
Bloom Filter Tree for Fast Search of Tree-Structured Data

Mengyu Wang, Ying Zhu

Faculty of Business and Information Technology
University of Ontario Institute of Technology

Oshawa, Canada
mengyu.wang@uoit.ca, ying.zhu@uoit.ca

Abstract—We consider the problem of searching for a data
element in a tree-structured data set (e.g., XML). We propose
a method which is more efficient than tree traversal and which
still retains all the important metadata information that would
be lost in the naive method of linear list search. We compute a
bloom filter for each interior node of the tree, essentially building a
bloom filter tree to enhance the original data tree. Using the bloom
filters, we can do fast search by pruning out entire subtrees from
being searched. We present a theoretical analysis of the search
complexity of selective placement of bloom filters in the tree, which
leads to an optimal placement strategy. Our experiments verify
the efficiency of our method.

Keywords. data search, information systems, tree-structured data

I. INTRODUCTION

We consider data that are structured as trees, examples

include XML trees and DOM trees. The leaf nodes in the

data tree are the data elements; the interior nodes contain

metadata as well as possibly data elements. That is, the set

of data elements reside in the leaf nodes and possibly in the

interior nodes, while the metadata reside in the interior nodes.

We consider the problem of searching for a particular data

element x in the set. If we simply take the leaf nodes and

represent them as a list of elements, and then search this

list, we would obtain a boolean answer of whether x is in

the data set or not. We would not find out any information

related to the tree structure of the data: where x is in the

tree and any of the metadata associated with x. We would

lose vital information encapsulated in the tree organization, and

therefore lose its original intent and advantage. To retain the

tree location and metadata for x, we must conduct the search

on the tree. The naive way of doing a breadth-first or depth-first

tree traversal would yield x’s location(s) in the tree and hence

all its associated metadata. The cost of such a traversal is that

every node in the tree must be visited and every leaf node also

compared with x.

We propose a more efficient method to find x and obtain its

metadata and location(s) in the tree. At each interior node, we

compute a bloom filter for the entire subtree rooted at this node.

By checking the bloom filter, we can eliminate the possibility

that x is in that subtree and altogether forego the traversal or

search in that subtree. This way, every subtree not having x

as one of its leaf nodes does not get traversed or searched at

all, thus saving the unnecssary cost. Essentially we construct

a tree of bloom filters; the tree has the same topology as the

data tree, minus its leaf nodes. A bloom filter is simply a bit

vector of m bits. Each computed bloom filter can easily be

stored at the corresponding interior node in the original data

tree. We construct the bloom filter tree from bottom up. First,

we compute the bloom filters for the lowest-level (topologically

speaking) interior nodes, i.e., those with leaf nodes as children.

The bloom filters of upper interior nodes are obtained by taking

the union of the bloom filters of all their children. Proceeding

thus from bottom up, we build the entire bloom filter tree right

up to the root.

The search for x, in contrast, begins at the top. We first

check the bloom filter at the root to see if x exists in the entire

tree. If it does, then we go down one level to check the bloom

filters of the children of the root, to see if x is in any of these

subtrees. If a check yields positive, then we know that most

likely x is in that subtree and proceed to keep checking in

that subtree top-down, in the same fashion. If a check yields

negative, then we know with certainty that x is not in that

subtree and can prune out that subtree. Throughout this top-

down pruning search process, we store the path(s) that lead to

data element x. For every instance of x found in the data tree,

the path to it from the root is obtained and this path gives the

location and metadata information. The answer to the query for

x is therefore not just a boolean, but a set of paths (obviously

empty set means no instance of x found).

As an illustrative example, suppose we have a collection of

text data — these could be documents or forum posts or just

pieces of text that users contribute to a common repository. This

data is naturally organized into a tree, the children of the root

node may represent the different content types, the next levels

down may represent the timestamps, and the further down the

breakdown may be by user ID, etc. The leaf nodes contain the

actual text data. By building the bloom filters for this tree, we

can efficiently search for particular text items and for instance,

find out which user contributed them and when.

II. RELATED WORK

The bloom filter data structure is space-efficient which

simply represents a set of data for membership queries [2],

and has been widely used in various applications such as

overlay collaboration [5] and network intrusion detection [12],

[22], [21][21]. Several variants [11], [17], [16], [4], [20] have

been proposed for performance speedup and space efficiency.

Retouched bloom filters trade off false positives[6] and false

negatives [10]. The work of [13] simplifies implementation by

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.30

18

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.30

18

using two hash functions. Algorithms in [7], [16] approximate

representations of multisets.

A closely related work is that bloom filters were used as

summaries for the set of content on a node to aid global

collaboration in peer-to-peer networks, eg. [14],[18], [19], [1].

A query is a search for specific data generated from the node

to determine whether the query is present in the bloom filter

for the corresponding node, also aiming to route path queries

based on node?s content. Web caches [11], [15] use bloom

filters as the compact representations for the set of cached

files. Each cache periodically sends the summary of itself to

all the other members of the distributed cache. Receiving all

the summaries, the cache node will have an overview of the

set of cached files stored in the aggregated cache. Due to the

potential for representing objects in memory, the bloom filter

data structures have been used to summarize the contents of

stream data, to support explicit state model checking of finite-

state transition systems [3], [9],[8]. One typical application is

approximate state machine, which monitors a flow’s state in

finite-state transition systems.

III. BLOOM FILTERS

We briefly present the background on bloom filters. Given

a set S of N elements, and an integer x, the problem is to

determine whether x is in S.

A bloom filter uses k hash functions, hi, i = 1, . . . , k, each

with the same range [0, . . . ,m− 1]. To add an element x to S,

set all k bits of hi(x), i = 1, . . . , k to 1 in the bit vector. Given

x, if not all these k bits are 1, then it is known with certainty

that x /∈ S; otherwise, it is with high probability that x ∈ S (if

x /∈ S, then this is a false positive). With a pre-specified set

size N and false positive rate, one can find the required size

of bit vector m. Even for a low false positive rate of 0.1, m is

only approximately 10N bits. This is considered constant space

because m does not depend on the data size of each element

in S.

IV. BLOOM FILTER TREE

In this section, we describe the construction and the search

of the bloom filter tree. We are given a data tree T and build

co-existing bloom filter tree. The storage of the bloom filter tree

is simply enhancing T by storing a bloom filter (bit vector) at

each of its interior nodes. The assumptions of T are: (1) Every

leaf node is a data element. (2) Every interior node contains

metadata and possibly a data element. (3) The data set S of

interest for search consists of data elements at the leaves and

the interior nodes. (4) There are n data elements in T .

Given the number of elements n and a desired false positive

probability f , we can find the number of bits m required for the

bloom filter to represent the set of elements, using the equation

[5]: m = −(n ln f)/(ln 2)2. In the performance evaluation, we

use the false positive probability of 0.1 throughout our experi-

ments. Given m and n, the optimal number of hash functions k

can be found by the equation [5]: k = (m/n) ln 2. Optimality

is in the sense of minimizing false positive probability.

We construct the bloom filter tree from bottom up. Each

bloom filter generated has m bits and uses k hash functions.

We begin with computing a bloom filter for each group of leaf

nodes sharing the same parent, and storing this bloom filter at

the parent node. After processing all the leaf nodes, the parent

nodes of the leaves (i.e., the bottom-most interior nodes) each

has a bloom filter. We then move one level higher up and build

bloom filters for those nodes that have as children the nodes

already assigned bloom filters. Consider such an interior node

u, let ci, i = 1, . . . , l be its l children with their respective

bloom filters bi, i = 1, . . . , l. The set of data represented by u

should be the union of all the data sets represented by {ci}l1. A

nice property of bloom filters is that the union of a collection of

sets is represented by the bloom filter computed by the bitwise

OR of the filters of each of these sets. That is, the bloom filter

for u is simply: b1 OR b2 OR . . . OR bl, where OR is the bitwise

OR operator. We compute bloom filters for each level of interior

nodes, moving up the tree until one is computed and stored at

the root.

When we search for a data element x, we begin at the root

of the tree. We check if x is in the bloom filter at the interior

node u, if yes, then we recursively search for x in each of the

children of u; otherwise, we prune out the subtree rooted at

u and do not search it any further. Every time we find x in a

bloom filter, we record the interior node visited in the search

result. The construction and search of the bloom filter tree are

shown in pseudocode in Algorithm 1 and 2, respectively.

V. OPTIMAL PLACEMENT IN A SPARSE BLOOM FILTER TREE

We consider now the problem of using a sparse bloom filter

tree instead of the full one in which every node in the data

tree is indexed by a bloom filter. In order to reduce the amount

of overhead associated with computing and maintaining a full

bloom filter tree, we can choose to index only a subset of

the nodes. The problem becomes: Given the number of bloom

filters k that we wish to generate, how do we find an optimal

placement for them in the tree? Optimality is defined in terms

of search efficiency, or equivalently, by the total number of

nodes scanned or accessed before the target item is found or

deemed to not exist in the tree. Incidentally, our analysis also

yields the exact reduction in search complexity achieved by

adding b bloom filters to the tree.

To calculate the search complexity, we need the parameters:

n = total number of nodes in the tree; q = probability of any

given data item being searched for is in the tree (); α = number

of children each interior node has.

We reason that we only need to consider the cases of b =

0, 1, 2 because the analysis process can be thought of as being

recursive, with each of the subtrees rooted at level-1 nodes

(children of the root) being treated recursively as a tree.

We begin with the cases of b = 0, 1, that is, the cases of using

no bloom filter and using only one. For search complexity, we

1919

Algorithm 1: Constructing the bloom filter tree

Data: data tree T, n, m, k

/* n,m,k are parameters for creating a bloom filter: capacity, number of bits, number

of hash functions, respectively */

Result: bloom filter u.bf for each interior node u

/* build bloom filter tree by calling recursive function buildBF(·) and passing the

root node to it */

buildBF(root node of T, n, m, k) /* definition of the recursive function buildBF */

Function buildBF (node u){
u.bf := create-bloom-filter(n,m,k)
if u’s children are leaf nodes then

for each child c of u do
add data element c to u.bf

end
end
else /* bitwise OR of bloom filters of all u’s children, recursively computing them */

u.bf := bitwiseORc child of u buildBF (c,n,m,k)
end
}

Algorithm 2: Search for element x in bloom filter tree

lookFor (root node of T, x, result) /* definition of recursive function lookFor */

Function lookFor (node u, data element x, result){
if u’s children are leaf nodes then

if x is in u.bf then
append u in result
return

end
else

return
end

end
else

if x is in u.bf then
append u in result
for c in u’s children do

lookFor (c,s,result)
end

end
end
}

use the expected number of nodes scanned in the search. For

b = 0, whether the data item being searched for is in the tree

or not, the expected number of nodes scanned is the same:

q · n
2
+ (1− q) · n

For b = 1, we first calculate the search complexity of placing

the bloom filter at the root node. If the data item is in the tree,

the search complexity remains the same as above; but if it is

not, then the bloom filter at the root would indicate so and

eliminate the search altogether.

q · n
2
+ (1− q) · 0 = q · n

2
We observe that by adding just one bloom filter (at the root), the

expected number of nodes scanned is reduced by (1 − q) · n.

In the uninformed case of q = 1/2, search is improved by

scanning n/2 fewer nodes on average.

Figure 1. 1 bloom filter at a level-1 node.

Suppose instead, we place the bloom filter at a level-1 node

(i.e., one of the children of the root). The decision tree in

1 shows the three different possible outcomes, which are at

2020

the leaf nodes of this decision tree. For instance, if the data

item is in the tree and in the subtree rooted at the level-1

node that has the bloom filter — outcome 1; this results in

a search of only this subtree, the expected number of nodes

scanned is hence 1/2 of the number of nodes in the subtree,

≈ (1/2)n/α. If it is in the tree but not in the subtree of this

level-1 node, then it must be in one of the other (α−1) subtrees

of level-1 nodes — outcome 2. The edges are labeled by the

probabilities of events. For outcome 1, the number of nodes

scanned is limited to searching one subtree — the one rooted

at the level-1 node with the bloom filter. For outcome 2, the

bloom filter will indicate that the item is not in that subtree,

so all the remaining subtrees will be searched until the item is

found. Since the bloom filter is at a level-1 node, outcome 3

will require scanning every single node in all the subtrees but

one, until it is concluded that the item is not in the tree. The

expected number of nodes scanned is therefore given below.

q · 1
α
· n

2α
+ q · α− 1

α
· n(α− 1)

2α
+ (1− q) · n(α− 1)

α

= q · n(1 + (α− 1)2)

2α2
+ (1− q) · n(α− 1)

α
To compare with zero bloom filter, we subtract this from the

other to obtain

q ·
[n
2
− n(1 + (α− 1)2)

2α2

]
+ (1− q) ·

[
n− n(α− 1)

α

]

= q · n(α− 1)

α2
+ (1− q) · n

α

≈ q · n
α
+ (1− q) · n

α
We compare selection of level-1 node with root node for

placing the bloom filter, to obtain the difference:

− q · n(α− 1)

α2
+ (1− q) · n(α− 1)

α
If this expression evaluates to a positive number, then placing

the bloom filter at the root performs better than placing it at a

level-1 node; otherwise, the level-1 node is the better choice.

It is interesting to note that with different values of q, it may

be one or the other. The root does not always give the better

performance. For example, letting q = 0.8 and α = 3, the above

expression evaluates to a negative number, meaning placing the

bloom filter at a level-1 node gives better performance than at

the root. We draw the conclusion: If it is known a priori
that the search item is likely to be found in the tree, then
it is better to place the bloom filter at a level-1 node, not at
the root. Otherwise, it is optimal to place the bloom filter
at the root. (Conclusion I)

Generalizing this, we obtain the search complexity for place-

ment at a level-k node. The probabilities on the rightmost two

arrows in 1 would change to 1/αk and 1− 1/αk, respectively.

Therefore we have the following:

q · 1

αk
· n

2αk
+ q ·

(
1− 1

αk

)
·
(n
2
− n

2αk

)
+ (1− q)

(
n− n

αk

)

= q · n((α
k − 1)2 + 1)

2α2k
+ (1− q) · n(α

k − 1)

αk

= q · n
[(αk − 1)2

2
− (αk − 1)

]
+

n(αk − 1)

αk

For increasing k, this quantity clearly increases since the (αk−
1) term is easily dominated by the (αk−1)2/2 and (αk−1)/αk

terms. In brief, this quantity achieves the minimum value at

k = 1 over all values for k >= 1. The conclusion is that
bloom filter placement at a level-1 node is always better
than at a level-k node for any k > 1. (Conclusion II)

Next, we consider the case of b = 2 bloom filters to be

placed in the tree. We compare the search complexity for (i) 1

at root and 1 at level-1, and (ii) 1 at root and 1 at level-2. Using

the decision tree reasoning as above, we obtain the following.

(i) : q · 1
2
· n

2

α2

[
1 + (α+ 1)2

]

(ii) : q · 1
2
· n

2

α4

[
1 + (α2 − 1)2

]

Subtracting them, (ii)−(i), gives the difference

n2
[1 + (α2 − 1)2

α4
− 1 + (α− 1)2

α2

]

= n2
[2(α3 − 2α2 + 1)

α4

]

Since α3 − 2α2 + 1 > 0, ∀α ≥ 2, placement (ii) always has a

larger search complexity than (i), hence the conclusion is that
it is more optimal to place the first bloom filter at root and
the second one at level-1 than to skip a level for the second
one. (Conclusion III)

Now we put our conclusions together. To be most generally

applicable, we assume a q value that is not too lopsided.

Conclusion I requires that we place a bloom filter at the root.

Conclusion III indicates that the next bloom filter should be

placed at a level-1 node for optimal search efficiency. Applying

Conclusion II, the next bloom filter should be placed at another

level-1 node, and this is applied until all but one of the level-

1 nodes have bloom filters assigned (the last one does not

need one, since the complement of all its siblings serve the

same purpose). Then, we apply these recursively to each of the

subtrees rooted at the level-1 nodes. Because the equivalent q

value for each level-1 node (root of their own subtree) is known

to be small (it is size of one subtree over size of all subtrees),

Conclusion I dictates that we place bloom filters at the level-2

nodes (all except one). And so on and so forth, until we reach

the quota of b bloom filters in total to be placed. Based on our

analysis, this incurs the minimum search complexity and thus

optimum search efficiency.

VI. EXPERIMENTS

We implemented the bloom filter tree in Python to evaluate

its performance. For the data tree, we randomly generated data

elements for the leaf nodes and the interior nodes of the tree

using parameters of tree height h, number of children for each

interior node at levels less than h, and number of leaf nodes for

each interior node at level h. Then using the generated data tree

as input, we constructed the bloom filter tree as described in IV.

To search for a given data element, we implemented the bloom

filter tree search also as described in IV. For comparison, we

2121

Figure 2. histogram of query time distribution

Figure 3. varying tree size versus query time

Figure 4. effect of tree height on query time

implemented the naive method of tree traversal for searching

for a given data element.

We first compare the search time of using the bloom filter

tree and of doing the naive tree traversal. We randomly select

1000 data elements from the leaf nodes of the data tree and

run searches for them by using bloom filters and by tree

traversal. The histograms of the search times for these 1000

searches for both methods are shown in Fig.2. As can be seen

in the histograms, the search time for the bloom filter tree

is consistently and substantially more efficient than the naive

method. For this experiment, the tree size was around 20,000

nodes with height of 7.

In the second experiment, we varied the tree size from 10,000

to 30,000 and measured the average query time over 1000

queries, for both methods. Figure 3 shows the log plot of the

query time. One may observe that with bloom filter index, the

query time is improved by 1 to 2 magnitudes.

We further investigated the robustness of our method for

trees of varying structures. We exprimented with shallow trees

to deep trees, varying the height from 2 to 10. The log plot of

query time is shown in Fig. 4. Not only is our method more

efficient in query time, but also as the tree height increases,

the gap grows even more rapidly. This further highlights that

bloom filters brings in pruning the search space.

We also considered the scenario of selectively placing bloom

filters in the tree. We investigated the performance when we

change the proportion of nodes that have bloom filters. The pro-

portion varies from sparsely indexed to densely indexed trees,

numerically from 0 to 1. As we can see in Fig. 5, even with

only 40% of the nodes indexed, our method outperforms the

naive one; and as in the previous experiment, the improvement

grows with the density increase.

In the experiments presented so far, we have consistently

searched for data items known to be already in the tree. In

real life, we also need to consider missed queries, namely

queries that do not match any data in the tree. Given the

bloom filter property, we have greater pruning power with

missed queries, thus yielding better performance. In Fig. 6,

we show the performance for workloads consisting of various

proportions of missed queries. As expected, the higher the ratio

of missed queries, the more efficient the search time our method

exhibits.

VII. CONCLUSION

We have proposed a method to efficiently search for data

items in data sets that are organized into hierarchical tree struc-

tures. Our method relies on assigning bloom filters to interior

nodes of the tree. Using these bloom filters, our search through

the tree can prune out subtrees, thereby greatly reducing search

time. In order to reduce space requirement, we also explored

the scenario of assigning bloom filters only to a fraction of

the interior nodes. We further present a theoretical analysis of

the selective placement of bloom filters to a subset of nodes

and propose an optimal placement strategy. Our experiments

2222

Figure 5. density of indexed nodes versus query time

Figure 6. effect of types of querying the work load on query time

show that our method is more efficient than the naive methods

by orders of magnitude. They also show that placing bloom

filters to only 40% nodes would be sufficient to attain search

efficiency. Performance is consistent over varying tree sizes and

heights.

REFERENCES

[1] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and
David Hutchison. Scalable bloom filters. Information Processing
Letters, 101(6):255–261, 2007.

[2] Burton H Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426,
1970.

[3] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrah, Sushil
Singh, and George Varghese. Beyond bloom filters: from
approximate membership checks to approximate state machines.
ACM SIGCOMM Computer Communication Review, 36(4):315–
326, 2006.

[4] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil
Singh, and George Varghese. An improved construction for
counting bloom filters. In Algorithms–ESA 2006, pages 684–
695. Springer, 2006.

[5] Andrei Broder and Michael Mitzenmacher. Network applications
of bloom filters: A survey. Internet mathematics, 1(4):485–509,
2004.

[6] Ken Christensen, Allen Roginsky, and Miguel Jimeno. A new
analysis of the false positive rate of a bloom filter. Information
Processing Letters, 110(21):944–949, 2010.

[7] Saar Cohen and Yossi Matias. Spectral bloom filters. In
Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pages 241–252. ACM, 2003.

[8] Peter C Dillinger and Panagiotis Manolios. Bloom filters in
probabilistic verification. In Formal Methods in Computer-Aided
Design, pages 367–381. Springer, 2004.

[9] Peter C Dillinger and Panagiotis Manolios. Fast and accurate
bitstate verification for spin. In Model Checking Software, pages
57–75. Springer, 2004.

[10] Benoit Donnet, Bruno Baynat, and Timur Friedman. Retouched
bloom filters: allowing networked applications to trade off se-
lected false positives against false negatives. In Proceedings of
the 2006 ACM CoNEXT conference, page 13. ACM, 2006.

[11] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Sum-
mary cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking (TON), 8(3):281–293,
2000.

[12] Wu-chang Feng, Kang G Shin, Dilip D Kandlur, and Debanjan
Saha. The blue active queue management algorithms. IEEE/ACM
Transactions on Networking (ToN), 10(4):513–528, 2002.

[13] Adam Kirsch and Michael Mitzenmacher. Less hashing, same
performance: Building a better bloom filter. In Algorithms–ESA
2006, pages 456–467. Springer, 2006.

[14] Georgia Koloniari and Evaggelia Pitoura. Content-based routing
of path queries in peer-to-peer systems. In Advances in Database
Technology-EDBT 2004, pages 29–47. Springer, 2004.

[15] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer, et al. Oceanstore: An
architecture for global-scale persistent storage. ACM Sigplan
Notices, 35(11):190–201, 2000.

[16] Abhishek Kumar, Jun Xu, and Jia Wang. Space-code bloom
filter for efficient per-flow traffic measurement. Selected Areas
in Communications, IEEE Journal on, 24(12):2327–2339, 2006.

[17] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM
Transactions on Networking (TON), 10(5):604–612, 2002.

[18] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer
keyword searching. In Proceedings of the ACM/IFIP/USENIX
2003 International Conference on Middleware, pages 21–40.
Springer-Verlag New York, Inc., 2003.

[19] Sean C Rhea and John Kubiatowicz. Probabilistic location and
routing. In INFOCOM 2002. Twenty-First Annual Joint Con-
ference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1248–1257. IEEE, 2002.

[20] Ori Rottenstreich, Yossi Kanizo, and Isaac Keslassy. The
variable-increment counting bloom filter. In INFOCOM, 2012
Proceedings IEEE, pages 1880–1888. IEEE, 2012.

[21] Alex C Snoeren, Craig Partridge, Luis A Sanchez, Christine E
Jones, Fabrice Tchakountio, Beverly Schwartz, Stephen T Kent,
and W Timothy Strayer. Single-packet ip traceback. IEEE/ACM
Transactions on Networking (ToN), 10(6):721–734, 2002.

[22] Qi George Zhao, Mitsunori Ogihara, Haixun Wang, and Jun Jim
Xu. Finding global icebergs over distributed data sets. In
Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 298–307.
ACM, 2006.

2323

