, b2] 

before [a2 + 1, b1 – 1] 
 

Let the function 

rel: L × ( {�
�} × 
1, {�
�} × 
2 � {null} ) � �0 

be the function used to count the valid relations of a specific type 
(i.e., overlaps, begins, includes, ends directly before, or equal) 
with a specific label at a specific time point. We define the 

distance TRDist between bounded TIDASETS �
� and �
� as 

TR����  �= � tr����(l, t)
	 � 
, � � �S

 

with trdist defined as the function summing up the differences 
between the counts of the different relations 

trdist  �= � �rel�l, (�
�,t) � rel �l, ��
�, (t)��rel   

B. Temporal Similarity: Combining the different distances 
The three distances temporal order, measure, and relation 

define the temporal similarity. The impact of each distance is 
specified by a weighting factor: wto, wtr, and wtm, satisfying wto 
+ wtr + wtm = 1. In addition, let maxto, maxtr, and maxtm be the 
function determining the maximal distance possible for a 
specific label and time point, i.e.,  

max��(l, t) �= max �cnt�l, (�
�, t), cnt �l, ��
2, (t)�� 

max��(l, t) �= max �msr�l, (�
�, t), msr �l, ��
�, (t)�� 

max��(l, t) �= max �� rel�l, (�
�,t)rel , � rel �l, ��
�, (t)�rel �  

Based on these maximal distances, we define the similarity 
as 

sim �= 1 �
� w��

to����(l, t)
max��(l, t) + w��

tr����(l, t)
max��(l, t) + w��

tm����(l, t)
max��(l, t)	 � 
, � � 
1

amount of matched time points � amount of labels
 

Fig. 4.  Two examples of matching functions. The weekday match (top)
assigns the first Thursday of the month to the first Thursday of the
comparing month, whereby the order match (bottom) just matches the

first day of the month to the first day of the comparing month. 

2727



C. Bitmap-based calculation 
Because of space limitations, we do not introduce the 

calculation of the count and measure distance in detail. For a 
more detailed explanation, on how the values for a time point 
are calculated, the interested reader is referred to [8]. 
Nevertheless, the calculation of the count and measure distance 
can be performed in O(n + m) with n being the amount of time 
points covered by the source set and m being the amount of time 
points mapped by the mapping function. Additional pruning 
techniques may lead to an early termination and increase 
performance (cf. next subsection). 

In this paper, we focus on the bitmap-based calculation of 
the relation distance. The algorithm iterates twice over the time 
points of the bounded TIDASET. In the first iteration, the 
algorithm determines the feature vector, which we use in the 
second iteration to calculate the distance. Thus, a pruning cannot 
be applied and the algorithm runs in linear time, i.e., O(n + m). 
To determine the relation between each pair of intervals of a 
TIDASET and assign it to a time point as specified in TABLE I, 
the algorithm iterates over each time point, determining the 
bitmap for the current label of the current time point (using the 
filter and grouping mechanism presented in [8]). In the next step, 
the determined bitmap is combined with the bitmap of the 
previous time point (if no previous calculation was performed, 
i.e., if it is the first one, the bitmaps are assumed to be empty, 
i.e., all values are 0). Hereby, we create three bitmaps: (1) a 
bitmap with all the intervals just started, (2) a bitmap with all the 
intervals finished, and (3) a bitmap with all the intervals still 
being active. Each bitmap can be easily determined by logically 
combining the previous bpre and the current bitmap bcur, i.e.  

(1) (bpre �  bcur)  bcur,  

(2) (bpre  bcur)  bpre, and  

(3) bpre  bcur.  

Within the last step, the algorithm collects new information for 
each current pair, i.e., start-relation, end-relation, and start-end-
relation. Whenever we determined all three relations of a pair, 
we are capable of specifying the relation of the pair and the 
referred time point. Fig. 5  illustrates the process. The figure 
shows a Gantt-Chart of performed tasks. To determine the 
relations among the different tasks, the algorithm pics the 
bitmap of a specific time point (i.e., bcur) and combines it, as 
mentioned, with the previous bitmap bpre. Based on the resulting 

three bitmaps, the algorithms determines the three relations and 
uses the look-up tables (bottom right in the figure) to determine 
the relation. After determining the relation, is it straightforward 
to define the vectors for each time point following TABLE I and 
calculating the distance between two sets following the 
definition of TRDist. 

D. Pruning techniques for k-NN 
The calculation of the count and measure distance is 

performed linear and the distance is increasing with each time 
point evaluated. Thus, knowing the current smallest distance, 
i.e., the distance of the k-th nearest neighbor, enables the system 
to terminate further calculation, if the current distance value 
becomes larger than the smallest distance. The calculation of the 
temporal relation distance cannot be pruned, because the 
algorithm has to determine the relations among the different 
intervals, which is necessary to calculate the distance in a second 
iteration. Thus, the second iteration may be terminated, whereby 
the first iteration has to be performed. 

E. Distributed calculation for Large Databases 
When performing a k-NN search on large databases (i.e., 

containing billions of records), it is possible to distribute the 
distance calculation over several nodes. Each node of a cluster 
is assigned a specific time window (e.g., a day, a week, or a 
month). Whenever a distance calculation is triggered, the 
responsible node maps the bitmaps to the requested distance, 
which is evaluated within a reduce step. It is even possible to 
assign several nodes to the same time entity and utilizing a load 
balancer, which distributes the requested search queries among 
the different nodes. Last but not least, it should be mentioned, 
that the database keeping the different bitmaps may also be 
distributed, e.g., keeping the bitmap of a specific year (cf. [8]). 

VI. EXPERIMENTAL RESULTS 

We tested our bitmap-based implementation on an Intel Core 
i7-4810MQ with a CPU clock rate of 2.80 GHz, 32 GB of main 
memory, an SSD, and running 64-bit Windows 8.1 Pro. As Java 
implementation, we used a 64-bit JRE 1.6.45, with XMX 1,024 
MB and XMS 512 MB. We compared the performance of the 
temporal order distance to the IBSM algorithm [12]. The 
performance of the measure and relational distance is not 
compared, because an implementation of the ARTEMIS 
algorithm was not available when requested [11]. Within the 
test, the ghdatacsv dataset [22] with 1,122,097 records and a 
time axis covering one year was used, searching for the 1-NN, 
3-NN, 5-NN, and 10-NN. We performed the search against the 
whole dataset. 

Fig. 6 shows the results of the tests. The figure illustrates the 
runtime for temporal order (i.e., Bitmap vs. IBSM), the temporal 
measure (i.e., using the measures SUM and a MAX-COUNT 
[8]), and the temporal relational distance. For the temporal 
distance, the bitmap-based implementation outperformed IBSM 
by a factor of four, retrieving the same results as IBSM. The 
performance of the temporal measure distance is comparable to 
the once of the temporal count. The calculation of the temporal 
relation distance is significant slower than the other two, because 
we have to apply a linear scan prior to determining a value. Thus, 
we can apply, as already mentioned, the pruning only in the 
second step of the algorithm. 

Fig. 5.  Illustration of the bitmap-based algorithm utilized to determine the

relations among the different intervals. 
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VII. CONCLUSION AND SUMMARY 

In this paper, we presented a first solution for the problem of 
searching for the k most similar bounded TIDASETS introduced 
in section II. The problem extends the similarity defined for 
e-sequences (cf. [11, 12]). We introduced three different types 
of distances useful when searching for similar interval sets 
within a large time interval database. Based on these distances 
we defined a weighted similarity measure and outlined bitmap-
based implementations. In addition, we shortly introduced the 
possibilities of performance increases when searching for the k-
NN and when utilizing a distributed calculation. The 
experimental results show that the bitmap-based implementation 
outperforms the only reference implementation regarding the 
temporal order distance by a factor of four. 

An important task for future studies is to validate the 
applicability of the algorithms and to enhance the algorithms 
presented for the introduced distances. In addition, depending on 
the use case, other distances may be in the focus of research. 
Furthermore, additional speedup techniques are interesting 
directions for future work.  
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