
Design of Arithmetic and Control Cells for a DNA
Binary Processor

Aby K George
Electrical and Computer Engineering

Wayne State University

Detroit, MI, USA

Email: aby.george@wayne.edu

Amjad Almatrood
Electrical and Computer Engineering

Wayne State University

Detroit, MI, USA

Email: amjad.almatrood@wayne.edu

Harpreet Singh
Electrical and Computer Engineering

Wayne State University

Detroit, MI, USA

Email: hsingh@eng.wayne.edu

Abstract—Recently a great deal of interest has been shown by
researchers on developing a bio-molecule based computer. The
basic building blocks of such a computer are arithmetic units and
memory. These units can be designed using Boolean logic gates
as in the case of electronic circuits. Instead of using silicon based
technology, Boolean logic gates can be generated from biological
systems. One such system can be generated by a DNA reaction
mechanism based on a reversible strand displacement process.
A generalized pipeline architecture employing DNA reaction
chain mechanism for the arithmetic operations such as addition,
subtraction, multiplication, and division is discussed in this paper.
A single control line is used in the pipeline array to control the
different modes of operations. The primary functional blocks in
a pipelined array are arithmetic unit and control unit. These
units are made up of basic Boolean logic gates. To implement
these gates, a DNA strand displacement process is employed.
A set of integrating and amplifying gates are used in cascade
with different threshold values to build different digital logic
operations. The main advantage of such a system is that the
arithmetic operations can be overlapped in the pipeline and thus
a high speed operation is possible. Such a general Boolean model
will be a step towards the development of a bio-computer. The
ultimate goal of such a method is to design an automated system
using logic gates, which make decisions within living cells.

Index Terms—DNA binary processor; Arithmetic cell; Control
cell; DNA strand displacement; Visual DSD.

I. INTRODUCTION

The future of medical technology is on building bio-

molecule based computers and nano-structures inside the liv-

ing organism so that deceases like cancer could be treated

internally. Such a system is possible only if there exists a

powerful internal processor similar to that are used externally.

In a digital computing device or processor the input infor-

mation is first converted into its equivalent binary form and

then processed digitally. The basic building block for such

a computer system is digital logic gates such as NOT, OR,

and AND. If a living cell can perform the basic digital logic

gate functions, and they could be networked together to design

complex circuits, then any system that built externally could

be built internally also. The first step in achieving such a

development is the implementation of bio-molecular arithmetic

unit which can perform the basic arithmetic operations. Long

term goal of such a system will be the ability to design some

decision-making cell networks within the living cells.

To make any bio-molecular based computers the basic

building block is bio-molecular digital circuits [1]. Recently a

lot of interest has been shown towards building digital logic

gates and finite state machines for bio-molecule based systems

[2]. There are different kinds of bio-molecule based logic gates

available in the literature [3]–[7]. Some application specific

bio-molecule based circuits such as counter, and timer are

discussed in [8] and [9]. The existing bio-molecular logic gates

are broadly classified into a cell based and cell free systems.

To design a large, complex logic circuit, the basic building

block should be suitable for scaling up. Even though there

are many methods available, the scaling up of circuits is a

major issue. Scaling up of bio-molecular circuits depends on

the interconnection between different gates. In most of the

cases, the inputs and outputs are not uniform as in the case of

electronic circuits. The introduction of toehold-mediated DNA

strand displacement method solved this issue. The theory and

practice of DNA strand displacement circuits are explained

by Lulu Qian and Erik Winfree [10]. A seesaw gate based

scaled DNA circuit architecture based on the reversible strand

displacement is also available in the literature [11]. A dual

rail AND-OR logic [11] is used in this paper as a universal

Boolean gate for designing the arithmetic and control cell.

In this paper, a DNA arithmetic and control cell is proposed.

These cells are used in a pipelined architecture to implement

various binary arithmetic operations such as addition, mul-

tiplication, subtraction and division. A generalized pipeline

array using basic logic gates are proposed by A K Kamal

et al. in [12] and an optical design and implementation of

such an architecture is explained in [13]. The binary arithmetic

using DNA is designed using two basic building blocks called

arithmetic cell and control cell. These cells have different

Boolean functions associated with them and they are arranged

in such a manner to give different mathematical operations for

different selection of inputs. In this proposed method Boolean

functions used in arithmetic and control cells are implemented

using DNA strand displacement method.

The organization of the paper is as follows. Section I

briefly explain the theory of DNA strand displacement method

and the Seesaw logic gates. In Section II, the arithmetic

and control cell and their working in pipelined processor for

different arithmetic operations are discussed in detail. The

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.125

7

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.125

7

Fig. 1. Abstract Gate Diagram of a DNA motif or seesaw gate

simulation results of operations of arithmetic and control cells

for different input combinations are explained in Section IV.

Finally, some concluding remarks are given in section V.

II. DNA STRAND DISPLACEMENT

Even though different bio-molecule based Boolean circuits

are available, scaling up of the circuit is difficult with most of

the existing methods. These methods use non-uniform inputs

and outputs. To scale up the circuit a new method called

DNA strand displacement method is introduced [5], [14].

In this approach computations is performed based on the

hybridization between complementary nucleotide sequences.

This uses a simple seesaw gate, which is also called as

DNA gate motif. Different DNA structures such as hairpins

[15], [16], simple linear complexes [14] etc. can be used to

perform a strand displacement operation. There are mainly two

processes which drive a strand displacement system. First is

the increase in entropy by releasing the strands and the second

is enthalpy from creating additional base pairs [14].

A. DNA Gate Motif

A DNA gate motif or seesaw gate consists of inputs, fuel

and output. Each gate is configured with a threshold level.

When the input concentration exceeds this threshold level, the

input catalytically converts the fuel to an output. A typical

DNA motif is shown in Fig. 1. The signals (input, fuel and

output) used in these gates are single stranded DNA molecules

referred as signal strands while the gate is partially double

stranded DNA molecule referred as threshold complex or gate

complex. The numerical values given in the figure are initial

concentrations. The numbers above wires give concentration

of the signal strands, while those inside gate give gate:signal

complex or threshold complex (negative) concentrations.

The domain level representation of gate complexes and sig-

nal molecules are shown in Fig.2. The signal strands consists

of three parts: a left recognition domain, a central toe-hold,

and a right recognition domain. The signal strands on either

sides of toehold domain identify the two gates it is connecting.

In the figure, input is S1TS2 , and the fuel is S2TS4. S2

recognition domain is the active domain participating in the

catalytic reaction. The recognition domains such as S1, S2, S3

and S4 are relatively larger than the toehold.

There may be different recognition domains used in a

system, but the toehold used in all the molecules are the

Fig. 2. Example sequences of a DNA motif for ’seesaw’ gate

Fig. 3. The DNA gate motif reaction mechanism

same. The inputs, outputs and fuel are similar in mechanism

and structure as seen from the example in Fig. 3. Similarly

gate:signal complexes are also having uniform structure.

An abstract representation of a gate is shown in Fig. 1 as

a two-sided node, with some wires connected on both sides.

A signal strand can be either toehold exposed or bounded

to a gate base strand with its toehold isolated and thus idle

as shown in Fig. 3. In the given example, gate base strand

T ∗S∗
2T

∗ bound to S2TS3 at the right to form gate:output.

There are three principal operations associated with a gate.

1) Stoichiometric triggering: The signal strand such as

input bound together with the exposed toehold of some

gate:signal complex like gate:output to produce branch

migration and creates a signal strand such as output

and another gate complex like gate:input. In this gate

complex the toehold will be exposed on the opposite

side and thus the overall reaction is reversible [17].

2) Catalytic cycle: In a catalytic cycle, the gate complex

(gate:input) produced by the stoichiometric triggering,

binds to the fuel to produce more input and thus trigger

more output [17]. Thus a small amount of input is

enough to release a large amount of output.

3) Thresholding: This process occurs due to the extended

toehold of the threshold complex. The reaction rate

exponentially depends on the toehold length [17]. The

88

Fig. 4. Threshold motif reaction mechanism

Fig. 5. Amplifying gate

reaction rate of input strands with threshold complexes

are much higher than that of the gate complexes. The

reaction between input strand and threshold complex

produces waste complexes having no exposed toehold

domains. Since there are no exposed toehold domains,

they are inert. The stoichiometric triggering will occur

only if the input concentration is greater than the thresh-

old concentration.

For the example shown in Fig. 1, the concentrations of

gate:ouput complex, fuel signal strand, input signal strand and

threshold complex are 10x, 10x, 1x, and 0.5x respectively.

Since the input concentration is greater than that of the

threshold complex, the input strand reacts with the gate:output

complex to produce the output strand. In such a situation

the output will keep being released up to a maximum con-

centration. The final concentration of the output strand will

be approximately 5x. Thus a seesaw gate amplifies the input

signal when it exceeds the threshold complex concentration.

B. Boolean Gates using DNA motif

The seesaw gates in cascade can be used to design AND or

OR logic gates. The cascaded combination of an integrating

and amplifying gate are used to make the boolean gates. The

amplifying gate can drive multiple outputs. This is similar to

the gate:output complex with same gate base strand bound

by signal strand with different right side recognition domains.

The amount of free fuel should be greater than twice that of

the sum of all bounded outputs [11]. The expressions for the

outputs of the gates shown in the Fig. 5. are given by:

outputi =

{
wi if input > Th

0 if input ≤ Th
(1)

Fig. 6. Integrating gate

Fig. 7. AND or OR gate using integrating and amplifying gates

The integrating gate has no fuel or threshold associated

with it. This gate corresponds to stoichiometric triggering. It

can support multiple inputs by adding together inputs with

same right side recognition domain and different left side

recognition domain to connect to different gates. This is shown

in Fig. 6. The output of integrating gate is given by:

outputi = input1 + input2 + (2)

An OR or AND gate can be constructed by cascading the

integrating gate and amplifying gate as shown in Fig. 7. When

the threshold is 0.6, the output will be logical 1 when the sum

of inputs for that particular gate (gate no. 5 in Fig. 7) is greater

than 0.6 and logical zero otherwise. The logical zero is in the

range of 0 to 0.2 and logical one is in the range of 0.8 to 1.

An OR gate can be converted to an AND gate by changing the

threshold from 0.6 to 1.2. Since multiple inputs are supported

by integrating gate and multiple outputs are supported by the

amplifying gate, they can efficiently support fan in and fan

out.

C. Dual rail AND−OR logic

AND and OR gates are easy to implement using DNA

strand logic as explained in the previous section, while NOT

operation is difficult to implement. Hence AND logic or OR

logic alone cannot be used to construct any logic circuit. To

solve this issue each input is replaced by a pair of inputs and

each gate is replaced by a pair of AND or OR gate [11]. Such

a logic is called dual rail AND - OR logic. This dual rail

AND - OR logic gate is considered as a universal gate and

any complex logic circuitry can be implemented using this

gate pairs alone.

III. BINARY DNA PROCESSOR

A binary DNA processor is controlled arithmetic cells with

adder subtractor operations. It has two basic cells associated

99

Fig. 8. Arithmetic cell

Fig. 9. Control cell Fig. 10. Block diagram of pipeline array

with it: control cell and arithmetic cells. A purely binary

arithmetic is used to facilitate all the desired operations. The

implementation of the binary functions are carried out using

AND OR dual rail logic.

The arithmetic cell comprises of three inputs (A,B, and

Ci), two control lines (X and F) and three outputs (S,C0 and

D) as shown in Fig.8. The input, output relations for arithmetic

cell are given by:

S = [A⊕ (B ⊕X)⊕ Ci]F +AF (3)

C0 = (B ⊕X)(A+ Ci) +ACi (4)

D = B (5)

The control cell takes three single bit inputs (X,Pi, and

Ci) and generate single output F , which is an input to the

arithmetic cell. The block diagram of control cell is shown in

Fig. 9 and the expression for F is given by:

F = XCi + PX (6)

The overall diagram of a binary DNA processor is shown

in Fig. 10. The C block corresponds to a control cell and A
block is the arithmetic cell. Different operations of the DNA

processor are explained in Table I.

A carry look ahead method is used for the addition operation

[18]. The control cell input, X is assigned with a logical zero

and P0P1P2 is set to 010. The two binary numbers to be added

are given to A and B. The carry in each operation is Ci and

it passes from one arithmetic block to another as shown. The

carry input for the first arithmetic block (right most block) is

X itself. Here the most significant bit (MSB) is given with a

subscript 1 (A1, B1). The result of addition is available from

S1 to S5, where S1 is the MSB.

For subtraction, a subtract borrow look ahead algorithm is

employed [18]. For this operation, the X input is set to 1

such that 2’s complement of B is added to A. The input X is

referred as subtraction enable line. The B in each arithmetic

block is achieved by B⊕ 1 operation and the 2’s complement

is achieved by adding X as Ci in the right most arithmetic

cell.

The multiplication operation is selected by setting X = 0
and A = 0. The DNA processor is designed to perform the

multiplication of a 3 bit number with a 2 - bit number. A

right shift and add method is employed here [18]. The 3 bit

input for multiplication is B1B2B3, and 2-bit input is P1P2

with B1 and P1 as lease significant bits (LSB). P0 is also set

to 0 so that the multiplication will start from the second stage

of the processor. The output is obtained from bits S1 − S5.

Here S1 will act as the LSB.

Another operation the processor designed to carry out is the

division of a 4-bit number (A1−A4) by a 3-bit number (B1−
B3). Here A1 and B1 are the MSB. A right shift and subtract

method is used for this operation [18]. To set the arithmetic

cells in the subtraction mode (2’s complement addition), a

logical high signal is given to X . Since the value of X is

1, the operation is independent of P value. B1 in second and

third stages are set to one for the left most arithmetic cells. The

result is obtained as quotient (Q1Q2) and reminder (S3S4S5).
Q2 is the MSB for quotient and S3 is the MSB for reminder.

IV. RESULTS AND DISCUSSION

To simulate the design using the DNA strand displacement

method, arithmetic cells and control cells are first written

in AND-OR-NOT circuit level. This AND-OR-NOT circuit

code is compiled and generated corresponding dual rail AND-

OR circuit using Seesaw Compiler. The AND - OR dual rail

design is then used to create the seesaw circuit. The seesaw

1010

TABLE I
DNA BINARY PROCESSOR PIN SETTINGS FOR DIFFERENT OPERATIONS

Operation X P0P1P2 A B Output

Addition 0 010 Input 1 Input 2 S1 − S5

Subtraction 1 X Input 1 Input 2 S1 − S5

Multiplication 0 P0 = 0, Input(P2P1) 0 Input (B3B2B1) S5 − S1

Division 1 x Dividend(A1 −A4) Divisor(B1 −B3) Quotient(Q2Q1) Reminder(S3S4S5)

Fig. 11. Simulation of Arithmetic Cell as Adder

circuit thus created is simulated in Visual DSD (DNA Strand

Displacement) software [19]. The visual DSD tool is a web

based graphical interface to analyse the circuits designed using

DNA strand displacement.

The arithmetic cell can be set up either as an adder or a

subtractor. The mode of operation is decided by checking input

X . When X = 0 and F = 1, the arithmetic cell will work as

a full adder and the output S is given by:

S = A⊕B ⊕ Ci (7)

The F value is decided by the control cell. The F value is

given by eq. (6). If F = 1, the arithmetic cell work as adder

otherwise it will simply pass the input A. This functionality is

employed in multiplication operation. The simulation results

for arithmetic cell configured as adder is shown in Fig. 11. The

green lines are given for Sum (S) and the blue lines represents

Carry (C0).

When X = 1, the arithmetic cell expression is given by:

S = A⊕B ⊕ Ci (8)

C0 = B(A+ Ci) +ACi (9)

This yields a 2’s complement based subtraction operation.

The simulation results obtained from the arithmetic cell for

subtraction is shown Fig.12. In this case also when F = 0,

Fig. 12. Simulation of Arithmetic Cell as Subtractor

Fig. 13. Simulation of Control Cell

the S output passes the input A. The green lines are given for

Sum (S) and the blue lines represents Carry (C0).

The control cell is used for signal selection. The logical

1111

operation of the control cell is given in eq. 6. When X = 0,

F = P and when X = 1, F = Ci. The simulation results of

control cell are shown in Fig. 13.

V. CONCLUSION

In this paper a DNA strand displacement technique is used

for the design of arithmetic and control cells. These cells can

be considered as basic building block for a bio-molecule based

computer. The circuit is first designed using basic digital logic

gates. This digital logic circuit is converted to a dual rail AND-

OR circuit and then to a seesaw circuit. The seesaw circuit is

then implemented in Visual DSD and simulated with different

input combinations. A binary processor made up of these

arithmetic and control cells are also discussed in this paper.

This binary processor is capable of performing basic arithmetic

operations such as addition, multiplication, subtraction and

division. However the key issue of such a design using DNA

strand displacement method is that the gates used here are used

only once type. This prevents the implementation of sequential

circuits using filip-flops, clocks etc.

REFERENCES

[1] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and
E. Shapiro, “Programmable and autonomous computing machine made
of biomolecules,” Nature, vol. 414, no. 6862, pp. 430–434, 2001.

[2] K. Oishi and E. Klavins, “Framework for engineering finite state
machines in gene regulatory networks,” ACS synthetic biology, vol. 3,
no. 9, pp. 652–665, 2014.

[3] T. Miyamoto, S. Razavi, R. DeRose, and T. Inoue, “Synthesizing
biomolecule-based boolean logic gates,” ACS synthetic biology, vol. 2,
no. 2, pp. 72–82, 2012.

[4] B. Wang, R. I. Kitney, N. Joly, and M. Buck, “Engineering modular and
orthogonal genetic logic gates for robust digital-like synthetic biology,”
Nature communications, vol. 2, p. 508, 2011.

[5] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree, “Enzyme-free
nucleic acid logic circuits,” science, vol. 314, no. 5805, pp. 1585–1588,
2006.

[6] E. Agliari, M. Altavilla, A. Barra, L. D. Schiavo, and E. Katz, “Notes
on stochastic (bio)-logic gates: computing with allosteric cooperativity,”
Scientific reports, vol. 5, 2015.

[7] F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. J. Turberfield,
“Dna walker circuits: computational potential, design, and verification,”
Natural Computing, pp. 1–17, 2014.

[8] S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss,
“A synthetic multicellular system for programmed pattern formation,”
Nature, vol. 434, no. 7037, pp. 1130–1134, 2005.

[9] T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided
construction of synthetic gene networks with predicted functions,”
Nature biotechnology, vol. 27, no. 5, pp. 465–471, 2009.

[10] L. Qian and E. Winfree, “A simple dna gate motif for synthesizing
large-scale circuits,” in DNA computing. Springer, 2009, pp. 70–89.

[11] ——, “Scaling up digital circuit computation with dna strand displace-
ment cascades,” Science, vol. 332, no. 6034, pp. 1196–1201, 2011.

[12] A. Kamal, H. Singh, and D. Agrawal, “A generalized pipeline array,”
Computers, IEEE Transactions on, vol. 100, no. 5, pp. 533–536, 1974.

[13] P. P. Banerjee and A. Ghafoor, “Design of a pipelined optical binary
processor,” Applied optics, vol. 27, no. 22, pp. 4766–4770, 1988.

[14] D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree, “Engineering
entropy-driven reactions and networks catalyzed by dna,” Science, vol.
318, no. 5853, pp. 1121–1125, 2007.

[15] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yoko-
mori, and M. Hagiya, “Molecular computation by dna hairpin forma-
tion,” Science, vol. 288, no. 5469, pp. 1223–1226, 2000.

[16] P. Yin, H. M. Choi, C. R. Calvert, and N. A. Pierce, “Programming
biomolecular self-assembly pathways,” Nature, vol. 451, no. 7176, pp.
318–322, 2008.

[17] D. Y. Zhang and E. Winfree, “Control of dna strand displacement
kinetics using toehold exchange,” Journal of the American Chemical
Society, vol. 131, no. 47, pp. 17 303–17 314, 2009.

[18] M. M. Mano, “Computer system architecture, 1993,” Prentice Hall,
vol. 3, p. 299.

[19] M. R. Lakin, S. Youssef, F. Polo, S. Emmott, and A. Phillips, “Visual
dsd: a design and analysis tool for dna strand displacement systems,”
Bioinformatics, vol. 27, no. 22, pp. 3211–3213, 2011.

1212

