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Abstract—We propose an automatic and computationally ef-
ficient solution framework for addressing the joint estimation
problem in marker-based optical motion capture. A fast joint
estimator is presented which only requires an optimisation
over 3 variables using marker-trajectory-bases (MTB). We also
introduce the theory of solvability propagation to realise this
automation. The framework acquires a ‘hybrid’ power making it
able to deal with difficult cases where there are less than three
markers on the body segments. It does this by combining the
MTB-based and the joint-marker-variance optimisation methods.
Computer simulations are used to examine the framework in
terms of accuracy, speed and functionality. Results from these
simulations show that the framework is robust and produces fast
and accurate solutions.

Index Terms—Joint Estimation, Optical Motion Capture.

I. INTRODUCTION

Marker-based optical motion capture (in short, Mo-Cap) is

a technology that transforms human motion activities into 3D

(x,y,z) position data. Mo-Cap is widely used for applications

such as abnormality and asymmetry analyses in rehabilitation

medicine [1], performance analysis in sports training [2],

computer animations and 3D games in entertainment [3]. By

using a multi-camera recording system, the 3D positions of

the reflective markers which are placed on a bodysuit worn

by a performer are recorded. The marker position data is

then processed to reconstruct the body motion. The entire

process of reproducing the body motion consists of three main

parts: Marker Identification, Topology Determination, and Joint

Estimation.

Marker identification is a matter of recognising markers and

their placements on the body segments in each frame from

the point positions obtained by the multi-camera recording

system. Markers placed on the same limb will be gathered

to form a marker group in this process. Many methods

have been proposed for the marker identification problem

over the past decade, e.g. Spectral Clustering [4], Self-tuning

Spectral Clustering [5], Model-based Dynamic Point Matching

Algorithm [6], etc.

† Corresponding author. Email: jh845@cam.ac.uk.
∗ Previously with University of Cambridge but now with Google.

Topology determination determines how the body segments

are connected by the joints to give a correctly rebuilt human

skeleton. This is normally achieved by computing the minimum

spanning tree [7] for a complete graph containing weighted

linkages between all pairs of marker groups.

Joint estimation is a crucial process which determines the

trajectories of joints between pairs of body segments, treating

the human body as an articulated structure. Many research

papers have focused on calculating the location of joints or

in other words, the centres of rotation (CoR). For example,

Kirk et al. in [8] define a joint cost which is the mean variance

in distance between the joint and each marker. Under the

practical assumption that a joint connecting two body segments

should remain at a relatively constant distance to the markers on

both segments, finding the joint locations essentially turns into a

matter of minimising the joint cost. This approach is referred to

in this paper as Joint-Marker-Variance Optimisation, or simply

JMV Optimisation. Gamage and Lasenby in [9] introduce a

closed-form least squares solution to the CoR or axis of rotation

(AoR), using a cost function of the squared differences between

unknown sphere radii and squared CoR-to-marker distances.

Silaghi et al. in [10] employ a modified Levenberg-Marquardt

method for least squares computations of all CoRs. The joint

position is then estimated as the centre of mass of the CoRs

weighted by the weights of the markers and the associated

sphere radius. Cameron and Lasenby in [11] assume all markers

are attached to rigid body segments and present a sequential

algorithm for real-time joint localisation. Both Tan et al. [12]

and Li [13] establish a local coordinate system using on-body

markers to determine the joint positions. Tan et al. solve a series

of overdetermined equations while Li proves the joint trajectory

is in the space termed eigentrajectory space in [13]. However,

these approaches are either computationally inefficient or need

to satisfy hard conditions: the methods in [8] and [9] do not

scale well and suffer from the optimisation time growing with

the increase in the total number of markers and recorded frames;

the methods in [10] and [11] require at least three markers on

each body segment to yield reasonable results, whilst a further

non-collinearity in three markers on a body segment should
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be ensured when performing the methods in [12] and [13].

In this paper, we are concerned with the joint estimation

problem and develop a computationally efficient and robust

solution framework which is capable of automatically finding

the motion trajectories of the joints of an articulated body

structure. In this framework, a fast joint localisation method

is proposed which only needs to optimise three variables

via the use of marker trajectory bases (MTB), regardless

of the total number of markers and recorded frames. This

method is combined with the inefficient but condition-free JMV

Optimisation approach to form a hybrid system which is robust

to tough situations by smartly toggling to the appropriate joint

estimation approach. Along with the solvability propagation

theorem, the framework is able to automatically find all joint

trajectories of an articulated body structure without intervention

or tuning of parameters. Simulated results show that our

solution framework is able to survive with reasonable results

in tough cases where there are less than three markers on all

body segments, and even performs slightly better in terms of

speed than the commonly considered efficient approach using

sequential algorithms as described in [11] in cases where there

are at least three markers on each body segment. Note that

since we are solely addressing the joint estimation problem,

the process of marker identification is assumed to have already

been done prior to this framework so that markers have been

recognised and knowledge of marker placement has been gained

in advance.

The rest of the paper is organised as follows: the MTB-based

joint estimation method and the solvability propagation theorem

are described in Section II; the structure of the framework is

explained in Section III; simulated results of our framework

are compared with that of some other existing joint estimation

approaches in Section IV in terms of speed, accuracy and

functionality; the conclusions are given in Section V.

II. THEORY AND METHODOLOGY

In this paper, markers belonging to the same group are

assumed to move together as a rigid body. The proposed

MTB-based joint estimation approach is governed by the joint

solvability while the automation of the framework is handled

by the solvability propagation.

A. Joint Solvability

If a joint is connected to a rigid body with four non-coplanar

markers, then the trajectory of this joint over all frames will lie

in the space spanned by the trajectories of the markers. Such

a joint is termed as a ‘solvable’ joint and can be expressed by

a linear combination of the marker trajectories.

Proof. Suppose the 3D positions of the four non-coplanar

markers on a rigid body at an arbitrary frame number f are

denoted as r
(f)
1 , r

(f)
2 , r

(f)
3 and r

(f)
4 . A joint connected with that

body segment has a position labelled as r
(f)
c . The trajectories

of the markers and joint over all frames are termed t1, t2, t3,

t4 and tc, respectively. In a reference frame R, three basis

vectors can be obtained from the marker positions, making

r
(R)
4 the origin: a

(R)
1 = r

(R)
1 − r

(R)
4 ; a

(R)
2 = r

(R)
2 − r

(R)
4 ;

and a
(R)
3 = r

(R)
3 − r

(R)
4 .

Since the four markers are non-coplanar, the basis vectors

will span the R
3 space, though they may not be orthonormal

to each other. As in [12] and [13], the origin-to-joint vector

can therefore be expressed as a linear combination of the basis

vectors:

r(R)
c − r

(R)
4 = λ1a

(R)
1 + λ2a

(R)
2 + λ3a

(R)
3 (1)

from which the joint position can be deduced:

r(R)
c = r

(R)
4 + λ1a

(R)
1 + λ2a

(R)
2 + λ3a

(R)
3 (2)

Suppose the rigid body is brought from the reference frame

to an arbitrary frame f by a rotation R(f), the resulting rotated

basis vectors will be:

a
(f)
i = R(f)a

(R)
i i = 1, 2, 3 (3)

and the rotated origin-to-joint vector in frame f becomes:

r(f)c − r
(f)
4 = R(f)

[
r(R)
c − r

(R)
4

]
(4)

Therefore, using (2) (3) (4), the joint position in frame f

can be obtained:

r(f)c = r
(f)
4 +R(f)

[
r(R)
c − r

(R)
4

]

= r
(f)
4 +R(f)

[
λ1a

(R)
1 + λ2a

(R)
2 + λ3a

(R)
3

]

= λ1r
(f)
1 + λ2r

(f)
2 + λ3r

(f)
3

+ (1− λ1 − λ2 − λ3)r
(f)
4 (5)

The trajectory of the joint can be obtained via stacking the

joint’s 3D positions calculated in (5) over all frames:

tc = λ1t1 + λ2t2 + λ3t3 + (1− λ1 − λ2 − λ3) t4 (6)

where

ti =
[
r
(1)
i , r

(2)
i , · · · , r

(f)
i

]T

i = c, 1, 2, 3, 4

As shown in (6), the trajectory of the joint over all frames

is essentially a linear combination of the trajectories of the

four non-coplanar markers.

To obtain the trajectory of the joint, we minimise the cost

function defined in [8]:

t̂c = argmin
tc

Q (7)

with

Q =
1

Na +Nb

∑
m∈Na∪Nb

σ(rc, rm) + αd̄(rc, rm) (8)

where d̄(rc, rm) is the average distance between a marker and

a joint: d̄(rc, rm) = 1
|F |

∑F

f=1 ||r
(f)
c −r

(f)
m ||, with F being the

total number of frames; σ(rc, rm) is the corresponding variance

in distance: σ(rc, rm) = 1
|F |

∑F

f=1(||r
(f)
c − r

(f)
m || − d̄)2; α is

a penalty factor weighting the average distance d̄; Na and Nb

are the number of markers on the two rigid body segments

connected by the target joint.
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Fig. 1. Block diagram of the proposed solution framework

Note that only three unknowns, λ1, λ2, and λ3, are optimised

during the process of minimising the cost function.

The joint solvability is also applicable to the case where a

rigid body segment is formed by three non-collinear markers,

with the aid of an auxiliary marker r
(f)
+ obtained from the

cross-product of the inter-marker vectors:

r
(f)
+ = r

(f)
3 +

(
r
(f)
1 − r

(f)
3

)
×
(
r
(f)
2 − r

(f)
3

)
(9)

Since the three actual markers are assumed to remain at a

relatively constant distance to each other, r
(f)
+ can be treated

as a virtual marker on the rigid body. In this way, a set of four

non-coplanar markers {r
(f)
1 , r

(f)
2 , r

(f)
3 , r

(f)
+ } is obtained for

the MTB-based joint estimation method described above.

B. Solvability Propagation

If a rigid body segment has three non-collinear markers and

is connected with at least one already-solved joint, then all

other joints connected with that body segment will be ‘solvable’

joints as long as the already-solved joint and the other three

markers are non-coplanar.

Proof. The already-solved joint connected to the rigid body

segment can be treated as an extra marker on that body, which

brings back the scenario in which the body segment has ‘four’

markers. If the ‘four’ markers are non-coplanar, all other joints

connected with the rigid body can be solved with the solvability

theory described in the previous section.

The solvability propagation may also be extended to the case

where there are only two markers on a rigid body segment

connected with an already-solved joint that is non-collinear

with the existing two markers, since an auxiliary marker can

be generated (see (9)) based on the marker set consisting of

the already-solved joint and the existing two markers.

III. FRAMEWORK EXPLAINED

In this paper, a group with N markers (we assume no more

than four markers are placed on the same limb so N ∈ [1, 4])
is called an N -marker group. Remember that we assume the

marker identification process has been done in advance, which

means markers are recognised and those belonging to the

same limb are grouped together. We also define a new type

of marker group named a special group. A four or three-

marker group becomes a special group when all markers within

that group are collinear. The co-planarity checking process
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governs the determination of a special group and picks only

two characteristic markers from a special group, because all

other markers can be expressed through linear scaling of the

vector formed by the chosen markers.

The overall picture of our framework is illustrated in Fig. 1.

The input marker groups are first sorted by the number of

markers in each group, resulting in four collections of groups

having 4, 3, 2 and 1 marker(s), respectively. The rest of the

framework consists of three main subsystems, in order:

1) PRE-JOINT SOLVER
2) SOLVED-JOINT-DEPENDENT SOLVER
3) REDUCED JMV JOINT SOLVER

A. PRE-JOINT SOLVER

From the theories described in the previous section, joints

connected with a rigid body segment having four non-coplanar

or three non-collinear markers can be directly solved. Therefore,

groups with four or three markers are processed first by the

governing subsystem, i.e. the PRE-JOINT SOLVER.

The PRE-JOINT SOLVER takes the three or four-marker

groups as inputs. These groups then go through JOINT

SOLVER #1. If all markers in a group are found to be collinear

by the co-planarity checking process, the corresponding group

will be marked as a special group. Otherwise, the trajectories

of the joint(s) connected with this group can be obtained

based on the joint solvability theory. In this way, all special

groups are identified and put into a special ‘container’, and the

joints solved by this subsystem will enable possible solvability

propagation in later stages.

One essential variable across the entire framework is the

system state which plays a very important role in tracking

the implementation and avoiding repeated joint calculations. It

consists of two sub-states:

• Joint State: a record of whether a joint is solved.
• Group State: a record of the presence of marker groups

connected with unsolved joints.

The system state is checked and updated in every imple-

mented step. Updating the system state consists of two parallel

parts:

• The joint state will be updated once a new joint is found.
• The groups whose connected joints are all solved will be

removed from the corresponding group collections.

B. SOLVED-JOINT-DEPENDENT SOLVER

After implementing the first subsystem, i.e. the PRE JOINT

SOLVER, there will be three types of marker groups left: the

special four or three-marker groups, the two-marker groups,

and the one-marker groups (if they exist). These groups share

a common feature that they do not have at least three non-

collinear markers, which means the joint solvability theory

cannot be directly applied to solve joints connected with these

groups. However, if there are already-solved joints connected

with these groups (Note: at least two solved joints for the

one-marker groups in this case), solvability propagation may

be applied so that the conditions for joint solvability may again

be satisfied and further joints may be solved.

As shown in Fig. 1, the system state is taken as a feedback

in a loop that implements this subsystem. In every iteration,

the system state is checked. If the previous iteration leads to an

update to the system state, i.e. statei �= statei−1, four steps

will be implemented by JOINT SOLVER #2, in order:

1) Find already-solved joints connected with the 4-marker special
groups. Solve all possible joints connected with these groups.

2) Find already-solved joints connected with the 3-marker special
groups. Solve all possible joints connected with these groups.

3) Find already-solved joints connected with the 2-marker groups.
Solve all associated joints.

4) Find already-solved joints connected with the 1-marker special
groups. If there are at least two such joints for a group, solve
all associated joints.

If there are no satisfactory solved joints found connected,

or the co-planarity checking process cannot be passed, the

corresponding groups will be put into the waiting list for

further possible processing. The subsystem will keep being

implemented until the system state no longer updates, which

means no more joints can be solved. The rest of the unsolved

joints connected with the wait-listed marker groups therefore

need to be dealt with by the condition-free JMV Optimisation

approach.

C. REDUCED JMV JOINT SOLVER

After the previous two subsystems, all joints that can be

solved by the joint solvability and solvability propagation

theories have been solved. If there are still unsolved joints,

the condition-free JMV Optimisation approach serving as a

complementary method could then be employed.

However, it is possible that the MTB-based approach can still

be used to reduce computational cost in certain circumstances.

Consider an example case below for a better understanding.

Example Suppose there is a chain of 5 rigid body segments

(not limited to a human body in this example – so there can

be an arbitrary number of segments), as shown in Fig. 2.

Fig. 2. A chain of 5 rigid body segments

where a circled number is called a node which denotes an

N -marker group on the corresponding rigid body segment; an

edge linking two adjacent nodes represents the joint connecting

two related marker groups.

After going through the first two subsystems of the frame-

work, only the joint linking the first two nodes (from left to

right), i.e. 4 and 1 , will be solved, if 4 is not a special

group. To estimate other joints, one method would be to use

the JMV Optimisation approach. However, in this example, the

JMV Optimisation approach need only be applied once and the

rest of the joints can then be solved by the primary approach.

We outline this in what follows.

Suppose we estimate the joint linking the second and third

nodes, i.e. 1 and 2 , using the JMV Optimisation, the resulting
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chain is illustrated in Fig. 3, with the solved joints denoted by

thickened edges.

Fig. 3. A chain of 5 rigid body segments with 2 joints solved

It can be seen in Fig. 3 that there is a solved joint connected

with the third node which has two markers. As long as the

solved joint and these two markers are non-collinear (which

is a practical assumption), the solvability propagation can be

applied so that all the remaining joints can be solved.

The above example shows that in certain situations, the

MTB-based approach can be re-applied after implementing

the JMV optimisation for a few joints, which can potentially

maintain a low computational cost.

In this subsystem, as shown in Fig. 1, the wait-listed three or

four-marker special groups and the two or one-marker groups,

are taken as the inputs. The aim is therefore to obtain all

remaining trajectories using the JMV Optimisation as little as

possible, thus reducing the computational cost. To achieve this,

four steps are implemented by JOINT SOLVER #3, in order:

1) Estimate joints connected with the wait-listed 4-marker special
groups one by one using JMV optimisation. Apply the MTB-
based approach where possible.

2) Estimate joints connected with the wait-listed 3-marker special
groups one by one using JMV optimisation. Apply the MTB-
based approach where possible.

3) Estimate joints connected with the wait-listed 2-marker groups
one by one using JMV optimisation. Apply the MTB-based
approach where possible.

4) Estimate joints connected with the wait-listed 1-marker groups
one by one using JMV optimisation. Apply the MTB-based
approach where possible.

In each of the above steps, as long as the conditions for

solvability propagation are met after a joint is estimated by JMV

Optimisation, the subsystem SOLVED-JOINT-DEPENDENT

SOLVER will be called to perform an automatic joint estimation

process until no further joints can be solved using the MTB-

based approach, in which case the JMV optimisation is toggled

back for the next tough joint. The toggling between the JMV

Optimisation and the MTB-based approach will continue until

all joints are solved, which reveals the hybrid power of this

framework.

IV. SIMULATED RESULTS

The framework is validated by simulated results using

MATLAB in three aspects: Accuracy, Speed and Functionality.

Synthetic chains of rigid body segments connected by joints

(see Fig. 2 as an example) are generated to mimic articulated

structures. A plain text notation 〈N1−N2−· · ·−NL〉 denotes

a chain of L rigid body segments with Ni (i ∈ [1, L]) markers

on the ith segment. Each of the rigid body segments rotates

relative to its neighbours with randomly generated angular

velocities. For simplicity, it is assumed that we do not have

three collinear markers on any rigid body segment used in the

simulations, which can be easily fulfilled in real world tasks.

TABLE I
ROOT SQUARED ERROR PER JOINT PER FRAME IN DIFFERENT RIGID BODY

CHAINS SOLVED BY DIFFERENT JOINT ESTIMATION METHODS

RSE per Joint per Frame in

Chain#1 Chain#2 Chain#3

JMV Opt. 1.1E-02 3.4E-03 4.4E-03

Seq. Algorithm 5.7E-17 3.3E-17 3.1E-17

Proposed Framework 3.9E-07 2.9E-07 1.8E-07

A. Accuracy

The accuracy of the framework is checked with the root-

squared-error (RSE) per joint per frame, given by

ξ =

√∑F

i=1

∑M

j=1 r
2
i,j

M × F
(10)

with

r2i,j = [xo(i, j)− x̂(i, j)]
2

+ [yo(i, j)− ŷ(i, j)]
2
+ [zo(i, j)− ẑ(i, j)]

2

where F is the total number of frames; M is the number of

joints; (x̂(i, j), ŷ(i, j), ẑ(i, j)) and (xo(i, j), yo(i, j), zo(i, j))
are the estimated and ground truth 3D positions of the jth

joint at the ith frame, respectively.

Three chains with an increasing number of rigid body

segments are used for the validation. The distance between

successive joints is fixed at 1.

chain#1: 〈4− 3− 3〉
chain#2: 〈4− 3− 3− 4− 3〉
chain#3: 〈4− 3− 3− 4− 3− 3− 3〉

The number of frames F is fixed at 100 and 50 runs of

simulations are performed for each chain to obtain the average

values of ξ. The results are summarised and compared with

those of the approaches using JMV Optimisation [8] and

Sequential Estimation [11] in TABLE I.

From TABLE I, the joint estimation approach using the

Sequential Algorithm is shown to be error free with ξ of

the order of 10−17. The proposed framework also achieves a

reasonable error level of 10−7, regardless of the increase in

the number of body segments. The JMV Optimisation method,

however, is much less competitive with a error level of 10−2

to 10−3. Therefore, the accuracy of our framework is high

when dealing with rigid bodies with at least three non-collinear

markers, which is practically feasible.

B. Speed

The speed is examined by the time consumed per joint

using an Intel�CoreTMi7-2620M processor. Due to the limited

computer power, only chain#1 〈4−3−3〉 is used. The number

of frames F is varied from 100 to 300 with an increment of

50. To obtain the average values, 50 runs of simulations are

performed per change of frame number. Comparisons of results

are given in TABLE II.
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TABLE II
TIME CONSUMED PER JOINT FOR SOLVING RIGID BODY CHAIN#1 USING

DIFFERENT JOINT ESTIMATION METHODS (NUMBER OF FRAMES VARIES)

Time Consumed per Joint Using

JMV Opt. Seq. Algorithm Proposed Framework

F = 100 6.772 sec 0.056 sec 0.0211 sec

F = 150 7.186 sec 0.084 sec 0.0226 sec

F = 200 7.879 sec 0.112 sec 0.0300 sec

F = 250 14.872 sec 0.138 sec 0.0304 sec

F = 300 18.143 sec 0.166 sec 0.0313 sec

TABLE III
VALIDATION OF SOLVABILITY PROPAGATION OF THE PROPOSED

FRAMEWORK USING RIGID BODY CHAIN#4

JMV Opt. Proposed Framework

RSE per joint per frame 1.6E-02 1.5E-06

Time consumed per joint 5.63 sec 0.018 sec

TABLE IV
VALIDATION OF HYBRID SCHEME OF THE PROPOSED FRAMEWORK USING

RIGID BODY CHAIN#5

JMV Opt. Proposed Framework

RSE per joint per frame 4.5E-02 2.8E-02

Time consumed per joint 5.35 sec 0.65 sec

As shown in TABLE II, our proposed framework has the

edge over the Sequential Algorithm approach in terms of speed

while beating the JMV Optimisation by a huge margin. It is

also worth noting that using our framework, the time consumed

per joint barely increases with the number of frames, which

shows great efficiency.

C. Functionality

The added functionalities of our framework are the capabil-

ities of performing solvability propagation and the hybrid

scheme to address tough circumstances where there are

insufficient markers on the body segments (i.e. less than three

markers). Two chains of rigid body segments are generated to

validate the added functionalities:

chain#4: 〈3− 2− 2− 2− 2〉
chain#5: 〈3− 1− 2− 2− 2− 2〉

By fixing F at 100 and averaging over 50 runs of simulations,

the accuracy and speed for each chain are compared with that

of the JMV Optimisation. Note the Sequential Algorithm is

not considered here since it requires at least three markers on

each body segment. Results for chain#4 and chain#5 are given

in TABLE III and TABLE IV, respectively.

In TABLE III, our framework shows the ability to propagate

the joint solvability with much faster speed than the JMV

Optimisation while maintaining a very low level of error. In

TABLE IV, our framework reveals comparable and slightly

better accuracy than the JMV Optimisation when dealing with

very tough cases where only one marker is present on a body

segment (chain#5). The hybrid scheme also greatly reduces

the time consumed per joint calculation.

V. CONCLUSION

This paper presents an automatic solution framework to

address the joint estimation problem in optical motion capture.

A fast joint estimator which only needs to optimise three

variables is proposed (Section II-A). A hybrid scheme is formed

by automatically toggling between the proposed MTB-based

and the existing condition-free JMV Optimisation approaches

for joint estimation so that the system is able to deal with

tough circumstances where there are less than three markers

on the body segments. The automation of the framework is

realised by the solvability propagation (Section II-B) and the

hybrid scheme. Simulated results verify the feasibility of our

framework. In normal cases where there are at least three non-

collinearly placed markers on each body limb, our framework

shows good accuracy and is even slightly faster than the

commonly considered efficient Sequential Algorithm, let alone

the JMV Optimisation. The performance is not degraded when

solvability propagation is performed. Results (TABLE IV) also

show that the hybrid scheme is comparable in terms of accuracy

with the JMV Optimisation on tough cases while taking much

less time.
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