
Similarity Search of Bounded TIDASETS within Large Time Interval Databases

Philipp Meisen

Inst. of Information Management in Mech. Engineering
RWTH Aachen University

Aachen, Germany
philipp.meisen@ima.rwth-aachen.de

Tobias Meisen

Inst. of Information Management in Mech. Engineering
RWTH Aachen University

Aachen, Germany
tobias.meisen@ima.rwth-aachen.de

Diane Keng

School of Engineering
Santa Clara University

Santa Clara, USA
dkeng@scu.edu

Marco Recchioni

Airport Division
Inform GmbH Aachen

Aachen, Germany
marco.recchioni@inform-software.de

Sabina Jeschke

Inst. of Information Management in Mech. Engineering
RWTH Aachen University

Aachen, Germany
sabina.jeschke@ima-zlw-ifu.rwth-aachen.de

Abstract—Searching for similar entities within a database is a
common and a daily, billions of times, performed task. Generally,
similarities are calculated using common distance measures like
Manhatten, Euclidian, Levenshtein, Mahalanobis or Dynamic
Time Warping (DTW). In this paper, we present a similarity
measure for time interval data, which allows searching for similar
sets of time interval records bounded by a time window (e.g., a day,
a week, or a month). We introduce three different groups of
distance measures i.e., temporal order, temporal measure, and
temporal relation distances. In addition, we present bitmap-based
implementations for algorithms of each of the three types. We
designed our solutions to perform well on large datasets and
support distributed calculations. Evaluations show the out-
standing performance regarding other interval related similarity
measures, i.e., ARTEMIS and IBSM.

Keywords—Similarity Search, Time Interval Data Analysis,
Time Series, k-nearest-neighbors

I. INTRODUCTION AND MOTIVATION

The utilization of similarity measures within large data sets
is a common task in the field of knowledge discovery. Especially
when applying categorization or clustering algorithms, a
similarity measure is of great importance to determine the
distance between different entities and thereby to categorize
entities or to determine a cluster belonging. Over the last years,
several similarity measures in various fields and for different
types of entities have been proposed, e.g., text, sequences, time
series, audio, or ontologies [1–5].

In this paper, we introduce a similarity measure for bounded
time interval data sets (bounded TIDASETS). Thereby, a bounded
TIDASET is a set of multiple labeled time intervals bounded to a
specified time window, e.g. a day, a month, or any range tw = [t1,
t2] with t1 < t2. Fig. 1 exemplifies a bounded TIDASET using a

time window based on the time unit day. In addition, the figure
illustrates the idea behind the utilization of a similarity measure.
Given a query TIDASET of a day, the goal of the similarity search
is to determine similar days stored in the underlying time
interval database (i.e., 2015-12-07). This enables analyst to get
answer to query like “Find the most common days to yesterday
regarding the utilization of our resources”. Such query, is one
example for similarity related queries, that are daily formulated
in several industrial areas like production, aviation, logistics,
call centers or gastronomy [6, 7]. As we will show, the definition
of “common” regarding time interval data is not trivial. First, it
can be based on simple counts [7, 8] (e.g., five resources were
used in the last hour). Second, it can be based on a measure [8]
(e.g., the average income for each minute within the last hour
was 52.17 $), or third it can be based on the order of the intervals
[9–11] (e.g., the intervals are all following each other).
Supporting these kinds of calculations, we introduce three
different types of distance measures, namely temporal order,
temporal measure, and temporal relation distance (cf. Fig. 1

Fig. 1. A daily bounded TIDASET (top) and its most similar daily bounded

TIDASETS (bottom), one for each type different distance type.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.36

24

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.36

24

shows a most similar result for each of the mentioned types). In
addition, depending on the specified range, we discuss the
matching between different TIDASETS (e.g. comparing January
with February). We further present possible solutions for such
matching problems.

Summarized, the paper is organized as follows: Section II
introduces the problem of finding similar bounded TIDASETS

within a time interval database, accordingly. In section III we
present the related work regarding time interval data and
similarity. Furthermore, in section IV, we discuss the matching
problem and present a solution utilizing mapping functions. In
section V different distance measures, a weighted combination,
performance improvements utilizing pruning techniques, as well
as a distributed calculation for large databases of time interval
data are presented. Section VI shows experimental results
regarding the performance on different sized databases, different
partitions, and weighted combinations. Last, the results
presented in this paper are summarized in section VII.

II. PROBLEM STATEMENT

Assuming we have a time axis � and a time interval database
� (cf. [6]). The time axis � specifies the beginning and end of
time regarding the time interval database, i.e., the valid time
points of the database as totally ordered set, ��:= {t1, …, tn}. Each

record � stored in the database (i.e., � � �) consists of at least
two fields, representing the start and the end, so that each
representing a time point on � ��������������	�
���Thereby, we
denote the start field of the record � by �start, and respectively the
end field by �end. Additionally, each record may have one or
multiple descriptive values, associating additional information
to the interval, e.g., a person’s name annotating the task
performed during the interval, or a list of words said within the
time interval. The associated information is assumed valid
during the interval defined by [�start, �end].

We define a TIDASET as a filtered subset of records stored in

the database and denote it by � (i.e., � � �). The term filtered
states that there is a logical clause specifying which records are
elements of �, e.g., person = “Diane”. Furthermore, we define a
bounded TIDASET ��s, e], with s and e being time points on � and

s < e, as a filtered subset of � so that for all � � ��s, e]: �start 	 e
and pend � s. Further, we refer to the interval [s, e] as the time
window of a bounded TIDASET.

Example: Fig. 2 exemplifies a database � with eight records.
Each record has two descriptive information associated. The
first one defines the type of a task (i.e., A or B) performed within
the interval, whereby the second defines the amount of resources
utilized to perform the task. The illustration uses the time axis

� := {2015-12-01 00:00, …, 2015-12-31 23:59}

(i.e., the time axis contains all the minutes of December 2015).
Using the depicted database, the following exemplified bounded
TIDASETS are valid:

��2015-12-01 00:00, 2015-12-01 23:59] = {}
��2015-12-03 00:00, 2015-12-03 23:59] = {ID: 1}
��2015-12-21 00:00, 2015-12-21 23:59] = {ID: 6, ID: 7}

Based on the definitions of a time interval database �, a
bounded TIDASET ��s, e], and a time axis �, we define �� as a

partition of � so that [s, e] � �� and � is split into subsets keeping
the total order, i.e., �� := {[t1, tx], [tx+1, ty], …, [tz, tn]}. Thereby,
a logical time unit (e.g., a day, a month, or a week) may define
the partition.

Example: Using the time axis shown in Fig. 2 a valid
partition of the time axis, using logical time units, could be:

	 a daily partition:

�� := {[2015-12-01 00:00, 2015-12-01 23:59],
 [2015-12-02 00:00, 2015-12-02 23:59],
 …,
 [2015-12-31 00:00, 2015-12-31 23:59]}

	 a hourly partition:

�� := {[2015-12-01 00:00, 2015-12-01 00:59],
 [2015-12-01 01:00, 2015-12-01 01:59],
 …,
 [2015-12-31 23:00, 2015-12-31 23:59]}

Given a time interval database �, a bounded TIDASET ��s, e],
a time axis �, and a partition ��, the problem of searching for
the k most similar bounded TIDASETS is to find k entities �
 with

 � �� \ [s, e], so that the dist(��s, e], �
) is minimal.

Thereby, dist is the distance function (i.e., a similarity
measure). Regarding the utilized distance function, we introduce
three different types: temporal order, temporal measure and
temporal relation distance. Each of these types cover a different
aspect of similarity when dealing with interval data. Fig. 3
illustrates the different types and aspects. The figure shows a
similar example for each of type and gives a short explanation:

Fig. 2. A sample database � containing eight time interval records, each
associated with the amount of resources utilized to perform the task

and the type of task.

Fig. 3. Illustration of the three different types of distances. For each distance,
we present an example showing equality, as well as a visual or textual

explanation.

Fi 3 Ill t ti f th th diff t t f di t F h di t

2525

	 A temporal order distance (cf. [8, 12]) is based on the amount
of intervals being active at a specific time point (i.e., the
record’s interval includes the time point). In the example,
both sets are assumed equal because the count of active
intervals is equal in each time point. The line chart on the left
illustrates this equality.

	 A temporal relation distance (cf. [9, 11]) is based on the
relations between the different intervals of a set. The
example shows an implementation, which transforms each
set into a feature vector (cf. section V). In the example, the
sets are assumed equal, because the resulting feature vector
are the same.

	 A temporal measure distance (cf. [6, 8, 13]) is based on a
measure (i.e., a mathematical function) which uses the fields
of a record, temporal information, or aggregated dimensional
values to determine a value for each time point. The distance
aims to determine the difference between the measures
resulting from a set of intervals. In the example, a sum
measure is utilized and the resulting time series are equal,
thus the sets are assumed equal.

III. RELATED WORK

Time interval data is in the focus of research for several
decades. Allen [9] specified different relationship between two
intervals, which were applied, ambiguously discussed,
enhanced, and modified by several researches (cf. [10] for an
overview). In addition, different mining algorithms aiming to
discover patterns within a (time) interval database were
presented in the past [14–19].

Kostakis et al. [11] and Kotsifakos et al. [12] presented three
different approaches, regarding the similarity between time
interval sets, namely a DTW-based approach [20], ARTEMIS
and IBSM. The presented solutions search similar e-sequences
within a database. They define an e-sequence (or event-
sequence) as a pre-defined set of intervals. The presented
algorithms based on the assumption that the e-sequence, e.g., the
set of intervals, is pre-defined and known when the sequence is
added to the database. Regarding the introduced problem of
searching for similar bounded TIDASETS, this assumption is not
valid, because the user specified the set by a query. Thus, the
similarity search has to be flexible regarding the query and result
sets. Nevertheless, as we will show, some of the ideas introduced
by Kostakis et al. and Kotsifakos et al. can be adapted to support
TIDASETS.

Recently, systems specialized to analyze time interval data
have been published. In [8] we introduced a bitmap-based
implementation utilizing different index techniques to increase
the performance when accessing and aggregating time interval
data. Additionally, we presented an extendable query language
to analyze time interval data in [13], which processes fastest on
the bitmap-based approach of [8]. Koncilia et al. describe
I-OLAP [7], which utilizes a relational database to store time
interval data and provides interfaces to translate queries
regarding time interval related operations into several relational
queries. The system, is based on S-OLAP presented by Chui et
al. [21], but does not support any similarity measures regarding
sets of time intervals.

Closest to the problem of finding similar sets of bounded
TIDASET instances within a time interval data base, is the
problem of full sequence matching addressed by Kostakis et al.
and Kotsifakos et al. As mentioned earlier the introduced
solutions for e-sequences are not directly applicable to our
problem, but provide interesting approaches. In addition, the
presented bitmap-based approaches and processing algorithms
are promising regarding performance and bear the capability of
distributed calculation. Thus, we implemented the algorithms as
extensions for our bitmap-based solution.

IV. THE MATCHING PROBLEM

Prior to presenting similarity measures useful to solve the
problem stated in section II, we introduce the matching problem.
The matching problem addresses the issue arising when
comparing the different values associated to the time points of a
partition.

Given two bounded TIDASETS �
� and �
� with
1,
2 � �

and
1 �
2. The matching problem states how the different time
points of each set
1 and
2 are related to each other. In general,
different strategies, depending on the domain and the context,
may be applied. In this paper, we discuss the following mapping
strategies to solve the matching problem:

	 matching functions f:
1 �
��� {null},

	 bilinear interpolation, and
	 special techniques like dynamic time warping.

Regarding temporal data, the bilinear interpolation or the
usage of special technique like DTW is typically a bad choice.
The reasons lie above all in distortion across the temporal
boundaries, e.g., the technique should not partly recognize a
value measured on a Monday on a Thursday or warp it to another
day. In this paper, we focus on matching functions and refer for
strategies like bilinear interpolation [12] or DTW [11] to the
related publications.

A matching function is a function :
1 �
��� {null}. The
function explicitly allows the matching of a value to null, i.e.,
mark the value as unmatchable. We thereby assume an
unmatchable value with a distance of zero, i.e., it does not affect
the distance negatively. Fig. 4 illustrates two examples of
matching functions, a weekday match and an ordered match.
The weekday match ensures that the first day (e.g., Thursday) of
the source set is matched to the same first day of the comparing
set. Thus, it may be necessary to skip several days and leave
these unmatched. Contrary, the order match associates each day
of the source set with the corresponding day regarding the total
order of the comparing set.

In general, we assume the definition of a matching function
non-strict, i.e., it is possible to match every day of the one set to
the same day of the other. Depending on the context, each
definable matching function may be meaningful.

V. TIDADISTANCE: SIMILARITY OF TIDASETS

A. Temporal Order, Measure, and Relation Distance
Based on the definition of a time interval database �, a time

axis �, a time axis partition ��, and a matching function , we
define three distance measures, one for each type of distance (cf.

2626

Fig. 3). In addition, we define a labeling function
�: � � {l1, …, ln}, which is used to categorize a record into a
group. We denote the set of all labels by L := {l1, …, ln}.

Temporal Order Distance: Let the function

cnt: L × ({�
�} ×
1, {�
�} ×
2 � {null}) � �0

be the function used to count the intervals with a specific label
at a specific time point. We define the distance TODist between

two bounded TIDASETS �
� and �
� as

TODist �= � todist(l, t)
	 �
, t �
1

with

 todist �= �cnt�l, (�
�, t) � cnt �l, ��
2, (t)��

Temporal Measure Distance: Let the function

msr: L × ({�
�} ×
1, {�
�} ×
2 � {null}) � �

be the function used to determine the value of a measure of the
intervals with a specific label at a specific time point (using a
specified aggregation function). We define the distance TMDist

between bounded TIDASETS �
� and �
� as

TMDist �= � tmdist(l, t)
l � L, t �
1

with

 tmdist �= �msr�l, (�
�, t) � msr �l, ��
�, (t)��

The definition of the temporal measure distance is a
generalized version of the temporal count distance. However,
using the count function as measure, implicitly adds several
temporal aspects (e.g., temporal order) to the distance. On the
other hand, the existence of a temporal measure distance allows

the comparison of specific, e.g., business-related, measures
(e.g., find a day with a similar production flow).

Temporal Relation Distance: The relation distance
represents the idea to create a feature vector representing the
relations valid at a specific time point (cf. [9]). For this purpose,
it is necessary to specify which relations are valid, regarding the
set of intervals, at the specific time point. TABLE I lists the time
points covered by an relation.

TABLE I. OVERVIEW OF THE COVERED TIME POINTS

relation covered time points
rel A � [a1, a2], B � [b1, b2] with A rel B

overlaps [b1, a2]

begins [b1, b2]

includes [b1, b2]

ends directly before [a2, b1]

ends [b1, b2]

equal [b1, b2]

before [a2 + 1, b1 – 1]

Let the function

rel: L × ({�
�} ×
1, {�
�} ×
2 � {null}) � �0

be the function used to count the valid relations of a specific type
(i.e., overlaps, begins, includes, ends directly before, or equal)
with a specific label at a specific time point. We define the

distance TRDist between bounded TIDASETS �
� and �
� as

TR���� �= � tr����(l, t)
	 �
, � � �S

with trdist defined as the function summing up the differences
between the counts of the different relations

trdist �= � �rel�l, (�
�,t) � rel �l, ��
�, (t)��rel

B. Temporal Similarity: Combining the different distances
The three distances temporal order, measure, and relation

define the temporal similarity. The impact of each distance is
specified by a weighting factor: wto, wtr, and wtm, satisfying wto
+ wtr + wtm = 1. In addition, let maxto, maxtr, and maxtm be the
function determining the maximal distance possible for a
specific label and time point, i.e.,

max��(l, t) �= max �cnt�l, (�
�, t), cnt �l, ��
2, (t)��

max��(l, t) �= max �msr�l, (�
�, t), msr �l, ��
�, (t)��

max��(l, t) �= max �� rel�l, (�
�,t)rel , � rel �l, ��
�, (t)�rel �

Based on these maximal distances, we define the similarity
as

sim �= 1 �
� w��

to����(l, t)
max��(l, t) + w��

tr����(l, t)
max��(l, t) + w��

tm����(l, t)
max��(l, t)	 �
, � �
1

amount of matched time points � amount of labels

Fig. 4. Two examples of matching functions. The weekday match (top)
assigns the first Thursday of the month to the first Thursday of the
comparing month, whereby the order match (bottom) just matches the

first day of the month to the first day of the comparing month.

2727

C. Bitmap-based calculation
Because of space limitations, we do not introduce the

calculation of the count and measure distance in detail. For a
more detailed explanation, on how the values for a time point
are calculated, the interested reader is referred to [8].
Nevertheless, the calculation of the count and measure distance
can be performed in O(n + m) with n being the amount of time
points covered by the source set and m being the amount of time
points mapped by the mapping function. Additional pruning
techniques may lead to an early termination and increase
performance (cf. next subsection).

In this paper, we focus on the bitmap-based calculation of
the relation distance. The algorithm iterates twice over the time
points of the bounded TIDASET. In the first iteration, the
algorithm determines the feature vector, which we use in the
second iteration to calculate the distance. Thus, a pruning cannot
be applied and the algorithm runs in linear time, i.e., O(n + m).
To determine the relation between each pair of intervals of a
TIDASET and assign it to a time point as specified in TABLE I,
the algorithm iterates over each time point, determining the
bitmap for the current label of the current time point (using the
filter and grouping mechanism presented in [8]). In the next step,
the determined bitmap is combined with the bitmap of the
previous time point (if no previous calculation was performed,
i.e., if it is the first one, the bitmaps are assumed to be empty,
i.e., all values are 0). Hereby, we create three bitmaps: (1) a
bitmap with all the intervals just started, (2) a bitmap with all the
intervals finished, and (3) a bitmap with all the intervals still
being active. Each bitmap can be easily determined by logically
combining the previous bpre and the current bitmap bcur, i.e.

(1) (bpre � bcur) bcur,

(2) (bpre bcur) bpre, and

(3) bpre bcur.

Within the last step, the algorithm collects new information for
each current pair, i.e., start-relation, end-relation, and start-end-
relation. Whenever we determined all three relations of a pair,
we are capable of specifying the relation of the pair and the
referred time point. Fig. 5 illustrates the process. The figure
shows a Gantt-Chart of performed tasks. To determine the
relations among the different tasks, the algorithm pics the
bitmap of a specific time point (i.e., bcur) and combines it, as
mentioned, with the previous bitmap bpre. Based on the resulting

three bitmaps, the algorithms determines the three relations and
uses the look-up tables (bottom right in the figure) to determine
the relation. After determining the relation, is it straightforward
to define the vectors for each time point following TABLE I and
calculating the distance between two sets following the
definition of TRDist.

D. Pruning techniques for k-NN
The calculation of the count and measure distance is

performed linear and the distance is increasing with each time
point evaluated. Thus, knowing the current smallest distance,
i.e., the distance of the k-th nearest neighbor, enables the system
to terminate further calculation, if the current distance value
becomes larger than the smallest distance. The calculation of the
temporal relation distance cannot be pruned, because the
algorithm has to determine the relations among the different
intervals, which is necessary to calculate the distance in a second
iteration. Thus, the second iteration may be terminated, whereby
the first iteration has to be performed.

E. Distributed calculation for Large Databases
When performing a k-NN search on large databases (i.e.,

containing billions of records), it is possible to distribute the
distance calculation over several nodes. Each node of a cluster
is assigned a specific time window (e.g., a day, a week, or a
month). Whenever a distance calculation is triggered, the
responsible node maps the bitmaps to the requested distance,
which is evaluated within a reduce step. It is even possible to
assign several nodes to the same time entity and utilizing a load
balancer, which distributes the requested search queries among
the different nodes. Last but not least, it should be mentioned,
that the database keeping the different bitmaps may also be
distributed, e.g., keeping the bitmap of a specific year (cf. [8]).

VI. EXPERIMENTAL RESULTS

We tested our bitmap-based implementation on an Intel Core
i7-4810MQ with a CPU clock rate of 2.80 GHz, 32 GB of main
memory, an SSD, and running 64-bit Windows 8.1 Pro. As Java
implementation, we used a 64-bit JRE 1.6.45, with XMX 1,024
MB and XMS 512 MB. We compared the performance of the
temporal order distance to the IBSM algorithm [12]. The
performance of the measure and relational distance is not
compared, because an implementation of the ARTEMIS
algorithm was not available when requested [11]. Within the
test, the ghdatacsv dataset [22] with 1,122,097 records and a
time axis covering one year was used, searching for the 1-NN,
3-NN, 5-NN, and 10-NN. We performed the search against the
whole dataset.

Fig. 6 shows the results of the tests. The figure illustrates the
runtime for temporal order (i.e., Bitmap vs. IBSM), the temporal
measure (i.e., using the measures SUM and a MAX-COUNT
[8]), and the temporal relational distance. For the temporal
distance, the bitmap-based implementation outperformed IBSM
by a factor of four, retrieving the same results as IBSM. The
performance of the temporal measure distance is comparable to
the once of the temporal count. The calculation of the temporal
relation distance is significant slower than the other two, because
we have to apply a linear scan prior to determining a value. Thus,
we can apply, as already mentioned, the pruning only in the
second step of the algorithm.

Fig. 5. Illustration of the bitmap-based algorithm utilized to determine the

relations among the different intervals.

2828

VII. CONCLUSION AND SUMMARY

In this paper, we presented a first solution for the problem of
searching for the k most similar bounded TIDASETS introduced
in section II. The problem extends the similarity defined for
e-sequences (cf. [11, 12]). We introduced three different types
of distances useful when searching for similar interval sets
within a large time interval database. Based on these distances
we defined a weighted similarity measure and outlined bitmap-
based implementations. In addition, we shortly introduced the
possibilities of performance increases when searching for the k-
NN and when utilizing a distributed calculation. The
experimental results show that the bitmap-based implementation
outperforms the only reference implementation regarding the
temporal order distance by a factor of four.

An important task for future studies is to validate the
applicability of the algorithms and to enhance the algorithms
presented for the introduced distances. In addition, depending on
the use case, other distances may be in the focus of research.
Furthermore, additional speedup techniques are interesting
directions for future work.

ACKNOWLEDGMENT

The approaches presented in this paper are supported by the
project “ELLI – Excellent Teaching and Learning in
Engineering Sciences” as part of the Excellence Initiative at the
RWTH Aachen University.

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient Similarity
Search In Sequence Databases,” in Proceedings of the 4th International
Conference on Foundations of Data Organization and Algorithms,
London, UK, UK: Springer-Verlag, 1993, pp. 69–84.

[2] J. H. Jensen, M. G. Christensen, D. P. W. Ellis, and S. H. Jensen,
“Quantitative Analysis of a Common Audio Similarity Measure,” IEEE
Trans. Audio Speech Lang. Process, vol. 17, no. 4, pp. 693–703, 2009.

[3] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra,
“Dimensionality Reduction for Fast Similarity Search in Large Time
Series Databases,” Knowledge and Information Systems, vol. 3, no. 3,
pp. 263–286, 2001.

[4] G. Yu, F. Li, Y. Qin, X. Bo, Y. Wu, and S. Wang, “GOSemSim: an R
package for measuring semantic similarity among GO terms and gene
products,” (eng), Bioinformatics (Oxford, England), vol. 26, no. 7, pp.
976–978, 2010.

[5] D. Metzler, S. Dumais, and C. Meek, “Similarity Measures for Short
Segments of Text,” in Lecture Notes in Computer Science, Advances in
Information Retrieval, G. Amati, C. Carpineto, and G. Romano, Eds,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 16–27.

[6] P. Meisen, M. Recchioni, T. Meisen, D. Schilberg, and S. Jeschke,
“Modeling and processing of time interval data for data-driven decision
support,” in 2014 IEEE International Conference on Systems, Man and
Cybernetics - SMC, San Diego, California, USA, 2014, pp. 2946–2953.

[7] C. Koncilia, T. Morzy, R. Wrembel, and J. Eder, “Interval OLAP:
Analyzing Interval Data,” in Lecture Notes in Computer Science, Data
Warehousing and Knowledge Discovery, L. Bellatreche and M. K.
Mohania, Eds, Cham: Springer International Publishing, 2014, pp. 233–
244.

[8] P. Meisen, D. Keng, T. Meisen, M. Recchioni, and S. Jeschke, “Bitmap-
Based On-Line Analytical Processing of Time Interval Data,” in
Proceedings of the 12th International Conference on Information
Technology: New Generations (ITNG), 2015, 2015.

[9] J. F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Communications of the ACM, vol. 26, no. 11, pp. 832–843,
http://doi.acm.org/10.1145/182.358434, 1983.

[10] F. Moerchen, “Tutorial CIDM-T Temporal pattern mining in symbolic
time point and time interval data,” in Computational Intelligence and
Data Mining, 2009. CIDM ’09. IEEE Symposium on, 2009, p. xiv.

[11] O. Kostakis, P. Papapetrou, and J. Hollmén, “ARTEMIS: Assessing the
Similarity of Event-Interval Sequences,” in Lecture Notes in Computer
Science, Machine Learning and Knowledge Discovery in Databases, D.
Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis, Eds.:
Springer Berlin Heidelberg, 2011, pp. 229–244.

[12] A. Kotsifakos, P. Papapetrou, and V. Athitsos, “IBSM: Interval-Based
Sequence Matching: 65,” in Proceedings of the 2013 SIAM
International Conference on Data Mining, 2013, pp. 596–604.

[13] P. Meisen, D. Keng, T. Meisen, and M. Recchioni, “TIDAQL: A Query
Language enabling On-line Analytical Processing of Time Interval
Data,” in Proceedings of 17th International Conference on Enterprise
Information Systems (ICEIS2015), 2015.

[14] Y.-H. Hu, C. Cheng, F. Wu, and C.-I. Yang, “Mining Multi-level Time-
interval Sequential Patterns in Sequence Databases,” in 2nd
International Conference on Software Engineering and Data Mining
(SEDM 2010): Chengdu, China, 23 - 25 June 2010, Piscataway, NJ:
IEEE, 2010, pp. 416–421.

[15] R. Sadasivam and K. Duraiswamy, “Efficient approach to discover
interval-based sequential patterns,” vol. 9, no. 2, pp. 225–234,
http://thescipub.com/abstract/10.3844/jcssp.2013.225.234, 2013.

[16] Y.-L. Chen, M.-C. Chiang, and M.-T. Ko, “Discovering time-interval
sequential patterns in sequence databases,” Expert Systems with
Applications, vol. 25, no. 3, pp. 343–354, 2003.

[17] Y.-C. Chen, W.-C. Peng, and S.-Y. Lee, “CEMiner - An Efficient
Algorithm for Mining Closed Patterns from Time Interval-Based Data,”
in IEEE 11th International Conference on Data Mining (ICDM 2011),
2011, pp. 121–130.

[18] P. Papapetrou, G. Kollios, and S. Sclaroff, “Discovering frequent
arrangements of temporal intervals,” in Proceedings of the 5th IEEE
International Conference on Data Mining (ICDM’05): IEEE Press,
2005, pp. 354–361.

[19] P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos, “Mining
frequent arrangements of temporal intervals,” (English), Knowledge
and Information Systems, vol. 21, no. 2, pp. 133–171,
http://dx.doi.org/10.1007/s10115-009-0196-0, 2009.

[20] E. Keogh and C. A. Ratanamahatana, “Exact Indexing of Dynamic
Time Warping,” Knowledge and Information Systems, vol. 7, no. 3, pp.
358–386, 2005.

[21] C. K. Chui, B. Kao, E. Lo, and D. Cheung, “S-OLAP: An OLAP system
for analyzing sequence data,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, 2010, pp.
1131–1134.

[22] P. Meisen and M. Recchioni, Time Interval Data (ghdatacsv). DOI:
10.13140/RG.2.1.4597.1687

Fig. 6. Results of the performance tests.

2929

