
Software code generator in Automotive field 

Shahab Nadir 
Technical university of Ilmenau 

Ilmenau, Germany 
sh.nadir@gmx.de 

 

Prof. Detlef Streitferdt 
Technical university of Ilmenau 

Ilmenau, Germany 
detlef.streitferdt@tu-ilmenau.de

    
 

Abstract— Rapid development of new technology has resulted 
changes in IT world affecting the way we work.  Software use 
has increased in different fields of technology. In automation 
field, for example, the usage of Electronics Control Unit (ECU) 
has increased resulting in a different size of software. Due to 
persistent role of software in technology, the software cost and 
quality has become an important field. In automation field a 
number of tools are being developed which help to generate 
software codes. These tools can be used in software cost 
reduction because of reuse of software modules.  In automatic 
code generation, the size estimates can hide the true effort of a 
program. In this paper we discuss the effect of using code 
generators in automation sector and how these tools have an 
effect on the cost of the software. We will compare the effort of 
code written manually and by using a code generator. 

Keywords- code generator, software engineering, automotive, 
code effort. 

I.  INTRODUCTION 
In automation field, Original Equipment Manufacturers 

(OMEs) try to reduce the cost of their equipment. One 
important aspect that can reduce the overall cost is to reduce 
the cost of the software that is used in several applications. In 
quest of cost reduction, several OMEs decided to develop 
software platform which can be used in several variant of 
applications. These software is used to  transfer data between 
different ECUs automobile by using data buses. One of the 
widely used buses in vehicle technology is Control Area 
Network (CAN). CAN needs a module (CAN stack) that 
makes the interface between the application and the bus. This 
module is used to read/ write messages on this bus. In 
automation field one vital platform that is extensively used 
for different applications is AUTOSAR (AUTomotive Open 
System ARchitecture). AUTOSAR is a multilayer software 
architect and provides the standardization of basic system 
functions and functional interfaces. Figure 1 show a general 
structure of Autosar. The fundamental idea of AUTOSAR is 
the reuse of software components and to master the emergent 
complexity of automotive electronic and software 
architectures [15]. It provides an interface between the 
application software components and other communication 
links e.g. CAN by using an interface layer ‘Real Time 
Environment’ (RTE). Different code generation tools have 
been developed for such layers to reduce the cost of 
software. These tools are used to generate the interface 
between the busses and the application. Using these tools a 
massive number of Lines of Code (LOC) can be generated 

with less amount of effort as compared to writing the same 
code manually. Some code generator tools are used to 
generate the CAN stack to transfer data between RTE and 
CAN bus, for example, CANgen/ Geny developed by Vector 
Informatik GmbH in Germany is an important tool which 
mostly used by OEMs [15]. In order to study the effect of the 
code generator tools, we have used two different code 
generator tools to generate the CAN stack for a specific ECU 
with the same environment and application. One with an 
easy configuration GUI (Graphic User Interface) form and 
other with a little complex GUI form which need more 
information to be configured and acquire the code. These 
two tools have been used by a number of engineers with the 
same document about the use of every tool, other engineers 
group are asked to implement the code manually. A second 
part of this experiment is done by the study of several 
software applications to advertise some CAN messages and 
signals information on a display. Some of these applications 
were written manually and some others by using a tool to 
generate the code. The programming language used is 
embedded C. 

 

 
Figure 1 [15]: Autosar overview 
 

II. METHOD AND STRATEGY  

A.  ESTIMATING THE COST OF SOFTWARE 
There are several methods used to estimate the cost of the 

software. One of widely used method is COCOMO (COnstructive 
COst MOdel) developed by Boehm 1981 [1].  COCOMO 
estimation relies upon the size estimation and the environment 
information.  Size estimation is product specific and is based on 
specifications and design plan while environment information is 
organization specific and includes type of the project, experience 

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.186

13

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.186

13

mailto:sh.nadir@gmx.de
mailto:detlef.streitferdt@tu-ilmenau.de


of the staff etc., [2]. Size of the software is an important factor for 
the cost estimation in COCOMO method and this cost estimation is 
based on software metrics.  Other important attentiveness factors in 
COCOMO method are complexity of the software, and the 
programming language used.  With code generator tools the impact 
of these factors can change, for example, the LOC is not a big 
effort using these tools but here we should also take account of the 
cost and effort of the code generator tools in order to calculate the 
total cost of the software or software models. 

 

B. Final Estimating the Effective Size of Auto-
Generated Code in a Large Software Project  

Barry Boehm in Software Cost Estimation with COCOMO 
II writes in [1] "Code generated with source code generators is 
handled by counting separate operator directives as source lines of 
code. It is admittedly difficult to count "directives" in a highly 
visual programming system. As this approach becomes better 
understood, we hope to provide more specific counting rules". 
Counting auto generated code is a tough task because using auto 
generated tools effort, productivity, and density estimates can be 
skewed [17][18]. In this paper our focus is on estimating the effort 
of the software in auto generated code and manually written code. 
The sample analysed in this paper deals with a newly developed 
ECU with over 65000 LOC. The development process selected is 
the V-Model. Some modules of the software are written manually 
and some others are generated with different code generator tools, 
one used tool was CANgen (code generator I), which is developed 
by Vector informatik in Germany. CANgen is professional tools 
including an easy used GUI to configure the CAN bus. Another is 
developed to be used for general bus configuration for internal 
usage in an automotive supplier company, this tool can be used to 
configure some different automotive busses. It has a general 
configuration GUI which needs some effort to configure the details 
of used bus. Because of internally use of the software we will call 
it in this paper as CANtool (code generator II). A number of 
programmers with same experience are asked to implement the 
applications.  

 
To analyse the effect of code generator tools on the effort of 

software, two steps are performed on software modules: 
 Studying the direct effect of code generator 

tools through comparing 
 Analyzing the effect of code generator tools on 

different software modules 
 

C. Studying the direct effect of code generator tools 
 

In first step of the experiment, a requirement to receive five 
messages from the CAN bus in order to advertise the speedometer 
and tachometer in an instrument cluster with the speed unit, and 
send the calculated speed  of vehicle on the Can bus. A group of 
twenty (20) programmers implemented the code to satisfy these 
requirements by using two code generator tools and another group 
of twenty (20) programmers analysed and implemented the 
requirements manually i.e., writing the code per hand. Table 1 
shows the average effort, in terms of LOC, using the code 
generator I, code generator II and manually writing the code. 

 
 
 

 

LOC 
Code 

generator I 
Code 

generator II 
man

ually 
100 8 16 16 
1000 10 20 50 
5000 16 24 80 

 
TABLE I: AVERAGE CODE EFFORT IN HOURS 

 

A. Analyzing the effect of code generator tools with 
different modules  

In second step of this experiment, a real software development for 
an instrument cluster is analysed. Some modules of this instrument 
cluster are implemented by using code generator I tool while some 
others are implemented manually.  Table 2 shows the estimation 
results of the auto generated tools and manually written code. The 
complexity level depend on the Interfaces between the different 
layers and components in the Software. The complexity 1 means a 
simple transfer of signal from the bus to RTE layer with no 
interface among the different components, complexity 2 is used 
when the signal need some information from less than 3 other 
different components, and the complexity 3 by the need to deals 
with more than 3 components to get the needed value. 

 

idx 

Mod
ule 

LOC 

Generated 
code 

estimation [h] 
generator II 

Handwritte
n code 

estimation [h] 

Complexity 

1 800  42 2 
2 1100  60 2 
3 1400  120 3 
4 1600  220 3 
5 2000 20  2 
6 400 8  1 
7 1000 24  3 
8 1500 28  3 

 1000  200 2 
10 950  120 2 
11 800  80 3 
12 1100  90 2 
13 400  45 3 
14 500  40 2 
15 550  45 2 
16 600  50 2 
17 800  80 3 
18 1200 16  2 
19 1200 20  3 
20 1300 16  2 

 
Table 2: Estimated results of auto generated tool and manually 

writing code(1 = low, 2 = medium, 3 = high) 
 
 
 
 
 

1414



III. RESULT 
The generator tools help to generate a large amount of code by 

the use of a configuration GUI. These tools allow the software 
developers to produce massive amounts of code using less effort. 
However, parametric estimation models that use the code size as a 
primary input (COCOMO II, SEER-SEM, etc.) have no active 
means to handle the auto generated and manually written code 
jointly. If only auto generated code size is considered as the 
solitary input, it increases the risk of underestimating the 
development effort. Therefore the estimation effort requires more 
inputs metrics than LOC size. The requirements analyses, design, 
implementation and testing the code are other vital metrics to 
estimate the effort. 

In Automation field the development is performed at different 
CMMI (Capability Maturity Model Integration) levels depending 
on the equipment and the security level of the equipment. 
Development includes several phases where each phase is 
subdivided into activities. The default activities according to the V-
model development process are requirements analysis, product 
(system) design, model design, model implementation, models 
integration, system test, test Plans, verification and validation (V & 
V), project office support, configuration management/quality 
assurance (CMIQA), and manuals. The percentages of effort 
associated with these activities [16] are given below in Table 3. 
 

Phase Effort 

Requirement Analysis 10 % 
System design 15 % 
Model design 15 % 
Code and unit test 20 % 
Integration and integration-test 7 % 
System test 33 % 
 100 % 

 
Table 1: Percentages of effort associated with different activities 

 
The percentage effort can be separated as testing and non-

testing effort. The final percentages are as follow: code 
implementation 20 %, requirement analysis and design 40%, and 
test phase 40%.  

 
Total effort = RA (Requirement analysis) + C (Code) + I&T 
(Integration and Test) 

 
Total effort = 40% RA + 20% Code + 40% Test 
 

Therefore we can say the code effort to implement the system (and 
is dependent on the programming language used) is only 20% of 
the total effort. Code complexity, code quality and the size of code 
is also included in this 20% effort. By COCOMO LOC is an 
important factor which affects the price of software but software 
price also includes the effort of requirements analysis and system 
design, and testing effort. Since the test cases are designed 
depending on the code, total effort is modified according to 
equation given below:   
 
Total effort = 60% LOC + 40% Test 
 

In code generating tools when new requirements arrive or a new 
module development is required, the 20% effort of the code will be 
directly affected. Since the design of the new module or 
requirements is crucial which requires requirements analysis as 
well, therefore, requirements analysis and system design would be 
indirectly affected. The usability of the generators tools is shown 
in figure 2. The tool I is comparatively easier to use. Although it 
helped to decrease the total effort of the software but we should 
also take in account the cost of the generator tool. If we take the 
cost of the generator tool as an additional effort, commercially it 
will be negative and the overall cost will be increased.  
 

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000

LOC
E

ffo
rt 

in
 h

ou
rs

generator tool 1

generator tool 2

 
Figure 2: Usability of generator tools 

Next we show the difference in effort between manually written 
code and auto generated code for different requirements in figure 
3. The effort of LOC is depending on the complexity of the 
software requirement Table 2. In order to study the effect of 
generating tool on the effort of LOC, we measured some 
requirements with same complexity and determined the effort of 
100 LOC of each requirement. In Figure 3 man can see that the 
code generator tools have more impotent for the requirements 
which need a huge LOC.  
 
Code generator tools are useful for frequently used designs where 
the only requirement is to configure the tool with specific input 
parameters. Consequently there major benefit is for modules that 
are frequently used more than one time. Here auto generator tools 
can decrease the effort and cost of software development. The 
effort (Ed) can be calculated from the general software 
development equation:  
 
Ed = Cs . Cenv . Seff  

 
Where  Scaling constant,  Environment constant and 

 Effective software source size, however the can be 
decreased by using a good tool generator in order to decrease the 
cost of the module. 
 

1515



0

50

100

150

200

250

0 500 1000 1500 2000
LOC

E
ffo

rt 
in

 h
ou

rs
using generator tool

without using generator tool

 
Figure 3: Difference in effort between manually writing the code 
and auto generated code 

IV. CONCLUSION  
In the last decades can man recognize that the use of software 
increased in Automation field. With this rising of software use, the 
complexity of software is increasing too. Develop the software 
with high quality has a huge effort and cost. Because of the several 
use of software pieces in different projects or different variants of 
project, the automatic software code generators are widely used in 
this field. The use of automatic code generation has proven to be a 
useful tool for the generation of software.  
One of the development sector where the code generator are 
widely used, is to generate the basic software in ECUs. We used 
this approach to software development to replace and extend parts 
of an existing implementation of the common communication used 
by Autosar.  
This development process provided several benefits over more 
traditional software development that are particularly important for 
safety critical software. 
First, tightly coupled of the design and the implementation, so 
there is always an update for the documentation (design) with 
respect to the code. The implementation has no opportunity to drift 
away from the original design.  
Second, using a tool to generate a different code types, and using a 
code generator with high usability can help to reduce the effort of 
development. Using generator tool could help to identify and 
correct large number of defects, before the C/C++ code is 
generated and run on the target hardware.  
Third, updates and corrections to the design can be easily and 
quickly accomplished, the developer need only modify the diagram 
and regenerate the code. There is no need to hunt for affected 
regions in the code and manually update each one. Ultimately, 
these benefits can result in reduced development and testing time 
and a reduction in software development and maintenance costs.  

An important consideration when using code generator is the 
usability of the tool. In this paper different tools are used to focus 
the importunacy of tool metrics. Although different metrices could 
be neede for different tools depending on the application of use. 

ACKNOWLEDGMENT 
Support for this work, by University of Ilmenau, was 

provided by Computer Science Department/ Software 
Architectures and Product Lines Group. And the authors 
would like to thanks in advance for all participated persons 

as subjects in this work. 

REFERENCES 
[1] Boehm, B., et. al., “Software Cost Estimation With 

COCOMO II”, Prentice Hall PTR, Upper Saddle River, NJ. 
1999. 

[2] Galorath Incorporated, “SEER-SEM User's Manual,” 
Galorath Incorporated, El Segundo, CA. 2000. 

[3] Robert Ferguson, Dennis Goldenson, James McCurley, 
Robert W. Stoddard, David Zubrow, Debra Anderson , 
“Quantifying Uncertainty in Early Lifecycle Cost Estimation 
(QUELCE),” SEI Identifier: CMU/SEI-2011-TR-026, 
December 2011  

[4] P. C. Pendharkar and J. A. Rodger, “A Probabilistic Model 
and a Belief Updating Procedure for Predicting Software  

[5] Development Effort,” IEEE Transactions on Software 
Engineering, Vol. 31, No. 7, 2005, pp. 615-624. 
doi:10.1109/TSE.2005.75  

[6] I. Stamelos, L. Angelis, M. Morisio, E. Sakellaris and G. L. 
Bleris, “Estimating the Development Cost of Custom 
Software,” Information & Management, Vol. 40, 2003, pp. 
729-741. doi:10.1016/S0378-7206(02)00099-X  

[7] L. Angelis, I. Stamelos and M. Morisio, “Building a 
Software Cost Estimation Model Based on Categorical 
Data,” Proceedings of Seventh International Software 
Metrics Symposium, London, UK, 2001, pp. 4-15.  

[8] P. C. Pendharkar and J. A. Rodger, “The Relationship 
between Software Development Team Size and Software 
Development Cost,” Communications of the ACM, forth-
coming, 2007.  

[9] R. M. Stair and G. W. Reynolds, “Principles of Informa-tion 
Systems,” Thomson-Course Technology, New York, 2003.  

[10] R. D. Banker and S. Slaughter, “The Moderating Effects of 
Structure on Volatility and Complexity in Software 
Enhancement,” Information Systems Research, Vol. 11, No. 
3, 2000, pp. 219-240. doi:10.1287/isre.11.3.219.12209  

[11] A. J. Albrecht, and J. E. Gaffney, "Software function, source 
lines of codes, and development effort prediction: a software 
science validation", IEEE Trans Software Eng. SE-9, 1983, 
pp.639-648. 

[12] L. C. Briand, K. El Eman, F. Bomarius, “COBRA: A hybrid 
method for software cost estimation, benchmarking, and risk 
assessment”, International conference on software 
engineering, 1998, pp. 390-399. 

[13] G. Cantone, A. Cimitile and U. De Carlini, “A comparison of 
models for software cost estimation and management of 
software projects”, in Computer Systems: Performance and 
Simulation, Elisevier Science Publishers B.V., 1986. 

[14] W. S. Donelson, “Project planning and control”, Datamation, 
June 1976, pp. 73-80. 

[15] N. E. Fenton and S. L. Pfleeger, “Software Metrics: A 
Rigorous and Practical Approach,” PWS Publishing 

1616



Company, 1997. 
[16] http://vector.com/vi_canbedded_j1939_functions_de.html?m

arkierung=CANgen [Online] 
[17] Central directive quality – “software development,” Robert 

Bosch GmbH Central Directive [Online], May 2010. 
[18] Ziegler, Stephen F., "Comparing Development Costs of C 

and Ada," 
http://www.rational.com/products/whitepapers/337.jsp 
Rational Software, Cupertino, CA. 1995.  

[19] Softstar Systems, "A brief history of CoCoMoII,” 
http://www.softstarsystems.com, Softstar Systems, Amherst 
[Online], NH. 2001 

1717

http://vector.com/vi_canbedded_j1939_functions_de.html?m
http://www.rational.com/products/whitepapers/337.jsp
http://www.softstarsystems.com,

