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Abstract— In this study, we analyze interference trends when co-
running multiple applications possessing varying degrees of memory
intensity on multi-core processors. We conduct tests with PARSEC
benchmark applications and explore energy consumption, execution
times, and main memory accesses when interfering applications share
last-level cache. We also explore how co-running applications are
impacted when the processor frequency is modified using dynamic
voltage and frequency scaling (DVFS). A portable and lightweight
testing framework is presented and results are shown for experiments
conducted on an Intel i7 quad-core system. It is shown that the degree
of degradation due to co-location interference on execution time is
highly dependent on the types and number of applications co-located
on cores that share the last-level cache.

Keywords: memory interference; application co-location; benchmark-
ing; energy-aware computing; dynamic voltage and frequency scaling;
multi-core processors

1. Introduction
There is an ever present desire to increase the performance

and capabilities of current high performance computing systems.
Frequently, increased performance comes at the cost of increased
power dissipation, which has become a major challenge in large
scale computing systems. According to the 2012 DatacenterDy-
namics census [DcD12], global datacenter power requirements in
2007 were 12 GW, but doubled to 24 GW in 2011. Then, in 2012
the power requirements grew by 63% to 38 GW [DcD12]. There
is thus a critical need to profile and characterize power dissipation
in computing nodes, as a precursor to developing techniques that
can minimize power dissipation.

The use of multiple cores in today’s processing units is com-
monplace as parallel processing remains a popular technique for
speeding up the execution time of workloads. In an ideal system,
doubling the number of cores in a server doubles the performance
as long as the workload is perfectly parallel. However, cores in
today’s processors typically share resources in some manner (such
as last-level cache, DRAM, network, and storage), causing con-
tention for these resources and degrading performance, potentially
resulting in larger amounts of energy being consumed.

Understanding the effects of resource contention caused by co-
locating applications in multi-core processors is becoming increas-
ingly important as the number of cores per processor continues
to increase. Co-location occurs when more than one application is
executing and sharing resources on a multi-core processor. Different

applications have different resource requirements, and by studying
the execution time and energy effects across several applications we
can better understand the implications associated with co-locating
applications on multi-core processors. A better understanding of
these effects becomes critical to intelligently mitigating interference
and improving performance and energy consumption.

This work examines the effects of memory interference on
energy usage and application execution time (or application
throughput). Memory interference is introduced by executing a
number of applications across the cores of a given processor,
resulting in the applications sharing L2 or L3 caches in the memory
hierarchy. Specifically, the research provides a testing infrastructure
that monitors and collects data on the following attributes as various
applications are executed on a multi-core processor: energy usage,
execution time, and main memory (DRAM) accesses. Applications
that access main memory frequently can be considered to be
“memory intensive.” This research also analyzes how applications
with varying levels of memory intensity affect the attributes of
applications with which they are co-located.

We consider the attributes of four different workloads taken from
the PARSEC benchmarking suite [Par14] for measurement and
analysis. The four workloads were selected to represent a range
of applications with varying memory intensity. The workloads are
executed on a quad-core Intel i7 processor. We chose to conduct
experiments on this processor because it is being currently used
in compute nodes within several datacenters that are increasingly
deploying systems with low-end commodity processors (instead of
high end server processors) to keep hardware costs manageable at
a large scale. Results are first gathered for the case where each
application executes by itself on a single core in the processor.
These results are then used as a baseline to contrast the degradation
in performance when there are two and four applications co-located
on the cores of the processor. It is shown that for more memory
intensive applications, there is a greater decrease in performance as
memory interference increases. Additionally, this research incorpo-
rates the dynamic voltage and frequency scaling (DVFS) property
of the processor, and runs all the tests across a range of different
voltages and frequencies. The results from this research can be used
to provide highly accurate execution time and energy consumption
information for use in the area of resource allocation in high
performance computing systems, where application tasks are co-
located on the cores of multi-core processors[FrB13], [FrK13],
[OxP13].
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In summary, this work makes the following contributions: (a)
proposes a portable benchmark testing environment capable of
measuring and analyzing the effects of cross-application interfer-
ence on energy consumption, execution time, and memory accesses
of various applications across CPU frequencies; (b) provides an
analysis for a set of real-world workload execution scenarios using
this testing environment to perform interference tests on a modern
quad-core machine; and (c) gives insights into how large computer
systems based on multi-core processors may be able to improve
their energy use based on the memory interference caused by co-
located applications.

The remainder of this paper is organized as follows. The next
section will discuss related work. Section 3 will describe the
portable testing environment. The workloads being tested and the
experimental setup will be explained in Section 4. Section 5 will
present and provide analyses for the results of the experiments.
Conclusions and plans for future work will be discussed in Section
6.

2. Related Work
The authors from [KiC12] perform experiments to measure the

effect of varying processor frequency on the energy consumption
of workloads with varying levels of memory intensity on a single
system. Multiple instances of each application are executed con-
currently on the test system with each instance pinned to a separate
core. The results of [KiC12] imply that the memory intensive tasks
may be more energy efficient at slower frequencies while CPU
intensive tasks may be more efficient at higher frequencies. The
work in [KiC12] does not quantify memory intensity nor does it
consider the effects of co-locating applications, be it instances of
the same application or instances of different applications.

A study of how different architectures can affect the impact of
DVFS on energy savings is analyzed in [SuH10]. Three generations
of AMD processors from 2003 through 2009 are tested using a
memory intensive workload across the various frequencies available
to the processors. It was found that for the older processors, the
most energy efficient frequencies existed in the middle of the
dynamic frequency range, while for the newest processor, it was
most energy efficient to run at the fastest frequency. The authors
of [SuH10] only examine a single application and do not consider
how performance may be affected by co-location.

The work in [TaM11] presents a study that investigates the
impact of co-locating threads from multiple applications with
diverse memory behavior on a quad-core system. The authors
show that the execution time of co-located tasks can vary greatly
depending on the other tasks that are executing. The impact co-
location has on energy consumption is not considered in [TaM11],
nor does the work try to isolate the effects different applications
have on each other by pinning applications to specific cores.

The memory characterization of workloads from SPEC CPU2000
and SPEC CPU2006 are analyzed and presented in [Jal07]. It is
shown that changes in the size of the cache of a processor can
greatly affect the memory intensity of a given workload. This
implies that as cache size increases, a workload can switch from
being memory intensive to being CPU intensive. It is important to
study the effects co-location could have on such tasks as it may
make them memory intensive again once they have to contend for
cache with other applications. The work in [Jal07] does not consider
co-locating nor does it consider energy consumption.

A method is presented in [GoL11] to predict the performance
degradation of workloads from interference due to shared processor
cache (co-location). Each workload is encapsulated within its own
virtual machine, and each virtual machine is pinned to its own core.
The authors were able to reasonably predict the degradation due to
co-location for various applications. The work in [GoL11] does not
consider how the frequency of the CPU can affect the performance
of the workloads nor does it examine impact of co-location on the
energy consumption of individual tasks.

3. Testing Environment
3.1 Operating System

One of the goals of this research is to create a testing envi-
ronment that is portable across a variety of machines and system
architectures, as well as being “lightweight” to minimize noise
that may occur from OS (operating system) jitter. OS jitter occurs
when processes unrelated to the tested workload are executed
(i.e., graphics procedures, mail daemons, security services, etc.).
These processes can cause anomalies to appear in the data. The
operating system used for this research is a lightweight command-
line version of Ubuntu 12.04 Linux. The operating system runs
Linux kernel version 3.8.0.29-generic and uses the Linux default
“SCHED_OTHER” thread scheduling policy.

To ensure consistency across different experiments, any power
saving features of the operating system have been disabled (e.g.,
screensaver and automatic processor throttling). The operating
system has been configured in such a way that it can be used on a
variety of different systems. Currently, it has been installed onto a
bootable USB drive, but in the future, the OS could be run from a
live CD or from a netboot.

3.2 Processor Performance Counters
Processors today have the ability to measure and report on

numerous hardware events such as the number of cache misses
or number of instructions executed through the use of performance
counters. By recording different events, it is possible to gain insight
into the characteristics of a given application on a given processor
architecture. Typically, there are a large number of hardware events
that can be measured but a small number of performance counters
(e.g., in an Intel i7 there are only seven performance counters, but
over 50 different measurable events [Int14]) meaning that only a
limited number of events can be measured at any given time. To
further complicate matters, due to differences between microarchi-
tectures, the number, type, and availability of performance counters
and measurable events can vary greatly from system to system.
To allow the testing environment to be portable, we make use of
additional tools to monitor and collect performance counter data
across multiple systems.

The first tool used is the Performance Application Programming
Interface (PAPI) which, is a portable API to hardware performance
counters that simplifies interfacing between software and the native
hardware performance counters of processors [Pap14]. Due to the
issues involved with the variability in numbers and types of na-
tive hardware events available across microprocessor architectures,
PAPI attempts to define a standard set of performance counters
(“presets”) that can be found in most microprocessors. These preset
performance counters try to abstract away the architecture specific
details to provide an easy way to manipulate and measure similar
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hardware events across numerous platforms. The PAPI library
contains over 100 preset performance counters that are available
for use [PaE14], however as stated earlier due to differences in
architectures, not all performance counters are available on every
system.

The HPCtoolkit [Htk14] interfaces with PAPI and provides a
set of software tools that facilitates measuring and collecting the
performance data of an application. The HPCtoolkit was designed
to perform benchmark testing using performance counters and
therefore there is very little overhead associated with utilizing this
tool. Specifically for this research, the “hpcrun-flat” tool was used
to execute and monitor the test applications.

3.3 Measuring Memory Intensity
To understand the effects of co-locating multiple applications,

additional metrics of performance besides execution time and
energy consumption should be measured. One hypothesis of this
research is that applications that frequently need to access the last-
level of cache and main memory have a greater degradation in
performance when co-located with other memory intensive appli-
cations compared to applications that are mostly CPU intensive. To
test this hypothesis, the measure we use here for relative memory
intensity is last-level cache misses divided by instructions executed.

Relative memory intensity indicates how often an application
must access main memory (DRAM) per instruction executed. The
number of times an application accesses main memory can be
measured by keeping track of the number of last-level cache misses.
The total number of last-level cache misses is, however, not enough
to classify the memory intensity of an application, as different
applications can execute for different amounts of time, and have
different instruction counts. Therefore, we normalize our last-level
cache misses by the number of total instructions executed. The
resulting metric called relative memory intensity allows for the
comparison of memory intensity across applications regardless of
the instruction counts of the applications.

The number of last-level cache misses and the total number of in-
structions executed are measured using performance counters. PAPI
does not contain a standard “last-level cache miss” performance
counter and thus the appropriate level (L2 or L3) cache miss event
must be set depending on the specific microprocessor architecture.

3.4 Processor Performance States (P-states)
Performance states (P-states) utilize dynamic voltage and fre-

quency (DVFS) capability in processors to control the power con-
sumption and speed at which the processor is operating. P-states are
denoted by integer numbers, with P-state P0 indicating the highest
voltage and highest (fastest) frequency. Higher P-state numbers
indicate lower voltages and lower (slower) CPU frequencies. The
number of P-states available for any given CPU, as well as the
voltage and frequency pairings that each P-state represents, are
different for every processor architecture, and therefore trends
and behaviors of applications on one system may be significantly
different when compared to another system. Generally, across
different processor microarchitectures, operating in higher P-states
results in increased execution time.

Furthermore, P-states only control the portion of a processors
total power consumption called the dynamic power. The remaining
power in the processor is called the static power and is assumed to
remain constant regardless of the P-state. The ratio of dynamic

Table 1: PARSEC Applications
Application Description
canneal cache-aware simulated annealing to opti-

mize routing cost of a chip design
streamcluster online clustering of an input stream
blackscholes option pricing with Black-Scholes Partial

Differential Equation (PDE)
bodytrack body tracking of a person

power to static power differs from architecture to architecture,
and using P-states to decrease the CPU frequency and voltage
will decrease the dynamic power use but also likely increases an
application’s execution time. Due to static power being constant
across P-states and increased execution time, there is no guarantee
that operating in a slower P-state will result in reduced energy
consumption.

This research provides an infrastructure for analyzing how the
performance in terms of execution time, energy consumption, and
memory intensity changes across different P-states, in modern
multi-core processor architectures.

3.5 “Watts Up? PRO” Power Meter
We used a Watts Up? PRO power meter [Wat14] to collect

and calculate the energy used while an application executes on
microprocessors. The Watts Up? meter connects to and measures
the system at the “outlet” level, meaning that all the power used
by the whole system is measured. The meter is able to measure the
instantaneous power draw of the system at one second intervals.
To calculate the energy consumed by an application, the power
samples, which are the average power over the one-second intervals
and so are simply summed over the execution time.

4. Experimental Setup
4.1 PARSEC Benchmark Suite

The workloads used in this research are taken from the PARSEC
benchmarking suite [Par14], which consists of a diverse set of
applications from many different computing areas. Four bench-
marking applications were chosen from the PARSEC suite with the
intention of providing a representative set of applications having
varying degrees of memory intensity. The applications chosen for
experimentation, along with a brief description, can be found in
Table 1, organized from most memory intensive to least memory
intensive.

4.2 Co-location Experiments
To measure the effect of co-location on the energy consumption,

execution time, and relative memory intensity of an application,
a set of baseline tests were conducted to establish measurements
that these three metrics could be compared to, across changes in
the number of processor cores. For a baseline test, the applications
were executed by themselves on the multi-core processor. During
execution, the application was pinned to a specific core using the
Linux “taskset” command and was the only process executing
other than OS-related processes. Additionally, each baseline test
was executed at different processor frequencies (P-states) ranging
from 3.40GHz, the CPUs default highest speed, down to 1.70GHz.
Energy consumption, execution time, and relative memory intensity
were measured for each application in each P-state.
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From the relative memory intensity results of the baseline tests
(Table 2), the applications were then classified into three groups
based on the magnitude of their relative memory intensities. The
applications are shown in order of decreasing memory intensity.
As indicated in the table, canneal is the most memory intensive
application with over two last-level cache misses per 100 instruc-
tions executed while blackscholes is the least memory intensive
application with fewer than one last-level cache miss per 100,000
instructions executed.

Table 2: Memory Intensity Classification
Applications Classification Relative Memory Intensity

canneal Intensity III 2.25×10−2

streamcluster Intensity III 1.64×10−2

blackscholes Intensity II 2.29×10−5

bodytrack Intensity I 7.44×10−6

The canneal and streamcluster applications exhibit the most
interactions with main memory, and are categorized as being
“Intensity III” memory intensive tests, blackscholes is categorized
a “Intensity II” memory intensive application, and the bodytrack
application, accessing memory the least, is categorized as being a
“Intensity I” memory intensive application.

To test the effect of co-location on energy use, execution time,
and relative memory intensity, two additional sets of experiments
were performed. The first set contains experiments where two
applications were co-located each application is pinned to its own
core. Each application could be paired with one of the other
applications or a copy of itself. For brevity, a subset of these
possible pairs is presented in Table 3. The selection of this subset of
pairs is due to the fact the canneal application is the most memory
intensive application that was tested. canneal is therefore tested
against the other applications to determine how those applications
are impacted when co-running with a highly memory intensive
application.

The second set of experiments increases the level of co-location
from two applications up to four applications, using the “taskset”
command to pin each application to its own core within the
quad-core processor. Again, a subset of the numerous possible
combinations for co-locating the applications is presented in this
work for brevity. These subset combinations are shown in Table 4.

Table 3: Two Core Interference Tests
Test Type Applications co-located together
2 Intensity III canneal, streamcluster
1 Intensity III and 1 Intensity II canneal, blackscholes
1 Intensity III and 1 Intensity I canneal, bodytrack

Table 4: Four Core Interference Tests
Test Type Applications co-located together
4 Intensity III 2 canneal, 2 streamcluster
1 Intensity III, 1 Inten-
sity II, and 2 Intensity I

1 canneal, 1 blacksc-
holes, 2 bodytrack

2 Intensity III and 2 Intensity I 1 canneal, 1 streamcluster, 2
bodytrack

5. Results
For the results presented in this section, tests were performed

on the 64-bit Intel i7 3770 3.40 GHz quad-core processor [Int12].
In this processor, each core has its own private L1 and L2 caches,
but a shared (8MB) L3 cache, that is shared by all four cores. The
operating frequency of the processor can vary from 3.40 GHz to
1.70 GHz over the range of P-states, and because DVFS is used to
do this, it prevents the processor from over-clocking the CPU into
Intel’s “turbo” mode during the baseline tests when only one core
is being used. The average of nine runs of each test are reported.

The results of the co-location tests are shown in Figures 1 to
3. Each figure contains the results for relative memory intensity,
execution time, and energy consumption of a single application
across multiple processor frequencies for the baseline (red), two-
way co-location (green), and four-way co-location (blue) tests.
Subfigure (a) of each figure shows the relative memory intensity,
Subfigure (b) shows the execution time, and Subfigure (c) shows
the energy consumption.

Note that for the memory intensity and execution time subfigures
(Subfigures 1(a) and (b) through Subfigures 4(a) and (b), the
results shown are for the individual application being presented.
For example, when looking at the execution times of canneal
in Subfigure 1(b), the execution times for “2 Intensity III” and
“4 Intensity III” bars are the actual execution times of only the
canneal application, not the execution times of all the co-located
applications. In contrast, due to the fact the Watts up? PRO meter
takes measurements at the “outlet” level, the energy results in
Subfigures 1(c) through 4(c) show the energy consumption for all
co-located applications. Furthermore, because the applications have
different execution times, the energy consumed that is reported for
an application is the total energy consumed during that application’s
execution time.

Figures 1 and 2 contain the results for the canneal and stream-
cluster applications. Recall that canneal and streamcluster are the
two “Intensity III” memory intensive applications that were tested.
When examining the effect of co-location on the relative memory
intensity Subfigures 1(a) and 2(a) it is apparent that when multiple
Intensity III applications are co-located the number of last-level
cache misses increase, resulting in more memory accesses, and
implying that the applications are creating interference by evicting
lines from the last-level cache that were being used by other
applications. The large variations between the baseline results and
the dual and quad-core interference results seen between every
application is a result of differences in how memory interference
affects each application. It should be noted that the scale of each
graph changes between figures. The execution time of both applica-
tions are shown in Subfigure 1(b) and Subfigure 2(b) respectively.
Co-location increases the execution time of applications.

The results for the blackscholes and bodytrack applications are
shown in Figures 3 and 4, respectively. These two application are
significantly less memory intensive than canneal and streamcluster.
The results for relative memory intensity (Subfigures 3(a) and 4(a))
indicate that co-location can greatly increase the memory intensity
of “Intensity I” memory intensive tasks in a relative sense, but it
is important to note that even in the worst case (highest memory
intensity) these two applications still have fewer last-level cache
misses than either of the best cases (lowest memory intensity) for
the canneal and streamcluster applications. This is also the reason
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Fig. 1: The baseline (red), two-way co-location (green), and four-way co-location(blue) tests for canneal. The x-axis of each subfigure
is the frequency of the processor. (a) Memory intensity results, the y-axis is the relative memory intensity measured as the number of
last-level cache misses per instruction executed. (b) Exectuion time results, the y-axis is the execution time measured in hundredths of a
second. (c) Energy consumption results, the y-axis is the energy consumed measured in Joules.

Fig. 2: The baseline (red), two-way co-location (green), and four-way co-location(blue) tests for streamcluster. The x-axis of each subfigure
is the frequency of the processor. (a) Memory intensity results, the y-axis is the relative memory intensity measured as the number of
last-level cache misses per instruction executed. (b) Exectuion time results, the y-axis is the execution time measured in hundredths of a
second. (c) Energy consumption results, the y-axis is the energy consumed measured in Joules.

for the apparent fluctuations in the memory intensity values for
blackscholes and bodytrack. As can be seen by examining the
variations shown in the error bars, even the smallest variations
present in the highly memory intensive canneal data is still greater
than the largest variations in the blackscholes data (a difference
of 7.05×10−5 for canneal as compared to 6.16×10−5 for blacksc-
holes). Further analysis of the execution times for blackscholes and
bodytrack (Subfigures 3(b) and 4(b)) indicates that even though
co-location may have a significant relative increase in memory
intensity for these applications, it minimally affects the execution
times.

In general, across all applications, changing processor frequency
(P-state) has minimal impact on the relative memory intensity (Sub-
figures 1(a), 2(a), 3(a), 4(a)), as processor speed should not affect
the memory behavior of an application. Changing processor fre-
quency does have a noticeable impact on execution time (Subfigures
1(b), 2(b), 3(b), 4(b)). As expected, when the frequency decreased,
the execution times of all the applications increased. This increase
in execution time is not uniform across all the applications. In
general, the “Intensity I” memory intensive tasks are more sensitive
to changes in frequency, meaning they experience a larger percent
increase in execution time compared to the “Intensity III” memory
intensive tasks. Most likely this is due to the fact that the “Intensity
I” memory intensive tasks perform most of their computing on the

CPU, operating mainly out of the cache, thus they do not need to
access main memory very often.

An important distinction to make when analyzing the energy
results (Subfigures 1(c), 2(c), 3(c), 4(c)) of these experiments is
that the baseline results show the energy consumed during a single
task’s execution, while the co-location results show the energy
consumed for multiple task’s execution. For example in Figure
1(c) the energy use shown in the graph is a measure of the entire
test’s energy use up until the time that the canneal application
finishes executing, whereas while the energy use of streamcluster
in Figure 2(c) is taken from the same data measurements as that of
Figure 1(c) the execution time of the the streamcluster application
is longer, so its power use is greater than that of canneal.

It can be observed that even though the energy consumed to
execute a task increases when co-located with other tasks, the
total energy used to completely execute all the tasks actually
decreases. For example, as detailed in table 5, if canneal and
streamcluster were executed independently without any co-location
they would require approximately 30,509 Joules total to run, but
when co-located with one another they require approximately
only 24,281 Joules total. This is because when run independently,
both applications will separately incur the static energy present in
the system in addition to the dynamic energy used during their
execution. When co-located, both applications are able to share the
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Fig. 3: The baseline (red), two-way co-location (green), and four-way co-location(blue) tests for blackscholes. The x-axis of each subfigure
is the frequency of the processor. (a) Memory intensity results, the y-axis is the relative memory intensity measured as the number of
last-level cache misses per instruction executed. (b) Execution time results, the y-axis is the execution time measured in hundredths of a
second. (c) Energy consumption results, the y-axis is the energy consumed measured in Joules.

Fig. 4: The baseline (red), two-way co-location (green), and four-way co-location(blue) tests for bodytrack. The x-axis of each subfigure
is the frequency of the processor. (a) Memory intensity results, the y-axis is the relative memory intensity measured as the number of
last-level cache misses per instruction executed. (b) Exectuion time results, the y-axis is the execution time measured in hundredths of a
second. (c) Energy consumption results, the y-axis is the energy consumed measured in Joules.

static power resulting in less static energy being consumed during
execution, and less total energy used overall. Only a subset of these
results are shown in the table, but they are consistent across all
test runs. Furthermore, from the Subfigures 1(c), 2(c), 3(c), 4(c)
it can be seen that the optimal p-state for minimizing dynamic
energy is different between applications, and can change between
an application’s baseline, two-core, and four-core co-location tests.

This behavior along with the fact that minimal performance
degradation occurs when “Intensity III” and “Intensity I” memory
intensive tasks are co-located with one another provides many
interesting and exciting possibilities for smart resource allocation
managers in high performance computing (HPC) systems. For
example, task schedulers could use this information to intelligently
co-locate applications with differing memory intensities on multi-
core processors in server nodes to minimize performance loss and
decrease system energy consumption.

6. Conclusion and Future Work
With the desire for increased performance in computing systems,

multi-core processors have become a popular and prevalent method
of achieving higher performance. These multi-core processors are
able to execute multiple applications at one time, however there
exist complex interactions between the memory access behavior
of applications that may cause degradations in performance and

Table 5: Test Energy Savings from Sharing Static Power (units in
Joules, results are taken from tests run at 3.40GHz)

Application Energy Use
canneal 7873
streamcluster 22,636
blackscholes 9347
bodytrack 9583
canneal + blackscholes 11,055 (Co-located)
canneal + streamcluster 24,281 (Co-located)
canneal + blackscholes + 2 bodytrack 28,729 (Co-located)
2 canneal + 2 streamcluster 32,504 (Co-located)

increased energy consumption for each individual application. This
work examined the impact of memory interference on execu-
tion time, energy consumption, and relative memory intensity for
co-located applications on multi-core processors. Specifically, a
portable and lightweight testing framework was presented where
four workloads taken from the PARSEC benchmark suite were
run on an Intel i7 quad-core machine. The results verify that
applications that have “Intensity III” memory intensity are more
sensitive in terms of execution time and energy consumption when
co-located with other “Intensity III” memory intensive applications,
while “Intensity I” memory intensive applications are much less
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susceptible to degradations in their performance when co-located
with other applications. For the specific system tested, it was
shown that the optimal processor frequency for minimizing energy
consumption could change based on the application and the co-
location workload due to variations in use of dynamic power,
the increased execution time, and static power present within the
system. It was also found that co-running applications can also lead
to sharing of static power use among the simultaneously running
applications, which ends up decreasing the energy consumed for
each application. Changing the frequency of the processor had
negligible effect on the memory intensity of the applications.

Some possible directions for future work include increasing the
number of PARSEC test applications as well as including applica-
tions from additional benchmark suites and performing co-location
tests on a variety of systems. Information gathered from these
tests could then be used by high performance scheduling systems
to co-locate applications in a manner that minimizes performance
degradation and energy consumption, as well as being extended to
resource management in heterogeneous multicore-based distributed
systems; e.g., [ApY11], [YoA13], [YoP13].

7. Acknowledgements
This research used resources of the National Center for Compu-

tational Sciences at Oak Ridge National Laboratory, supported by
the Extreme Scale Systems Center at ORNL, which is supported
by the Department of Defense. This work was supported by the
National Science Foundation (NSF) under grant numbers CNS-
0905339, CCF-1252500, CCF-1302693, and an NSF Graduate
Research Fellowship. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF. The authors
thank M. Hilton, B. Khemka, S. Powers, R. Rambharos, and M.
Wright for their valuable comments on this work.

References
[ApY11] J. Apodaca, D. Young, L. Briceño, J. Smith, S. Pasricha, A. A.

Maciejewski, H. J. Siegel, S. Bahirat, B. Khemka, A. Ramirez,
and Y. Zou, “Stochastically robust static resource allocation for
energy minimization with a makespan constraint in a hetero-
geneous computing environment,” 9th IEEE/ACS International
Conference on Computer Systems and Applications (AICCSA
’11), Dec. 2011, pp. 22–31.

[DcD12] (2012) 2012 DatacenterDynamics Industry
Census, http://www.datacenterdynamics.com/blogs/
industry-census-2012-emerging-data-center-markets.

[FrB13] R. Friese, T. Brinks, C. Oliver, A. A. Maciejewski, H. J.
Siegel, and S. Pasricha, “A machine-by-machine analysis of a bi-
objective resource allocation problems,” The 2013 International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA 2013), July 2013, pp. 3–9.

[FrK13] R. Friese, B. Khemka, A. A. Maciejewski, H. J. Siegel, G. A.
Koenig, S. Powers, M. Hilton, J. Rambharos, G. Okonski, and
S. W. Poole, “An analysis framework for investigating the trade-
offs between system performance and energy consumption in a
heterogeneous computing environments,” 22nd Heterogeneity in
Computing Workshop (HCW 2013), in the proceedings of the
IPDPS 2013 Workshops & PhD Forum (IPDPSW), May 2013.

[GoL11] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam,
“Cuanta: Quantifying effects of shared on-chip resource inter-
ference for consolidated virtual machines,” 2nd Symposium on
Cloud Computing (SOCC’11), 2011, pp. 1–14.

[Htk14] (accessed Mar. 2014) HPCToolkit, http://hpctoolkit.org/.
[Int12] Intel. (2012) Intel core i7-3770 processor, http://ark.intel.com/

products/65719/.

[Int14] “Intel 64 and ia-32 architectures software developer’s
manual volume 3b: System programming guide,
part 2,” Tech. Rep., Feb 2014, http://www.intel.
com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.
pdf.

[Jal07] A. Jaleel, “Memory characterization of workloads using
intrumentation-driven simulation,” Tech. Rep., 2007, http:
//www.jaleels.org/ajaleel/workload/SPECanalysis.pdf.

[KiC12] S. Kim, C. Choi, H. Eom, and H. Y. Yeom, “Energy-centric DVFS
controlling method for multi-core platforms,” 5th International
Workshop on Multi-Core Computing Systems (MuCoCoS’12), as
part of Super Computing 2012, Nov 2012.

[OxP13] M. Oxley, S. Pasricha, H. J. Siegel, and A. A. Maciejewski,
“Energy and deadline constrained robust stochastic static resource
alloation,” 1st Workshop on Power and Energy Aspects of Compu-
tation (PEAC 2013), in the proceedings of the 10th International
Conference on Parallel Processing and Applied Mathematics
(PPAM 2013), Sep 2013, p. 10.

[PaE14] (accessed Mar. 2014) PAPI events by architectures, http:
//icl.cs.utk.edu/projects/papi/presets.html.

[Pap14] (accessed Mar. 2014) Performance application programming
interface, http://icl.cs.utk.edu/papi/.

[Par14] (accessed Mar. 2014) PARSEC benchmark suite, http://parsec.
cs.princeton.edu/.

[SuH10] E. L. Sueur and G. Heiser, “Dynamic voltage and frequency
scaling: The laws of diminishing returns,” The 2010 International
Conference on Power Aware Computing and Systems (HotPower
’10), Oct 2010, p. 5.

[TaM11] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa,
“The impact of memory subsystem resource sharing on datacenter
applications,” 38th Annual International Symposium on Computer
Architecture (ISCA’11), June 2011, pp. 283–294.

[Wat14] (accessed Mar. 2014) Watts Up? plug load meters, https:
//www.wattsupmeters.com/secure/products.php?pn=0.

[YoA13] B. D. Young, J. Apodaca, L. D. Briceño, J. Smith, S. Pas-
richa, A. A. Maciejewski, H. J. Siegel, B. Khemka, S. Bahirat,
A. Ramirez, and Y. Zou, “Deadline and energy constrained
dynamic resource allocation in a heterogeneous computing envi-
ronments,” The Journal of Supercomputing, Vol. 63, No. 2, Feb.
2013, pp. 326–347.

[YoP13] D. Young, S. Pasricha, A. A. Maciejewski, H. J. Siegel, and
J. T. Smith, “Heterogeneous energy and makespan-constrained
dag scheduling,” International Workshop on Energy Efficient High
Performance Parallel and Distributed Computing (EEHPDC-
2013), sponsor: ACM, Jun. 2013, pp. 3–11.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 9



Processing NOAA Observation Data over Hybrid 
Computer Systems for Comparative Climate Change 

Analysis 
 

Xuan Shi1,, Dali Wang 2 

1 Department of Geosciences, University of Arkansas, Fayetteville, AR 72701, USA 
2 Environmental Science Division, Oak Ridge National Lab Oak Ridge TN 37831, USA  

 
 

Abstract - With the rapid development of weather monitoring 
system, numerous observational data are available. For 
example, NOAA provides Global Surface Summary of Day 
(GSOD) data that incorporates daily weather measurements 
from over 9000 weather stations around the world. In this 
paper, a comprehensive workflow and methodology is 
presented to elaborate how to transform GSOD data into a 
new and useful format so as to generate interpolated product 
of daily, monthly and annual mean surface temperature 
datasets by using advanced computation platforms.  The 
quality of this gridded, high resolution (at ¼ degree) daily 
product is further examined by comparing to an existing 
global climate dataset. A preliminary comparison on global 
surface temperature shows a consistent agreement between 
these two datasets, with the major differences located in a few 
regions. The interpolated GSOD data products are 
supplementary to existing datasets by providing new gridded, 
high resolution observation-based daily temperature 
information over three decades (1982-2011), which are very 
useful for decadal climate change researches. 

Keywords: GSOD/NOAA Observational Data, Interpolation, 
Parallel Computing, GPU 

 

1 Introduction 
  Historical weather datasets have been extensively used 
as a source of information to study global climate change and 
to validate and verify earth system models [1][2]. NOAA 
provides Global Surface Summary of the Day (GSOD) data 
through an FTP server ftp://ftp.ncdc.noaa.gov/pub/data/gsod/. 
GSOD data incorporates daily weather measurements 
(temperature, dew point, wind speed, humidity, barometric 
pressure, and so forth) from over 9000 weather stations 
around the world. GSOD data are available from 1929 to the 
present, with the data from 1973 to the present being the most 
complete. GSOD data, in its original format, however, could 
hardly be utilized directly and efficiently by researchers. 
Since each weather station is identified by a specific code, it 
is difficult to know where those stations are located in the 
archived data files when the location [latitude and longitude] 
information of weather observation station, as well as other 
descriptive information about the data, is documented in the 

metadata file, which is stored separately from the source data 
in ASCII format. This means, even the users can download 
the data from the FTP Server, it is difficult for them to 
understand where the weather stations are located if they 
cannot link the location information within the metadata with 
the ASCII file, let alone to find station(s) for a specific area or 
place. It is impossible to derive the global climate change 
information from such individual, station-based, unstructured 
data for any given temporal scope.  

 This paper describes the workflow and method to 
transform GSOD raw data into an applicable format and how 
to produce interpolated temperature data from daily 
meteorological observations at any arbitrary resolution. 
Considering the general interest of journal readership, global 
daily temperature results on a 0.25 degree x 0.25 degree 
surface grid were generated for duration from 1982 to 2011. 
Furthermore, time-series monthly average temperature grids 
were generated to compare with widely used high resolution 
gridded datasets (http://www.cru.uea.ac.uk/cru/data/hrg/), 
which contain the time series of monthly average temperature 
developed by the Climatic Research Unit at the University of 
East Anglia (CRU TS). The preliminary comparison result 
indicates the overall consistence between these two datasets, 
while major differences are located around the Tibet plateau.  
The future work will focus on the improvements of station 
selection for interpretation, the topography-dependent 
heterogeneity of surface temperature measurement, as well as 
comparison with other existing global datasets, such as 
NASA Goddard Institute for Space Studies (GISS) and 
Moderate Resolution Imaging Spectroradiometer) MODIS 
datasets. 

2 Methodology and Workflow  
 GSOD data contains a variety of observed weather 
information including the mean, maximum and minimum 
temperature, mean dew point, mean sea level and station 
pressure, precipitation amount and snow depth, as well as 
other elements. However, such an invaluable data has been 
archived by individual station in unstructured ASCII format. 
In order to efficiently utilize GSOD data for climate change 
research, station-based data has to be transformed into date-
based data in which the location of the station is embedded 
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and merged into the time series datasets. As a result, daily 
global mean surface temperature can be approximated by 
applying interpolation algorithm. Furthermore, monthly and 
annual mean surface temperature as well as anomaly can be 
developed. 

 Interpolation is a method to estimate the value of 
unsampled location based on the values of existing 
observations. Interpolation can be implemented by different 
approaches in different domain science applications. Among 
these approaches, Kriging is a geostatistical interpolation 
method that is effective for predicting the spatial distributions 
of geographic features, although Kriging has complex 
implementation and a large computation load [3][4][5][6]. 
We applied Kriging interpolation in this pilot study.  

 Technically, the data processing workflow contains four 
steps (as shown in Figure 1), including 1) data transformation, 
which converts station-based ASCII file into date-based data 
by integrating the location information into the new daily 
dataset; 2) data interpolation, which generates interpolated 
daily mean surface temperature; 3) data aggregation, which 
generate the monthly and annual mean surface temperature or 
30 year anomaly for example; and 4) data subtraction, which 
derives the temperature change information. 

 Scientifically, the  new data product will help user and 
researchers to 1) identify and understand the spatial and 
temporal differentiation of climate change in the past decades 
at the global and local scale; 2) explore and understand the 
climate change tendency by analyzing and visualizing 
historical data; 3) compare, validate or examine potential 
climate models and results; 4) integrate the output into other 
research projects as the source of data. 

 
3 Computational Platform 

 Kriging interpolation is data and compute intensive 
especially when great circle distance is applied to identify a 
given number of nearest neighboring observation stations. 
When high resolution output grids are generated, it may take 
hundreds of days to process the entire data for three decades. 
Parallel computing over the Graphic Processing Units (GPU) 
can significantly accelerate the time-consuming calculation 
process to improve the performance in verities of scientific 
computation. When multiple GPUs can be utilized to 
accelerate Kriging calculation, the processing time can be 
reduced from dozens of minutes on the serial program to 
dozens of seconds on a single GPU over a desktop computer 
and to a few seconds on Keeneland [7], which is a hybrid 
computer system that has 240 CPUs and 360 GPUs. 

 We started the development process to implement 
Kriging computation over a desktop computer in order to 
establish a standard for quality control and performance 
comparison to the parallel solution and products. The desktop 
computer has an Intel Pentium 4 CPU with 3.00 GHz main 
frequency, while the RAM size is 4 GB. The desktop machine 
has a graphic processing unit (GPU) that is a NVIDIA 
GeForce GTS 450, which has 192 cores and has 1 GB global 
memory. According to the technical specification, this GPU 
has 24 streaming multiprocessors (SM). Each SM has 8 
CUDA cores called as streaming processor (SP). In this GTS 
450 with a compute capability of 2.1, up to 1024 threads can 
be assigned to each SM. Thus a maximum of 1024 x 24 = 
24,576 threads can run concurrently in parallel on the 
physical GPU, although the maximum sizes of each 
dimension of a block is 512 x 512 x 64 and the maximum 

 
Figure 1: Workflow of GSOD data transformation and computation 
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sizes of each dimension of a grid is 65535 x 65535 x 1. If the 
number of threads is more than the maximum number 
[24,576], the remaining threads have to wait. 

 After the Kriging interpolation algorithm is 
implemented and validated over both the serial program and 
the parallel solution over desktop GPU, Kriging is 
implemented over Keeneland, a hybrid computer system 
jointly developed by Georgia Institute of Technology, the 
University of Tennessee at Knoxville and the Oak Ridge 
National Laboratory sponsored by NSF, to accelerate the 
computation over more than 10,000 daily temperature 
estimation.  

 Keeneland is composed of an HP SL-390 (Ariston) 
cluster with Intel Westmere hex-core CPUs, NVIDIA 6GB 
Fermi GPUs, and a Qlogic QDR InfiniBand interconnect. The 
system has 120 nodes, each with two CPUs and three GPUs, 
while all CPUs and GPUs are bridged together through one 
I/O hub from which the CPUs can read/write data. Generally 
the CPUs serve as a high-level controller coordinated through 
Message Passing Interface (MPI), while GPUs implement the 
intensive computation job at a relatively low-level. By 
utilizing multiple GPUs on Keeneland, the computational 
time on interpolation was reduced to 3-4 seconds when one 
Keeneland node with three GPUs was utilized even without 
applying any spatial index 

4 Implementation Details 

 Within the workflow of data transformation and 
computation, Kriging interpolation could be the most time-
consuming procedure when a resolution of 0.25 x 0.25 degree 
grid is designed as the output product that has 1440 x 720 = 
1,036,800 cells. If the GSOD data has 2,000+ to 5,000+ 
records, Kriging through serial computer program needs more 
than 11 or 30 minutes. While the weather observational 
stations in the world have been increasing in recent decades, 
GSOD data may have more than 10,000 daily records thus 
Kriging may need 40-50 minutes to process one daily data. If 
interpolating one day data needs 30 minutes by average 
through serial program, it would take about 328,500 minutes 
or 228 days to process 30 years of daily data from 1982 to 
2011. For this reason, we pursued high performance 
computing solution by utilizing hybrid computer system to 
implement kriging through combined message Passing 
Interface (MPI) and Graphics processing unit (GPU) 
programs. 

4.1 Implementation on desktop GPU 

 GPU was traditionally utilized in computer graphics 
applications. Considering the massive parallelism enabled by 
the GPU, it can be used for general-purpose computing and 
thus called GPGPU. By executing tens of thousands of 
threads concurrently, GPGPU enables high performance 
computing even on desktop or laptop computers. Compute 

Unified Device Architecture (CUDA) is NVIDIA’s general-
purpose parallel computing architecture. Here, the Central 
Processing Unit (CPU) is referred to as a host, while an 
individual GPU is referred to as a device. Normally the GPU 
executes the data computation process while I/O is done on 
the CPU, which also manipulates the workflow. The kernel is 
the function that runs on the device and is executed by an 
array of threads, while all threads can run the same code 
concurrently. Each thread has a unique thread identifier and 
can be accessed via the threadIdx variable. Thread identifiers 
(threadIDs) can be defined in one, two or three dimensions. 
Furthermore, threads can be grouped into thread blocks and 
grids.  Threads in same thread block can cooperate with each 
other via shared memory, atomic operations or barrier 
synchronization. Threads in different blocks cannot 
cooperate. A user-defined number of threads can be organized 
in a block with a maximum number of 512 threads. Similarly 
a group of thread blocks can be organized into a grid in which 
each thread may be executed independently and thus may 
execute in parallel. 

 The first test is on the desktop computer through Visual 
Studio .Net 2010. Interpolation calculation could be a perfect 
match for parallel computing using GPUs. In essence, 
interpolation can be treated as a matrix calculation which is 
generic in GPGPU applications. We specify a number of 
columns and rows to define the dimension of the output grid. 
For each cell, we need to first find a given number of nearest 
neighboring points that have observational records. Then we 
implement the Kriging algorithm over each cell for 
interpolation calculation to derive the approximated value 
based on the observational values of its nearest neighbors. 
The calculation on each cell has no dependence on the other 
cells thus interpolation can be processed as an embarrassingly 
parallelism.  

 A general scheme for Kriging by CUDA C program can 
be summarized as: 

 
1. Specify the types and sizes of input and output data; 
2. Allocate memory on GPU for input data, output data, 
and intermediate data; 
3. Allocate the computing resource on GPU, i.e. specify 
number of threads per block and total number of blocks; 
4. Copy both input and output data from CPU to GPU;  
5. Execute the algorithm for kriging computation; 
6. Copy both input and output data from GPU to CPU;  
7. Write the output data in ASCII grid format; 
8. Free the allocated GPU memory. 

 

 To achieve high performance, we specify the number of 
blocks to be used and the number of threads in each block. In 
this case, for example, if 20,000 concurrent threads can be 
used to run Kriging interpolation, the program will be 
executed 50 times if the output grid has 1 million cells.  
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4.2 Implementation on Keeneland 

 Implementing the spherical interpolation computation 
on Keeneland is a combination of MPI and CUDA programs. 
The CUDA program is responsible for the computation of a 
block of the interpolated raster grid divided by horizontal 
rows. Each MPI process has a unique process rank number 
which is used to specify how many and which rows each 
CUDA program will process on the GPU node. The MPI 
processes read the input data, assign the jobs to the GPU 
nodes to implement the spherical interpolation program, and 
write a segment of the output data into a file in parallel. When 
all MPI processes are completed, one MPI process merges all 
segments of the output data into a single file.  

5 Performance Evaluation 

 A varied scale of datasets is used in the performance 
testing. Given the size of the output grid as 1440 x 720 = 
1,036,800 cells, Tables 1 displays the performance of the 
Kriging interpolation over different datasets using a single 
CPU, and the performance and speedups of the parallelized 
solutions on a single GPU on a desktop computer, and on 1, 
3, 6, and 9 GPUs on Keeneland. In this case, 10 nearest 
neighboring points that have observational values are used in 
the Kriging calculation. The advantage of using the GPU is 
noticeable along with the increasing data scale as the speedup 
increases even when a single GPU is used on a desktop 
computer.  

  In Keeneland, the maximum speedup is achieved when 

one node with 3 GPUs was utilized at all scales of input data. 
This result implies that at current scale of input data size, 
utilizing more GPUs may result in more overhead for data 
manipulation between the host and device. If larger scale of 
data could be applied, it may have a different performance 
pattern or result over different number of GPUs utilized in the 
calculation. 
 
6 Visualization and Analytics of 
Interpolated GSOD Data 

 Now that GSOD data has been transformed into the new 
format, such observational data can be visualized and 
analyzed through geographic information system (GIS) 
software for example. Figure 2 displays the distribution of the 
weather observation stations on the globe on July 1, 2009 and 
the global mean surface temperature on this specific day 
modeled by Kriging calculation. Time series of temperature 
evolution can be visualized as a movie or animation.  

 For any given location on the earth, we can to search 
query on the GSOD data through the identification function 
call. By clicking on the map interface, we can identify the 
location (latitude and longitude) of the clicked point and 
retrieve the daily mean surface temperature of this given 
location for any year. In this way, we can examine the quality 
of the Kriging result by comparing the Kriging result with the 
original GSOD data for any known station so as to validate 
the methodology for further improvement of this work on the 
one hand. On the other hand, we can offer the capability or 
service to allow users to search query over the local or 

Table 1. Performance comparison based on different scale of data between serial program,  a single GPU over desktop 
machine, as well as  combined MPI and GPU program over Keeneland. Time is counted in seconds. 

 
Data Size Time/speedup on desktop Time/Speedup on Keeneland 

 1 CPU 1 GPU  1 GPU 3 GPUs 6 GPUs 9 GPUs 

2191 669 56 / 12 7 / 96 4 / 167 6 / 112 6 / 112 

4596 1570 66 / 24 8 / 196 5 / 314 6 / 262 7 / 224 

6941 1960 65 / 30 7 / 280 4 / 490 7 / 280 6 / 327 

9817 2771 52 / 53 6 / 462 4 / 693 7 / 396 6 / 462 
 

  
 

Figure 2: Distribution of weather observation stations and the global mean surface temperature on 07/01/2009 
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regional temperature change for a certain time period to 
enhance the domain science research and application 
development. 

 
7 Comparison with Existing Global 
Climate Dataset  

7.1 Dataset description  

 Climatic Research Unit (CRU) TS (time-series), or CRU 
TS, datasets contain month-by-month variations of global 
climate information over the last century or so. CRU TS 
datasets are archived as high-resolution (0.5 x 0.5 degree) 
grids of monthly mean temperatures derived from more than 
4000 weather stations distributed around the world. CRU TS 
data includes weather information such as cloud cover, 
diurnal temperature range, frost day frequency, precipitation, 
daily mean temperature, monthly average daily maximum 
temperature, vapor pressure and wet day frequency. At 
present, the British Atmospheric Data Center holds the CRU 
TS 3.0 datasets for the period 1901-2006 as well as the CRU 
TS 3.1 datasets for the period 1901-2009. In this study, the 
monthly temperature dataset from CRU TS 3.0 [8] is used for 
the comparison to the gridded daily product of GSOD 
temperature. 

7.2 Comparison  

 Since CRU TS only has half degree grids of monthly 
average temperature over six earth continents (without 
Antarctica) , we filtered out all the data covering the ocean 

and Antarctica for comparison to the monthly mean surface 
temperature derived from the interpolated GSOD daily mean 
surface temperature over those six continents for comparison. 
Figures 3 and 4 display the spatial distribution of the average 
temperature of two specific months, specified by CRU TS 
dataset in winter and summer month (January and July) in 
2006. As shown in Figure 3 and 4, the temperature 
distribution pattern exemplifies a good match between CRU 
TS data and our gridded, GSOD product in a majority of 
areas, while major difference exists around Himalaya 
mountain areas.  

 
8 Conclusions and Future Work 
 This paper presented the method and workflow to 
transform NOAA Global Surface Summary of Day (GSOD) 
data into a more useful format to support climate change 
research. While the location of weather observation stations is 
embedded, date-based GSOD data can be further transformed 
into detailed gridded data products at very fine spatial and 
temporal scale.  By deploying hybrid computer architecture 
and systems, interpolating global daily mean surface 
temperature in the past 30 years can be accomplished within 
two hours.  The quality of interpolated GSOD products 
exemplifies satisfied quality in most regions over the 
continents in the world. The preliminary comparison between 
CRU TS data and our new gridded data products derived 
from GSOD shows a consistent match between these two 
datasets, with the major difference identified around 
boundaries of Tibetan plateau. With the increasing demands 
on the research of decadal climate change and its impact, our 
gridded GSOD data products can serve as a high fidelity 

 
 

Figure 3: Global temperature profiles in winter month (Jan, 2006) (left: CRU TS data, right: gridded GSOD product with the 
same color scheme). 

 

 
 

Figure 4: Global temperature profiles in summer month (July 2006) (left: CRU TS data, right: gridded GSOD product with the 
same color scheme). 
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benchmark datasets to validate and verify those finer scale 
climate simulation results. It can also be used as fine scale 
(both temporal and spatial) external forcing to investigate 
regional climate impacts. The future work will focus on the 
improvements of station selection for interpretation, and the 
topography-dependent heterogeneity of surface temperature 
measurement in the data generation procedure. Further 
comparison with other existing global climate datasets, such 
as NASA GISS datasets (http://data.giss.nasa.gov) and 
MODIS datasets (lpdaac.usgs.gov), will help to understand 
the different models and the output results for climate change 
research.  Our gridded GSOD data product [i.e. global daily 
mean surface temperature grids at a resolution of 0.25 degree 
x 0.25 degree for a duration between 01/01/1982 and 
12/31/2011] is now available upon request, and authors are 
making plans to make the product available via Distributed 
Active Archive Center for Biogeochemical Dynamics at Oak 
Ridge National Laboratory. All the datasets generated by this 
study are available upon request, and DOI was requested for 
those datasets.  
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Abstract—In this paper we present a High Efficiency 

Video Coding(HEVC) decoder implemented using 

multicore processor. HEVC can support Ultra High 

Definition (UHD) digital TV and resolution up to 

8192x4320. It aims to achieve compression rate in the 

range of 50% bit-rate relative to existing standards. And 

decoding speed should be over the 30 fps(frames per 

second). Although multicore processors have sufficient 

performance and enough memory, HEVC software cannot 

make use it very well. So not only the proper architecture 

for HEVC is needed but also modified HEVC software 

should be considered. Gem5 simulator was used to 

simulate the performance of our decoder. Base on the 

simulation results we suggest appropriate multicore 

architecture platform which can satisfy the goal of HEVC 

decoding speed. 

Keywords: HEVC, Multicore, Parallelization 

 

1 Introduction 

In recent days, as digital display technology has 
remarkably developed and high-definition of digital TV is 
needed for various media resources, Joint Collaborative 
Team on Video Coding (JCT-VC) which ISO/IEC Moving 
Picture Experts Group (MPEG) and ITU-T Video Coding 
Experts Group (VCEG) have established develops the High 
Efficiency Video Coding (HEVC) standard. HEVC can 
handle the 8 K Ultra High Definition (UHD) and resolution 
up to 8192x4320. And it improves the data compression 
ratio compared to H.265/MPEG-4 AVC which is pre-
version of HEVC. H.264/MPEG-4-AVC can be performed 
in general computer enough. But HEVC controls more 
fragmented unit for high definition video resources and 
adopts technologies to accomplish the parallelization tasks. 
So, new platform architecture which can realize the 
encoding and decoding these feature of HEVC tasks is 
needed. But there are so many possible architecture 
components and their composition. And also specification 
of each hardware component can influence the performance 
of HEVC encoding and decoding process. [1][6] 

In section 2, we present basic architecture of HEVC 
encoder and decoder. In section 3, we describe the basic 
ideas which we proposed to find proper architecture in 
multicore platform for HEVC. In section 4, HEVC decoder 
software is modified to utilize the multicore architecture 
using parallelizing method and appropriate architecture is 
proposed based on simulation results. At last section, we 
define what is done in this paper and finish the paper. 

2 Related works 

2.1  Feature of HEVC  

1) Wavefronts: In the side of increasing the possibility of 
parallelism in HEVC, we can define the multiple cores can 
be used in parallel. HEVC adopts the wavefronts concept 
which splits the picture into CTU rows. This each CTU can 
be processed in a different processor or thread. So if the 
architecture has many processing components which can 
handle the CTU rows, user may configure the encoding or 
decoding processor can be split into the many CTUs. With 
multiple processing components, increasing of split depth 
does not cause increasing of total processing time by using 
the parallelism. Not only case of wavefornts, there are many 
possible tasks which can utilize the parallelism of multiple 
processing components because almost processing unit has 
similar structure with CTUs.[1][2] [6] 

2) Slices: HEVC divide a frame into slice which is 
groups of LCUs in scan order. It can be used for 
packetization in NAL unit when transmission in network. 
But more important role of slice is parallel processing in 
decoding the CUs. Because each thread or processor handle 
the each slice, so parallelize is improve. But every slice 
should contain the slice header which includes size, 
boundaries and parameters. This can distortion transmit rate 
and the dependencies at each slice’s boundary can interrupt 
the decoding performance. So, in some cases, exclude slice 
information when encoding the picture. [1][3][4][6]  

3) Dependency: For applying the pipelining or parallelize 
to HEVC decoder software, Dependency between each 
tasks or target CUs should be considered as a basis of 
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smooth decoding process. In case of task’s dependency, all 
decode tasks should be carried out in regular sequence. So, 
between neighboring tasks, parallelizing cannot be adopted 
but pipelining is acceptable. Enter the specific task, for 
example decompress task, there is dependency between 
circumjacent CUs because of intra prediction directions as 
shown in Fig.3. So, when wavefronts is used for 
parallelizing the decoder, each row of CUs should be 
decoded after two CUs of previous row are 
decoded.[1][3][6] 

 

CTU row 1

CTU row 2

CTU row 3

CTU row 4

 

Fig. 1. Wavefornts Processing of CTUs 

 

 

Fig. 2. Slices and Tiles 

 

Dependency 
directon

LCU

 

 

Fig. 3. Dependency Direction in Decompress 

Each CU has their address number which start from 0 to 
(total CU numbers -1). This number cannot be used for slice 
and tile because they have their numbers. For example, in 
Fig.2, one tile has 16 CUs so, the address number of each 
CU is 0 to 15 and other tile has also number of 0 to 15 for 
included CUs. Foregoing address number can be used for 
wavefronts parallelize and after-mentioned address number 
also can be employed for parallelize using allocate each tile 
to processor or thread. As multi-processor architecture is 

fastest growing issue in hardware architecture, HEVC 
concentrates on parallelize decoding process which can 
make the best use of multi-processor architecture. So, in this 
paper we modify the HEVC software to put this feature to 
practical use. 

2.2 HEVC Decoder 

HEVC decoder goes along in the opposite direction of 
its encoding process. First step of decoder is Read NAL unit 
task. Because H.264 and HEVC is developed for the 
purpose of network transmission, encoded data take a form 
of NAL unit. NAL unit is made for efficiency transmission 
of picture stream data in network. It consist of parameter set 
block (SPS, PPS) and slice of picture data. So in this first 
function identifies what this block is and informs it. Second 
step is DecodeSlice which consist of initCU, decodeCU and 
DecompressCU. InitCU just initialize of decoding process. 
DecodeCU conduct entropy decoding of bitstream. In high 
efficiency mode of HEVC, entropy encoding conducts 
based context-based binary arithmetic coding (CABAC). 
DecompressCU which is the next step of decodeCU in 
DecodeSlice made up largest number of decoder process. 
Major roles of this part are dequantization, inverse-
transformation, motion compensation and intra/inter 
prediction. After decompressCU, decoded picture is stored 
in decoded picture buffer (DPB). This decoded picture is 
using for deblocking filter (DF), sample adaptive offset 
(SAO), adaptive loop filter(ALF) and inter prediction. 
These three filters are part of ExecuteLoopFilter function. 
So, this step consume much time in access memory. Last 
step is write picture. When the one picture is decoded 
completely, this picture is written in decoded picture file. 
For the most features of each blocks, HEVC have tended to 
center around the question of how we can achieve more 
highly resolution pictures and how we can raise a 
compression ratio with not much more bitstream. But there 
is no clear solution for architecture to sufficiently handling 
the most high resolution video stream. To make the best use 
of HEVC structure, we should put knowledge of 
characteristics about HEVC to system-level design space 
exploration. We will see in section 3 how this methodology 
is being unveiled. [1][4] 

 

Read NAL unit InitCU DecodeCU 

DecompressCU

Execute
LoopFilter

Write picture

DecodeSlice

Intra
Prediction

Inter
Prediction

DPB

 

Fig. 4. HEVC Decoder Process 

3 Proposed methodology of  

implementing multicore platform 

for HEVC decoding  

In the present paper, we will see the methodology to 
take appropriate multicore architecture for HEVC decoder. 
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Before we apply the several CPU architectures, we should 
analysis HEVC using HM11.0 in the general PC 
environment so that we choose the primary tasks and define 
the relation between each task. Some basic features of 
HEVC can be come to the front from this process. And this 
process will offer further evidence for the selection of 
fundamental components of architecture which we will 
choose as a consideration for simulation. The point which 
we especially concentrate on is a task which can use the 
parallelized architecture and consumes much memory 
bandwidth. Because this is a main feature that different 
from H.264/MPEG-4. HM11.0 provides the performance 
information such as bit-size of each slice and total 
processing time when user performs encoding and decoding 
process with sample input file. And when we encode the 
input video file, we can configure most parameters of tasks 
in HEVC structure. Because as resolution of input video file 
is increasing and as what the user has more interest between 
image quality and compression efficiency, composition of 
encoder options, decoder structure and combination of each 
parameter set have a broad range. In addition, some tasks do 
not perform at some cases. So it is material to selecting the 
main component of architecture by profiling the HEVC 
using the HM11.0 software as benchmark software. 

 

Profiling using
Benchmark 
software

Modifying the 
software to utilize 

a proposed 
architecture

Defining the 
concrete 

specification of eac 
architecture 
consideration

Step 1.

Step 2.

Step 3.

 

Fig. 5. Proposed step-wise methodology 

 

The second step decides the modified form of target 
software. Information for modifying the software is gained 
from first step because the tasks and architecture component 
which we should consider importantly are exposed come 
out from first step. From this step, designer should ensure 
that which performance indices will be considered main 
issue of the model. If the designer set a goal of much 
increase in compression rate, all tasks which can play a part 
of compression operation should be considered to be very 
important tasks.  

At the last step, we would already know from previous 
step that which component has a great influence to a full 
architecture so that we should analyze that task deeper to 
make optimum configured components for reaching 
designer’s goal. Naturally, other components of architecture 
will receive less attention. In this step, more detailed 

architecture requirement which can satisfy the designer’s 
goal in terms of his performance set. 

4 Implementation of HEVC decoder 

using multicore architecture 

According to profiling result of decode function HM11.0, 
most of performance time is consumed in decompressCU 
function but initCU and decodeCU functions also have the 
portion not to be ignored. And because these three 
functions should be performed in serial with CU order, the 
dependency between each task is a point to be specially 
considered. But naturally, decompressCU function is most 
important part to be parallelize or pipelining for applying to 
multicore architecture. 

HEVC software which is offered from standard 
association is not optimized to utilize the multicore 
architecture. And because HEVC is more complicated than 
H.264 to achieve 50 % higher compression ratio as 
maintaining the same PSNR, there are some possibility 
which can draw up the decoding speed using parallelize. 
But in the multicore environment with OS, it is not easy to 
guarantee the stable decoding speed.  

   In this paper, we obtain the trend of decoding speed with 
various hardware and software architecture using gem5 
simulator with changing hardware components and each 
component’s specification. So in this proposed 
implementation methodology, both software and hardware 
can be considered to analyzing decoding speed of HEVC 
decoder software and proposing appropriate architecture 
platform.[5] 

4.1 Parallelizing of HEVC decoder software  

HEVC decoder software is comprised of tiles, slices and 
CTU rows which are concepts for applying parallelizing. 
But decoder speed as increasing the number of cores is not 
changed largely. The reason why decoder speed is not 
changed is seen plainly through simulation result from 
gem5 simulator. The stat information which is the result of 
gem5 simulator tells the fact that however the number of 
core increased, HEVC decoder software can employ only a 
one core out of them. So with the original HEVC decoder 
software, the goal of decoding speed cannot be 
accomplished. In this reason, openMP is applied to HEVC 
decoder software. As the profiling results of HM11.0, the 
most important task is the decode function and CU is the 
processing unit in that function. Among the ways of using 
openMP in HEVC decoder software, we choose the 
decodeCU and decompressCU to parallelize applying 
region. 

We make parallelizing using openMP. In this 
parallelizing, decodeCU is comprised in parallelizing the 
decompressCU.  Because the time which is consumed 
during operating a one CU on decodeCU is just one tenth of 
that of decompresCU, specific CU can be decoded before 
that CU starts decompress. 

But the start CU of each parallelized row should be 
decoded before it starts. Therefore, address of the number 
between 1~52 should be decoded before parallelized 
decompress starts as shown in Fig.6, there are totally three 
steps for decoding 104 CUs and both second and third steps 
are applied to openMP. In the decompressCU parallelizing 
method, each row has a gap of two CUs. It is because of 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

18 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



dependency between CUs when intra-prediction is 
operated.[3] 
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Fig. 6. Case 1 of Parallelize using OpenMP 

4.2 Simulation Results 

We simulate the HEVC decoder software on Gem5 
simulator with X86 instruction set and CentOS environment. 
Default interconnection type is a coherence bus model and 
multicore type is SMP model. Used decoder software is HM 
11.0 and the encoder software is also HM 11.0. HEVC 
decoder on the gem5 simulator works in practice. Because 
the Gem5 simulator offers a multicore architecture which 
has its all components and porting a real OS on the platform, 
the result of HEVC decoder on simulator is real YUV type 
video. [5] 

First simulation result is decoding speed per number of 
core. We set the clock speed at 3.3 GHz and memory at 
256MB. Although original HEVC decoder software which 
we named serial case cannot utilize the multicore 
architecture, the modified HEVC decoder in section 4 is 
used to simulate HEVC decoder software on multicore 
architecture. The region of biggest increasing in decoding 
speed is between 1 core and 3 cores. And after 3 core, 
decoding speed over the 30 fps which is the goal of HEVC 
decoding speed. The max number of threads which is used 
at the same time is 5 when a one decodeCU row and four 
decompressCU rows are decoded as shown in Fig.4. So the 
peak value of decoding speed is achieved when number of 
cores is 5. After then, decoding speed is decreased when 6 
cores are used and it is saturated with 33.3 fps from 7 cores. 
So, we need more than 3 cores to derive a decoding speed 
over 30 fps when using multicore architecture with 
modified HEVC decoder software. And with this modified 
HEVC decoder software, more cores over 7 is not needed 
because the decoding speed is saturated after that. And next, 
same simulation with various clock speeds is done. Under 
the 3 GHz clock speed, 30 fps is not achieved. With 3.1 
GHz clock speed and over the 4 cores, decoding speeds can 
achieve 30 fps. With all clock speed cases, most significant 
increasing of decoding speed is shown in range of 1 core to 
3 core. But over the 3 cores, there are no regular trends in 
decoding speed. In some cases, decoding speed is increasing 
steadily, but in most cases, decoding speeds repeat 
increasing and decreasing. [2] 

Second simulation option is memory size. Tasks which 
access and use a memory in HEVC decoder software are 
decompressCU, decode of parameter set, decode of 
coefficient and three kinds of loop filter. Especially, 
DPB(Decoded Picture Buffer) occupied much size of 
memory for saving a temporary decoded picture. Simulation 
result is represented as decode time of decode function 
which is composed of decodeCU and decompressCU. 
Decode speed is stabilized when memory size is over 64MB. 
If the memory size is smaller than 30 MB, HEVC decoder 
stops decoding operation because of resource unavailable. 
In this simulation environment, OS runs the only a one 
program.     This result can says the minimum memory 
requirement for decoding HEVC software is 32 MB with 
832x480 resolution video file. And to avoid the restriction 
of memory size, memory size should be over the 64 MB. 

Based on these simulation results we can propose 
minimal cost multicore architecture platform which can 
satisfy the goal of HEVC decoding speed. Table1 shows 
that there are many combinations of specification of each 
component which can achieve the decoding speed of over 
the 30 fps. So we can choose minimal cost combination set 
which can make good use of parallelism of HEVC software. 
The proposed multicore architecture set consists of 3 cores, 
clock speed of 3.1GHZ and memory size of 64 MB with 
SMP. 

TABLE I.  SPECIFICATION OF MULTICORE ARCHITECTURE FOR 

HEVC 

 Clock speed Memory 
size 

Number of 
cores 

Over the 
30 fps 

3.1GHz(3 
core) ~ 
4GHz(1 core) 

52 MB ~ 

128 MB 

1core(4GHz)  

~8 core 

Proposed 
Platform 

3.1 GHz 64 MB 
(SMP) 

3 cores 
(X86) 

 

5 Conclusion 

This paper suggests the multicore architecture which can 
fully achieve a goal of decoding speed. Target software is 
HEVC decoder which is a next generation video 
compression coding. So we find the appropriate multicore 
architecture aimed to specific software using proposed 
implementing multicore architecture platform methodology. 

In the first step, we analyze the HEVC decoder software 
using profiling tool of visual studio 2010 in the first place. 
The profiling results give information that which task 
consumes most time in decoding time so that we decide on 
target task to modify the software for parallelizing. After 
then we apply the openMP to parallelizing software and 
proceed the simulation on Gem5 simulator. The main 
considerations are clock speed, number of cores and 
memory size. Through simulation, we figure out the final 
multicore architecture platform which can decode an 
encoded video file with decoding speed over 30 fps. So we 
can suggest multicore architecture for HEVC decoder with 
over the 3.1 GHz clock speed, over the 3 cores and over the 
64 MB memory size with modified HEVC software for 
parallelizing. 
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Abstract – (PDPTA’14) This research presents the 
design and initial implementation of a database engine 
using an Intel Xeon Phi co-processor.  The many 
integrated cores (MIC) of the Xeon Phi make this 
hardware accelerator a natural computing platform for 
an in-memory database engine or server.  The database 
tables reside in the memory space of the MIC thus 
supporting fast in-memory database applications.  This 
achieved by developing a coalescing parallel memory 
manager to allocate parallel variables in the same 
manner that fields are created in a table using a SQL 
CREATE TABLE command.  The SQL interface was 
created using a database driver toolkit that provides an 
interface to the Xeon Phi server and client application.  
Once the basic framework was established, the algorithms 
for SQL select, insert, update, delete, and join were 
created to manipulate database information in the 
memory of the Xeon Phi. 
 
Keywords: parallel databases, parallel hardware 
accelerators, special purpose architectures  
 

1 Introduction 
Massively data parallel computers and the SIMD 

model of parallel computation can be a natural model of 
parallel computation to consider for massively parallel 
database servers.  Since the cores are extremely close to 
the parallel memory, fast parallel memory searching make 
it a natural platform for data parallel computing intensive 
applications.  As described in Potter in [9] and [10], data 
parallel models of computation such as the SIMD, ASC, 
or SITDAC model conform to the concept of a parallel 
database server since the data can logically and physically 
partitioned similar to the data organization of a database 
table or spreadsheet [2][8][9][10][11] and [12].   

This research paper discusses the initial design of 
an in-memory database server using a Intel Xeon Phi co-
processors.  This research will discuss the design 
considerations and challenges for a database server and 
SQL engine that interfaces with the memory of a 
hardware accelerated data parallel computer.  This system 
design can promote the use of massively parallel 

computers as database servers for use in embedded 
database systems, real-time database systems, and fast 
parallel associative search engines. 

Database management systems (DBMS) provide a 
structured mechanism for storing, organizing, and 
retrieving data in a way that is consistent with the 
database’s format [14].  System software will allow data 
storage and access to a database without the user’s 
knowledge about the internal data representation either in 
persistent storage or in the computer’s memory.  A 
DBMS usually has but is not limited to the following 
components [14]: 

• Processors and main memory – the hardware of 
the DBMS for data selection and computation 

• Secondary storage – disks for data persistence 
and offline storage 

• Database manager – software for creating and 
maintaining databases, tables, fields, and 
relations 

• Utilities – software for database maintenance, 
data integrity and security, and database repair 

• Application development tools – software for 
database application development integrated into 
the DBMS 

• Report writers – software modules for 
presentations and reports based on tables and 
queries from database information 

• Design aids – software to assist in the design of 
databases, tables, fields, indexes, and 
relationships 

  
The organization of this research paper is as 

follows.  Section 2 will use the tracking and correlation 
problem in air traffic control as a motivating example.  
Section 3 present an overview of the Intel Xeon Phi co-
processor and system software.  Section 4 will present the 
hardware and physical design of the database server 
including the mapping of table records into the memory 
of the parallel computer.  Section 5 will discuss the 
techniques of sequential and parallel database query 
processing.  Section 6 will present the system software 
design of the parallel SQL engine and the algorithms for 
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the basic database server operations. Section 7 will 
discuss the conclusions and future research. 
 

2 Example Application: ATC Tracking 
and Correlation 
Consider a real world and real time application of air 

traffic control.  The following example is an extremely 
simplified version of the air-traffic tracking and control 
problem, but provides enough detail to illustrate the 
system software design for a parallel database server and 
SQL interface [11].  Some of the basic tasks of air traffic 
control are: 

 
• Tracking and correlation – The radar will generate 

reports of flights of returns that must be correlated to 
tracks of flights currently in the system.   

• Conflict detection – The computer system must then 
determine if there are any tracks/flights that will 
conflict/collide with a time look ahead of a 
predetermined number of minutes or miles. 

• Flight plan update – Based on the tracking and 
correlation information and combining it with the 
conflict detection, the flight plan information will be 
updated. 

 
There are many other important tasks in air traffic 

control, but this is an example of a real-time processing 
problem [6],[7], and [8].  There are also hard deadlines 
for computation imposed on the above tasks.  They must 
be completed prior to the next hard deadline in this real 
time system.  

The flight plans and tracks from radar can be 
stored in a simplified tabular format (flat table) in a 
database table similar to illustration in Figure 1. 
 

 
Figure 1: Sample database to store flight plan 
information. 
 
The ATC system software will/may have to perform the 
following operations when receiving a new set of track 
information. 

• Insert a new flight into the table.  As aircraft enter the 
airspace, they need to be stored into the flight table.  
This involves searching for an open/free record in the 
table and then copying the flight information into that 
newly created record. 

• Deleting a flight from the table.  As aircraft leave the 
airspace, they need to be deleted from the flight table.  
This involves searching for the record of the flight to 
delete and marking that the record is inactive. 

• Selecting a flight from the table.  Selection involves 
identifying one or more flights for further processing.  
The selection must scan the data in the fields for this 
table and then return that information back for further 
processing. 

• Updating the flight information.  Updating a flight 
begins with a search followed by a copy of new 
information into the selected record from the track 
information. 

 
Each of these frequent operations (insert, select, 

update, delete) requires some type of a parallel memory 
search.  In the case of insert, the search operation is for an 
open record in the table.  In the case of the select, update, 
and delete operations, the search required is based on the 
data stored in the records of the table.  This is a contextual 
search or associative based search. 

The most common method to improve search 
performance in a database server is to use index tables.  
This is illustrated in the Figure 2. 

 
Figure 2: Flight table illustrating the use of index 
tables to improve performance. 

 
An index table stores the record indexes based on some 
ordering criteria or sorting functions.  In Figure 2, an 
index table may store pointers to the indices for the 
aircraft sorted by aircraft id.  Another index may store 
pointers to indices for the aircraft based on altitude.  
Finally another index may store pointers to the indices for 
the aircraft based on airspeed.   

In theory, a database table can have one or more 
indices for each field.  However, this dramatically reduces 
the performance of the insert, update, and delete 
operations at the benefit of doing fast searches 
[1][3][4][5].  As new records (flights) are entered into the 
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table, the index tables need to be updated and maintain 
their sorted order.  The constant resorting of each index 
table becomes increasingly computational demanding.  
The same is true for the delete and update operations 
when the flight information changes.  The performance 
degradation is further amplified when multiple index 
tables must change. 

 
3 Overview of the Intel Xeon Phi 

The Intel Xeon Phi co-processors have 60 in-order 
Intel MIC architecture cores running at 1 GHz.  The Intel 
MIC architecture is based on the x86 ISA, extended with 
64-bit addressing and 512-bit wide SIMD vector 
instructions and registers.  Each core supports 4 hardware 
threads.  In addition to the cores, there are multiple on-die 
memory controllers and other components. 

As shown in Figure 3, each core has a newly 
designed Vector Processing Unit (VPU).  Each VPU unit 
contains 32 512-bit vector registers.  To support the new 
vector processing model, a new 512-bit SIMD ISA was 
introduced.  The VPU is a key feature of the Intel MIC 
architecture based cores.  Fully utilizing the vector unit is 
critical the best performance.  The Intel MIC architecture 
cores do not support other SIMD ISA’s such as MMX, 
SSE, or AVX.  

 
Figure 3: Intel Xeon Phi MIC core block diagram. 

 
Each core has a 32KB L1 data cache, a 32KB L1 

instruction cache, and a 512KB L2 cache.  As shown in 
Figure 4, The L2 caches of all cores are interconnected 
with each other and the memory controllers via a 
bidirectional ring bus, that effectively creates a shared 
last-level cache of up to 32 MB.  The design of each core 
includes a short in-order pipeline.  There is no latency in 
executing scalar operations and low latency in executing 
vector operations.  Since the in-order pipeline is short, the 
overhead for branch misprediction is low. 

 

 
 
Figure 4: Logical MIC core layout and ring 
communication bus. 
 

4 Database Engine Hardware Design 
and Architecture 

There are a few assumptions regarding the design of 
the parallel database server [11].     

 
1. The database, tables, and records in the parallel 

database server are memory resident.  Storage is 
completely volatile and there is no persistent storage 
in the cells or array memory implemented in this 
design.  For real-time computation, storing data and 
record information in in secondary storage is costly 
in terms of access time.  Having the data reside in 
memory, close to the processing elements is more 
conducive for real-time applications.  

 
2. The data parallel memory map is similar to the field 

layout planned of a database table.  If TABLE_A has 
fields F1, F2, F3 created in that order, then the parallel 
memory map will have parallel variables F1[$], F2[$], 
and F3[$] located in lower to higher parallel memory  
addresses.   

 
3. The number of actual processing elements is fixed 

during the execution of the parallel database server.  
This is not an unrealistic assumption since the Intel 
Xeon Phi has a fixed number of cores (or hyper-
thread processors).     

 
4. The amount of memory per processing element is 

fixed.  Again, the memory in the Intel Xeon Phi 
separate “parallel memory space” than the memory of 
the host computer.  Albeit the parallel memory space 
is often smaller than the host memory, for most 
database applications, the amount of parallel storage 
is adequate. 

 
Since this model is using massively parallel search 

and responder processing as a model of data parallelism, 
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database index tables are no longer required.  Each 
database field (column) can be searched for the desired 
value in constant time.  Data parallelism can also support 
efficient software for associative searches. 

The cores, or processing elements (PE) of the Intel 
Xeon Phi will be used to assist in the basic database 
operations and searching.  This is illustrated in Figure 5.  
In this figure, the database table is superimposed on the 
memory and processing elements of a SIMD computer.  
Two additional fields have been prefixed to the table: a 
busy-idle flag to indicate if the PE or record is active and 
a responder flag used for search operations.  Using this 
approach, each individual record is located in the memory 
of a PE.  Using massive parallel searching, processing 
elements can scan their individual memories and set the 
responder flag or turn their busy-idle flag on or off. 

 

 
Figure 5: Flight table superimposed onto the PEs and 
memory of a SIMD computer. 

 
 Database tables are dynamic objects; there is 
typically no a priori knowledge of the number of table 
records.  If the number of records in a table exceeds the 
number of physical PEs in the system (parallel memory 
overflow) the database server will use a cyclical data 
placement strategy when inserting new records.  This is a 
form of virtual parallelism that is maintained by the 
parallel database server and not the operating system.  
This cyclical placement will manage multiple tables with 
multiple folds in an interleaved fashion as determined by 
the amount of data in the tables.  For example, in Figure 
6, Table A utilizes only 4 PEs, while the number of 
records in Table B has exceeded the number of PEs 
resulting in multiple folds.   
 An insert operation for Table A will add a new 
record into the area occupied by fold 1 for table A.  For 
table B, the next insert operation will be in fold 2.  If 
enough records are added to Table A to exceed the 
capacity of fold 1, a new fold will be created in the free 
memory space to the right of fold 2 of Table B [11]. 
 

 
Figure 6: Multiple database tables, table folds, and 
unused parallel memory.folds, and unused parallel 
memory. 

 
By necessity, data memory management 

becomes the responsibility of the parallel database server 
instead of the parallel compiler or other system software 
[11].  A coalescing parallel memory manager (CPMM) 
was developed to keep track of table, field and fold 
addresses.  Figure 7 illustrates some of the administrative 
data structures that must be maintained for folded tables.   

 

 
Figure 7: Data structures for logical database tables, 
folds, records, and fields. 

The parallel database server will maintain the controlling 
data structures to manage the database, tables, folds, 
records, and column addresses.  These data structures 
reside in the sequential memory of the control unit or 
front-end computer.  Dark shaded regions in this figure 
represent active records in the table.  Note that there are 
two folds for this table and the field list is replicated for 
each fold.  The table fold is an absolute parallel memory 
address while the field address is a relative parallel 
memory address.  By adding the two memory addresses 
together, the physical memory address for a database field 
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within a fold can be determined.  The parallel memory 
manager also created extra hidden table fields used for 
basic database operations (described in a later section).  
These hidden table fields included several responder bits, 
a busy/idle flag, and timestamp fields for record insertion, 
selection, and update. 
 
5 Sequential and Parallel Query 
Processing 

 
Query processing refers to the range of activities 

involved with extracting data from a database.  The 
activities include translation of queries in high-level 
database languages into expressions that can be used at 
the physical (storage) level.  The fundamental steps a 
database server must perform when processing a database 
query appear in Figure 8: 

 
Figure 8: Major functional components of database 
query processing. 

 
Before query processing can begin, the system 

must translate the query into a usable form.  A language 
such as SQL is appropriate for software application 
development, but is not amenable to be the system’s 
internal representation of a query.  As shown in Figure 3, 
the first step the system must take in query processing is 
to translate a given query into its internal form.  This 
translation process is similar to the work performed by the 
parser of a compiler.  In generating the internal form of 
the query, the parser checks the syntax of the user’s query 
and verifies that the query names appear in the database.  
The system then constructs a parse tree representation of 
the query, which it then translates into a relational algebra 
expression.   

The sequence of steps in query processing is 
representative.  Not all databases exactly follow these 
steps.  However, the concepts that have been described 
form the basis of query processing in databases. 

 

5.1 Sequential Query Processing Algorithms 
 

There are several sequential query processing algorithms 
defined in the literature [14] and [15].  Each algorithm has 
a particular use when the query processing evaluation 
takes place.   

The most relevant query processing algorithm 
related to this research is the A1 – Linear Search 
algorithm, which is now described.  In a linear search, the 
system scans each file block and tests all records to see 
whether they satisfy the selection condition.  An initial 
seek is required to access the first block of the file.  The 
cost of linear search, in terms of number of disk 
operations, is one seek plus br block transfers, where br 
denotes the number of blocks in the file.  Equivalently, 
the time cost is tS + br * tT.   

Although the A1 – Linear Search algorithm may 
be slower on sequential computers than other algorithms 
for implementing selection and other query processing 
tasks, it is the most natural algorithm in terms of 
conversion to a massively parallel equivalent since the 
linear search on a parallel variable can be accomplished in 
constant time on SIMD (or MASC) computers assuming 
the database can be held entirely in memory. 
 
6 System Software Design and 
Architecture 

 
Now that the basic parallel memory management 

issues have been addressed, the system software design of 
the database server is described. 
 A client application will use the database driver 
manager to interface with the client database driver.  The 
client database driver communicates with the SQL 
Engine.  The SQL Engine will call process these 
instructions and then call the appropriate parallel database 
server, where there will be a corresponding function call 
to perform an operation in the memory of the parallel 
computer. The parallel database server will then receive 
the request from the database driver and control the 
databases, tables, records, and columns in the parallel 
memory.  

 
6.1 Parallel SQL Insert Algorithm 

The task of the parallel SQL insert operation is 
to insert new data into a free record located anywhere in 
the table in any fold.  An example of the SQL INSERT 
statement is the following: 

 
INSERT INTO FLIGHTS( AID, LAT, LON, ALT, AS )  
VALUES( ‘CO128’, 43.39, 83.67, 190, 450 ) 

 
This insert statement will insert a new record into the 
FLIGHTS table (reference the database table in Figure 4) 
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and assign the respective values to the AID, LAT, LON, 
ALT, and AS fields. 

For inserting a record into a parallel memory 
space, the basic parallel insert algorithm is the following: 

 
Algorithm Par_SQL_Insert( RecordData ) 
 
  open_record_found = FALSE 
 
  For each table fold 
 
    Perform associative search on the 
    table’s BI field where BI field is  
    false (i.e. record is empty – there  
    may be multiple records returned) 
 
    if ( idle records found )  
       select one record;  
       BI = TRUE 
       open_record_found = TRUE 
       break 
 
    // no open record is found 
    // in any fold 
    if ( open_record_found == FALSE )  
      create a new fold  
      select first record in the new fold  
      BI = TRUE 
      break 
 
  Copy the data into the parallel memory record 
  Return success or failure 

Figure 8: Parallel SQL insert algorithm. 

 The algorithm Figure 8 begins by searching for 
an open or idle record in each of the table folds in turn.  If 
idle records are found, then PE identification number and 
the fold select one record and field addresses are used to 
copy the data into the parallel memory record.  If no idle 
record is found, then the parallel memory manager must 
create a new fold.  This can be accomplished by 
allocating space from the unused space in parallel 
memory the same width as previous folds and recording 
the new base address in sequential memory.  Since a new 
fold is created, the parallel memory manager can select 
any PE for the insertion; e.g. the first PE (lowest PE id 
number) can be used.  The basic parallel search can be 
done in O(1) time.  However, since each table fold may 
have to be scanned, the running time is O(#folds) which is 
typically small and normally still O(1) since the number 
of folds normally constant and not a function of higher 
complexity.  
 
6.2 Parallel SQL Delete Algorithm 

The task of the parallel SQL delete operation is 
to delete records according to some searching or selection 
criteria.  An example of the SQL DELETE statement is 
the following: 
DELETE FROM FLIGHTS 
WHERE AID = ‘NW 545’     /* delete criteria */ 

This delete statement will delete all records 
where the AID (aircraft ID) is ‘NW 545’.  For deleting a 
record from the parallel memory space, the parallel delete 
algorithm is the following: 

 
Algorithm Parallel_SQL_Delete( DeleteCriteria ) 
returns Boolean 
 
  For each table fold 
 
    Perform associative search where the Delete 
    Criteria is TRUE and set responders  
    appropriately 
   
    If (the responder is TRUE) 
 Reset the Busy-Idle flag  
   
    If all records in the current fold are idle 

CPMM marks the current fold as free 
 

  Return success or failure 
 
Figure 9: Parallel SQL delete algorithm. 

 
The algorithm in Figure 9 begins by looping 

through each table fold and having each cell evaluate the 
appropriate fields as specified in the delete criteria clause.  
For those cells where the delete criteria clause is True, the 
responder busy-idle flag is reset.  If all the records in a 
given fold have their busy-idle flag reset, the coalescing 
parallel memory manager (CPMM) marks that fold as 
completely unused and returns it to the free pool of 
parallel memory.  The basic parallel delete can be done in 
O(1) time.  However, since each table fold will have to be 
scanned, the running time is O(#folds). 
 

7 Conclusions and Future Work 
This research paper has presented an initial 

design of an in-memory database engine utilizing Intel 
Xeon Phi co-processors.  Also presented was the system 
software design and interface for sequential programs and 
applications to interface with the server.  This was 
achieved by designing and developing the set of 
algorithms for common database operations that would 
support the functionality of a parallel database server.  
The SQL operations presented include insert and delete 
and execute in O(#folds) steps.  The update and selection 
operations are similar.  The design of a coalescing parallel 
memory manager was also developed to manage large 
tables and virtual parallelism. 

An area of future research explores how the 
parallel database handles virtual parallelism.  The present 
design uses a coalescing parallel memory manager to 
control the table folds in the memory of the parallel 
computer.  This parallel memory manager is a built in 
component of the parallel database server because the 
Xeon Phi environment assumed that the number of 
processing elements was fixed at runtime and could not 
change. 
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Another area of future research could explore 
how the tables, records, and fields are physically mapped 
to the memory of the parallel computer.  Presently, the 
parallel memory map as shown in Figures 6 and 7 indicate 
that the parallel variables are allocated for all processing 
elements in a given fold regardless of the number of 
records actually storing information.  This leads to a 
waste of processing elements for tables with only a few 
records.    
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Abstract - Medical image registration plays an important role 
in medical imaging in the early detection of cancers. An 
essential component in most medical registration approaches 
is resampling algorithms. These algorithms, however, demand 
tremendous computational power associated with similarity 
computation. The increasing availability of parallel computers 
makes parallelizing these tasks an attractive option. This 
paper presents parallel approaches for the resampling 
algorithms using a representative parallel Single Instruction, 
Multiple Data (SIMD) processor array to meet the 
computational requirements. This paper also presents not only 
a general theory of resampling algorithms including rotation, 
scaling, and translation, but also parallel implementations of 
these algorithms on the SIMD processor array. Experimental 
results show that parallel approaches achieve a speedup of 
2.6x over the FPGA implementations with the same clock 
frequency of 80 MHz. 

Keywords: Medical image registration, parallel processing, 
SIMD processor arrays, resampling algorithms 

 

1 Introduction 
  In medical imaging techniques, an important step for 
intensity-based image registration is resampling [1][2]. It is 
utilized when a discrete image is transformed into a new set 
of coordinate points and changes the number of sample (or 
pixels) per unit length of the directions of the image. During 
transforming parameters, resampling including rotation, 
scaling, and translation is estimated by geometrically 
mapping intensity coordinates in the reference (fixed) image 
to corresponding locations in the sensed (moving) image. 
However, these resampling algorithms require tremendous 
computational power due to the iterative nature of the 
algorithms.  

     Application-specific integrated circuits (ASICs) can meet 
the needed performance for such algorithms, but they provide 
limited, if any, programmability or flexibility needed for 
varied application requirements. General-purpose 
microprocessors (GPPs) offer the necessary flexibility. 
However, they will not be able to meet the much higher 
levels of performance required by emerging medical imaging 
applications on higher resolution images. This is because they 
lack the ability to exploit the full data parallelism available in 
these applications.   

     Among many computational models available for imaging 
applications, single instruction multiple data (SIMD) 
processor arrays are promising candidates for application-
specific applications including medical imaging since they 
replicate a simple processing element (PE), data memory, and 
I/O to provide high processing performance with low node 
cost. Whereas instruction-level or thread-level processors use 
silicon area for large multiported register files, large caches, 
and deeply pipelined functional units, SIMD processor arrays 
contain many simple processing elements for the same silicon 
area. As a result, SIMD processor arrays often employ 
thousands of PEs while possibly distributing and co-locating 
PEs with the data I/O to minimize storage and data 
communication requirements. 

     This paper presents parallel approaches for the resampling 
algorithms to meet the computational requirements using a 
representative SIMD array architecture. This paper also 
evaluates the impact of the parallel approaches on processing 
performance and compares with the performance of FPGA 
(Field Programmable Gate Array) solutions. Experimental 
results show that our parallel approaches achieve a speedup 
of 2.6x over the FPGA implementation using modified 
compensated CORDIC [3] with the same clock frequency of 
80 MHz. 

    The rest of the paper is organized as follows. Section 2 
presents a SIMD processor array architecture used in this 
paper and parallel approaches for resampling algorithms. 
Section 3 describes parallel implementations of rotation, 
scaling, and translation algorithms. Section 4 evaluates the 
performance of the resampling algorithms, and Section 5 
concludes this paper. 

2 Parallel Approaches for Medical 
Image Registration using SIMD 
Processor Arrays 

2.1 SIMD Processor Array Architecture 

 A block diagram of the SIMD model [4] used here is 
illustrated in Figure 1. This SIMD processor architecture is 
symmetric, having an array control unit (ACU) and an array 
consisting of processing elements (PEs). When data are 
distributed, the PEs executes a set of instructions in a lockstep 
fashion. 

  * Corresponding author. 
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Fig.  1. A block diagram of a SIMD processor array. 

 

 

Fig.  2. Methodology infrastructure for the SIMD array simulation.

With 4x4 pixel sensor sub-arrays, each PE is associated with 
a specific portion (4x4 pixels) of an image frame, allowing 
streaming pixel data to be retrieved and processed locally. 
Each PE has a reduced instruction set computer (RISC) 
datapath with the following minimum characteristics: 

 ALU – computes basic arithmetic and logic operations, 

 MACC – multiplies 32-bit values and accumulates into 
a 64-bit accumulator, 

 Sleep – activates or deactivates a PE based on local 
information, 

 Pixel unit – samples pixel data from the local image 
sensor array, 

 ADC unit – converts light intensities into digital values,  
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 Three-ported general-purpose registers (16 32-bit 
words), 

 Small amount of local storage (64 32-bit words), 
 Nearest neighbor communications through a NEWS 

(north-east-west-south) network and serial I/O unit. 

2.2 Methodology Infrastructure 

 Figure 2 shows a methodology infrastructure that is 
divided into three levels: application, architecture and 
technology. At the application level, an instruction-level 
simulator was used to profile execution statistics such as 
cycle count, dynamic instruction frequency and PE utilization 
by retargeting and optimizing the resampling algorithms 
based on the architecture and its execution properties. At the 
architectural level, the heterogeneous architectural modeling 
(HAM) [5] of functional units for the specified SIMD array 
was used to calculate the design parameters of the PE 
configuration. The design parameters were then passed to the 
technology level. At the technology level, the Generic System 
Simulator (GENESYS) [6] was used to calculate technology 
parameters such as latency, area, power and clock frequency. 
Finally, a design space analysis tool collected and combined 
the database information (e.g., cycle times, instruction 
latencies, instruction counts, areas and powers of the 
functional units) obtained from the application, architectural 
and technology levels in order to determine execution times, 
area efficiency and energy efficiency. 

2.3 Parallel Approaches for Resampling 
Algorithms  

 We implement resampling algorithms in parallel using 
the SIMD model. When data is distributed, a small pixel 
region (4x4 pixels) of the entire image space is assigned to 
each PE as shown in Figure 3. Then, the PEs execute a set of 
operations in a lockstep fashion. 

 
Fig.  3. Distribution of image data info each PE which holds 
4×4 pixels 

 In medical image registration, resampling is a phase to 
transform the image I (x, y) to a rotated, scaled, and 
translated version of this image, I’ (x, y), defined as 

'( , ) ( ( cos sin ) 0, ( sin cos ) 0)I x y I x y x x y y          
 

(1) 

where α is the angle of rotation, σ is the factor of scaling, and 
(x0, y0) is shift amount by x0, y0 against x, y axes, respectively. 

3 Parallel Implementations of Rotation, 
Scaling, and Translation 

3.1 Rotation Algorithm 

 The rotation algorithm is an essential component of 
medical image processing. The basic image rotation operation 
is defined as 
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 A pixel at position (x, y) in the original image is mapped 
to the position (x’, y’) in the destination image by following 
the rotation of angular magnitude α [7]. 

 Many different implementations of this algorithm have 
been developed to meet the computation requirements. This 
study prefers to overcome to computational burden by using a 
parallel implementation of a skew transformation where each 
pixel is shifted in parallel with each coordinate axis by means 
of the neighbor communication unit of PE. The skew 
transformation algorithm takes the rotation matrix in (2) and 
splits it on the multiplication of three matrixes, defined as 

 cos sin 1 tan( 2) 1 0 1 tan( 2)

sin cos 0 1 sin 1 0 1

   
  

        
                

   

(3) 

 These three matrixes are applied independently to the 
pixels of the image to find out the new location of a given 
pixel in the picture. The first and the last matrixes cause a 
skew west in the image. After multiplying the first or the last 
matrix by the coordinates of a given pixel, (4) is produced. 

 
1 tan( 2) tan( 2)

0 1

x x y

y y

        
      

     
 (4) 

where the skew west is a displacement of the rows to the left 

by the multiplication of the row number by tan (∝/2).  

 The second matrix in (3) causes a skew north. After 
multiplying the second matrix by the coordinates of a given 
pixel, (5) is produced.  
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 (5) 

where the skew north is a displacement of the columns to the 

top by the multiplication of the column number by sin (∝). 

 According to the above skew transformation, the image 
expands after the west and north skews in (3). Since the 
SIMD processor array is fixed and the image is filled in 
completely, there is no space to hold the expanded image part. 
Thus, the image must be compressed first to be able to skew 
the image. Since the skew west expands the image to the left 
and the skew north expands to the top, the image is 
compressed to the right-bottom corner of it, as shown in 
Figure 4(a). 

 

 

 

Fig.  4. Three steps for rotation: (a) compression, (b) 
skewwest, (c) skew north. 

 Figure 4 demonstrates two kinds of figures. The first 
image is compressed into 16 processors with labels from 0 to 
15 in order, and the second image is compressed with white 
color. After applying (4) to the compressed image, Figures 
4(b) and 4(c) are generated by the skew west and the skew 
north, respectively. With particular characteristics of parallel 
processing, all the pixel regions are processed simultaneously. 
Figure 5 shows some rotated brain images with different 
angles. 

 

 

Fig.  5. The original image (a) is rotated with different 
angles : (b) rotated 10˚, (c) rotated 30˚, (d) rotated 60˚, and 
(e) rotated 90˚ 

3.2 Scaling and Translation Algorithms 

From (1), scaling and translation are defined as 

 0 0'( , ) ( , )I x y I x x y y     (6) 

In practice, both scaling and translation are often used 
together for transformations. Using these algorithms, we can 
transfer pixels between PEs to achieve a target picture size 
from the original picture. 

3.2.1 Translation 

 For a parallel implementation of translation, all the 
pixels are mapped to every PE as shown in Figure 6(a). Then 
the transformation equation, I’ (x, y) = I (x – x0, y – y0) where 
x0, y0 are translated distances, is applied to the original image, 
producing a translated image, shown in Figure 6(b). 

y
0

 

Fig.  6. (a) Original image mapped to PEs, (b) Translated 
image after x0, y0 loops. Note that a square stands for one PE 
containing 16 pixels. 
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 To perform translation in parallel, the image is equally 
separated by x axis with the x0 distance. Then 16 pixels of 
each PE are transferred to the neighbors with x0 distance 
loops. For the y direction, y0 loops are applied. Since all PEs 
execute in parallel, the image is translated very fast just by x0 
loops for x axis and y0 loops for y axis. 

3.2.2 Scaling 

 Image scaling is a frequent operation in medical 
imaging to enlarge or shrink an image. This section presents a 
parallel implementation of scaling. An image could be scaled 
separately in column and row directions. Suppose an image is 
scaled in column direction. The image is divided into slices in 
vertical direction. Each column occupies a slice of pixels and 
then all columns are carried out in parallel relying on PEs 
which involve those pixels. From (6), we have I’(x, y) = I (σx, 
y) for the column approach. 

 Figure 7 shows an example of the image scale down 
from a resolution 4 by 5 pixels to a resolution 4 by 4. It is 
equivalent with σ=5/4. We assume that the area of a source 
pixel is 1.0, therefore, if columns are numbered as {0, 1, 2, …, 
i, …} and {xsource}={0, 1, 2, …, i, …} for X-axis, xi source=i. 
The first target, x0 target = ½(σ-1). For example, with σ=5/4, 
we have x0 target = ½(5/4-1)=1/8 and xi target = ½(σ-1) + σ.i as 
shown in Figure 7. 

Fig.  7. Image scaling from a resolution of 4×5 pixels to a 
resolution of 4×4 pixels. Note that (1) one PE contains 4x4 
pixels, therefore, it has 4 pixels in X-axis and (2) target PE0 
is drawn by red color and source PE0 is drawn by the black 
with values in X-axis. 

 Finally, one PE contains two types of x values as shown 
in (7) 

  source i target
1{ =i; x = ( -1)+ . }2ix i   (7) 

The remaining task is how to determine pixel values of 
I’ (x, y) of target pixels. Several interpolation algorithms 
perform this, including nearest neighbor, bilinear, and bicubic 
interpolations. In this paper, the nearest neighbor 
interpolation is applied to all pixels based on x-axis as well as 

related pixel values to calculate the X-axis of all the pixels. 
Figure 8 illustrates the operation of scale down with σ=5/4. 
We assume that source pixels require 10 PEs and they are 
scaled down target pixels which require 8 PEs. According to 
X-axis, a loop is performed 2 times. For each loop, one PE 
keeps target pixels and source pixels received from a 
neighbor. Then the PE relies on {xi source; xi target; the proposed 
interpolation} to determine value pixel (i) of the PE. 

Fig.  8. Every PE consists of three parts: 16 target pixels, 16 
source pixels, and 16 intermediate pixels. The number of 
loops is the difference between the source PE number and the 
target number. After one loop, pixels are transferred to source 
pixels of the next west neighbor, while saving source pixels 
to intermediate pixels for the next transferring. 

 source  target'( , ) { ; ; the proposed interpolation}i iI x y F x x  

(8) 

 After only a few loops, the image is scaled. The speed 
of this algorithm is considerably improved by the operation of 
PEs in parallel. Figure 9 illustrates a brain image which is 
scaled up 5/4 for X-axis and then 5/4 for Y-axis using the 
nearest neighbor interpolation algorithm. 

 

 

Fig.  9. Scale up 5/4 for X-axis and Y-axis: (a) original image, 
(b) after some loops for X-axis ,(c) image by scaled up 5/4 X-

axis, (d) after some loops for Y-axis, (e) scaled up image. 

4 Experimental Results 
 To implement and determine the performance of the 
resampling algorithms, we use cycle accurate SIMD 
simulator [8]. We develop the algorithms in their respective 
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assembly languages for the SIMD processor array. In this 
study, an image size of 256 × 256 pixels is used. For a fixed 
256 × 256 pixel system, the number of 4,096 PEs is used 
because each PE contains 4×4 pixels. Table 1 summarizes the 
parameters of the system configuration. 

Table 1. Modeled system parameters. 

Parameter Value 

Number of PEs 4,096 

Pixels/PE 16 

Memory/PE [word] 256 [32-bit word] 

VLSI Technology 100 nm 

Clock Frequency 80 MHz 

Interconnection Network Mesh 

intALU/intMUL/Barrel 

Shifter/intMACC/Comm 
1 / 1 / 1 / 1 / 1 

We evaluate the performance of the algorithms in terms of 
execution time and sustained throughput, defined in Table 2. 

 

Table 2. Summary of evaluation metrics. 
Execution time Sustained throughput  

ck
exec f

C
t   ]

sec

Gops
[

exec

PEexec
E t

NUO 
  

 

where C is the cycle count,  is the clock frequency,  is the 
number of executed operations, U is the system utilization, 
and NPE is the number of processing elements. 

Table 3 summarizes the execution parameters for each 
algorithm in the SIMD processor array. Scalar instructions 
control the processor array. Vector instructions, performed on 
the processor array, execute the algorithm in parallel. System 
utilization is calculated as the average number of active 
processing elements. This table lists the statistics for specific 
cases such as rotation with α = 300, scale down and up with 
factor 5/4 and translation with the distance of 30% of the 
original. As expected, the rotation algorithm takes longer 
time than others due to its inherent complex skew operations. 
Overall, the execution times are in the order of milliseconds. 
Thus, these algorithms are executed at a real-time frame rate 
(30 frame/sec or 33 ms). 

 
Table 3. Algorithm performance on a 4,096 PE system running at 80 MHz. 

Algorithm 
Vector 

Instruction
Scalar 

Instruction 

System 
Utilization 

[%] 

Total Cycle
[cycles] 

exect  

[ms] 

Sustained 
Throughput 
[Gops/sec] 

Rotation  
(α = 30˚) 

160,193 71,759 31.4 232,022 2.9 71 

Scale down 
(σ = 5/4) 

20,259 9,050 60.3 29,326 0.37 135 

Scale up 
(σ = 5/4) 

18,967 8,126 63.6 27,124 0.34 145 

Translation 
(x0,y0=30%) 

6,094 2,766 100 8,862 0.11 227 

 

Table 4. The execution time comparison of parallel approaches and other approaches. 

System 
 

Angle 

SIMD 
(clock freq.  
80 MHz) 

FPGA  Using Modified 
Compensated CORDIC [3]

(clock freq. 80 MHz) 

Reconfigurable FPGAs [9] 
(clock freq. 20 MHz) 

static dynamic 

10˚ 1.51 ms - 

40 ms 

24.5 ms 

30˚ 2.9 ms -  

45˚ 3.99 ms -  

60˚ 5.16 ms -  

150˚ 5.7 ms 14.7 ms  

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 33



Figure 10 shows the distribution of vector instructions 
for the resampling algorithms. Each bar divides the 
instructions into the arithmetic-logic-unit (ALU), memory 
(MEM), communication (COMM), PE activity control unit 
(MASK), and image loading (PIXEL). The ALU and MEM 
instructions are computation cycles while COMM and MASK 
instructions are necessary for data distribution and 
synchronization of the SIMD processor array. Results 
indicate that the resampling algorithms are dominated by 
ALU and MEM operations. 

 

Fig.  10. The distribution of vector instructions for the 
resampling algorithms. 

 

Table 4 shows the performance comparison of our 
parallel approaches and other approaches including FPGA 
implementations. Parallel approaches outperform FPGA 
implementations for image rotation in terms of execution time. 
For all cases, a 256×256 pixel is used. Our approaches 
achieve a speedup of 2.6x over the FPGA implementation 
using modified compensated CORDIC [3] with the same 
clock frequency of 80 MHz. These results demonstrate that 
parallel approaches on the SIMD processor array are suitable 
candidates for performance-hungry medical imaging. 

5 Conclusion 
 The increasing availability of parallel computers makes 
parallelizing performance-hungry medical imaging tasks an 
attractive option. This paper presented parallel 
implementations of resampling algorithms including rotation, 
scaling, and translation in medical image registration. Using a 
representative SIMD processor array, the execution times of 
these algorithms are in the order of milliseconds, executing at 
a real-time frame rate (30 frame/sec or 33 ms). In addition, 
our parallel approaches outperform other FPGA 
implementations, reducing significant computation time. 
These results demonstrate that parallel approaches on the 
SIMD processor array are suitable candidates for emerging 
medical imaging. In the future, we will explore other medical 
imaging applications on the SIMD array. 
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Processing Hard Sphere Collisions on a GPU Using OpenCL
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Abstract— Physically accurate hard sphere collisions are
inherently sequential as the order in which collisions occur
can have a significant impact on the resulting system. This
makes processing hard sphere collisions on parallel hard-
ware challenging. We present an approach to solving this
problem that can be implemented using OpenCL that runs
on current hardware. This approach makes significant use
of atomic operations to prevent race conditions, even across
thread groups. We find that an unoptimized implementation
of the approach provides speed on modest GPUs that is on
par with our earlier OpenMP parallel CPU approach and
the OpenCL running on a CPU is faster than the OpenMP
code. Full timing results using commodity GPU and using
OpenCL on multi-core chips are presented.

Keywords: Simulation, collisions, parallel, discrete-event, GPU

1. Introduction and Related Work
Many problems in the field of simulation involve colli-

sions between bodies/particles. In this paper we will focus
on particles that are represented as spheres. These types of
collisions are typically modelled in one of two ways. Soft
sphere collisions allow the bodies to overlap and restoring
forces are applied at intervals to cause them to bounce. Hard
sphere collisions treat the collisions as instantaneous events
where an impulse is applied to the particles to produce the
bounce.

Collision detection has been done on GPUs for a long
time. For example, Kolb et al. used pixel-shaders before
tools like OpenCL and CUDA were available and used depth
maps stored in texture memory to make the runtime more
efficient [4]. Soft sphere collisions can also be implemented
efficiently using general N-body methods [1], [2]. The soft-
sphere approaches are also applicable to other problems
that involve interactions between nearby particles such as
SPH codes [12]. The processing of soft-sphere collisions is
basically a problem of detecting proximities between bodies,
as the exact time of overlap is not resolved or dealt with.
Separate GPU implementations exist for solving this more
general problem for both simple and complex geometries
[5].

Physically accurate hard-sphere collisions are more chal-
lenging. They are basically discrete event simulations, and
the time ordering of the events is important. Any given
collision can alter the ones that follow it. Many collisions can
be done in parallel, assuming that they are far enough apart
spatially so that the result of one doesn’t alter the other. We

have previously created methods for doing this on multi-core
machines [7], [11], [6]. GPUs present a number of different
challenges, and the previous methods will not work well in
that context. Not only does efficient use of the GPU require
that more threads be active at any given time, workloads
on GPUs are best split across multiple thread groups and
synchronization across the thread groups is more challenging
than inside of the thread groups. For this reason, the use of
a single shared queue structure becomes ineffective.

There are also multiple steps to the collision finding
process. Some of them involve building data structures that
are used for fast searching of the particles for collisions.
These steps could be done on the CPU then copied to
the GPU, but that would significantly degrade performance.
Ideally, we want all the work to be done on the GPU so that
the only data that is moved back to the CPU is particle data,
and that should only be done when required for I/O.

Playne and Haywick present work on doing hard-sphere
collisions using a multi-GPU approach [3], [13]. Their work
included both soft-sphere elements with particle-particle
forces and hard-sphere interactions when the particles get
sufficiently close. However, their approach to hard-sphere
interactions use posteriori collisions instead of discrete event
priori methods. This means that the particles are allowed to
advance to the end of the time step, then they are checked
to see if they overlap at the end and corrections are applied
to handle the collisions. These methods are not as accurate
as using the priori discrete-event approach described here,
they can miss collisions if the time step is too long, and
they don’t do a good job of resolving multiple collisions in
a single time step in dense systems. Posteriori methods are
easier to process though, especially on GPUs.

Our goal in this work is to deal with the problem of creat-
ing a physically accurate, discrete-event, priori algorithm for
doing hard sphere collisions that can allow long time steps
and run efficiently on a GPU. Section 2 outlines an algorithm
for doing this in a basic multithreaded environment. Section
3 describes in detail the algorithm we have developed for
doing this on a GPU. This is followed by sections showing
the results of a basic implementation of this algorithm and
our conclusions.

2. Multicore, Threaded Algorithm
To facilitate the discussion of the GPU approach, it is

advantageous to begin by looking at a rough outline of
the approach taken in a single-threaded implementation
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and how that is modified for multiple threads on a multi-
core processor. The single-threaded implementation can be
described by the following pseudo-code [9].

1) Build spatial data structure.
2) Find potential collisions based on initial conditions and

add them to a priority queue.
3) While there are potential collisions on the priority

queue.
a) Remove the next item from the priority queue.
b) Process that collision.
c) Remove all future potential collisions involving

either of the colliding particles from the priority
queue.

d) Find new potential collisions involving those
particles based on their new trajectories. Add
those happening in the current time step to the
priority queue.

This algorithm uses the term "potential collision" to refer
to a triple of two particles and a time, where those two
particles would impact at that time given their current
trajectories. The word "potential" is significant because many
of these won’t actually come to pass if an earlier collision
alters the path of either of the particles involved. Step 3c
can remove many potential collisions when one is processed.
Unfortunately, there is no simple way to know if a potential
collision will actually be processed as a real collision without
running through and processing them to find out. It is worth
noting that because of this step, the standard priority queue
implementation of a binary heap is not efficient.

This algorithm can be updated to work on multiple threads
with a few alterations. The approach to parallelizing the
building of the spatial data structure varies by data structure.
Some care must be take to avoid race conditions when
particles are added in. It is also possible to parallelize the
discovery of the initial collisions as long as the priority queue
is thread-safe or is locked on each add operation.

The parallelization of the processing loop is more interest-
ing and requires a bit more information about the nature of
collisions. Of primary significance is that while the order
of collisions is important, information about collisions is
propagated at a finite speed. That means that two collisions
that are sufficiently far apart can be processed in parallel
assuming that they happen close enough together in time.
It simplifies things to use the simulation time step as a
conservative estimate of the time. The spatial data structure
can be used to keep track of where collisions are being
processed at any given time to determine if the next one
on the queue is safe or not. Here again, the priority queue
needs to be thread safe or we must do locking to prevent
multiple threads from altering it at the same time.

This approach has been shown to work well for tens of
threads, but it doesn’t scale well for a GPU where we would
ideally like to have thousands of threads. In that situation,
the single priority queue becomes a bottleneck that will not

scale efficiently.

3. GPU Algorithm
The general outline of the algorithm shown above is

maintained when we move to the GPU. First, we need to
build our spatial data structure, then we find the initial
potential collisions, then we run through and process the
collisions. We will look at how each of these steps is adjusted
to the GPU here.

3.1 Kernel 1 - Building the Spatial Data Struc-
ture

To keep things simpler for this project, we use a regular
2-D grid as the spatial data structure. Each grid cell keeps a
list of the particles whose centers are located in it. This can
be done with two arrays of integers. One is the size of the
grid and stores the index of the first particle in that cell. The
second has the same length as the number of particles and
stores the next particle found in the grid cell. All elements
of both arrays begin with a value of -1 to denote no link.

This process is done with threads spawned on a per
particle basis. This opens the possibility of race conditions
on the grid values storing the head as every particle in a
given cell could, in the worst case, be processed at the same
time. Fortunately, the order of particles doesn’t matter and
OpenCL supports atomic operations on any primitive value
[14]. The operation of adding to the front of one of these
lists can be done with an atomic read/set. This is done on
the value in the grid that stores the first particle currently in
that cell. It returns the previous value, which is stored in the
second array at the location of the particle that is the new
head.

The fact that only one thread will be responsible for a
given particle means that we never have a situation where
two threads alter the same location in the second array. Every
atomic read/set on the grid will find a different value, so the
linked list will be correctly built regardless of when the links
in the second array are stored.

The grid based approach has been used previously both
for sequential and parallel code [9], [10], [7]. The key is that
the grid cells need to be large enough that particles in one
cell can only collide with particles in adjacent cells during
a given time step. That is to say that

∆x = rmax + c×∆t (1)

where ∆x is the size of the grid cell, rmax is the largest
particle radius in the simulations, ∆t is the length of the time
step, and c is a value several times larger than the velocity
dispersion. This approach works well when the system
includes forces other than those modelled with discrete
events. It is also possible to pick a more arbitrary grid size
and model the passing of particles from one grid cell to
another as events, but that is not the approach we take here.
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3.2 Kernel 2 - Finding Initial Potential Colli-
sions

After we have built the spatial data structure that tells us
where all the particles are located, we can use it to find the
initial potential collisions. This work is done with threads
allocated per cell. Instead of having a single queue of all the
potential collisions, we keep one queue per cell. The fact that
there should be few particles per cell makes it feasible to use
something as simple as a sorted array for the queue. This
could be changed to a binary heap if the queues were longer,
but that introduces some overhead and because of the way
that work is distributed, it is probably better to use a finer
grid to keep the queues shorter than to improve efficiency
for larger queues. This will be an area of future study.

To find the potential collisions, we have each cell check
the particles in it against the others in that cell as well as
all particles in the cells that are in the cell to the right and
the three cells below it. Checking against more cells would
cause potential collisions to be double counted. Any pairs
that are found to collide are stored, along with the potential
collision time, in the queue for that cell.

This can be done with a 3-D array where the third
dimension is the potential collisions, but this approach is
inflexible and can lead to a lot of wasted memory as
we have to make the third dimension large enough to
handle whatever collisions might occur in a single cell.
An alternative approach is to again use a pool of memory
and have the queues stored as linked lists in that pool. We
keep a single value for the number of potential collisions
currently stored and this variable is altered using an atomic
read/increment operation. This tells us the next pool element
to store a potential collision in and increments it so that no
two threads for the cells will write to the same location in
the pool. The potential collisions are first added to an array
in local memory, then they are moved as a block to the
global memory once the search is complete. This minimizes
the number of atomic operations to one call per thread and
groups the memory move to reduce the number of accesses
to global memory, which is generally much slower than local
memory on GPUs. Unfortunately, at this time there is no
memory copy directive in OpenCL. Such a directive would
have benefits to this segment of the code were it to be added
in the future.

Using this approach, the memory overhead is greatly
reduced as the total size of the pool needs to scale as
the total number of potential collisions, not the maximum
number in one cell. This means that non-uniform geometric
distributions don’t lead to significant wasted memory.

At the end of this process, we will have all of the initial
potential collisions for each cell in unsorted lists.

3.3 Inside while Loop
Kernels 3-5 happen in a while loop that executes as long

as there are more collisions left to process in the current time

step. These steps are broken into separate kernels primarily
for synchronization purposes. Each one must fully complete
before the next one begins.

3.3.1 Kernel 3 - Sort Initial Potential Collisions
The third kernel is again done by allocating threads by

cells in the grid. This pass only sorts the lists that were
produced in the previous kernel. We have implemented this
as a simple insertion sort. Here again, we expect the number
of potential collisions in a given cell to be small. In an
ideal configuration the average would be of order unity
so the sorts should be doing very little work. To improve
the memory performance, we first walk the list of potential
collisions in each queue and copy it to a local array. Then
we do the insertion sort on that array and copy the potential
collisions back into the same locations in the list, preserving
the earlier links. This approach is taken to reduce the number
of accesses to global memory.

3.3.2 Kernel 4 - Processing Collisions
The fourth kernel does significantly more work. as this

is where we actually process the potential collisions. As
was discussed above, the primary challenge of hard-sphere
collisions is that the order in which they are processed is
significant and we can’t process all the collisions simulta-
neously. The spatial data structure gives us a simple way to
handle this.

Handle Safe Collisions
In this pass one thread is spawned per cell and each thread

compares the time of its first collision to that of the adjacent
cells. Only those threads which have a collision time lower
than their neighbours will actually process a collision. Cells
that have no potential collisions don’t process and aren’t
considered in the comparison to see if a cell is the local
minimum.

There is no synchronization needed for this, because the
times on the first collisions are only read, not written to,
and one particle can only take place in collisions that are
in adjacent cells. Given that no two adjacent cells can be
processing at the same time, it is safe for each thread to
write out and change the particle positions and velocities
when a collision is processed.

Mark Indices in Collided Particles Array
In addition to processing the collisions, each thread that

does process a collision does one additional task. It stores
an appropriate value in an array of the same length as the
number of particles that we call the "collided particles array".
The purpose of this array is to keep track of which particles
were involved in a collision in that pass through the grid.
This information is used in the next kernel.

There are no synchronization issues with this task for
two reasons. First, given the way that we determine if a
collision can be processed, no particle could be involved in
two collisions at one time in this pass. What is more, even
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if two threads could process the same particle, they would
write the same value out to the array so it wouldn’t matter
which write happens first, and no data is read from this array
in this kernel.

3.3.3 Kernel 5 - Delete Marked Potential Collisions and
Find New Potential Collisions

The last kernel cleans up the potential collisions lists
for each grid cell, then finds new collisions based on the
particles in each cell that had just been involved in collisions.
The first half of this work involves running through the
list of potential collisions in each cell and checking each
potential collision to see if one of the particles in it was
collided during this pass. This is the first use of the collided
particles array that was initialized in the previous kernel. In
this kernel, that array is read only. The loop runs through
the linked list of potential collisions, and if either the first
or second particle involved has been marked in the collided
particles array, that node is marked as unused and linked
around so that it is no longer considered to be a potential
collision.

After that has been done, each thread then goes looking
for new collisions involving any of the particles in that cell
that had been in a collision. This is done by walking the
list of particles in the cell, and checking if that particle had
been marked in the collided particles array. If it has, then
a search is performed against all other particles as well as
those in the eight adjacent cells.

The new potential collisions that are found are added to
an array in local memory. Once the search is complete, the
elements that were used in that local array are moved into the
list of potential collisions. This is done using the same type
of procedure as in the initial finding routine. This involves a
single atomic increment by to appropriate amount, followed
by a loop copying up elements into the array of potential
collisions.

It is worth nothing that we are not keeping a list of
free nodes in the potential collision pool. This will lead to
some waste, but at the current time it appears to be required
to maintain performance and thread safety. We considered
keeping a free list and had included it into a fair bit of the
code, but then we ran into a thread safety problem. When
we want to grab a new node we have to advance the first
free reference to the next element. Because the reference to
the first free element is shared across threads, this must be
done using an atomic operation. That would lead to a line
of code like the following.

i n t oldFF = a tomic_xchg ( f f ,
p o t e n t i a l C o l l i s i o n P o o l [* f f ] . n e x t ) ;

Unfortunately, this isn’t really thread safe. The reference
to the first free value, ff, in the second argument to
atomic_xchg is a read that isn’t protected by the atomic
call. That means that two threads could get the same value

Grid N Cells/N OCL CPU GPU1 GPU2 OMP CPU
2k2 4m 1:1 630ms 1034ms 1117ms 727ms
2k2 2m 2:1 235ms 530ms 842ms 315ms
1k2 1m 1:1 81ms 223ms 137ms 189ms
2k2 1m 4:1 120ms 375ms 737ms 163ms
1k2 512k 2:1 43ms 126ms 79ms 85ms
2k2 512k 8:1 95ms 318ms 721ms 99ms
1k2 256k 4:1 27ms 80ms 62ms 42ms
2k2 256k 16:1 49ms 267ms 692ms 84ms
1k2 128k 8:1 15ms 64ms 57ms 27ms
1k2 64k 16:1 10ms 64ms 48ms 19ms

Table 1
THIS TABLE SHOWS THE TIMING RESULTS FOR THE OPENCL CODE

RUNNING ON BOTH A CPU AND TWO DIFFERENT GPUS COMPARED TO

THE EXISTING, MULTITHREADED CODE ON A CPU FOR A VARIETY OF

PARTICLE COUNTS AND GRID SIZES. FOR EACH CONFIGURATION, A

WARM-UP SIMULATION WAS DONE FIRST, FOLLOWED BY FIVE RUNS

THAT WERE AVERAGED TO GET THESE RESULTS.

for ff before either one of them does the atomic exchange
to update to the next one. The result would be two threads
each holding the same node to store a potential collision in
which would clearly lead to errors.

It is unclear at this time how critical a problem this is in
general. For the tests presented here it was not a problem.
Limiting the length of a time step can reduce the number
of total collisions so that the potential collision pool doesn’t
overflow. However, it is likely that we need to find better
ways to address this challenge. That will be the subject of
further research.

4. Results
4.1 CPU/GPU Comparisons

The above algorithm was implemented in OpenCL for
a 2-D system in which particles move in a straight line
between collisions. We first tested the performance of this
implementation on a PC with an NVIDIA GeForce GTX 670
graphics card (hereafter GPU1) and an Intel(R) Core(TM)
i7-3930K CPU @ 3.20GHz CPU, and separately with a
AMD Radeon HD 7970 (hereafter GPU2). The timing results
are shown in table 1 and figure 1.

The simulations were set up with a square grid with grid
cells that were one unit of length on each side. Particles
0.2 units in radius were placed in the simulation area
uniformly with random velocities on the order of one unit.
The simulation was run for one time step of 0.1 time units.
For the simulations involving 1 million particles this set-up
requires that nearly 1 million particle pairs be checked for
collisions and over 20,000 potential collisions be added to
the queues. Most of those potential collisions turn out to be
real collisions that are actually processed.

When looking at the results, one should keep in mind that
the OpenCL implementation has not yet been optimized,
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Fig. 1
THIS FIGURE SHOWS THE TIMING RESULTS GIVEN IN TABLE 1.

SMALLER SYMBOLS ARE USED FOR THE RESULTS WITH THE GRID THAT

HAS 1024 CELLS ON THE EDGE AND LARGER SYMBOLS ARE USED FOR

THE GRID WITH 2048 CELLS ON THE EDGE. THE PLOT MAKES IT CLEAR

THAT THE OPENCL IMPLEMENTATION OF THIS ALGORITHM IS FASTER

ON THE CPU THAN OUR PREVIOUS OPENMP CODE. HOWEVER, THE

GPU RESULTS GENERALLY LAG BEHIND BOTH CODES ON THE CPU.
THE ONE EXCEPTION IS THE TWO LARGEST SIMULATIONS WITH THE

SMALL GRID ON GPU2, WHICH OUTPERFORM THE OPENMP CODE.

especially for running on a GPU. On the other hand, the
OpenMP implementation is one that we have had for a num-
ber of years and have been able to tweak for performance.
Despite this, the OpenCL performs better on the CPU and is
within a factor of several of the OpenMP code on the GPUs
using a commodity gaming graphics card. The gap between
OpenCL on the GPUs and the OpenMP code also closes as
the particle count increases, with GPU2 beating OpenMP for
the two largest particle counts using the smaller grid. For the
largest simulations at each grid size, the difference is well
below a factor of two on GPU1.

The table lists the ratio of number of grid cells to number
of particles because empirical work on the original version
of this code [9] found that for a fixed number of particles,
the code gave optimal performance with a maximum ratio
of 7:1. We have no yet performed a full set of tests to
determine the optimal ratio for the OpenCL code, but these
tests do show that this algorithm appears to have a greater
cost for a larger number of grid cells, particularly on on the
AMD GPU, GPU2. The OpenCL code is faster for using
a smaller number of grid cells than a larger one for all
particle counts. This isn’t too surprising given how many of
the passes launch threads based on the number of grid cells.
As a result, it appears that the OpenCL code likely has an

optimal ratio with fewer grid cells per particle. Resolving
the ideal ratio is an area for future work.

The performance of the GPUs in these tests is consistent
with the fact that the code has not yet been optimized for the
GPU. Each thread group on a GPU is basically a SIMD unit
that is most efficient when all the threads are doing the same
thing, running a single instruction on multiple pieces of data.
We have not yet optimized the code to try to keep threads
doing the same thing. The kernels were written to contain as
much work as was possible for a particular decomposition
of the work without running into race conditions. The code
likely needs to be refactored in a number of ways, including
breaking up the kernels, to keep the work more consistent
across the threads so that the GPUs can run more efficiently.

4.2 CPU Scaling
A second set of tests was run using only the CPU to

look at how well this new algorithm, using OpenCL, scales
relative to the old one using OpenMP. The results of these
tests are shown in figure 2. These simulations were run on a
Dell server with four 16-core Opteron 6272 processors, each
with 16 GB of local RAM. So the machine has 64-cores and
64 GB or RAM total, allowing us to scale the simulations
be to significantly larger than the earlier tests. The initial
conditions were the same as before. For these simulations,
the ratio of grid cells to particles was kept fixed at 1:1 for
the OpenCL simulations and 4:1 for the OpenMP code. The
number of cores used in the simulations was set at 16, 32,
and 64 for each of the codes for a variety of particle counts.
The timing results are shown in figure 2.

Both code scale remarkably linearly with particle count up
to more than 67 million particles. Consistent with earlier re-
sults, the OpenCL code holds a reasonable speed advantage
up to 4 million particles. Most of the advantage disappears
at 16 million particles and there is remarkably little spread in
runtime between the methods or the core counts in the largest
simulations. More work needs to be done to determine why
the OpenCL implementation loses ground for the largest
simulations and what can be done, either in the code or
the configuration, to prevent this.

4.3 Double Precision
These timing results came from code using single pre-

cision floating point values and arithmetic. Current GPUs
tend to be much faster with single precision than double
precision in most benchmarks. Unfortunately, there are some
simulations that explore problems of scientific interest that
require the additional precision. Hard sphere collisions for
large N happen to be one of those problems. For that
reason, we wanted to explore the impact of using double
precision numbers here because this happens to be just such
a situation.

The importance of double precision for these simulations
was discovered when we put in a consistency check on the
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Fig. 2
THIS FIGURE SHOWS THE TIMING RESULTS ON A 64-CORE MACHINE

COMPARING THE OPENCL IMPLEMENTATION OF THIS ALGORITHM

WITH OUR EARLIER OPENMP CODE. FOR THESE SIMULATIONS, THE

RATIO OF GRID CELLS TO PARTICLES WAS FIXED AT 1:1 FOR THE

OPENCL CODE AND 4:1 FOR THE OPENMP CODE. THE SYMBOL SIZE

INDICATES THE NUMBER OF CORES INVOLVED. SMALL SYMBOLS ARE

16 CORES, MEDIUM ARE 32, AND LARGE SYMBOLS ARE 64.

hard-sphere collisions. This check tested to see that when
particles were advanced to the time of a potential collision
that they were actually touching. This check failed when we
required the separation between particles be within 1% of the
sum of the particle radii. After double checking all the math
and manually testing some of the values for the root finding,
we realized that the problem was actually the accuracy of
single precision floating point values. The simulation region
was 1000 units across and the particles were 0.2 units in
radius. That means that we were testing for an accuracy
on the order of 10−5. This is below the expected accuracy
of single precision arithmetic, but would be met easily by
double precision values.

Running a few tests showed us the very surprising result
that changing the code to use the double type instead of

float didn’t have a significant impact on speed for our
hardware. Our first assumption was that the cards, being
commodity graphics cards and not cards specifically de-
signed for HPC and GPGPU, were defaulting to single pre-
cision despite being told to use double precision. Attempts
to measure the value of ε on the graphics cards showed
that they were doing something different with double than
with float, but the results those tests produced were not
consistent with IEEE double precision numbers so more
work is needed to determine what is happening in this area.

5. Conclusions
We found that a hard sphere collision algorithm using

separate queues for each of many small spatial regions was
implementable in OpenCL and that even without significant
tuning, this code could outperform an earlier OpenMP im-
plementation using a single queue when running on the CPU.
Unfortunately, the GPU performance of the implementation
currently lags behind that on the CPU.

There are many open questions and areas left for future
work. In addition to those mentioned earlier in the paper,
there are a few other areas that remain to be explored.
First, does the difference in the ideal grid cell size alter
how the performance varies with length of time step. The
previous methods tend to scale the grid with the length of
the time step. Because a simulation needs to go for a certain
period of time, and the number of particles searched for
collisions scales as the area of a grid cell, the total run
time of a simulation tended to scale as 1/dt + dt2. This
leads to an optimal time step that is fairly short to keep the
cell sizes small. This work has already shown that this new
algorithm performs better with larger grid cells. This could
allow longer time steps to be taken, providing shorter total
run times, even if the performance for a single time step is
inferior.

This work looked only at the most basic of particle con-
figurations where only collisions are considered. In realistic
systems, the particle distribution is typically not so uniform
and other forces, like gravity, can cause particles to clump.
This alters the geometric distribution of the collisions. It is
unclear at this time what impact that would have on this
method.

Lastly, when the geometric distribution becomes signif-
icantly non-uniform, the spatial grid that was used here
becomes ineffective. We have extended the older approach to
use spatial trees as a more dynamic searching and locking
data structure [8]. This same thing could be done on the
GPU, though it is likely to be significantly more challenging
to do so.
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Abstract—Improved version of the Smith-Waterman algorithm
(SWA) is most widely used for local alignment of a pattern (or
query) sequence with a Database (DB) sequence. This dynamic-
programming algorithm is computation intensive. To reduce time
for computing alignment score matrix, parallel versions have
been implemented on GPUs and multicore CPUs. These parallel
versions have shown significant speedup when compared with
their corresponding sequential versions.

Our initial evaluation of an OpenMP parallelization of SWA
has shown linear speedup on multicore CPUs, but a closer look
at performance data from both sequential and parallel versions
have revealed two undesired effects: (i) As the length of the
DB sequence increases, the number of elements of the alignment
score matrix H computed in per unit time initially increases, then
reaches a maximum, and finally decreases continuously; (ii) the
length of the DB sequence where decline starts is different for
different CPUs. To overcome the computation rate decline we
have proposed a run-time self-tuning algorithm. It determines
the length, l, of a DB sequence that maximize computation
rate during execution time. Then, divide computation of H into
computation of a set of submatrices, such that the number of
columns in each submatrix is about l.

Our study also found that the number of per-core-threads that
delivers the highest rate of computation differs from CPU to CPU.
Our proposed algorithm determines optimal number of threads
during execution time and creates optimal number of threads for
highest possible computation rate. Our extensive evaluations of
the proposed self-tuning algorithm on three different multicore
multi-CPU shared memory machines have shown significant
performance improvement.

I. INTRODUCTION

Now most, if not all, computers are powered with one or
more multicore CPUs. Since each of these cores can execute
independent task, they collectively may increase computing
power of a CPU. However, increase in computing power
depends not only on the number of cores available, but it also
depends on organization of the cores and the cache in the
CPU, shared-memory access mechanism, and performance of
translation lookahead buffer (TLB) used for virtual address
translation.

While utilization of these cores for multiple independent
tasks is straight forward, efficient utilization of these cores
to solve one large problem requires a parallel algorithm
that creates multiple tasks for concurrent execution on these
cores. Moreover, for computation-intensive algorithms as the

Faisal Sikder and Dilip Sarkar are with the Department of Com-
puter Science, University of Miami. E-Mails: f.sikder@umiami.edu and
sarkar@miami.edu; May 28, 2014

problem size grows memory access time may increase and
instruction execution rate may reduce and performance may
fail to scale up. Thus, implementation of parallel algorithms
on a multicore CPU brings a new challenge for computation-
intensive problems. Especially, for algorithms that use arrays
of dimension two or higher as data structure, such as, matrix
operations and dynamic programming.

Furthermore, as more cores are added to a single CPU, the
designers alter cache organization, cache size, and interfaces
between cache and cores. Also, memory access methodology
changes. Thus, an efficient parallel algorithm implemented to
solve a problem on one multicore CPU may not be efficient
on another CPU, or future multicore CPUs. Therefore, it is
important to develop and implement parallel algorithms that
are efficient and easily portable from one multicore CPU to
other multicore CPUs while they maintain high efficiency, and
will continue to be portable and efficient for evolving future
generations of multicore CPUs.

Another performance issue is instruction execution rate,
which is affected by memory access rate and could be problem
size dependent. This is specially true for algorithms which use
arrays of dimension two or higher (see [12]). To overcome
these issues cache-oblivious and resource-oblivious algorithms
have been proposed (see [5], [6], [7], [12], and [23], and refer-
ences therein). These algorithms recursively divide problem to
be solved until the subproblems are small enough for holding
in the cache. They are asymptotically optimal for sequential
algorithms, but they require parallelization or need support
from special software systems — both of which are nontrivial
tasks. To the best of our knowledge no scalable self-tuning
parallel algorithm exists for Smith-Waterman algorithm [21].

In this paper we propose, implement, and evaluate a parallel
version of Smith-Waterman algorithm (SWA) [21] that is
scalable as well as self-tuning. The algorithm does a two-
step self-tuning: first it executes a sequential algorithm to
find an optimal size for the problem, and then it finds an
optimal number of threads for each core for the highest
speedup. Finally, it divides the problem to be solved into
smaller subproblems and execute each of them in parallel
using optimal number of threads.

The rest of the paper is organized as follows. We briefly
review work related to our work in Section II. In Section III,
we present sequential Smith-Waterman algorithm and a naive
parallel implementation of it using OpenMP. In Section IV, we
present our self-tuning scalable parallel algorithm for Smith-
Waterman algorithm. Some typical results from our evalua-
tion of the proposed algorithm are presented in Section V.
Section VI discusses our findings and potential future work.
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II. RELATED WORK

For space limitation we include only a few references. A
more comprehensive list of references can be found in our
report [20].

Sequence alignment is one of the most fundamental task in
bioinformatics. Because of the size of the databases, sequence
alignment is very time consuming. To reduce alignment time
heuristic-based pairwise sequence alignment algorithms and
software tools have been developed. These tools can be
grouped into two general categories: hash-table based algo-
rithms and suffix-tree based algorithms.

Hash table based software tools include BLAST [3] and
FASTA [18]. As the number of data-sets in databases grows
everyday, so does the computation time for finding all align-
ments of a query sequence. To curb the growth of computation
time, mpiBLAST [8] and RPAlign [4] have exported BLAST
and FASTA to distributed computing clusters. Because of
higher memory and time complexity, suffix-tree based tools
are fewer than hash-table based software tools. A prominent
suffix-tree based software is MUMmer [10].

These heuristic-based tools work very well for finding lo-
cations of exact or near-exact alignments of a query sequence.
However, if some symbols of a query sequence differs in few
locations because of sequencing error, or some symbols were
added or deleted because of sequencing errors they fail to
identify locations of optimal alignments as can be done with
the Smith-Waterman algorithm [21].

The Smith-Waterman [21] algorithm and its improved ver-
sion [13] (which is also known as Smith-Waterman algo-
rithm) have much better sensitivity and specificity, but re-
quire quadratic computation time and space. Thus, sequential
version of the algorithm is impractical for long query and/or
database sequences. To extend the scope of usefulness, parallel
versions of Smith-Waterman algorithm have been implemented
on various parallel computing platforms, including multicore
CPUs [1], [22] and SIMD instruction set [11], [19], GPUs
[9], [15], CPU and GPU based hybrid systems [16], CPU and
FPGA based hybrid systems [17].

One of the parallel implementation of Smith-Waterman
algorithm using GPU is CUDASW++ [15]. This CUDA based
parallel implementation is claimed to have demonstrated sig-
nificant speedup over CPU implementation. Khajeh-Saeed et
al. implemented Smith-Waterman algorithm for single and
multiple GPU systems [14]. They reported 45 times speedup
over CPU version. Also, for 4-GPU systems they reported a
speedup of about four over single GPU system.

Rongers [19] implemented SIMD based version of Smith-
Waterman algorithm and claimed six times speedup. Farrar
also used SIMD based implementations and received 2-8 fold
speedup over others [11].

High Performance Genomics project recently implemented
a parallel version of the Smith-Waterman algorithm using
OpenMP, which is know as HPG-SW [1]. The algorithm has
neither been published yet nor any documentation is available.
However, the source code is available from the Internet [1].
In this algorithm, the number of threads to be used during
run-time is hard-coded and requires to be changed manually.

Any GPU implementation is highly platform dependent and
has restricted memory access mechanism. On the other hand,
even low cost CPUs from different manufacturers have 4 to
8 cores. Thus, an efficient, scalable, and self-tuning parallel
implementation of Smith-Waterman algorithm for all multicore
CPU-types is very important.

III. SEQUENTIAL AND A NAIVE PARALLEL
IMPLEMNTATION OF SMITH-WATERMAN ALGORITHM

For the ease of presentation and completeness, first a
sequential version of Smith-Waterman algorithm and then an
OpenMP-based parallelization of it are presented. A brief
evaluation of these two versions are also presented in this
section to motivate our readers.

A. Sequential Version of Smith-Waterman Algorithm
Let DB =< d1, d2, ..., dm > be a database sequence

of length m and PT =< p1, p2, ..., pn > be a pattern
sequence of length n. For local alignment of a PT with a
DB the Smith-Waterman algorithm [13], [21] is the most
widely used algorithm. This computation intensive dynamic-
programming algorithm runs in two phases: in phase 1 it
creates an alignment score matrix Hm+1×n+1, and in phase
2 it obtains the optimal alignment.

Phase 1-Compute the alignment score matrix: The elements
of first row and first column of H are initialized to 0, that is,
for i = 0 and 0 ≤ j ≤ m, H0,j = 0, and for 1 ≤ i ≤ n
and j = 0, Hi,0 = 0. Other alignment scores for elements of
H are computed using the equation 1; a reward is added to,
or a penalty value is subtracted from Hi−1.j−1 for obtaining
Hi,j . If pi = dj , a match occurs and the reward value is wr. If
pi ̸= qj , a mismatch occurs and the penalty value is wpm. If a
gap is inserted in PT , the penalty value is wpg. If an element
is deleted from DB, the penalty value is wpd.

Hi,j = max


0
Hi−1,j−1 + wr for a match
Hi−1,j−1 − wpm for a mismatch
Hi−1,j − wpd for a deletion
Hi,j−1 − wpd for an insertion

(1)

Phase 2-Obtain the Optimal Alignment: In this phase,
starting from a highest score cell in H , an optimally aligned
sequence is obtained. A move to the left cell inserts a gap in
PT . An upward move represents a deletion of a symbol from
DB. Finally a diagonally upward move indicates a matched
or a mismatched symbol between PT and DB.

An outline for an initialization procedure is shown in
Algorithm 1. The input to the initialization procedure are:
m – the length of database sequence, n – the length of
pattern sequence. The output from the procedure is initialized
alignment score matrix H . A procedure for phase 1 of the
Smith-Waterman algorithm is shown in Algorithm 2.

An OpenMP version is presented next.

B. Parallel Version of the Smith-Waterman Algorithm
After discussing data-dependency for computing H , a naive

parallel version of the algorithm is presented in this section.
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(a) Data dependency Graph for Computing
Alignment Score Matrix H .
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Fig. 1. Data Dependency for computing alignment score matrix, Effect of the DB length on Speedup, and Effect of Number Threads for each Core.

Algorithm 1 Initialization of Sequential Version of the SWA
1: procedure SWINITIALIZATION(m, n, H)
2: // Set elements of the 0th row of H to zero
3: for (i = 0; i < n; i++) do H(i, 0) = 0;
4: // Set elements of the 0th column of H to zero
5: for (j = 0; j < m; j++) do H(0, j) = 0;
6: end procedure

Algorithm 2 Sequential Version of the SWA
1: procedure SWSEQUENTIAL(m,n,H)
2: SWINITIALIZATION(m,n,H)
3: // Using Equation 1 compute elements of H
4: for (i = 1; i < n; i++) do
5: for (j = 1; j < m; j++) do Compute H(i, j);
6: end procedure

Data Dependency for Computing H: Data dependency
graph for computing alignment score matrix H is shown
in Fig. 1(a). We can see from the data-dependency graph
that alignment score matrix H can be computed in three
different orders: (i) Row-wise from the top-most row to the
bottom-most row in that order, and in each row elements are
computed from the left-most column to the right-most column.
(ii) Column-wise from the left-most column to the right-most
column, and in each column elements are computed from the
top-most row to the bottom-most row. (iii) Diagonally, from
the top-left corner to the bottom-right corner as indicated by
diagonal lines.

While row-wise and column-wise computation impose their
restrict sequential orders, diagonal-wise computation elim-
inates this strict sequential order. Computation of all the
elements in a diagonal can be done in any order or in parallel.
However, computation of the elements of a diagonal requires
that computation of all elements in the diagonal just above it
have been completed.

Parallelization of Computation of H: Without loss of
generality, let us assume that a multicore CPU has C cores,
and for a nonzero integer k, T (= k.C) rows of H can be
computed in parallel by maintaining a diagonal order on these
T rows. Let us assume that computation of r rows of H has
been completed, and rows (r+1) to (r + T ) to be computed.

An outline of our naive OpenMP version is shown in
Algorithm 3. This procedure sets the number of threads to

Algorithm 3 A Simple Parallelization of SWA Using OpenMP
1: procedure SWOPENMP(m, n, H , T )
2: SWINITIALIZATION(m,n,H);
3: omp set num threads(T );
4: TPos[T ] = 0;
5: // TPos[t] stores the col # thread t has computed last
6: omp set num threads(T )
7: // Create a parallel section of T threads
8: #pragma omp parallel
9: for (k = 0; k < ⌈n/T ⌉; k++) do

10: // The thread t, 0 ≤ t < T , computes
11: // rows 1, t+ 1, 2t+ 1, · · · of H
12: i = k ∗ T + t+ 1;
13: for (j = 1; j < m, j++) do
14: while (TPos[t− 1] < j) wait();
15: Compute H(i, j);
16: TPos[t] = j;
17: end parallel section
18: end procedure

T , an integer multiple of C. Then it creates a parallel
section, where all T threads compute the values of H
in parallel. Since there are n rows, each thread computes
approximately ⌈n/T ⌉ rows. If identification number of a
thread is t, it computes rows (t + 1), 2 ∗ T + t + 1 and so
on. Because of an strict order for computation of elements
of H , the element H(i − 1, j) must be computed before the
element H(i, j) can be computed. To ensure this restriction,
each thread waits in a while loop until the element just above
it has been computed. An array TPos is used for lock-free
implementation of the restriction.

C. Perfomance Evaluation of the Naive Version

We implemented the procedure shown in Algorithm 3 using
OpenMP 3.0. To evaluate performance of our parallel version,
we obtained the best known parallel implementation [1] (in
the rest of the paper this implementation is refereed to as
HPG-SW) and measured speedup on three computer systems
(see Section V-A). We observed that for a PT sequence of
fixed length as the length of the DB sequence is increased,
the speedups steadily increase to a maximum (see Fig. 1(b)).

Effect of DB Length on Computation Rate: The most
interesting observation is illustrated in Fig. 1(c). As the length
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of the DB sequence increases all implementations (except
implementation proposed later) share a similar trend: the
computation rate for each implementation i) initially increases,
ii) then reaches a maximum, and iii) finally starts to decline.
Our first hypothesis: For a given length of PT sequence, there
is an optimal length for the DB sequence.

Our proposed method for implementation of self-tuning
parallel algorithms is presented next.

IV. PROPOSED SCALABLE SELF-TUNING PARALLEL
IMPLEMENTATION OF SWA FOR MULTICORE CPUS

In this section, we first describe a procedure to identify
an optimal length for the DB sequence. Then we propose a
procedure to determine optimal number of threads for each
core. Finally, we use this procedures in our implementation of
a self-tuning parallel Smith-Waterman Algorithm.

A. Procedure for Identification of an Optimal Size DB

Identification of an optimal length of the DB sequence starts
with a given PT of relatively small size, say 200 symbols.
The initial length of the DB sequence is same as that of the
PT sequence, and the length of the DB sequence is increased
by a constant IncC until an optimal length is found. We
used IncC = 25 for our experiments. For each DB sequence
average time to compute one element of H is computed
and compared with previously computed minimum average
time. If most recently computed time is smaller than the
currently known minimum, the minimum time is updated and
corresponding length of the DB sequence is recoded. For
determination of termination point, one can use a rule of
DblPc%: If most recently computed average time is DblPc%
higher than the currently known minimum, the algorithm
stops. We used 15% rule. An outline of the algorithm is shown
in Algorithm 4.

Algorithm 4 Identification of Optimal Length DB Sequence
1: procedure FINDOPTIMALLENGTHDB(OpS)
2: TBound = −100;n = 200;m = 200;
3: BestT ime = 200; //A very large value
4: while TBound < DblPc do // use DblPc% rule
5: start = time();
6: SWSEQUENTIAL(m,n,H);
7: end = time();;
8: CTime = (n ∗m/(end− start));
9: TBound = CTime−BestT ime

BestT ime × 100;
10: if ( BestT ime > CTime) then
11: BestT ime = CTime; OpS = m;
12: m = m+ IncC; // IncC is increment constant
13: end procedure

Results obtained from running this algorithm on three
shared-memory computers are illustrated in Fig. 2(a) (see
Section V-A). An average computation time for one element
of H was obtained by dividing total time for computing H by
the number of elements in H . From the plots we observe that
as the length of the DB size grows, the computation time for
each computer goes through three distinct phases:(i) initially

average computation time remains almost constant, (ii) then
it decreases to a minimum, (iii) finally it starts to increase.

Therefore, empirical evidence support our hypothesis that
there is an optimal length for the DB sequence. Thus, for
achieving optimal computation rate the DB sequence must
be partitioned and computation for each partition has to be
performed at a time.

Next we focus on identification of optimal number of
threads for each core.

B. Procedure for Idetification of Optimal Number of Threads
It is obvious that the number of threads should be no less

than the number of cores. But can more threads per core help?
If so, the next question is how many threads for each core?
Also, is the thread to core ratio CPU/machine independent?

To answer these questions, we executed our OpenMP im-
plementation of Algorithm 3 on three different shared-shared
memory computers (see Section V-A). Some results from
this experiment are illustrated in Fig. 2(b). Three interesting
observations can be made from the plots: (i) more than one
thread per core is beneficial, (ii) there is an optimal number
of threads for each core, and (iii) the optimal number varies
from system to system. For the single CPU system the optimal
ratio is five, while for the 2-CPU systems the optimal ratio is
four.
Our second hypothesis: For a given multicore computer, there
is an optimal number of threads for each core.

Algorithm 5 Identification of Optimal Number of Threads
1: procedure OPTIMALTHREADS(OnTs)
2: n = 200;m = 200; TBound = −100;
3: // NtPc is # of threads for each core, C is # of cores
4: NtPc = 1; // initially 1 thread per core
5: BestT ime = 200; //a large initial value
6: //number of cores: C
7: while (TBound < ThnPc) do // use ThnPc% rule
8: start = time();
9: SWOPENMP(m, n, H , C ∗NtPc);

10: end = time();
11: CTime = (C ∗ tr ∗ n ∗m/(end− start));
12: TBound = CTime−BestT ime

BestT ime × 100;
13: if (CTime < BestT ime) do
14: BestT ime = CTime; OnTs = C ∗NtPc;
15: NtPc++
16: end procedure

Identification of Optimal Number of Threads: The pro-
posed steps for determining optimal number of threads for
each core are similar to that for determining optimal length
for DB sequence. We start with one thread per core, and
increase it by one at every iteration, until we find the number
that minimize computation time using our rule of ThnPc%.
The procedure is shown in Algorithm 5. Inside the while
loop of this algorithm we call Algorithm 3 with PT and DB
whose lengths have been determined by calling procedure in
Algorithm 4, or something similar. Unless the lengths are too
small, it does not matter, since we are determining optimal
number of threads.
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Fig. 2. Evidence of Optimal DB Length, Optimal Number of Threads for each Core, and Optimal Partitioning of the Alignment Scoring Matrix.

C. Procedures for Initialization of Submatrices
Let OpS be the length of a DB sequence for which

computation rate is highest. The proposed algorithm first
executes procedure presented in Algorithm 4 to determine
OpS. Then computation of alignment score matrix H is
divided into computation of ⌈m/OpS⌉ smaller alignment
score submatrices obtaied by dividindg H vertically, as shown
in Fig. 2(c). Notice that the first row of each partition, except
for first partition, is the last row of the partition just before
it. The computation of each submatrix is done in parallel. For
keeping all elements of a partition in contiguous locations in
the memory, we use a 3-D array. The first dimension of the
array represents the partition number of H .

Initailaiztion of Partitions of H: The initialization proce-
dure assigns zeros to all elements of the 0th row all partitions.
It also assigns zeros to all elements of the 0th column of
the first partition. An outline of the procedure is shown in
Algorithm 6. The elements of 0th column of other partitions
are initialized by copying last column of the previous partition
at the beginning of computation of the partition.

Algorithm 6 Initialization of the Partitions of H
1: procedure INTIPARTITIONEDH(m, n, H , OpS)
2: partitoins = ⌈m/OpS⌉
3: for (k = 0; k < partitions; k++) do
4: // Set elements of the 0th row of H to zero
5: for (j = 0; j < OpS; j++) do H(k, 0, j) = 0;
6: // Set elements of the 0th column of H to zero
7: for (i = 0; i < n; i++) do H(0, i, 0) = 0;
8: end procedure

Next we present a procedure that is executed by each thread
for computing its share of the alignment score matrix H .

D. Procedure for Each Thread
The procedure shown in Algorithm 7 is executed by all

threads created in Algorithm 8. Each thread first computes
numRows, the number of rows the thread has to compute.
Next it enters into a loop to compute these rows of H . It
repeats the process for all the partitions. Recall that there is
an strict order for computation of elements of H . The element
H(k, i−1, j) must be computed before the element H(k, i, j)
can be computed. To ensure this restriction we use an array
TPos as shown in the procedure.

Algorithm 7 Task for Each Thread
1: procedure THREADTASK(n,H ,T ,partitions,TPos)
2: for (k = 0; k < partitions; k++) do
3: numRows = ⌈n/T ⌉; // rows per thread
4: // s keeps the count of rows computed by the thread
5: for (s = 0; s < numRows; s++) do
6: // compute next row i for thread t
7: i = s ∗ T + t+ 1;
8: //set the starting position of the DB slice
9: for (j = 1; j < OpS; j++) do

10: while (TPos[t− 1] < j) do wait();
11: Compute H(k, i, j); TPos[t] = j;
12: end procedure

Algorithm 8 Self-Tuning Parallel SWA for Multicore CPUs
1: procedure SELFTUNINGOPTIMALTHREADS(m, n, H;)
2: FINDOPTIMALDB(OpS)
3: INTIPARTITIONEDH(m, n, H , OpS);
4: partitions = ⌈m/OpS⌉;
5: OPTIMALTHREADS(OnTs);
6: //TPos Shared array to hold current position
7: TPos[OnTs] = 0
8: //t set number of threads for OpenMP derivatives
9: omp set num threads(OnTs)

10: #pragma omp parallel
11: THREADTASK(n,H , OnTs, partitions, TPos)
12: end parallel section
13: end procedure

E. Scalable Self-Tuning Implementation of SWA for Multicores

Now we have all necessary procedures for a modular
description of the scalable self-tuning parallel algorithm for
computing alignment score matrix H . An outline of the
algorithm that uses four procedures described earlier is shown
in Algorithm 8.

The algorithm first calls the procedure shown in Algo-
rithm 4 for computing an optimal length DB sequence. Next
it calls the procedure shown in Algorithm 6 for creating and
initializing a 3-D array for alignment score matrix H . Then
it calls the procedure shown in Algorithm 5 for computing
optimal number of threads, OnTs, and it is used for creating
OnTs threads for concurrent execution. Finally, from the
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Fig. 3. Comparison of Performances of Proposed Algorithm with Other Algorithms on Three Different Multicore Shared-Memory Computer Systems.

parallel section of the algorithm each thread invokes procedure
shown in Algorithm 7.

In the next section we present some typical results obtained
during our extensive evaluation of the algorithm [20].

V. EMPIRICAL EVALUATION

Before presenting the results we briefly describe three
shared memory computers that have been used for our evalu-
ation.

A. Experimental Systems

We used both single CPU and double CPU systems. One
computer has a single CPU and other two systems have double
CPUs. Brief description of these machines, including operating
systems and compilers used, are described next.

a) Single CPU System: This computer has a single AMD
4-Core 3.6GHz CPU with 8MB shared cache and 16GB RAM
shared by all cores and is running 64-bit Ubuntu version 12.04.
We used GCC compiler vesion 4.6.5 with OpenMP 3.0.

b) Double CPU Systems I: This computer system has
two 4-Core AMD 2.2GHz CPUs. Each core has dedicated 512
KB cache. Two CPUs share 16GB RAM and is running 64-
bit Red Hat Linux version 4.1.2. We used Intel C++ compiler
version 11.1 with OpenMP 3.0.

c) Double CPU Syatem II: It has two 8-Core Intel Xeon
2.6GHz CPU with 20 MB of shared cache and 128GB RAM
shared by both CPUs and is running 64 bit Red Hat Linux
version 4.4.5. We used Intel C++ compiler version 11.1 with
OpenMP 3.0.

B. Dataset for Evaluation

For evaluation of all algorithms we used genome sequence
of Pseudomonas aeruginosa bacteria that was downloaded
from NCBI genome database [2]. For testing purpose we used
only a part of the sequence. The length of database sequence
was varied from 1K to 25K and that of the query pattern was
varied from 512 to 5K.

C. Performance Evaluation

We will present three sets of results in this section. The first
set shows how computation rate is affected as the length of
the database sequence is increased. We also show how speedup
varies with the length of the database sequence. The second

set demonstrates effect of length of partition of the database
sequence on the per core computation rate. And the final three
Figures show variation of computation rate as the number of
threads per core is varied.

1) Effect of Length of the Database Sequence: The plots
in Fig. 1(c) show that as the length of database sequence
increases, rate of computation initially increases to a maximum
and then decreases for all algorithms, except implementation
proposed here. For ease of comparison computation rates have
been normalized to per core. The proposed optimal algorithm
reaches to a maximum and then retains the rate as the length
of the database sequence increases.

The plots in Fig. 1(b) show speedup for our simple OpenMP
parallel version, the HPG-SW implementation, and our opti-
mal implementation. The simple OpenMP implementation has
slightly lower speedup than the HPG-SW implementation. Our
optimal implementation not only has higher speedup, but it
also has super-linear speedup when the length of the database
sequence is greater than 10K. The super-linear speedup is
attributed to the fact that its computation rate does not decrease
as the sequential version does (see Fig. 1(c)). Thus, mere
speedup measurement may not reveal performance of parallel
algorithm. We need to look more closely for increase and/or
decrease of computation rate as the problem size increases.

2) Effect of the Length of Partition of H: We already know
from our discussion in Section III-C that there is an optimal
partition size for the H Matrix. But the plots in Fig. 2(b)
reveal that the optimal size is not unique — computer system
dependent. For both the 4-core single CPU computer and the
8-core double CPU computer the best performance is obtained
when the partition length of H is about 375. On the other hand,
for the 4-core double CPU computer the best performance is
obtained when the length of the partition of H is about 350.

3) Effect of Number of Threads per Core: Recall that we
have seen in Fig. 2(c) that there is an optimal number of
threads for highest computation rate. We discovered several
other interesting facts from our evaluation of the effect of the
number of threads per core, some of which are presented here.
We will divide our discussion into three paragraphs: 4-core
single CPU computer, 4-core double CPU system, and 8-core
double CPU system.

a) Single 4-core CPU Computer: Figure 3(a) shows
that our optimal implementation attains highest computation
rate when the number of threads per core is five, but for
simple OpenMP implementation the highest computation rate
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is obtained when the number of threads per core is two. For the
HPG-SW implementation the highest performance is obtained
when number of threads per core is five, same as our optimal
implementation.

b) Double 4-Core CPU Computer: Figure 3(b) shows
that our optimal implementation attains highest computation
rate when the number of threads per core is four, but for
simple OpenMP implementation the highest computation rate
is obtained when the number of threads per core is two. For the
HPG-SW implementation the highest performance is obtained
when number of threads per core is three.

c) Double 8-Core CPU Computer: Figure 3(c) shows
that our optimal implementation attains highest computation
rate when number of cores is four, but for simple OpenMP
implementation and the HPG-SW implementation the highest
performance is obtained when number of threads per core is
two.

A general observation is that our optimal implementation
significantly outperforms both simple OpenMP and HPG-SW
implementations.

VI. CONCLUSIONS AND FUTURE WORK

The parallel algorithm implementation technique presented
in this paper for parallelization of Smith-Waterman algorithm
for alignment of a query or pattern sequence, PT , with a
database sequence, DB, is a new approach for implementing
scalable self-tuning parallel algorithms for shared memory sys-
tems. The parallel algorithm we developed using the proposed
approach scales well as the problem size grows. Moreover,
the parallel algorithm implemented using the proposed tech-
nique deploys optimal number of threads for highest possible
speedup. To the best of our knowledge, no other attempt has
been made to optimize number of threads for achieving highest
speedup.

A naive implementation using OpenMP failed to scale-up
as the DB size increased. Similarly, the best known parallel
implementation for multicore system, HPG-SW, from High
Performance Genomics project [1] failed to scale-up. As
discussed in Section V, our implementation maintained highest
computation rate for all DB sizes, except when the DB size is
too small. As a matter of fact, if DB size is too small, parallel
algorithm should be avoided altogether.

Our implementation can be improved by parallelizing ini-
tialization part of the program. Also, the proposed technique
can be used for implementation of other computation intensive
problems, including most dynamic programming algorithms
and matrix operations. Efficient implementation of any algo-
rithm has an added benefit of reduced energy consumption.
Reduction of computation time for computation-intensive prob-
lems magnify the benefit of energy consumption.

It would be interesting to develop analytical model for
computing optimal number of threads for each core.
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Abstract— In this paper, we consider the low-energy 

task scheduling algorithm in quad-core environment. As 

adding the factor of energy consumption in the DAG, we 

can consider the factor of energy consumption in algorithm 

level, and we propose the low-energy task clustering and 

scheduling algorithm. As a result, we can improve energy 

efficiency for the task scheduling in the DAG with time 

constraint. We focus on reducing the core idle state energy 

consumption and propose the modified task clustering 

method for lowering energy consumption for idle stats core 

execution.  
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1 Introduction 

As adopted multi-core processing techniques, the needs 
have been satisfied with the performance, but operating a 
large number of cores such as dual-core and quad-core 
brings about some issues related to low power design like 
power consumption and long battery life, and so on. In 
responding to this trend, we are concerned some critical 
issues for the task scheduling to promote energy efficiency 
in multi-core processor environment [1]. 

In this paper, we consider the low-energy task 
scheduling algorithm in a multi - core system, especially 
quad-core environment. Clustering is a mapping of the 
nodes of a DAG onto labeled clusters. A task is an 
indivisible unit of execution and presented by a node in a 
DAG. A set of task forms a cluster and all tasks in a cluster 
must execute on the same processor. Scheduling in DAGs is 
a set of tasks to a processor mapping and a task to time table 
mapping, expressed by the Gantt chart of a schedule. 
Generally, the problem of finding the optimum scheduling 
is to minimize the parallel time. [2] 

In homogeneous quad-core processing environment, we 
propose the modified task clustering and allocation method 
to find the low-energy task scheduling algorithm. As we 
convert the execution cost and the communication cost 
expressed as time metric to energy metric (Joule) presented 
as energy consumption, we add the energy consumption 
factor in DAGs. As adding the factor of energy 
consumption in the DAG, previously based on time metric 

represented by the execution and communication cost, we 
can consider the factor of energy consumption in algorithm 
level, and we propose the low-energy task clustering and 
scheduling algorithm.  

Many of task clustering heuristics are classified into 
different categories [3]. Some of the scheduling algorithms 
assume the availability of an unlimited number of 
processors, while some other algorithms assume the 
availability of a limited number of processors. The former 
classes are called the Unbounded Number of Processors 
(UNC), and the latter classes are called the Bounded 
Number of Processors (BNC). In both classes of algorithms, 
assume that the processors are fully connected and link 
contention or routing strategies are completely ignored. In 
both classes of algorithms, the target system is assumed to 
be a network Processing Element (PE) that consist of a 
processor and a local memory unit and the communication 
relies on message passing. These algorithms are task 
clustering heuristics included in UNC class of algorithms. 

(1) Kim’s and Brown’s linear clustering algorithms 

(2) Sarkar’s clustering algorithm 

(3) Dominant Sequence Clustering (DSC) algorithm 

This paper is organized as follows. In section.2, we 
describe the problem motivation and a proposal idea. In 
section.3, we show the implementation of our task 
clustering method. Finally, we conclude the prospect of our 
proposed idea, in section.4. 

2 Low-energy task scheduling algorithm 

2.1 Motivation  

We assume the simple architecture that consists of bus 
architecture and homogeneous quad-core processor [9] and 
add some kind of assumptions such as full utilization of 
bus transferred throughput, full utilization of the processor 
core, and so on. Organizing these assumptions, we convert 
the time value expressed by the execution costs and 
communication costs into the execution energy 
consumptions and communication energy consumptions.  

First of all, we show the transformation procedure that 
expresses the conversion of the execution cost into 
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execution energy consumption. The execution cost, which 
is the time needed to execute a task, defines the time 
consumption from starting time for task execution to 
completion time of task execution. We assume that the 
time delay not occurred during task executing on a core 
even though an event caused by interruption or other 
reason arises. When a task executes on a core, we assume 
that the core is utilized at maximum utilization. And then, 
the core operates at a maximum operating frequency, if we 
are able to know the cycle per instructions data on a core, 
we can calculate the total number of instructions per 
second. If we multiply the power consumption required to 
execute instruction by the number of executing instructions 
per second on a core, we can calculate the power 
consumption per second on a core at maximum utilization. 
Expressed by a formula [4], [5], 

Eexecution  =  Ninstruction  X  Pinstruction  X  COSTexecution 

Ninstruction  =  fpeak  X  𝒶 

where Eexecution is the total energy consumption when a task 
node i was executed, Ninstruction is the number of 
instructions executed by a core during a second Pinstruction is 
the power consumption per instruction, COSTexecution is the 
time presented by execution cost, fpeak is the core execution 
frequency, 𝒶 is the cycle per executed instructions. 

Subsequently, we show the transformation procedure 
that expresses the conversion of the communication cost 
into communication energy consumption. The 
communication cost, which is the time delay caused by 
data dependency between cores when tasks are assigned, 
defines the edge value in the DAG. If the data transmission 
is through a bus and the bus throughput is the same as full 
utilization of bus bandwidth, we assume that the total 
volume of the transferred data is expressed by the 
multiplication of the bus maximum bits per second and 
communication cost. As a result of the calculation above, 
total energy consumption caused by data transferring 
during the communication delay is the multiplication of 
power consumption per transfer bit through a bus and the 
volume of the total transferred data. Expressed by a 
formula [4], [5],   

Ecommunication =  DBUS  X Pbus_line  X COSTcommunication 

DBUS  =   BWbus_peak   X  1 s 

where Ecommunication is the total energy consumption when 
transferring data through bus architecture, DBUS is the 
volume of transferring data with full utilization of bus 
throughput, Pbus_line is a power consumption per bus line, 
COSTcommunication is the time presented by communication 
cost, BWbus_peak is the bandwidth of the bus architecture 
with peak data throughput. 

TABLE I. COST TRANSFORMATION TABLE 

 Cost(Time) Energy 

consumption(Joule) Node(Task execution) 1s 60.0mJ 

Edge(Communication) 1s 22.6mJ 

Node(Task idle) 1s 18.0mJ 

As mentioned above, applying the assumptions, we 
assume that the ARM-core frequently used in embedded 
system is employed in the quad-core system and Advanced 
Microcontroller Bus Architecture (AMBA) is used as a bus. 
As we make reference to the other paper based on ARM 
core specification data, we are able to calculate more 
realistic value about energy consumption in the DAG.  

We assume that the core operating frequency is 200MHz, 
having 1 cycle per instruction value and the bandwidth of 
the AMBA bus is 200Mbps. As a result, we obtain the table 
above, and we are able to add the energy consumption 
value to existing DAG based on the value of a table [6]. 
The energy consumption caused by the idle state time of 
core execution regard as 30% of execution energy 
consumption. 
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Fig. 1. Clustering steps of proposed method 

2.2 Method of task scheduling  

As mentioned, we propose the modified task clustering 
method that focuses on the reduction of idle state time on 
the core. We explain the method in detail in Fig.1. The main 
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idea of the method is that edge zeroing should occur to 
forcing the reduction of the difference between the t-level 
and t-levelc which estimates the summation of cost from top 
level node in the cluster to the examined node.  This has the 
same effect as assigning the task that has no dependency 
with examined node to the empty space on the core. To 
explain the method more easily, we depict a simple example 
DAG to apply the modified method. We demonstrate the 
proposal clustering method steps by using a DAG example 
in Fig.1 – step 0. The steps 1, 2, 3, 4, and 5 are shown in 
Fig.1. The dashed edges between n3, n4, n5 are the 
execution order within a cluster. 

 

 

Fig. 2. Proposed Clustering Method 

3 Experiment and evaluation 

3.1 Comparison of Proposed Method and 

Sarkar’s Algorithm 

At the idle time, the proposed method has the number of 
cases, which have better or equal performance, numerically 
about 72.5% of all cases compared with Sarkar’s algorithm. 
More than half of all cases show the reduction of the idle 
time compared with Sarkar’s algorithm. But, the result 
about 72.5% shows that the portion of comparison for 
Sarkar’s is lower than the portion of comparison for DSC 
algorithm. In the total energy consumption, as the portion of 
better or equal cases is 63.75% of all cases, the result is 
smaller than the case of idle time. In the parallel time, in 
most cases the proposed method has the equal or worse 
performance, numerically about 87.5% of all cases and this 
result show that has no effect in reducing the parallel time. 

TABLE II. ANALYSIS EXPERMENT CASES IN COMPARISON 

OF SARKAR’S ALGORITHM 

 

Idle 

Time 

Parall

el Time 

Total Energy 

Consumption 

Better cases 27 10 25 

Same cases 31 37 26 

Worse cases 22 33 29 

(Better + 

Same)cases (%) 

72.5 58.75 63.75 

 

To describe in more detail, we show the average ratio 
value in Table.3. The parallel time has 0.95, less than 1. 
This shows that the proposed method has less effect in 
reducing the parallel time. The results in Table.3 show that 
there are a lot of cases having better or equal performance 
for the idle time compared with Sarkar’s algorithm, but 
some worst cases compared with other cases affect serious 
effect on average ratio value. As a result, the average ratio 
value has a poor result, numerically expressed by 5.34% 
degradation in the parallel time. While the average ratio of 
total energy consumption and idle time show the value 1.03 
and 1.01, bigger than ‘1’, the proposed method is a better 
than Sarkar’s algorithm for total energy consumption and 
idle time aspects. Expressed by numerical way, the 
proposed method improves the idle time as reducing idle 
time about 0.51% and the total energy consumption as 
reducing energy consumption about 2.5% compared with 
Sarkar’s algorithm. 

TABLE III. AVERAGE RATIO IN COMPARISON OF SARKAR’S 

ALGORITHM 

Proposed/DSC 

Idle 

Time 

Parallel 

Time 

Total Energy 

Consumption 

Average Ratio 1.01 0.95 1.03 

  

3.2 Comparison result of the proposed method and 

other algorithms 

We show the result of comparison of the proposed 
method and other algorithms, such as Sarkar’s algorithm 
and DSC algorithm. In Table.4, we describe the best 
performance cases for all algorithms in approximately 80 
cases of DAGs randomly generated. In the idle time and 
total energy consumption aspects, the proposed method 
represents that proposed method indicate better performance 
for 56 cases of 80 cases in idle time, numerically about 70% 
of all random DAGs, and for 54 cases of 80 cases in total 
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energy consumption, numerically about 67.5% of all 
random DAGs. We show the comparison results that are 
graphs expressed as normalized value for each performance 
metric for 80 DAG cases. We express the normalized 
average values in the Table.5.  In Table.5 we show that our 
proposed method is definitely better than other algorithms 
such as Sarkar’s algorithm and DSC algorithm for the idle 
time and total energy consumption aspects.  

According to Table.5, our proposed method reduces the 
idle time about 0.51% compared with Sarkar’s algorithm 
and about 36.96% compared with DSC algorithm. And our 
proposed method reduces the total energy consumption 
about 2.5% compared with Sarkar’s algorithm and about 
18.26% compared with DSC algorithm. On the other hand, 
in the aspect of the parallel time, we cannot produce the 
improvement. The parallel time increases about 5.34% 
compared with Sarkar’s algorithm and about 4.02% 
compared with DSC algorithm. Through increasing parallel 
time about 4~5%, we can reduce the idle time about 0.51 ~ 
36.96% and the total energy consumption about 
2.5~18.26%.  

TABLE IV. THE NUMBER OF CASAES FOR BEST 

PERFORMANCE 

Number of Best Cases 

 Idle 

Time 

Parallel 

Time 

Total Energy 

Consumption Proposed 

method 

56 40 54 

Sarkar’s 

algorithm 

50 58 49 

DSC 

algorithm 

20 53 16 

TABLE V. NORMALIZED AVERAGE VALUES 

Normalized Average Values 

 Idle 

Time 

Parallel 

Time 

Total Energy 

Consumption Proposed 

method 

1 1 1 

Sarkar’s 

algorithm 

1.01 0.95 1.026 

DSC 

algorithm 

1.59 0.96 1.22 

3.3 Analysis of the evaluation results 

Through the experiment, we find that the proposed 
method is definitely better than the DSC algorithm in aspect 
of reducing idle time and energy consumption, but, in 
comparison of the proposed method and Sarkar’s algorithm, 
we know otherwise. The proposed method has poor 
performance in aspect of reducing idle time compared with 
Sarkar’s algorithm because there are some severe cases that 
has a negative effect on the average ratio value. We analyze 
some cases that have definitely large ratio value and finally 
figure out the reason to degrade performance. 

First, the reason of degradation is stated that the 
proposed method is only focused on reducing idle time. As 

the number of tasks is static, which means that the task 
execution time is also static, the idle time naturally has a 
direct relationship to parallel time, which tends to increase 
according to parallel time. The second reason of 
performance degradation is continuous with the volume of 
tasks. If the volume of tasks is small, the number of cores 
used in executing tasks should keep less. If the clustering 
steps are needed to use a lot of cluster despite the number of 
tasks executed on cores small, overall parallel time can be 
reduced perhaps, but the idle times of each core seriously 
increase. To reduce the idle time in the cases of existing 
small tasks set, we must refine the proposed method as 
adding the function keeping the number of clusters less on 
proceeding clustering steps in the proposed method. 

4 Conclusion 

In this paper, we deal with the problem that how to 

assign a set of tasks in DAG expressed by time metric to 

achieve low energy effectiveness in an algorithmic level of 

abstraction.   

To reduce overall energy consumption in the DAG, we 

propose the method to diminish the idle state time of the 

core caused by the data dependency. The proposed method 

is better than DSC algorithm in aspect of reducing the idle 

time and total energy consumption. The proposed method 

reduces 36.96% of the idle time and 18.26% of total energy 

consumption compared with DSC algorithm. But compared 

with Sarkar’s algorithm, the proposed method needs more 

improvement in all aspects. The proposed method reduces 

very tiny value, 0.51% of the idle time and 2.5% of total 

energy consumption compared with Sarkar’s algorithm. 
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Abstract— Shortest-path search over graphs plays an
important role in various applications. However, short-
est path algorithms such as the Dijkstra’s algorithm
include complex processings. It is difficult for acceler-
ators with fixed-datapath such as GPUs to accelerate
these algorithms efficiently. This paper presents an
FPGA-based accelerator with a SIMD architecture for
the shortest-paths algorithm. In the proposed architec-
ture, operations in the Dijkstra’s algorithm are done
with a high degree of parallelism, and the memory
usage is reduced by using a memory management
scheme. According to the evaluation, the proposed
architecture is able to deal with graphs with more than
800,000 nodes on the Altera Stratix V.

Keywords: Dijkstra’s algorithm, Single Instruction Multi-
ple Data, FPGA

1. Introduction
Recently, there is a huge demand to find the shortest-

path for large scale graphs in many applications such
as traffic simulation, social networking services and
bioinformatics. The shortest-path problem is mainly
classified into two types: single-source shortest-path
problem (SSSP) and all pair shortest-path problem
(APSP). Dijkstra’s algorithm [1] and Bellman-Ford
algorithm [2] are used to solve the SSSP. Warshall-
Floyd Algorithm [3] is used to solve the APSP.

To accelerate the processing of large-scale graphs,
there have been many software-based studies in terms
of improving a data structure and reducing a com-
putational amount reduction. Moreover, GPU[4] and
FPGA[5] are used to accelerate the Warshall-Floyd
Algorithm. However, it is difficult to accelerate these
algorithms efficiently since most of the shortest-path
algorithms include serial and complex data-flows. In
order to process the shortest-path problem for large

scale graphs, PC clusters with many CPUs are often
used [6] because of their large memory capacity. How-
ever, these computing systems need very large space
and power consumption.

To solve this problem, some FPGA-based accel-
erators have been proposed. FPGAs can implement
application-specific data-paths by reconfiguration af-
ter fabrication. Moreover, the power consumptions of
FPGAs are less than one-tenth of those of CPUs and
GPUs. Tommiska[7], Fernandez[8], and Sridharan [9]
have designed the FPGA-based architecture for SSSP
with the Dijkstra’s algorithm. However, their work did
not consider processing large-scale graphs.

This paper presents an FPGA-based accelerator for
the Dijkstra’s algorithm. In order to accelerate process-
ing and memory access in the Dijkstra’s algorithm,
we design the SIMD (single instruction multiple data)
architecture. We consider how to search the shortest
path with a high degree of parallelism, and how to
reduce the memory usage on a limited memory space.
The proposed architecture is implemented on the FPGA
board for evaluating the resource usage.

2. Dijkstra’s algorithm and implementa-
tion of an FPGA

The Dijkstra’s algorithm is one of the most popular
algorithm to solve SSSP. Because it is easy to im-
plement, this algorithm is used in various applications
such as analysis of the internet, traffic simulation and
so on. Let the node where we are starting with be called
S. Let d(y) be the distance fromS to nodey. The
flow of the Dijkstra’s algorithm is represented by the
following steps.

Step1: Assign to every node a tentative distance: set it
to zero forS, and to infinity for all other nodes. Mark
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all nodes"unvisited".

Step2: Select theunvisitednode which has the smallest
tentative distance and make it the"current node".

Step3: For thecurrent node, consider all ofunvisited
neighbor nodes and update their tentative distance.
If the current nodeis A , and one of theunvisited
neighbor node isB, set the tentative distance ofB
(td(B)) to min(td(B), d(A) + lAB) ,wherelAB is the
length of the edge betweenA andB. When considering
all of unvisitedneighbor nodes of thecurrent node,
mark thecurrent node "visited".

Step4: Until all nodes are markedvisited, go back to
Step2.

The processing time of the Dijkstra’s algorithm de-
pends on searching the minimum distance in Step2
and updating tentative distances in Step3. In these
processings, there are many comparison operations on
multiple node data. The SIMD architecture is suitable
for processing in parallel.

To process the Dijkstra’s algorithm, a memory space
for tentative distances and paths is required. Since these
data are read and updated frequently, on-chip memory
on an FPGA is suitable. However, the capacity of the
on-chip memory is small. The memory management
is required for reducing the memory usage and the
processing time. It is unnecessary to store the distance
on the visited nodes and infinity. These unused data
should be replaced or avoid storing in the memory
module.

3. Architecture
Figure 1 shows the overall architecture of the pro-

posed FPGA-based accelerator. This architecture con-
sists of a SIMD module, a memory controller, a FIFO,
an adder and a current node register. The SIMD module
is used for searching the minimum distance and up-
dating tentative distances. The memory controller and
the FIFO are used for transferring the graph data from
an external memory to the SIMD module. The current
node register stores the current node number and the
distance from the start to the current node.

Figure 2 shows the architecture of the SIMD module.
This module consists of block RAMs, comparators, and
a counter-based address generation unit(AGU). The

block RAMs store the values of node number, the
tentative distance and the previous node. In the initial
state, the block RAMs are empty.

For updating the tentative distances, the neighbor
node number is searched in parallel as shown in Fig.3.
Then the tentative distance at the neighbor node is
compared with the sum of the distance at the current
node register and the length of the edge. The tentative
distance and the previous node are updated as shown in
Fig.4. If the neighbor node number is not in the block
RAMs, the data of the neighbor node number, the sum
of the distance and the length, and the current node
number are stored as new data.

For the searching of the minimum distance, com-
parators are connected as shown in Fig.5. When the
minimum value searching is completed, the value of
the minimum distance and the node number are stored
in the current node register. The memory space for
the current node can be overwritten as shown in Fig.6.
Hence, the memory usage for the tentative distance can
be reduced.

Let us consider implementing the graph data on the
FPGA. In related works of the FPGA implementation
of the Dijkstra’s algorithm [7],[8],[9], the adjacency
matrix is used because the overhead of the memory
access is small. However, very large memory space
is required for unnecessary data that indicates uncon-
nected edges if the graph is sparse. In this work,
adjacency list is used for using a limited memory
space in FPGA efficiency. The lengths of edges and
the neighbor node number are stored in the external
memory since the amount of these data is large. By
using a index pointer in the memory controller, the
length of the edge and the neighbor node number are
transferred from the external memory to the FPGA.

4. Evaluation of the proposed architec-
ture

We use the Terasic DE5-NET FPGA board [10]. This
board includes an Altera StratixV 5SGXEA7N2F45C2,
and a DDR3 SDRAM (4GB). Altera Quartus 13.1 is
used for design. For a proto-type design, we imple-
ment the SIMD module for shortest-path search in 32
nodes. Table 1 shows the resource usage. The resource
usage changes by the numbers of block memories and
comparators. The degree of parallelism can increase
if many block memories and comparators are imple-
mented. However, the logic utilization becomes large.
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Fig. 1: Overall architecture
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Fig. 2: SIMD module

Note that the number of block memory module on the
FPGA is 5120.

Let us consider the memory usage for storing the
tentative distances and node numbers. The FPGA has
about 50M bits of on-chip memory. Let the number of
bits in every node be 64, about 800,000 nodes can be
stored in the FPGA. According to Section 3, the data
of the visited nodes can be replaced by the data of the
unvisited nodes, and a memory space is not required if
the tentative distance is infinity. Hence, the proposed
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Fig. 3: Searching a node number in the SIMD module
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Fig. 4: Updating data in the SIMD module

architecture can process the shortest path search on
very large scale graphs with more than 800,000 nodes.

The processing time depends on the amount of data
in the block memories. If the input graph is sparse,
the amount of data in the block memories is small,
and the processing time is small. Most of the large
scale graphs in the real world, such as road network,
traffic network, social network and so on, are sparse.
Hence, the proposed architecture may be suitable for
processing the large scale graphs in the real world. We
are now designing the overall architecture as shown in
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Fig. 5: Searching the minimum distance in the SIMD
module
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Fig. 6: Overwriting unused data in the block memory

Fig.1, and measuring the total processing time of the
Dijkstra’s algorithm.

5. Conclusions

We have proposed an FPGA-based accelerator with
an SIMD module for a shortest-path search. We dis-
cussed about how to parallelize the Dijkstra’s algorithm
and how to use limited memory space on FPGA boards.
According to the evaluation, the proposed architec-
ture can accelerate shortest-path search on large scale
graphs with more than 800,000 nodes on the Altera
Stratix V.

In future works, we are going to implement large
scale architecture on the FPGA board in order to ac-
celerate applications with shortest-path problems such
as the traffic network analysis. Moreover, it is very
interesting to implement improved shortest-path algo-
rithms, such as the A* algorithm[11] and the high-way
dimension algorithm[12] on an FPGA.

Table 1: Resource usage
Block Comparator LUT Register Memory

memory bit
2 8 282 152 512
4 4 137 68 512
2 16 572 321 1024
4 8 282 382 1024
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Abstract— A parallel algorithm for reducing impulse noise
from color images is proposed. The algorithm is based on a
fuzzy metric and is performed in two steps followed by noise
filtering using the vector median filter. An implementation of
the algorithm on multi-core interface using the Open Multi-
Processing (OpenMP) is presented. A performance analysis
with large images is conducted. Performance is evaluated in
terms of execution time and in terms of PSNR. Results show
that the proposed filter obtains good performance in terms of
PSNR. After applying the multicore optimization strategies,
the observed time shows that the proposed filter is able to
remove impulse noise in real-time.

Keywords: Parallel computing, OpenMP, Colour image filter,
Fuzzy metric, Impulse noise

1. Introduction
Digital images are often corrupted by noise during acqui-

sition and transmission processes. An important problem in
image processing is to remove that noise preserving some
image features such as edges, textures, and fine details.
An specially common type of noise is the impulse noise
[1], [2]. Impulsive noise is commonly caused by the sensor
malfunction and other hardware in the process of image for-
mation, storage or transmission [3]. For example, impulsive
noise is found in situations where quick transients, such as
faulty switching, take place during image processing. This
type of noise affects some individual pixels, by changing
their original values. The most common noise impulsive
model is the Salt and Pepper noise (or fixed value noise),
which considers that the new, wrong, pixel value is an
extreme value within the signal range. This is the noise type
considered in this paper.

Many methods have been introduced to remove impulse
noise (see e.g. [3]–[13]).

In [13] a two-step procedure using the fuzzy ROD (ROD
was introduced in [14], and generalized to colour images
in [15]) statistic is proposed. In the first step are diagnosed
pixels which are clearly noisy or clearly noise-free, and in
the second step are diagnosed pixels which are difficult to
classify.

Experimental results showed that this filtering technique
exhibits competitive results with respect to other state-of-the-
art methods. On the other hand, because of the large data
set size of high-resolution image data, sequential computers
do not have sufficient computing power to perform this
algorithm in real-time. Then, this filter has shown good
results in quality but does not seem appropriate for real-time
processing.

Moreover, this algorithm exhibits a high degree of data
locality and parallelism and thus is suitable for parallel
computing hardware. Due to these causes, in this paper we
introduce a parallel version of fuzzy peer group based on
filters introduced in [13] in order to retain their good quality
results while trying to improve their performance, so as to
make them usable in real-time processing.

We have tested this parallel algorithm developing pro-
grams for multi-cores, obtaining a nearly linear speedup as a
function of the number of processors used. Nowadays, multi-
cores are widely available, and then the introduced approach
is an effective, practical, and economical mode for real-time
image processing.

This paper is organised as follows: Section 2 explains
the proposed parallel noise removal method. Experimental
results are shown in Section 3, and finally, the conclusions
are presented in Section 4.

2. Parallel noise removal method
Let the color image A be defined as a mapping Z2 → Z3.

That is, the color image is defined as a two-dimensional
matrix A of size M × N consisting of pixels xi =
(xi(1), xi(2), xi(3)), indexed by i, which gives the pixel
position on the image domain Ω. Components xi(l), for
i = 1, 2, ...,M × N and l = 1, 2, 3, represent the color
channel values in RGB quantified into the integer domain.

Let W represents a square filtering window consisting of
n×n color pixels centered at pixel x0. And let xi ∈W, i =
1, . . . , n2 − 1 denote the pixels in the neighborhood of x0.
The parallel denoising algorithm introduced in this study
uses the fuzzy peer group of a central pixel xi in a window
W according to [16] and using a fuzzy metric. In order to
describe the parallel algorithm, and how the pixels were
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Fig. 1: Image domain decomposition: Distributed image on
4 cores.

assigned to each computing element, we consider a domain
decomposition of the image domain Ω in P subdomains
{Ωi}Pi=1, where P is the number of processors. Fig. 1 shows
an example of the image domain decomposition used in the
experiments.

Fig. 2 shows the parallel filtering algorithm. The method is
divided into two stages: noise detection and noise removal.
To detect the impulse noise a two steps detection process
is used. In the first step, pixels which are clearly noisy or
clearly noise-free are classified. The filtering scheme used
is based on the FROD statistic described in the following
lines.

Consider for each pixel x = (x(1), x(2), x(3)), in RGB
format, a n×n, window Wx centered at x. Let W 0

x the set of
neighbours pixels of x in Wx, i.e., W 0

x = Wx−{x}. In order
to compute the ROD statistic [14] the distances dx,xi , xi ∈
W 0

x are ordered in an ascending sequence obtaining a set of
non-negative real numbers rj(x) such that: r1(x) ≤ r2(x) ≤
. . . ≤ rn2−1(x) Then, fixed a positive integer m ≤ n2 − 1,
the m rank-ordered difference statistic RODm is defined in
[14] as,

RODm(x) =
m∑
j=1

rj(x). (1)

Then, RODm expresses the global distance between x
and its m closest neighbors. This distance is expected to be
greater for impulse noise pixels than for noise-free pixels.

Require: Image A, a domain decomposition {AΩk
}Pk=1,

th1, th2, th3

Ensure: Filtered image.
1: for k = 1, . . . , P , in parallel do
2: Impulse noise detection: Step 1
3: for xi pixel in AΩk

do
4: Processor k calculates: d = FRODm(xi);
5: if (d > th1) then
6: pixel xi and ∀ xj used in FRODm(xi) are

classified as noise-free;
7: else
8: if (d < th2) then
9: xi is classified as noisy;

10: else
11: xi is classified as non-diagnosed;
12: end if
13: end if
14: end for
15: Impulse noise detection: Step 2
16: for xi pixel in AΩk

classified as non-diagnosed in
Step 1 do

17: Processor k calculates d = FRODm′(xi) exclud-
ing the pixels previously classified as noisy;

18: if (d > th3) then
19: pixel xi and ∀ xj used in FRODm′(xi) are

classified as noise-free;
20: else
21: xi is classified as noisy;
22: end if
23: end for
24: Impulse noise reduction:
25: for xi pixel en AΩk

classified as noisy do
26: xi s replaced with VMFout

27: end for
28: end for

Fig. 2: Parallel filtering algorithm.

To obtain the distances dx,xi
, xi ∈ W 0

x , we use the
fuzzy metric M∞ [13], that has been proven to be especially
sensitive to impulsive noise. This metric, given two RGB
color image vectors xi, xj , is defined by

M∞(xi, xj) =
3

min
l=1

min{xi(l), xj(l)}+ K

max{xi(l), xj(l)}+ K
(2)

We have set K = 1024 which has been proved to be an
appropriate value for RGB colour vectors [17].

Considering the usage of the M∞ fuzzy metric to obtain
the distances dx,xi

, xi ∈ W 0
x , the fuzzy ROD (FROD)

statistic is defined as follows. Taking the fuzzy distances
dx,xi ordered in a descending sequence s1(x) ≥ s2(x) ≥
· · · ≥ sn2−1(x) the FRODm statistic is defined by
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FRODm(x) =
m∏
j=1

sj(x). (3)

An impulse noise pixel will present a low value of
FRODm because is not expected to be similar to its
neighbours, whereas noise-free pixels are expected to have
a FRODm value closer to 1.

In order to classify pixels which are clearly noisy or
clearly noise-free we use the FRODm(x) value, where
m < n2 − 1 is a filter parameter. If FRODm(x) is greater
than a first parameter th1, then x and its m neighbours
used in the computation of FRODm(x) are classified as
noise-free. If FRODm(x) is less than a second parameter
th2 (th2 < th1), x is classified as noisy. If x satisfies
th1 ≥ FRODm(x) ≥ th2, then we conclude that it is not
possible to classify x at this step, and it is analyzed in a
second step. In the second step, a third threshold parameter
th3 is used. In this step FRODm′(x) is computed on W 0

x

excluding the pixels previously classified as noisy, and using
another filter parameter m′ < m. If FRODm′(x) > th3,
then x and its m′ neighbors involved in the computation of
FRODm′(x) are classified as noise-free. Otherwise, x is
classified as noisy.

After the noise detection steps in the noise reduction stage,
each pixel classified as noisy is replaced with VMFout [18]
operating over its noise-free neighbours in a n×n window.

3. Experimental Results
We carried out specific experiments and developments

using two different machines and software settings which
are included in the following list:

• Multi-core 1: Intel Xeon CPU E5320 (8 cores), 1.86
GHz, 8GB RAM, Linux Ubuntu 8.04.1. GNU Fortran
compiler.

• Multi-core 2: Intel XEON X5660 (12 cores), 2.8 GHz,
48 GB RAM, Linux CENTOS 5.6. Intel Fortran Com-
piler.

Different test images shown in Fig. 3 were used in the exper-
iments: Lenna [4], Caps [19], Motorbikes [19], Statue [19],
Bus [20], and Toy [20]. These images have been corrupted
with impulse noise. The random-value impulse noise [1] was
considered. We denote by p the noise appearance probability.
In our tests we have used p ∈ [0, 0.1].

Fig. 1 shows an example of the image domain decom-
position used in the experiments using 4 cores. In order
to adjust of the filter parameters th1, th2, and th3 in [13]
the filter performance was analyzed in terms of Peak Signal
to Noise Ratio (PSNR), as a function of th1, th2, and th3

contaminating images with different probabilities of impulse
noise p. Accordingly to that study, our results were obtained

setting th1, th2, and th3 proportionally to p as follows.

th1 = 0.90 +
p

0.4
0.07, (4)

th2 = 0.87 +
p

0.4
0.06, (5)

th3 = 0.97 +
p

0.4
0.01, (6)

According to previous research [13], in the experiments
we have considered a 3× 3 filter window (n = 3) and m =
3, m′ = 1.

We designed both the serial code and parallel code and
then compared the execution time.

Tables 1–4 show the results obtained on Multi-core 2
dividing the image among different number of cores and
Fig. 4, presents the speedup obtained for different sizes of
Caps and Statue images. To quantify parallel performance,
parallel speedup SP is computed as:

SP =
Tseq

TP
(7)

where Tseq is the execution time of the sequential algorithm
and TP is the execution time of the parallel algorithm using
P processors. The results show that a significant speedup is
achieved. On the other hand, Figs. 4 shows that the optimal
number of processors to filter the image depend on the image
size.

The filter performance has been evaluated using the Peak
Signal to Noise Ratio (PSNR), that measures the noise sup-
pression capability [1]. Fig. 5 shows that PSNR performance
improves as image size increases. From the visual point of
view, by inspecting the denoised images in Fig. 6, it can
be concluded that the filter obtains robust results. FRODm

consistently diagnose and reduce impulses while preserving
the quality of image edges and details.

4. Conclusion
A parallel algorithm based on a fuzzy metric has been

proposed to detect and remove impulse noise in digital im-
ages. We have implemented it on multi-cores using OpenMP.
The parallel algorithm introduced demonstrated a significant
speedup in processing large images compared to sequential
algorithm. The algorithm obtained a nearly linear speedup
as a function of the number of processors used. Multi-
cores are widely available, so the introduced approach is an
effective, practical, and economical mode of real-time image
processing.
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Fig. 6: Filter outputs for visual comparison: (a) Statue image, (b) image corrupted with p = 0.05 impulse noise, (c) filter
ouput, (d) Lenna image, (e) image corrupted with p = 0.05, and (f) filter ouput.
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Abstract – Parallel Insertion Merge is an algorithm that 
maps the subsets, ordering them with merge and insertion 
routines and using parallel processing. Most sort 
algorithms in use nowadays treat the mass of data without 
previously analyzing its distribution, no matter if dealing 
with partially ordered datasets. According to the 
methodology applied in this algorithm the whole data is in 
the worst case ordered each two elements. According to the 
same method we prove that at random distribution, are 
statistically distributed among subsets of 2 + 3 elements. 
The major parallel routine order two subsets using X 
threads in the lowest subset, dividing this subset in X parts, 
and searching the position of the edge elements in highest 
subset. The next step starts without consider the edge 
elements used and if they point to the same target, not using 
the elements between them, because all those elements have 
their positions assigned.  

1. Introduction 
  Merge is the fastest way to group ordered lists of data, 
and binary search is the fastest way to seek one element 
position in a list. We can increase the speed using 
multithreads and if we have large ordered lists.  
Merge, insertion, multithreads and ordered lists are the 
focus of this algorithm. This is not a insertion sort algorithm 
variant, since insertion sort use one element each time and 
this algorithm often insert blocks of elements, taking 
advantage of the data distribution. This algorithm tends to 
use the multiprocessing capability of current computers and 
is able to adapt itself to increasingly coprocessors quantity. 
The algorithm first scans a sequence of N elements, 
comparing each element with the next, verifying if they are 
ordered according to a previously established criterion and 
gathering them on positive or negative value subsets if they 
obey or not that criterion respectively. 
There is order in chaos it depends the way we look, in the 
first task of the algorithm we will search for order. 

 

2. Mapping Data 
 The algorithm first scans a sequence of N elements,   
comparing each element with the next, verifying if they are 
ordered according to a previously established criterion and 
gathering them on positive or negative value groups if they 
obey or not that criterion respectively. At the end of this 
process, if the distribution is ordered, we have only one 
index which get a positive N value. On the other hand, if the 

distribution is inversely ordered, this index will get negative 
value (Fig. 1) Assuming other hypothesis, index will range 
from 2 to (N / 2) +1 in proportion to total data. On average 
we will have 2N/5 index. To improve speed we divide the 
mass of data into fixed sized pieces and  implement this in 
several threads adding the last index to the next index in the 
next piece according to the value. The last element of a piece 
is the first element of the next piece. 

Figure 1.   

3. Worst Case 
 

 For any distribution the worst case for implementation 
of the algorithm to initial 4 elements is described as shown in 
Table I:  

TABLE I.   

INITIAL  4 ELEMENTS {A,B,C, D…}  
A < B B < C C < D Index(0) Index(1) 

TRUE FALSE TRUE 2 2 

TRUE FALSE FALSE 2 -2 

FALSE TRUE FALSE -2 -2 

FALSE TRUE TRUE -2 2 

  
The worst case is the way mergesort begins sort. 

 

4. Average Case 
 As we see, the worst case splits the distribution into 
two ordered elements groups. We can then infer that on a 
random distribution the probability to occur 3 ordered 
elements is 50%. Therefore a minimal elements group to 
define a random distribution would be 2+3 elements type. 
This feature is advantageous to mass ordering against Merge 
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Sort algorithm, which in the beginning divide the distribution 
at each two elements, sort then and merge the resulting 
groups until the end.  We realize 100,000 Monte Carlo 
Simulations using 100,000 randomized integers and always 
obtaining 41.318 %, near 40% expected for phenomenon 2 + 
3. 

5. Optimal Order 
 Grouping data according to the smallest group size 
optimizes non parallel merge routines performance. 
Nevertheless with multiprocessing the major factor to time 
optimization is the number of threads on simultaneously 
work. This algorithm always uses the lowest subset to 
choose elements that will seek their position in the greatest 
subset and gathering their own final position. When two or 
more elements point to the same insertion place the 
elements between then have their final positions assigned 
too.  

6. Parallel Insertion Merge 
 The major algorithm routine order two subsets using X 
threads in the lowest subset (B), dividing this subset in X 
parts, and searching the position of the edge elements in the 
greatest subset (A) using Binary Search. At each step the 
edge elements of subset B have their position assigned and 
the block of elements between them when two or more 
elements have the same target (Fig. 2). When the first 
element of subset B is greater than some elements of subset 
A, those elements of A have their position assigned (Fig. 3). 
In the other hand when the last element of B is less than 
some elements of A those elements are positioned too(Fig. 
4). As we can see in some situations we don’t need to 
compare the elements between threads pointers with same 
target or when outers pointers having targets inside the 
greater subset. 

 
Figure 2 

Figure 3 

Figure 4 
 

 

7. Data Conflicts 
We have no problems with data conflicts because threads 
have access to the same element in read routines only, and 
when threads are writing they set the element in its final 
position. 

8. The Algorithm 
The algorithm is composed basically by 3 major Tasks: 

 
The function of Task0  is to identify in the sequence, ordered 
and inversely ordered groups. To improve this task the mass 
of data is divided into groups of N/m +1 elements and 
parallel threads identify indexes. If they are ordered or 
inversely ordered the next task are not started and the process 
is redirected to a conclusion.   
If the sequence is not ordered Task1 starts.  The function of 
Task1 is to get each group of subsets and call one of 4 
recursive routines to merge according ordered subsets or 

 
 Threads in black, assigned positions in grey. 
 

13 14 17 18 19 20 21 22 23 24

15 16 25 26 27
 

2 3 4 5 9

6 7 8 10 11

Binary Search   3 threads (BLACK)     
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inversely ordered subsets into one list. This routine takes the 
initial mapping to optimize the sorting, because if the sign of 
the index of adjacent groups are opposing, a position already 
be set (Table II).   

Table II 
 
If we have more than 1 indices Task 2 starts. The function of 
Task 2 is to apply Insertion Merge in each remaining group. 
 
The algorithm terminates  when Task2 have only one index 
and its value is equal to N. 
  
The definition of the maximum number of simultaneously 
threads depending on the characteristics of the hardware. In 
this paper we choose 3 to explain, but hundreds of threads 
may be used to do the job. 

9. Conclusion 
The purpose of this algorithm is: 

• identify pre-existing organizations in the mass of 
data; 

• seek the smallest number of iterations for the mass 
of data; 

• distribute the problem in order to fully utilize the 
processing hardware capabilities; 

• consume the smallest possible space allocation, 
  to achieve the solution of the problem in less time. 
 
I hope this text will contribute to the improvement of 

the processes of sorting (using insertion and merging) 
and help fellow developers around the world. 
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4 ELEMENTS {…,A,B,C, D…}  

A < B B < C C < D 
Index

(6) 
Index(7

) 
Position 

TRUE FALSE TRUE 2 2  

TRUE FALSE FALSE 2 -2 
B 

greater 

FALSE TRUE FALSE -2 -2  

FALSE TRUE TRUE -2 2 B minor 
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Abstract - Dynamic data sharing among cores during 
computation in a multi-core architectural environment has 
been recognized as one of the factors that add to the cost of 
the total execution time. One way of reducing the impact of 
the latency generated by intense data sharing is through 
communication hiding.   
The idea behind communication hiding is to create 
opportunities in the computation algorithms that can make 
use of system and/or hardware resources that allow the 
processors to engage in useful work while the sharing of 
information is taking place. One of the possible ways to 
achieve overlapping of communication and computation is by 
making use of non-blocking resources. In this paper, we 
present an algorithmically restructured solution for the All 
Pairs Shortest Path Problem that makes use of non-blocking 
features supported by a heterogeneous multi-core 
architecture. We compare our restructured approach against 
the traditional blocking approach in order to evaluate its 
potential. 

Keywords: non-blocking, multi-core, all pairs shortest path, 
communication-computation overlapping. 

 

1 Introduction 
  In today's world, more scientists are not only making 
use of but also considering high performance computing one 
of the leading tools that can help them to find solutions to 
computationally intensive problems that will shape not only 
our present but also our future [3]. 

Most of the possible solutions to realistic scientific and 
engineering problems that can be achieved through high 
performance computing are not embarrassingly parallel 
solutions which require little or no communication among 
processors. Many of the possible parallel solutions to our 
current scientific problems require a good percentage of 
interaction among participant processors which translates into 
communication cost and hence an increase in the total 
execution time [3,4]. 

According to a recent DOE report, communication hiding is 
identified as one of the fundamental algorithmic research 
areas over the next decade to harness computing power of 
extreme scale machines. Non-blocking collectives could be 

one of the ways to achieve it [5].  The use of Non-blocking 
collectives is a very resourceful approach that leads to non-
blocking algorithms that require either partial or full 
restructuring in order to achieve better performance than their 
corresponding existing blocking approaches [5]. 

Following the principle explained above and after studying 
the traditional parallel approach of the All Pairs Shortest Path 
Problem, we present a new and restructured parallel 
implementation of the All Pairs Shortest Path Problem that 
makes extensive use of the non-blocking features of a multi-
core heterogeneous system in order to minimize the effects of 
the intense data sharing among processors and target better 
performance than the traditional approach..  

2 Floyd’s Algorithm 
       First, we introduce some terminology used throughout 
the remainder of the paper. Floyd’s algorithm is a well known 
algorithm used to find the shortest path between all pairs of 
nodes in a graph. Its applications include maps, networks and 
subroutine for other algorithms. A graph G can be represented 
as G = (V, E); where the cost of going from vertex i to vertex 
j, E[i,j], is always positive. V={1,….,n} are the vertices of G. 
Floyd’s algorithm computes the following matrices. 
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Where   )(
,
k
jid  means the shortest path from i to j that does not 

go through any vertex bigger than k. Floyd’s main objective is 

to compute )(
,
n
jiD  [2, 7, 12]. 

 

2.1 Sequential Approach 

   According to [7], the sequential Floyd’s algorithm can 
be expressed as follows: 
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Figure 1: Sequential Floyd’s Algorithm 

 

2.2 Traditional Row-Wise Parallel Version 

 A number of different approaches to implement a 
parallel Floyd’s algorithm can be found in the literature [1, 2, 
7]. Floyd’s Algorithm using a row-wise distribution will be 
presented on this section and is based on the work of [7]. It is 
important to mention that this approach does not attempt to 
use overlapping of communication and computation, and it 
corresponds to what can be viewed as a standard traditional 
parallel implementation of Floyd’s. Therefore, this approach 
will be referred to as the Traditional All Pairs Shortest Path or 
TAPSP approach for the remainder of this paper.  

The TAPSP implementation is based on a conceptual 
topology. This conceptual topology is a one-dimensional row-
wise decomposition. The Pi,1 nomenclature is introduced to 
facilitate the reference of a particular process in the 
conceptual topology when required. Variable i references the 
row number and Pi,1   references the process in the ith row and 
D(0) is the adjacency matrix. 

 
Figure 2: TAPSP Algorithm for Floyd’s Parallel Formulation 
Using a Row-Wise Approach. 

 

Step 7 of figure 2 computes the value of )(
,
k
jid  using equation 

1, see figure 1. The distribution of matrix D(k) among p 
processes in some cases will create situations where some 
members of this computation will not be located in the local 
process; instead, these relevant values will be located in other 

processes. In order to complete the computation of )(
,
k
jid for 

the current value of k, local process Pi,1 must receive those 
relevant segments of the kth row of D(k-1) matrix. 

In this version, it is clear that all iterations are highly 
synchronized. For example, the next iteration (k+1) will not 
begin for all participant processors until the kth iteration has 
been completed at all processors, and the segment of interest 
of the kth iteration of the kth row have been received by all 
processors. 

2.3 Description of our algorithm 

 This algorithm makes extensive use of the non-blocking 
hardware supported features of a multi-core processor system 
to minimize the cost of data communication among 
participant processors.  

 
Figure 3: PAPSP Algorithm for Floyd’s Parallel Formulation 
Using a Row-Wise Approach. 

 
The algorithm is based on a one-dimensional partition called 
row-wise, which is basically a one-column multiple row 
distribution of the processors.   

This algorithm is derived based on two critical observations. 
First, if a process owns D(k)  samples that are required by any 

Each Process initializes the submatrix of D(0) with the 
submatrix of A. 
 
Step 0 (Manager): Processor Pi,1 (i=1,…,p) broadcast the 
segment of the 1st row of D(0) to processes Pi,1 for all i≠1; 
and processes Pi,1 for all i≠1 receive the segment of the 1st 
row of D(0). 
 
 
For k starting from 1 through (n) 
 

Step 1 (Manager). Each Processor Pi,1 owning a 
segment of (k+1)th row of D(k) (Manager) 
computes entries on the (k+1)th row of D(k) as 
indicated by equation 1 of figure 1, and signal the 
other processors (workers) so that they can 
retrieve those just computed entries from the 
manager. 

 
Step 2 (Workers). Each Processor Pi,1 owning no 
segment of (k+1)th row of D(k) compute 
uncomputed entries of D(k) using equation 1; 
while receiving entries on the (k+1)th row of D(k) 
copied from the processor owning them.  

 
Step 3 (Manager). The processor owning a 
segment of (k+1)th row compute uncomputed 
entries using equation 1 of figure 1. 

end for 

1.  procedure FLOYD_ROW_WISE(D(0))  
2.  begin  
3.    for k := 1 to n do  
4.    begin  
5.      each process in the Pi,1 decomposition ask  
         themselves if  they own a segment of the kth row of 
         D(k-1) .  The one that owns it (Manager); broadcasts  
         it to the Pi,1 processes (workers);  
6.      each process waits to receive the needed segments  
         (workers);  
7.      each process Pi,1 computes its part of the D(k) matrix  
        (All);  
8.    end  
9.  end FLOYD_ROW_WISE 

1.   procedure FLOYD_ALL_PAIRS_SP(E)  
2.   begin  
3.      D(0) = E;  
4.      for k := 1 to n do  
5.          for i := 1 to n do  
6.              for j := 1 to n do  

7.                   )1(
,

)1(
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8.   end FLOYD_ALL_PAIRS_SP 
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other processes during the following  iteration of k,  then the 
processor owning the samples does not have to compute those 
D(k)  samples right after computing any other samples of D(k) 
[13]. This is possible because no order (data dependency) is 
imposed by Floyd’s algorithm on the computation of different 
samples of D(k)  for each possible value of k [13].  

Second, a processor owning D(k) samples that are required by 
any other processes during the following  iteration of k does 
not have to send or allow to copy those D(k)  samples 
immediately before other processes need them for computing 
D(k+1)  samples [13]. 

These two critical observations are the base of the strategy to 
be followed during the kth iteration. This strategy is divided 
into two sub-strategies; computation-reordering and early 
copy. 

3 Architectural Restrictions and Its 
Influence in Our Design 

       The multi-core heterogeneous system that we chose for 
this study imposed some important architectural restrictions 
that led to the chosen parallel implementation of both, 
traditional and proposed parallel approaches. 
 
The first restriction influenced the logical distribution of our 
processors. The traditional two-dimensional grid style 
distribution of processors is only possible when the number of 
participant processors has an exact square root value [7].  Our 
heterogeneous multi-core architecture offered a maximum 
number of six usable cores [9].  Six cores is acceptable to 
exploit hardware level parallelism but we also wanted to make 
use of a second level of parallelism, instruction level 
parallelism, which was offered by the Single Instruction 
Multiple Data (SIMD) capabilities of each one of the cores of 
our multi-core system. SIMD are easily coded and used if the 
data follows a row-wise distribution.  
 
The second restriction was the maximum size of the only 
memory that each one of the cores had direct access to, which 
is only 256 KB [6, 9, 15].  This posed a major constraint 
regarding the sizes of the problem to be analyzed. In order to 
circumvent this limitation, we fixed the number of rows of our 
matrix to 60 while the numbers of columns were 1024, 2048 
and 4096 unsigned shorts. For the reasons expressed above, a 
row-wise distribution was the clear choice for the logical 
distribution of the processors. 
 
 

4 Experimental Evaluation 
 In this section we demonstrate the performance of our 
approach (PAPSP) regarding the traditional approach 
(TAPSP). For performance evaluation of both approaches we 
use a Cell Broadband Engine processor and an IBM Full 
System Simulator [14]. This heterogeneous multi-core 
architecture consists of one 64 bit Power architecture element 

in charge of running the operating system (PPE) and eight 
Synergistic Processing Elements (SPE’s). The SPE is 
composed mainly by two elements, the Synergistic 
Processing Unit (SPU) and the Memory Flow Controller 
(MFC). The SPU’s are capable of performing high speed 
Single Instruction Multiple Data (SIMD) operations and have 
direct access to 256 KB of local memory known as the Local 
Store (LS) [6]. The LS is where each one of the SPU’s stores 
its data and instructions [9].  We chose this architecture as 
each one of the six usable cores of this processor have 
hardware support for Direct Memory Access (DMA), which 
is managed by a Memory Flow Controller (MFC). The MFC 
allows the Synergetic Processing Unit (SPU) to focus 
exclusively on computation while non-blocking 
communication with its neighbors takes place [9, 10, 15]. 

For both of our parallel approaches, the PPE does not 
participate in any computation; it will only host two matrices, 
the one used for initialization and its solution. This strategic 
decision was made as the DMA between SPE’s and PPE is 
too costly when compared to SPE-SPE DMA [6, 9].  We 
tested three problem sizes which we will referred to by using 
the following nomenclature, matrix(n, r, c) where 
n={2,3,4,5,6 spe’s}, r={60 rows} and c={1024, 2048, 4096 
unsigned shorts}. We chose r to be divisible by six as the 
hardware imposes a restriction on the maximum number of 
usable SPE’s. C was chosen to be exactly divisible by eight in 
order to make use of SIMD instructions. Figure 4 provides a 
visual perspective of the testing conditions. 

 
Figure 4: Testing Scenarios. 

 

4.1 Sequential Approach 

 Implemented as shown on Figure 1. This approach was 
executed and timed on the PPE. We made use of the __mftb() 
command which counts the number of ticks required by a 
routine, we also made use of gettimeofday( ) to validate its 
accuracy and double check for overflow [9]. 

We considered two reasons why the sequential approach was 
not timed on the SPE. The first reason is that the largest 
problem size of 60 rows and 4096 columns does not fit in the 
LS of a SPE. The second reason is that although they are 
different hardware, both PPE and SPE’s work at the same 
frequency of 3.2 GHz [9]. This approach does not make use 
of any SIMD instruction and it was used for our speedup and 
efficiency analysis. 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

68 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



4.2 Experimental Results  

Table 1: Testing Calculations for serial algorithm, TAPSP and PAPSP on one CBE for multiple problem sizes. 

Problem 
Size        

60 Rows 
by x 

Columns 

Serial 
Algorithm   

at PPE      
Time 

(usecs) 

Parallel Algorithms –Execution Times (usecs) 

Number of Participant  SPE's 

2 3 4 5 6 

TAPSP PAPSP TAPSP PAPSP TAPSP PAPSP TAPSP PAPSP TAPSP PAPSP 

1024 26897.32 1692.98 1647.33 1234.85 1200.36 1031.22 996.36 927.43 881.96 878.45 831.51 

2048 54083.96 3339.49 3154.66 2291.80 2199.32 1849.24 1719.85 1613.80 1474.26 1478.41 1322.59 

4096 114570.4 6326.42 - 4382.70 4211.02 3464.63 3269.61 2932.19 2707.86 2618.67 2367.30 
 

 Initially, we implemented our routines on one multi-
core heterogeneous system and then we timed each one of 
the cases on the IBM Full-System Simulator. Table 1 
includes all tested cases for the Traditional case of the All 
Pairs Shortest Path (TAPSP) and the Proposed All Pairs 
Shortest Path approach (PAPSP). All the execution times 
presented on table 1 correspond to the average of the total 
time of all participant processors. The total execution time 
of each core was measured using the decrementer which 
works in a similar fashion as the __mftb( ) used to time the 
sequential algorithm on the PPE [9].   

Table 1 presents all the quantitative results for both, the 
traditional and our proposed parallel approaches. By 
comparing the execution time of the PAPSP and TASPS, 
we can notice that for each one of the problem sizes and 
any number of the participant processors, our PAPSP 
approach performs faster than the TAPSP approach, this is 
supported by table 2. Execution time it is the easily 
recorded metric of performance [12]. 

Table 2 provides the percentage of improvement achieved 
by our PAPSP regarding the TAPSP. This percentage of 

improvement was computed as  
APSPTime

PAPSPTime 100
100


 . For none 

of the testing cases the percentage of improvement was 
negative, this means that our approach performed better 
than the traditional approach. From table 2, it is also 
possible to infer that the optimal size for our testing was 
60x2048, which is the case with the higher percentage of 
improvement.  

Table 2: Percentage of Improvement for PAPSP regarding TAPSP 
for multiple problem sizes and participant SPE’s. 

Problem 
Size       

60 Rows 
by x 

columns 

 PAPSP vs TAPSP [% of Improvement] 

Number of Participant  SPE's 

2 3 4 5 6 

% % % % % 

1024 2.70 2.79 3.38 4.90 5.34 

2048 5.53 4.04 7.00 8.65 10.54 

4096 - 3.92 5.63 7.65 9.60 

Table 3 present the achieved speedup and efficiency for 
our proposed approach. Efficiency is not in percentage 
notation.  It can be concluded from Table 3 that along with 
the increase of participant cores, the speedup rate becomes 
higher and higher. It is also possible to observe that as the 
problem grows in size and more participant cores intervene 
in the solutions of the chosen matrix, the efficiency 
becomes also higher. Both claims are not only supported 
by the results shown on table 3 but also figures 5 and 
Figure 6. 

 
Figure 5: Speedup for the PAPSP algorithm for multiple problem 
sizes and SPE’s. 
 

 
Figure 6: Efficiency for the PAPSP algorithm for multiple 
problem sizes and SPE’s. 
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Table 3: Speedup and Efficiency for the PAPSP algorithm for multiple problem sizes and participant SPE’s. 

Problem Size        
60 Rows by x 

columns 

PAPSP Parallel Algorithm  

Number of Participant  SPE's 

2 3 4 5 6 

Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency 

1024 16.33 8.16 22.41 7.47 27.00 6.75 30.50 6.10 32.35 5.39 

2048 17.14 8.57 24.59 8.20 31.45 7.86 36.69 7.34 40.89 6.82 

4096 - - 27.21 9.07 35.04 8.76 42.31 8.46 48.40 8.07 

 

5 Conclusions 
 Non-blocking collectives help to reduce the cost of 
communication-intensive applications, and its use should 
be considered if the underlying hardware supports it. The 
use of non-blocking algorithms, as well as, non-blocking 
collectives has an implicit design cost that requires, in 
several cases, a restructuring or complete redesign of 
traditional parallel solutions. Experimental results have 
demonstrated that our proposed approach not only satisfied 
the principles of non-blocking algorithms but also 
decreased the total execution time by reducing the cost of 
collective data sharing while achieving a better efficiency 
when compared to the traditional row-wise approach. 
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Abstract—In this paper is consider a problem of generation by
cellular automata of high quality pseudorandom sequences useful
in cryptography. For this purpose one dimensional nonuniform
cellular automata (1D CA) is used. The quality of pseudoran-
dom bit sequences generated by cellular automata depends on
collective behavior of rules assigned to cellular automata cells.
In the paper is presented new method of constructing CA rules,
based on balance of the CA and CA rule. The paper gives an
answer how to find rules, which do not generate stable sequences,
passes cryptographical tests (provide high quality pseudorandom
sequences) and show maximal as possible set of such CA rules.
So, presented set of rules is the best for use in 1D CA-based
Pseudorandom Number Generator (PRNG). Sequences generated
by these PRNB are suitable for symmetric key cryptography and
can be used in different cryptographic algorithms.

Index Terms—Cellular Automata, Pseudorandom Number
Generator, Balance, Boolean Function, Cryptography.

I. INTRODUCTION

Increasing need for safety and privacy of digital infor-
mation in many areas can be observed today. Public and
private organizations have become increasingly dependent on
cryptographic techniques by growth of digital information
storage and transmission through global networks. However,
digital resources are still not safe from attacks. Use of digital
tools in communication, data exchange, fast development of
electronic commerce transactions and increasing use of digital
signatures quickly causes the creation of new generations of
secure mechanisms. Cryptography techniques are an essential
component of any secure communication. Nowadays two main
cryptography systems are used: secret and public-key systems.
An extensive overview of currently known or emerging cryp-
tography techniques used in both type of systems can be found,
e.g. in [10]. One of such promising for cryptography technique
is application of cellular automata (CA).

CA were proposed for public-key cryptosystems by [2] and
[6]. Such systems requires two types of key: one key for
encryption and the other one for decryption. One of them
is held in private, the other rendered public. However, the
main concern of this paper are cryptosystems with a secret
key. In such systems the encryption and the decryption key
are the same. The encryption process is in particular based
on generation of pseudorandom bit sequences, and CA can
be effectively used for this purpose. CA for systems with a
secrete key were first studied by Wolfram [17], who proposed
for 1D CA-based PRNG with rule 30, and later by Habutsu et
al. [4], and Nandi et al. [8], who proposed rules 90 and 150,

and also Gutowitz [3]. After that, this subject was studied by
Tomassini et al. [15], [16], where the set of rules was enlarged
to rules: 90, 105, 150, 165. Next in paper [11] authors have
considered one or two dimensional (2D) CA for encryption.
This paper is an extension of these recent studies and concerns
an application of one dimensional (1D) CA for the secret key
cryptography. Authors presented new larger set of rules {86,
90, 101, 105, 150, 153, 165, 1436194405}, discovered with
use of evolutionary technique called cellular programming
(CP) and concerning CA rules suitable for cryptography,
presented in earlier papers. These set of rules consists of
rules with neighbourhood radius equal to 1 and 2 (last rule
in set), and gives similar results in the sense of passing tests
like: entropy test and FIPS 140-2 (standard tests for basic
analysis the quality of PRNG’s), but offered larger space of
keys (different bit sequences) than previous proposals. Key
space for proposals in [11] is 8N ∗2N , where in [15] and [16]
key space was 4N ∗ 2N , in [8] 2N ∗ 2N and in [17] N ∗ 2N .

The paper is organized as follows. The next section presents
the idea of an encryption process based on Vernam cipher.
The main concepts of CA are outlined in section 3. Section
4 describes the statement of the problem. In section 5 are
described construction of CA-based PRNG and new method of
suitable CA rules selection. Last section concludes the paper.

II. SYMMETRIC KEY CRYPTOGRAPHY AND VERNAM
CIPHER

The main idea of cryptography using a symmetric key is
that both sides of cryptographic process apply the same key
to encrypt and decrypt the message. The key is secret and most
secure because only two persons can use it and other people
can know only encrypted message, which is too difficult to
encrypt without knowing the key. In our study we continue
Vernam’s approach to cryptography with the secret key.

Let P be a plain-text message consisting of m bits
(p1p2...pm) and (k1k2...km) is a bit stream of a key k. Let ci
be the i− th bit of a cipher-text obtained by applying XOR
(exclusive-or) enciphering operation:

ci = piXORki. (1)

The original bit pi of a message can be recovered by applying
the same operation XOR on ci (bit of a cipher-text) using the
same bit stream key k:

pi = ciXORki. (2)
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The enciphering algorithm called Vernam Cipher is known
(see, [7], [10]) as perfectly safe if the key stream is truly
unpredictable and used only one time. In this paper we give
the answer to the questions: how to provide a pure randomness
of a key bit stream and unpredictability of random bits, and
how to obtain such key with a length large enough to encrypt
practical amounts of data. We can apply CA to generate high
quality PNSs and use them as the safe secret key. We will
show that by using 1D CA, the quality of PNSs for secret key
cryptography and the safety of the key can be increased.

III. CELLULAR AUTOMATA

1D CA is in the simplest case a collection of two-state
elementary cells arranged in a lattice of the length N , and
locally interacting in a discrete time t. For each cell i called
a central cell, a neighborhood of a radius r is defined. The
neighborhood consists of ni = 2r+1 cells, including the cell
i. A cyclic boundary condition is applied to a finite size of
CA, which results is in a circle grid. It is assumed that a state
qt+1
i of a cell i at the time t+1 depends only on states of its

neighborhood at the time t, i.e.:

qt+1
i = f(qti−r, ..., q

t
i−1, q

t
i , q

t
i+1, ..., q

t
i+r), (3)

the transition function f is called a rule, defining the rule of
updating the cell i. We will call all rules for CA with r = 1
the short rules and rules for CA with r = 2 the long rules.
The length L of a rule and the number of neighborhood states
for a binary CA is L = 2n, where n = ni is a number of cells
of a given neighborhood, and a number of such rules can be
expressed as 2L. For CA with e.g. r = 2 the length of the rule
is equal to L = 32, and a number of such rules is 232 and
grows very fast with L.

CA can change states in time with use of one the same
rule assigned to all CA cells and it is called an uniform
CA. If two or more different rules are assigned to update
cells, CA is called nonuniform CA. Wolfram system [17] was
uniform, because he used 1D CA with r=1, and rule 30. Other
mentioned systems were nonuniform. System proposed in [15]
use 1D CA with r = 1 and four rules 90, 105, 150 and
165, which provide high quality PNSs and a huge space of
possible secret keys which is difficult for cryptanalysis. They
used CP to search these rules. Moreover, system proposed
in [11] use also 1D, nonuniform CA, but in the system are
used two sizes of rule neighborhoods, namely a neighborhood
of radius r = 1 (86, 90, 101, 105, 150, 153, 165) and
r = 2 (1436194405). Last earlier mentioned system [13],
[14], use only rules with neighbourhood radius r = 2 with
nonuniform CA, i.e.: 1436194405, 1436965290, 1721325161,
1704302169, 1705400746.

IV. STATEMENT OF THE PROBLEM

Closer analysis of selected subset of rules conducted by
Bouvry et al. [1] have shown that some specific assignments of
these rules to CA cells leads to bad statistical quality of PNSs
generated by CA (CA cells generate stable or particular stable
sequences of 0s or 1s). Figure 1 shows space-time diagram

Fig. 1. Examples of bad assignments of rules to CA cells: problem described
in [1] – stable vertical lines of 0s and 1s in space-time diagram

Fig. 2. Examples of bad assignments of rules to CA cells: specific assignment
of 7 rules generate stable sequences of 0s and 1s

with stable sequences produced by set of CA rules from [11].
Figure 2 shows an example of some bad assignation of rules
to CA. Circled 4 vertical lines present stable sequences of
1s, 0s and 1s, respectively. Figure 2 presents CA consisting
of 7 cells to which 7 rules were assigned. One can see that
starting from time step T = 2 all CA cells generate constant
sequences 0s and 1s. So the purpose of work presented in the
papers [13], [14] was to eliminate bad rules from the set of
rules discovered earlier, and to find subsets of rules which will
be suitable for cryptographic purposes, for any assignments
of them into CA cells. Search of these sets of rules was
performed by genetic algorithm (GA), with special constructed
GA operators. Discovered new sets of rules presented in
the papers [13], [14] are consisted of 5 rules {1436194405,
1436965290, 1721325161, 1704302169, 1705400746} only
with neighbourhood radius equal to 2. These set of rules also

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

72 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



passed mentioned earlier cryptographical tests. Despite the
fact, that key space of these set of rules is 5N ∗2N , is smaller
than in [11], new set did not generate stable bit sequences.
Moreover, each of the subset of these rules is as good for
PRNG as whole new set of 5 rules, what leads to conclusion
that, when each of subsets would be applied for PRNG, that
generated key space will be higher.

Despite the works and analyses on the application of 1D
CA for PRNG presented before and also in [9], there is no
definitely answer which rules are the best for use in 1D CA-
based PRNG. In means that applied rules or sets of rules (a) do
not generate stable sequences, (b) pass cryptographical tests,
and (c) set of rules is maximal. So, this paper gives an answer
how to select rules for 1D CA-based PRNG, satisfying (a), (b)
and (c).

V. CONSTRUCTION 1D CA-BASED PRNG
A. Conception of 1D CA-based PRNG

Let’s PRNG based on 1D CA will be a classical 1D CA with
lattice of the length N , locally interacting in a discrete time
t. A rule (rules) of the CA controlling cells are like described
in equation (3). So, the seed of the generator consists of few
elements: initial configuration of CA (N(0)) - at the time t = 0
(0 ≤ t ≤ T ), set of CA rules, number of the cell (Ni) which
generates bit sequence and number of time steps (T ) - length
of bit sequence. Nevertheless, CA-based PRNG should create
cryptographically strong bit sequences independently to initial
configuration N(0), selected cell Ni and time steps T , than set
of rules for managing the CA should be precisely selected. It
is wide known that not every rules and set of rules are suitable
for these purpose. Especially, some combination of rules do
not cooperate with each other (see, [13], [14]), and generate
stable bit sequences. To eliminate such kind of behaviour and
also satisfy one of most important cryptographic criteria, the
balance of the CA should be analyzed.

B. Balance of 1D CA-based PRNG
Balance (regularity) is another important criterion which

should be fulfilled by a Boolean function used in ciphering
(see, [18]). This means that each output bit (0 or 1) should
appear in equally number of times for all possible values of
inputs. For CA-based generator it means that independently
on the initial configuration (except consisted of only 0s or
only 1s), in each time step in CA state number of 0s and
1s should be equal (

∑N
i=1 Ni = N

2 ). It is one of the basic
requirements and conditions measured by the tests qualified as
a good quality generator. Balance of the CA could be satisfied
by using balanced rules of CA. CA rule as a boolean function
f : Z n

2 → Z2 maps n binary inputs (neighbourhood state of
CA) to a single binary output. So, the balance of a Boolean
function is measured using its Hamming Weight, and is defined
as:

HW =
1

2
(2n −

∑
x∈Bn

f̂(x)), (4)

where f̂(x) = (−1)f(x). Boolean function is balanced when
its Hamming Weight is equal to 2n−1. Balanced Boolean

function is also named bijective Boolean function. It means
that balanced rule has in binary form equal number of 0s and
1s. As we can see the rules described in [17], [8], [15], [11],
[13], [14] are balanced both with r = 1 and r = 2. For single
rule, as rule of CA-based PRNG, balance is enough criterion
except formal tests, but for a set of rules it is insufficient.

C. Selection of set rules for the 1D CA-based PRNG

Set of rules which collectively change states of CA cells
should be carefully selected. Some composition of rules to
the CA cells could lead to unwonted stable sequences created
by cells (see, Figure 1 and Figure 2). Those bad combination
of rules should be eliminated by the appropriate selection of
rules. To select the rules which will cooperate with other rules,
the rule of CA should be analyzed as a Boolean function. We
should analyze all inputs and outputs of CA rule. Composition
of outputs for successive inputs (neighbourhood state) of the
rule gives us the binary form of CA rule. As we know from
previous subsections, proper rules are balanced, but from such
rules we should select rules ready to cooperate with other rules
in the set for CA-based PRNG.

Let’s analyze CA rule with r = 1 as Boolean function.

TABLE I
CA RULE AS A BOOLEAN FUNCTION.

Input 111 110 101 100 011 010 001 000

Output a b c d e f g h

The letters a, ..., h ∈ {0, 1} as a Boolean outputs. When a+
...+h = 4 then rule is a balanced one. For a good mixing bits,
rule for CA-based PRNG should changing the same number
of times: 0s → 0s, 0s → 1s, 1s → 0s and 1s → 1s. Except
these output 0s and 1s should be selected in a, ..., h in special
configuration. Bad schedule gives a rule easy to produce a
stable sequences in cooperation with other rule. I.e.: rule 30
(see, [17]) as a single rule creates a sequences of a quite good
quality, but in cooperation with rule 86 (see, Figure 2) creates
stable sequences. Keep attention that both rules 30 and 86 are
balanced. Mentioned problem in the consequence gives a bad
fitness between inputs and outputs, i.e. bad selection of rules
for set.

Selection of rules resistant for bad cooperation with other
rules leads to appropriate composition of outputs. Lest analyze
Table I. If for the inputs {111} and {011} outputs will be
equal to 1, then obtained rule will be generate 1s from 1s for
input configuration {X11} where X could be any kind of bit
value. For other rule, if the inputs {111} and {110} outputs
will be equal to 1, then obtained rule will be generate 1s from
1s for input configuration {11X}. Summarizing, for state of
1D CA {...X11X...} such rules will be cooperate and create
stable sentences of 1s in successive number of time. Similar
situation is presented in Figure 2 for rules 30 and 86, and for
CA state {...X10X...}. To prevent these situation rule should
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fulfill logical sentence, based on designation form Table I:

(a ̸= b) ∧ (a ̸= e) ∧ (c ̸= d) ∧ (c ̸= g) ∧
∧(f ̸= b) ∧ (f ̸= e) ∧ (h ̸= d) ∧ (h ̸= g). (5)

In Equation 5: (a ̸= b) protect rule against input configura-
tion {11X} translating 1s→ 1s, which leading to generation
stable sequence of 1s, (a ̸= e) similarly protect against input
configuration {X11}, (c ̸= d) protect against input configura-
tion {10X}, (c ̸= g) protect against input configuration {X01},
(f ̸= b) protect against input configuration {X10}, (f ̸= e)
protect against input configuration {01X}, (h ̸= d) protect
against input configuration {X00}, (h ̸= g) protect against
input configuration {00X}.

Equation 5 could be simplified to the logical sentence:

(a = f)∧(b = e)∧(c = h)∧(d = g)∧(a ̸= b)∧(c ̸= d). (6)

Rules created on the base of Equation 6 are resistant for
bad cooperation with other rules, and never generate stable
sequences of bits.

Lest us solve the Equation 6: Let a = 0 from here f = 0,
b = e = 1, also let c = 0 from here h = 0, d = g = 1,
then we obtain binary rule (01011010)2 it means decimal rule
9010. Let a = 0 ∧ c = 1 from here b = e = h = 1 and
d = f = g = 0, then we obtain binary rule (01101001)2
it means decimal rule 10510. Let a = 1 ∧ c = 0 from here
b = e = h = 0 and d = f = g = 1, then we obtain binary rule
(10010110)2 it means decimal rule 15010. Let a = 1 ∧ c = 1
from here f = h = 1 and b = d = e = g = 0, then we
obtain binary rule (10100101)2 it means decimal rule 16510.
Summarizing, we obtain set of rules {90, 105, 150, 165} it is
set of rules selected by Tomassini and Perenoud and described
in [15].

This set of rules is maximal length set of rules with neigh-
bourhood radius r = 1, which only fulfill upper conditions
and collectively generates bit sequences free from stable ones.
Moreover, each subsets of these rules also do not produce
stable sequences.

Presented method of selection of the maximal set of rules for
r = 1 could be successfully applied for rules with r = 2 and
larger. This method allow to select CA rules in the maximal
set in kind and easy way. Also we can be certain that rules
such way constructed are free form bad collaboration with
other rules, and in consequence free from generation stable
bit sequences in CA-based PRNG.

VI. CONCLUSION AND FUTURE WORKS

In the paper is presented new method of selecting rules for
cellular automata based pseudorandom number (bit sequences)
generator. Presented method is on the base of balance (regular-
ity) the CA and CA rule, and gives an answer which rules of
CA are suitable to use them in the generator. Also the maximal
set of such rules (for rules with r = 1) is shown, as the final
answer concerning more suitable sets. Rules selected by the
presented method are free from generating stable sequences of

bits. Connection of these rules in one set, and application as a
rules managing the CA in CA-based PRNG leads to creation
a good quality bit sentences, which could be use in different
cryptographical algorithms.

In the next studies will be shown new set of CA rules
suitable for use in CA-based PRNG. These set will be selected
from CA rules with r = 2, with use of presented method
based on balance of CA rule. Also will be shown formula
which gives an answer how many such rules exists for CA
with r > 1. Also selected new set of rules (r = 2) will be
tested by the set of Marsaglia Diehard tests, which gives an
answer how good is tested CA-based PRNG. Obtained results
will be compared with earlier proposed PRNG based on CA.
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Abstract A hyper-star graph HS(n, k) pro-

vides a promising topology for interconnec-

tion networks of parallel processing systems

because it combines the merits of a hyper-

cube and a star graph. In this study, we pro-

pose a fault-tolerant routing algorithm that

establishes a fault-free path between any pair

of non-faulty nodes in an HS(n, k) with faulty

nodes by using limited global information

called safety levels. In addition, we carried

out a computer experiment to verify the ef-

fectiveness of the algorithm.

Keywords: multicomputer, interconnection net-

work, parallel processing, hypercube, star graph,

faulty node, performance evaluation

1 Introduction

With the development of research on parallel
processing systems, many new topologies for
interconnection networks have been proposed
[1, 4, 5, 6, 8, 10, 12] instead of simple topologies
such as a ring, a mesh, a torus, a hypercube
[13], and so on. A hyper-star graph HS(n, k)
provides a such new topology, and it is promis-
ing because it combines the merits of a hyper-
cube and a star graph [9]. Algorithms should
be designed and developed presuming the ex-
istence of faulty elements in a large-scaled par-
allel system. Therefore, in this paper, we focus
on a hyper-star graph HS(n, k) that has faulty
nodes, and propose an adaptive fault-tolerant
routing algorithm between non-faulty nodes.

If each non-faulty node collects information
of all faulty nodes as global information, opti-
mal fault-tolerant routing is possible. However,
this approach is impractical since it requires
space and time complexities, whose orders are
equal to the number of nodes in the graph. On
the other hand, if each non-faulty node col-
lects the status of its neighbor nodes only as lo-
cal information for fault-tolerant routing, high
reachability cannot be attained. Therefore,
some approaches collect a part of the global
information to attain high reachability. The in-
formation is called limited global information.

For a hypercube, there are several approachs
based on the limited global information. By re-
cursively classifying non-faulty nodes into safe,
ordinary unsafe, and strongly unsafe nodes de-
pending on the classification of neighbor nodes,
Chiu and Wu have proposed an efficient fault-
tolerant routing algorithm [2]. To improve the
algorithm, Chiu and Chen introduced the rout-
ing capabilities that are obtained by classifying
the safety nodes with respect to the Hamming
distance to the destination nodes [3]. Wu has
also proposed a similar fault-tolerant routing
algorithm independently by introducing the
safety vectors [14]. In addition, Kaneko and
Ito have proposed a fault-tolerant routing al-
gorithm based on classification of ordinary and
strongly unsafe nodes with respect to the Ham-
ming distance as well as an efficient method to
obtain classification of them [7].

For a star graph, Yeh et al. have proposed an
algorithm based on the safety vectors to attain
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efficient fault-tolerant routing [15]. The rout-
ing in a star graph is more complicated than
that in a hypercube. Hence, the safety vectors
on a star graph are based on routing patterns
while those on a hypercube are based on dis-
tances.

For a regular hyper-star graph HS(2n, n),
Nishiyama et al. have proposed an algorithm
based on the safety levels, which represent lim-
ited global information [11]. In our approach,
we introduce the safety levels for a generic non-
regular hyper-star graph to attain high reach-
ability.

The rest of this paper is structured as fol-
lows. In Section 2, a hyper-star graph, a safety
level, and other requisite concepts are defined,
and some properties are proved. In Section
3, we describe the fault-tolerant routing algo-
rithm based on the safety levels. In Section 4,
by a computer experiment, we verify the effec-
tiveness of our algorithm. In Section 5, we give
conclusions and a future work.

2 Preliminaries

In this section, we give a definition of a hyper-
star graph and lemmas about its properties.
We also introduce a definition of a safety level.

Definition 1 (hyper-star graph HS(n, k)) An
HS(n, k) is an undirected graph, which has

nCk nodes. Each node a consists of n bits
(a1, a2, . . . , an). Among these bits, k bits are
always equal to 1 while the remaining (n − k)
bits are always 0 (a ∈ {0, 1}n,

∑n
i=1 ai =

k). For two nodes a = (a1, a2, . . . , an), b =
(b1, b2, . . . , bn), an edge (a, b) exists if and only
if there exists j(∈ {2, 3, . . . , n}) such that b1 =
ā1, bj = āj = a1, bi = ai (2 ≤ i ̸= j ≤ n).

Figure 1 shows an example of HS(6, 2). Ta-
ble 1 shows comparison of a hyper-star graph
HS(n, k) (n > 2k) with a hypercube Qn, a hi-
erarchical hypercube HHC2n+n, and a hierar-
chical cube network HCNn.

In an HS(n, k), for two nodes a = (a1, a2,
. . . , an) and b = (b1, b2, . . . , bn), the distance
between them d(a, b) is given by

∑n
i=2 ai ⊕ bi.

u100001

u
000011

u
100010

u010001

u
000101

u010010

u
000110

u
001001

u110000

u
001010

u010100
u

100100

u011000

u
001100

u101000

A
A
A
A
A
A

Q
Q
Q
Q
Q

Q
Q
Q

Q

������

�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
��B
B
B
B
B
B
B
B
BB

HHHHHH

�
�
�
�
�
�

Figure 1: An example of a hyper-star graph
HS(6, 2).

Table 1: Comparison of a hyper-star graph
with other topologies.

#nodes degree connect. diameter
HS(n, k) nCk k k 2k

Qn 2n n n n

HHC2n+n 22
n+n n + 1 n + 1 2n+1

HCNn 22n n + 1 n + 1 ⌊4(n + 1)/3⌋

Moreover, among the neighbor nodes of a, let
Pre(a, b) = {n | n ∈ N(a), d(n, b) = d(a, b)−
1} and Spr(a, b) = {n | n ∈ N(a), d(n, b) =
d(a, b) + 1} be the neighbor nodes that are on
the shortest paths from a to b and those on
the detour paths from a to b, respectively.

Lemma 1 For an HS(n, k), its diameter
diam(HS(n, k)) is given as follows:

diam(HS(n, k)) =


2(n− k) (n < 2k)
2k − 1 (n = 2k)
2k (n > 2k)

(Proof) For two nodes a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn) in an HS(n, k), if n < 2k,
the diameter 2(n− k) is, for instane, given by
d(a, b) where a1 = a2 = · · · = ak = 1, ak+1 =
· · · = an = 0, b1 = 1, b2 = b3 = · · · = bn−k+1 =
0, bn−k+2 = · · · = bn = 1. From symmetric
property, if n > 2k, the diameter is equal to 2k.
If n = 2k, the diameter 2k − 1 is, for instance,
given by d(a, b) where a1 = a2 = · · · = ak = 1,
ak+1 = · · · = an = 0, b1 = b2 = · · · = bk = 0,
bk+1 = · · · = bn = 1.

Lemma 2 For a node a = (a1, a2, . . . , an)
in an HS(n, k), |N(a)| = k if a1 = 0, and
|N(a)| = n− k if a1 = 1.
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(Proof) If a1 = 0, there are k 1’s in a2, a3, . . . ,
an. Therefore, |N(a)| = k. If a1 = 1, there
are (n − k) 0’s in a2, a3, . . . , an. Therefore,
|N(a)| = n− k.

Lemma 3 For two nodes a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn) in an HS(n, k),
|Pre(a, b)| = ⌈d/2⌉ and |Spr(a, b) = |N(a)| −
⌈d/2⌉ where d = d(a, b).
(Proof) If d =

∑n
i=2(ai ⊕ bi) is even, a1 = b1

since
∑n

i=1(ai ⊕ bi) is always even. Hence,
among d bits of a2, a3, . . . , an that are dif-
ferent from corresponding b2, b3, . . . , bn, d/2
bits are equal to ā1. Thus, |Pre(a, b)| = d/2,
and |Spr(a, b)| = |N(a)| − d/2. On the other
hand, if d is odd, a1 = b̄1. Hence, among d
bits of a2, a3, . . . , an that are different from
corresponding b2, b3, . . . , bn, (d + 1)/2 bits
are equal to ā1. Thus, |Pre(a, b)| = (d+ 1)/2
and |Spr(a, b)| = |N(a)| − (d + 1)/2. To re-
cap, |Pre(a, b)| = ⌈d/2⌉ and |Spr(a, b)| =
|N(a)| − ⌈d/2⌉.

For a node a in an HS(n, k) and a distance
d (1 ≤ d ≤ diam(HS(n, k))), we introduce an
safety level Sd(a) so that it indicates that for
any non-faulty node which is located with dis-
tance d from the node a, a fault-free path of
length d from a to the node can be established.

Definition 2 For a node a in an HS(n, k)
with a set of faulty nodes F , a safety level
Sd(a) with respect to a distance d is defined
as follows:

1. Sd(a) = 1 if a ̸∈ F , d = 1,

2. Sd(a) = 1 if a ̸∈ F , d ≥ 2, and for any
J(⊂ N(a)) such that |J | = ⌈d/2⌉, there
exists n(∈ J) such that Sd−1(n) = 1,

3. Sd(a) = 0 otherwise.

Since it takes much time to calculate safety
levels in each node based on Definition 2, we
introduce a simple calculation method based
on the following lemma.

Lemma 4 For a node a(̸∈ F ) in an HS(n, k)
with a set of faulty nodes F and a distance d(≥
2), the following two conditions are equivalent:

1. For any J(⊂ N(a)) such that |J | = ⌈d/2⌉,
there exists a node n(∈ J) such that
Sd−1(n) = 1.

2. |{n | n ∈ N(a), Sd−1(n) = 1}| ≥ |N(a)|−
⌈d/2⌉+ 1.

(Proof) Since |J | = ⌈d/2⌉, |N(a) \ J | =
|N(a)| − ⌈d/2⌉ holds. Hence, Condition 2 im-
plies Condition 1. Therefore, sufficiency is
proved. For necessity, we assume that Con-
dition 2 does not hold. Then, from |{n | n ∈
N(a), Sd−1(n) = 1}| ≤ |N(a)| − ⌈d/2⌉, there
exists J(⊂ N(a)) such that |J | = ⌈d/2⌉ and
{n | n ∈ N(a), Sd−1(n) = 1} ⊂ N(a) \ J .
Therefore, Condition 1 does not hold, either.
Necessity is also proved. From above discus-
sion, the lemma is proved.

3 Fault-tolerant routing algo-
rithm

In an HS(n, k), from Lemma 4, for a non-
faulty node a and a distance d, we can com-
pare

∑
n∈N(a) Sd−1(n) with |N(a)|−⌈d/2⌉+1

to judge sufficiency of Condition 2 in Defi-
nition 2. Figure 2 shows an algorithm as
Procedure SL to calculate safety levels Sd(a)
(1 ≤ d ≤ diam(HS(n, k))) at a node a. The
procedure must be executed in synchronization
at all nodes.

procedure SL(a, F)

begin

for d := 1 to diam(HS(n, k)) do

if a ∈ F then Sd(a) := 0
else if d = 1 then Sd(a) := 1
else if

∑
n∈N(a) Sd−1(n) >= |N(a)|−⌈d/2⌉+1 then

Sd(a) := 1
else Sd(a) := 0

end

Figure 2: Algorithm to calculate safety levels.

Theorem 1 At each node in an HS(n, k),
the time complexity to calculate safety lev-
els with respect to all distances d (1 ≤ d ≤
diam(HS(n, k))) is O(n2).
(Proof) From Lemma 4, to calculate a safety
level Sd(a) with respect to a distance d(≥ 2) at
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a node a, it is necessary to collect Sd−1(n) from
each node n in neighbor nodes N(a) of a and
sum up them. This process requires O(n) time
complexity. Therefore, it takes O(n2) time in
total to calculate safety levels for all distances
d (2 ≤ d ≤ diam(HS(n, k))).

From Theorem 1, it takes O(n2) time to cal-
culate the safety levels with respect to all dis-
tances at each node. If all the nodes calculate
the safety levels in synchronization, the total
time complexity is O(n2).

In an HS(n, k) with a set of faulty nodes
F , a fault-tolerant routing algorithm based on
safety levels is shown in Figure 3 as Procedure
FTS. To send a message from a non-faulty node
s to a non-faulty node d, we should call this
procedure as FTS(s, d, F).

procedure FTS(c, d, F)

begin

d := d(c, d);
if d = 0 then deliver the message to c
else if d = 1 then FTS(d, d, F)

else if ∃n∗ ∈ {n | n ∈ Pre(c,d), Sd−1(n) = 1} then

FTS(n∗, d, F)

else if ∃n∗ ∈ {n | n ∈ Spr(c,d), Sd+1(n) = 1} then

FTS(n∗, d, F)

else if ∃n∗ ∈ Pre(c,d) \ F then FTS(n∗, d, F)

else if ∃n∗ ∈ Spr(c,d) \ F then FTS(n∗, d, F)

else error(’delivery failed’)

end

Figure 3: Fault-tolerant routing algorithm
based on safety levels.

It takes O(n) time to identify Pre(c,d) and
Spr(c,d), and to check Sd−1(n) to find the
node n∗. Note that Algorithm FTS may cause
infinite loops.

4 Computer experiment

In this section, we give the detail of the
results of a computer experiment conducted
to compare our algorithm FTS and a sim-
ple algorithm SMP shown in Figure 4. Note
that Algorithm SMP also has possibility to
cause infinite loops. The computer experi-
ment was carried out for an HS(n, k) where
(n, k) = (9, 2), (9, 3), (9, 4), (10, 2), (10, 3), and
(10, 4) changing the ratio of faulty nodes α

from 0.0 to 0.9, and we have measured the ratio
of successful routings and their path lengths.

procedure SMP(c, d, F)

begin

d := d(c, d);
if d = 0 then deliver the message to c
else if ∃n∗ ∈ Pre(c,d) \ F then SMP(n∗, d, F)

else if ∃n∗ ∈ Spr(c,d) \ F then SMP(n∗, d, F)

else error(’delivery failed’)

end

Figure 4: A simple fault-tolerant routing algo-
rithm.

Concretely, first, in an HS(n, k), we selected
faulty nodes randomly with the ratio α. Next,
we selected the source node s and the desti-
nation node d from non-faulty nodes. Finally,
after checking the connectivity of s and d, we
applied the fault-tolerant routing algorithms.
If s and d are not connected, that is, there
is no fault-free path between them, we start
over from the selection of faulty nodes. For
each pair of (n, k) and α, we executed at least
100,000 trials. Figures 5 to 10 show the ratios
of successful routings by Algorithms FTS, and
SMP, respctively. Also, Figures 11 to 16 show
the average path lengths by Algorithms FTS,
and SMP, respctively.

From these figures, we can see that Algo-
rithm FTS shows better performance than Al-
gorithm SMP in any pair of (n, k) with small
amount of additional costs.

5 Conclusions and future
work

In this paper, we have introduced the concept
of safety levels in a hyper-star graph HS(n, k)
and proposed a fault-tolerant routing algo-
rithm. We have proved that the time complex-
ity to calculate safety levels with respect to all
the distances at each node is O(n2). More-
over, we have carried out a computer experi-
ment and verified high reachability to the des-
tination nodes.

As a future work, it is interesting to intro-
duce a stochastic framework into our method.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

80 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



Acknowledgments

This study is partly supported by a Grant-in-
Aid for Scientific Research (C) of the Japan
Society for the Promotion of Science (JSPS)
under Grant No. 25330079.

References

[1] S.B. Akers and B. Krishnamurthy, “A
group-theoretic model for symmetric in-
terconnection networks,” IEEE Transac-
tions on Computers, vol.38, no.4, pp.555–
566, April 1989.

[2] G.M. Chiu and K.S. Chen, “Use of routing
capability for fault-tolerant routing in hy-
percube multicomputers,” IEEE Transac-
tions on Computers, vol.46, no.8, pp.953–
958, Aug. 1997.

[3] G.M. Chiu and S.P. Wu, “A fault-tolerant
routing strategy in hypercube multicom-
puters,” IEEE Transactions on Comput-
ers, vol.45, no.2, pp.143–155, Feb. 1996.

[4] P.F. Corbett, “Rotator graphs: An effi-
cient topology for point-to-point multipro-
cessor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol.3,
no.5, pp.622–626, May 1992.

[5] K. Ghose and K.R. Desai, “Hierarchical
cubic networks,” IEEE Transactions on
Parallel and Distributed Systems, vol.6,
no.4, pp.427–435, April 1995.

[6] J.S. Jwo, “Properties of star graph,
bubble-sort graph, prefix-reversal graph
and complete-transposition graph,” Jour-
nal of Information Science and Engineer-
ing, vol.12, no.4, pp.603–617, Dec. 1996.

[7] K. Kaneko and H. Ito, “Fault-tolerant
routing algorithms for hypercube in-
terconnection networks,” IEICE Trans-
actions on Information and Systems,
vol.E84-D, no.1, pp.121–128, Jan. 2001.

[8] S. Latifi and P.K. Srimani, “A new fixed
degree regular network for parallel pro-
cessing,” Proceedings of the Eighth IEEE
Symposium on Parallel and Distributed
Processing, pp.152–159, Oct. 1996.

[9] H.O. Lee, J.S. Kim, E. Oh, and H.S.
Lim, “Hyper-star graph: A new inter-
connection network improving the net-
work cost of the hypercube,” Proceedings
of the First EurAsian Conference on In-
formation and Communication Technol-
ogy, London, UK, pp.858–865, Springer-
Verlag, Oct. 2002.

[10] Q.M. Malluhi and M.A. Bayoumi, “The
hierarchical hypercube: A new intercon-
nection topology for massively parallel
systems,” IEEE Transactions on Paral-
lel and Distributed Systems, vol.5, no.1,
pp.17–30, Jan. 1994.

[11] Y. Nishiyama, Y. Hirai, and K. Kaneko,
“Fault-tolerant routing based on safety
levels in a hyper-star graph,” Proceed-
ings of IADIS Applied Computing 2012,
pp.348–352, Oct. 2012.

[12] F.P. Preparata and J. Vuillemin, “The
cube-connected cycles: A versatile net-
work for parallel computation,” Commu-
nications of ACM, vol.24, no.5, pp.300–
309, May 1981.

[13] C.L. Seitz, “The cosmic cube,” Communi-
cations of the ACM, vol.28, no.1, pp.22–
33, Jan. 1985.

[14] J. Wu, “Adaptive fault-tolerant routing in
cube-based multicomputers using safety
vectors,” IEEE Transactions on Paral-
lel and Distributed Systems, vol.9, no.4,
pp.322–334, April 1998.

[15] S.I. Yeh, C.B. Yang, and H.C. Chen,
“Fault-tolerant routing on the star graph
with safety vectors,” Proceedings of the
Sixth Annual International Symposium on
Parallel Architectures, Algorithms, and
Networks, pp.301–306, May 2002.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 81



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

R
at

io
 o

f S
uc

ce
ss

fu
l R

ou
tin

gs

Number of Faulty Nodes

FTS
SMP

Figure 5: The ratios of successful routings by
Algorithm FTS and SMP in an HS(9, 2).
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Figure 6: The ratios of successful routings by
Algorithm FTS and SMP in an HS(9, 3).
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Figure 7: The ratios of successful routings by
Algorithm FTS and SMP in an HS(9, 4).
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Figure 8: The ratios of successful routings by
Algorithm FTS and SMP in an HS(10, 2).
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Figure 9: The ratios of successful routings by
Algorithm FTS and SMP in an HS(10, 3).
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Figure 10: The ratios of successful routings by
Algorithm FTS and SMP in an HS(10, 4).
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Figure 11: The average path lengths by Algo-
rithm FTS and SMP in an HS(9, 2).
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Figure 12: The average path lengths by Algo-
rithm FTS and SMP in an HS(9, 3).
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Figure 13: The average path lengths by Algo-
rithm FTS and SMP in an HS(9, 4).
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Figure 14: The average path lengths by Algo-
rithm FTS and SMP in an HS(10, 2).
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Figure 15: The average path lengths by Algo-
rithm FTS and SMP in an HS(10, 3).
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Figure 16: The average path lengths by Algo-
rithm FTS and SMP in an HS(10, 4).
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A Novel Quorum Protocol for Improved Performance

A. Parul Pandey1, B. M Tripathi2
2Computer Science, Institution of Engineering and Technology , Lucknow, U.P., India

Abstract— In this paper, we present an efficient quorum
protocol for reading data with minimum read quorum
size. This protocol for managing replicated data is
named as Wheel Quorum Protocol. We impose a logical
wheel structure on the set of copies of an object. The
protocol ensures minimum read quorum size of one,
by reading one copy of an object while maintaining
acceptable size of write operations. In this paper, we
also analyze several quorum types in terms of quorum
size and message overhead. Our protocol proves to incur
minimum communication overhead. Wheel structure has
a wider application area as it can be imposed in a
network with any number of nodes. This protocol is
especially beneficial for read intensive applications.

Keywords: Replica-control, distributed database, quorum
consensus.

1. Introduction
In a distributed database system, data is replicated [1]

to achieve fault-tolerance. One of the most important
advantages of replication is that it masks and tolerates
failures in the network gracefully and increases avail-
ability. In particular, the system remains operational
and available to the users despite failures. In case of
multiple access a problem that must be solved while
using replication is about maintaining the copies in a
consistent state. To keep logical data consistent, there
must exist a control protocol responsible for synchro-
nizing the access. A popular method for maintaining
consistency of replicated data is weighted voting [2]
which is a generalization of the majority consensus
method presented in [3]. In the quorum consensus (QC)
[4] algorithm, we assign a non-negative weight to each
copy xA of x. We then define a read threshold RT and
write threshold WT for x, such that both 2WT and
(RT + WT ) are greater than the total weight of all
copies of x. A read (or write) quorum of x is any set of
copies of x with a weight of at least RT (or WT ). For
better performance, some logical structure is imposed
on the network, and the quorums are chosen under the
consideration of such structures. Such logical structures
include the tree [5], diamond [6], ring [7], triangular

mesh [8], and grid [9] structures. A geometric approach
for dealing with logical structures is proposed in [10].

In this paper we propose a novel protocol, which is
called The Wheel Quorum Consensus Protocol or sim-
ply The Wheel Protocol, for managing replicated data.
In this protocol, the sites in the network are logically
organized into a wheel structure. This protocol can be
viewed as specialized version of ring and tree protocol.
As compared to tree, grid, diamond and mesh protocol,
wheel protocol is very flexible in arranging nodes in a
network into the logical structure. Any number of nodes
can be easily organized into a wheel structure.

The paper is organized as follows. In Section 2
we describe the system model. Section 3 discusses
wheel quorum protocols which elaborates the motivation
behind it, wheel structure and its quorum construction
for read and write. In Section 4, we present performance
evaluation and section 5 discusses the related work. We
conclude the paper in Section 6.

2. Model
A distributed system consists of a set of distinct sites

that communicate with each other by sending messages
over a communication network. No assumptions are
made regarding the speed, connectivity, or reliability of
the network. It is assumed that sites are fail-stop [11]
and communication links may fail to deliver messages.

Replication of data is achieved by storing copies of
the same logical data item at different nodes. Read and
write operations can be performed on replicated data.
A node needs to obtain permission from a number of
copies (quorum) before performing the operation using
a control protocol.

In a replicated database, copies of an object may be
stored at several sites in the network. Multiple copies
of an object must appear as a single logical object to
the transaction. This is termed as one-copy equivalence
[12] and is enforced by the replica control protocol. The
correctness criteria for replicated databases is one-copy
serializability [12], which ensures one-copy equivalence
and serializable execution of transactions. In order to
ensure one-copy equivalence, a replicated object z may
be read by reading a read quorum of copies, and it may
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be written by writing a write quorum of copies. The
following restriction is placed on the choice of quorum
assignments:

Quorum Intersection Property: For any two opera-
tions o[Z] and ó[z] on an data item x, where at least one
of them is a write, the quorums must have a nonempty
intersection.

Version numbers or timestamps are used to identify
the current copy in a quorum. Each node is logically
characterized by few attributes as shown in figure 1.
ID which is a unique sequential ID. In our discussion,
IDs are numbered as 0, 1, 2, 3,... n. Node _ Location
is the location where the node is physically residing.
In other words this is the address of a node in the
network. HUB contains the ID of the node in the wheel
which is currently acting as hub. In our discussion, ID
of the HUB node is 0. SUC contains the ID of the
successor wi+1, which is the next node in the wheel.
PRED contains the ID of the predecessor wi−1, which
is the previous node in the wheel.

Fig. 1: Wheel Structure

The election quorum ensures that the HUB’s ID is
always 0.

3. Wheel Quorum Protocol
3.1 Motivation

Tradeoff between the cost for reading, writing, data
availability and node fault tolerance is the deciding
feature of all existing control protocols for replicated
data . For example, the read-one write-all scheme needs
only one copy as read quorum, but has the convenience
of having a write quorum equal to the total number of
copies ( thus not tolerating a single node of failure).

The main motivation for our work was to develop a
protocol which had a constant minimum cost for read-
ing, while maintaining an acceptable cost for writing,
since we are interested in systems where read operations
are much more frequent than write operations.

To achieve this property, a logical wheel structure
will be imposed on the set of copies of the object .
This structure is used by operations to determine the
copies that must be read or written. Figure 2, represents
5 nodes arranged in a wheel structure. Wheel logical
structure can be arranged on any number of nodes,
whereas other logical structures have constraints with
nodes arrangement. We note that this structure is logical,

and does not have to correspond to the actual physical
structure of the network connecting the sites, storing
the copies. This wheel structure is used to motivate the
protocol.

3.2 The Wheel Structure
Let Wn = w0, w1, w2,...,wn−1 be the set of nodes

that store copies of a replicated data item. A wheel,
Wn is a logical structure with n nodes, formed by
connecting a single node called HUB to all vertices of an
(n-1) cycle. The numerical notation for wheels is used
inconsistently in the literature: some authors instead use
n to refer to the length of the cycle, so their Wn is the
graph we would denote as Wn+1. All nodes in the cycle
maintain adjacency relationship by maintaining ID’s of
their successor and predecessor. Each node is defined
by attributes ID, Node_Location, HUB, Suc, and Pred
as shown in figure 1. Wheel structure is easily imposed
on the set of nodes by selecting first node as HUB and
adding other nodes as spokes in cycle by defining the
successor (Suc(i)) , predecessor (Pred(i)) operations and
by setting HUB in each spoke. Other operations are
GetPermission(i) and rand(1..n).

GetPermisson(i), returns TRUE if the node wi allows
access to its own copy of the item. GetPermisson(i)
returns FALSE when either node wi refuses access or
cannot be contacted due to failure. rand(1..n) selects
and returns random number from 1 to n, where n is
the number of nodes in wheel. This random number
represents ID of selected node.

Fig. 2: Wheel Structure

3.3 The Wheel Protocol
In this protocol, all copies of a replicated data item

are organized into a wheel structure. Specific algorithms
are used for read and write quorums construction. There
is one election algorithm for electing new HUB in case
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of failure of HUB or in case load threshold exceeds its
limit. These algorithms use the adjacency information
to guarantee quorum intersection, and to maintain the
quorum sizes small. There are three type of quorums,
Read, Write, and Election quorum.

Read Quorum is formed by getting access permis-
sion from HUB.

Write quorum is obtained by getting access permis-
sion from HUB and half of alternating nodes in the
cycle, thus requiring the majority of the total number of
copies. As an example, consider a replicated data item
with six copies arranged in a wheel structure as shown
in figure 3. Eligible read quorum is 0 ( i.e. HUB) and
sets eligible for write quorum are : {0,1,3,5}, {0,1,2,4},
{0,3,5,2}, {0,4,1,3} and {0,5,2,4}.

Notice that eligible quorums are coteries, satisfying
the minimality and intersection properties1.

Fig. 3: 6 copies organized into a logical structure

Election quorum is called in two situations
1) When HUB crosses its load threshold
2) When HUB is unavailable

In both the above cases, the node initiating election
quorum algorithm, selects randomly any 2 adjacent
nodes, checks their version and makes the latest one
the HUB by changing the location address between the
old HUB and the newly elected one. This logically
swaps the location of the two nodes. Other nodes are
unaffected as they identify HUB by its ID, which is 0.
Only the node_location is changed.

Advantages of this Election Quorum are-
1) HUB is never overloaded, as it gets swapped with

a latest node whenever load _ threshold crosses its
limit.

2) Improved load distribution. Assuming that each
node in cycle has the equal probability of being
selected as a new HUB, no node will be working
as HUB for a longer time.

1The fact that the quorums are distinct and have the same size shows
that they satisfy the minimality property: the intersection property will
be shown later, when providing the protocol correctness

3) Constant minimum possible Read Quorum size of
one. As, even if HUB is failed , it will be replaced
with a new HUB. Thus ensuring that a request
always reads data from HUB.

Without using election quorum, in the failure of HUB,
Read Quorum can be achieved by accessing any 2
adjacent nodes in the cycle, which is double the cost
of doing it with HUB. Our system has more number
of reads as compared to write , so reads will keep
on costing double till HUB recovers. All this can be
avoided by using election quorum and electing new
HUB. This way, present as well as subsequent reads
can be satisfied by reading only HUB.

3.3.1 Quorum Construction

There are three algorithms for the wheel protocol.
Algorithm 1, 2, 3 for read, write and election quorum
respectively.

Algorithm 1 defines read quorum construction. This
algorithm returns the HUB as the read quorum. In case
of a HUB failure, the new HUB is elected by invoking
the ElectionQuorum Protocol, which uses a random
node in cycle.

Algorithm 1 Read Quorum(i)

if Empty(Wheel) then
Return(nil)

else if GetPermission(HUB) is False then
r= rand(1 .. n)
Get ElectionQuorum(r)
Return(HUB)

else
Return(HUB)

end if

Algorithm 2 is to find write quorum. This protocol
collects majority of nodes forming quorum between
nodes in cycle of wheel in list, Quorum_list[]. This
Quorum_list[] along with HUB makes write quorum.
Protocol tries to form write quorum with current_node
by traversing the cycle until, either a quorum is obtained
or all copies have been examined (in which case quorum
was not obtained and the request for writing is refused).
In case of HUB failure Election Quorum elects a new
HUB.

In case of HUB failure, Election Quorum (Algorithm
3) elects a new HUB. Election quorum selects two
adjacent nodes(using successor function), selects the
node with latest value and makes it the HUB.
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Algorithm 2 Write Quorum(i)
– Main routine

1: nodes_covererd=0
2: current_node = i
3: if GetPermission(HUB) is False then
4: n= random(cycle nodes)
5: Get ElectionQuorum(n)
6: GetPermission(HUB)
7: end if
8: if current_node is HUB then
9: current_node = rand(1..n)

10: end if
11: while Empty QuorumList[] and nodes_covered <

n do
12: Quorum_list[]= Check(current_node)
13: current_node=Suc(current_node)
14: nodes_covered++
15: end while
16: Return(HUB

⋃
QuorumList[])

– Check(i)
1: Quorum_list[] = null
2: Fail= nodes_checked=0
3: while Fail 6= 1 and nodes_checked < bn/2c do
4: if GetPermission(i) then
5: Quorum_list.add(i)
6: i=Suc(Suc(i))
7: nodes_checked++
8: else
9: Fail=1

10: end if
11: end while
12: if Fail then
13: Quorum_list.flushall()
14: return(Quorum_list[])
15: else
16: return(Quorum_list[])
17: end if

4. Performance Evaluation

Different logical structures and quorum forming
methods result in different performances in different
metrics. In this section, we present performance analysis
of wheel protocol under different metrics. We com-
pare the protocol with known protocols of majority
quorum consensus[3], the grid protocol[9], the tree
protocol[13], the hierarchical quorum consensus[14],the
diamond protocol[6], the triangular mesh protocol[8],
and the ring protocol[7].

Algorithm 3 Election Quorum(i)

1: current_node=i
2: Quorum=0
3: nodes_done=0
4: if current_node is HUB then
5: current_node=rand(1..n-1)
6: end if
7: while Quorum is Empty or nodes_done < n do
8: if current_node is accessible then
9: if SUC(current_node) is accessible then

10: Latest_node=Node_Location with most re-
cent value

11: Swap Node_Location of HUB and Lat-
est_node

12: Quorum=Latest_node
13: else
14: current_node=Suc(Suc(current_node))
15: nodes_done=nodes_done + 2
16: end if
17: else
18: current_node=Suc(current_node)
19: nodes_done=nodes_done+1
20: end if
21: end while

4.1 Quorum Size
In this section we examine optimal and worst case

read and write quorum sizes. We analyze quorum sizes
based on the type of applications where a number
of read operations are much higher than the number
of write. Read and write quorum sizes for majority
quorum is d N+1

N e. We have not included majority
in our quorum comparison, but its very clear that it has
larger read and write quorum sizes. Hierarchical quorum
consensus has best, as well as worst quorum size of
N0.63. In the case of the tree quorum protocol ,the size
of read quorums vary from 1 to (d + l)h. On the other
hand, the cost of write operations is [(d+ 1)h+1− 1]/d
[(d + 1)h+1 − 1]/d. For a grid protocol, we assume
that the grid structure is approximately a square, the
read quorum size is approximated by

√
(N), and the

write quorum size is approximated by 2
√

(N). For
diamond quorum consensus optimal read quorum size is
2 and is independent of the total number of sites. Worst
case read quorum size is d

√
(2N)e. Optimal and worst

quorum sizes for diamond write quorum are d
√

(2N)e
and 2 d

√
(2N)e - 2 respectively. For the special case

taken in [7], read and write quorum sizes are given
by qr = nlogd2 and qw = (bd2c + 1)logdn for the
ring protocol. The quorum size in three triangular-mesh
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based protocols is k, which is d
√

(2N)e.
The wheel protocol has exceptionably minimum read

quorum size of one(independent of number of sites),
as read can be satisfied by reading only HUB. The
remarkable point is that even in worst case the read
quorum of wheel protocol remains one, by ensuring
availability of HUB. Election quorum is used to elect
new HUB whenever current HUB fails. Systems with
more number of read operations than write get benefited
by this smallest possible read quorum size and thus
reduces the cost of operation. Write quorum size is
dN−1

2 e+1. This large write quorum is justifiable against
the constant small quorum size of one. This protocol
is especially beneficial for systems with much more
number of reads than write for eg. web based shopping
sites.

(a) Worst Quorum Size

(b) Optimal Quorum Size

Fig. 4: Read Quorum Comparison

Figure 4. shows that wheel protocol has best read
quorum size in optimal as well as worst case. Diamond

(a) Worst Quorum Size

(b) Optimal Quorum Size

Fig. 5: Write Quorum Comparison

has comparable read quorum size in optimal case but
size increases upto d

√
(2N)e in worst case. Similarly

ring is comparable in worst case but not in optimal
case. Figure 5 shows optimal and worst write quorum
comparison.

4.2 Message Overhead
This section presents message overhead analysis of

different quorum protocols. Analysis is based on model
and message overhead relations used in [15]. For the
purposes of our study, we consider only the best pos-
sible implementation (the one with the least number of
messages). The proportion of update operations in the
load is represented by w. A small w indicates that there
are generally few write operations in the system. For
instance, the workload can have many queries (read-
only transactions) and few update transactions. Each of
these few update transactions, however, can have many
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write operations. With this, assuming that a transaction
contains on average ow write operations, the message
overhead for wheel protocol are given below.

Message overhead for point-to-point is given as:

msg =
3wdn+1

2 e
ow

(1)

Message overhead for multicast is given as:

msg = w
dn+1

2 e+ 2

ow
+ (1− w) (2)

Comparison among different protocols message over-
head for point-to-point is shown in figure 6(a). Mini-
mum communication overhead is achieved by tree and
wheel protocols. Overhead increases with increasing
value of w. Tree shows better performance than wheel
protocol, whereas, its quorum size is larger than wheel
protocol. Wheel protocol, ensures read quorum size of 1
even in worst case, whereas, it becomes as big as (d+l)h

in tree. So, for read intensive applications, wheel gives
both the advantages of smallest read quorum and smaller
communication overhead.

In case of multicast figure 6 (b), wheel and tree
incur minimum message overhead than other protocols.
Overhead increases with increasing number of writes in
transactions (i.e. w).

5. Related Work
In this section we compare the wheel protocol to other

existing protocols for maintaining the consistency of
replicated data. The simplest replica control protocol is
the read-one write-all protocol, where a read operation
is executed by reading any copy and a write, writes
all copies of the object. In order to increase the fault-
tolerance of write operations, voting protocols were pro-
posed [16], [2], where write operations are not required
to write all copies. In a failure free system, both the
static and the dynamic protocols require read operations
to access several copies. Dual Quorum [17] reduces
size of both read and write quorum by not making
them intersect and regular semantics are enforced by
communication between both quorums. This increases
its communication overhead, whereas Wheel has no
overhead like this.

Finally, the notion of imposing logical structures on
a network of sites has been proposed before to solve
different problems. Maekawa [18] proposed imposing
a logical grid on a set of sites to derive efficient
O(sqrtN) solutions for mutual exclusion. Agrawal and
El Abbadi [19] proposed imposing a logical tree to solve
the mutual exclusion problem using O(logn) messages.
This approach was extended to replica control protocols

(a) Message overhead, point-to-point

(b) Message overhead, multicast

Fig. 6: Message Overhead

that use several logical structures imposed on set of
copies . Kumar [13] constructs a logical tree on a set
of copies, where the copies actually correspond to the
leaves of the tree. This results in a protocol where read
and write quorums are of size N0.63. Agrawal and El
Abbadi [20] imposed a logical tree on the set of nodes
and reduced read size to one when there is no fault.
But read quorum size increases with failures to dN+1

2 e
and write quorum size is [(d + 1)h+1 − 1]/d. Storm
[21] proposes a flexible hetrogeneous quorum based
which is again based on on tree shaped voting structutes.
Triangular mesh protocol [8], in which the nodes in
the system are organized into a triangular mesh which
has a quorum size of O(

√
2N). Our protocol draws

on many of these ideas, and extends them to develop
an efficient and fault-tolerant replica control protocol.
The distinguishing feature of our approach is that we
directly address the issue of low cost read operations,
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and unlike other logical structure based approaches, the
wheel quorum protocol, in a failure-free system or with
failure does not require read operations to access more
than one copy.

6. Conclusion
In this paper we have proposed a new fault tolerant

protocol for replicated data control in which the read
quorum is constant of size one, without incrementing the
write quorum. The design of the protocol directly ad-
dresses one of the main problems of replicated data: the
necessity of read operations to access several copies in
order to ensure the fault-tolerance of write operations. In
case of failure, the wheel protocol continues executing
both read and write operations with a high probability,
although cost of execution is higher. Wheel protocol
provides smallest quorum size with minimum message
overhead. Message overhead for wheel protocol [22]
multicast never exceeds 2, infact for lesser number of
writes its smaller than 1.5. In particular, our protocol
performs well in systems where read operations are
requested more frequently than write ones.
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Being Aware of the Upload Capability of the Participants

Shogo KANDA1 and Satoshi FUJITA1

1Department of Information Engineering, Hiroshima University
Higashi-Hiroshima, 739-8527, Japan

Abstract— In this paper, we propose an incentive scheme
for P2P live streaming systems being aware of the upload
bandwidth of the participants. The basic idea of the scheme
is to combine a point-based incentive scheme with the notion
of minimum guaranteed services. The performance of the
proposed scheme is evaluated by simulation. The result of
simulation indicates that: 1) the proposed scheme increases
the utility of poor peers by 30% compared with Sepidar
which is a typical auction-based incentive scheme and 2)
compared with the Chu’s scheme, which is a typical taxation-
based scheme, the proposed scheme gradually increases the
utility of rich peers as the amount of contributions increase,
whereas the utility under the Chu’s scheme does not change
after reaching the limit determined by the taxation rate.

Keywords: Peer-to-Peer live streaming systems, auction-based
incentive scheme, taxation scheme.

1. Introduction
Recently, Peer-to-Peer (P2P) technology has been used in

many fields as a way of realizing scalable network services.
Voice over IP such as Skype1 and video streaming services
such as PPLive2 and PPStream3 are representatives of such
applications. Among those applications, in this paper, we
focus on the live streaming based on the P2P technology
which is generally referred to as the P2P live streaming. In
P2P live streaming systems, each peer (node) participating
in the system is encouraged to contribute its communication
bandwidth to the system, so that a copy of data received
from an adjacent peer is uploaded to another adjacent peer
by using the upload bandwidth. In other words, the system
is designed so that the increase of the number of participants
also increases the total amount of upload bandwidth.

However, the performance of such P2P systems is severely
affected by the behavior of each participant, since it causes
an overload of specific peers and the degradation of provided
services if the number of free-riders which do not contribute
to the system increases. To overcome such a situation, P2P
systems should have an incentive scheme which strongly en-
courages the participants to provide their resources as much

1URL: http://www.skype.com
2URL: http://www.pplive.com
3URL: http://www.ppstream.com

as possible. Conventional incentive schemes for P2P live
streaming systems are designed so that a peer contributing to
the system can receive a high quality service in return for the
contribution. Such a mechanism works well for the peers to
have enough resources. However, for the peers to have small
amount of resources, it is not user-friendly since it (strictly)
differentiates available services by the amount of resources
held by the peer, i.e., it discourages many “poor” peers to
participate in the system to contribute as an uploader.

In this paper, we propose an incentive scheme for P2P live
streaming systems such that all contributors become happy.
In other words, we determine the return of contribution so
that every peer can receive a return even if the amount of
contributions is small as long as it repeats contributions, and
it can receive a larger return as the amount of contributions
increases. The basic idea of the scheme is to combine a
point-based incentive scheme with the notion of minimum
guaranteed services. More concretely, we design the scheme
so that: 1) the given live stream is divided into k sub-
streams which are delivered to the participants using differ-
ent trees, where we assume the existence of an appropriate
encoding method such that the original stream is decoded
from any subset of sub-streams while the quality of the
decoded stream depends on the number of sub-streams; 2)
we differentiate the number of sub-streams acquired by each
peer according to the amount of contributions; and at the
same time, 3) we guarantee the minimum service for every
peer by allowing peers to participate in at least Rd trees,
where the value of Rd is dynamically updated according to
the change of the status, such as the number of participants
and the total amount of bandwidth.

The performance of the proposed scheme is evaluated
by simulation. The result of simulation indicates that: 1)
the proposed scheme increases the utility of poor peers by
30% compared with Sepidar which is a typical auction-based
incentive scheme for P2P live streaming, and 2) compared
with the Chu’s taxation scheme, which is a typical taxation-
based scheme, the proposed scheme gradually increases the
utility of rich peers as the amount of contributions increase,
whereas the utility under the Chu’s scheme does not change
after reaching the limit determined by the taxation rate.

The remainder of this paper is organized as follows.
Section 2 describes preliminaries and Section 3 overviews
related works. Section 4 describes the details of the pro-
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Fig. 1: Multi-tree structure.

posed scheme. Section 5 describes the result of simulations.
Finally, Section 6 conlcudes the paper with future works.

2. Preliminaries

In P2P live streaming systems, a given stream is delivered
to the subscribers through a logical network called P2P over-
lay. In this paper, we are particularly interested in the multi-
tree structure used in SplitStream [1] as the underlying P2P
overlay, because of the ease of the maintenance compared
with mesh structured overlays and the high fault tolerance
compared with a single tree. In multi-tree structured P2P
live streaming systems, each stream is divided into several
sub-streams called stripes, and those stripes are delivered
through different trees. Figure 1 illustrates the delivery of
a stream through multi-trees. The split of a stream into
stripes is done by encoding schemes such as MDC [3], in
such a way that: 1) any subset of stripes can be decoded
into a stream and 2) the quality of the resulting stream
monotonically increases as the number of stripes increases.

In order to decode a high quality stream, each peer tries
to participate in as many trees as possible, while it can
participate in at most one tree as an internal peer, where
a peer with a child in a tree is called an internal peer and
a peer with no child is called a leaf peer. In each tree, each
internal peer forwards a stripe received from the parent to
the children by using its upload bandwidth. In this paper,
we assume that the upload of one stripe consumes one unit
of upload bandwidth called upload slot, and we call the
maximum number of upload slots used by a peer the fan-
out of the peer. The reader should note that the fan-out of a
peer is calculated by dividing the upload bandwidth of the
peer by the bandwidth required for the upload of a stripe.

Money 
2 �

Money 
3 �

Money: 3 
Price: 0 �

Money 
2 �

Money 
3 �

Money 
4 �

Money: 3 
Price: 2 �

Fig. 2: Bidding in Sepidar.

3. Related Work
3.1 Auction-Based Incentive Schemes

There are many auction-based incentive schemes proposed
for tree-based P2P live streaming systems. Sepidar [5] and
Tan’s scheme [8] are two representatives in this category.

The bidding procedure adopted in Sepidar is based on the
notions of money and price. The money m[i] held by peer i
is the (declared) fan-out of the peer. The price p[i] of peer i is
set to be zero if it has an unused upload slot, and otherwise,
p[i] is set to be the minimum money over all children of i.
For example, in Figure 2, the price of peer b is two since it
has three slots connected to children with money 2, 3 and
4, respectively. Suppose that a peer a wishes to become a
child of peer b. Then peer a initiates an auction and bids
all of its money m[a] for an upload slot of b. If the bid
received from a is greater than p[b], then peer b accepts a as
a new child, and turns out a child with the least amount of
money from the tree (by this operation, all descendants of the
removed child will also be turned out from the tree and they
should initiate another auction to subscribe to the stream).
The reader should note that the above bidding mechanism
gives incentives to all peers to declare a large fan-out so that
they are not turned out by the other peers.

Tan’s scheme conducts such a bidding periodically. It
divides the playback time of the video stream into periods of
fixed length as T0, T1, T2, · · · , and during each period, each
peer earns reward points from its children as a consideration
for the upload of the video stream. More concretely, in the
ℓth period, a peer j receives all reward points from child i
which were earned by peer i in the (ℓ−1)st period. Reward
points earned at the beginning of the ℓth period are used for
the bidding for an upload slot for the (ℓ+ 1)st period. The
bidding within the ℓth period proceeds by repeating bidding
round in the following manner:

1) Participants of each bidding round are peers which did
not find the parent for the next period.



2) Each participant a randomly selects an internal peer
b which has already found the parent and has enough
upload slots, and bids all reward points earned at the
beginning of the period for an upload slot of b.

3) Among submitted bids, peer b selects bidders with the
largest bids as the winners and makes them children
in the next period.

4) All losers of the bidding receive a list of winners from
peer b, so that it could be used as the candidate for
internal peers in the next bidding round.

In the Tan’s scheme, each peer can participate in any number
of trees as an internal peer, while after exhausting the upload
slots, it should participate in each of the remaining trees as a
leaf peer. This indicates that it may happen a situation such
that a loser of an action cannot find a peer to have enough
upload slot within a period. In such a case, it should try to
find an internal peer by traversing the tree from the root to
leaves in a best effort manner.

3.2 Taxation Scheme
Chu et al. point out that auction-based incentive schemes

described in the last subsection would cause a significant gap
of the quality of received services due to the difference of the
amount of resources intrinsically held by each participant,
and propose a taxation scheme to overcome this issue [2].

The key idea of the Chu’s taxation scheme is to combine
the taxation with a fixed tax rate t (> 1.0) with the notion
of basic income called demogrant. The maximum number
of trees in which a peer can participate is a linear function
of the amount of contribution of the peer. More concretely,
to participate in ri different trees, peer i must contribute
at least fi = t × ri upload slots in a tree. By consuming∑

i⌊fi/t⌋ upload slots among collected
∑

i fi slots, there
remain internal reserves of amount

∑
i (fi − ⌊fi/t⌋) in the

system, which are equally redistributed over all participants
(independent of the magnitude of contribution) as a de-
mogrant. With such a redistribution mechanism, the quality
of services received by poor peers increases, which relaxes
the gap of the quality of services caused in the auction-
based schemes. An apparent drawback of the Chu’s taxation
scheme is the lack of incentives for rich peers, because they
will not contribute more than fi = t× ri slots, even if they
have more resources.

4. Proposed Scheme
4.1 Overview

Most of existing incentive schemes for P2P live streaming
systems are designed so that a heavy contributor can enjoy
high quality services. In other words, the quality of received
services increases as the amount of contribution increases.
However, a naive application of such a survival of the fittest
approach discourages peers with few resources to participate
in the system since they always miss high quality services.

To overcome such an issue, in the proposed scheme,
we combine the notion of minimum guaranteed services
with a point-based incentive scheme. More concretely, the
basic idea of the proposed scheme is: 1) to differentiate the
quality of service according to the amount of contribution
using a point-based scheme, and at the same time, 2) to
guarantee the amount of minimum service for every peer
by allowing peers to participate in at least Rd trees (the
role of parameter Rd is similar to the demogrant used in
the Chu’s taxation scheme, but it is calculated in a different
manner). This idea is inspired by the Weber-Fechner law
which states that the just-noticeable difference between two
stimuli is proportional to the magnitude of the stimuli, or an
increment is judged relative to the previous amount. In our
case, the judged quality of a live stream is proportional to
the logarithm of the number of subscribed stripes concerned
with the stream, which indicates that in order to increase
the overall utility, we need to increase the number of stripes
subscribed by “poor” peers enjoying low quality streams, by
decreasing the number of stripes subscribed by “rich” peers
enjoying high quality streams.

In the following, after clarifying the underlying P2P archi-
tecture in Section 4.2, we describe the details of the point-
based bidding procedure in Section 4.3. We then describe the
way of tuning the value of Rd in Section 4.4 and describe
the way of carrying over unused points in Section 4.5.

4.2 P2P Architecture
We consider a P2P system consisting of N homogeneous

peers, a content server and a point server. Peers are assigned
a unique ID and can subscribe to a stripe by participating
in a tree associated with the stripe. Each peer periodically
earns k reward points from the point server by forwarding
stripes to k children, and as will be described later, such
earned points are used for the bidding for the upload slot of
an internal peer in another tree. The interval of earning points
is called the earning interval. Reward points unused in an
earning interval are stored at the point server, to encourage
poor peers to earn reward points for the future use. We use
symbol σ[i] to denote the reward points currently held by
peer i. The way of managing stored reward points, which
is mandatory to avoid the inflation of the points, will be
described in Section 4.5.

For each tree, the content server keeps tracks of the ID
of the root of the tree, and maintains the following two sets
InP and LP representing the availability of the upload slots
in the tree, which can be referred by all peers in the system:

• InP is the set of internal peers to have an available
upload slot; i.e., peers whose fan-out is not exhausted.

• LP is the set of leaf peers which have already partici-
pated in more than Rd trees, where Rd is the minimum
number of trees guaranteed by the system. Peers in LP
are ordered in a non-increasing order of σ[·].
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4.3 Bidding Procedure
In the proposed scheme, each peer can participate in at

most one tree as an internal peer, while it can participate in
any number of trees as a leaf as long as no conflict occurs.
Each peer a which wishes to join a tree first refers to the
InP of the tree. If it is not empty, it completes the join after
becoming a child of a peer in the InP, and if it is empty, it
conducts one of the following operations depending on the
(expected) role in the tree:

1) If peer a joins as an internal peer, then after identifying
a leaf peer b in the tree, it inserts itself between b and
its parent, i.e., it becomes the parent of b and a child
of the former parent of b.

2) If a joins the tree as a leaf peer, then it refers to the
LP of the tree, and if it is empty, a gives up the join
at this moment (it retries to join after waiting a certain
time from 10 to 15 sec). Otherwise, after selecting a
peer with the smallest σ[·] from the LP, a initiates an
auction for the upload slot of the parent b of the peer.

The auction proceeds as follows. For each peer i, let r(i)
denote the number of trees in which peer i currently par-
ticipates and C(i) denote the set of children of i in the
tree we are currently considering. The procedure separately
considers the case of r(a) ≥ Rd (Case 1) and the case of
r(a) < Rd (Case 2).

Case 1) In this case, in order to keep that all children of
peer b participate in at least Rd trees, peer a competes with
peers in set {i ∈ C(b) : r(i) > Rd} for the upload slots of b.
Each player i bids σ[i] reward points, and after receiving all
bids, b selects peers which submitted the largest bids as the
winners, and makes them as its new children. Each winner i
pays 5% of its reward points to the system and each looser
tries to join a tree after passing a certain time.

Case 2) In this case, we modify the procedure for Case
1 so that peer a is removed from the set of competitors. In
other words, peer a can always join the tree as a leaf peer
without paying reward points unless the LP of the tree is not
empty.

4.4 Minimum Guaranteed Trees
The above procedure is designed to guarantee that every

peer participates in at least Rd(≥ 1) trees. However, an
appropriate value of Rd would change according to the join
and the leave of peers. In order to reflect such a dynamic
change to Rd, in the proposed scheme, the value of Rd is
periodically updated by the content server in the following
manner:

• The server identifies the set of internal peers with their
fan-out and the set of leaf peers with their reward
points for each tree. Such an identification is realized
by collecting information from participants through
tree edges. The reader should note that InP and LP

Table 1: Parameters.
Number of peers N 2000
Simulation time T 3600 sec
Bitrate of stream 400Kbps
Number of stripes 8

Earning interval of points 10 sec
Update interval of Rd 30 sec

concerned with each tree can also be constructed using
the collected information.

• Let F be the estimated fan-out of the overall system
which is obtained by summing the fan-out over all trees.
Let N be the estimated number of participants and ∆N
be the number of peers which newly joined the system
during the current update period.

• Using those values, the server updates Rd according
to the following rule: if F > 1.5 × (Rd + 1)N then
increment Rd by one and if F ≤ 1.25×Rd(N +∆N)
then decrement Rd by one.

After that, the content server broadcasts a message con-
taining the new value of Rd to all peers to update the variable
locally held by each peer. The behavior of each peer after
receiving the update is as follows: When Rd increases, a
peer participating in less than Rd trees tries to join a new
tree (to become the participant of at least Rd trees) after
waiting a certain time. When Rd decreases, it does nothing
until it becomes a looser of an auction.

4.5 Carry-Over of Earned Points
In the proposed scheme, each peer periodically earns

reward points from the system by serving as an uploader
and bids those points for an upload slot of the other peers in
the same bidding period. If it wins, it pays 5% of the bidded
points to the system, and it carries over the remaining points
for the future use. However, if we allow an unlimited carry-
over of the remaining points, it causes the inflation of reward
points which enlarges the gap between rich peers and poor
peers. To overcome such an issue, in the proposed scheme,
we bound the amount of carry-over of each peer i by the
following value:

θi
def
= 10× log1.1 p[i].

With this mechanism, even poor peers to have few upload
slots could earn sufficient amount of points by repeating
contributions, and simultaneously, it could avoid rich peers
to be a sole winner for a long time.

5. Evaluation
5.1 Setup

We evaluate the performance of the proposed scheme by
simulation. In the simulation, all peers are synchronized
to the global clock, and within a step of the clock corre-
sponding to one second, each peer completes any procedure
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Table 2: Distribution of upload bandwidth.
Upload bandwidth [KB/sec] Fan-out Percentage of peers

50-399 1-7 70%
400-599 8-11 11%
600-799 12-15 11%
800-999 16-19 4%

1000-1199 20-23 4%

including the join to a tree and the bidding for an upload
slot. Parameters used in the simulation are summarized in
Table 1. According to the observation shown in [7], we
assume that the upload bandwidth (and fan-out) of each peer
follows the distribution shown in Table 2. Peers arrive at
the system according to a Poisson distribution with mean 1
[peer/sec], and upon arrival, each peer is assigned a longevity
t according to the following distribution [6]:

F (t) = 1− 1.23× e−( t
1572 )

0.59

.

Each peer does not leave until longevity exhausts, and the
behavior of the peer is not affected by the rest of its life.

Each peer tries to participate in all trees, and if it partic-
ipates in a tree as an internal peer, it uses all of its fan-out
(determined as in Table 2) for the other peers in the tree.
Let si,j denote the number of stripes subscribed by peer i in
the jth step. Then, the utility ui of peer i during simulation
of length T is defined as

ui
def
= log8

⎛

⎝
T∑

j=1

si,j
T

⎞

⎠ ,

where the reason of taking logarithm is that we are assuming
the Weber-Fechner law as was described in Section 4.1 and
we use eight as the base of the logarithm to normalized it
in the range of [0, 1].

Each run of the simulation consists of five consecutively
executed sessions of 3600 sec and we conducted 50 indepen-
dent runs to take an average of them. Carry-over of reward
points (shown in Section 4.5) takes place within each run
and the assignment of upload bandwidth is fixed in each
run.

5.2 Comparison with Other Schemes
At first, we compare the performance of the proposed

scheme with previous schemes described in Section 3. A
comparison with Sepidar is illustrated in Figure 3. The
horizontal axis is the fan-out of peers and the vertical axis is
the average utility over all peers to have a given fan-out. This
result indicates that compared with Sepidar, the proposed
scheme certainly increases the utility of poor peers and the
amount of increase is about 30% when the number of upload
slots is small. In addition, the average utility over all peers is
0.87 in the proposed scheme, which significantly increases
the average utility of 0.75 in Sepidar.
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Fig. 3: Comparison with Sepidar.
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Fig. 4: Comparison with the Chu’s taxation scheme.

Next, we compare the performance of the proposed
scheme with the Chu’s taxation scheme. Figure 4 illustrates
the result. In the taxation scheme, the utility of rich peers
does not change after the fan-out reaches 14. In other words,
under this scheme, there are no incentives for rich peers
for the further contribution when the number of contributed
slots exceeds 14. In contrast to that, in the proposed scheme,
the utility of rich peers gradually increases as the fan-out
increases, which indicates that it certainly gives incentives
to rich peers for the contribution of their resources.

This figure also shows that the absolute value of the utility
of rich peers is smaller than the utility of rich peers in the
taxation scheme, which is because of the following reasons.
In the proposed scheme, the number of trees in which a
peer can participate is determined by the bidding of reward
points held by the peer. Hence even if it has a large fan-out,
it could not join a sufficient number of trees if it has less
reward points than the other peers. On the other hand, under
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Fig. 5: Impact of the number of participants to the perfor-
mance of the proposed scheme.

the Chu’s scheme, the participation in a tree is controlled
by the content server, and each peer contributing fi upload
slots participates in ri(= ⌊fi/t⌋) trees with high probability.

5.3 Impact of the Number of Participants
Next, we evaluate the impact of the number of participants

to the performance of the proposed scheme. In the simula-
tion, we vary the number of participants from 500 to 3000 by
keeping the distribution of peers for each fan-out as shown
in Table 2. The result is illustrated in Figure 5. The vertical
axis of the figure is normalized by the utility in the case of
2000 participants. This figure indicates that for any fan-out,
the utility of peers increases as the number of participants
increases, and the amount of increase is large for the peers to
have small fan-out. The increase of the utility is apparently
because of the increase of the number of available upload
slots caused by the increase of the number of participants.
In addition, a large increase for the peers with small fan-out
is due to the low utility compared with the peers with large
fan-out as was shown in Figure 3.

5.4 Impact of Two Intervals to the Performance
In this subsection, we evaluate the impact of two intervals

used in the proposed scheme to the performance, i.e., earning
interval described in Section 4.2 and the update interval of
parameter Rd described in Section 4.4.

Figure 6 shows the impact of the update interval to the
utility (recall that in previous subsections, this interval was
fixed to 30 sec as shown in Table 1). Each curve in the figure
corresponds to an update interval, which is ranged from 30
sec to 1200 sec, and the vertical axis is the utility normalized
by the result for 30 sec, i.e., “value 100” corresponds to the
utility at 30 sec. As the interval increases, the utility of peers
with small fan-out rapidly decreases, while that of peers with
moderate fan-out slightly increases. Such a badness for poor
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Fig. 6: Impact of the update interval of Rd to the perfor-
mance of the proposed scheme.
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Fig. 7: Impact of the earning interval to the performance of
the proposed scheme.

peers is due to the way of updating Rd. More specifically,
even if there are enough upload slots due to the arrival of
new peers, the scheme increments Rd one-by-one in each
interval, which significantly loses the benefit of the minimum
guarantee in the proposed scheme.

Finally, we evaluate the impact of the earning interval
to the performance. The result is shown in Figure 7. The
vertical axis of the figure is the utility normalized by the
result for 10 sec, as before. The increase of the earning
interval decreases the utility of most of the peers to have fan-
out of more than four, while it increases the utility of peers to
have small fan-out of less than four. This phenomenon could
be explained as follows. A long earning interval reduces the
chance of earning reward points for all peers. In addition,
each winner should pay 5% of the reward points and the
points which can be carried over to the next earning interval



is bounded by a logarithm of the current point (see Section
4.5). Thus by increasing the earning interval, the competitive
power of a peer reduces if it has large fan-out and increases
if it has small fan-out.

6. Concluding Remarks
This paper proposes an incentive scheme for P2P live

streaming system which is aware of the upload bandwidth
of each participant. The proposed scheme is a combination
of an auction-based incentive scheme and a taxation scheme
based on the notion of minimum guaranteed services. The
result of simulation indicates that it could increase the utility
of poor peers by 30% compared with a conventional auction-
based scheme and could improve the shape of utility function
of rich peers so that it gradually increases as the amount of
contribution increases.

An important future work is to refine the scheme by
considering the cost, such as the maintenance cost of data
structures and the cost for securely exchanging reward
points. Another issue is to refine the model of simulation
so that it reflects the dynamic change of the environment.
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Abstract— With an aim to stress the need for a rigorous
formalization of routing schemes for structured peer-to-
peer overlay networks, in this work, we demonstrate the
usefulness of a formal definition that we have come up with,
by elaborating on one of the several network properties
that are either determined or limited by the routing scheme
that builds the network. After briefly presenting the intuition
behind the necessity and sufficiency of our formal definition
of a routing scheme for structured overlay networks, we
elaborate on the notion of average path length for structured
overlays and derive its expression in terms of the routing
scheme parameters to show how the overlay network’s
average path length is determined by its routing scheme.

Keywords: Theory, Routing, Overlay Networks, Average Path
Length

1. Introduction
Structured Overlay Networks (SONs, for short) are ab-

stractions over real physical networks, which allow imposi-
tion of any arbitrary structure on a highly dynamic and het-
erogeneous underlying network, by having the connections
among their constituent logical nodes established selectively,
independent of how the underlying network is organized.
We use the term routing scheme to refer to the component
of the system which is responsible for assigning a specific
structure to the overlay network. Since the inception of
Distributed Hash Tables (the most popular data structure
used to implement structured overlays) in the early 2000s,
several overlay properties like degree, diameter, congestion,
resilience, flexibility, load-balancing, latency, etc., have been
identified as evaluation criteria for the overlays. We are
interested in exploring which ones among the lot are routing
scheme dependent and how that determines the intrinsic
relation among these properties - a task which, we believe,
cannot be accomplished without having a rigorous formal
structure define a generic routing scheme and its charac-
teristics for SONs. Structured overlay networks have now
been in use for nearly a decade, but the more we go through
existing literature on DHTs, a majority of which deals with
presenting specific routing algorithms, comparisons among

specific geometries/algorithms, statistical analysis, experi-
mental results, designing guidelines, etc., the tougher we feel
it is, to compare the overlay routing strategies, and decide
what network suits what needs best, leading us to believe that
the principles on which routing in structured overlays works,
are still not very well understood. With cloud computing
at its peak and new ambitious uses of DHTs like next
generation internet [26] being proposed, we are convinced
that a theory of routing in SONs is required now more than
ever. Our belief is reinforced by hints of interest in that
direction indicated by recent works like [24] and [25]. For
space limitations, we are going to keep the discussion on the
why of the components, that, according to us, constitute the
formal definition of a routing scheme for structured overlays
very brief and informal in the section The Framework. Our
major focus in this work is to demonstrate the usefulness of
our definition by showing how the generic expression for
one of the most practically relevant properties of a SON -
its average path length - or as we like to call it - the mean
chord length of the overlay - can be derived for an overlay
in terms of the routing scheme definition components.

2. Related Work
A considerable amount of work, in the past decade, has

gone into building various kinds of Distributed Hash Tables,
each one with its own specific routing algorithm [1], [2],
[3], [4], [5], [6], [7], [8], etc. Initially, one of the most
explored aspects of DHTs was the state-efficiency trade-off
they achieved. When [9] put forward several open questions
like whether a logarithmic (in network size, N ) routing
state to achieve logarithmic network diameter (in N ) was
optimal for the DHTs, the effect of the state-efficiency trade-
off on other network properties like congestion, resilience,
flexibility, etc. was inevitably explored. [10], for instance,
showed, as had been correctly speculated earlier by [9], that,
even though latter DHTs like [6], [7], [8], etc., provided a
negative answer to the state-efficiency trade-off question by
achieving a logarithmic diameter in constant routing state,
they did so at the expense of introducing congestion into the
network. [11] analyzed the state-efficiency trade-off question
in light of another parameter - fault resilience of the net-
work - and carried out a graph-theoretic comparison of the
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routing performance and fault resilience of various DHTs.
[12] examined the effect of routing geometry on network
characteristics - resilience and proximity. The authors drew
a clear demarkation between a routing algorithm and a rout-
ing geometry and chose to work with specific geometries.
According to their definition, our work deals with routing
algorithms. [18] and [19] carried out experimental analysis
of specific DHTs with the former analyzing the effect of
neighbour selection on resilience and the latter providing
a performance versus cost framework for DHT designers
to analyze and compare the various network parameters
under churn. In surveys like [20] and [21] properties of
various DHTs were analyzed and compared. And though
theoretical frameworks like [13], [14], [15] constituting
formal definitions for identifier spaces and routing table
construction, have been presented, invariably all deal with
only specific routing table construction algorithms. The list
of related literature on frameworks, guidelines, design issues,
network architecture, specific routing protocols, routing table
constructions techniques, etc., is endless, but none of these,
to the best of our knowledge, aims at coming up with a
formal definition of the routing scheme for a SON that
determines (rather than depends on) the routing geometry
for the network which subsequently determines the network
properties. Therefore, although average path length and con-
gestion are no new concepts for overlay networks, evaluation
of these properties has conventionally been carried out only
for specific geometries unlike this work that presents generic
derivations in terms of the generic routing scheme definition
presented in [0]. The closest a work comes to ours is [24],
where the authors present stochastic modeling of routing in
DHTs using renewal processes and present upper bounds
on per hop routing progress for classes of DHTs defined
by them. The models, definitions, and results given in [24],
however, are quite different from ours and the authors don’t
deal with the properties that we derive in this work.

3. The Framework
Informally, by the term ‘routing scheme’, we refer to the

set of rules that determine - 1. the addressing format of
the nodes in overlay network - the number and the type of
symbols that form the address, 2. how the routing table - set
of neighbours - for every node in the network, and hence
the overlay topology, is constructed, and 3. the forwarding
logic - how the next hop neighbour at a host node is chosen
from its routing table, given a specific destination address.
We refer to the overlay features which are determined by
the routing scheme as the routing scheme’s basic char-
acteristics. In this work, we shall only deal with routing
schemes that satisfy what we refer to as the reachability
condition which requires that the routing scheme should
be able to deterministically route any message to any
destination originating from any source in the network
within a bounded number of steps, i.e., every node must

be reachable from every other node in the network within
a bounded number of steps. A routing scheme that satisfies
the reachability condition shall be referred to as a complete
routing scheme.

3.1 The Generic Address Space
We restrict the scope of our definition to cover the

routing schemes that operate with a class of address spaces
characterized by three properties. Firstly, address spaces
that are totally ordered sets on their members addresses.
We refer to this property of our generic address space
as complete indexability. Since, in every totally ordered
set, the set members can be grouped by their relative
order w.r.t each other and that can be recursively repeated
within each group to form smaller groups, it implies that
a structured recursive hierarchy in which, instead of being
a set of addresses, every constituent search space (of size
> 1) is a set of smaller search spaces, can be defined on
every complete indexable address space. We refer to each
distinct level in the search space hierarchy as a search
level or a level and to the smaller search spaces available
as forwarding options at any search level as blocks. So,
under our current scope, the generic address space of a
generic routing scheme for structured overlays can always
be organized into levels and blocks. And since every
destination node (by its address) belongs to some block at
every search level in the search space hierarchy for every
source node, the routing scheme forms directed connections
across blocks at all search levels using a function, φt -
the phase transition function, to ensure progress towards
the destination via a level by level block selection process.
Secondly, we choose to deal with only constraint-free
address spaces, spaces where the address digits for every
member address can be chosen independent of each other.
Such an address space with ‘d’ levels and ‘b’ blocks
can be geometrically represented by a discrete and finite
‘d’-dimensional newtonian space with each dimension size
‘b’. We refer to this space, in which addresses can be seen
as points with integral co-ordinates, as a d-address space.
We also refer to φt as an impulse in the d-address space as
its application on the host address to obtain the next hop
address is what displaces the message across the address
points in the address space. The displacement caused by φt
at level i is captured by its component along i - ρgi which
computes the next hop block v′h given the host block vh and
the destination block vd at level i, i.e., ρgi(vh, vd) = v′h.
And thirdly, we choose to deal with only search uniform
‘φt’s - functions that create a uniform search space by
connecting blocks at all levels in the d-address space in the
exact same manner, i.e., by using the same component ρg
at all levels in the address space.

Each routing step in the overlay corresponds to a block
shift - migration (of the message) from the block containing
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the source node to one of the next hop blocks which is
closest to the destination block - at some level in our d-
address space. In a uniform search space with blocks stitched
together by φt, at any level i, we define the distance (all
connections being directed, all distances are asymmetric)
from block vs to block vd, denoted by dφt

(vd, vs), as the
minimum number of block shifts it takes for a message to
reach from a node in block vs to one in block vd at level
i. For instance, with 4 blocks at level i connected by φt
as - v0 → v4 → v7 → v2 → v0 - dφt(v4, v0) = 1 while
dφt

(v2, v0) = 3. We showed that, at every level, there is
exactly one shortest link of blocks on which both vs as
well as vd appear. The level diameter - ‘z’ - is defined as
the maximum distance between any two blocks in the same
level which is also the maximum number of routing steps
the scheme may take to carry a message from the ith search
level to the (i+ 1)th search level.

3.2 Definitions
Definition 1 (Address): In a ‘d’-address space with each

dimension size ‘b’ denoted by Ab,d, an address is defined
as a sequence of ‘d’ digits in base ‘b’.

A[i] denotes the value of the ith digit in A. For a positive
integer n, we use Wn to represent the set of whole numbers
less than n. For any w ⊆Wd, A(w) denotes the subsequence
of A corresponding to the indices in the set w. We say w
is an index set (the same subsequence may have multiple
index sets in the same parent sequence) of A(w) in A. The
size of a subsequence α is denoted by |α|. For an address
A in address space A10,10, let A[i] = vi and let α be the
subsequence corresponding to index set w = {0, 1, 3, 6, 7},
then,

Wn = {0, 1, 2, . . . , n− 2, n− 1}

Ab,d = {Wb}d

A = 〈v0, v1, . . . , vi, . . . , vd−1〉, vi ∈Wb

α = A(w) = 〈v0, v1, v3, v6, v7〉

|α| = |A(w)| = |w| = 5

Though the indices in an address Ai correspond to the
search levels in the search view of node ni while the values
at specific indices correspond to the blocks at the respective
levels, the subtlety in the usage of these terminologies is
explained under the bit search space and address format in
the Appendix.

Definition 2 (Transition Function): We say any function
of type f : Ab,d → Ab,d is a transition function, denoted
by ‘ft’, in Ab,d, i.e., f(A) = B for addresses A,B ∈ Ab,d.

The transition function, denoted by ‘ft’, can be used to
create a directed link from A to B. From the message’s
point of view, we also refer to ft as an impulse in Ab,d
as, during the routing process, the message undergoes a
transition from A to B in Ab,d via ft (hence the name). We
say address B is reachable from A in Ab,d through ft if
∃ a positive integer k such that fkt (A) = B. By definition,
the corresponding digits in any two addresses A and B
should be given by A[i] and B[i] for any i ∈ Wb. But,
an ft, that may shuffle the digits (which may be required
to create topologies like de-bruijn graphs) around in host
address Ah to compute a next hop address Ah+1, may, as
a result, disturb the mapping between the corresponding
digits in Ah and Ah+1 (and hence between Ah+1 and
Ad, the destination address). So, in order to we keep
track of the mapping between corresponding digits in any
host address Ah and the source address As during the
routing process, we define an index sequence for a host
address Ah w.r.t a source address As and a transition
function ft, that represents the permutation of indices in Ah
w.r.t As that captures any reshuffling of digits ft may cause.

Definition 3 (Index Sequence:): The index sequence
in host address Ah w.r.t source address As and transition
function ft, denoted by Iseq(Ah, As, ft), is the permutation
P of the sequence 〈0, 1, . . . , d−1〉 such that the ith member
of P , say Pi, represents the index that the digit Ah[Pi] had
in As.

For instance, let As = A0 and Ah = A2. Let
ft : Aj [i] = Aj−1[(i + 2)%d], ∀i ∈ Wd be applied during
the process A0 → A1 → A2. The index sequence in any
source address like A0 is always 〈0, 1, . . . , d−1〉. Applying
ft twice on A0 to get A2 makes the index sequence at
A2 a ‘left shifted by 4 units permutation’ of the initial
sequence (at A0) according to the definition of ft, i.e.
Iseq(A2, A0, ft) = 〈4, 5, . . . , d − 1, 0, 1, 2, 3〉. Note that,
any w ⊆Wd has a unique index set in any index sequence.
For any w ⊆ Wd and any index sequence P , we use
Iset(w,P ) to denote the index set the values of w have
in index sequence P . For instance let w = 〈0, 2, 3, 7〉
and let index sequence P = 〈7, 0, 1, 3, 6, 2, 5, 4〉, then
Iset(w,P ) = {0, 1, 3, 5}.

Definition 4 (In Phase Subsequences:): Let, for
addresses A and B in Ab,d, α = A(w1) and β = B(w2) for
some sets w1, w2 ⊆Wd. Subsequences α and β are said to
be in phase w.r.t a transition function ‘ft’ defined in Ab,d
if,

1) |w1| = |w2|, and
2) ∃ a positive integer k1 such that fk1t (A) = A′, where

(a) Iset(w1, Iseq(A
′, A, ft)) = w2 and (b) A′(w2) =

B(w2)
3) ∃ a positive integer k2 such that fk2t (B) = B′, where
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(a) Iset(w2, Iseq(B
′, B, ft)) = w1 and (b)

B′(w1) = A(w1)

We say, ‘β’ is k1-in phase with ‘α’ (while ‘α’ is k2-in
phase with ‘β’) w.r.t to ‘ft’ in Ab,d. Addresses A and B
are said to be isomorphic w.r.t ft in Ab,d if the entire
sequence A is in phase with the entire sequence B, i.e., if
A(w1) is in phase with B(w2) for w1 = w2 = Wd. That is
to say, addresses A and B are isomorphic under ft in Ab,d,
if B is reachable from A and vice-versa through the same
transition function, ft, i.e., if ∃ positive integers k1 and k2,
such that fk1t (A) = B and fk2t (B) = A. We say, B is the
k1-isomorph of A while A is the k2-isomorph of B w.r.t ft
in Ab,d.

Definition 5 (Phase Preserving Function): A phase pre-
serving function ‘φp’ is a transition function with the addi-
tional property of being self-invertible in its address space
Ab,d, i.e., for every phase preserving function φp in Ab,d,

1) φp : Ab,d → Ab,d, and
2) ∀ A ∈ Ab,d, ∃ integer km > 0 such that φkmp (A) = A

where km gives the period of φp w.r.t A, generally
denoted by τφp,A or simply per(φp, A) with τφ denoting
the maximum period of φp for any A ∈ Ab,d. For
address A0 and phase preserving function φp defined in
address space Ab,d, with per(φp, A0) = τ , an isomorphic
ring for φp and A0 in Ab,d, Rφp,A0

, is defined as
the sequence of addresses obtained by applying φp ‘i’
times on A0 to get the ith member of the sequence
∀i ∈ Wτ , i.e., Rφp,A0 ← φip(A0) = Ai, ∀i ∈ Wτ ,
Rφp,A0

= 〈A0, A1, . . . , Aτ−2, Aτ−1〉.

Definition 6 (Phase Transition Function:): A phase
transition function ‘φt’ is defined w.r.t to a φp in Ab,d as a
transition function which throws some digits in any address
A ∈ Rφp,A0 of any ring formed by φp in Ab,d, out of phase
with the other addresses in Rφp,A0 w.r.t φp, i.e., for any
address A ∈ Rφp,A0

, ∀A0 ∈ Ab,d, φt(A) = A′ such that
A′ /∈ Rφp,A0

.

Definition 7 (Routing Step): For a route of length ‘m’
- number of distinct jumps the message makes from the
source till the destination - between a source-destination
pair in the network, the source and the destination addresses
can be denoted by A0 and Am, respectively. We say the
message transfer, Ai−1 → Ai, denoted by si, on the route -
A0, A1, . . . , Am−1, Am - constitutes the ‘ith’ routing step
of the routing process.

Address Ai reached after the ith routing step can be
divided into three non-overlapping subsequences - resolved
digits denoted by ri - digits that are in phase with the
corresponding destination address digits (ones with the same

index sets at the beginning of the routing process) w.r.t φp
after the ‘ith’ routing step, target digit denoted by ti - digit
that shall undergo a phase transition (w.r.t the other digits in
A) during the (i + 1)th routing step, and unresolved digits
denoted by ui - digits that are neither resolved nor target
digits at the current routing step. The unresolved digits can
further be categorized into - deterministic and probabilistic
- types. Values for unresolved digits in next hop addresses
(neighbours in the routing table) in the former category are
deterministically bound to the values of the corresponding
digits in the host address whereas the ones in the latter
category, may take any value (so long as they are unresolved)
from Ib in the routing entries and referred to as don’t care
digits (until targeted). Routing step si,

si : ri−1 → ri; ti−1 → ti; ui−1 → ui

4. The Generic Routing Scheme - ‘Ψ’
Parameters ‘b’ and ‘d’ organize the N overlay nodes into

a discrete, finite, constraint free d-dimensional space with
each dimension of size b and the points (with integral co-
ordinates) representing node addresses. Routing is reduced
to a task of moving the message from a source point to some
destination point in Ab,d. Function φt stores impulses (makes
connections via routing entries) at every point which can be
used to launch the message in a specific direction with a
specific magnitude. The number and nature of connections
(hence the routing table size) to be made at a node depends
upon the intermediate topology presented to φt by φp which
makes the background space dynamic (captured by the
intermediate topology) by making it participate in the routing
process in a deterministic way. As the final bit, we use Js
to represent the function that determines the level-to-index
mapping, i.e., the order in which the address digits are
resolved, for the address. So, until there can be identified in-
trinsic routing aspects of structured overlays that are beyond
the scope of parameters - b, d, φp, φt, and Js - (in which case
our definition will need to be extended), our formal definition
of a generic routing scheme for SONs, denoted Ψ, can be
represented by the five tuple 〈b, d, φp, φt, Js〉. We now show
how the Ψ parameters determine the - average path length
and inherent congestion - for an overlay network built by Ψ.

4.1 Basic Routing Characteristics
The most general evaluation criteria for software systems

includes the system’s - performance, cost, fault-tolerance
and scalability. Further, for a distributed, decentralized
and abstracted system like a SON, additional features -
fairness, self-maintenance, abstraction overhead become
relevant. Based on various works like [16], [17], [20],
[21], [22], [23], [27], etc., the various metrics on which
SON features are evaluated are - (performance) worst
case hops, avg. hops, path latency; (cost) routing table
size, forwarding complexity; (fault-tolerance) node/path
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failures tolerated; (fairness) data distribution, routing load
distribution; (self-maintenance) recovery time, routing table
size; (abstraction overhead) path stretch; and (scalability)
manageable network size. Of these, data distribution is the
responsibility of the load balancing technique while the
remaining metrics are determined/affected by the routing
scheme. For that reason, we also refer to the network
properties (listed below) evaluated on these metrics as
the basic routing characteristics. Well known network
properties - network diameter and node out-degree -
correspond to maximum no. of hops and routing table
size, respectively, while more abstract notions like static
resilience [12], congestion [10], and robustness [23], aim
at capturing metrics related to fault-tolerance, fairness, and
self-maintenance, respectively. We have come up with -
strong static resilience, weak static resilience and inherent
network congestion - as tighter definitions for the first
two notions. As scalability is just a measure of how all
other network properties are affected with a change in the
network size while forwarding complexity can be safely
assumed to never be a bottleneck metric, we define network
properties for the remaining metrics - 1. Mean Chord
Length - represents the avg. no. of hops, 2. Inherent
Network Congestion - reveals the distribution of routing
load among the nodes and the edges in the network, 3.
Network Flexibility - limits path latency, path stretch, and
recovery time, 4. Network Tenacity - quantifies strong
static resilience, and 5. Network Integrity - quantifies
weak static resilience. For the space available, we restrict
ourselves to only the first property - the mean chord length
of a SON - in this work.

Mean Chord Length: We refer to the average (expected)
route length for a source-destination pair in a network G
formed by routing scheme Ψ, as the mean chord length of
the network. We go about the derivation by first computing
the expected route length for a specific source-destination
pair (ns, nd) (eqn. (5)) and then summing over the results
for all such pairs in the network (as each distinct route in
the network is built by Ψ independent of every other route
in it) to derive it’s mean chord length. In order to calculate
the expected route length for pair (ns, nd), we need to
estimate all possible paths from ns to nd. Now, since, for
any source-destination pair (ns, nd), (addresses (As, Ad))
the next hop neighbours during the routing process are
chosen deterministically from the routing table, i.e., the
index to be resolved (that determines the row no.) and
the target value at the target index (that determines the
column no.) is known at every routing step, it implies that
the index sequence - the order (by index) in which the
address digits are targeted for resolution during the routing
process - can be identified at the beginning of the routing
process for (ns, nd). Let ji denote the index in As that
corresponds to the ith level (which is, therefore, the ith

index to be resolved) in the search space and let ki denote
the block distance from the host block to the destination
block at the ith search level, i.e., if, with Ki =

∑i
j=0 ki,

Asi = φ
Ki−1
p (As) and Adi = φ

Ki−1
p (Ad) denote the source

and destination address isomorphs after the ki−1th routing
step (immediately after the (i− 1)

th has been resolved)
while j′i (index of digit As[ji] in Asi ) denotes the next index
(in Asi ) to be resolved, then ki = dφt

(Adi [j
′
i], Asi [j

′
i]).

With j0, Ad, and As known initially, we can compute
k0 = dφt(Ad[j0], As[j0]), the no. of routing steps Ψ
takes to resolve As[j0]. Further, since j′1 and Ad1 can be
computed by applying φp on j1 and Ad, respectively, if the
value As1 [j′1] (a function of φt and As[j1]) is known, too,
then computing k1 = dφt(Ad1 [j′1], As1 [j′1]), becomes trivial,
as well. And similarly, we can compute the entire hop
sequence - 〈k0, k1, . . . , kd〉 - for pair (ns, nd) in network
G (build by Ψ), where, for i ∈ [0, d − 1], ki denotes the
exact no. of routing steps required to resolve the ith search
level for (ns, nd) while kd = τ(φp) − (Kd−1 mod τ(φp))
denotes the no. of extra routing steps required to complete
a period of φp (to bring the address space to its original
configuration) after the last digit has been resolved.

Note that, till routing step ‘s’, that completes resolution
(locating the correct block) at the ith level, exactly Ki

routing steps are carried out. If the next target digit j′i
in host address Asi was a don’t care digit during ‘s’,
then it may take any value from Ib in Asi with equal
likelihood, otherwise, it equals Asi [j

′
i]. In case of the

non-deterministic shift in value of the current target digit
during the preceding routing step, (z + 1) values for ki+1

(no. of steps that shall be required to resolve the current
target) are possible, while in case of a deterministic shift
only 1 value, ki+1 = dφt

(Adi [j
′
i], Asi [j

′
i]), is possible. That

implies that if Ψ uses non-deterministic allocation of initial
values (before their resolution starts) to a total of x digits,
i.e., if there are a total of x digits (excluding the first digit
to be resolved because its value is always determined in
the beginning) in every address which are don’t care digits
before a routing step turns them into target digits, a total
of (z + 1)

x distinct hop sequences are possible for every
source-destination pair in the network, where every distinct
hop sequence represents a distinct type of path for the pair.
Now, since, its Ψ that determines the no. of don’t care digits
and their indices in any address during the routing process,
all the hop sequences for a given source-destination pair
can be exhausted using Ψ. For instance, let d = 4, z = 2
and let the index sequence for pair (ns, nd) come out to
be 〈1, 0, 3, 2〉. Further, let the k0 = 2, k2 = 1, and k4 = 0
while indices 0 and 2 represent digits that are don’t care
before being targeted for resolution during the routing
process. The (2 + 1)

2
= 9 hop sequences that exhaust all

possible types of paths Ψ may built from ns to nd are
- 〈2, 2, 1, 2, 0〉, 〈2, 2, 1, 1, 0〉, 〈2, 1, 1, 2, 0〉, 〈2, 1, 1, 1, 0〉,
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〈2, 1, 1, 0, 0〉, 〈2, 0, 1, 2, 0〉, 〈2, 0, 1, 1, 0〉, and 〈2, 0, 1, 0, 0〉.

In order to understand what path type each distinct
hop sequence for a source-destination pair (ns, nd) in
G represents, we classify the sources for a particular
destination in G into distinct types. Let Sx(nd) denote the
set of source nodes that have exactly (d−x) digits resolved
in their addresses w.r.t Ad and let Sx,k(nd) denote a subset
of Sx(nd) where the value at the target index of every
address can be resolved (w.r.t Ad) in exactly k routing steps.
Let 〈A1, A2, . . . , Aki〉 be the sub-path, that the message is
relayed on, during the ki routing steps (with Aj → Aj+1

denoting the jth step) carried out to resolve the ith search
level for pair (ns, nd). Now, note that, address Aj in the
sub-path must belong to set S(d−i+1),(ki−j+1) because each
address on the sub-route has exactly (i− 1) digits resolved
w.r.t Ad and it takes exactly (ki− j+ 1) routing steps from
Aj for the digit corresponding to the ith level to be resolved.
If among the x unresolved digits, there are xp don’t care
digits and vt distinct values, that require exactly (ki−j+1)
routing steps to be resolved, possible at the target index,
then the size of set Sx,k(nd) would be vtbxp as while the
values of the other digits are deterministically bound to
their initial values, different values for the target and the
don’t care digits allow addresses to qualify as members
of Sx,k(nd). A hop sequence H : 〈0, 1, 2, 0, 2, 1, 0〉 for
the pair (ns, nd), therefore, represents the path type -
r(H) : 〈S5,1, S4,2, S4,1, S2,2, S2,1, S1,1〉 - which means
that the jth routing hop is an address that comes from
the jth member of sequence r(H). Since, one or more
sets from r(H) may have multiple addresses, sequence H
represents multiple paths (hence path type) rather than a
singe path from ns to nd. Note that, by their definition, the
sets Sx,k(nd) are all non-overlapping (have no common
addresses) and together exhaust the (N−1) sources possible
for Ad in G. For Ψ with d = 4, z = 2, let index sequence
for (ns, nd), 〈0, 1, 2, 3〉. Let As ∈ S3,1(nd) (i.e, k0 = 0 as
the 0th level is already resolved in As w.r.t Ad and k1 = 1),
let k2 = 1 and k4 = 0, while indices 1 and 3 correspond to
don’t care digits, then, following (2 + 1)

1
= 3 (as one of

the two don’t care digits is resolved at the beginning of the
routing process) is the exhaustive list of route types from
As to Ad.

1) 〈0, 1, 1, 2, 0〉 : A3,1, A2,1, A1,2, A1,1, Ad
2) 〈0, 1, 1, 1, 0〉 : A3,1, A2,1, A1,1, Ad
3) 〈0, 1, 1, 0, 0〉 : A3,1, A2,1, Ad

For consecutive addresses Ax1,k1 and Ax2,k2 on any route
(Ad = A0,0), if k1 ∈ [2, z], then x2 = x1 and k2 = k1−1 (as
the same digit (level) is targeted in consecutive routing steps
(block shifts) until it is resolved and with every block shift
at the same level, φt reduces the host to destination block
distance by exactly 1 unit) whereas if k1 = 1 (i.e., if the

target digit is one routing step away from being resolved),
then x2 < x1, as at least one more digit (the target digit) gets
resolved in the routing step s: Ax1,k1 → Ax2,k2 . In addition,
xn = (x1−x2− 1) digits may get resolved, too, by chance,
in the same routing step as a result of random selection
of the don’t care digit values for neighbour Ax2,k2 by φt in
Ax1,k1 ’s routing table. If φt installs b̂ entries per routing cell
in the row (for search level i) of Ax1,k1 ’s routing table that
contains Ax2,k2 , the probability that an additional xn digits
(besides the current target) get resolved by chance in at least
one of the b̂ entries for routing step s is 1− (1− 1/bxn)b̂.
In general, let xn = max{0, x2−x1−1}, then p(x1 → x2),
probability a routing link exists from an address with x1
digits resolved (w.r.t Ad) to one with x2 digits resolved, is
given by,

p(x1 → x2) = 1−
(

1− 1

bxn

)b̂
(1)

Further, depending upon whether the value to the next
target digit (in Ax2,k2 ), say v2, is allotted deterministically
(in which case, v2 = f(v0, φp), for some function ‘f ’ while
v0 is the value the target digit had in the source address) or
non-deterministically (when the target digit is a don’t care
digit in Ax1,k1 ), k2 takes a single value (g(v0, φp), for some
function ‘g’) or it takes any of the Ib values with equal
likelihood, respectively. At any level in the search space, let
Bv,k denotes the set of block values from which block v
is exactly k steps away. Bv,k can be computed using the
inverse relation for φt, which can be derived by inverting
φt’s component impulse ρ at all the levels at which φt
operates. It follows from the fact that no matter how φt
connects the blocks at the target levels, that, every distinct
source-destination block pair lies on exactly 1 shortest chain
at every target level, given any two blocks vdi and vsi at level
i, and an offset k, function ρ−1(vdi , vsi , k) that returns the
block vhi

from which vdi is exactly k steps away on the
shortest chain connecting vsi to vdi at level i, can be derived
given the function ρ that forms connections amongst the
blocks at level i. Applying ρ−1 for a specific k, vd = v
and ∀vs ∈ Ib, we can derive the set Bv,k. Now, let vh
and vd denote the values of the target digit in Ax2,k2 and
Ad, respectively, then vh ∈ Bvd,k2 . Let bt denote the total
no. of values the target digit in Ax2,k2 may take and let bf
denote the total no. of values it may take to be a member of
Bvd,k2 . Note, that when choosing the value of the target digit
in Ax2,k2 non-deterministically, bt = b and bf = |Bvd,k2 |,
whereas in the deterministic case, bt = 1 as well as bf = 1.
So, in general, we have, p(v2 ∈ Bvd,k2), the probability
that the next target digit value (v2) in at least one of the b̂
entries installed per cell in the row corresponding to level i
in Ax1,k1 ’s routing table, belongs to Bvd,k2 , given by,

p(v2 ∈ Bvd,k2) = 1−
(

1− bf
bt

)b̂
(2)
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Combining eqns (1) and (2), we get the probability that
Ax2,k2 exists as the next hop address towards destination Ad
in Ax1,k1 ’s routing table built by Ψ, p(Ax1,k1 → Ax2,k2),

=

[
1−

(
1− 1

bxn

)b̂
][

1−
(

1− bf
bt

)b̂
]

(3)

Using this result, p(As 99K Ad, H), the probability that
path (As 99K Ad) is of the type represented by hop sequence
H: 〈h1, h2, . . . , hx−1, hx〉 is given by,

p(As 99K Ad, H) =

l(H)∏
j=1

p(Axj ,kj → Axj+1,kj+1) (4)

where ‘l(H)’ is the path length given by
∑x
j=1 |hj | while

Axj ,kj is the jth address on the path type determined by
hop sequence H . Now, we know that addresses in the set
Sx,k(nd) have exactly (d− x) digits resolved w.r.t Ad with
have 1 target digit in the remaining x digits. Let xd (in the
remaining (x−1) digits) denote the no. of digits the values of
which after any routing step are deterministically bound to
their initial values by Ψ. Then, xp, the no. of don’t care digits
in every address in the set Sx,k(nd), equals (x − xd − 1).
Since, xd is determined by Ψ, xp can be computed for
the set Sx,d(nd). In every address A ∈ Sx,k(nd), (d − x)
resolved digits along with another xd digits in the remaining
x have their values fixed while the dp don’t care digits lead
to a total of bdp distinct subsequences and for each such
subsequence, the target digit leads to another bf = (1 or
|Bvd,k2 |) (as explained earlier) subsequences. The no. of
distinct addresses in Sx,k(nd), therefore, comes out to be
|Sx,k(nd)| = bfb

dp . Let, #(As 99K Ad, H) denote the total
no. of distinct paths represented by hop sequence H for pair
(ns, nd). Let S(x,k)i

(nd) denote the ith set in the path type
r(H) (length l(H)) corresponding to hop sequence H for
(ns, nd), then we have,

#(As 99K Ad, H) =

l(H)∏
j=1

|S(x,k)j
(nd)|

while if #H(ns, nd) = (z + 1)
x′ (x′ : don’t care digits

in intermediate hops) denotes the total no. of distinct hop
sequences for the pair (ns, nd), #(As 99K Ad), the total no.
of distinct paths represented by all Hj’s combined for the
pair (ns, nd) (which is also the total no. of distinct paths
possible from ns to nd in G), is given by

#(As 99K Ad) =

#H(ns,nd)∑
j=1

#(As 99K Ad, Hj)

Now, note that, as can be seen in the previous example
of exhausting path types for a source-destination pair, the
#H(ns, nd) hop sequences for the pair (ns, nd) are all

distinct in the sense that every sequence differs from every
other sequence at at least one hop. And since, all sets Sx,k
are non-overlapping, it follows that all hop sequences for
the same source-destination pair are mutually exclusive. So,
if Hj denotes the jth hop sequence for (ns, nd), while lj
denotes the length of the paths represented by Hj , we get
the expected route length for the pair (ns, nd) in network G
(built by Ψ), l̃G(As 99K Ad)

= lj

#H(ns,nd)∑
j=1

[
#(As 99K Ad, Hj)

#(As 99K Ad)

]
p(As 99K Ad, Hj)

(5)
where z represents the level diameter. Let Pr[s = As, d =

Ad] denote the probability that a randomly chosen source-
destination pair has ns as the source node and nd as the
destination node. Since all of the N(N−1) pairs are equally
likely to be chosen in a random draw, Pr[s = As, d = Ad] =
1/N(N − 1) for any pair in the network. That combined
with using eqn. (5) for all sources and all destinations in
the network, we get the expression for l̃G, the mean chord
length of the network,

l̃G =
∑

Ad,As∈Ab,d

l̃G(As 99K Ad)
N(N − 1)

(6)

Sets Sx,k(nd) for a given node are computed using φt−1

and φp
−1, relations that can be derived given φt and φp,

respectively, while the required probabilities depend on
b and d, too, besides φp and φt. The mean chord length
of the network is, therefore, captured by Ψ parameters -
b, d, φp, φt, and Js.

Application: As argued by Kersch et. al in [24], the
average no. of look up hops may sometimes turn out to
be a more informative performance metric than the worst
case hops. This is because the existence of small paths in
a network doesn’t imply they can always be discovered
[28]. We can always compare the routing schemes by the
respective network chord lengths, they lead to, in such
cases. Also, as the expected chord length would decrease
with an increase in no. of don’t care digits in the routing
entries, allowing for more don’t care digits improves the
expected chord length while it makes the routing table less
compact. That implies that there exists an inherent trade-off
among the properties - network diameter, expected chord
length, and the node out-degree - of an overlay network.

5. Conclusion and Future Work
We showed in this work how a formal definition of a

generic routing scheme can be used to derive one of the most
crucial network properties of a structured overlay network -
its mean chord length. Besides being informative criterion on
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which various existing DHTs may be compared, the generic
mean chord length expression can be used by the overlay
designer to customize the routing scheme by tweaking its pa-
rameters and tune the network mean chord length according
to his requirements. We are currently working on extending
the definition by deploying a class of ‘φp’s instead of a
single φp with each φp having a say in the structure of the
network leading to a potentially useful hybrid structure - one
which, we hope, could mould itself in response to network
phenomena like - congestion, churn, node failures - etc.,
with minimum effect on the basic routing characteristics.
The theory that we aim to establish is with the vision that
it could of great help to systems designers in choosing
the appropriate routing scheme parameters - b, d, φt, φp, Js
- to easily evaluate the trade-off between all (or at least
most) of the network characteristics to choose these values
in accordance with their system requirements.
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Appendix
Node: The term ‘node’ refers to a logical peer in the

virtual overlay network. If the logical peer is bounded to
a physical machine from the underlay network, we say
the node is occupied, otherwise we say the node is empty.
The size of the overlay network, denoted by ‘N’, is the
total number of nodes in the network, which is also the
maximum number of physical machines that can be mapped
onto the overlay network.

Address and Digit: The address of a node is a label
associated with the node that uniquely identifies it in the
overlay network. During any session (join to leave period)
of its participation in the overlay network, a physical peer
in the underlay is represented by some logical peer in
the overlay via a binding between the former’s physical
address and the latter’s logical address for the session. In
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the scope of this work, as shown in [0] that, without loss
of generality, a node address for any routing scheme for
SONs can always be thought of as a sequence of symbols
where each symbol takes its value from some alphanumeric
domain. The constituent symbols of an address are called
its digits.

Message: By message we refer to the data that is routed
across the network from the source node to the destination
node. Besides the payload information that the source may
want to communicate with the destination, the message
contains routing information required by the routing scheme
to guide the message to its destination.

Host Node: The node from which the message originates
and the node to which it must be taken are referred to as the
source and the destination nodes, respectively. Any other
node that the message visits on its path from the source
to the destination shall be referred to as an intermediate
node. By the term host node we shall refer to a node that
holds the complete message at any point of time during the
routing process.

Search Space and Address Format: The address of a
node encodes its unique location in an absolute search space
defined w.r.t some base address. While the indices of the
address digits correspond to the search levels, the value of
the digit at a specific index maps to the unique block the
node belongs to at the corresponding level. Since the search
levels are labelled by their depth in the search hierarchy
while the order in which the indices of an address may be
operated upon (to find addresses with required destination
values at these indices) by the routing scheme may vary for
different source-destination pairs in the network, the index
to level mapping may not always be exact meaning that the
ith index in an address may not necessary represent the ith

search level in a node’s search view. So, though we often
use the phrase ‘the level corresponding to index i or vice-
versa’ to refer to the index-level correspondence, even when
we use the terms interchangeably, the meaning conveyed the
phrase shall be implied. However, since, at any search level,
a node belongs to exactly one block, the block’s identifier
within the level can be used as the digit value, too, at the
corresponding index in the address, meaning that if there
are y blocks at a level, we can label them {0, 1, . . . , y − 1}
and, for a node belonging to the ith block at this level, the
digit value corresponding to the level would be i. The two
different notions - levels-blocks and digit indices and values
- that essentially carry the same meaning, do not render
each other redundant because while the former notion, that
captures a d-dimensional hypercube representation of the
nodes in the network, makes it convenient for us to establish
results like theorems 1 and 2, it makes semantic sense and
is much simpler and more conventional to use the latter -

unique identifier - as a parameter for routing functions that
build the connections amongst the overlay nodes and for
forwarding functions that carry out the routing process.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

106 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



Linux Software RAID Level 0 Technique for  

High Performance Computing by using  

PCI-Express based SSD 
 

Jae Gi Son, Taegyeong Kim,  Kuk Jin Jang, *Hyedong Jung 

Department of Industrial Convergence, Korea Electronics Technology Institute, Korea 

jgson@keti.re.kr, taegyeong@keti.re.kr, kjang@keti.re.kr, *hudson@keti.re.kr 

 

Abstract—The Linux-based legacy server systems are 

configured and used with software RAID to improve the 

performance of the disk I/O. Server systems requiring high 

performance prefer a special SSD that connects directly 

with the PCI-express bus to the SATA interface. However, 

the problem is that the current Linux kernel and software 

RAID are difficult to optimize the high-performance SSD 

based on PCI-Express because it is designed to be 

optimized for the conventional hard disk. Therefore, we 

propose the efficient method using re-combination and re-

mapping techniques to improve the performance of 

software RAID level-0 provided on the Linux kernel level. 

This proposed method is designed to have more bandwidth 

at a time by reducing the number of system calls 

considering the block I/O characteristics of Linux kernel 

and RAID level 0. As a low-level I/O benchmarking tool, 

XDD is used to evaluate the performance of the proposed 

method. According to the experimental results, our 

performance gains are 28.4% on write bandwidth and 

13.77% on read bandwidth compared with legacy software 

RAID. Moreover, CPU occupancy rates are decreased 81.2% 

and 77.8%, respectively. 

Keywords—Software RAID, PCI-E Express SSD, High 

Performance Computing, Disk I/O, Memory Block Device 

1. INTRODUCTION 

As big data, parallel and distributed processing 

become widespread, the demand for high-speed data 

storage technologies continues to rise. Moreover, 

more recent applications require fast response time 

with high throughput. However, as hard-disk input-

output speed depends on mechanical movement, the 

speed lacks in comparison to processor and network 

transfer speed. Therefore, flash-memory based SSD 

have been increasingly used in personal computers 

and laptops and research is actively pursued related to 

non-volatile memory [1]. Currently companies such 

as FusionIO, Intel, etc. have developed and 

commercialized PCI-Express based high performance 

SSD products.  Unlike SSD based on the common 

SATA interface, PCI-Express based SSD directly 

access the system bus architecture. Therefore, in this 

paper we designate all such devices as memory block 

devices. Despite the improved performance of PCI-

Express based SSD when compared to hard disk 

drives of SATA SSD, system using such devices are 

configured using software RAID (Redundant Array 

of Inexpensive Disks). This is due to the non-

existence of hardware-level RAID for SSD. 

Therefore in most Linux systems, software RAID 

(MD: Multiple Disk) is used to improve performance. 

However, the software RAID provided with standard 

Linux distributions was developed without 

consideration for high-speed block devices resulting 

in suboptimal performance when used with block 

devices.  This is due to the fact that software RAID 

does simple mapping of input-output (IO) requests to 

the actual devices which are collected and optimized 

by the IO scheduler. In the case of high-speed block 

memory devices, as the devices are connected 

directly to the system bus in order to improve 

performance, the IO Scheduler does not exist. 

Therefore, a need exists to design the architecture for 

software RAID taking memory block devices into 

consideration. Therefore, in this paper we propose a 

method for improving the performance when 

applying software RAID Level 0 provided by 

standard Linux distributions. The proposed method 

has the following characteristics:  First, the number 
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of system calls within the Linux system is reduced to 

lower processor overhead. Second, the fast response 

times and high throughput of memory block devices 

are considered to improve the performance of 

software RAID. 

The paper is organized as follows. In section 2, the 

technological background is described followed by an 

explanation of the proposed method for software 

RAID Level 0 for PCI-Express based high-

performance SSD. Section 3 describes proposed 

method and error handling. In section 4, the 

performance is evaluated. Section 5 is the conclusion 

and direction for future research.  

2.  BACKGROUND 

In Linux, two general approaches for software RAID 

are provided. These are the multiple disk (MD) and 

device mapper (DM). Though these two methods are 

similar, MD was developed with RAID 

considerations. DM was developed for virtual block 

devices resulting in a framework which allows for 

direct access to real block devices. In this section we 

concentrate on MD which has shown better 

performance comparatively.  

2.1 RAID LEVEL 0 IN MD 

An MD device is a Linux virtual block device 

consisting of several disk drives combined together to 

provide larger capacity and improved reliability [2]. 

Figure 1 depicts the general hierarchical structure of 

an MD device and general disk hierarchy. From 

Figure 1, MD functions as a virtual device between 

the file system layer and the block device layer. The 

virtual MD layer receives IO requests and distributes 

them accordingly to the underlying disk layer.  

RAID Level 0 comprised of data striping to provide 

improved performance. In general, RAID systems 

interleave sections of consecutive data on different 

devices in order to improve parallelism. These 

sections of data which are interleaving and allow 

parallel access are called stripes [3]. For example, for 

writing 1MB file, the files are divided into sections of 

64KB and recorded by interleaving the section across 

each of the disks. Even though the data itself is not 

accessed in parallel, performance improves when 

compared to using a single device. 

 

Figure 1. General disk hierarchy (left) and general 

hierarchical structure of an MD device. (right) 

The MD provided by the Linux kernel handles 'bio 

request' in the sequence depicted in Figure 2 in order 

to execute IO on the actual device.  

 

Figure 2. RAID level 0 processing of an MD 

Additionally, the procedure for handling of 'bio 

request' is shown in Code 1. As shown in Code 1, the 

key procedure of software RAID can be analyzed as 

follows: 

1. From the software RAID device of bio (bio 

bi_bdev) passed to the  'generic make 

request()' function, a function call is made to 

the callback 'md make request' 
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2. The 'md make request ()' function makes a 

subsequent call to the proper 'make request' 

function depending on the RAID Level. For 

RAID Level 0, the 'raid0 make request()' 

function is called 

3. From the RAID Level 0 handler 'raid0 make 

request ()' analyzes the sector and size of the 

bio passed to the function and maps it to the 

actual device such as a hard disk drive. For 

bio which exist across two block devices are 

divided and mapped accordingly. 

4. The mapped block device make a call once 

again to the 'generic make request' and 

passes the 'bio request' to the actual device 

1.  __generic_make_request() 

Call make_request followed by bio->bi_bdev. 

2. md_make_request() 

 Call raid0_make_request for raid 0 module. 

3. raid0_make_request() 

  Check real block device to process the request, map 

bio->bi_bdev to the block device 

4. __generic_make_request() 

  Send switched bio->bi_bdev. 

5. __make_request() 

  Insert request to request queue of real block 

device. 

6. Process request in real block device. 

Code 1. Procedure of request in MD 

As can be seen in the key highlight of the MD 

handling procedure, sequential IO events occur and in 

the case of large data recursive calls can result in 

drawbacks of high system overhead. In particular, 

performance improvement is limited due to the IO 

characteristics of disk devices and the stripe-level 

transfer of data for conciseness of software RAID. In 

the case of memory block devices with fast response 

times and high throughput, random memory access is 

possible therefore it is advantageous to send as much 

data as possible. However, the current software 

RAID is unable to utilize such characteristics.  

2.2 DEVICE MAPPER 

The device mapper was not originally developed for 

RAID but as a framework for storage devices. Thus 

the architecture allows for direct mapping of a virtual 

block device to an arbitrary physical device. 

DMRAID was developed to add support for RAID in 

DM [4].  

3. LINUX SOFTWARE RAID LEVEL 0 TECHNIQUE FOR 

PCI-EXPRESS BASED HIGH-PERFORMANCE SSD 

3.1 PROPOSED RAID LEVEL 0 TECHNIQUE 

PCI-Express based high performance SSD have 

greatly improved IO performance when compared to 

general disk drives. However, as the current Linux IO 

layer is optimized for low-speed devices, it is unable 

to utilize the full performance potential of high speed 

block devices. Unlike slower hard disk drives, high-

speed memory block devices are directly connected 

to the PCI-Express bus and therefore is unaffected by 

the Linux IO scheduler. Moreover, as the architecture 

of direct memory access (DMA) is organized in 

Scatter-Gather structure, which allows for transfer of 

non-consecutive segments of memory, large data 

transfers are possible. The proposed methods was 

designed to operate under the following assumptions. 

The memory block device is a device with fast 

response time and high throughput supports random 

access in a Scatter-Gather DMA structure. Analyzing 

the MD procedure from the Linux kernel under this 

assumption, an increase in performance can be 

expected from sending the first bio (block IO) and the 

(number of devices)*n+1 bio. Figure 3 depicts how 

the Linux kernel IO process when the strip size is 4 

KB. Each 4KB bio is added on the underlying 

physical device in sequence.  

 

Figure 3. Block IO process in MD of Linux kernel 

As can be seen in Figure 3, bio1 and bio5 occur on 

the same physical device. A significant gain in 

performance can occur if bio1 and bio5 can be 
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processed in one IO event. In Figure 4, a total of 6 

system calls occurs to transfer 24KB. In other words 

(Number of system calls) = (IO Data size) / (stripe 

size). 

 

Figure 4. Proposed RAID Level 0 method 

If we can combine IO data then, (Number of system 

calls) = (IO Data Size/Max Page Cache size +1) * 

Stripe Size, and in the case of Figure 4, the number of 

system calls is reduced to 4. The maximum allocation 

size for page cache is 1MB for the Linux kernel. 

However, allocating a large cache size results in a 

significant overhead cost. 

Though the stripe size of software RAID can be 

increased to improve performance, this results in a 

tradeoff of IO occurring on only a subset of the 

devices. For example, with 4 devices with a stripe 

size of 512KB and an IO of size 1024KB results in 

IO on only 2 device. However, the proposed method 

allows for IO to occur distributed evenly across all 

devices. 

Taking into consideration the characteristics of the 

'bio request' and the MD process of the Linux kernel,  

and the assumption of low delay and high throughput 

of the high-speed memory block device the following 

methods are proposed: 

1. Variable-length IO: The fixed stripe size of 

the bio request of MD is changed to allow 

variable length 

2. Remapping & Reassemble:  Remapping and 

reassemble occurs taking into consideration 

the characteristics of RAID Level 0 of MD 

To support high-speed memory block devices such as 

PCI-Express based SSD according to the proposed 

RAID Level 0 method, the included software RAID 

Level 0 of the standard Linux kernel was modified 

and improved according to the proposed method. The 

improved software RAID in this paper is designated 

as Enhanced MD. 

3.2 ERROR HANDLING 

In IO systems, error handling is an important factor 

that has a significant impact on performance. bio of 

the Enhanced MD applied with the proposed method 

generates a new 'bio request' through remapping & 

reassembly. The error handling of the newly 

generated 'bio request' is forwarded to the Linux 'bio 

error handler'. 

4. PERFORMANCE EVALUATION 

4.1 EVALUATION ENVIRONMENT 

The performance of the proposed method for 

software RAID Level 0 was evaluated using the PCI-

Express based 910 SSD from Intel. The Intel 910 

SSD is configured with 2 physical SSD on a single 

interface card. For the performance evaluation, 2 

interface cards were connected to PCI-Express 4x for 

a total of 4 physical SSD. The specifications of the 

evaluation environment are shown in detail in Table 1. 

We used CentOS with 2.6.32_x86_64 kernel and set 

the stripe size to 4096 bytes. Intel Xeon X5550 and 

8GB memory were used for the system. 
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Table 1. Evaluation environment 

 
Specification 

CPU Xeon® X5550 * 2EA 

RAM 8GB 

OS CentOS Linux 6.0 (final) 

Kernel 2.6.32_x86_64 

SSD 

Device 

Intel 910 SSD (200Gx4ea): PCI-

E 

Stripe 

Size 
4096 bytes 

 

For evaluation, the stripe size was set to 4KB using 

the mdadm utility of MD. For comparison, an 

unmodified MD installed by default on CentOS 6.0 

was used with the same environment to compare 

measurements of CPU usage and IO bandwidth. The 

performance evaluation tool XDD was used [5]. The 

XDD benchmark is a tool to measure disk 

performance and can be used to analyze low-speed 

IO in software RAID. The tool is commonly used to 

effectively evaluate block device performance. The 

XDD performance test was set to run with IO on 16 

threads to allow operation under a regular system 

load. 

4.2 EXPERIMENTAL RESULTS 

The developed software RAID Level 0 showed 

optimal performance with IO of size greater than 

(number of disk times stripe size) due to the 

characteristics of the key operating algorithm. From 

Figure 5 comparing the write bandwidth, it can be 

seen that the bandwidth greatly improves with 

Enhanced MD. When the IO size is 4-16 KB, the 

results are similar to the characteristics of RAID 

Level 0. In this case, the request are handled as 

sequential writes to a single memory block device. 

There is a slight performance degradation when the 

IO size in 8KB. When the IO size is 32 ~ 1024 KB, 

significant gains in performance is achieved by the 

proposed method. When the size is over 2048 KB, it 

was analyzed that performance improvements are no 

longer achieved due to the fact that the size is over 

the maximum page cache allocation of Linux. Overall, 

the write bandwidth of Enhanced MD achieved an 

improvement in performance on average of 28.24%.  

 

Figure 5. Comparison of writing throughput 
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Figure 6. Comparison of CPU usage in writing 

Figure 6 compares the CPU usage from the 

evaluation. From the results, the overall CPU usage 

across all sizes is less with Enhanced MD. This was 

analyzed to be due to the proposed methods 

remapping and reassembly, which results in a 

significant reduction in the number of system calls. 

As shown in Figure, the CPU usage is reduced by an 

average of 77.8%. The results for read performance 

were also improved in general as shown in Figure 7.  

As before with the result of write bandwidth, similar 

performance when compared with MD is shown for 

sizes of 4 - 16KB due to the characteristics of RAID 
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Level 0. However, for IO sizes of 32 - 128 KB, the 

memory allocation of the proposed method was 

analyzed to be the cause of the performance 

degradation in page caching. In general, the read 

bandwidth showed an improvement of about 13.77% 

on average. 

 

Figure 7. Comparison of reading throughput 

The CPU usage for reads is similar to that of write 

operations as shown in Figure 8. From the figure, the 

overall CPU usage has been reduced significantly. 

These results confirm the positive improvements of 

the proposed system. For read operations there was 

an average of 81.2% reduction in CPU usage. 
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Figure 8. Comparison of CPU usage in reading 

From the overall analysis of the entire experimental 

results, it can be seen that the performance of the 

proposed method shows significant improvement 

compared to the software RAID of standard Linux. 

Moreover, reduction in CPU overhead and 

improvements in IO performance can lead to 

improvements in overall system performance. In 

particular, as shown from the results from XDD 

experiments, by improving low-level IO performance, 

the proposed method will lead to significant 

improvements to systems which do not use page 

caching such as database systems. 

5. CONCLUSION 

The standard Linux kernel and software RAID is 

optimized for traditional block devices and is not 

suitable for current high-speed memory block devices. 

In the case of server systems which require high 

performance, limitations are shown in performance 

despite the use of high-speed memory block devices 

configure with SW RAID. Therefore, this paper 

proposed a method which provides a solution to the 

performance degradation when using high-speed 

memory block devices with the standard Linux kernel 

and software RAID Level 0. The proposed method 

has the following characteristics. First, the stripe unit 

of data used in RAID block IO was improved for 

variable length resulting in a reduction of system call 

within the Linux kernel. This reduces the overhead of 

the processor. Second, taking into consideration the 

fast response time and large bandwidth of the 

memory block device, the performance of software 

RAID is greatly improved. In addition, the 

performance was confirmed through evaluation using 

the low-level IO performance evaluation tool XDD. 

Based on the results in this paper, further research is 

needed to apply the method to RAID Level 4 and 

Level 5 while improving overall system reliability 

and safety. Furthermore, research regarding block 

migration on write operations which occurs due to the 

characteristics of SSD is needed 
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Abstract - A 2-D torus network is one of the most popular 

networks for parallel processing. Many algorithms have been 

proposed based on the turn model, but most of them cannot be 

applied to a torus network without modification. In this paper, 

we propose the North-South First Routing (NSF Routing) which 

combined the North First method (NF) and the South First 

method (SF). NF and SF are algorithms yielded by the turn 

model. NSF Routing is applicable to 2-D Torus. The dynamic 

performance was evaluated by a software simulation, and the 

static performance was also evaluated. As a result, it was 

shown that a throughput improves in some communication 

patterns, and about the same performance of a “The Average 

Number of Shortest Paths (ANSP)” static property. 

Keywords: Network on Chip, Interconnection Network, 

Adaptive Routing, Turn model  

 

1 Introduction 

  The interconnection network is an important topic in the 

field of parallel processing. Parallel computers have processing 

elements (PEs) that are directly connected to a network such as 

a k-ary n-cube. Parallel processing is also performed in a 

Network on Chip (NoC) between PEs located on one chip. 

Many different interconnection networks for parallel 

processing have been proposed, and the 2-D torus network is 

one of the most popular. 

 The routing algorithms of interconnection networks are 

classified into deterministic routing, in which paths are fixed, 

and adaptive routing [1]-[7], in which paths are changed to 

avoid failures or congestion. Because of its tolerance to failures 

and congestion, adaptive routing has been the topic of a lot of 

research. Various adaptive routing algorithms have been 

proposed for k-ary n-cubes [3]-[7]. However, these methods 

require additional hardware for virtual channels comparison 

with deterministic routing (its name is Dimension Order 

Routing, DOR) on a 2-D torus.  

A number of adaptive routing algorithms based on the turn 

model [8]-[10] do not need additional virtual channels. 

However, most of these algorithms cannot be applied to torus 

networks without change because most of those methods are 

algorithms for mesh or hyper-cube network. If an adaptive 

routing algorithm for a torus network could be realized by 

modifying the turn model, it would be possible to realize 

adaptive routing without having to install additional virtual 

channels. 

In this paper, we propose the North-South First Routing (NSF 

Routing) which combined the North First method (NF) and the 

South First method (SF) and evaluate the performance by 

software simulation and a static property. NF and SF are the 

part of the algorithms by a Turn model. NSF Routing is 

applicable to 2-D Torus. Moreover, performance is evaluated 

by a software simulation. 

2 2-D Torus Network 

 The 2-D torus network has an 𝑁 × 𝑁  2-dimensional 

structure, and its four edges are connected by wraparound links. 

It is used in many parallel computers and some interconnection 

networks include this. 

 Dimension order routing (DOR) is generally used for 

deterministic routing on a 2-D torus. In DOR, the packet moves 

on channels in the y-direction before moving to the x-direction. 

To avoid deadlocks on a 2-D torus, DOR needs two virtual 

channels (channel-L and channel-H).  

The method of selecting a virtual channel in the case of DOR 

on a 2-D torus network is as follows:  

 Choose channel-L when starting routing in the y-direction. 

 When the head of the packet passes through a wraparound 

link, move the packet to channel-H. 

 When the routing in the y-direction is completed, move the 

packet in the x-direction; use channel-L regardless of the 

current channel. 

 When the head of a packet passes through a wraparound 

link, moves the packet to channel-H. Use channel-H until 

the routing finishes. 

Figures 1 and 2 show the link selection function and channel 

selection function of DOR on an  𝑁 × 𝑁  torus. Here, the 

address of each PE of the torus is shown in terms of their 

coordinates (𝑥, 𝑦) . Moreover, the y-direction channels are 

written as Y+ and Y−, and the x-direction channels are written 
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as X+ and X−. The four inputs of the link selection function 

indicate the x and y coordinates of the present PE, and the x and 

y coordinates of the destination PE. The function outputs the 

link of either X+, X−, Y+, Y− or "OUT", which is an output 

link to a node. 

The three inputs of the channel selection function correspond 

to the current direction, current channel, and direction of the 

next hop. The current direction and the direction of the next 

hop have four states, i.e., X+, X−, Y+, and Y−. The current 

channel has three states, i.e., channel-L (L), channel-H (H), and 

wraparound channel (W). Although the output has two states 

(L and H), it unconditionally serves as W when the selected 

link is a wraparound link.  

 

3 Adaptive Routing of k-ary n-cube 

3.1 Turn Model 

 The turn model [8] is used by some adaptive routing 

algorithms [9][10]. Packet cycles can be prevented by adding 

a restriction to a path change (turn) of a packet. In the case of 

a 2-D mesh, there are eight kinds of turn, and the various turn 

model methods put restrictions on two of the eight turns. There 

is essentially no difference between these methods other than 

the choice of turn to be restricted. In this paper, we shall 

incorporate the North First (NF) algorithm and South First (SF) 

algorithm into one (NSF) and apply it to a 2-D torus.  

The turn model of DOR for a 2-D mesh is shown in Fig.3 a), 

and the turn model of the NF algorithm is shown in Fig.3 b). 

DOR restricts four out of eight turns, whereas the NF algorithm 

restricts only two, i.e., X−  (left, west)→ Y+ (upper, north) and 

the X+ (right, east) →  Y+ (upper, north). The South First 

algorithm, by which the Y− (South) direction is chosen at the 

beginning of a routing path, is similar. 

 
 

3.2 Application of the Turn Model to a Torus 

Network 

 When applying a turn model such as the NF algorithm to 

a torus network without change, the following differences from 

the case of a mesh network have to be considered. 

1)  In a torus network, when the packet passes through a 

wraparound channel, a deadlock by cyclic dependency can 

occur. Therefore, it is necessary to impose an additional 

restriction. 

2)  At least two virtual channels are needed for routing in a 

torus network. As a result, adaptive routing with higher 

pliability is attained by applying different turn models to 

each channel. 

An example of a cyclic dependency that occurs in the NF 

algorithm is shown in Fig.4. Here, packets A-D mutually block 

a path, causing a deadlock. By contrast, the deadlock does not 

happen in DOR because packets A and C do not turn in Fig.4. 

This problem illustrates that it is necessary to take into 

consideration complicated turn restrictions in adaptive routing 

on a torus network. Our method deals with this issue by 

applying the NF and SF algorithms to channel-H and channel-

L. 

4 North-South First Routing 

 If the turn model such as NF or SF algorithms is used for 

2-D torus, the circulation as shown in Fig. 4 occurs by packets 

of wraparound channels. To avoid the sort of deadlock 

described above, additional restrictions have to be put on the 

NF and SF algorithms: 

1)  The SF algorithm does its routing on channel-H. However, 

a cycle may occur when a path is chosen in which a packet 

returns to channel-L through channel-H, and for this reason, 

      
a) Dimension -Order Routing      b) North First (NF) Algorithm 

Fig.3  The Turn Model for 2D-Mesh Network 

 

// Link Selection Function for Dimension-Order Routing  

Link_Select_DOR (cx, cy, dx, dy) 

cx, cy;     // current node   0 ≦ cx, cy ≦ N－1 

dx, dy;     // destination    0 ≦ dx, dy ≦ N－1 

{ 

if(cy≠dy){            // dimension Y 

  dist_y = (N+dy-cy)%N; 

  if(1≦dist_y ≦N/2)      return Y+; 

  else             return Y-; 

} 

else if(cx≠dx){          // dimension X 

  dist_x = (N+dx-cx)%N; 

  if(1≦dist_x ≦N/2)      return X+; 

  else             return X-; 

} 

else              return OUT; 

} 
 

Fig.1  The Link Selection Function of the Dimension-Order 

Routing 

 

// Channel Selection Function for DOR 

Channel_Select_DOR (cd, cc, nd) 

cd;    // current direction   ∈{Y+, Y-, X+, X-} 

cc;     // current channel   ∈{L, H, W} 

nd;    // next direction    ∈{Y+, Y-, X+, X-} 

{ 

if(cc∈L)       return L;  // before wrap around 

else              // after wrap around 

if(cd∈{X+,X-} & nd ∈{Y+,Y-}) 

          return L;  // Y→X 

else        return H;   

} 

 

Fig.2  The Channel Selection Function of the Dimension-
Order Routing 
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DOR is carried out instead of the adaptive routing. In DOR, 

the x-direction channel chosen after a vertical (y-direction) 

wraparound channel has to be channel-L. 

2)  The NF algorithm does its routing on channel-L. Because 

the path of channel-H→channel-L exists after a wraparound 

channel, the cycle shown in Fig.4 occurs. As shown in Fig.5, 

though, the cycle can be avoided by adding one more 

restriction to the other two. Here, three restrictions are put 

on eight turns, specifically, right→upper, left→upper, and 

right→lower. This algorithm was named restricted North 

First (rNF). 

  

4.1 Definitions 

 From here on, all channels will be described in terms of 

their dimension 𝑑 ∈ {X, Y}, direction 𝛿 ∈ {+, −}, channel type 

𝑐 ∈ {L, W, H}, i.e., (𝑑𝛿, 𝑐). X means X dimension, Y means Y 

dimension, and L, W, and H means channel-L, wraparound 

channel, and channel-H. (𝑑+, 𝑐) and (𝑑−, 𝑐) will be shown as 

a set, written as  (𝑑±, 𝑐). 

4.2 Routing Algorithm 

 In our method, the restricted NF algorithm is carried out 

in channel-L and the SF algorithm is carried out in channel-H. 

Since (Y − , L)  and (Y + , H)  are respectively used in the 

restricted NF algorithm and SF algorithm, we will study cases 

in which (Y + , 𝑐)  is used and not used, and cases in which the 

horizontal and vertical wraparound channels are used and not 

used. 

Figures 6 and 7 show the link selection function and channel 

selection function of the proposed method on a 𝑁 × 𝑁 torus. 

As in the case of DOR in Fig.1, the link selection function 

outputs X+, X−, Y+, Y−, or "OUT" (an output link to a node). 

The proposed method needs the "current channel" as an input 

in addition to the inputs of DOR. 

The channel selection policy varies depending on whether 

(Y + , 𝑐) is used or not. If it is used, adaptive routing is carried 

out only when the wraparound channels is not to be used from 

that point on. If (Y + , 𝑐)  is not used, the restricted NF 

algorithm is carried out from the source PE until the first 

wraparound channel (or destination PE) is reached.  

The algorithm of Fig.6, in ①, first determines whether the 

wraparound links of X and Y are used. In this case, the 

determination is based on the X and Y coordinates of the 

source and destination PEs as follows: 

 When the difference between the X coordinates of the current 

PE and destination PE is less than N/2, h_wrap is set to 0 

because the wraparound channel of the x-direction is not 

straddled. If not, h_wrap is set to 1. 

 When the difference between the Y coordinates of the current 

PE and destination PE is less than N/2, v_wrap is set to 0. If 

not, v_wrap is set as 1. 

Next, the link is chosen on the basis of whether the Y+ channel 

(channel (Y + , 𝑐)) is used or not, as follows: 

 When (Y + , 𝑐) is used, the procedure ② is carried out. In 

this case, since the restricted NF in channel-L is equivalent 

to DOR, only the adaptive routing of the SF method in 

channel-H is carried out. If neither wraparound channel is 

used in going from the current PE to the destination, the 

packet can be sent over channel-H and routing can be 

continued. Thus, adaptive routing can be carried out with the 

SF method. The only other case in which channel-H may be 

used is after the packet has passed through a vertical 

wraparound channel (Y+, W) and is due to pass through a 

horizontal wraparound channel (X±, W). Even in this case, it 

is thought that adaptation routing using the SF method is 

possible. However, since it is difficult to prove that is 

deadlock-free, only the X-directional routing is carried out at 

first and SF is applied after the packet has passed through 

channel (X±, W). In the other case, DOR is carried out 

because only the channel-L is used.  

 When  (Y + , 𝑐) is not used, the procedure ③ is carried out. 

Since the SF method in channel-H is equivalent to DOR, only 

the adaptive routing of the restricted NF method in channel-

L is carried out. In this case, the following restriction is added 

in order to make the order of passage in a wraparound 

channel into (Y−, W) → (X±, W). 

 Restricted NF is carried out only when (Y−, W) is not be 

passed from the current PE to the destination or the next 

channel is not (X±, W). DOR is carried out otherwise. 

Besides the three inputs of the channel selection function of 

DOR in Fig.2, the channel selection function needs four 

inputs that indicate the x and y coordinates of the source and 

destination PEs. These new inputs can be used to judge the 

possibility of the packet passing through a wraparound 

channel. Based on the judgment, channel-H is chosen only 

when the wraparound channel is not to be used and (Y + , 𝑐) 

is to be used. DOR is carried out otherwise. As in the case of 

DOR, the output has two states, L and H. However, an output 

unconditionally serves as W when the selected link is a 

wraparound link. 

 
 
Fig.4  The Cyclic Dependency by 

the Application of the NF 

Algorithm in Torus Network 

 
Fig.5  The Restricted North 

First Routing 
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4.3 Deadlock Avoidance 

 A channel dependency graph is drawn in order to prove 

that the routing algorithm described in the previous section 

does not cause a deadlock[11][12]. The channel dependency 

graph is a directed graph in which nodes (channels) with 

dependencies are connected by an arrow. Specifically, nodes 

(channels) with dependencies are pairs of nodes (channels) in 

which a packet may be directly transmitted and received while 

routing. 

 

First, the channel dependency graph is drawn. Then, each 

channel is numbered. If it is proved that the channel numbers 

are in ascending order (or descending order) in the direction of 

the arrows of the channel dependency graph, deadlock does not 

happen. In such case, the channels are said to have an ordered 

relation and the corresponding channel will not cause a cyclic 

dependency. 

A routing algorithm based on the turn model generally assigns 

numbers to the output channels from the PE on the basis of the 

PE address. As mentioned above, a 2-D torus network has two 

virtual channels. Accordingly, the following 4-dimensional 

channel numbers CN are given to the 4 links ×2 channels (=8 

channels) in each PE of an 𝑁 × 𝑁 torus. 

𝐶𝑁(𝑥, 𝑦, 𝑑, 𝑐ℎ) = (𝑔𝑚, 𝑐1, 𝑔𝑠, 𝑐2)          (1) 

Here, 𝑥 (0 ≤ 𝑥 ≤ 𝑁 − 1)  and 𝑦 (0 ≤ 𝑦 ≤ 𝑁 − 1) is 𝑥  and 𝑦 

coordinates of PE address, 𝑑 ∈ {𝑌+, 𝑌−, 𝑋+, 𝑋−}  is the 

direction of the channel, and 𝑐ℎ ∈ {L,H,W}  is the type of 

channel. Also, 𝑔𝑚, 𝑐1, 𝑔𝑠, and 𝑐2  are named as Main Group, 

First Coordinate, Sub Group, and Second Coordinate, 

respectively. 

The channel number in each channel is as Fig.8. When a 

channel number is set as Fig.8, deadlock occurrence can be 

avoided because channel numbers will become an ascending 

order through a routing path[13]. 

 

5 Dynamic Performance Evaluation 

5.1 Environment 

 We used a wormhole routing simulator to evaluate the 

dynamic communication performance of our algorithm on a 

// Link Selection Function for Proposed Algorithm  
Link_Select_Prop (cx, cy, cc, dx, dy) 

cx, cy;     // current node   0 ≦ cx, cy ≦ N－1 
cc;       // current channel  ∈{L, H, W} 
dx, dy;     // destination    0 ≦ dx, dy ≦ N－1 

{ 
if(|dx-cx|≧N/2)     h_wrap = 1; 
else          h_wrap = 0; 
if(|dy-cy|≧N/2)     v_wrap = 1; 
else          v_wrap = 0; 

 
dist_y = (N+dy-cy)%N; 
if(1≦dist_y ≦N/2)       // Y+ direction 

   if(h_wrap=0 & v_wrap=0)  
return adaptive_SF(cx, dx); 

   else if(h_wrap=1 & v_wrap=0) 
            return DOR(cx, cy, dx, cy); 
   else        return DOR(cx, cy, dx, dy); 

else if(cy≠dy)   // Y- direction 
if((cc∈L) and ((cx≠0) or (v_wrap=0)) 
         return adaptive_NF(cx, dx); 

   else        return DOR(cx, cy, dx, dy); 
else if(cx≠dx)    return x_route(cx, dx); 

else return OUT; 
} 
 
adaptive_SF(cx, dx){   //adaptive routing of SF algorithm 

if(cx=dx)        return Y+; 
else if(buffer_is_full(Y+, H)=TRUE)  

return x_route(cx, dx); 
else         return Y+; 

} 
 
adaptive_NF(cx, dx){    //adaptive routing of NF algorithm 

dist_x = (N+dx-cx)%N; 
if(cx=dx)       return Y-; 
else if(N/2＜dist_x)        // X- direction 

            return X-; 
else if(buffer_is_full(Y-, L)=TRUE)  // X+ direction 

return X+; 
else         return Y-; 

} 
 
x_route(cx, dx){ 

dist_x = (N+dx-cx)%N; 
if(1≦dist_x ≦N/2)    return X+; 
else           return X-; 

} 
 
DOR (cx, cy, dx, dy){ 

return Link_Select_DOR (cx, cy, dx, dy); 
} 

 

Fig.6  The Link Selection Function of the Proposed 

Algorithm 

① 

② 

③ 

// Channel Selection Function for Proposed Algorithm 
Channel_Select (cx, cy, dx, dy , cd, cc, nd) 

cx, cy;     // current node    0 ≦ cx, cy ≦ N－1 
dx, dy;     // destination     0 ≦ dx, dy ≦ N－1 
cd;      // current direction   ∈{Y+, Y-, X+, X-} 
cc;       // current channel   ∈{L, H, W} 
nd;      // next direction    ∈{Y+, Y-, X+, X-} 

{ 
if(dx-cx≧N/2)        h_wrap = 1; 
else            h_wrap = 0; 
if(dy-cy≧N/2)        v_wrap = 1; 
else            v_wrap = 0; 

 
dist_y = (N+dy-cy)%N; 
if((1≦dist_y ≦N/2)         // Y+ direction 

 and (h_wrap=0 & v_wrap=0))  return H; 
else                // Others 

            return DOR_Channel (cd, cc, nd); 
} 
 
DOR_Channel (cd, cc, nd){ 

return Channel_Select_DOR (cd, cc, nd); 
} 

 

Fig.7  The Channel Selection Function of the Proposed 

Algorithm 
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16 × 16 2-D torus/mesh network with 256 PEs. Dynamic 

communication performances are simulated for dimension-

order routing algorithm and proposed algorithm (North South 

First Routing). Extensive simulations have been carried out for 

uniform, matrix-transpose, and bit-reversal. 

The dynamic communication performance of an 

interconnection network was characterized by the average 

transfer time and throughput. The average transfer time was the 

average value of the latency for all packets. Latency was the 

time between the injection time of the first flit and the reception 

time of the last flit at the destination. Throughput was the 

average value of the number of flits which a PE receives in each 

clock cycle. In the evaluation of dynamic communication 

performance, flocks of messages were sent in the network so 

that they competed for the output channels. Packets were 

transmitted with a request probability r during T clock cycles 

and the number of flits which reached the destination PE and 

their transfer times were recorded. The average transfer time 

and throughput were then calculated and plotted. The request 

probability r was varied. The packet size was 16 flits, and flits 

were transmitted for 50,000 cycles, i.e., T=50000. Two virtual 

channels per physical link were simulated. The buffer length of 

each channel was 8 flits. 

5.2 Uniform Traffic 

 In uniform traffic, destinations are randomly chosen with 

equal probability among the nodes in the network. The result 

of the uniform traffic pattern is shown in Fig.9. As shown in 

Fig.9, the throughput of the proposed method is slightly higher 

than DOR. In the communication pattern such as uniform 

traffic, the whole network is equally crowded. So the effect of 

avoidance from crowded links is limited. However in our 

method, since some packets are directly sent into the channel-

H, the load of the channel is distributed. So the throughput is 

improved. 

5.3 Matrix-Transpose 

 The matrix-transpose is a traffic pattern based on the 

transposition of matrix. In this pattern,  packets are 

transmitted between PEs over a diagonal line. In this research, 

it was assumed that the number of PEs and data are same. 

About each element of the matrix 𝐴 = {𝑎𝑖𝑗}, 𝑎𝑖𝑗  was assigned 

to PE (𝑖, 𝑗) and the communication of transposition was carried 

out. Therefore, the traffic pattern of the matrix-transpose is the 

communication between PE(𝑖, 𝑗) and PE(𝑗, 𝑖). The result of the 

matrix-transpose traffic pattern is shown in Fig.10 As shown 

in Fig.10, the throughput of DOR is a limit by the throughput 

of 0.1. On the other hand, it turns out that the throughput is 

extended to 0.14 by the proposed method. 

5.4 Bit-reversal 

 Bit-reversal is traffic pattern to other PE that the bit of the 

address by binary expression becomes reverse. Since the 

number of PEs is 256 in this experiment, this pattern is the 

communication from PE (𝑥, 𝑦) =PE (𝑥3𝑥2𝑥1𝑥0, 𝑦3𝑦2𝑦1𝑦0)  to 

PE(𝑦0𝑦1𝑦2𝑦3, 𝑥0𝑥1𝑥2𝑥3 ). The result of the bit-reversal traffic 

pattern is shown in Fig.13. As the result of matrix transpose, it 

turns out that the limit of network load improves by the 

proposed method. 

 
 

Fig.8  The Channel Number 

 
Fig.9 The Result of Uniform Traffic Pattern 

 
Fig.10 The Result of matrix-transpose 

 
Fig.11 The Result of Bit-reversal 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

118 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



 

 

6 Static Performance 

6.1 Derivation 

 In this section, The Average Number of Shortest Paths 

(ANSP) is derived in order to evaluate what pliability the 

proposed method has. Here, ANSP is defined as “the average 

number of shortest paths in all the combinations from source 

to destination”. The ANSP of interconnection network with 

𝑀 = 𝑁 × 𝑁 nodes is defined as follows: 

ANSP =  ∑ ∑ 𝑁𝑝(𝑖, 𝑗)𝑀−1
𝑗=0

𝑀−1
𝑖=0 𝑀 × 𝑀⁄           (2) 

Here, 𝑁𝑝(𝑖, 𝑗) is the number of the shortest paths from node 𝑖 
(the coordinate of node 𝑖 is (𝑥𝑖 ,  𝑦𝑖)) to node  𝑗 (the coordinate 

of node 𝑗 is (𝑥𝑗 ,  𝑦𝑗)). 

Based on (2), ANSP is derived as follows: 

 Deterministic Routing 

In the Deterministic Routing (DOR), 𝑁𝑝(𝑖, 𝑗) = 1 constantly. 

Thus,  ∑ ∑ 𝑁𝑝(𝑖, 𝑗)𝑀−1
𝑗=0

𝑀−1
𝑖=0  becomes 𝑀 × 𝑀 . So ANSP 

becomes 1. 

 South First Algorithm 

In the South First Algorithm of the mesh network with 𝑀 =
𝑁 × 𝑁 nodes, 𝑁𝑝(𝑖, 𝑗) is derived as follows: 
 When 𝑦-coordinate of the node 𝑗 is lower than or equal to 

the node 𝑖  (  𝑦𝑗 ≤  𝑦𝑖 ), 𝑁𝑝(𝑖, 𝑗)  is 1 because the packet 

moves as the DOR.  
 When 𝑦-coordinate of the node 𝑗 is higher than the node 𝑖 

( 𝑦𝑗 >  𝑦𝑖), the adaptive routing is carried out. When the 

minimum number of hops from 𝑖 to 𝑗 is 𝑛 and the distance 
of 𝑦-coordinate is 𝑣 and the distance of 𝑥-coordinate is 

ℎ = 𝑛 − 𝑣,  𝑁𝑝 becomes 𝑁𝑝(𝑖, 𝑗) = 𝐶𝑣𝑛 .  

Since 𝑁𝑝(𝑖, 𝑗) depends on 𝑛 and 𝑣, the table of 𝑁𝑝(𝑖, 𝑗) from 

the combination of 𝑛  and 𝑣  (from here, it is described as 

(𝑛, 𝑣) ) can be obtained. Also, since one  (𝑛, 𝑣) is obtained 

from 1 set of combinations of 𝑖 and 𝑗, the number of counts of  
(𝑖, 𝑗) can be obtained from  (𝑛, 𝑣). From the above tables, the 

value of ANSP can be derived. In the case of 4 × 4 mesh, the 

number of counts of (𝑖, 𝑗) (num.of (𝑖, 𝑗)) based on  𝑛 and 𝑣 is 

obtained as table 1 (when 𝑣 = 0  or ℎ = 0 , 𝑁𝑝(𝑖, 𝑗) = 1 

obviously. So these cases were excepted from the table). For 

example, since 𝑛  and 𝑣   become 𝑛 = 6  and 𝑣 = 3 , “the 

number of counts of (𝑖, 𝑗)” becomes 2 when 𝑖, 𝑗 are upper-left 

and lower-right, or upper-right and lower-left respectively. 

Thus, from the 256 combinations of source and destination in 

4 × 4  mesh with 16 nodes, 𝑁𝑝(𝑖, 𝑗) = 20  is 2 patterns, 

𝑁𝑝(𝑖, 𝑗) = 10 is 8 patterns,  𝑁𝑝(𝑖, 𝑗) = 6 is 8, 𝑁𝑝(𝑖, 𝑗) = 4 is 

12, 𝑁𝑝(𝑖, 𝑗) = 3 is 24, 𝑁𝑝(𝑖, 𝑗) = 2 is 18, and 𝑁𝑝(𝑖, 𝑗) = 1 is 

184 patterns. So ∑ ∑ 𝑁𝑝(𝑖, 𝑗)𝑀−1
𝑗=0

𝑀−1
𝑖=0  becomes 508, then 

ANSP≒1.98 by (2). 

 

 North-South First Algorithm 

For the analysis about North-South First Algorithm of 4 × 4 

torus, the table 1 is modified as follows: 

 When ( 𝑦𝑗 >  𝑦𝑖), the SF method is carried out when 𝑣 ≠ 3, 

and the RNF method via wraparound link is carried out 
when 𝑣 = 3. Furthermore, some algorithm of routing via 
horizontal wraparound link may be carried out when ℎ =
2,3 . Thus the rows of 𝑣 = 3  and ℎ = 2, 3  are modified 
from table 1. Since the row of 𝑣 = 3 and ℎ = 3 are changed 
to 𝑣 = 1  and ℎ = 1 , the value of  𝑛  and 𝑁𝑝(𝑖, 𝑗)  are 
changed. In the case of ℎ = 2 , since the horizontal 
wraparound link may be used, 𝑁𝑝(𝑖, 𝑗) is modified in this 
case. 

 When ( 𝑦𝑗 <  𝑦𝑖), the RNF is carried out when 𝑣 = 1, and 

the SF may be carried out when 𝑣 ≠ 1. as same as above, 
some algorithm of routing via horizontal wraparound link 
may be carried out when ℎ = 2,3. So, all rows except ℎ =
𝑣 = 1 are modified based on table 1. Also, the half of (𝑖, 𝑗) 
patterns in RNF become 𝑁𝑝(𝑖, 𝑗) = 1 in all cases, and those 
values are modified. 

The modified tables by above procedure are shown in table 2 

and table 3. Those tables show the value of 𝑛, 𝑣, ℎ, the number 

of counts of (𝑖, 𝑗), and the value of 𝑁𝑝(𝑖, 𝑗) in 4 × 4 torus with 

16 nodes. 𝑛′,𝑣′, and ℎ′ in tables are the value of 𝑛, 𝑣, and ℎ  

when the 4 × 4  torus is assumed as 4 × 4  mesh (when the 

routing process is carried out without wraparound channels). 

The positions in tables of them are same as table 1. (𝑛), (𝑣), 

and (ℎ) in those tables are the true values of 𝑛, 𝑣, and ℎ as 

routing paths of 4 × 4 torus. 

Thus, from the 256 combinations of source and destination in 

4 × 4 torus with 16 nodes, 𝑁𝑝(𝑖, 𝑗) = 6 is 8, 𝑝(𝑖, 𝑗) = 3 is 38, 

𝑁𝑝(𝑖, 𝑗) = 2  is 40, 𝑁𝑝(𝑖, 𝑗) = 1  is 170 patterns. So 

∑ ∑ 𝑁𝑝(𝑖, 𝑗)𝑀−1
𝑗=0

𝑀−1
𝑖=0  becomes 412, then ANSP≒1.61 by (2). 

6.2 Evaluation Result 

 The same evaluation as the previous section was carried 

out to some network topologies. The evaluation results are 

shown in table 4. As shown in the table, The ANSP of proposed 

method is a few lower than SF algorithm of mesh of same size. 

This may be caused by that the number of hop of mesh network 

Table 1  The Number of Counts of (𝑖, 𝑗) And the Value of 

𝑁𝑝(𝑖, 𝑗) from 𝑛 n, 𝑣, ℎ in the South First Routing of 

4 × 4 Mesh Network (The Case of ( 𝑦𝑗 >  𝑦𝑖)) 
 

𝑛 𝑣 ℎ 
num. of  

(𝑖, 𝑗) 
𝑁𝑝(𝑖, 𝑗) 

6 3 3 2 20 

5 
3 2 4 10 

2 3 4 10 

4 

3 1 6 4 

2 2 8 6 

1 3 6 4 

3 
2 1 12 3 

1 2 12 3 

2 1 1 18 2 
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is higher than torus network. Then, the comparison with SF 

algorithm of the mesh network with the same hops as torus was 

carried out. As the result, it was shown that the ANSP of the 

proposed method is a little higher than SF algorithm of mesh. 

From those results, it is thought that the proposed method has 

about the same performance as SF algorithm of mesh. 

7 Conclusions 

 In this paper, we proposed the North-South First Routing 

(NSF Routing) which combined the North First method (NF) 

and the South First method (SF). Also, the communication 

performance was evaluated by the software simulation. As a 

result, it was shown that a throughput improves in some 

communication patterns, and about the same performance of a 

ANSP static property. From now on, theoretical analysis of the 

other properties and evaluation about the fault tolerance are 

remaining as future work. 
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Table 3  The Number of Counts of (𝑖, 𝑗) And the Value of 

𝑁𝑝(𝑖, 𝑗) from 𝑛 n, 𝑣, ℎ in the North-South First 

Routing of 4 × 4 Torus Network 

(The Case of ( 𝑦𝑗 <  𝑦𝑖)) 
 

𝑛′ (𝑛) 𝑣′ (𝑣) ℎ′ (ℎ) 
num. of  

(𝑖, 𝑗) 
𝑁𝑝(𝑖, 𝑗) 

6(2) 3(1) 3(1) 2 1 

5(3) 
3(1) 2 4 1 

2 3(1) 4 1 

4 

(4 or 2) 

3(1) 1 6 1 

2 2 8 
1,1,1,1, 

3,1,3,1 

1 3(1) 6 1 

3 
2 1 12 

1,1,1,1,1,1, 

2,1,2,1,2,1 

1 2 12 3 or 1 

2 1 1 18 2 or 1 

 

Table 2  The Number of Counts of (𝑖, 𝑗) And the Value of 

𝑁𝑝(𝑖, 𝑗) from 𝑛 n, 𝑣, ℎ in the North-South First 

Routing of 4 × 4 Torus Network  

(The Case of ( 𝑦𝑗 >  𝑦𝑖)) 
 

𝑛′ (𝑛) 𝑣′ (𝑣) ℎ′ (ℎ) 

num. 

of  

(𝑖, 𝑗) 

𝑁𝑝(𝑖, 𝑗) 

6(2) 3(1) 3(1) 2 1 

5(3) 
3(1) 2 4 3,2,3,1 

2 3(1) 4 3 

4 

(4 or 2) 

3(1) 1 6 2 or 1 

2 2 8 
6,6,6,6, 

6,6,1,1 

1 3(1) 6 2 

3 

2 1 12 3 

1 2 12 
3,3,3,3,3,3, 

3,1,3,1,3,1 

2 1 1 18 2 

 

Table 4  The ANSP of Some Types of Networks 
 

Topology/ 

Routing 

Algorithm 

Maximum 

Number of 

Hops 

∑ ∑ 𝑁𝑝(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

 ANSP 

Mesh, Torus / 
Deterministic 

6/4 256 1 

4 × 4  Mesh / 

SF Algorithm 
6 508 1.98 

4 × 2 Mesh / 

SF Algorithm 
4 84 1.31 

3 × 3 Mesh / 

SF Algorithm 
4 115 1.42 

4 × 4  Torus/ 
NSF Routing 

4 347 1.36 
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Abstract - Computing is becoming increasingly data-centric. 

I/O data access is identified as a critical performance 

bottleneck of end-to-end performance of high-end computing. 

In this paper, we propose a lightweight approach to 

automatically identify and prevent harmful collective I/O 

specifically on MPI_IO_Read. In our approach, we first give 

an analytic model to analyze the performance of independent 

and collective I/O. Then, we design a mechanism to put our 

model in use. At last, we incorporate our fine-grained 

mechanism into the ROMIO MPI I/O library for performance 

testing. Experimental results show that the accuracy of our 

analytic model reaches about 92%. The proposed model-

prediction mechanism is simple and practical, with a 

complexity of O(1). Analytical and experimental results 

confirm the practical usability of the proposed collective I/O 

improvement. 

Keywords: collective I/O; Data-intensive; Independent I/O; 

Two-phase collective I/O 

 

1 Introduction 

  Computing is becoming increasingly data-centric. Rapid 

advance in microprocessor technology makes computing 

speed unprecedentedly fast, whereas newly emerged computer 

applications such as computer animation and information 

retrieval are more and more data intensive. Computing 

practitioners are faced with mountains of data today [1]. 

Unfortunately, despite advanced parallel file systems have 

been developed in recent years, e.g. PVFS2[2], Lustre[3], 

GPFS [4], etc., the storage systems are still lagging far behind 

and become a critical technical hurdle of further success of 

high performance computing (HPC). Increasing I/O 

performance is a timely research issue facing the HPC 

community.   

In this paper, we introduce a lightweight solution to achieve 

good I/O performance by several steps, which mainly focus on 

improving the reading performance. First, we propose an 

analytic model to theoretically analyze the performance of 

independent I/O and two-phase collective I/O in different 

scenarios. Then, we use this model to predict and compare 

their performance. At last, we guide the selection of MPI-IO 

Read functions with the results of this model to optimize I/O 

performance. The results show that, the accuracy of our model 

is up to 92% and with the improved version of ROMIO, the 

improvement of I/O bandwidth could be up to about 40%. 

For general and practical purpose, our study has the 

following design goals: 

 Approachable parameters in analytic model: the 

parameters used in our model should be all obtainable. In this 

model, we only assume the constant cost on the initialization 

of MPI-IO Calls, which may vary with different hardware and 

software configurations. For a determined HPC scenario, this 

cost is a constant and measurable.  

 High accuracy:  The proposed model can accurately 

model the cost separately on I/O layer and local memory layer, 

from which the accuracy is up to 92% in our experimental 

results for different I/O access patterns. 

 Lightweight implementation: In the current 

implementation of ROMIO, the performance of collective I/O 

is roughly evaluated, which could not always guarantee good 

performance for diverse data-intensive applications. But, its 

interface can be easily reused to provide an autonomic 

function to optimize I/O performance. In this work, a 

mechanism is given and used in ROMIO to guide the use of 

I/O operations instead of its currently simple offsets 

comparison and evaluation. The time complexity of our work 

is O(1), hence, the overhead of our method is trivial.                                            

In summary, this paper plans to offer a lightweight 

approach to optimize I/O performance of data-intensive 

applications – specifically, we guide the selection of I/O 

operations by using an analytic model. The remainder of this 

paper is organized as follows: the background is presented in 

Section2. Section3 discuss the analytic model and its 

implementation in ROMIO, followed by its evaluation and 

experimental results in Section4.. Section 5 concludes the 

paper. 

2 Background 

2.1 I/O Characteristics of Data-intensive 

Applications 

Studies [1,5,6] of the I/O characteristics of data-intensive 

applications have showed clearly that one major reason of the 

low I/O performance is that, these applications usually need to 

access a large number of small, noncontiguous pieces of data. 
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However, for good performance, the size of the I/O requests 

should be large. Some scientists [7] found that, in data-

intensive applications, the data requested by different 

processes are often interleaved and may together span larger, 

contiguous portions of the file. As a result, many techniques 

are designed to benefit from this I/O character. In general, the 

data access patterns can be categorized into 3 sets: random 

access pattern, sequential access pattern, and data interleaved 

pattern. In our work, we first found that the performance of 

two-phase collective I/O is sensitively related to the size of 

interleaved data. Beyond the qualitative analysis in ROMIO, 

our model can analyze I/O performance quantitatively based 

on this. For this part, we will discuss more in the following 

sections. 

2.2  Independent I/O 

The key idea of independent I/O is to let processes 

independently access I/O servers, shown as Fig.1. In 

independent I/O, standard POSIX is used as I/O interface. In 

this figure, two I/O nodes serve six processes from P0 to P5. 

In Fig.1, it shows clearly that all I/O requests are delivered to 

I/O servers and processed independently. In independent I/O, 

when the size of requested data is greater than the stripe size 

used on I/O server, one I/O request will be served by the 

cooperation of both two I/O servers. In this case, the factual 

I/O requests being processed on I/O servers are twice as much 

as the original requests initialized by computing processes.  

 

 

Fig.1. The rationale of independent I/O 

Because of the large number of direct communication on 

I/O layer and the relative low efficiency of the utilization of 

I/O bandwidth, the performance of independent I/O is not 

ideal for many scientific applications. Some researchers 

believe that memory, with higher bandwidth compared to that 

of I/O, and may be used to speed up the I/O performance. The 

technique, two-phase collective I/O, is introduced based on 

this idea. 

2.3 Two-phase collective I/O 

Two-phase collective I/O merges small noncontiguous 

requests from the group of processes into the larger size of 

contiguous data requests with fewer I/O communications. 

Some processes, named as aggregators, are chosen from the 

group to communicate with I/O servers. The local buffers of 

the aggregators are employed to do the data exchange in the 

group, which is named as file domains.  

For clearer description, the rationale of collective I/O is 

shown as Fig.2. In this figure, P0 and P3 serve as aggregators 

and their local buffers are used as file domains. In the first 

phase, P0 and P3 will send I/O requests assembled from three 

processes to I/O servers, respectively; in the second phase, 

other processes will retrieve their requested data from 

aggregators. The second phase involves overhead for 

communication in processes. However, due to the bandwidth 

advantage of point-to-point communication and the benefits of 

fewer I/O accesses at I/O server layer, the performance of 

collective I/O is believed better than independent I/O.  

 

Fig.2. The rationale of collective I/O 

In ROMIO, the condition for the use of two-phase 

collective I/O is to compare the beginning and end offsets of 

requested data in the group of processes in one time MPIIO 

call: if they are interleaved, do collective I/O. Otherwise, 

proceed independent I/O. In practice, it is simple and high 

efficient. However, this kind of coarse-grained algorithm may 

make mistakes and decrease the I/O performance sometimes. 

2.4 Resonance Phenomenon in independent I/O 

and collective I/O 

Zhang et al. [8] pointed out that for some specific scenarios, 

even though the data-intensive applications have the character 

as data interleaved access pattern, their I/O performance is not 

as good as expected. Sometimes, it is even worse than the 

independent I/O. 

This work is the start of the art to analyze deeper in the 

performance of two-phase collective I/O and independent I/O. 

Based on their work, our solution starts from the question as 

when data-intensive applications can benefit from two-phase 

collective I/O and when they cannot. In the first step, we 

analyze their performance theoretically. 

3 Analytic Model on Collective I/O and 

Independent I/O 

Before giving any formula to model I/O performance, we 

first describe parameters used in our model, whose efficiency 

and measurability will be verified in the experimental part. 

3.1  Terminology 

Table I: Terminology of Parallel IO 

Parameters Description 

n   Number of processes employed in one application 

OIB /  
I/O Bandwidth 

m   Number of employed I/O servers 

s   Stripe size in I/O servers 

networkB
  

Network Bandwidth 
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k  
Number of aggregators chosen to proceed I/O 

accesses in two-phase collective I/O 

rawD
 

Size of data requested by one process for one time 

MPI-IO function call 

D  

The whole chunk of data from the beginning offset 

to the end offset requested in the group of 

processes for one time collective I/O function call 

aggregatorD
 

Size of data requested by one aggregator in one 

time collective I/O function call 

   
Initialization time for one time MPI-IO function 

call 

network
  

Start up time for data exchange in file domains 

OI /
  

Start up time for data exchange in I/O level 


       

The ratio of data interleaved among raw I/O 

requests 

collectiveT
  

Total time cost of collective I/O 

domainT
 

Total time cost of data exchange in file domain for 

collective I/O 

OICT /_   

Total time cost of data exchange in I/O level for 

collective I/O 

tindependenT
 

Total time cost of independent I/O 

 

3.2 Model on independent I/O 

In parallel communication implemented by MPI-IO2, 

initialization time consumed for synchronization in the 

communication group is inevitable. In practice, this cost may 

relate to HW/SW configurations, the number of 

communicators, the number of computing nodes and processes, 

and even the skills of the programmers. As a result, it is 

difficult to evaluate this cost theoretically. In our model, we 

value it as a constant λ, since for a determined HPC scenario, 

it is firmed. Otherwise, the number of I/O requests could be 

different for different programmers, which will directly affect 

the I/O performance. For keeping the generality, in our model, 

we assume that the function as FILE_SET_VIEW [9] is used 

and the number of the MPI-IO calls is the minimum.   

Here, we model the performance of independent I/O and 

two-phase collective I/O with only horizontal layout manner 

[10]. Because of other layout manners, the performance of 

collective I/O is obvious worse than independent I/O. Then it 

is less meaningful to compare their performance under these 

layout manners.  

For independent I/O, Studies[10,13] gives the layout model 

for independent I/O with different layout models. We extend 

their horizontal model to evaluate the performance of 

independent I/O in our model. 

In one time MPI-IO call, the group of processes with size 
n , access m  I/O servers. For each I/O request, the size 

is rawD
. 

If 
sDraw   and mn   

OI

raw
OItindependen

B

D
T

/

/  

                                (1) 

Or if 
sDraw   and mn   
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3.3 Model on Two-Phase Collective I/O 

For analyzing two-phase collective I/O under the same 

situation, we use the same assumption as independent I/O: n  

raw I/O requests with the size rawD
.  

For two-phase collective I/O, the total time cost comes from 

three parts: initialization, cost in file domain and cost in I/O 

communication. 

OIdomaincollective TTT / 
 

For data exchange in file domain, the resource (memory) is 

exclusively consumed. In another words, one aggregator could 

only communicate with one process at one time, either another 

aggregator or one process in its domain. The I/O request 

initialized by aggregator is named as aggregatorD
. For 

theoretical analysis, we simplify the diversity of the sizes of 

aggregatorD
 and treat them as equal. In practice, it is possible 

that the size of data requested by aggregators are various 

according to the configuration of two-phase collective I/O 

configuration by users [9]. Then, the size of aggregatorD
 

is k

D
Daggregator

.  

The total cost domainT
 is: 

/

/min( , ) min( , )

raw
domain I O

domain domain I O

raw raw

Dn n
T

B B B
k k

D D




 

   
   
    
   
      

 

 

Fig.3. Two Aggregators Serve 7 Computing Processes 

As discussed in the previous section, the number of 

processes in I/O communication n  is equal or greater than the 

number of aggregators k , and the size of initial I/O request 

rawD
 usually equal or smaller than the size of data requested 

by aggregator, since suppose every aggregator could hold data 

for itself for reducing communication cost, the requested data 

need to be transferred at most twice, and the data exchange 
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size is about 2

rawD

, shown as Fig. 4. In theoretical, we 

analyze the worst case as given.   

For the communication cost on I/O layer, the situation is 

more complicated: all of different data stripe sizes, patterns 

and the number of employed I/O servers will directly influence 

performance. When collective I/O requests delivered to I/O 

layer, the number of these I/O requests is the number of 

aggregators k , the size of each collective request /I OD
 is  

k

D
DD aggregatorOI /

 

For horizontal manner, if 
sDaggregator   and mk  ; then 

OI

aggregator

OIOI
B

D
T

/

// 

 

Or if /I OD s
 and mk  ; then 




















m
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B

D

m

k
T

OI
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OIOI

/

// 

 

if /I OD s
; here we make an assumption that the load 

balance of data deployment in m  I/O servers is achieved. 

Then 
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After we theoretically model the performance of collective 

I/O and independent I/O, its correctness and uses should be 

verified. In the next section, we will start from the verification 

of this analytic model. 

3.4 Implementation 

The implementation of our mechanism is straight forward in 

MPICH2-1.2. The user collective I/O interface is 

MPIOI_File_read_all(), which in turn calls 

ADIO_ReadStridedColl(), one of the common ADIO 

functions applied by MPI to separate the concerns for file 

systems. This ADIO code will finally call a file-system-

specific function to perform the actual I/O operation. But 

before that, it will determine whether or not the following I/O 

should be collective. The course of the decision is a typical 

redundant computing. As presented above, each process in the 

communicator will exchange the offset of their read interval, 

then compute the possibility of interleaving. The real decision 

is only made by a if-else statement, in which true lead to 

collective I/O; false to independent. Therefore, we modify the 

if-else condition, replace it with the decision Boolean 

expression collectivetindependen TT 
. The calculation of each time 

cost strictly conforms to the formulas (1)-(4), hence trivial for 

further description. Here we list all the parameters used in 

expression calculation. The source column describes the 

method to obtain them. Original code implies that this 

parameter is a variable; hint means parameter is passed 

through MPI hint mechanism by user; Modification indicates 

that we need to add more code to calculate the parameter. The 

last column gives a detailed description on how to obtain the 

parameter. Hint type is ignored here for their simplicity. 

Table II. Parameters of implementation 

Parameters Source Description 

n  Original Code Reuse nprocs 


 Modification 

Calculated with 

offset_list, len_list 

from all processes 

k  Original Code Reuse nprocs_for_coll 

rawD
 

Modification 
Calculated with 

offset_list, len_list 

D  Modification 
Calculated with 

start_offset, end_offset 

aggregatorD
 

Modification 
Calculated with 

start_offset, end_offset 

  Modification 
Timing the preparation 

phase 

networkB
, OIB / ,

m , s , 

network
, OI /

 

Hint 
Through MPI hint 

mechanism 

4 Experiments 

4.1 Experimental Setup 

Our experiments platform is a 16-node cluster, in which all 

nodes are equipped with 4X InfiniBand network. Each node 

has 2 Quad-Core Processors, whose model is AMD 

Opteron(tm) Processor 2376, 8GB memory and 250GB 

7200RPM SATA hard drive. The OS is Ubuntu 9.04, Linux 

kernel 2.6.28.10. We use PVFS2 version 2.8.1 as our parallel 

file system. For all experiments, we employ 4 nodes as 

computing processes and use the file with size about 4G. For 

each node, we generate 5-25 processes with different 

benchmarks. For the model verification, we choose three 

representative benchmarks.   

 IOR: The IOR benchmark is a benchmark developed by 

LLNL and usually used to measure the performance of storage 

systems. Otherwise, IOR can test the performance of parallel 

I/O with several I/O interfaces, including POSIX, collective 

I/O, as well as I/O through higher level libraries [11]. In our 

experiments, its sequential pattern is used to evaluate the 

performance of collective I/O and independent I/O, test the 

accuracy and the efficiency of our model.  

 MPI-Tile-I/O: The MPI-Tile-I/O benchmark is a 

synthetic benchmark, which is part of the Parallel I/O 

benchmarking Consortium benchmark suite. It simulates tile 

access on one two-dimensional dataset, with the overlapped 

data between sequential tiles. In MPI-Tile-I/O, the 

implementation of both POSIX I/O and MPI I/O are provided 

for users. In our experiments, its character as data interleaved 

access pattern is used to verify our model.  

 MPI-IO Test: MPI-IO test is a synthetic checkpoint tool 

developed by LANL, which supports several parallel file 

systems. In our experiments, MPI-IO Test is used as one kind 

of data-intensive applications in HPC to test the correctness 

and efficiency of our model. 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

124 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



4.2 Performance evaluation of Independent 

I/O and Two-phase Collective I/O 

As discussed previously, it is possible for independent I/O 

and two-phase collective I/O that they may achieve better 

performance alternatively. The purpose of this set of 

experiments is to prove this argument. We will respectively 

experiment on IOR and MPI-Tile IO. 

 Experiments with IOR Benchmark 

 
Fig.4 The performance of collective I/O and independent I/O in IOR with 2 

I/O servers: In this figures, ‘c-stripe size’ and ‘n-stripe size’ respectively 

represent the performance of collective I/O and independent I/O. For example, 

c-1M means the performance of collective I/O with stripe size as 1M.   

 
Fig.5 The performance of collective I/O and independent I/O in IOR with 4 

I/O servers. 

 

Fig.6 The performance of collective I/O and independent I/O in IOR with 8 

I/O servers 

 

In this set of the experiments, we propose to compare the 

performance of independent I/O and two-phase collective I/O 

on IOR with different system configurations. For this goal, we 

vary the number of I/O servers (2 I/O servers, 4 I/O servers, 

and 8 I/O servers), change stripe size (32K, 64K, 1M and 4M) 

and increase request size (8K, 16K, 32K, 64K, 128K, 256K, 

512K, 1M). For this set of experiments, we use 4 processors 

as clients, which generate 20 processes in total. The results for 

separate I/O servers are shown as Fig.4, 5, 6. 

 Experiments with MPI-Tile IO 

In this set of the experiments, we emphasize on comparing 

the performance of independent I/O and two-phase collective 

I/O on interleaved data access pattern with different system 

configurations. For this goal, we employ 2 I/O servers, with 

various stripe sizes as 32K, 64K, 1M and 4M. For capturing 

the performance variety with different interleaved data size, 

we fix the request size as 1M and increase the sizes of 

interleaved data from 20K to 180K. For this set of 

experiments, we use 4 processors as clients, which generate 

100 processes in total. The results are shown as Fig.7. 

 
Fig.7 The performance of collective I/O and independent I/O in MPI-Tile IO 

with 2 I/O servers.  

4.3 Model Verification 

 Parameter Measurement 

In our model, many parameters are introduced to predict the 

performance of collective I/O and independent I/O. As a result, 

the first thing for us is to make sure that all these parameters 

could be measurable or estimated. In fact, all parameters used 

in our model could be categorized into four columns: I/O 

configurations (I/O server number, stripe size), collective I/O 

configuration (aggregator number), environmental parameters 

(I/O bandwidth, network bandwidth, overheads), I/O access 

patterns (interleaved data size, request size), most of which 

can be measured directly from the systems except I/O access 

patterns. However, some scientists focus on the study on I/O 

signature, and I/O trace [12], who can capture and summarize 

I/O access patterns. Otherwise, for two-phase collective I/O, it 

is possible to capture and predict the separate performance of 

file domain layer and I/O layer. In MPICH2-1.2, functions of 

MPI-IO are all stored in ADIOI_Hints(), from which we could 

easily trace the separate cost in two-phase as discussed in the 

implementation part collective I/O, moreover, use this info in 

our model. In summary, all parameters used in our model are 

measurable.  

 Model Verification 

In this set of the experiments, we will test the correctness 

and accuracy of our model. For this goal, we compare the 

results of the tests from real system and the prediction results 

from our model for all three benchmarks. Since we tried to 

simulate the real scenarios, in which the storage resources are 

usually short of, in this set of experiments, we fix the server 

number as 2 I/O servers. Additionally, for fair evaluation, we 
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value the mathematical expectation as: 
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Here, OIOI BB // ',
 are used to represent the value from tests 

and model respectively, js
 means the different stripe size on 

I/O servers, 
)4,1,64,32( MMKKs j  , i means the value of 

request size, )1024,.....16,8( KKKi . Specifically, in the 

context of MPI-Tile IO benchmark, i means the value of 

overlapped data size, )120,....40,20( KKKi . 

In Fig. 8, 9, 10 we show the comparison of real runs and 

model estimation for all three benchmarks. Table 1 shows the 

errors of our model for the three benchmarks. From the results, 

we can conclude that our analytic model can accurately predict 

the performance of independent I/O and two-phase collective 

I/O. In the next section, we will explore its efficiency on IO 

optimization. 
 

TABLE1 

THE ERRORS OF OUR MODEL IN COLLECTIVE I/O AND INDEPENDENT I/O 
Stripe Size  

I/O Operation 
32K 64K 1M 4M 

IOR 
Collective  18.6% 8.16% 8.65% 8.33% 

Independent  11.2% 17.4% 12.3% 8.49% 

MPI-Tile 

IO 

Collective  11.1% 11.8% 16.5% 17.9% 

Independent  17.5% 12.5% 17.5% 15.7% 

MPI-IO 
Collective  17.3% 7.1% 18.6% 18.9% 

Independent  9.89% 17.5% 12.8% 8.4% 

 

 

 
Fig.8 the results of model verification in IOR-sequential access pattern 

 

 
Fig.9 the results of model verification in MPI-Tile IO separately for collective 

I/O and independent I/O 

 

                   

        
Fig.10 the results of model verification in MPI-IO Test separately for 

collective I/O and independent I/O 
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4.4  I/O Performance Optimization 

As claimed at the beginning, our model can be used to 

optimize the I/O performance. With our implementation in 

ROMIO, we could review back these three benchmarks to see 

the performance of our model. In this set of experiments, our 

goal is to test the optimization efficiency of our mechanism. In 

our ROMIO version, we use  to represent the performance 

advantage of collective I/O, in our experience, when  

%15
)(





eperformanctindependen

eperformanctindependeneperformanccollective


, we will use collective 

I/O to take IO operation. Otherwise, independent I/O is used. 

The results are shown in Fig. 11, 12 and 13. We can see that 

the proposed model can achieve upto 40% performance 

improvement.  

Fig.11 The Performance Improvement in IOR: As shown clearly, our model 

optimization yields the best performance compared to both collective I/O and 

independent I/O. The greatest performance improvement compared separately 

to collective I/O and independent I/O are 40.2% and 32.1%, whose 

configurations are both 4M stripe size. 

 
Fig.12 The Performance Improvement in MPI-Tile IO: As shown, our model 

optimization has the same performance as two-phase collective I/O. In our 

mechanism, only when collective I/O has worse performance (less than 15% 

advantage) the independent I/O will be called. In MPI-Tile IO, collective I/O 

has times performance advantage. As a result, in every MPI-IO read call, we 

will choose MPI_IO_READ_ALL() to use collective I/O instead of the use of 

independent I/O. Then, the performance improvement of model optimization 

is the same as that of two-phase collective I/O. 

 

Fig.13 The Performance Improvement in MPI-IO test: This case is similar 

with MPI-Tile IO, in which two-phase collective I/O has clear advantage. The 

results show our model makes the correct choice for each MPI-IO read call. 

5 Conclusion 

 We propose a prediction-based approach for collective 

I/O optimization. We have conducted a full-cycle of the 

performance optimization study. Through our study we have 

further demonstrates the need of performance optimization of 

two-phase collective I/O. We have shown increasing the 

parallelism of parallel file system does not necessary improve 

the I/O performance. As shown clearly in our IOR benchmark 

studies, with the growth of I/O servers, the I/O performance 

does not move to a better. We have illustrated that the 

performance of two-phase collective I/O could vary wildly 

from one I/O access pattern to another I/O access pattern. 

Prediction-guided collective I/O can improve the I/O 

performance considerably. We also have exhibited that 

sometime the simple independent I/O approach could be the 

best choice. 
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Abstract— Service-oriented Router (SoR), a new router 

architecture for providing useful Internet services that could not 

be given by a traditional router. As a service of SoR, to prevent a 

network intrusion in a network will become a significant service. 

To attain the service, we proposed SoR-Network Intrusion 

Detection System (SoR-NIDS) using deep packet inspection (DPI) 

in order to protect malicious streams on the router. Typical 

applications like this SoR-NIDS require an effective analysis 

mechanism of traffic information. Namely, a string matching 

function is an essential problem. Moreover, router architecture 

becomes more commoditized. It will be possible in the future to 

use GPUs for accelerating processing on routers. We propose a 

new GPU-based string matching design and efficient multistring 

matching function for multiple streams on a service-oriented 

router using warp shuffle (shfl) instructions to accelerate data 

stream analysis. The proposed method was evaluated, and the 

effectiveness of the method was confirmed. 

Keywords—Service-oriented router; GPU; string matching; 

warp shuffle instructions; application layer analysis 

I.  Introduction 

The Internet has become an indispensable communication 
tool, and the amount of Internet traffic is continually 
increasing. Accordingly, the threat of attacks on the Internet is 
also increasing. In particular, the number of attacks that 
exploit software vulnerabilities on client PCs is increasing. In 
general, vendors provide software patches for known 
vulnerabilities; however, the user is responsible for the 
installation of such patches, which can contribute to lack of 
security. In the client–server network model, the administrator 
of each end-host has discretion over all security; thus, the 
security level depends on the discretion. Therefore, a new 
security system that does not depend on the security level of 
the end-host is required. In future, many sensors will be 
distributed around the world, and these sensors will not have 
sufficient battery power, processing power, and memory. In 
addition, it may be difficult to install antivirus software on 
such sensors. If these sensors are cracked, a new threat will be 
introduced. This will strengthen the need for antivirus 
functionality on the Internet. 

A router relays communication between end-hosts in a 
network. A typical router forwards a packet to the appropriate 
destination based on a routing table and the destination IP 
address contained in the packet. We propose a service-oriented 

router (SoR) as new router architecture. SoR reconstructs TCP 
streams in a router using the packet information of the 
plurality of fragments in a network by considering memory 
efficiency. Moreover, SoR can decode, extract, and analyze 
application layer information. In addition, based on the results 
of analysis, SoR can provide a new service. A network 
intrusion detection system (NIDS) will be one of the new 
services that SoR can provide, which we refer to as SoR-NIDS. 
It is possible to increase security of an end-host network by 
matching with a black list. In addition, NIDS can prevent 
potential threats and provide warnings to users. In general, 
NIDS searches for a signature represented as a string or 
regular expression to distinguish whether the target data can 
be permitted. SoR-NIDS can be provided to all Internet users. 
Similar to a general antivirus system, it is possible to provide 
robust security against new attack methods by updating the 
blacklist on SoR. 

However, a problem must be solved before realizing SoR-
NIDS. First, wire-rate processing throughput must be achieved 
in the router. Second, intrusion detection processing must be 
realized for multiple streams. A large number of streams flow 
through a router; thus, it is necessary to achieve high 
throughput processing for multiple streams. As an existing 
method, dedicated hardware, such as network processors or 
FPGAs, have been studied to achieve high throughput [1][2]. 
However, to reflect recent backbone router trends, the use of 
conventional cost-effective devices will be a practical solution 
to achieve SoR-NIDS. In addition, it is preferable to 
implement programmability and to continue with architecture 
trends for Internet backbone routers, i.e., commodity devices. 

To achieve high-throughput processing of string matching 
functions, it is indispensable to parallelize the process. 
Graphics processing units (GPUs) [3] are used as co-
processors to realize high throughput. A GPU has hundreds or 
thousands of processing cores on one semiconductor die. 
GPUs can process at high throughput by using these cores in 
parallel. In addition, a GPU has dedicated memory, and its 
bandwidth is several times high than main memory. This 
means that it can obtain higher processor-memory bandwidth 
than common processors if conditions are appropriate. 

In a general system, a GPU is connected through a 
peripheral component interconnect (PCI) interface that 
transfers data and instructions. Recently, router architecture 
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that can connect general-purpose co-processors to the system 
through a PCI interface have been developed [4, 5], and fast 
NIDS methods using GPUs have also been studied [6, 7]. 
Therefore, a GPU can be considered effective as a high-speed 
method for NIDS processing on SoR. 

We propose a fast NIDS processing method for router 
architecture equipped with a general-purpose GPU and CPU 
using warp shuffle (shfl) instructions, which are extension 
instructions of recent GPUs. In this study, we discuss only the 
problem of string matching that does not include regular 
expressions because it is possible that a SoR-NIDS service can 
be provided using only string matching initially. This 
remainder of this paper is organized as follows. We describe a 
heterogeneous CPU and GPU system in Section 2. We discuss 
related string search research in Section 3. In Section 4, we 
propose a string matching method that is more efficient for 
multiple streams and discuss algorithmic descriptions using 
shfl functions. An evaluation of the proposed method is 
presented in Section 5, and the paper is concluded in Section 6. 

II. Heterogeneous CPU and GPU system  

Since it is impossible to control an entire program with 
only a GPU, it is necessary to use the GPU as a co-processor 
with the CPU. A GPU is connected to a system board through 
a PCI interface. The main system with a CPU and main 
memory is called a “host,” and the GPU subsystem connected 
to the host via a PCI interface is called a “device.” Instructions 
and all data processing performed on the device must be 
transferred through the PCI interface from the host. Therefore, 
processing throughput of the GPU is limited to the PCI 
interface’s bandwidth. For this reason, GPU processing is 
preferable because the cost of calculation processing is much 
larger than that of memory transfer. 

GPU processing is based on the single instruction multiple 
data (SIMD) processing scheme. SIMD processes data to 
multiple columns of a single instruction sequence. NVIDIA 
GPUs have adopted parallelism with the SIMD scheme in part 
by operating 32 processing cores as one operation unit called a 
streaming multiprocessor (SM). However, NVIDIA released 
the Kepler architecture [8] in 2012. The Kepler architecture 
adopts a next-generation streaming multiprocessor (SMX). In 
an SMX, one operation unit consists of 192 processing cores. 
An SMX has 192 single-precision arithmetic units, 64 double-
precision arithmetic units, 32 dedicated function operation 
units, and 32 load/store units. In addition, an SMX has four 
instruction schedulers for each arithmetic unit and eight 
instruction dispatchers. The instruction schedulers in the 
Kepler architecture are based on a simple implementation 
concept. While eliminating hardware stages to avoid data 
hazards in the calculation data path, the compiler 
predetermines the dependencies of instructions and 
incorporates them into the instruction information. An SMX 
has 65,536 32-bit bandwidth registers available to all cores 
and 64 KB integrated shared memory and L1 cache. The 
NVIDIA GTX680 has eight SMXs, i.e., it has 1,536 
processing cores that perform in parallel. 

GPUs have various types of memory, device memory with 
large capacity and large access latency, shared memory with 

small capacity and small access latency, and texture memory 
for accelerating the access of high spatial locality by mapping 
a texture region in the device memory. 

III. Multipattern string matching algorithm 

Here, string matching algorithms that search for a specific 
string from text is discussed. There are two types of string 
matching algorithms: string matching using a single pattern 
and string matching using a pattern set that consists of 
multiple patterns. Knuth–Morris–Pratt (KMP) and Boyer–
Moore are well-known string matching methods that use 
single patterns. Rabin–Karp and Aho–Corasick (AC) are 
common string matching methods that use pattern sets. 
Parallel failure-less AC (PFAC) is a typical and efficient 
method for string matching on a GPU. PFAC is a specialized 
AC-based string matching algorithm for GPU architectures. 

PFAC can perform a search process with high throughput 
in linear proportion to the size of a text. It is impossible to pre-
predict the data size of a stream in a network. PFAC can cope 
with a wide range of data sizes and achieve high-performance 
string matching with SoR. Therefore, we conclude that the 
PFAC algorithm is the most suitable method for implementing 
GPU-based string matching on SoR-NIDS. 

A. Aho–Corasick algorithm 

The AC algorithm [9] is an algorithm extended from KMP. 
AC uses deterministic finite automaton (DFA). In this paper, 
DFA used in AC is referred to as the AC automaton, and the 
table that defines the transition of the automaton is called the 
state transition table. The AC automaton consists of three 
processing steps. The first step is a transition function that 
defines the next state when an expected value is input. The 
second step is a failure function that defines the next state 
when an unexpected value is input. The third step is an output 
function that outputs the location where a pattern is matched. 
Figure 2 shows the AC automaton built from the pattern set 
{“http,” “https,” “html,” “ssh,” “smtp”}. 

To avoid complexity, the description of the failure 
transitions to state 0 is omitted from Figure 1. The state 
denoted by a double circle indicates that a pattern has been 
matched and is included in the pattern set. The AC automaton 
state begins at state 0, receives one character from the first 
character of text, and continues transitioning until all 
processing is finished. The termination condition of the 
process is to reach the end of the searched text. It is 
indispensable for AC string matching to build an AC 
automaton as a pre-process. Building an AC automaton 
process consists of a type of lexicographic pattern set, 
construction of the state transition table for the transition 
function, and construction of the state transition table for the 
failure function. If the type of characters in the pattern set is 
sufficiently diverse, the calculation cost of these processes is 
proportional to the number of characters in the pattern set. If 
the sum of all characters included in the pattern set is 𝑀, the 
calculation cost is 𝑂(𝑀). If the length of the input text is 𝑚, 
the search process cost is 𝑂(𝑚) . Therefore, the calculation 
cost of the entire AC algorithm processing is 𝑂(𝑀 + 𝑚). 

B. Parallel failure-less Aho–Corasick 
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Fig. 1. Example behavior of DFA with five patterns {“http,” 

“https,” “html,” “ssh,” “smtp”}in the AC algorithm 
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Fig. 2. Example behavior of DFA with five patterns {“http,” 

“https,” “html,” “ssh,” “smtp”}in the PFAC algorithm 
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The PFAC algorithm [10, 11] has been applied to the AC 
algorithm in GPU architecture. For parallel string matching, if 
the input text is divided into some pages and one thread 
explores one page, there is a boundary problem, i.e., a string 
that exists across pages is not explored. In the PFAC algorithm, 
each thread searches a substring starting from the position 
shown in Figure 2. Each thread continues to search until a 
miss occurs. Processing finishes when miss occurs. In the 
PFAC algorithm, a boundary problem does not occur because 
the text of all positions is processed equivalently. Furthermore, 
since the search processing is conducted from all text positions, 
it is unnecessary to guarantee consistency such that the pattern 
matches after a miss–hit occurs. Therefore, the PFAC 
algorithm can improve performance by reducing failure 
transitions in the AC algorithm. 

IV. Design of string matching methods using a GPU for 

multiple streams 

In this implementation, we propose a method of string 
matching using shfl functions based on the PFAC algorithm. 
We also use a task controller [12]. The task controller 
monitors the status of threads and multiple stream buffers and 
issues search processes to threads. Processing using a GPU 
cannot achieve high throughput if the stream size is very small. 
The task controller determines whether processing is 
performed by the GPU or CPU according to the status, such as 
stream buffer size. For GPU processing, a task controller 
monitors the available capacity of device memory and issues 
process only if there is sufficient processing capacity. Here, a 
task controller is a master thread that issues some threads as 
slave threads. Communication between the master thread and 
slave threads is established using a global variable. Processing 
in a thread consists of checking the parameter, searching, and 
storing the result. A thread determines whether string 
matching occurs on the CPU or GPU based on parameters 
from the task controller. If the CPU is specified, the search 
process is executed on the CPU with the AC method. If the 
GPU is specified, the search process is executed on the GPU 
with the extended string matching method based on PFAC. 

A. Proposed method to improve PFAC by shfl functions 

We propose an extended string matching method based on 

PFAC using shfl functions. The shfl functions are extended 

instructions implemented on the Kepler GPU architecture. In 

conventional GPU architecture, data accessed by multiple 

threads must be placed in shared memory. This requires two 

cycles. The shfl functions make it possible to access local 

variables in one cycle; variables are on the register of threads 

in a warp. The functions are executed in parallel for all active 

threads in a warp. Figure 3 shows an example of the shfl 

functions. The “__shfl” functions access the register of the 

thread by addressing the specified index. Each thread obtains a 

certain value as per the ascending/descending order of threads 

using “__shfl_down”/“__shfl_up” functions. The “__shfl_xor” 

instruction exchanges the values of the threads using a 

butterfly method. 

In the PFAC algorithm, an input stream is split and stored 

in shared memory. Threads fetch the data from the shared 

memory. In the proposed method, threads obtain the stream 

using shfl functions in the beginning of the matching process. 

This is performed from shared memory after several cycles of 

the matching process. Figure 4 shows the flow for obtaining 

text using shfl functions. First, a series of data that each thread 

has in the register is collated. Then, all threads in the warp 

obtain the character using the “__shfl_up” instruction. All 

threads perform matching regardless of the failure or success 

of matching to obtain the character consistently. In contrast to 

PFAC, failed threads in the matching process become inactive. 

In an evaluation, efficient processing by shfl functions was 

investigated by analysis of data traffic and rule sets. In the 

proposed method, there is a trade-off between the character 

fetching cycle and efficiency of the thread allocation. The shfl 

instructions can access faster than shared memory. However, 

if a thread results in matching failure, the thread becomes 

inactive, and this thread cannot be reused while shfl is used. 

The matching process will be efficient if the number of failing 

threads is large and these threads are reused. This trade-off is 

described further in Section 5. As a result, matching process 

threads obtain the stream using shfl functions from the first 

matching process to the fourth matching process and obtain 

the stream from shared memory from the fifth matching 

process. 

Slave threads transfer a stream to a device, perform a 

search process using PFAC, and transfer the result to the host. 

Streams are stored in both a register and shared memory. In a 

search process, GPU threads load stream data from the register 

and shared memory, and use the PFAC automaton in texture 

memory. If the thread finds an expected pattern, the result is 

stored in shared memory. Then, if there is no valid transition 

in a GPU thread, the automaton process is finished and all 
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Fig. 4. Flow of obtaining text using shfl functions 
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Fig. 3. Example of shfl functions 
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results are stored in device memory from shared memory. If 

all GPU threads finish the matching process, the process in the 

kernel is finished. Then, the results are transferred to host 

memory. Finally, slave threads provide the results as a global 

variable to the task controller and all processes of slave 

threads are terminated. 

B. Proposed memory implementation 

To perform a string matching process using a GPU, it is 

necessary to transfer a stream to be searched to device 

memory. Main memory and device memory have different 

address spaces; thus, data is transferred using the 

cudaMemcpy memory transfer API. Since host and device are 

connected by a PCI interface, the transfer of all processes is 

performed through the PCI interface. Figure 5(1) shows the 

flow for transferring data using cudaMemcpy. First, when the 

host requests that data be transferred from main memory to 

device memory, data is written back to main memory to 

guarantee data coherence in main memory. Next, if data 

coherence is guaranteed, the data is copied to the kernel and 

the PCI buffer. Then, the data is copied to device memory as a 

packet through the PCI interface. 

In this study, we propose a method to improve transfer 

delay of stream data by skipping these steps. Recently, the 

cost of memory has decreased. Thus, it is easy to reserve 

abundant memory resources for a general-purpose device. We 

use main memory spaces as physical memory and prohibit 

swapping to disk by the OS, as shown in Figure 5(2). 

Therefore, it is possible to skip the write-back of data that is 

swapped on the disk. This method for using memory space as 

physical memory is referred to as pinned memory 

implementation. 

In addition, the host does not load from or store to the 

memory space of the stream while processing occurs on the 

GPU. Therefore, we propose a method that uses the write-

through cache line on the CPU. Thus, it is possible to always 

maintain data coherence in main memory. This means that it is 

unnecessary to write back CPU cache when transferring data. 

This host memory method is called the write-combined (WC) 

memory implementation. Figure 5(3) shows a summary of 

data transfer using the WC memory implementation. WC 

memory implementation improves the data transfer delay in 

the PCI interface. However, there is a disadvantage; the 

throughput for loading data from main memory by the host is 

slower than that of the malloc API. 

Device memory and host memory address spaces can be 

managed as an integrated memory space. Therefore, by 

determining the data dependencies in the kernel at the time of 

compiling, data transfer and kernel execution can be processed 

as a single execution unit. Therefore, a programmer does not 

need to specify the timing of the transfer. This method is 

called the mapped memory implementation. Figure 5(4) shows 

a summary of data transfer using mapped memory 

implementation. 
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Fig. 5. Flow of data transfer by proposed memory implementation methods 
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TABLE 1 RULE SETS AND TRAFFIC ENVIRONMENT 

 
Name Details 

Rule 

set 

Snort set The rule sets from Snort set 

HTTP 

set 

The rule sets targeting HTTP 

traffic that selected from Snort set 

Traffic 

Normal 

trace 
Captured trace at Nishi laboratory 

Artificial 

trace 

Artificial trace that a match occurs 

frequently 

 

C. Implementation 

The string matching application proposed in this study is 

expected to perform on a single machine built with a general-

purpose GPU. We used an ASUS RAMPAGE 4 EXTREME 

motherboard with one Intel Core-i7 3930K quad-core 

processor and 64 GB of DDR3 memory (1,600 MHz operation 

frequency). The GPU is an NVIDIA GTX680 that has 8 units 

of 192 SMX cores (1,006 MHz operation frequency) and 

2,048 MB of DDR5 memory (3,004 MHz operation 

frequency). The host and the device were connected through a 

PCI Express 2.0 ×16 interface. The operating system used was 

Ubuntu 13.04 with Linux kernel version 3.8.0-35. The 

program was written in C/C++. The program was compiled 

with the gcc 4.6.4/g++ 4.7.3 [13] and nvcc 5.0 compilers. 

We used two types of rule sets, as shown in Table 1, i.e., 

the Snort set and the HTTP set. The Snort set [15] consists of 

23,139 patterns. The average length of the patterns is 29.0 

bytes. We also used the HTTP set, which is generated by 

selecting the HTTP rules from the Snort set. The HTTP set 

consists of 2,089 patterns. The average length of the patterns 

is 13.3 bytes. 

We used two types of traffic data, as shown in Table 1, i.e., 

real traffic captured in the Nishi laboratory and an artificial 

trace in which a match occurs frequently. A normal trace was 

captured at the Nishi laboratory by tcpdump [14] of the 

1000BASE-T Internet gateway port. This trace was captured 

on May 27, 2009, and we extracted the HTTP stream, which 

specifies port number 80 as the destination or source port. The 

dump file was 14 GB. The extracted L7 information was 11 

GB, and the number of streams was 281,479. We created an 

artificial trace for evaluation in which matching of strings 

occurs frequently. The artificial trace only consists of patterns 

squeezed from the Snort set. We considered that the 

processing throughput becomes low using the artificial trace 

because the storing process increases with the frequent pattern 

matches. We used this artificial trace to evaluate the worst 

performance of SoR-NIDS. 

V. Evaluation 

Here, we evaluate the method for improving the PFAC 
algorithm using shfl functions. The failure ratio of GPU 
threads is considered to affect the performance in the method 
for obtaining a stream by shfl functions. Here, the active ratio 
of GPU threads is the ratio of the GPU threads that continue 
processing to the GPU thread that terminates by a false match. 
This active ratio is equal to 1 − failure ratio. The active ratio 
of GPU threads is determined by an input stream and pattern 
sets. If the prefixes of patterns are likely to match characters 
of a stream, the active ratio of the GPU thread is high. If the 
active ratio of GPU threads in warp is high, the number of 
accesses to inactive threads is reduced. However, using shfl 
functions to access inactive threads is a disadvantage. 
Therefore, if the number of accesses to inactive threads is 
small, the string matching process can be performed 
effectively. 

First, we evaluated the active ratio of GPU threads in the 
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Fig. 6. Active ratio of GPU threads 
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TABLE 2 ACTIVE RATIO OF GPU THREADS AT THE FOURTH MATCHING 

 

Normal 

trace 

Artificial 

trace 

Snort set 81.7% 85.2% 

HTTP set 20.0% 34.0% 

 

proposed condition, as shown in Figure 6. When the number 
of times matching occurs is large, the active ratio decreases 
gradually. In Figure 6, the active ratio is comparatively high 
from approximately the beginning of the fourth matching 
process. Therefore, we estimate that the best time to shift from 
shfl operations to shared memory operations is after the fourth 
matching process. Table 2 shows the active ratio of GPU 
threads at fourth matching. 

In this condition, we evaluated the difference using malloc, 
mapped memory, pinned memory, and WC memory 
implementations. Figure 7 shows the throughput of search 
processing using the HTTP set and the normal trace. The 
throughput using shfl function is slightly lower than that 
without shfl functions. According to the evaluation of active 
ratio of GPU threads, the active ratio of GPU threads using the 
HTTP set and the normal trace was always 43% or lower. 
Therefore, data fetching by inactive threads demonstrated 
reduced throughput. 

Figure 8 shows the throughput of search processing using 

the Snort set and the normal trace. Overall, the throughput was 

improved. In this case, the throughput obtained using shfl 

functions was higher than that obtained without shfl functions. 

When the stream size was small, the performance 

improvement was significant. In this case, throughput 

increased by 11.1% on average. In the mapped memory 

implementation, the improvement was the highest and 

throughput increased by 12.0%. If the stream size is increased, 

performance improvement decreases. For the 128 MB stream, 

the throughput increased by 2.1%. It is considered that the shfl 

functions improved throughput because the active ratio of 

GPU threads was high at the initial search processing when 

using the Snort set. 

Figure 9 shows the throughput of search processing using 

the HTTP set and the artificial trace. When the stream size 

was small, the throughput decreased slightly. When the stream 

size increased, the performance gap narrowed. The throughput 

decreased by 1.4% to 6.5% when the stream size was smaller 

than 8 MB. When the stream size was 8 MB or greater, 

throughput using shfl functions was approximately equal to 

the throughput without shfl functions. Otherwise, the active 

ratio of GPU threads becomes low using the HTTP set. In 

addition, throughput decreased significantly when the stream 

size was small. 

Figure 10 shows the throughput of search processing using 

the Snort set and the artificial trace. In this combination of rule 

sets and traffic, the active ratio of GPU threads was the 

highest among all combinations, and the processing 

throughput was low because many matches occurred. As a 

result, the throughput using the shfl functions was higher than 

that without the shfl functions. Note that the improvement of 

throughput does not depend significantly on stream size. The 

throughput increased by 3.2% to 11.4% overall. The 

performance improvement in the WC memory implementation 

showed the highest improvement rate (9.1% for all stream 

sizes on average). Therefore, it was expected that the 

throughput using shfl functions would be higher than that 

without shfl functions when the active ratio of GPU threads 

was high. However, throughput was reduced when the size of 

the rule sets was small and the active ratio of GPU threads was 

low. 

VI. Conclusion 

In this study, we have proposed a high throughput string 
matching method using a general-purpose GPU for NIDS on 
SoR. We proposed and evaluated a fast string matching 
method using shfl functions and several memory 
implementation methods. In this implementation, we used and 
improved a string matching method based on the PFAC 
algorithm to use shfl functions to improve the performance of 
a string matching process. The performance was largely 
dependent on the combination of traffic and rule sets. While 
the performance with shfl functions was lower than that 
without shfl functions when the active ratio of GPU threads 
was low, the performance with shfl functions was 12.0% 
higher than that without shfl functions when the active ratio of 
GPU thread was high. Thus, we have confirmed the 
effectiveness of the proposed string matching method using 
shfl functions. 
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Fig. 7. Throughput of search processing using the HTTP sets and the 

normal trace 
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Fig. 8. Throughput of search processing using the Snort sets and the 

normal trace 

0

2

4

6

8

10

1 16 256 4096 65536

T
h

ro
u

g
h

p
u

t(
G

b
p

s)

Stream data size(KB)

malloc

malloc notex

pinned

wc

malloc(shfl)

malloc(notex)(shfl)

pinned(shfl)

wc(shfl)

 
Fig. 9. Throughput of search processing using the HTTP set and the 

artificial trace 
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Fig. 10. Throughput of search processing using the Snort sets and the 

artificial trace 
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Abstract—A large portion of area and power in Network-on-

Chip (NoC) routers is consumed by buffers, and hence these 

costly storage resources must be utilized well. However, some 

early related literatures are not suitable for modern NoC 

router architecture as well as various complicated traffic loads 

anymore. In this work, we refine the dynamically-allocated 

multi-queue (DAMQ) buffer organization and propose a new 

one that can accommodate multiple packets more than the 

number of virtual channels, named DAMQ with multiple 

packets (DAMQ-MP). The DAMQ-MP scheme can solve 

certain data transmission issues under some circumstances, 

such as heavy network congestion or short packets, to improve 

performance. We also introduced two methods applicable to 

DAMQ-based buffers, which are adding priorities for switch 

allocation and reserving virtual channels for high-priority 

packets. Experimental results show that DAMQ-MP routers 

can have up to 24.52% higher saturated throughput than 

SAMQ and DAMQ counterparts. 

Keywords-buffer; virtual channel; router;  Network-on-Chip; 

I.  INTRODUCTION 

Buffers are usually added in NoC router nodes to provide 
temporal storage space for arriving data to wait for resources 
to traverse these router nodes. In most cases, statically-
allocated multi-queue (SAMQ) buffers in input-queued 
switches are adopted due to their simple flow control 
mechanism and small hardware overhead. However, each 
queue of SAMQ buffers contains a fixed amount of its own 
buffer spaces and never shares them with other queues. This 
kind of static allocation on input buffers results in storage 
resource wastage for lack of flexibility on buffer 
management. For the same input buffer, it is possible that 
some queues are overloaded in need of more buffer spaces 
while some queues are nearly empty with plenty of buffer 
spaces unused. Especially buffers consume a great portion of 
power and area in a NoC router [1], and thus these costly 
buffer resources must be effectively utilized when designing 
router architecture. 

Tamir and Gregory [2] first proposed a novel buffer 
organization named DAMQ to provide better flexibility of 
buffer utilization. This DAMQ buffer organization can 
dynamically partition buffer storage with linked lists to 
handle variable length packets for achieving higher 
performance. Another approach using self-compacting 

buffers (SCB) to implement DAMQ switches was introduced 
in [3] to reduce the hardware overhead and complexity. Liu 
et al. [4] improve the DAMQ switches adopting SCB by 
letting two sets of virtual channels in different dimensions 
share buffer space. A special architecture called high-
performance input-queued switch (HIPIQS) also uses a 
DAMQ organization, pipelined access to multi-bank input 
buffers with chucks, and many small additional cross-point 
buffers, to deliver high performance [5]. However, current 
NoC architecture designs prevalently use wormhole 
switching to relax the constraints on buffer size, virtual 
channel flow control to avoid deadlocks and head-of-line 
(HoL) blockings, and mesh-based topology to fit chip 
layouts. The above mentioned searches are not suited to the 
requirements of modern NoCs anymore and therefore have 
to be resurveyed. 

Rezazad et al. [6] showed that the optimal number of 
virtual channels and buffer length of mesh-based 
interconnection networks highly depends on the traffic 
pattern as follows. Under light traffic, the buffer structure 
extends virtual channel depth for continual transfers to 
improve latencies; under heavy traffic, the buffer structure 
dispenses many virtual channels for congestion avoidance to 
increase throughput. Based on these concepts, two buffer 
structures of dynamically changing their number of virtual 
channels were proposed [7][8]. However, these two buffer 
structures have to put a lot of effort to manage the varying 
number of virtual channels, such as tracking tables, and that 
makes them hard to scale. In addition, arbiters used in virtual 
channel allocations must be simplified to prevent the 
hardware overhead from dramatically increasing as the 
number of virtual channels goes up. 

In this paper, we propose the DAMQ-MP scheme by 
allowing multiple packets that are more than the number of 
virtual channels coexisting inside a DAMQ-based input 
buffer. Because this scheme breaks the limitation of one 
packet per virtual channel in conventional virtual channel 
routers, it can overcome the possible issues resulting from 
waiting for switching packets, handling short packets, and 
HoL blockings. We believe that DAMQ-MP is the easiest 
and feasible method to improve network performance and 
buffer utilization without sophisticated hardware design 
modifications. Besides, it is suitable to some applications 
like reserving virtual channels for high-priority packets. 
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II. MOTIVATION 

A. Packet Switching Latencies 

In conventional SAMQ and DAMQ buffers, one virtual 
channel typically only holds one packet each time for easy 
control and preventing HOL blockings. Therefore, if all 
virtual channels contain packets whose tail flits have entered 
but not left yet, the remaining free buffer resources are 
wasted until some packet is gone and another new packet 
arrives, as illustrated in Figure 1a. Even though the DAMQ 
mechanism lets the remaining buffer resources be used by 
packets that have not completed their delivery as shown in 
Figure 1b, bringing more flits of the these long packets 
merely helps little to deal with the following blanks after any 
other packet leaves. The duration between the two departures 
of the tail flit belonging to the current packet and the head 
flit belonging to the next packet is pretty long. This duration 
includes the time of handling the following procedures: 
notifying upstream router that this virtual channel has 
become free, allocating a new packet to this virtual channel, 
delivering the flits through the switch and physical link into 
this virtual channel, doing routing computation and output 
virtual channel allocation of its downstream router, and 
possibly incurring stalls due to contention. This kind of 
“packet-switching” latency can’t be neglected because data 
transmission within the related virtual channel stops and 
unable to provide any contribution to throughput during this 
period of time. 

Usually the packet-switching latencies can be hidden by 
using multiple virtual channels: some virtual channels may 
still work well while some virtual channels are reloading 
their new packets. However, if the interconnection network 
is seriously congested and most of virtual channels in routers 
are halted by contention stalls, any loss of virtual channels 
caused by switching packets will make the situation worse 
and the influence of these packet-switching latencies 
becomes more apparent. The way solving this issue is to find 
out how to shorten the packet-switching latencies, and thus 
one straightforward method is to bring the next incoming 
packet into the input buffer in advance without waiting for a 
virtual channel released to be free and standing by. This 
helps halted virtual channels returning back to work 
normally as soon as possible so that more packets can be 
provided to choose to traverse the switch fabric. 

B. Traffic Loads with Short Packets 

Especially in some scenarios, interconnection networks 
carry traffic loads mixing long data packets with short 
control packets (e.g., commands, acknowledgments, etc.). 
Each short packet still occupies one virtual channel but 
brings only few flits to make the physical channel and 
unused buffers idle in most of the time. Short packets also 
make virtual channels switching more frequently than long 
ones, and have more chances of letting virtual channels 
halted due to waiting for the arrivals of new packets. When 
encountering some blocking, each blocked short packet will 
stay in its virtual channel and thus be distributed into one of 
many different routers. However, this situation can be 
improved by allowing several short packets which stop 

forwarding to be compacted in a few routers as long as there 
are enough buffer spaces available in these routers. Having 
more packets contained in the input buffers not only leads to 
higher buffer utilization rate but also releases more available 
virtual channel entities for transmitting more packets in the 
whole interconnection network. 
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Figure 1.  Comparison of buffer organizations. Each flit is labeled with its 

type (H, B, and T standing for head flit, body flit, and tail flit respectively) 

and the packet it belongs to (i.e., the smaller letter within the parentheses). 

C. Dynamic Input Buffer Management 

Based on the reasons mentioned above, to make an input 
buffer accommodate multiple packets whose amount is more 
than its number of virtual channels can take some advantages. 
However, in order to keep more associated packet 
information due to the increasing number of packets, extra 
hardware such as registers used for state fields as well as 
pointers and control logics must be added. If applying this 
method to the SAMQ organization and then becoming the 
SAMQ with multiple packets (SAMQ-MP) organization as 
shown in Figure 1c, it is obviously unsuitable and 
impractical. First of all, letting the same virtual channel 
commonly shared by multiple packets will result in HOL 
blocking problems. Although moving the blocked packet 
from its current virtual channel to another free virtual 
channel can overcome the HOL blocking, but the price on 
the extra hardware cost and complexity is too expensive. In 
addition, like the buffer allocation in SAMQ buffers is 
partitioned statically, these extra registers used for state 
fields and pointers waste along with reserved buffer 
resources if their associated packets belonging to the 
dedicated virtual channels are absent. 

On the contrary, the DAMQ organization is more suitable 
to this scheme due to its linked-list buffer structure, as shown 
in Figure 1d. In the original DAMQ buffer, each set of state 
fields and pointers is dedicated to one virtual channel. 
However, if the number of packets in a buffer is no more 
limited by the number of virtual channels but by a quota of 
packets, an input buffer must reserve one set of state fields 
and pointers for each packet, not for each virtual channel. 
Because every packet is stored as a linked list and buffer 
spaces as well as virtual channels are used among packets, 
even if the number of packets in use is far less than the 
reserved quota of packets in a buffer at all, there are no 
buffer resources waste for unused packets except the 
associated sets of packet state fields and pointers. 
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III. THE DAMQ-MP SCHEME 

A. Overview of DAMQ Buffers 

A DAMQ buffer is structured as linked lists for 
dynamically adjusting the depths of virtual channels for more 
efficiently utilizing the input buffer. In this way, the precious 
memory resources are shared by all virtual channels in the 
same input unit, and busy virtual channels can get more 
buffer spaces than idle ones. An evident difference between 
the SAMQ and DAMQ organization is the mechanism of 
credit management. The DAMQ router must collect all credit 
information and then put it together in the virtual channel 
allocator to make centralized credit management with several 
extra counters. In practice, some restrictions also need to 
apply to the DAMQ buffer allocation policies for avoiding 
deadlock and load imbalance. 

B. DAMQ-MP Router Architecture 

In DAMQ-MP buffers, whenever the tail flit of a packet 
enters the input buffer via one of the virtual channel entries 
connecting with the physical link, this packet will never use 
this virtual channel entry from now on and certainly can tear 
the corresponding allocation relationship by alerting the 
notification signal to its upstream router. Therefore, a new 
packet from its upstream router can be sent out and received 
via this free virtual channel entry. Then the newly arriving 
packet begins its routing computation, and all following flits 
belonging to this packet are linked together. After the result 
of routing computation comes out and is stored into its 
corresponding state field, this packet will occupy one of the 
unused virtual channel exits connecting with the switch 
fabric to request output virtual channel and switch traversal 
bandwidth for departure. 

Here we use the terms of “entry” and “exit” to 
distinguish the virtual channels for receiving packets from 
the virtual channels for sending packets. These virtual 
channel entries and exits are respectively only responsible to 
the usage rights of the physical link and the switch fabric 
connecting with the input buffer. In the original DAMQ 
organization, one packet enters, occupies, and leaves its 
virtual channel, and the entry and the exit it uses both belong 
to the identical virtual channel it occupies; nevertheless, in 
the DAMQ-MP organization, an entry or an exit of the 
virtual channels is just an access gateway to write or read 
flits, and neither entries nor exits have to coexist in pairs. It 
is possible that a packet (like Packet D in Figure 2a), which 
has brought all its flits inside the DAMQ-MP buffer through 
an entry, merely stays alone and waits for an exit to depart. 

As illustrated in Figure 2b, DAMQ-MP buffers just like 
DAMQ buffers need several pairs of head and tail pointers, 
one extra free-list pointer, and counters for all linked lists. 
Except for the original state fields used for virtual channel 
exits to store their virtual channel status and assigned output 
virtual channel number, additional state fields for all packets 
are also needed to keep the routing computation results and 
some other associated attributes, for instance, the allocation 
priority of the packet. Essentially every packet in a DAMQ-
MP buffer exists individually and must possess a unique 
packet ID number. These packet ID numbers are uniformly 

assigned and managed by the centralized virtual channel 
allocator, and they are always carried with the head flits of 
their packets to their next routers for use of recognition while 
manipulating the input buffers, just like the virtual channel 
ID number carried with every flit. 
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Figure 2.  DAMQ-MP buffers and linked-list memory space. 

In order to keep track of which packets are currently 
using which access gateways to move in and out of the input 
buffer, each virtual channel entry and exit has to record the 
packet ID number of the packet which resides in it. These 
above packet ID numbers are stored in two arrays of registers 
named as “vc_entry” and “vc_exit” respectively. Meanwhile, 
another array of registers named as “vc_list” is used to 
record the arriving order of the packets which are waiting for 
free virtual channel exits, and these registers assist the input 
unit to decide the allocation order of the virtual channel exits. 
There are two copies of these three register arrays for 
managing one input buffer: one is certainly built inside the 
input buffer itself for buffer storage handling, and another is 
located in the virtual channel allocator of its upstream router 
for buffer storage allocation. The information of these three 
array registers (i.e., packet ID numbers) are continuously 
updated to keep their consistency according to the transitions 
of the “vc_free” and “pkt_left” signals as well as the head 
flits of packets. The “vc_free” signals are exactly identical to 
the same signals in the DAMQ router to notify its upstream 
router that there is a free virtual channel ready for being used 
again, but now they only refer to the occupation of the virtual 
channel entries in a DAMQ-MP input buffer. On the other 
hand, the “pkt_left” signals are similar to the “vc_free” 
signals for indicating the departures of packets and merely 
respond to the availability of the virtual channel exits by 
giving notifications to the upstream router. The information 
about mapping a packet to a virtual channel entry is carried 
with the head flit of a packet and passed to the input unit of 
its downstream router after transmitting this head flit. 

While comparing the proposed DAMQ-MP router with 
the original DAMQ router, they almost have identical 
hardware components and behavior in appearance, but there 
are two huge differences inside the input units and the virtual 
channel allocator. The first different part is relative to the 
novel “packet number system”. Every packet existing in an 
input buffer must have a unique ID number to distinguish 
itself from others. Handling any proceedings about packets 
will need to use these packet ID numbers. All packet ID 
numbers belonging to the same input buffer are centrally 
managed and distributed by the virtual channel allocator of 
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its upstream router. While a packet in a virtual channel exit 
requests an output virtual channel to the input buffer of its 
downstream router, it will also need to be assigned an 
available packet ID number for the input buffer. Certainly 
this assigned packet ID number will be used until the 
associated packet has completely left the input buffer, and 
then the input unit must notify the virtual channel allocator 
of its upstream router via the “pkt_left” signal that this 
packet ID number is no longer used and available again. 

The second different part is that the DAMQ-MP router 
induces the concept of “decoupling the virtual channel 
entries and exits”. Although the same number of virtual 
channel entries and exits in a DAMQ or DAMQ-MP router, 
a packet in the DAMQ router passes through the input buffer 
via an entry and an exit belonging to the identical virtual 
channel, whereas any pair of a virtual channel entry and a 
virtual channel exit in the DAMQ-MP input buffer are 
irrelative and handle packets independently. To manage all 
of these virtual channel entries and exits in DAMQ-MP 
buffers relies on the above-mentioned three array registers 
(i.e., “vc_entry”, ”vc_exit”, and ”vc_line”) as well as two 
notification signals (i.e., “vc_free” and “pkt_left”). 

C. Characteristics 

Because of the intrinsic characteristic of the linked-list 
data structure, a DAMQ router can more easily enhanced to 
bring in more packets inside than a SAMQ router. As 
mentioned previously, one major cause of improving 
performance is that the DAMQ-MP mechanism reduces the 
idle time of reloading a new packet into the halted virtual 
channel exit which the contained packet inside just leaves. 
Another cause is that the DAMQ-MP buffers let all virtual 
channel entries keep receiving packets all the time if there 
are enough packet sources coming from the upstream router, 
especially for short packets. Therefore, the DAMQ-MP 
organization can be beneficial for the cases of short packets, 
large buffer capacity (relative to packet lengths), heavy 
traffic congestion, and small number of virtual channels. 

Because the DAMQ-MP scheme handles buffer resource 
allocation in units of packets instead of virtual channels, the 
increased hardware costs are just several registers for 
pointers, counters, state fields, and virtual channel mapping 
arrays, as well as the extra signals and control logics for 
packet system management and virtual channel decoupling. 
Owing to the additional mapping transformations from 
virtual channels to packets and vice versa, the data access 
delay may be prolonged to make the performance degraded. 
Certainly, we can add more sophisticated hardware such as 
register pre-fetch units to avoid or compensate the loss on 
performance, and they are trade-offs while designing 
DAMQ-MP routers. 

Another possible problem is that too many packets 
residing in a crowded but small DAMQ-MP buffer will 
compress the available spaces that a packet possibly can get. 
If lots of flits belonging to one packet have already existed in 
the input buffer, bringing one more remaining flit of this 
packet still can’t make it forward further until all of its 
preceding flits have left. Therefore, one simple method is 
adding priorities to the allocating switch process to always 

first bring a flit that is the most likely to depart the input 
buffer soon. The priority levels can be estimated by counting 
the minimum amount of flits which are in front of the 
candidate flit and leave the input buffer possibly before it. 
Then the switch allocator sets priorities of all requesting 
packets based on the counting results. Imposing the priorities 
on the switch allocation can effectively solve the load 
imbalance problem occurring inside a DAMQ-based input 
buffer and make the data transmission ceaselessly. 

D. Case Discussion: Cut-in-Line for High-Priority Packets 

In most cases, the packets encapsulating control 
information are shorter than the packets encapsulating raw 
data in packet length. In addition, these control packets are 
usually much more important than raw-data packets to a 
certain extent and demand faster transmission by possessing 
higher priority level. In the case of all packets sharing the 
same network fabric, the simplest method to prevent high-
priority packets from being blocked by other packets is 
reserving some network resources, for instance at least one 
virtual channel, for high-priority packets to establish fast 
transferring routes all the time. 

The proposed DAMQ-MP scheme is especially suitable 
for such reservation method due to its linked-list data 
structure and short lengths of high-priority packets. Because 
the occurrence probability and the amount of high-priority 
packets are both in very small proportions, the high-priority 
dedicated virtual channels can keep the least minimum 
number of reserved flit buffers while idle at most of time and 
can be dynamically inserted more available flit buffers while 
they are in use. Furthermore, if a DAMQ-MP input buffer 
has more than one high-priority packets inside, switching 
process for high-priority packets in the virtual exits can 
immediately accomplish without letting any virtual exits idle.  

Because many packets appear at the same time in the 
DAMQ-MP input buffer, one conceptual “cut-in-line” 
behavior possibly happens to shorten the waiting time to the 
high-priority packets for the virtual channel exits. As shown 
in Figure 3, when a virtual channel exit is freed up (by 
Packet B), the control logics definitely have to choose the 
foremost one of the high-priority packets (Packet E) to take 
that virtual channel exit, whether any low-priority packets  
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Figure 3.  Examples of the “cut-in-line” behavior. Each flit is labeled with 

its priority (H and L standing for high-priority and low-priority respectively) 

and the packet it belongs to (i.e., the smaller letter within the parentheses). 
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Figure 4.  Performance of routers with 12-flit buffers and carrying traffic loads of 8-flit packets under different traffic patterns. 

(Packet D) are in front of that chosen high-priority packet or 
not. This kind of “cut-in-line” behavior can be easily made 
by inserting a newly coming high-priority packet into the 
place after all present high-priority packets as well as before 
all other packets in the waiting line “vc_line”, rather than 
directly adding it to the place right behind the last packet in 
the waiting line. 

IV. EXPERIMENTAL RESULTS 

We build a cycle-accurate flit-level simulator in SystemC 
to carry out all experiments. The interconnection network we 
simulate is an 8 x 8 mesh topology adopting 4-stage router 
pipeline, X-Y routing and wormhole switching flow control. 
We set the warm-up phase of 10,000 cycles to wait the 
network into its steady state, and then start to sample data 
during the measurement phase of 100,000 cycles. Unless 
otherwise specified, all buffer schemes are tested under the 
synthetic uniformly distributed random traffic pattern and the 
maximum number of packets in a DAMQ-MP buffer is 
unlimited. The latency of a packet is the time interval 
measured from the time the head flit of the packet is 
generated by the traffic generator of a source node to the 
time the last flit of the packet leaves the network. The 
throughput is the average accepted traffic amount by a 
destination node per cycle. 

A.  Traffic Pattern 

Figure 4 shows the performance results of routers with 
buffer capacity of 12 flits and 3 virtual channels conveying 
8-flit packets under different traffic patterns. No matter what 
kind of traffic pattern is, the DAMQ-MP organization always 
has the best performance among all three buffer structures. 
Especially when the network starts to get saturated, the 
dynamic buffer allocation and reduction of packet switching 
latencies in DAMQ-MP organization makes the whole 

network accommodate more flits and reach a higher 
throughput value. Owing to the balanced loads in uniform 
random traffic distribution, the saturated throughput of the 
DAMQ-MP routers is steadily about 8.53% higher than the 
other two. Even under the bit complement and transpose 
traffic patterns, the peak throughput improvements are still 
9.56% and 1.56% respectively. 

B. Packet Length and Buffer Structure 

Compared with the result under random traffic in Figure 
4a, we make a series of experiments of changing the ratio of 
packet length to buffer capacity that determines the expected 
amount of packets possibly residing in a buffer. As the result 
shown in Figure 5a, when packet length is relatively small to 
buffer capacity, the DAMQ-MP routers can hold as many 
short packets as possible but the SAMQ and DAMQ ones 
can’t due to the limitation of one packet per virtual channel. 
The saturated throughputs of the DAMQ-MP routers are 
24.52% higher than the other two for 4-flit packets. 

Then if the buffer size is increased to 18 flits with the 
same amount of virtual channels, the performance 
improvement between DAMQ-MP routers and the other two 
expands as the input buffer capacity grows. As shown in 
Figure 5b, the improvement for the DAMQ-MP routers 
relative to the DAMQ ones in the saturated throughput rises 
to 11.24%. This proves that providing more sufficient buffer 
spaces for DAMQ-MP routers to accommodate more packets 
at the same time can make them achieve better performance. 

If the buffers are kept to have the same average number 
of 4 flits per virtual channel, the difference of performance 
improvement between DAMQ-MP and the others shrinks as 
adding more virtual channels. As shown in Figure 5c, the 
improvement of saturated throughput drops to 4.79%. The 
mechanism of multiple packets in the DAMQ-MP routers 
facilitates the input unit to fast reload new packets to any idle 
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Figure 5.  Performance of routers with short packets, large buffer size, and more virtual cahnnels. 

virtual channel exits and keep as many virtual channels 
unceasingly running as possible. However, if there are 
already many virtual channels within a buffer, these efforts 
that the DAMQ-MP scheme does become less apparent 
relative to the DAMQ organization. 

C. Maximum Number of Packets 

Intuitively, setting the parameter “maximum number of 
packets” must depend on the buffer capacity and the length 
of packets. Hence, we choose a large 32-flit buffer with 4 
virtual channels for this experiment. In Figure 6a, the results 
show that there is almost no performance improvement when 
the maximum number of packets is greater than 6. This is 
because the probability of more than one virtual channel 
entry, which have been freed up by these long packets, 
becoming available at the same moment is pretty low. 
Therefore, basically choosing the maximum number of 
packets one or two larger than the number of virtual channels 
for being standby is enough in most common cases, and this 
means that building the DAMQ-MP router needs only few 
additional registers and control logics. 

D. Priorities for Switch Allocation 

We pick a small 12-flit buffer with 3 virtual channels to 
test the proposed method of adding priorities for switch 
allocation. The main purpose of this method is trying to 
arrange the limited free buffer resources to packets which are 
almost running out of flits and desirous of supplies. The 
priorities are divided into three levels according to the 
counting values of 0 to 3, 4 to 5, and greater than 5. In Figure 
6b, this scheme seems to have no effects on the DAMQ 
routers, but it improves the performance of the DAMQ-MP 
routers when traffic loads are highly congested. Although the 
saturated throughput of DAMQ-MP routers only increases 
1.65% after applied the priority scheme, this simple method 

indeed can prevent load imbalance and be easily integrated 
into any routers with the design of handling packet priority. 

E. Virtual Channel Reservation for High-Priority Packets 

In the previous case discussion, the DAMQ-based buffers 
should more fitting than the SAMQ-based ones to the 
method of reserving certain high-priority dedicated virtual 
channels. Furthermore, high-priority packets inside the 
DAMQ-MP buffers have bigger chances of doing “cut-in-
line” behaviors to pass through as fast as possible. Hence we 
design this experiment to compare the performance of 
DAMQ and DAMQ-MP routers with or without reservations 
of virtual channels to deal with high-priority packets. The 
buffers are set to 16-flit with 4 virtual channels, and the 
traffic loads are made up by 1% 1-flit high-priority and 99% 
8-flit low-priority packets. If using high-priority reservation 
scheme, at least one of these virtual channels is reserved for 
high-priority packets; otherwise, all virtual channels are 
identical and can be used by any kinds of packets. 

In Figure 6c, average latencies of high-priority and low-
priority packets are saturated simultaneously because both 
kinds of packets injected by the same router node commonly 
come from the identical source queue. There are no 
differences among the performance results of these four sets 
while the packet injection rates are low. This observation 
proves that the dynamic buffer allocation mechanism of 
DAMQ and DAMQ-MP organizations indeed reduces the 
impact of taking some virtual channels for high-priority 
reservations on performance. Besides, this reservation 
scheme can facilitate an interconnection network to keep the 
average latency of high-priority packets almost constant until 
the injection rate reaches a higher value. The curves of 
average latency for low-prior i ty packets in both 
organizations adopting the reservation scheme rise earlier 
than their counterparts without using the scheme. It is 
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Figure 6.  Performance of DAMQ-based routers with different schemes. HP and LP stand for high-priority and low-priority respectively. 

because the maximum amount of virtual channels which can 
be used by the low-priority packets decreases if using the 
reservation scheme; this also affects the saturated accepted 
throughputs. DAMQ-MP routers can sustain low-latency 
transferring services for high-priority packets at a higher 
traffic injection rate than DAMQ routers after they use the 
reservation scheme. This is because not only a DAMQ-MP 
buffer can accommodate more high-priority packets but also 
the “cut-in-line” behaviors happen to speed up the high-
priority packets passing through the buffer internally. 

V. CONCLUSION 

In this paper, we introduced a novel DAMQ-MP 
organization for input buffers which can accommodate 
multiple packets more than the number of virtual channels. 
Because DAMQ-MP buffers are not constrained by the 
limitation of one packet per virtual channel existing in these 
old-fashioned SAMQ and DAMQ buffers, they can well 
utilize those scarce buffer storage and physical link resources. 
In addition, the DAMQ-MP scheme can bring standby 
packets in advance to reduce the waiting latencies of 
switching packets in virtual channel exits. The original 
DAMQ organization solves the problem of shallow virtual 
channel depth while using small SAMQ input buffers, and 
the proposed DAMQ-MP scheme further solve the problem 
of few working virtual channels for DAMQ routers while 
carrying heavy traffic loads. In addition, we discussed two 
methods applicable to DAMQ-based buffers, which are 
adding priorities for switch allocation and reserving virtual 
channels only for high-priority packets. We performed some 
experiments on three buffer organizations and proved that 
the DAMQ-MP scheme can take advantages in many 
scenarios. These experimental results showed that DAMQ-
MP routers can have up to 24.52% higher saturated 
throughput than SAMQ and DAMQ counterparts. 
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Abstract:A new network paradigm Ad HoC has been 

widely studied and developed; these are the vehicular ad 

hoc networks (VANETs - Vehicular Ad hoc Networks). 

Assuming that cars are increasingly "smart", the VANETs 

emerged with the proposal to provide communication 

among vehicles of highways. This communication aims to 

ensure greater security for members involved in transit. 

Seeking to ensure this security it is necessary that the data 

exchanged among vehicles are reliable. One of the 

techniques discussed in this proposal is the use of 

reputation systems. In this technique, the confidence in the 

vehicles is based on votes from its neighbors. In other 

words, the more vehicles have positive reviews, the more 

reliable they are and vice versa. In this work, the proposal 

was to model and simulate a centralized reputation system, 

where a central unit is responsible for managing 

reputations. With this centralized system, the reputations 

of vehicles that have been evaluated are stored indefinitely 

and can be accessed anytime and anywhere. With the 

implementation and simulation, we were able to 

demonstrate that a vehicle, after being evaluated, has its 

reputation  available at any time and place, preventing this 

malicious vehicle to succeed in later attacks. 

Keywords: VANET, security, reputation system 

1 - Introduction 

Vehicular Ad Hoc Networks (VANETs) [1] are a subclass 

of MANETs, which play crucial roles in road safety, as the 

detection of traffic accidents and traffic congestion 

reduction. Currently it has been the subject of several 

studies, mainly focused on the area of traffic safety, such 

as traffic information or alert collisions. However, as 

regards the exchange of information among vehicles, it is 

important that they are reliable. As this type of network 

has an ephemeral feature, due to the high mobility and 

speed of the nodes, it is necessary to use more robust 

techniques to ensure the security of information 

exchanged by vehicles. 

One proposal that has been studied is based on reputation 

systems. In these systems, the reliability of vehicles is 

based on a collection of opinions about a particular 

vehicle. This technique utilizes the use of helpful vehicles 

near certain individual to determine whether their 

information should be accepted or repealed. 

This paper aims at the proposal of the implementation and 

simulation of a new approach for the reputation system 

using a centralized architecture. 

In Section II the VANET architecture and its main features 

is presented. Session III is discussed in the related work. 

In Section IV characteristics of a centralized reputation is 

displayed. Section V is discussed in the simulations and 

their results. Finally, in Section VI the conclusions and 

proposals for future work is presented. 

2 – VANET 

An evolution in the automotive field is the idea of 

"consciousness", meaning that a vehicle is aware of its 

neighborhood, including the presence and location of 

other vehicles. Conscious vehicles have a network of 

sensors connected to a central data processing that 

provides communication based on Ethernet interfaces, 

USB, Bluetooth, 802.11 standards, among others. 

In this scenario, a set of vehicles that communicate with 

each other is an example of a wireless mobile network 

inserted in a context of ubiquitous computing. In this case, 

in addition to the systems implementing the 

communication between the vehicles, they also need to 

protect the personal information of their users. This type 

of network is called VANET (Vehicular Ad hoc 

Networks) [1]. 

In this type of network vehicles act like us. One of the 

major goals of this network is to provide safe conditions 

for the traffic of vehicles. This can be done through the 

exchange of information among vehicles, warning about 

accidents, congestion, and others. 

The architecture of a VANETs is formed by the 

communication among vehicles (V2V), through wireless 

connections, and among the  vehicles and fixed base 

stations (RSU - Road Side Unit) that makes the street or 

highway infrastructure (V2I) (Figure 1). 
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Figure1 - - Basic architecture of a VANET (Raya e Hubaux, 

2005) 

3 – Related Work 

Distributed systems in which there is no centralized 

coordination, such as Peer-to-Peer (P2P) networks 

VANETs and MANETs, are subject to various types of 

enemies and attacks. Some simple techniques such as 

encryption can neutralize certain external threats because 

the enemies are not able to access the data exchanged over 

the network. However, there is the risk of an authenticated 

member take advantage of the situation to attack other 

network members. Thus, it is necessary to use more 

effective defense  mechanisms, which are capable of 

shooting down these deficiencies. One proposal that has 

been approached trying to secure the cooperation among 

the nodes of the network is the use of reputation systems. 

The purpose of the reputation system is to build trust value 

for each node of this network, and based on these values 

the other nodes can decide who should they rely on, 

encouraging  trustworthy behavior. Resnick e 

Zeckhauser[3] lists three targets for reputation systems: 

 Provide information to distinguish between 

reliable and unreliable pair. 

 Encourage peers to act in a trustworthy manner. 

 To discourage suspected peers of participating 

in this service, reputation mechanism is 

introduced. 

The concept of reputation can be defined as a collective 

measure of reliability in a person or thing based on 

indications or assessments of members of a community. 

Thus, the individual level of trust in that person or thing 

can be obtained from a combination of the received 

nominations and the personal experiences [4]. In 

VANETs, the reputation of a vehicle can be considered as 

a set of beliefs held by other vehicles on it. That reputation 

is then used as an important standard in making decisions, 

such as forwarding or discarding packets sent by that 

vehicle, considering it or disregarding it as an option in the 

routing of data, considering or disregarding information it 

passed by, etc. 

In the Vehicle Ad-Hoc Reputation System (VARS)  [5], 

each vehicle adds its opinion about the veracity of the 

messages it received and forwarded, so everyone can use 

these opinions to calculate reputation. 

The work of Wang e Chigan [6] proposes a mechanism 

that, instead of considering past records, has only vehicle 

behavior at runtime to define instant reputations. The work 

is only concerned about possible changes of message data 

during routing, without evaluating the content of the 

message itself. Thus, messages containing erroneous 

information can be easily distributed over the network. 

Ostermaier, Dotzer e Strassberger[7] present a system 

based on votes to increase the security of the decisions 

taken by the vehicles on events reported in LDW 

applications schema. From the messages received within 

the area of dissemination, the paper evaluates the 

performance of four different methods of decision 

executed when the vehicle enters the area of decision 

Event: Last message, Most messages, Most recent 

messages X Latest X Messages considering a lower limit. 

The efficiency of these four methods is measured in a 

network subjected to attacks from false alarms and 

switched type alarms. 

Lo e Tsai[8] present a reputation system based on events. 

The value of the reputation of an event defines the 

intensity of this event on the network in which its initial 

value is zero. 

The mechanism Patwardhan et al [9] adds the reputations 

using a simple voting scheme, like Most of messages [7]. 

Thus, a vehicle collects information about events until 

data sent by a trusted source are received when the 

decision is based solely on information contained in this 

message, or a minimal amount of messages is received, 

when the voting scheme is implemented. The proposed 

solution does not allow the sharing of reputation data 

among the vehicles of the network, which can represent a 

considerable delay in the establishment of trust and 

intrusion detection process. 

InDhurandher et al [10], the authors introduced VSRP, an 

algorithm based on reputation that uses confidence values 

assigned to nodes to detect and eliminate the network 

malicious nodes. In fact, this work is mainly in the 

detection of malicious nodes. 

Huang [11] presents a reputation system based on cascade 

votes in which the weight of the information is related to 

the vehicle position, that is, the closest vehicles to an event 

have to evaluate a greater weight information. This system 

aims to assess the information, i.e. it tries to assess which 

information is false and which is not instead of trying to 

find a malicious vehicle. 
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4 – Centralized Reputation System 

(CRS) 

Much of the research and targeted work for reputation 

systems have approached systems based on distributed 

architectures, in which the cars themselves store 

information related to reputations of neighboring vehicles. 

These systems seem the most sensible for this type of 

approach, due to the assumption that the vehicle shall be 

responsible for storing information about the neighboring 

vehicles. However, due to high mobility of the 

connections among vehicles, there has been some related 

data traffic connections problems: the amount of 

information exchanged, for how long a vehicle should 

store the information about the vehicle, etc. 

To minimize these problems and seeking a new approach, 

this study aims to develop and simulate a centralized 

reputation for vehicular ad hoc networks. In this system, 

the Base Stations (RSU) are responsible for storing the 

information about the reputations of vehicles, and are 

positioned on the sides of highways. In addition, there will 

be a central unit (CU) that will connect all RSU, and will 

be responsible for storing the reputations of all vehicles 

(Figure 2). 

 

 

Figure2 - Centralized architecture 

These Base Stations (RSU) are connected to a database 

management system (DBMS) that stores information 

about the reputations of vehicles. The fields of the table 

are the following: 

• ID_Vehicle: Field identification of the vehicle. 

This field is unique to each vehicle. Some 

studies [12] propose to use pseudonyms instead 

of using an ID for the vehicle, so that the 

privacy of users is guaranteed. However, the 

certification unit that manages these nicknames 

know the ID of the vehicle, so we will consider 

this ID to our architecture. 

• Reputation: degree of reputation of the 

vehicle. The degree of reputation is contained 

in the interval [0, 10], where 0 is the minimum 

value and 10 the maximum value. 

The vehicles will make the decisions regarding an 

information-based degree of reputation of the issuing 

vehicle information. The higher the degree of reputation 

of the vehicle the more reliable it will be. 

5 – Simulations 

The simulator used to measure performance and operation 

of the CRS was NCTUns [13]. 

For the evaluation of the results obtained, the following 

behaviors of vehicles have been checked: 

• Average speed: average speed of vehicles 

before and after receiving an alert message. 

• Distance: distance traveled by a vehicle 

while waiting for a response from RSU 

• Response time: Analyzing the speed and 

distance data you can determine the waiting 

time for response of RSU 

Four scenarios have been simulated with different 

characteristics. Each simulation had a duration of 60 

seconds and for each one there was a vehicle responsible 

for sending the alert message. 

The first scenario simulated a malicious vehicle launched 

an attack, sending a false warning (warning of congestion, 

for example), in the region. At the first moment, there is 

no information about the vehicle that sent the message, 

this way other vehicles tend to trust the message and take 

some decision. 

Figure 3 shows the average speed of the vehicles before 

and after receiving the alert and getting the response of 

RSU. As it can be seen the attack can be considered 

successful because the vehicles reduced their speed 

substantially. 

 

Figure3 - Average speeds before and after receiving the alert in 

the scenario 01 
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In Figure 4 it is presented the distance and time traveled 

by the vehicle while waiting for response from RSU 01 in 

the scenario. 

 

 

Figure4 - Average waiting time and distance traveled in 

response RSU scenario 01 

In scenario 01, the attack can be considered a success 

because the attacker got what he wanted: a free highway. 

This was due to the fact that his reputation is unknown, 

and for this case, we chose to make vehicles rely on 

messages, which led to the result. However, this vehicle 

would not succeed in further attacks, because it was 

negatively evaluated and it has been presented in this 

work, this reputation is shared by the RSUs and UC. 

To simulate the scenario 02 it was considered that the 

same vehicle that performed the attack in the previous 

scenario travels a route to a new area and performs the 

attack again. However for this scenario it assumes that 

after the first attack this vehicle was negatively evaluated 

and is therefore with a low reputation in UC, whereas 

RSU1 relayed the information to register. 

As the attacker vehicle was negatively assessed, and 

therefore has a low reputation, it is expected that the 

vehicles by receiving the information from the reputation 

ignore the messages received from this vehicle and do not 

alter their route and speed, making it an inefficient attack. 

Figure 5 shows the average of the speed of vehicles. In 

addition, as it can be seen, in this scenario the attack was 

not successful because the vehicles received the response 

of RSU reported that the reputation of the issuing vehicle 

alert was low, so the vehicles ignored the message. 

 

 

Figure5 - Average speeds before and after receiving the alert in 

the scenario 02 

In Figure 6 it is presented the distance and time traveled 

by the vehicle while waiting for response from RSU in the 

scenario 02. 

 

 

Figure6 - Average waiting time and distance traveled in 

response RSU scenario 02 

The result of this negative evaluation is presented in the 

scenario 02 where the same vehicle, which performed the 

earlier attack, tries to execute another attack. In this 

scenario it is verified one of the main advantages of a 

centralized reputation system, since it has information 

about the reputation of a vehicle no matter which location 

he is it is possible to get a response on this reputation. 

In Scenario 02, it can be considered that the attack was not 

successful because when the vehicles receive the alerts 

they refer to RSU, which does not have the reputation of 

the vehicle information so they consult UC to get an 

answer. Having received the update reputation of this 

vehicle, UC returns the response to RSU and consequently 

passes it on to the vehicles. Vehicles which receive the 

answer check that the reputation of the sender vehicle is 

low and therefore do not rely on messages sent by this 

vehicle. In the simulation results presented in the scenario 

02, we can see that the attack did not affect the behavior 

of vehicles that kept their routes and speeds. 
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In scenario 03 it is considered a vehicle with high 

reputation, i.e. it is a reliable vehicle. This transmitter 

vehicle will send a real alert. Once the vehicles receive this 

message, they follow the architecture of centralized 

reputation, consulting the RSU to verify the reputation of 

the issuing vehicle. 

Figure 7 presents the average speed of vehicles. As 

expected the vehicles after receiving information from the 

high reputation of the sender vehicle alert, trust the 

message and change their routes and speeds to avoid other 

accidents. 

In Figure 8 it is shown the time and distance traveled by 

the vehicle while awaiting the response of RSU in scenario 

03. 

 

 

Figure7 - Average speeds before and after receiving the alert in 

the scenario 03 

 

Figure8 - Average waiting time and distance traveled in 

response RSU scenario 03 

The simulated environment in scenario 03 presented a 

vehicle with high reputation sending an alert message. 

With the simulation results we can see that the centralized 

reputation system worked as expected, i.e., vehicles, by 

receiving a message from a vehicle with high reputation 

alert, relied on this message and consequently took the 

precautionary steps, or is, slowed down and sought a new 

route. 

In the fourth and last scenario, it was considered the same 

vehicle from the previous scenario, high reputation, which 

sent a real message but in this moment it changed the 

region and started sending a false alert. 

In Figure 9, the average speed of the vehicles is presented. 

As it can be observed in this scenario the attack succeeded 

because the vehicles decreased their speeds. 

 

Figure9 - Average speeds before and after receiving the alert in 

the scenario 04 

In Figure 10 it is presented the time and distance traveled 

by the vehicle while waiting for response from RSU in the 

scenario 04. 

 

Figure10 - Average waiting time and distance traveled in 

response RSU scenario 04 

The scenario 04 presented one of the main disadvantages 

of the SRC, where a vehicle with a known and high 

reputation decides, for some reason, to send a false alert. 

This is a critical case, as for having a high reputation, other 

vehicles tend to trust the received message, but this time 

the message is false. With the collected results of the 

simulation, we can see that the attack was successful, 

because the other vehicles altered their routes and slowed 

down. 

Other analyzed  data was the response time of the RSU to 

vehicle that performs a query. In all scenarios, the average 

response time was less than one second, which makes the 

vehicles travel a short distance and makes it possible to 

take a decision on a considerable time. 
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6 – Conclusions 

 

There are currently several proposed reputation systems, 

however, as they were presented, all of them work in a 

distributed architecture. In the developed work  in this 

project it was chosen to present and simulate a new 

architecture for the reputation system. This architecture is 

a Centralized Reputation System, in which a central unit 

is responsible for the reputation of the vehicles.  

After studying the existing architectures, the research of 

this paper presented a new approach for reputation 

systems. With the study in this paper it was possible to 

verify some advantages and disadvantages of this 

architecture over the others. 

 Advantages 

 Indefinite storage of reputation; 

 Infinite amount of stored reputations; 

 Reputation may be consulted at any 

place and time. 

 Disadvantages 

 High cost to implement the 

architecture to provide RSU in all 

regions; 

 High cost with high performance 

processors in order to process all 

requests; 

 The problem of a vehicle with high 

reputation send a false alert; 

 

One of the main advantages is related to the position of the 

attacker vehicle, because in this architecture if a vehicle 

was negatively evaluated in a given region, its reputation 

may be consulted at any time and at any place, it means 

that even if the vehicle changes neighborhood, city, state 

or even country (depending on the infrastructure) 

whenever it launches a new attack, vehicles connected to 

it can check its reputation, because the Central Unit will 

have received at a previous time this information. In other 

architectures, this could not be verified because the 

reputation of the vehicle would be assessed only at the 

moment. 

Another advantage that can be noted is related to the 

storage time of the vehicle's reputation. In distributed 

architectures there is a great discussion on how long the 

vehicle should store information about the reputation of a 

vehicle, because due to mobility of the network, it may be 

that the vehicle never connects again with the vehicle 

which keeps the information, but it may occur that they 

connect again the next day or month. 

As it could be verified the centralized reputation system 

shows to be more advantageous than a distributed 

architecture, because it delegates the responsibility to 

another entity. However, this centralized architecture has 

its drawbacks. The main one is related to the 

infrastructure. In order to apply this architecture there 

should be base stations for all streets, roads and highways 

to be perfectly functional in addition to having  high-

performance processors to meet all requests, and this is not 

something easy to apply, mainly because of the financial 

cost. 
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How to Tolerate Simultaneous Leave of Peers
in Tree-Structured P2P Live Streaming Systems
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Abstract— A characteristic of Peer-to-Peer (P2P) systems is
that several peers tend to leave the system in a short time.
Such a simultaneous leave of peers causes serious problems
such as the leave of backup peers and the occurrence of
cyclic reference to the backup peers. In this paper, we
propose several techniques to enhance the resilience of tree-
structured P2P live streaming systems to such simultaneous
peer leaves. The effect of the proposed techniques is eval-
uated by simulation. The result of simulation indicates that
the proposed scheme reduces the number of fails to connect
to a backup peer and the time required for the reconnection
after a fail, even under a high churn rate.

Keywords: Peer-to-Peer live streaming, peer churn, resilience to
simultaneous leave, cyclic reference.

1. Introduction
Recently, Peer-to-Peer (P2P) technology has attracted con-

siderable attentions as a way of distributing large contents to
many users without causing a bottleneck at specific nodes.
Many network applications based on the P2P technology are
widely used, which include file sharing, VoIP phone, video-
on-demand, and live streaming. Among those applications,
P2P live streaming is one of the most promising approaches
to improve the performance of existing systems with respect
to the scalability, the reliability and the extendibility.

The architecture for P2P live streaming systems can be
classified into three types by the structure of the overlay, i.e.,
tree-type, mesh-type and their hybrid. In tree-structured P2P
live streaming systems [2], [5], a live stream is fed to the root
of the tree and is delivered to the other peers by repeating
the forwarding of the received stream toward down-streams.
The overhead of such a simple forwarding scheme is small,
while it has a serious drawback such that the leave of a non-
leaf peer immediately stops the feeding to down-steams. This
motivates the proposal of techniques to tolerate such a “peer
churn” in tree-structured systems, such as the preparation
of backup peers and the use of multiple-trees. On the other
hand, in mesh-structured systems such as CoolSreaming [8],
the delivery of a live stream is realized by repeating the
data exchange between adjacent peers. Thus in contrast to
tree-structured systems, mesh-structured systems are more
resilient to peer churns, since even if one adjacent peer
leaves, it still has a chance to receive a copy of the stream

from other peers. However, such a redundancy significantly
increases the overhead to maintain the link to all adjacent
peers, which frequently causes a long delay in the delivery of
live streams. Hybrid architecture was proposed to overcome
the drawback of the above two types, which includes HON
[9] and ChunkySpread [6] as the representatives.

In this paper, we propose several techniques to enhance
the resilience of tree-structured P2P live streaming systems
to peer churns. More concretely, we focus on a hybrid
architecture proposed by Wang et al. called mTreebone [7],
and propose a way to tolerate simultaneous leave of several
peers. The mTreebone realizes a resilience to peer churns
in the following manner: 1) it introduces the notion of
stability representing the tendency of staying in the system
and organizes a tree-structured overlay consisting merely of
such stable peers (a formal definition of “stability” will be
given in Section 2); 2) for each peer in the tree-structured
overlay, it selects a candidate for the reconnection so that it
can immediately start the communication with the candidate
when the current parent leaves the system. Although such
techniques used in the mTreebone are effective to tolerate the
leave of a single peer, in actual systems, several peers tend to
leave the system in a short time period. Such a simultaneous
leave of several peers would cause the following serious
problems: 1) scarcity of the upload slot of candidate peers
due to the exhaustion by several peers; 2) the occurrence
of a cycle by connecting to a descendant peer which was
not being a descendant at the time of selecting candidate;
and 3) the leave of the candidate peer which does not occur
when merely a single peer leaves. In this paper, we propose
several techniques to overcome such issues.

The effect of the proposed techniques is evaluated by sim-
ulation. The result of simulation indicates that the proposed
scheme reduces the number of fails to connect to a candi-
date peer, which indicates that candidates are appropriately
selected so that it causes no concentration of the selections,
and it reduces the time required for the reconnection after
a fail even under a high churn rate such that several peers
simultaneously leaves.

The remainder of this paper is organized as follows.
Section 2 overviews techniques used in the mTreebone.
Section 3 describes the proposed method and Section 4
describes the simulation result. Finally, Section 5 concludes
the paper with future work.
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2. mTreebone
In the mTreebone, several peers satisfying a certain stabil-

ity condition organize a tree-structured overlay called tree-
bone and a live stream is given to the root of the tree-bone
and is delivered to all peers along tree-bone edges. Peers
which do not participate in the tree-bone can receive the
stream from any peer participating in the tree, and a mesh-
structure is used to compensate the weakness of the tree-
structure against peer churns. In this section, we describe
key techniques used in the mTreebone to be resilient to peer
churns.

2.1 Stability of Peers
In the mTreebone, a peer is said to be stable if it stays in

the system for a time exceeding a threshold T (t), where t
is the elapsed time after starting the current session of live
stream (i.e., the threshold used in the stability condition is a
function of the elapsed time). Threshold T (t) is determined
so that the expected service time (EST) of each peer is
maximized. Assume that a session starts at time t = 0 and
ends at time t = L. Let f(·) be the probability density
function of the life time of a peer. The reader should note
that the maximum service time of a peer which joins the
system at time t = τ is at most L − τ − T (τ) since the
session ends at time L and it can start the service to other
peers after passing T (τ) time after the join (recall that the
mTreebone does not allow “unstable” peers to participate in
the tree-bone as an uploader). Hence, since EST is obtained
by subtracting T (τ) from the expected life time, it can be
represented as follows:

EST (t) =

∫ L−t
T (t) xf(x)dx+

∫∞
L−t(L− t)f(x)dx

∫∞
T (t) f(x)dx

− T (t) (1)

Here the integral in the numerator reflects the fact that the
upper bound on the life time is L− τ , and the denominator
normalizes it so that the integral from T (τ) to the infinity
becomes one.

According to the observation shown in [1], [4], the mTree-
bone assumes that the probability density function follows
a Pareto distribution with shape parameter k [7]. For such a
specific function, EST (t) is calculated as follows:

EST (t) =
T (t)

k − 1

[
1−

(
T (t)

L− t

)k−1
]
,

which takes the maximum value when

T (t) = (L− t)

(
1

k

) 1
k−1

. (2)

From Equation (2), we can observe that an optimal value
of the threshold is proportional to the remaining time of
the session at the time of join. In addition, the coefficient
(1/k)1/(k−1) converges to 0.3 as the value of k converges
to 1. Thus, if the life time follows a Pareto distribution and

the shape parameter k is close to 1, the optimal value of the
threshold can be approximated by the 30% of the remaining
time of the session at the time of join.

2.2 Probabilistic Promotion
The simplest rule for the participation in the tree-bone as

an uploader is that each peer which joins the system at time
t can participate in the tree-bone at time t+ T (t) or later.
However, if we strictly apply this rule, it causes the lack of
upload bandwidth particularly in an early stage of the live
streaming session. To overcome such an issue, in the mTree-
bone, it takes an approach such that it randomly promotes
unstable peers as a tree-bone peer. More concretely, when
the staying time of a peer is s, it is promoted as a tree-bone
peer with the following probability:

p(s) =
1

T (t)− s+ 1
.

Using such a probabilistic mechanism, we can realize a
situation such that the probability of participating in the tree-
bone is s/T (t), which reaches one when s = T (t) [7].

2.3 Candidate for the Reconnection
To watch live streams in a continuous manner, each peer

which detects the leave of the parent should immediately
find another tree-bone peer to have enough upload slot, and
establish a connection to the peer to receive the suspended
stream. In addition, to reduce the suspension time as much
as possible, such a candidate for the reconnection should be
selected before actually detecting the leave of the parent.
In the mTreebone, each tree-bone peer randomly selects
candidates to have enough upload slots from adjacent peers
in the mesh-structured overlay, and the other peers, which
do not have a child in the overlay, select no candidate in
advance to reduce the cost for the maintenance.

3. Proposed Scheme
The mTreebone described in the last section tolerates the

leave of peers by preparing a candidate for reconnection for
each tree-bone peer. Such a simple approach works well if
the frequency of the leave of peers is not high. However, in
actual systems, several peers tend to leave the system in a
short time period as in the case of the halftime of football
game and the end of the performance of specific musicians.
Such a simultaneous leave of several peers would cause the
following serious problems: 1) scarcity of the upload slot of
candidate peers due to the exhaustion by several peers; 2)
the occurrence of a cycle by connecting to a descendant peer
which was not being a descendant at the time of selecting
candidate; and 3) the leave of the candidate peer which does
not occur when merely a single peer leaves. In this section,
we propose three techniques to resolve those issues.
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3.1 Fractional Reservation of Upload Slot
Upload slots of a candidate peer will be exhausted if it is

selected by many peers as a candidate and its upload slots are
consumed by those peers due to the leave of their parent. As
was described above, in the mTreebone, such a concentration
of the selection is relaxed by using a randomized approach.
In contrast to that, in the proposed scheme, we take an
approach such that each selection reserves a small fraction
of the bandwidth at the time of selecting the candidate
(hereafter, we will call this technique Proposal 1).

Assume that each stream consumes one unit of the upload
bandwidth. Let c[i] denote the residual bandwidth of peer i
including the bandwidth which was reserved but is not being
used by the other peers. In the proposed scheme, when peer
j selects peer i as a candidate, peer j reserves the upload
bandwidth of peer i of amount α ∈ (0, 1]. According to this
modification, the rule for the selection of candidates in the
mTreebone is modified as follows:

Peer j can select peer i as a candidate only when
c[i] minus reserved bandwidth is at least α, and
j can select candidate i as the parent only when
c[i] ≥ 1.

The concrete behavior of peer j after detecting the leave of
the parent is as follows. Assume that peer j selected peer i as
a candidate; i.e., it has successfully reserved the bandwidth
of i of amount α. If c[i] ≥ 1, peer j simply connects with
peer i after the leaving of its (former) parent. If there are
k peers which select i as a candidate and the use of the
bandwidth by peer j reduces c[i] to be less than 1+(k−1)α,
i requests those k peers to change the candidate from i, in
an increasing order of receiving such a request, until the
condition of c[i] ≥ 1 + (k − 1)α holds (note that the value
of k decreases if a peer changes its candidate from i).

3.2 Prevention from the Occurrence of a Loop
Our second technique is to prevent from the occurrence

of a cyclic reference of the candidate peers. We propose
two ideas in this subsection. The first idea, which will be
called Proposal 2a hereafter, is to prepare a list of peers
at each peer to keep the set of ancestors in the tree-bone.
For example, if peer c receives the stream from the source
through tree-bone peers a and b, then the list held by c
is determined as [a, b, c]. This list is updated whenever the
parent changes, by receiving the list held by the new parent
and by adding itself to the end of the received list. If the
updated list contains a peer j which selects i as a candidate,
since this implies that j is selecting a descendant peer as
a candidate, peer i sends a message to j to change the
candidate from i. For each of the other children j′, i forwards
the updated list to j′ to keep their list up-to-date.

The second idea, which will be referred to as Proposal
2b hereafter, is to prepare a local variable representing the

depth in the tree-bone for each peer1, and to select a peer to
have the depth smaller than the current peer as the candidate.
With such a variable, as long as the value of the variable
correctly reflects the actual depth of the peer, it can prevent
from the occurrence of a cyclic reference to the candidates.
The power of this technique is heavily dependent on the
accuracy of the variables, which causes a trade-off between
the risk of cyclic reference and the cost for the maintenance.

3.3 Recovery from Cyclic Reference
The third technique, which is called Proposal 3 hereafter,

is to realize a quick recovery from cyclic reference to the
candidates. The basic idea is to transmit a “probe message”
toward the root of the tree-bone whenever a peer changes
its parent. Each peer can proactively detect the occurrence
of a cycle by receiving the message transmitted by itself,
which can shorten the time required for the recovery from
cyclic reference. Upon detecting a cycle, which is conducted
merely by the peer which recently changes its parent, the
peer disconnects the link to the parent, and tries to find (and
connect to) another parent. In addition to the above simple
idea, to reduce the number of reconnections as much as
possible, we design the scheme in such a way that if a peer
which submitted a probe message receives another probe
message, it compares its ID with the ID of the originator
of the message, and it forwards the message to the parent
only when its ID is smaller than the ID of the originator.
With such a mechanism, we can disconnect only one link
contained in a cyclic reference even if several peers cause a
cyclic reference by changing their parent.

4. Evaluation
4.1 Setup

We evaluate the performance of the proposed scheme by
simulation using PeerSim simulator [3]. One step of the
simulation is set to 0.02 sec and we assume that in each
step, each peer conducts the following operations:

1) Receive messages from the input buffer.
2) Calculation according to the received messages.
3) Send one message to an adjacent peer,

where a message sent in the ith step is received by the
receiver at the beginning of the (i+3)rd step; i.e., we do not
consider the variance of the delay of the message delivery.

In the simulation, we used two churn models described
below. In the first model, peers arrive at the system according
to a Poisson distribution with mean λ and leave the system
according to a Pareto distribution. The probability density
function of Pareto distribution is given as

f(t) =
ktmk

tk+1
, (3)

1The depth of a peer is defined to be the length of the path from the root
to the peer.
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(a) λ = 4. (b) λ = 8. (c) λ = 12.

Fig. 1: Impact of parameters α and λ to the number of fails under the first churn model.
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(a) Td = 600. (b) Td = 300. (c) Td = 100.

Fig. 2: Impact of parameters α and Td to the number of fails under the second churn model.

where k is called a shape parameter and tm is called a
scale parameter which is associated with the participation
time of the peers, i.e., under this distribution, peers which
participate in the system earlier will leave the system with
a higher probability. Since those two parameters do not
directly control the longevity of peers, in the simulation,
we vary parameter λ from 4 to 12 [peers/sec] to virtually
control the longevity of peers, since with a larger λ, many
peers have an earlier participation time which causes a higher
leaving probability within a short time. On the other hand,
in the second model, all peers participate in the system at
the beginning of the session, and a half of peers randomly
leave the system during Td time units, where parameter Td

is varied from 100 to 600 sec, i.e., a smaller Td implies
a shorter life time. In both models, once a peer leaves the
system, it will not join the system again.

In the succeeding two subsections, we evaluate the impact
of three proposed techniques to the churn tolerance of the
underlying P2P live streaming systems. More concretely, as
for the first technique, we evaluate the impact of parameter
α and as for the second and the third techniques, we
compare the performance with a scheme without such a
loop avoidance/recovery mechanism. Metrics used in the
evaluation are: 1) the number of fails to connect to the new
parent, 2) the time spent for the reconnection after failing

the connection to the new parent, and 3) the number of
messages. The number of fails is itemized to the reason
so that: 1a) fails due to the lack of upload bandwidth, 1b)
fails due to the leave of the candidate, and 1c) fails due to
the occurrence of a cyclic reference. Similarly, the time for
reconnection is itemized to each of the above three reasons.
Each value shown in the figures is an average over 100 trials.

Finally, parameters used in the simulation are as follows:
• The length of a live stream L is 600 sec.
• The total number of peers is 2000.
• The upload bandwidth of the source is 16 times of the

full stream rate and the upload bandwidth of the other
peers is varied from the fourth to the eighth of the full
stream rate.

4.2 Proposal 1
This subsection evaluates the impact of parameter α(∈

(0, 1]) to the performance of the P2P live streaming systems
with respect to the number of fails and the time required
for the reconnection. We will also observe the impact of the
churn rate to the performance.

Figure 1 illustrates the number of fails under the first
churn model, where the horizontal axis indicates α and
(a), (b) and (c) correspond to the case of λ = 4, 8 and
12, respectively. The number of fails due to the leave of
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candidates (indicated by red bars) rapidly decreases as α
increases from 0.1 to 0.3, which is apparently because of the
effect of the relaxation of the concentration of the selection
of a specific peer as a candidate. When α = 0.1, the number
of fails due to the lack of the upload bandwidth and the
number of fails due to the leave of candidates gradually
increase as the value of λ increases from 4 to 8, whereas
the former decreases as λ further increases from 8 to 12,
which is because under such a high churn rate, the fail due
to the leave of peers dominates the fail due to the lack of the
bandwidth. The number of fails due to the lack of upload
bandwidth (indicated by green bars) decreases as α increases
and becomes (almost) zero for all values of λ by selecting
α to be larger than 0.6. Thus we can conclude that Proposal
1 is effective even under a high churn rate.

Figure 2 illustrates the number of fails under the second
churn model, where (a), (b) and (c) correspond to the
case of Td = 600, 300 and 100, respectively. As for the
number of fails due to the lack of the upload bandwidth
and the occurrence of a cyclic reference is the same with
the case of the first churn model. However, the number of
fails due to the leave of candidates (indicated by red bars)
significantly increases for large α’s, which implies a side-
effect of selecting a larger α. As a result, the number of fails
takes the smallest value when α is around 0.4 to 0.5. When
α = 0.1, in contrast to the first churn model, the number
of fails due to the lack of bandwidth takes almost the same
value for all Td’s, while it becomes almost zero for α ≥ 0.6
as in the case of the first churn model. The analysis of such
an interesting phenomenon is left as a future work.

Figure 3 illustrates the impact of α to the time required
for the reconnection. Although it takes long time when α
is small and the churn rate is high, the reconnection time
converges to 1.5 sec as α increases under each churn model.
In addition, the value of α which minimizes the reconnection
time gradually increases as the churn rate increases; e.g., it
changes as α = 0.2, 0.3 and 0.4 as the value of parameter λ
increases as 4, 8 and 12. By letting αmin be the value of α
minimizing the reconnection time and αmax be the minimum
value of α which stabilizes the reconnection time, the value
of α should be determined to satisfy αmin ≤ α ≤ αmax,
since a too large α causes frequent fails as was described
above. In summary, the result of simulation indicates that an
appropriate value of α is around 0.5.

4.3 Proposals 2 and 3
In this subsection, we evaluate the impact of Proposals

2 and 3 to the performance by comparing it with the basic
scheme which detects and resolves a cyclic reference in the
following manner:

Basic scheme: Upon detecting the delay of the
stream exceeding 1 sec, a peer transmits a probe
message to the parent to verify the existence of a
path to the root. If the peer receives the message
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Fig. 3: Time required for the reconnection.

transmitted by itself, it identifies the existence of
a cycle, and initiates the reconnection procedure.

In the following, we fix the value of parameter α used in
Proposal 1 to 0.6.

Figure 4 illustrates the impact of the churn rate to the
number of fails to connect to the candidates, where four
bars for each churn rate indicate the basic scheme, a scheme
with Proposals 2a, 2b and 3, respectively. For each bar,
red indicates the number of fails due to the leave of
candidates and blue indicates the number of fails due to
the occurrence of a cycle. Each technique certainly reduces
the number of fails due to cycles compared with the basic
scheme regardless of the churn model and the churn rate. In
particular, Proposal 2a reduces it to almost zero. However,
the number of fails due to the leave of candidates does
not decrease by the proposed techniques, and the effect
of those techniques slightly differs for each churn model;
i.e., in the first model based on the Pareto distribution, the
increase under Proposal 3 is the largest and in the second
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Fig. 4: Impact of each proposal to the number of fails.

model, the increase under Proposal 2b is the largest. As
for the time required for the reconnection, we found that
Proposal 3 significantly reduces the reconnection time for
each churn model. The reconnection time slightly increases
by Proposal 2a under the first churn model, whereas there
are no difference between Proposals 2a and 2b under the
second churn model, regardless of the churn rate.

The above results indicate that the combination of Propos-
als 2a and 3 is the most effective. Thus finally, we evaluate
the performance of the combined scheme of Proposals 2a
and 3 in detail. Tables 1, 2 and Figure 5 summarize the
results. From Table 1, we can observe that although the
combined scheme reduces the number of fails as the churn
rate increases from low to moderate, it becomes worse than
the basic scheme when the churn rate is very high. As for the
time required for the reconnection due to the occurrence of a
cycle, the combined scheme significantly improves the basic
scheme regardless of the churn model and the churn rate, as
is shown in Table 2. In particular, although the reconnection

Table 1: Impact of the combined scheme to the number of
fails.

λ Td
Scheme 4 8 12 600 300 100
Basic 3.74 7.41 11.63 9.72 10.33 15.46

Proposals 2a+3 2.5 5.04 14.63 6.38 6.53 19.16
Proposal 3 4.46 7.59 15.49 7.48 8.00 19.02

Table 2: Impact of the combined scheme to the time in
second required for the reconnection.

λ Td
Scheme 4 8 12 600 300 100
Basic 1.46 1.46 1.48 1.64 1.67 1.74

Proposals 2a+3 0.90 0.96 1.18 1.21 1.27 1.30
Proposal 3 1.04 1.11 1.16 1.18 1.11 1.35

time of Proposal 2a is worse than the basic scheme under
the first churn model, we can improve the basic scheme by
combining it with Proposal 3. Figure 5 compares the number
of messages issued in the combined scheme with the basic
scheme. From the figure, we can see that the increase of
the number of messages caused by the combined scheme is
bounded by 20% of the basic scheme.

In summary, the combination of Proposals 2a and 3 could
effectively bound the occurrence of cyclic references and
reduces the time required for the reconnection by more than
0.4 sec compared with the basic scheme. However, as the
churn rate becomes too high, it causes a significant number
of fails due to the leave of the candidates, which causes the
performance degradation such as the increase of the total
number of fails and the number of messages.

5. Concluding Remarks
This paper proposes techniques to increase the resilience

of P2P live streaming systems to the simultaneous leave
of several peers. The result of simulation indicates that
the proposed techniques reduce the number of fails to
connect to a candidate (backup) peer and the time required
for the reconnection after a fail even under a high churn
rate. The refinement of the proposed techniques is left an
important future work. The implementation in actual P2P
live streaming systems is another crucial issue.
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Abstract 

Free Space Optical (FSO) communication is a type of 

optical communication that relying on beams of light to 

transmit data over long distances wirelessly. With recent 

increase in popularity of the technology in commercial 

applications as well as military and scientific applications, it 

is important to study new models and algorithms to improve 

the performance of this technology. One of the most important 

aspects of FSO network is the line-of-sight (LOS) requirement 

to sustain an uninterrupted data flow. In order to ensure a 

steady connection, auto-aligning transceivers can be 

implemented to overcome the LOS issue. In this paper, we 

propose several re-alignment algorithms to reconfigure a FSO 

network when there is a loss of line of sight. The main idea of 

our experiment is to expand up on the three dimensional FSO 

network model proposed by Kosumo et al. in 2013, addressing 

cases that have not been considered. 

Keywords: 3D Mesh Network, Routing, Reconfigurable 

Network, Free Space Optics, Wireless Network. 

1. Introduction 

Being a wireless technology, FSO has many advantages 

over its wired counterpart, fiber optic communication.  Similar 

to fiber optic communication, FSO uses light sources and 

detectors to send and receive data. Nonetheless, instead of 

relying on extensive networks of fiber cables for transmission, 

FSO send data directly through the air, hence the name free-

space. The main purpose for using FSO instead of fiber cable 

is to lower or even eliminate the costs of cable installation. 

FSO technology also does not require radio frequency 

spectrum licensing. This advantage allows FSO to be used 

more freely. Furthermore, it is possible to relocate an existing 

FSO network elsewhere, allowing the recycle of equipment. 

FSO technology may be the next prominent broadband 

network. High speed data rates, unlicensed spectrum, excellent 

security, low setup time, and inexpensive infrastructure are 

among its most attractive features [24]. 

Over the last few decades, FSO technology has been 

studied extensively. Different models and performance 

measurements have been proposed. There have also been 

many experiments done on this technology [7, 11, 14, 16- 18, 

20, 21, 26]. In 2013, Kosumo et al. proposed a three 

dimensional (3D) model for FSO network. In their paper, 

several different heuristic algorithms for link reconfiguration 

were introduced and discussed [12]. For the sake of 

convenience, we will refer to their model and heuristics as 

KLWY (Kosumo, Luong, Wong, and Young) throughout our 

paper. 

KLWY’s 3D FSO network model provides a convenient 

way to study the effect that random broken links have on an 

auto-reconfigured FSO network over time. In their 

experiment, links between nodes in a simulated network are 

allowed to be randomly disconnected over time while the 

heuristic algorithms try to keep the network functional by 

reconnecting the nodes that have broken links. The experiment 

gives insight into how a network will transform after a period 

of time. It also shows that certain heuristics have better 

performance and are more effective than others in keeping the 

network connected and functional. However, the proposed 

heuristics do not consider the possibility of actively removing 

existing links in order to form new links [12]. 

In this paper, we propose several new link reconfiguration 

heuristics for 3D FSO networks. Our heuristics include the 

possibility of removing current working links in the network 

to form new links. We present analytical discussion and 

simulation results to determine the performance of the 

proposed heuristics. The overall performance of the heuristics 

is evaluated in terms of average node distance and network 

diameter. 

The rest of the paper is organized as follows. Section 2 

briefly discusses FSO technology and its different 

applications. Section 3 gives an overview of KLWY’s 3D 

FSO network model, heuristics, and experimental result. The 

detail of our work is described in section 4, and discussion 

about future works is covered in section 5. 

2. FSO Technology and Applications 

Telecommunication technology has been evolving 

dramatically over the last few decades. Both the volume and 

the speed of information exchange have increased greatly. 

Current trends in multimedia communications such as voice, 

video, data, and images, are creating a demand for flexible 

networks with extremely high capacities [19]. Optical fiber 

with its enormous potential has established the ability to 

satisfy this demand. Telecommunications companies have 

been increasing the reach of their fiber optic networks to their 

customers. Besides being highly reliable, optical fiber has 

unlimited growth potential. It offers a transmission medium 

with Terabit per second (Tbps) bandwidth. Nonetheless, even 

with this potential, optical fiber has been costly in 
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installations. Building infrastructure for an optical fiber 

network requires laying underground cable, which is usually 

very costly and time consuming. FSO technology has emerged 

because of this reason. 

FSO uses beams of light to provide optical connections 

that can transmit images, videos, voice, and data. FSO has 

found applications in many different industries from 

commercial to scientific and military. For private corporate 

networks, wireless optics systems eliminate the recurring cost 

of leased lines while still providing a very high bandwidth link 

between sites. For temporary network connectivity needs, 

such as at exhibitions, conventions, sporting events, or disaster 

recovery, high bandwidth links can be easily and quickly 

provided using portable FSO systems. Furthermore, wireless 

optics systems can also be used as high-speed wireless backup 

for fiber optic cable and as "Last Mile" solutions, connecting 

customer sites to fiber backbones [2, 19]. 

Recent progress in space communication technology has 

proven the undisputable future of FSO. The Lunar Laser 

Communication Demonstration (LLCD) mission conducted by 

NASA in 2013 has revealed the possibility of expanding 

broadband capabilities in space using laser communication. 

LLCD demonstrated a record-breaking data download and 

upload speed to the moon at 622 Megabit per second (Mbps) 

and 20 Mbps respectively. NASA’s next mission for laser 

communication in space will be the Laser Communications 

Relay Demonstration (LRCD). LRCD is expected to 

demonstrate the ability to relay data at the rate of over one 

billion bits per second between two Earth stations using a 

satellite in geosynchronous orbit [1]. 

Despite the strengths and progress mentioned previously, 

FSO also has some weaknesses. FSO is essentially a LOS 

technology using free space as its medium.  Because of the 

nature of its transmission medium, an FSO connection has 

potential disturbances such as rain, fog, physical obstructions, 

scintillation, beam wander, building’s movement, and seismic 

activities [7, 20, 26, 23]. In space communication and other 

long distance connections, the challenge involves pointing a 

very narrow laser beam accurately to the receiving device and 

keeping the LOS free of any physical obstruction [13]. When 

there is a physical obstruction in the path of the laser beam, 

the connection is completely lost. 

3. Related Works 

In 2013, Kosumo et al. proposed an approach to address 

link failures in a reconfigurable 3D FSO network, where 

transceivers are capable of realignment to create new 

connections with other transceivers in the network. This 

capability allows the network to be much more flexible. When 

there is a link failure in the network, transceivers can realign 

themselves to form new connections, keeping the network 

functional and connected. Following is an overview of 

KLWY’s 3D FSO network model and their reconfiguration 

heuristics. 

3.1. KLWY’s 3D FSO Network Model 

KLWY’s model is designed based on the well-studied 

mesh network topology model [5, 6, 10]. It is assumed that the 

network is made up of different nodes that are linked together. 

All the nodes are FSO devices. Thus the network model is 

classified as a homogeneous n x n x n mesh network topology. 

Each node in the network is limited to 6 connections, i.e. each 

node can connect up to 6 other nodes in the network. 

 
Figure 3.1 a node can have up to 6 connections [12] 

The reconfiguration strategy for 2D n x n mesh networks 

was studied by Lee and Young in 2004 [17, 18]. In order to 

study the proposed 3D model, Kosumo et al. divided possible 

links into three different categories, type I, II, and III links. 

Type I links connect all the transceivers in the 3D FSO 

network before any reconfiguration take place. A node can 

connect with other node one hop away on any one of its axes 

through type I link. There can be up to 6 different type I links 

for a single node. 

 
Figure 3.2 Type I link [12] 

Type II link can be formed by connecting two diagonal 

nodes on a plane. In other words, a type II link connects a 

node with another node that is one hop away on two of its 

axes. A node has 12 different possible type II links. 

 
Figure 3.3 Type II link [12] 

The last type is type III link. Type III link is a resulting 

diagonal link formed by two nodes that are located on 

different planes diagonally. Type III link connects a node with 

another node that is one hop away on all of its three axes. A 

node has 8 different possible type III links. 
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Figure 3.4 Type III link [12] 

3.2. KLWY’s Heuristics and Experimental 

Results 

3.2.1. Link Reconfiguration Heuristics 

Kosumo et al. offered 7 different possible heuristics to 

reconfigure their network after a link failure. Based on the 

model described in the previous section, when there is a link 

failure, a certain type of link is reformed based on the heuristic 

algorithm used. Every time a link is broken, there are two 

more nodes that have less than the maximum number of 

connection allowed. The heuristics then will try to reconnect 

either one or both of these nodes to other free nodes in the 

network. The 7 reconfiguration heuristics are summarized 

below, 

H0: No reconnection after link failures for both nodes 

H1: Attempt to reconnect only one node with a type II link  

H2: Attempt to reconnect each node with a type II link 

H3: Attempt to reconnect only one node with a type III link 

H4: Attempt to reconnect each node with a type III link 

H5: Attempt to reconnect only one node with a type II or type 

III link 

H6: Attempt to reconnect each node with a type II or type III 

link 

H7: Attempt to reconnect one node with a Type II link, and the 

other node with a type III link 

For link reconfiguration using one node (H1, H3, and 

H5), the procedure checks all the neighboring nodes of the 

first node of the pair with broken link. If there is a diagonal 

node with less then maximum number of connections, then a 

new diagonal link is established. If there is no neighboring 

node with free connection, then the procedure checks the 

second node of the pair with broken link to see if any of its 

neighbors have less than maximum number of connections. 

Again if there is a node with free connection, a new link is 

established [12]. 

For link reconfiguration using two nodes (H2, H4, H6, 

and H7), both nodes of the pair with broken link are checked. 

If any of their neighbors have less than maximum number of 

connections, a new diagonal link is formed [12]. 

3.2.2. Experimental Results 

Kosumo et al. measured the performance of their 

heuristics based on the network diameter and the average node 

distance of the network. Data gather from their experiment are 

tabulated in the following graphs, 

 
Figure 3.5 Average Node Distances vs. Link Failures 

Graph [12] 

 
Figure 3.6 Network Diameters vs. Links Failures Graph 

[12] 

The main conclusion that they drew is both the average 

node distance and network diameter decrease over time as 

more diagonal links are introduced into the network to replace 

the broken links. However, the type of diagonal link used to 

reconnect free nodes does provide different outcomes. As we 

can observe from the graphs, heuristics H1 and H2, which use 

type II links only, outperformed the other heuristics. H7, 

which uses both type of links at the same time, had the best 

performance. H7 was able to keep the whole network 

connected while decreasing the average node distance and 

network diameter as the number of link failures increased. 

Heuristics using type III link, on the other hand, did not 

perform well. H3 and H4 managed to decrease both the 

average node distance and the network diameter, but they 

allowed the network to become disconnected very early. In 

summary, the factors that contribute to the difference in 

performance between heuristics are the types of link used to 

reform broken links and the degree of connectivity of each 

node [12] 
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4. Reconfiguration Heuristics Using 

Active Link Removal 

In this paper, we extend the work of Kosumo et al., which 

was done last year [12]. They introduced the possibility of 

reconfiguring FSO network after links failures, focused on a 3 

dimensional n x n x n mesh network. Our research utilizes the 

same 3D FSO network model but focus on active link 

removal. Through the study of different shortest path 

algorithms and reconfigurable network models [4-6, 8, 9, 15, 

22, 25], we come up with a different set of heuristics that take 

into account the possibility of removing existing links that are 

still working in the network to form new links. 

4.1. Reconfiguration Heuristics 

First, we introduce a notation system for our heuristic 

algorithms to it more convenience referring to them. 

pi: Reconfiguration using pattern i. (1  i 6) 

N: No removal of any existing links, use free 

transceivers only.  

R: Remove an existing link for reconfiguration 

of certain pattern. 

Based on this notation, the definition and description of 

the heuristic algorithms are given: 

H0: No reconnection after link failures. 

HNp1, HNp2, HNp3, HNp4, HNp5, HNp6: No 

removal of any existing links, using Pattern 

1, 2, 3, 4, 5, 6 for reconfiguration. 

HRp1, HRp2, HRp3, HRp4, HRp5, HRp6: 

Removing an existing link if necessary, 

using Pattern 1, 2, 3, 4, 5, 6 for 

reconfiguration. 

 

Figure 4.1 Examples of pattern 1 

 

Figure 4.2 Example of patterns 2 & 3 

 

Figure 4.3 Example of patterns 4 & 5 

 

Figure 4.4 Example of pattern 6 

These 6 different patterns show which link is removed 

based on the heuristics we use. In order to guarantee that both 

black nodes will be reconnected via a type I, II, or III link, we 

use these patterns to pick a suitable link for removal. 

Heuristic H0 is the simplest among all above algorithms, 

and it also offers the worst results. Since H0 does nothing after 

link failures, the network very quickly becomes disconnected 

after a certain number of link failures. The only reason it is 

included in our study is because we can use it as a control 

group to compare the results of other reconfiguration 

algorithms.  

We believe that with stronger constraints on the link 

patterns, better performance can be achieved. An important 

part of our study is to better understand and compare the 

impact of the proposed heuristic algorithms through real data. 

In our experiment, a multi-threaded simulation harness is 

designed and implemented. In the simulation a relatively large 

network (n = 10) is used and a given number of links are 

randomly chosen in the network to fail. All the algorithms 

described previously are implemented and applied to the 

network. The resultant average node distance and network 

diameter for each algorithm are recorded and compared. 

4.2. Simulation Environment and Parameters 

4.2.1. Simulation Environment 

OS: Window 7 Ultimate 

Processor: Intel Core i5-3210M CPU @ 2.5GHz 

Programming language: Java 

IDE: Eclipse Java EE IDE, Juno Release 

Threads: Multi-threaded 

4.2.2. Simulation parameters: 

Mesh size (n = 10): 10 * 10 * 10 

Number of nodes      : 1000 

Initial number of links             

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 159



Statistical interval: 200 links failures 

Network performance parameters: average node distance 

and network diameter 

4.3. Simulation Results 

The average node distance matrix for all algorithms and 

various numbers of failed links is shown in Table 4.1 and the 

network diameter in Table 4.2. The algorithm H7 in [12] and 

the baseline without any reconfiguration are also run for the 

sake of comparison. The overall best algorithms from the two 

groups of proposed algorithms are portrayed side by side with 

H0 and H7 in Figure 4.5 and Figure 4.6. 

From Table 4.2, it can be observed that with increasing 

number of failed links, the network soon become un-

connected, whereas several algorithms can maintain the 

connectivity throughout the whole simulation. In Table 4.1 

and Table 4.2, we notice some non-removal algorithms. 

Although reduce the average node distance with a small 

fraction of broken links, these algorithms tend to lead to the 

network being disconnected when the number of link failures 

is higher. On the contrary, the removal-based algorithms, even 

with the same patterns, can defer the appearance of 

disconnection in the network. 

The algorithms HNp1 and HRp1 are selected for their 

overall better performance and drawn against H0 and H7 in 

Figure 4.5 and Figure 4.6. In the figures, it is easy to observe 

the intersection of HNp1 and HRp1. In other words, it shows 

that as we have predicted, the removal based algorithms 

perform better when the link failures are relatively sparse. 

This can also be verified with the data of the other algorithms 

in the tables. In the same figures, it is also shown that the 

proposed algorithms outperform the existing algorithm H7 in 

terms of the average node distance. 

Failure                                                                   

100 9.923 9.446     9.564 9.588 9.623 9.643 9.548 9.499 9.211 9.396 9.363 9.295 9.068 9.417 

300 9.968 9.047 9.178 9.236 9.306 9.394 9.086 9.079 8.957 9.220 9.176 9.041 8.755 9.193 

500 10.085 8.925 9.034 9.083 9.189 9.169 8.930 8.976 8.883 9.294 9.251 8.908 8.775 9.287 

700 ∞ 8.866 8.949 9.023 9.125 9.132 ∞ ∞ 8.948 9.413 9.424 8.906 8.961 9.466 

900 ∞ 8.927 8.971 9.030 9.077 9.096 ∞ ∞ 9.090 9.600 9.707 9.040 9.202 9.678 

1100 ∞ 8.986 8.965 9.049 ∞ 9.193 ∞ ∞ 9.321 9.638 9.809 9.190 9.481 9.870 

1300 ∞ 9.090 9.010 ∞ ∞ ∞ ∞ ∞ 9.380 9.984 ∞ 9.364 ∞ 10.105 

1500 ∞ 9.150 8.984 ∞ ∞ ∞ ∞ ∞ 9.483 9.892 ∞ 9.578 ∞ 10.347 

1700 ∞ 9.230 9.042 ∞ ∞ ∞ ∞ ∞ 9.611 10.001 ∞ 9.755 ∞ 10.716 

1900 ∞ 9.374 9.185 ∞ ∞ ∞ ∞ ∞ 9.762 10.054 ∞ 9.998 ∞ ∞ 

2100 ∞ 9.435 9.255 ∞ ∞ ∞ ∞ ∞ 9.860 10.277 ∞ 10.308 ∞ ∞ 

2300 ∞ 9.526 9.283 ∞ ∞ ∞ ∞ ∞ 10.079 10.362 ∞ 10.626 ∞ ∞ 

2500 ∞ 9.645 9.395 ∞ ∞ ∞ ∞ ∞ 10.204 11.645 ∞ 11.624 ∞ ∞ 

2700 ∞ 9.677 9.483 ∞ ∞ ∞ ∞ ∞ 10.273 ∞ ∞ ∞ ∞ ∞ 

Table 4.1 Comparison of Average Node Distances under Link Failures for Different Heuristics 

Failure                                                                   

100 27.0 24.561 25.828 25.243 25.828 25.828 25.828 25.732 23.485 25.414 24.657 24.071 23.196 25.196 

300 27.0 22.707 23.485 24.071 24.071 24.071 23.464 23.196 22.899 24.071 23.485 23.485 21.928 23.196 

500 27.0 21.610 22.899 22.899 23.485 22.899 21.392 21.928 22.314 23.485 23.485 21.728 20.660 22.196 

700 ∞ 20.757 22.314 22.314 22.899 22.899 ∞ ∞ 21.728 22.971 22.899 21.314 19.660 22.196 

900 ∞ 20.757 22.314 22.314 22.314 22.314 ∞ ∞ 21.314 23.485 22.899 21.314 19.856 21.856 

1100 ∞ 20.364 21.899 21.730 ∞ 22.314 ∞ ∞ 22.142 23.728 23.385 20.971 20.856 21.856 

1300 ∞ 21.560 21.728 ∞ ∞ ∞ ∞  ∞ 21.142 24.213 ∞ 21.142 ∞ 20.856 

1500 ∞ 20.535 21.142 ∞ ∞ ∞ ∞ ∞ 22.799 22.385 ∞ 21.314 ∞ 23.053 

1700 ∞ 21.317 21.971 ∞ ∞ ∞ ∞ ∞ 21.385 22.799 ∞ 22.385 ∞ 23.517 

1900 ∞ 20.828 20.799 ∞ ∞ ∞ ∞ ∞ 23.213 24.042 ∞ 22.385 ∞ ∞ 

2100 ∞ 19.924 21.971 ∞ ∞ ∞ ∞ ∞ 22.799 23.799 ∞ 22.213 ∞ ∞ 

2300 ∞ 20.364 21.799 ∞ ∞ ∞ ∞ ∞ 22.213 23.627 ∞ 22.799 ∞ ∞ 

2500 ∞ 20.560 20.385 ∞ ∞ ∞ ∞ ∞ 22.627 25.042 ∞ 23.627 ∞ ∞ 

2700 ∞ 20.292 20.799 ∞ ∞ ∞ ∞ ∞ 23.627 ∞ ∞ ∞ ∞ ∞ 

Table 4.2 Comparison of Network Diameters under Link Failures for Different Heuristics 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

160 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



 
Figure 4.5 Avg. Node Distances vs. Links Failures Graph 

 
Figure 4.6 Network Diameters vs. Link Failures Graph 

In our simulation, it should be noted that we choose the 

best algorithm in terms of average network distance when the 

connectivity of the network can be maintained over the entire 

range of link breakage. The reason we evaluate the algorithms 

in this way is because we would like a globally superior 

algorithm without the knowledge of actual number of link 

breakages. In a real FSO network, however, we may have a 

better estimation on the range of how many broken links. 

Thus, a more suitable criterion can be used to pick the optimal 

algorithm. For example, if we know the breakage ratio is less 

than 10%. Then from the simulation result, HRp2 instead of 

HRp1 can be the algorithm of choice, since HRp2 outperforms 

HRp1 in this range. 

A point that may be confusing is the meaning of "trend" 

of data with varying number of failed links. The curves are 

drawn in the figures to enhance the visibility but the trend 

itself does not have a practical meaning. The network will be 

operated with some number of failed links and it is not 

practical to assume that the specific number is known at run 

time because our network can be of great scale and distributed 

in nature. The best approach to reconfigure the network is 

perhaps to come up with an estimation of the number of link 

failures and then pick the appropriate reconfiguration 

algorithms. It seems from Figure 4.5 that the reconfigured 

average node distance first "dropped" and then "rose" as more 

links in the network failed. Nonetheless, that does not 

necessarily mean we can pick the network operation point to 

achieve the best performance. This is simply because we do 

not have the global control of the whole network. We usually 

do not know exactly how many links in the network will fail 

or where these failures will be. 

5. Conclusion and Future Work 

Our research introduces the possibility of reconfiguring a 

3D FSO network using active removal method after link 

failures. In this study, we proposed two groups of 3D FSO 

network reconfiguration algorithms based on patterns. One 

group of algorithms is opportunistic in a sense that they try to 

establish the predefined link pattern only if there are free 

nodes, which are available to form new link. This group of 

algorithms does not remove existing links even when it is 

necessary in order to form new links, i.e. there are not enough 

free nodes to actually form new connections. The other group 

of reconfiguration algorithms, however, is more aggressive in 

forming new links for the network. This group of algorithm 

actively removes existing link in the network in order to form 

new links and maximize the total number of connection in the 

network. A simulated environment was used to test the 

effectiveness of the proposed algorithms. 

We collected the simulated results and computed the 

impact of different link reconfigurations on the overall 

network performance in terms of average node distance and 

network diameter. When the link breakage is expected to be 

sparse in the network, the removal-based algorithms in general 

work better than the non-removal ones. From the simulation 

result, HRp1 should be adopted in the long run, since it has the 

best over all performance. However, when the ratio of link 

failures exceeds a critical point, non-removal algorithm such 

as HNp1 might work better. In practice, it is FSO networks 

may operate on a large scale, and due to its distributed nature, 

the global link failures data may not readily available to a 

central control module. Thus it is not possible to pick the 

optimal algorithm for link reconfiguration. In this case, it 

would be desirable to first adopt a proper algorithm based on 

estimation of network variance. Perhaps when the network is 

in operation, local nodes can maintain a history of link 

failures. This data can then be aggregated and analyzed for a 

probability distribution function of number of link failures 

over time. The most suitable reconfiguration algorithm for the 

specific network condition can then be decided by using the 

knowledge from our simulated results. 

Further study can be done on this topic. Under our current 

assumption of the network model, it is possible to add new 

patterns to the link removal algorithms. Existing patterns can 

also be combined, possibly forming a sequence of preferential 

patterns based on the number of free/available neighbor nodes. 

Instead of measuring performance of different heuristics using 

average node distance and network diameter, it is also feasible 

to use another parameter. Our current simulation model does 

not take into account the cost of each link in the network. All 

links in our network have their costs associated with the 
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distances between nodes. Different costs for each link might 

be implemented in the model, and another performance 

measurement might be used. 

Another potential direction for future researches is to 

analyze the performance intersection point of non-removal 

algorithms and removal-based algorithms. This intersection 

point, if can be found, may be independent of the network size 

(i.e. not a function of n) and can serve as an indication of 

sparseness of the link failure of the network. It is not only 

useful for selecting reconfiguration algorithms but can also 

provide directions on the design of the network topology in 

the first place. The case where links in the network fail 

progressively can also be investigated. If a global 

reconfiguration can be performed in a network, more 

comprehensive algorithms should be available to attain overall 

optimal performance. The ultimate goal would be to achieve 

some theoretical analysis of the network topology change 

under link failures and various reconfiguration algorithms. 

The analysis can be started on smaller networks and then be 

scaled up by composition. 
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Abstract— We treat acceleration of an image restoration
throughout Poisson noise channels. Previously, we proposed
a image restoration method by use of Expectation Maximiza-
tion (EM) algorithm[1]. The method requires calculation
of inverse of the accuracy matrix, which requires O(M3)

computational cost where M stands for the number of pixels,
in order to obtain the posterior mean of some statistics
value in each iteration. For reducing the calculation cost,
we apply “loopy belief propagation(LBP)” algorithm into
our method for the calculation of the marginal posterior
means to substitute the posterior mean required in the EM
algorithm. As the result, we can accelerate the previous
algorithm over 10 times faster in the 80 × 80 size image.

Keywords: Poisson image restoration, Latent variational
method, Loopy Belief Propagation

1. Introduction
The image restoration problem in the field of digital

image processing, is an important in the meaning of the
pre-processing of image analysis instrumentation. The Pois-
son noise corruption process appears in the low contrast
object observation such like night photograph, and some
kind of computed tomography such like positron emission
tomography (PET). We proposed a Poisson noised image
restoration in the previous work[1]. In the method, we apply
a Bayesian approach to the problem by use of the expectation
maximization (EM) algorithm[2][3], which is an iterative
type inference algorithm. In the algorithm, we confirmed the
success of inference of the hyper-parameter, which controls
the strength of the prior knowledge in the Bayesian method,
as well as the pixel values. However, our algorithm requires
the calculation of the inverse of the accuracy matrix in order
to obtain some posterior mean of statistical values. The
calculation of the inverse requires O(M3) computational
cost, where M means the total number of the pixels. Thus,
our algorithm is hard apply the large scale image restoration.

On the other hand, in the field of image/signal processing,
the loopy belief propagation (LBP) algorithm is applied to
infer some image restoration problems[4][5][6][7][8]. Even
the LBP algorithm is an approximation inference method to
obtain some marginal posterior mean, the restoration per-
formance looks good with the appropriate hyper-parameter
estimation.

In our previous method, the EM algorithm requires poste-
rior mean. In our new method, we propose the approximation
of the posterior mean as the marginal posterior mean.
Applying the marginal posterior mean, we might reduce
the calculation cost by use of the LBP algorithm. In this
study, we investigate the calculation efficacy of the Poisson
image restoration by use of the LBP algorithm for the
approximation of the posterior mean.

The source code in this paper would be appeared in
http://bit.ly/1ktgEDM.

2. Formulation
In the formulation, the basic idea is identical to our

previous work[1]. Our method is based on the Bayesian
approach, so that, at first, we formulate the Bayesian frame-
work, which is consists of image observation process and
prior probability.

2.1 Image Observation process
Let us consider λi as the statistical parameter of the Pois-

son process where i stands for the pixel position index, and
zi as its random variable, we can describe the observation
probability as

p(zi | λi) =
(λi)

zi

zi!
exp(−λi). (1)

Considering the Poisson process, Watanabe et al. treat the
corruption process as a Bernoulli process, which counts the
number of on-off event in the proper time bins[9]. Thus, we
can translate eq.(1) as the binomial distribution form:

p(zi | ρi) =
(
K

zi

)
(ρi)

zi(1− ρi)
K−zi , (2)
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where λi = Kρi. In this formulation, we can confirm the
eq.(2) converges to the Poisson distribution eq.(1) under the
condition K →∞.

The parameter ρi in the eq.(2) is a non-negative parameter,
which is just hard to treat for us. Thus, we introduce the logit
transform into the parameter ρi, that is:

xi =
1

2
ln

ρi
1− ρi

, (3)

and obtain the conditional probability for the condition xm

as

p(zi|xi) =

(
K

zi

)
exp((2zi −K)xi −K ln 2 coshxi). (4)

Hence, the image corruption process can be interpreted as
observing the zi under the condition of xi.

2.2 Prior probability
Introducing the Bayesian inference requires several prior

probability for the image. In this study, we assume some
kinds of Gaussian Markov random field (GMRF)[6]. Usu-
ally, we define the GMRF as the sum of neighborhood
differential square of parameters

∑
(i,j) (xi − xj)

2 where xi

and xj are neighborhood parameters. The energy function
and the prior probability for the GMRF can be described as
following:

Hpri(x;α, h) =
α

2

∑
(i,j)

(xi − xj)
2 +

h

2

∑
i

x2
i (5)

=
1

2
xt(αΛ + hI)x (6)

p(x|α, h) = 1

Z(α, h)
exp (−Hpri(x;α, h)) , (7)

Z(α, h) =

∫
dx exp(−Hpri(x;α, h)) (8)

where (m,n) means the neighborhood pixel indices, and I

means the identical matrix. In the eq.(5), the first term means
the GMRF part and the second means the Gaussian prior for
the zero-center value for stable calculation.

2.3 Posterior approximation
Introducing the latent variable approximation for the

eq.(4), we can derive the upper limit of the observation
process[10][9]. Introducing the variational parameter ξm, the
term log 2 coshxm can be evaluated as

ln 2 coshx ≤ tanh ξ

2ξ
(x2 − ξ2) + ln 2 cosh ξ. (9)

Thus, the observation process can be evaluated as p(z | x) ≥
pξ(z | x) where

pξ(z | x) =
∏
i

(
K

zi

)
exp

(
−1

2
xTΞx+ zTx

)

exp

(
1

2
ξTΞξ −K

∑
m

ln 2 cosh ξm

)
, (10)

where z means observation vector

z = (2z1 −K, · · · , 2zi −K, · · · , 2zM −K)
T
, (11)

ξ means the collection of latent parameter {ξm}, and ma-
trix Ξ means a diagonal matrix whose components are
{K tanh ξm

ξm
}. Thus, we approximate the pξ(z | x) as the

observation process, which is denoted as a Gaussian form.
From the observation (10) and the prior (7), we can derive

posterior as

pξ(x | z, α, h) ∝ pξ(z | x) p(x | α, h), (12)

and the observation can be approximated by the latent-valued
form:

pξ(x | z, α, h) ∼ N
(
x |m, (Ξ + αΛ + hI)−1

)
, (13)

m = (Ξ + αΛ + hI)−1z. (14)

2.4 LBP for corrupted image restoration
In the previous work, we regarded the restoration param-

eters x∗ as the posterior mean

x∗ = ⟨x⟩ =
∫

dx x pξ(x | z, α, h) = m. (15)

In order to obtain appropriate restoration, the hyper-
parameters θ = {α, h, ξ} should be adjusted properly. Thus,
we applied EM algorithm for inferring the hyper-parameters.
EM algorithm consists of two-step alternate iterations for
the system that has hidden variables. Each time step of EM
algorithm indicated by t consists of following two-steps:

• E-Step: Calculate Q-function that means the average of
the likelihood function for the given parameter θ(t):

Q(θ | θ) = ⟨ln p(x,z | θ)⟩x|θ(t) (16)

• M-Step: Maximize the Q-function for θ, and the argu-
ments are set to the next hyper-parameters θ(t+1):

θ(t+1) = argmax
θ
Q(θ | θ(t)) (17)

In each E-step, the inverse of accuracy matrix (Ξ +

α(t)Λ+h(t)I)−1 is required to obtain the hyper-parameters.
The computational cost for inverse of a matrix that size
is M ×M requires O(M3) order. Assuming the restoring
image size is Lx×Ly , the matrix size becomes M = LxLy .
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xixj
Mj→i(xi)

xk

Mk→j(xj)

Fig. 1: Schematic diagram of message passing of the LBP:
The LBP algorithm can be applied to infer the marginal
posterior. Each circle shows the pixel, which has 4 nearest
neighbors. For instance, considering the message from the
jth unit to ith unit namedMj→i(xi), the message integrate
the messages from the jth nearest neighbor except ith.

Thus, reduction of the calculation cost is important for the
application.

In order to reduce the cost, we introduce the loopy belief
propagation (LBP) in order to infer the parameters. In the
manner of the Gaussian graphical model, the efficacy of the
LBP were confirmed[6] [5]. Our approximated posterior, that
is eq.(12), is denoted as a kind of Gaussian form, so that we
can apply the LBP for the restoration. For applying LBP,
we should change the evaluation of restoration value into
the marginal posterior pξ(xi | z, α, h) average:

x∗
i = ⟨xi⟩ =

∫
dxi xi pξ(xi | z, α, h). (18)

Obtaining the marginal posterior mean, we apply a local
message passing algorithm defined by LBP. For convenience,
we introduce the following notations:

βi = K
tanh ξi

ξi
, (19)

yi =
2zi −K

βi
. (20)

Then we obtain the observation likelihood for ith node as

p(yi | xi) ∝ exp

(
−βi

2
(yi − xi)

2

)
. (21)

The LBP algorithm is a kind of local message passing. Here,
we denote the message from the jth node to the ith node
as Mj→i(xi). Fig.1 shows the schematic diagram of the
message passing. Here, considering the messageMj→i(xi),
we should integrate the message of the jth connected units

except ith. In each LBP iteration, this message passing is
carried out for each connection. In the Gaussian MRF case,
the message can be derived as

Mj→i(xi) ∝
∫

dxj p(yj | xj) exp(−
α

2
(xi − xj)

2 − h

2
xj

2)∏
k∈N(j)\i

Mk→j(xj), (22)

where N(j) means the collection of the connected units to
the jth unit, and N(j)\i means the collection except ith
unit. From the form of the integral in the eq.(22), we can
regard the message from the jth node to the ith node as the
following Gaussian

Mj→i(xi) ∝ N
(
xi | µj→i, γj→i

−1
)
. (23)

Substituting the message form eq.(23) into the eq.(22), we
can derive the message update rule as

µj→i =
βjyj +

∑
k∈N(j)\i γk→jµk→j

βj +
∑

k∈N(j)\i γk→j + h
(24)

1

γj→i
=

1

α
+

1

βj +
∑

k∈N(j)\i γk→j + h
. (25)

The LBP requires iterations for convergence of the mes-
sage values. After the convergence, the marginal posterior
required for the EM algorithm can be evaluated as

p(xi | y, α, h) ∝ p(yi | xi)
∏

j∈N(i)

Mj→i(xi), (26)

p(xi, xj | y, α, h) ∝ p(yi | xi)p(yj | xj)

exp(−α

2
(xi − xj)

2 − h

2
(x2

i + x2
j ))∏

k∈N(i)\j

Mk→i(xi)
∏

l∈N(j)\i

Ml→j(xj).

(27)

Thus, the Q-function for the proposing EM algorithm is

Q(θ | θ(t)) = ⟨ln p(x,y | θ)⟩MP

=
1

2

∑
i

lnβi −
∑
i

βi

2

⟨
(yi − xi)

2
⟩

MP

+
M − 1

2
lnα− α

2

∑
(i,j)

⟨
(xi − xj)

2
⟩

MP , (28)

where ⟨·⟩MP means average over the marginal posterior
eqs.(26) and (27). Deriving the eq.(28), we assume the
hyper-parameter h is enough small h/α≪ 1.

Let put them all together, the proposing EM algorithm is
shown as the algorithm 1
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Fig. 2: Restoration sample: The left figure shows the original image cropped from the ’cameraman’ with 128 × 128 size,
and transformed linear gray-scale which range is [2, 20] of Poisson parameters. The middle figure shows the Poison noise
corrupted image following to the Poisson parameter assigned to the each pixel. The white pixel shows the out of the range of
the original one. The right one shows the LBP restored image. The Massachusetts institute of technology has the copyright
to the “cameraman” image.

3. Computer Simulation
In order to evaluate the acceleration efficacy, we mea-

sured the computational time for restoration both the LBP
restoration and the previous algorithms. We adopt the fol-
lowing parameters in the simulations: K = 1000, h =

10−5, and the initial hyper-parameters are α(0) = 1.0 and
ξ
(0)
i = 0 respectively. The LBP convergence condition is

relative error between current and previous state of the pix-
els (

∑
i

∣∣mLBPnew
i −mLBPold

i

∣∣)/∑∣∣mLBPold
i

∣∣ < 10−9 in the
meaning of the LBP iterations. Also the condition for the EM
algorithm is set to (

∑
i

∣∣mEMnew
i −mEMold

i

∣∣)/∑∣∣mEMold
i

∣∣ <
10−5. For these conditions, the typical number of conver-
gence for the LBP requires below 100 iterations. And the
typical number of iterations for the EM algorithm requires
about 200 updates from the initial hyper-parameter state.

Controlling the image noise level of the Poisson corrup-
tion, we introduce the linear gray-level transformation from
the original pixel values to the [2, λMax]. The larger the
λMax is, the smaller corruption level becomes. We investigate
following 5 cases of λMax = {10, 20, 40, 80, 160}.

The computer simulation is carried out on the Apple
MacBook Pro, which has 2.7GHz Intel Core i7, 8 GBytes
1.6GHz DDR3 memory, with OS version is OS X 10.9.2.
We implement the algorithm by R language which version
is 3.0. For the comparison, we use the part of the image
called “cameraman” which is extracted from the MATLAB
R2013.

Fig.2 shows a LBP restoration sample with the size of
128×128 [pixels2]. The left image shows the original image

with gray-scale transformation of the range [2, 20], that is the
Poisson parameters assigned to the pixels. The maximum
value of the range λMax, which is 20 in this case, controls
the Poisson noise corruption level. The middle one shows
the Poisson noise corrupted image. The gray pixel means
that its pixel value is out of the range of the original image
range [2, 20]. The right one shows the restored image from
the middle one. We can see the restored image looks less
impluse noise and smoother rather than the corrupted one.

4. Results
We compare the elapsed times for restoration between the

previous our work and proposed one that is the LBP applying
methods. Fig.3 shows the result. The horizontal axis shows
the image scale of one side Lx, which equals to the other
side Ly . Thus, the horizontal axis shows the square root of
the total number of image pixels. The vertical one shows
the elapsed time for restoring by use of the EM algorithm
from the initial hyper-parameter state. Note that the vertical
axis is applied the log scale. In the figure, the solid lines
show the results for the LBPs, and the dashed one show the
our previous work called “exact solution”, which solve the
inverse of accuracy matrix in each EM step. In the exact
solution expressed as the dashed lines, the larger the image
size is, the larger elapsed time becomes. We can also see the
corruption level does not affect to the calculation cost for the
previous work. On the contrary, in the LBP solutions, the
calculation cost looks insensitive to the image size. Instead,
the LBP solutions are affected to the corruption level, when
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Algorithm 1 Poisson corrupted image restoration using EM
algorithm with LBP

1: Set the initial hyper-parameters α(0), ξ(0), and h

2: Set the initial restoration image x
(0)
i

3: t← 0

4: repeat
5: Set β(t)

i = K
tanh ξ

(t)
i

ξ
(t)
i

, and y
(t)
i = (2zi −K)/β

(t)
i .

6: Carry out the LBP, where update eqs. are (24) and
(25), under the given hyper-parameters α(t), {β(t)

i }.
7: After convergence of the LBP, solve several statistics:

the restoration pixel values {mi}, those of variances
{(σi)

2}, and the correlations {sij}:

mi =
β
(t)
i y

(t)
i +

∑
j∈N(i) γj→iµj→i

β
(t)
i + h+

∑
j∈N(i) γj→i

(29)

σ2
i = (β

(t)
i + h+

∑
j∈N(i)

γj→i)
−1, (30)

sij =
(α(t) − γi→j)(α

(t) − γj→i)

α(t)3
. (31)

8: Update the hyper-parameters:

ξ
(t+1)
i =

√
mi

2 + σi
2 (32)

1

α(t+1)
=

(∑
(i,j)(mi −mj)

2 + σ2
i + σ2

j − 2sij

)
M − 1

.

(33)

9: t← t+ 1

10: until restoration image {mi} is converged.
11: x∗ ←m

it becomes large, which is small λMax, the more calculation
cost is required. However, in the large scale image, the LBP
solutions has advantage to the exact solutions.

In order to evaluate restoration quantitatively, we intro-
duce the peak signal noise to ratio (PSNR). The PSNR is
defined as a kind of similarity between the reference image
q∗ and the test image q as:

PSNR(q, q∗) = 10 log10

(
max q∗ −min q∗

MSE(q, q∗)

)2

, (34)

MSE(q, q∗) =
1

M

∑
i

(qi − q∗i )
2 (35)

Fig.4 shows the PSNR between original image ρm and
restored image with inverse logit transform. The horizontal
axis shows the maximum number of the Poisson parameter
λMax assigned to the original image. The large λMax means
the original image shows high contrast, so that the noise
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Fig. 3: Comparison of restoring times: The vertical axis
shows the log-scaled elapsed time [sec] for the restora-
tion, which means convergence of the EM algorithms. The
horizontal one shows the image size Lx(= Ly) [pixels],
which means image size of one side. Each solid line shows
the result for the LBP restoration, and dashed line line
shows the result for the exact solution for the previous
algorithm[1]. For both LBP and exact method, we investigate
the convergence time for several noise level, which are
λMax = {10, 20, 40, 80, 160}.

corruption level is low. On the contrary, the small λMax

means the noise corruption level is high. The evaluation is
carried out with 10 times trials and plot with median with
quantile deviation. Both the results of the LBP line and the
Exact line are overlapped almost all, that is the restoration
performance in the meaning of the PSNR are equivalent. In
the figure, we can see the slightly improvement in high noise
level around λMax ∼ 10. On the contrary, in the low noise
level around λMax ∼ 160, all of the image qualities of LBP,
exact, and corrupted one look equivalent. This result means
that our restoration approach might not degrade the image
quality.

5. Summary & Conclusion
In this study, we propose an acceleration method for

the Poisson corrupted image restoration with the LBP. In
our image restoration framework that is based on the EM
algorithm, the inverse of the accuracy matrix is required. The
calculation cost of the inverse required O(M3) in general.
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Fig. 4: Comparison of restoring quality for the 64 × 64

image: The vertical axis shows the peak signal to noise
ration (PSNR) [dB], which means the similarity index to
the original image. The horizontal one shows the Poisson
parameter λMax for the image. The solid line shows the LBP
result, and dashed one shows the exact solution. These two
lines are almost all overlapped. The dot line shows the PSNR
for the observed image.

Thus, we introduce the LBP to infer the statistics parameters.
Our method approximate the Poisson corruption process as a
Gaussian form, so that, we can easily derive the LBP update
rule. To apply the LBP for the EM algorithm, we have to
replace the posterior mean with the marginal posterior mean.
Moreover, we should consider the effect of two-body interac-
tions to infer the hyper-parameter α. Normally, the LBP only
consider the single-body marginal posterior described as
eq.(26). Only considering the single-body marginal posterior,
the correlation of connected two units, which is denoted
as sij in the eq.(31), becomes 0. This means same effect
to the naive mean field approximation. Thus, the single-
body marginal posterior occur the underestimation of the
parameter of α. Avoiding the underestimation, we introduce
the two-body marginal posterior described as eq.(27) in the
hyper-parameter inference. The correlation sij update rule is
derived as the eq.(31), which only requires the local message,
so that the cost for the inference does not increase so
much. Solving exact correlation between two units requires
considering not only the connected bodies effect but also all
the other bodies effect. This is the reason for the requiring

the inverse of the accuracy matrix in the EM algorithm.
We only consider the two-bodies effect, however, the hyper-
parameter inference looks work well, and the restoration
performance becomes same or more than the that of the exact
solution in the previous work. Hence, we propose the LBP
method is a good approximation for our Poisson corrupted
image restoration framework.
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deduplication rate achieves when the singularity size is 15 
bits in Fig. 4.1 and the number of blocks decreases with 
the increase of singularity size in Fig. 4.2 since the 
singularity more hardly exists in the hash value of the 
window when the singularity size is larger. 
  When the singularity size is in range less than 15 bits, 
the deduplication rate increases with the increase of 
singularity size since more moderate length blocks that 
are applicable for the deduplication are generated and 
more effective deduplication can be performed. When the 
singularity size is too small, the singularity appears in 
almost all the hash value of the window and many blocks 
with around minimum block length were generated. As 
shown in Fig. 4.3 and Table 4.1, when the singularity size 
is 7 bits and 11 bits, the blocks between 4K and 5K bytes 
accounted for 98% and 97% of the total blocks respec- 
tively. This means that the 
deduplication is nearly same 
to the fixed-length block 
method and the benefit of  
variable-length method hardly  
appears.  
  On the other hand, when the 
singularity size is 15 bits, the 
highest deduplication rate is 
achieved, blocks with around 
minimum block length ac-
counted for 63% of the total 
blocks. This ratio is consider-
ably less than in the case of 
smaller singularity size. It can 
be considered that the more 
effective deduplication can be 
achieved by optimizing the 
singularity size. 
  Once the singularity size is 
in range larger than 15 bits, it 
is shown that the dedupli-
cation rate decreases with the 
increase of singularity size 
since longer size of singu-
larity is hardly found in the 
hash value of the window and 
many blocks with around 
maximum length are possibly 
generated. When the singu-
larity size is 15 bits, blocks 
between 15K and 16K bytes 
accounted for only 0.6% of 
the total blocks, nevertheless 
blocks between 15K and 16K 
bytes accounted for 48% and 
90% of the total blocks when 
the singularity size is 19 bits 
and 23 bits respectively. The 
results can prove that the  

deduplication using the longer singularity size is almost 
nearer the fixed-length block method rather than the 
variable-length block method and the benefit of variable-
length method also was hardly observed.  
 
 
5. Conclusion 
 
  In this study, we clarified that the effect of the dedu-
plication can be higher by optimizing the singularity size. 
It is recognized that the deduplication rate is improved 
around 7 % at the optimum singularity size compared 
with at smaller or larger singularity size.  
  As our future works, we will investigate the optimum 
singularity size for the various maximum / minimum 
block lengths not limiting to 4K / 16K bytes only. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1  Number of blocks vs singularity size 

Fig. 4.3  Number of blocks vs block length 
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Abstract— The Glide protein-ligand docking algorithm of-
ten fails to find the correct binding mode. This is because
the search process can easily fall into local minima when the
search target area is widely distributed across the protein’s
surface and the search grid is relatively large. In this
research, we propose a novel method that improves the
search efficiency in such cases by dividing a single, large
search grid into multiple small search grids. In addition, we
propose a method to minimize the number of small grids
by converting the problem into a set cover problem. We
present experimental results to compare the performance of
the proposed approach with that of the standard protocol
under two different settings.

Keywords: protein-ligand docking, Glide, set cover problem,
conformation search

1. Introduction
The technique of protein-ligand docking aims to predict

the binding mode of a protein and a small chemical com-
pound (ligand) from their three-dimensional structures. This
approach is now used in many fields, such as drug discovery
and molecular biology [1] [2]. To date, various research
groups from both commercial and academic organizations
have developed protein-ligand docking software, such as
AutoDock [3], GOLD [4], FlexX [5], and Glide[6]. In par-
ticular, Glide has demonstrated good accuracy using various
benchmarks, and is recognized as one of the best docking
software applications [7] [8] [9]. However, even Glide does
not always return the correct binding mode. Therefore, an
improvement in the accuracy of protein-ligand docking is
highly desirable and would have a significant positive impact
in various fields. The low prediction accuracies given by
protein-ligand docking software are often caused by two sub-
stantial problems. One is the estimation of the binding free
energy, and the other is the problem of searching the whole
conformational space. The former problem is caused by
the coarse model resolution and simplified potential energy
function, which are intended to reduce the computational
cost. The latter problem is a result of the huge number of
conformations to be searched. In particular, this problem
becomes more serious if the binding site of a target protein

is unknown. This is because only a narrow region need be
searched if the binding site is well known; if this is not the
case, the entire protein surface must be searched. Thus, the
conformational space search requires more computational
resources, and this can become a serious problem.

To tackle this, several software packages, such as Pock-
etFinder [10] and SiteMap [11], have been developed to
predict the ligand binding sites. In the standard Glide dock-
ing protocol, multiple binding sites are predicted from the
tertiary structure of a protein using SiteMap, and then a
search grid is set to cover these predicted binding sites.
Finally, only the region within the grid is searched in the
Glide docking simulation process. However, even using this
protocol, Glide sometimes fails to find the correct binding
mode. The search easily falls into local minima if the
predicted binding sites are widely distributed across the
protein’s surface and a large search grid is used. The search
algorithm of Glide tends to intensively search narrow regions
near positions that score highly in the initial search stage,
and overlook good conformations far from such regions.
Therefore, the search accuracy of Glide often becomes lower
if a large number of binding sites are predicted over a
widespread area.

In this study, we propose a method to improve the search
efficiency of protein-ligand docking when many binding
sites are predicted and the search grid is large. To avoid
the problem of local minima, we use multiple small search
grids instead of one large grid. Additionally, to minimize the
number of small search grids, we translate this arrangement
into a set cover problem, and successfully reduce the number
of grids.

2. The Glide conformation search algo-
rithm

The Glide search algorithm [6] is a four-part process
that determines the conformation with the lowest binding
free energy. In the first stage, the algorithm uses simple
criteria to determine candidate positions on the protein that
are likely to bind with a ligand. In the second stage, the
algorithm arranges ligands at these points, and calculates
their binding score using a rough score function. In the third
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Figure 1: (A) A grid in the Glide standard protocol (B) Grids
generated by the proposed method

stage, to minimize the binding free energy, the algorithm
optimizes the structure of the ligand by dihedral angle
rotation and rigid body transformation. In the final stage,
the algorithm selects the best score conformation using a
precise score function named GlideScore [6]. In particular,
the second stage consists of two different processes. The
first is the calculation of a GreedyScore, and the other is a
refinement process. In the GreedyScore calculation process,
ligands are arranged at the positions selected in the first
stage, and the top 5000 conformations are selected according
to their ChemScore [12]. In the refinement process, these
5000 conformations are refined by moving the center of the
compound within ± 1Å and the top 400 conformations are
finally selected.

The number of selected conformations is a fixed param-
eter, regardless of the size of a search grid. As a result,
the algorithm often fails to find the correct conformation
when the search target area is widely distributed over the
protein surface and a large search grid is used. Of course,
the parameter can be changed manually. However, the range
is limited by the interface, and it is difficult to determine an
appropriate value empirically.

3. The proposed method
Using the default Glide protein-ligand docking, the con-

formational search sometimes fails because of insufficient
sampling. To solve this problem, we propose a method to
improve the search efficiency by dividing a large search
grid into multiple small search grids (Figure 1). For a
search grid of optimal size, the Glide conformation search
algorithm works well, even with the default settings, and
we can generally obtain accurate conformations. Thus, in
our proposed method, a large search grid is divided into
multiple small grids, and then a conformational search is
performed for each small grid. Finally, the output of all
conformational searches is collated, and the final prediction
results are selected according to the GlideScore.

Our proposed method has the clear disadvantage that the
computational cost increases in proportion to the number of
search grids, meaning that the cost of our method is larger

Figure 2: Algorithm of the proposed method

than that of a standard protocol. To reduce this harmful
influence, we also propose a grid arrangement method to
minimize the number of search grids. We convert this grid
arrangement problem into a set cover problem [13]. In the
set cover problem, given a table set U made of n elements,
a subset group of U expressed as S={S1,S2, ... ,Sl}, and a
cost function c : S → Q+ (Q+ is a set of positive rational
numbers), we must identify the subset of S covering all
elements of U with the lowest cost. In our optimal grid
arrangement problem, we use the site-points obtained by
SiteMap as the table set, and the site-points included on
a grid whose center is one of the elements of the table set is
the subset group. The cost is the number of elements of the
table set included in each grid. In this way, we can convert
the grid arrangement problem into a set cover problem. We
use an approximate algorithm to solve this, because the set
cover problem is known to be NP-hard [14]. The algorithm
consists of seven steps: (i) Input the site-points obtained by
SiteMap and (ii) prepare the empty set C. Next, (iii) select
the highest-cost grid G and (iv) add the center of grid G
to C. After that, (v) remove all of the site-points included
in grid G, and (vi) repeat (iii)–(v) until S is empty. Finally,
(vii) use the site-points in C as the centers of grids in the
dispersion setting. Figure 2 shows the pseudo-code of this
algorithm. The computational complexity is O(n3), where n
is the number of elements in the table set.

Figure 3 shows the behavior of the algorithm on a two-
dimensional space. Both white and black dots represent site-
points, and are elements of the table set. The black dots
are selected as the center of a search grid by the proposed
method, and squares represent each search grid. All of the
dots are included in the union of these grids. In particular,
the algorithm minimizes the number of grids. In this case,
the algorithm successfully covers 30 dots with only 11 grids.

We implemented the proposed method by altering the
XGlide.py python script in the Glide cross docking [15].
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Figure 3: Example 2D grid arrangement given by the pro-
posed method

4. Evaluation experiment
In this experiment, we confirm that the proposed method

has better search efficiency than the Glide standard protocol
under its default settings. We use the docking score and
computation time to evaluate the search efficiency. We also
compare the efficiency of the proposed method to that of
the Glide standard protocol under the “heavier” setting,
which makes the conformation search more onerous but
more accurate. This is because a direct comparison of the
proposed method and standard protocol with default settings
is difficult, as the proposed method has a greater inherent
computational complexity.

4.1 Dataset
We used a protein-ligand complex dataset called

CCDC/Astex [16]. Because of limitations in computational
power and the number of Glide software licenses, we
randomly selected the following 20 proteins that did not
cause errors in the docking process: 1A4G, 1AJ7, 1B9V,
1DBB, 1EJN, 1FAX, 1FKG, 1HDC, 1IBG, 1MMQ, 1QBR,
1RNE, 1TPH, 1XKB, 2DBL, 2H4N, 2TMN, 2TPI, 3ERD,
7CPA (complex structures 1GPY, 1RT2, and 4CTS were
selected at first, but these were replaced by 1EJN, 1FAX,
and 2TMN because of such errors). Before applying the
docking calculation, the protein-ligand complexes were di-
vided into a protein and a ligand using the Maestro software
(Schrodinger, Inc.). The protein structure was optimized
by the “Protein Preparation Wizard” within Maestro. This
process includes five functions: “Remove cofactors”, “Pre-
process”, “Optimize”, “Remove waters”, and “Minimize”.

The potential ligand conformations were generated by the
“LigPrep” and “Epik” functions of Maestro.

4.2 Protocol to generate conformation search
grids

The conformation search area for the docking simulations
is determined based on the results of SiteMap. The SiteMap
software predicts potential binding sites based on the pro-
tein’s structural characteristics. In this experiment, we used
SiteMap’s default parameters and settings, except for the
number of max reports, which was changed from 5 to 10
because the default value is too small for larger proteins.

Search grids were generated by the “Glide Grid Genera-
tion” function of Maestro. In the standard protocol, a search
grid is located on the centroid of the site-points obtained
by SiteMap. The edge size of the INNERBOX (the center
of a ligand is restricted to this box through the docking
process) is given by the ligand diameter, and the edge size
of the OUTERBOX (all atoms of a ligand are restricted to
this box) is set to the INNERBOX edge size + 16Å. In
the proposed method, search grids are arranged at each of
the selected site-points by our grid arrangement algorithm.
The edge size of the INNERBOX and OUTERBOX are
fixed to 10Å and 26Å, respectively. Therefore, the search
grids generated by the proposed method are different from
those in the Glide standard protocol. However, both methods
satisfy the condition that all site-points given by SiteMap are
included in any grid.

4.3 Protein-ligand docking using Glide

The docking results are highly dependent on the initial
pose of the ligand. Thus, before the docking simulation,
a sufficient number of initial ligand conformations were
generated using “LigPrep” with its default settings. The
protein-ligand dockings were performed using the “Ligand
Docking” Glide function with default settings. Glide has
two prediction modes, standard precision (SP) and extended
precision (XP). Compared with SP mode, XP is slower but
more accurate. In consideration of the computational cost,
we used SP to predict the binding mode in this experiment.

As mentioned above, a direct comparison of the efficiency
of the proposed method with that of the standard protocol
under the default settings is difficult. Thus, we used the
“heavier” setting in the standard protocol to enable a reason-
able comparison. It is possible to improve the conformation
search by increasing the number of searches, although this
entails a heavier calculation. Under the heavier setting, the
standard protocol forms one grid, as for the default setting.
Therefore, we implemented the standard protocol with this
heavier setting, and increased the number of conformation
searches to that of the proposed method.
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Table 1: Performance comparison of three methods

Standard (default) Proposed Standard (heavier)

PDB
Score

[kcal/mol]
RMSD

[Å]
time
[sec]

Score
[kcal/mol]

RMSD
[Å]

time
[sec]

Score
[kcal/mol]

RMSD
[Å]

time
[sec]

1A4G -7.34 23.9 5783 -8.08 23.5 9527 -7.34 23.6 25426
1AJ7 -7.33 1.8 1413 -8.02 2.3 2856 -7.71 2.2 1734
1B9V -6.16 22.9 721 -7.15 23.6 1626 -5.43 23.7 997
1DBB -8.74 0.5 1244 -9.13 0.5 2671 -8.73 0.5 1418
1EJN -6.77 12.3 502 -8.84 1.0 712 -7.60 1.1 632
1FAX -8.47 8.7 727 -8.78 11.1 1117 -9.16 4.4 1521
1FKG -7.76 1.6 128 -6.81 5.1 120 -7.76 1.6 130
1HDC -8.07 6.1 956 -7.96 6.1 2443 -8.05 6.1 1550
1IBG -8.66 2.3 6705 -8.84 1.2 15601 -8.66 2.3 27230
1MMQ -8.15 9.5 185 -7.58 9.7 310 -8.24 1.5 233
1QBR -8.39 10.5 1108 -8.39 11.6 1427 -11.23 1.8 1278
1RNE -13.64 1.5 43850 -15.57 0.6 75126 -13.64 1.5 68986
1TPH -6.48 1.1 315 -6.26 1.2 460 -6.48 1.1 363
1XKB -7.78 9.0 923 -11.52 2.1 1621 -11.51 2.0 1528
2DBL -8.67 1.1 2082 -9.02 1.1 4682 -8.67 1.1 5865
2H4N -5.02 6.3 526 -5.32 15.7 728 -5.03 6.3 809
2TMN -5.23 2.6 469 -5.66 3.1 636 -5.97 4.2 664
2YPI -8.16 0.8 513 -7.90 3.7 1083 -7.99 1.0 632
3ERD -9.87 0.5 541 -9.95 0.6 804 -9.87 0.5 630
7CPA -8.21 4.5 953 -9.21 4.5 1698 -8.71 4.2 1691
Average -7.95 6.4 3482 -8.50 6.4 6262 -8.39 4.5 7166

4.4 Results of the evaluation experiment
Table 4.4 shows the docking scores, root mean square

deviation (RMSD), and execution time for the proposed
method and standard protocol with the default and heav-
ier settings. The docking score is essentially the same as
GlideScore, but is compensated by Epik state penalties [19].
Conformation searches are performed using GlideScore in
the docking process, but the final output of Glide is a docking
score. Therefore, we used the docking score as an evaluation
metric in this experiment. This score represents the binding
energy between a protein and a ligand, and so smaller values
are better. The “Score” column shows the value of the
lowest docking score. We also show the RMSD of all atoms
superposed by a protein between the conformation of the
crystal structure and the conformation of the complex with
the best docking score. RMSD is often used to evaluate the
accuracy of dockings. However, we did not use RMSD to
measure the conformational search performance, because in
many cases a better docking score has a larger RMSD. This
is because the RMSD is highly dependent on the scoring
function as well as the search performance. Therefore, we
only used the docking score to evaluate the conformation
search performance in this work.

From the results in Table 4.4, we can see that the proposed
method exhibits the best search performance of the three

methods considered. In addition, the docking score of the
proposed method is better than that of the standard protocol
with default settings for 15/20 complexes, and outperforms
the standard protocol with the heavier setting in 13/20 cases.

The execution time of each method is shown in the “Time”
column. This includes the time required by the proposed
method to determine the optimal grid arrangement, as this
is trivial compared with the overall execution time. From
Table 4.4, we can see that the execution time of the proposed
method is approximately twice that of the standard protocol
with default settings. However, the proposed method is
approximately 15% faster than the standard protocol with
the heavier setting.

5. Discussion
5.1 Statistical significance of the improvement

The proposed method gives the best average docking
score, and beats the docking score of the standard protocol
with default settings in 75% of cases. Thus, we believe that
the search performance of the proposed method is consider-
ably better than that of standard protocols. To confirm this,
we conducted a statistical test to check whether the differ-
ence is significant. Assuming non-parametric distributions,
we applied a two-sample paired Wilcoxon signed rank test
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[20] to the docking scores. This is a non-parametric statis-
tical hypothesis test to assess the significance of differences
between two related samples. We used the “wilcox.test”
function of R 3.0.0 with the “pair” option.

First, we compared the standard protocol with default
settings with the proposed method. The p-value of the test
was 0.02, and the difference in performance was found to
be statistically significant at the 0.05 level. Thus, the pro-
posed method has significantly better conformational search
performance, although its computational cost is greater.

We also compared the results from the standard protocol
with the heavier setting with those given by the proposed
method. The p-value of this test was 0.41, indicating that
there is no significant difference in performance at the
0.05 level. Thus, from this experiment, it is impossible
to conclude that the search performance of the proposed
method is better than that of the standard protocol with
the heavier setting. However, the proposed method is faster,
and thus more efficient, than the standard protocol with the
heavier setting.

5.2 The effect of optimal grid arrangement
Our grid arrangement algorithm is designed to minimize

the number of search grids. In this experiment, arranging a
grid for every site-point obtained by SiteMap would require
an average of 4893.6 grids. However, using our optimal grid
arrangement algorithm, this number decreased to only 14.2.
Because the computational cost increases in proportion to
the number of search grids, our grid arrangement method
reduces the cost by a factor of approximately 350.

Of course, it is possible to employ other grid arrange-
ment methods. To show the advantage of our method, we
implemented another simple grid arrangement method that
divides the large grid into small uniform grids at even
intervals. Figure 4 shows an example arrangement given by
this division method. In the figure, the white dots are site-
points obtained by SiteMap, and the small crosses denote the
centers of each search grid. We removed all grids that did
not include any site-points. The union of the grids generated
by the algorithm can also include all dots. We applied this
arrangement method to the dataset used in the experiment.
This algorithm generated an average of 22.7 search grids,
which is more than in the proposed method. These results
indicate that our proposed method can effectively decrease
the number of search grids, and thus the computational cost.

6. Conclusion
In this study, we aimed to improve the conformation

search of protein-ligand docking by avoiding local minima in
large search areas. Thus, we proposed a method to improve
the search efficiency by dividing one large search gird
into multiple small search grids. In addition, we developed
a technique that minimizes the number of such grids by
converting the problem into a set cover problem. The results

Figure 4: Example 2D grid arrangement given by the simple
division method

of an evaluation experiment show that the proposed method
improves the docking score relative to the standard protocol.
Unfortunately, however, statistical tests did not show a clear
improvement over the standard protocol with the heavier
setting. The computational cost of the proposed method
was lower than that of the standard protocol with the
heavier setting, which indicates that our method has better
search efficiency than the standard protocol. In this research,
the standard protocol with the heavier setting predicts the
binding mode of a crystal structure better than the proposed
method. We think this is due to the inaccuracy of the
docking score. Thus, in future work, we will investigate the
relationship between the docking score and the RMSD, and
refine the score function to improve conformational searches.
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Abstract - We investigate a feature extraction method that is 

effective for biometric identification using brain waves in this 

paper. We extract power spectrums of theta waves, alpha 

waves, beta waves and gamma waves for the quantity of 

personal characteristic. We measure brain waves with five 

tasks and multi-channel electroencephalograph to analyze 

each error rate. As a result, the error rate of the alpha wave is 

the lowest; the authentication rate by a single channel / a 

single task, sixteen channels / a single task, and sixteen 

channels and five tasks are 90%, 92%, and 97%, respectively. 

Keywords: biometric authentication, brain wave, image task, 

power spectrum  

 

1 Introduction 

 As the spread of Internet infrastructure in recent years, 

various social networking services such as on-line shopping 

are provided for the information society. According to the 

increase of usability, crimes using the Internet are increasing 

rapidly, and the importance of authentication technologies to 

prevent such unauthorized access is required more than ever. 

While personal authentication by ID and password has been 

used mainly in the social networking services available at the 

time, it would have been forged easily against prying eyes or 

brute-force authentication attempts. As just described, 

conventional authentication technologies cannot be said to be 

reliable means necessarily in terms of safety, and biometric 

authentication is getting a lot more attention recently. 

 The biometric authentication refers to the personal 

authentication using biometric information. The biological 

information for the authentication includes fingerprint, iris, 

face, voiceprint, and handwriting, where plagiarism is 

difficult as compared with the traditional password-based 

authentication. In particular, iris or fingerprint based 

authentication does not provide high recognition rates but 

also be used in practical applications, but there are also 

reports that some authentication systems are forged [1]. Since 

the biological information is exposed to the outside at all 

times, it can be acquired for forgery on the basis of the 

biometric information. A vein based authentication system 

that uses in-vivo (not exposed to the outside) information is 

introduced while there is a report that spoofing is possible 

even for the vein authentication system. Conventional 

biometric authentication methods have a problem that it is 

impossible to change the biometric information right after 

succeeding the authentication once. It is considered that 

changeable biometric information is applicable to the 

biometric authentication so that it is to be updated if the 

biometric information is plagiarized. For these reasons, 

updatable in-vivo biological information is required.  

 In this paper, a biometric authentication using brain 

waves as the biometric information is proposed. 

Electroencephalogram (EEG) is in-vivo information and 

superior to confidentiality because it is measured neuronal 

activity of a number of cerebral cortices and not measurable 

without wearing electroencephalograph. Also it shows 

different characteristics depending on the individual, and can 

be used to intentionally change the own brain waves by 

changing what he/she images. The concept of personal 

authentication using the EEG and images has been proposed 

as pass-thoughts [2]．By making an efficient use of this 

feature, the biological information is possibly updated on a 

regular basis, and the safety is enhanced.  

 Studies utilizing brain waves for authentication are 

already underway by various researchers. For example, EEGs 

of forty examinees during open-eye-closed-eye are measured 

for personal identification to get an accuracy of 80% is 

reported in [3], and EEG rhythms of four examinees during 

closed-eye are analyzed to get an accuracy of 90% or more 

[4]. Other studies include personal authentication by visual 

evoked potential [5] and verbal recall problems and/or 

potential recall movement [6]. In such previous studies, auto-

regressive (AR) models [3] [4] [7] or neural networks [5] [6] 

[8] for feature extraction have been proposed, but their 

computational costs are too expensive while the 

authentication performances are improved more than 90%. In 

this paper, we propose a personal authentication method with 

light computational cost as well as good authentication 

performance using frequency distribution of the target power 

spectrum as feature values.  

The rest of the paper is organized as follows. In section 

2, we introduce two types of related works. According to the 

existing research results, we propose an extension of the 

previous methods in section 3. The proposed method is 

validated with some experiments in section 4. 

2 Related works 

2.1 EEG personal authentication based on the 
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average power spectrum 

 We introduce a study for EEG personal authentication 

with light computational cost using average power spectrum 

as feature values [9]. In this study, a method of personal 

authentication by EEG brain waves during virtual driving 

operation, which means a simple driving simulator with 

tracing route, is proposed.  

 Electroencephalograph to be used is a single electrode of 

the frontal lobe Fp1 (International 10–20 system) with the 

sampling frequency of 128Hz. Spectral analysis by Fourier 

transform for the extraction of individual feature is adopted 

based on the fact that there are individual differences in brain 

wave spectrum in the α-β wave band. Exactly saying, the α 

and the β wave bands are divided into α1-α4 and β1-β4 

regions, respectively. In each region, the average of power 

spectrums as individual feature is evaluated for authentication. 

 The flow of authentication process is as follows. First, 

the personal data is registered in advance to perform 

authentication. The brain waves during virtual driving 

operation are measured to calculate the power spectrum by 

FFT. The measured EEG spectrum is smoothed with five 

points moving average process. The process is performed L 

times for each examinee to generate L spectrums, which are 

spatially averaged. The α-β wave band parts of the obtained 

averaged spectrums are divided into several regions and the 

average value is calculated for each region. The average value 

is the template.  

 In collation process, examinee’s brain waves in the 

virtual driving operation environment are measured once to 

calculate the spectrum as in the template and perform 

smoothing and normalization. Note that the normalization is a 

process to align the average spectrum used in the template 

calculation with the average spectrum for collation. To be 

compared with the template, if it is smaller than a 

predetermined threshold, it is authenticated as the right person. 

 For the authentication experiment, thirty examinees are 

employed. Measurement time is three minutes, and ten sets of 

brain waves data are taken from each examinee: five sets of 

data are used for generating templates, and the rest of five sets 

are for authentication. Evaluating experimental results by 

equal error rate (EER), the tracing route and driving simulator 

record 0.35 and 0.36, respectively. Furthermore, EERs are 

0.51 and 0.22 in the case of B1 region and B3 region, 

respectively. In this way, a remarkable difference in each area 

is observed. 

2.2 EEG personal authentication using 

multiple tasks 

 While the previous sub-section describes a study aiming 

at EEG measuring and its authentication during unconscious 

states, this sub-section describes another study for personal 

authentication of the EEGs that are measured with selecting 

own password thoughts (Pass-thoughts) [10]. 

 They use the MindSet of NeuroSky Inc. as an 

electroencephalograph with 200Hz sampling frequency at 

frontal lobe Fp1 by a single channel. The following seven 

tasks are used for measuring brain waves: Deeply breathe 

(breathing), Image moving own fingers up and down (finger), 

Image doing a favorite sport (sport), Image singing a favorite 

song (song), Listen to a mechanical sound, then gaze at one 

point (audio), Select a color among red, green, blue and 

yellow, then count the number of the selected color on a 

displayed picture (color), Image a favorite password (pass). 

In audio, the examinee listens to a mechanical sound for five 

seconds, then gazes at one point for five seconds while his/her 

brain waves are measured for the total of ten seconds. In 

color, the examinee counts the number of selected color on a 

picture with measuring his/her brain waves for five seconds. 

Since the number of pictures is six, the total time for 

measuring examinee’s brain waves is thirty seconds in total. 

In the rest of five tasks, the examinee imagines the tasks 

while his/her brain waves are measured for ten seconds. 

 In the authentication method, an STFT (short-time 

Fourier transform) is first applied to the recorded sample data 

as a pre-processing, and time-frequency analysis is performed. 

The frequency bands of the α and the β waves are cut out to 

calculate the median of the power spectrum for each 

frequency band. The resultant data is used as one-dimensional 

feature vector. Then, to calculate the degree of similarity 

between the one-dimensional vectors obtained from the 

sample data, the cosine similarity method is applied. From the 

above calculated self-similarity and cross-similarity, an 

optimal threshold value for authentication is estimated. The 

authentication is evaluated by the HTER (Half Total Error 

Rate), which is the average of the FAR (False Acceptance 

Rate) and the FRR (False Rejection Rate) calculated from 

each similarity.  

 In experiments with fifteen examinees, when evaluated 

using a common threshold to the examinees, the HTER is 

0.32-0.43. However, when changing the task and the 

threshold for each examinee, the HTER decreased up to 0.011 

3 Analysis of personal authentication using 

a multi-channel electroencephalograph 

 In this paper, we perform personal authentication using 

a multi-channel electroencephalograph based on the above 

related works, and analyze the results for several factors. 

3.1 Measuring EEG  

 We use the BioSemi as the multi-channel 

electroencephalograph, of which the maximum sampling rate 

is 2,048Hz and the maximum electrode number is 256. A 

bipolar lead method is used for deriving the reference 

electrode. In this paper, we use a BioSemi with the maximum 
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sampling rate of 2,048Hz and 16 electrodes. The electrodes 

are placed as shown in Fig.1 based on International 10–20 

system. Figure 2 shows mounting a BioSemi and measuring 

EEGs in the left and right, respectively. 

3.2 Authentication method  

 We use an authentication method as described in 

subsection 2.1 and 2.2 to be extended. First, a template for 

individual is generated using L trial data sets. Each data set is 

processed as following. We apply STFT to the data to 

calculate the power spectrum by time, and perform a median 

filter on successive five values. In subsection 2.1, 8-29Hz 

brain waves (α and β waves) are partitioned into seven 

regions to calculate the average of each power spectrum as 

feature values. As a result, it is reported that the 

authentication rate at B3 β-wave region is good, but this is 

likely because some differences are observed in the β wave 

EEG that usually evokes concentration during virtual driving 

operations. In this paper, we use 4-40Hz brain waves ( to  

waves) to get more information. Since the brain waves less 

than 3Hz contain considerable EOGs (electrooculography), 

we do not use them in this paper. Figure 3 shows an example 

-wave bands partition. The - wave bands are partitioned 

into two, three, five and three regions of 1-2, 1-3, 1-5 

and 1-3, respectively. The average power spectrum for each 

region by time is calculated to be used as feature values. The 

calculated feature values are averaged by each examinee to 

generate the template  (

             
        

 

 
 

    
 

             

) , where t 

represents time. 

 The authentication is performed using each feature value 

in the template and its cosine similarity. If the similarity is 

larger than a pre-defined threshold, the examinee is accepted. 

Otherwise, the examinee is rejected as a personator. The 

threshold is selected as the minimum EER that is the 

intersection of graphs FAR and FRR. The minimum EER is 

also used for evaluating the authentication accuracy 

performance. 

4 Experiments 

4.1 Experiment method 

 The examinees are ten healthy women in their 20s. To 

measure their brain waves, we adopt five tasks except color 

and audio described in subsection 2.2. Since tasks of color 

and audio require an open-eye state, we think they increase 

noises. We abbreviate tasks breathing, finger, pass, song and 

sport to B, F, P, So and Sp, respectively. Figure 4 shows the 

flow of a trial. We measure ten seconds for each of five tasks 

with taking a break of five seconds between each task, which 

is a trial. Each examinee performs ten trials. The learning data, 

namely templates are from the measured data of five 

examinees, and the rest of five examinees data are used for 

authentication tests. In other words, the number of 

authentication test data is fifty. 

 We perform the experiments for three different purposes. 

Experiment 1, 2 and 3 are to validate the equal error rate 

(EER) for each frequency band, each measuring position and 

Figure 1 Electrode placement 

Figure 2 Mount a BioSemi and its measuring 

 

Figure 3 An example of -wave bands partition 

Figure 4 the flow of a trial 
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task combinations, respectively. We randomly select five 

learning data sets from the ten measured data sets and the rest 

of five data sets are used as authentication test data so that we 

have ten kinds of learning-test data set combination. The 

resultant ten EERs are averaged for the validation. 

4.2 Experiment 1: Validate EER for each 

frequency band 

 We investigate the difference in EERs when changing 

the frequency band of the EEGs used for authentication.  

 In Experiment 1a, we get the EER of each frequency 

band in each task. The frequency bands consist of wave (4-

8Hz), wave (8-14Hz), wave (14-26Hz) and wave (26-

40Hz). From the EEGs for each task with changing the 

frequency band of the feature, we calculate the EER for each 

channel to obtain the average value of the 16 channels. Figure 

5 shows the plots of the experiment results. The average 

EERs of , ,  and waves are 0.44, 0.28, 0.40 and 0.45, 

respectively. The authentication by wave achieves the 

highest preciseness. It is also confirmed by Fig.5 that the 

authentication by wave is more accurate for all tasks, and 

the difference to the second accurate authentication by 

wave is more than 0.1. Investigating the results by task, 

pass and sport provide better accurate authentication while 

other tasks provide worse. This trend is true for all 

frequencies. Looking at wave, sport is the best (0.27) and 

song is the worst (0.29). 

 In Experiment 1b, we get the EER of each frequency at 

each electrode position. Similar to Experiment 1a, the EER 

for each electrode position is calculated from the EEGs for 

each task with changing the frequency band of the feature. 

The obtained EERs are averaged by task for the validation as 

shown in Fig.6. As shown in the graph, the authentication 

accuracy by wave is the best in all channels. In the case of 

wave, the authentication performances from P4 to O2 are 

better than from Fp1 to T8. In the cases of wave andwave, 

the performances from P4 to O2 are relatively good. The 

performances of - waves on occipital area are better than 

frontal area. However, in the case of  wave, no prominent 

differences for the EERs on any channels are confirmed. 

 From the results of Experiment 1a and 1b, the 

authentication accuracy is good in the order of  , ,  and  

wave. Particularly, the authentication accuracy by wave is 

outclassing. Although there are differences in the 

authentication accuracy by task, the performances of  and 

waves are well for all tasks. Furthermore, focusing on the 

channels, the authentication accuracy of occipital , and 

waves is better than frontal. We think that the reason of the 

above trend is that the noises of eye movement are included 

in the frontal , and waves. Therefore, no influence is 

observed in the frontal  wave that has a relatively high 

frequency. 

4.3 Experiment 2: Validate EER for each 

measuring position 
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Figure 7 Results of Exp.2a 
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 We investigate the difference in EERs due to the 

combination of electrode positions to be used for 

authentication. In Experiment 2a, we get the EER at each 

electrode position calculated from the EEGs for each task 

using the frequency band of 4-40Hz. Figure 7 shows the 

results. There is little difference between the authentication 

rates of all tasks. Although they are also affected by the kind 

of tasks, the channel with good authentication rates are Fz, P4, 

and Pz. The combination of a task and a channel with the best 

authentication rates is sport/Pz with the EER of 012. From the 

experiment results, we confirm that about 90% authentication 

rate is obtained using all the 4-40Hz frequency with single 

channel and single task. Since pass is the task that is 

individual-changeable, EEGs with pass are expected as a 

pass-thought. The channel with bad authentication rates is Cz. 

The EER of the best channel P4 with pass is 0.15 while the 

EER of the worst channel Cz is 0.30. The results indicate that 

the authentication performance differs by electrode position 

so much. 

 In Experiment 2b, we generate a set of patterns by 

combining several channels, and use them to calculate EERs 

for each task on the electrode position to validate the patterns 

with good authentication performance. Figure 8 shows the 

patterns for the combined positions. The details of the 

patterns are shown in Tab.1. We investigate twenty-one 

combination patterns for each electrode position in this paper. 

Figure 9 shows the EER for the pattern 1-21 by task. 

Focusing on tasks, there is little difference between the 

authentication rates of all tasks. Focusing on patterns with 

accurate authentication, the pattern 21 for all tasks on all of 

16 channels achieves the best EER. On the pattern 21, the 

task with best authentication performance is finger with EER 

0.071. In Experiment 2a, while the authentication rate for the 

task pass on a single channel is about 85%, it increases up to 

about 92% on all of the 16 channels. The next best patterns 

include the pattern 16 occupying the left hemisphere for the 

tasks breathing, finger and pass, the pattern 15 occupying the 

left hemisphere and the pattern 3 passing through the center 

of the midline hemisphere for the task song. On the contrary, 

the patterns with poor authentication rates include the pattern 

6 through the frontal pole and the pattern 10 through the 

occipital area. The experiment results indicate that different 

tasks give different electrode positions to each examinee. In 

particular, it turns out that the authentication performance 

using either hemisphere according to given tasks is better than 

using both hemispheres of the brain.  

 In Experiment 2c, we obtain the EERs on the electrode 

positions within the left, right and midline of hemisphere for 

Figure 8 Electrode position pattern for Exp.2b 

Table 1 Electrode position detail 

Figure 9 Results of Exp.2b 
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all tasks as shown in Fig.10. Apparently, the electrode 

positions in the right of hemisphere give a little better 

authentication performance than the left. Especially, the 

electrode positions T and C within the right of hemisphere 

provide better authentication performance than the 

left/midline 0.03. The electrode positions of the midline 

hemisphere have a large difference between good 

authentication rates (T, C) and poor authentication rates (F, P). 

Furthermore, the electrode position P achieves the best 

authentication performance within any parts of hemisphere  

4.4 Experiment 3: Validate EER for the 

combination of tasks 

 We investigate the difference in EERs due to the 

combination of tasks to be used for authentication. In 

Experiment 3a, we generate all combinations of one to five 

tasks to be used for the authentication and calculate each EER. 

In this paper, we present the pattern 21 (all channels) that 

gives the best authentication performance in Experiment 2b to 

calculate its EER. Figure 11 and 12 show the cases that the 

number of tasks to be combined is 1-2 and 3-5, respectively.  

 In the case of a single task, the task breathing gives 

good authentication performance. On the contrary, the task 

song gives the worst authentication performance of EER 

0.084. In any case, the EER of each task is less than 0.09, 

which means a single task achieves good authentication of 

more than 92%.  

 The number of two task combinations is 10. The 

combinations of tasks including breathing which provide 

good authentication when used as a single task, achieve 

authentication performance of 95%. The combination of 

breathing/song provides the best authentication of EER 0.040. 

 The number of three task combination is 10, too. They 

all provide less than 0.05. Among the three task combinations, 

breathing/pass/song provides the best authentication of 0.031.  

 The number of four task combination is 5 and all 

combinations achieve good authentication of 0.03 to 0.04. 

Using all tasks, the authentication performance is the best 

0.029. 

 In Experiment 3b, we investigate the difference of EERs 

with varying the number of tasks for the task combination. 

Figure 13 shows the average EERs by the number of tasks. 

The average EERs are 0.076, 0.051, 0.040, 0.036 and 0.029 
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Figure 11 Results of Exp.3a (1-2 tasks) 
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Figure 12 Results of Exp.3a (3-5 tasks) 
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as the number of tasks increases from 1 to 5. Namely, the 

larger the number of tasks for the task combination is, the 

better the average EERs are. 

 

5 Conclusions 

 In this paper, we investigate EEG personal 

authentication with a 16-channel electroencephalograph. We 

adopt averaged power spectrums calculated by STFT for each 

frequency band of , ,  and  waves as feature values for 

individuals. When EEGs are measured, the examinees 

perform five kinds of tasks; breathing, finger, pass, song and 

sport. Using the above data, we performed three types of 

experiments to validate EERs for each frequency band, EERs 

for electrode positions and EERs for the combination of tasks. 

From the experiment results of EER validation for each 

frequency band, we confirm that  waves provide the best 

authentication performance followed by ,  and  waves. It 

means that the  wave band is the most effective frequency of 

EEGs for personal authentication. From the experiment 

results of EER validation for electrode positions, about 85% 

authentication rates are observed with the task pass and the 

electrode position Pz, and we also observe that the 

authentication rates increase up to about 92% with all of 16 

channels. Finally, from the experiment results of EER 

validation for the task combination with 16 channels, we 

confirm that the larger the number of task combinations is, 

the better the authentication performance is. Using all of five 

tasks, the EER achieves the best 0.029 that means the 

authentication rate of more than 97%. 

 Our future work includes investigating optimal tasks, 

electrode positions and frequency band with more examinees 

to get better authentication performance. We believe that 

power spectrum of EEGs is insufficient. So we should 

develop a new feature for individual authentication rather 

than power spectrum 
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Emotion Estimation of Comments on Web News by SVM and
Naive Bayes Based Classifiers
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Abstract— Social communication tools such as Twitter or
Facebook spread the web service ability. Using their APIs,
we can gather many users’ comments easily. Such com-
ments are usually short sentences but they also have many
emotional comments. In this paper, we propose emotion
estimation methods for multilabeled short comments of web
news. Our methods can be applied to sentiment analysis
and opinion mining. At first, we show the performance
evaluation of a naive Bayes classifier and an SVM classifier.
Then, we propose two improved methods. The first is an
improved naive Bayes method which classifies each emotion
label into two opposite emotions and uses their weights. We
call this the weighting method. The second method consists
of two stages of classifiers. The first stage distinguishes
these oppositely classes, and the second stage selects one
emotion from the opposite emotions. From our evaluation,
we conclude that the weighting method is better among the
naive Bayes classifiers and its performance is as good as
SVM’s.

Keywords: emotion estimation, Twitter, naive Bayes, SVM

1. Introduction
In recent years, social networking tools have very im-

portant role on human communication such as Twitter or
Facebook and so on. They usually have APIs for mash
up with other web services. Especially, many web news
sites use this function for gathering users’ comments. Some
TV programs also use these tools to make a bidirectional
communication. These comments are useful for both of
article writers and readers, but oftenly there is no retrieval
system. Even though, there will be text base retrieval such
as search engines and marker based systems such as “hash
tag”, but there is no system which responses to the request
as “search funny comments.”

In this paper, we propose an emotion labeling method to
such comments. The emotions is comment writer’s emotion.
For example, if there is a news article about some crime
and a comments such that “It will happen near my town.”,
then the comment writer may feel “fear” and “anticipation.”
Comments of web news articles have the following proper-
ties.

• They will be more emotional than other tweets. The
comments to the news article are usually impressive.

• They will be short sentences. Twitter restricts the length
of comments up to 140 characters, and other social tools
have the same restriction.

• There will be no discussion. Some board systems have
the comment tree making function, but many systems
do not have.

Automatically emotion estimation of tweets is useful from
these reasons.

In this paper, we propose two naive Bayes based classifier
and performance evaluation with SVM and the simple naive
Bayes classifier. Our new method uses the class of emotions
which consists of two opposite emotions such as “joy”
and “sadness”. This is because, we use Plutchik’s wheel
of emotions[5], and there are eight emotions which can be
classified into four classes. For the evaluation, we made
experiments by Japanese news articles and their about 2000
tweets. The SVM and our proposed new method marked
high performances comparing to the simple naive Bayes
classifier.

There are some related studies about emotion estimation.
In [1], a Japanese valency pattern dictionary for emotions
has been made and emotion estimation for a sentence has
been tried. An emotion corpus has also been made in [2].
Machine learning approach to emotion estimation has been
tried in [3] and [4].

2. Vector models for emotion estimation
We denote a sentence of a tweet t which consists of

n words by t = w(1)w(2) · · ·w(n). Wl and Wt denote
vocabularies which appear in learning data and evaluation
data, respectively. Let W = Wl ∪Wt, then |W | denotes the
size of the vocabulary of all data. Without loss of generality,
assume an order on W = {w1, w2, · · · , wm} and another
order on Wl = {w1, w2, · · · , wl}. Now, m = |W | and l =
|Wl| hold. On the naive vector modeling, we assume a map
from a tweet t to m-dimensional vector (u1, u2, · · · , um).
In this paper, ui is the number of wi which appears in t,
i.e. ui = |{j|wi = w(j)}| where t = w(1)w(2) · · ·w(n). We
denote the appearance of wi by δi such that

δi =

{
1 ∃j, wi = w(j)

0 otherwise

for i = 1, 2, · · · ,m. To avoid the zero frequency problem,
we use additive smoothing for naive Bayes based methods.
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We do not care the words which only exists in evaluation
data such that w ∈ (Wt −Wl) for SVM classification.

Target emotions are the following eight emotions.
• joy
• trust
• fear
• surprise
• sadness
• disgust
• anger
• anticipation

These are components of Plutchik’s wheel of emotions[5].
In our setting, every tweet can have multilabels of emotions.
A tweet t can be labeled by both of “joy” and “surprise” for
example. Every tweet must have at least one label of the
above emotions.

These eight emotions can be classified into four classes
such that

• joy ⇐⇒ sadness
• trust ⇐⇒ disgust
• fear ⇐⇒ anger
• surprise ⇐⇒ anticipation

because of the pair of opposite emotions.

3. Estimation method
3.1 Simple naive Bayes

For probabilistic variables X,Y , it hols that

P (Y |X) =
P (X |Y )P (Y )

P (X)

and this is called Bayes’ theorem. Y denotes the target
event. In our method, Y can take an event from {joy,
trust, fear, surprise, sadness, disgust, anger, anticipation}.
X denotes the vector which corresponds to a tweet t,
i.e. X is an m-dimensional vector (u1, u2, · · · , um). If it
holds that P (Y |(u1, u2, · · · , um)) ≥ Th then the tweet t
is labeled by the emotion Y . Here, Th is the threshold
value and we define it 1

8 = 0.125 because there are
eight emotions. If there exist more than two emotions,
for example P (Y = “joy′′|(u1, u2, · · · , um)) > Th and
P (Y = “trust′′|(u1, u2, · · · , um)) > Th holds, then t is a
multilabeled tweet by “joy” and “trust”. It holds that

P (Y |(u1, u2, · · · , um)) =
P ((u1, u2, · · · , um)|Y )P (Y )

P ((u1, u2, · · · , um))

from Bayes’ theorem. In addition, P ((u1, u2, · · · , um)|Y )
and P ((u1, u2, · · · , um)) can be approximated by the fol-
lowings.

P ((u1, u2, · · · , um)|Y ) =
∏

i=1,··· ,m
P (wi|Y )ui

P ((u1, u2, · · · , um)) =
∏

i=1,··· ,m
P (wi)

ui

Thus, P (w|Y ) and P (w) for all w ∈ W are needed to decide
the labels of t. These values are estimated from learning data.
P (w|Y ) is the probability that w appearance in all tweets
with the emotion label of Y . P (w) is the probability that w
appearance in learning data.

3.2 Weighted naive Bayes
We can classify the set of emotions introduced by

Plutchik[5]. That is four classes and each of them consists
of opposite emotions: joy and sadness, trust and disgust, fear
and anger, surprise and anticipation. Now, we assume that
only one emotion on the each pair tends to be labeled. Let

y1 =“joy”, n1 =“sadness”,
y2 =“trust”, n2 =“disgust”,
y3 =“fear”, n3 =“anger”,
y4 =“surprise”, n4 =“anticipation”

and Ci = {yi, ni} for i = 1, 2, 3, 4. One emotion can be
written by (Ci,mi) where mi ∈ Ci for i = 1, 2, 3, 4. Let C
and M are probabilistic variables of Ci and mi, respectively.
Then, P (Y |w) can be written by the following for a word
w ∈ W .

P (Y |w) = P (C,M |w)
= P (M |w,C)P (C|w)
=

P (w|C,M)P (M |C)

P (w|C)
P (C|w)

here, P (M |w,C) means the emotion distribution when w
and C are given. We approximate P (C|w) by the probability
that the emotion C is labeled to the tweet t which has w. For
example, assume that there are x tweets in which w appears,
and y tweets are labeled by Ci among these x tweets. Then,
P (C = Ci|w) = x

y . P (M |C) is also calculated from number
of tweets. For example, if there are z tweets labeled by C1

and x tweets labeled by “joy”, then P (M = “joy′′|C1) =
x
z .

For a tweet t which corresponds to (u1, u2, · · · , um), we
approximates p(Y |t) as follows.

P (Y |t) = P (Y |(u1, u2, · · · , um))

=
∏

i=1,2,··· ,m
P (Y |wi)

ui

If P (Y |t) > Th then t has the emotion label of Y .
We call this method “weighted naive Bayes” because

P (C|w) looks like a weight for P (M |w,C).

3.3 Two stages naive Bayes
We use four classes of emotions Ci for i = 1, 2, 3, 4

which are defined in the previous section. In this method,
two threshold value Th and Tc is used. At the first stage,
P (Ci|w) for every i = 1, 2, 3, 4 is calculated and check
them whether P (Ci|w) > Tc or not. If P (Ci|w) ≤ Tc
then no label mj ∈ Ci is labeled to the target tweet. If
P (Ci|w) > Tc then select emotion mi from Ci according
to whether P (mi|Ci, t) > Th or not. The target tweet takes
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the label mi When P (mi|Ci, t) > Th. We call this step
the second stage. Fig. 1 shows the flow of this method. In
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Fig. 1: The flow of two stage method

this paper, we use Th = Tc = 0.1 from some preliminary
experiment.

When either Tc or Th is too low, the target tweet may
have many labels and it increases the recall but decreases
the precision.

3.4 SVM
SVM is a discriminative classifier which is based on

margin maximization. In this paper, emotion labeling via
SVM is processed as follows.

• Train an SVM for every emotion label which discrim-
inates one emotion from the others. Then, there are
eight SVMs and such SVMs are denoted by Si for
i = 1, 2, · · · , 8. The input of each SVM Si is a vector
(δ1, δ2, · · · , δl) of a tweet t which expresses the word
appearance in t of the vocabulary of learning data. The
output of Si is whether the input tweet has the i-th
emotion label or not.

• To predict that a tweet t has i-th emotion or not, make
the input vector of t for Si such that (δ1, δ2, · · · , δl).
Then, predict the emotion label according to the output
of Si for i = 1, 2, · · · , 8.

SVM has a parameter C which is the weight of slack
variables. We examine some values of C and their perfor-
mances. In this paper, we use linear classifier with slack
variables and L2 norm. “liblinear” is one of the most
effective implementation of linear SVM and we use this
software for our experiments.

4. Evaluation
4.1 Data description

For experiment, web news and their comments are gath-
ered. comments are tweets which attached to the news
article. The news site is news.nicovideo.jp and tweets are
processed as follows.

• Re-tweets are all deleted.
• All meaningless spaces and tabs are deleted.
• Comments for other tweets (re-tweets with original

comment) are remained.
Then, our data descriptions are as follows.

• Total number of news article : 28
• Total number of tweets : 2075
• The average number of tweets per article : 78.04
• The maximum number of tweets per article : 100
• The minimum number of tweets per article : 12
• The average number of words per tweet : 19.34
• The maximum number of words per tweet : 65
• The minimum number of words per tweet : 1
• The size of vocabulary : 4987

We do not use news article body for learning and evaluation.
Learning data only consist of tweets. All these news articles
and tweets are in Japanese. Thus, we must do morphological
analyze to all tweets. The morphological analyzer by which
all tweets are processed is “mecab.” Every word consists of
the pair of morpheme and whose tag.

Correct labels of emotions are made by hand. There are
twelve persons to make the correct labels. One person can
label one emotion per tweet. We call such a label “point.”
Every tweet must be labeled by at least two persons to avoid
bias. Thus, every tweet has at least two points. Learning data
is a pair of a tweet and an emotion vector such that

(z1, z2, · · · , z8)
here,

zi =

{
0 t′s i− th emotion is 0 point
1 otherwise

i.e. if tweet t is labeled on some emotion, the emotion has
more than or equal to 1 point.
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The average of points per tweet is 2.52. The maximum
point is 9 and the minimum point is 2. The followings are
point distribution of correct data.

• joy : 516
• sadness : 756
• trust : 147
• disgust : 1347
• fear : 291
• anger : 936
• surprise : 580
• anticipation : 656

The followings are the number of tweets whose emotion
vector has more than 1 point.

• joy : 326 tweets
• sadness : 583 tweets
• trust : 130 tweets
• disgust : 954 tweets
• fear : 217 tweets
• anger : 621 tweets
• surprise : 405 tweets
• anticipation : 474 tweets

The average number of emotions whose point is more than
or equals to 1 per tweet is 1.79. The maximum is 5 emotions
and the minimum is 1 emotion.

It is expected that there are many points on “disgust”
because no one has responsibility to comments of web news.
Indeed, “disgust” is the most labeled emotion. We choice the
base line that emotion vector is only labeled by “disgust.”
Then, the performance of the base line is as follows.

• precision : 0.46
• recall : 0.25
• F value : 0.32

4.2 Experiment and results
For evaluation, experiments for each method with our

learning data are executed and the performances are mea-
sured. In our all experiments, the cost C of slack variable
on SVM is set to C = 1.0.

4.2.1 Simple cross validation

Table 1: Simple 5-fold cross validation
simple weighted 2stage SVM

precision 0.4590 0.4718 0.4632 0.5610
recall 0.5970 0.6056 0.5818 0.5159

F value 0.5190 0.5304 0.5158 0.5375

Fig. 2 and Table 1 show the results of our methods using a
5-fold cross validation. The 5-fold is made by the followings.

1) For all tweets of one article are divided into 5 parts.
2) The evaluation data is the set of every one part of

tweets from all articles. Thus, there are 1
5 of all tweets.

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

prec. recall F val.

simple

weighted

2stage

SVM

Fig. 2: Simple 5-fold cross validation (graph)

3) The learning data is the rest of them. Thus, there are
4
5 of all tweets.

By this validation, there are at least 1
5 tweets of one article

in the learning data. Thus, any classifiers can obtain trends
of every article. The recall is higher than the precision by
the SVM, on the other hand, the precision is higher than the
recall by naive Bayes based methods. The F value is almost
0.51 to 0.53 but the SVM has the highest performance and
weighted naive Bayes has the second performance.

4.2.2 Cross validation among news articles
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Fig. 3: Leave one file out (graph)

Fig. 3 and Table 2 show the results by leave one file out
cross validation. The learning data and evaluation data are
made by as follows.
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Table 2: Leave one file out
simple weighted 2stage SVM

precision 0.4133 0.4193 0.4079 0.4810
recall 0.5238 0.5307 0.5147 0.4231

F value 0.4620 0.4685 0.4551 0.4425

1) The evaluation data is all tweets of one article.
2) The learning data is all tweets of the all rest articles.

By the SVM, the precision is higher than its recall in this
validation. The recall is higher than the precision by naive
Bayes based methods. From these facts, the SVM tends to
label less than naive Bayes methods. The F value of all naive
Bayes based methods are higher than that of the SVM. We
think this is caused that the SVM labels few emotions then
one miss label decreases the F value comparing to naive
Bayes based methods.

4.2.3 Closed data test
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0.76

0.8
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0.92

0.96

1

prec. recall F val.

simple
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Fig. 4: Closed test (graph)

Table 3: Closed test
simple weighted 2stage SVM

precision 0.8944 0.9139 0.8924 0.9957
recall 0.6569 0.6771 0.7231 0.9914

F value 0.7575 0.7779 0.7989 0.9936

Fig. 4 and Table 3 show the result of a closed test. In this
test, all data are used for both learning and evaluation. The
SVM scores almost 1.0 for the precision, the recall and the
F value. From the previous two open data experiments, the
F value of the SVM is higher than that of naive Bayes based
method if learning data contain the trends of evaluation data.
This trend is clear in the closed test.
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Fig. 5: Slack variable cost and performance (5-fold)

Naive Bayes based methods has different behavior against
the previous two experiments. The precision is higher than
the recall.

4.3 Soft margin cost on SVM
We show the difference between C values. SVM finds the

hyperplane which has the maximum margin. This task is the
optimization problem to maximize the function L(w) where
w is the normal vector of the hyperplane. Now, the total of
slack variables is denoted by S. Including slack variables,
the optimization function is L(w) + C · S where C is the
cost of soft margins. We investigate the performance when
C value is changed.

Table 4: Slack variable cost and performance (5-fold)
cost 0.001 0.01 0.1

precision 0.5911 0.6212 0.6041
recall 0.2659 0.3913 0.4914

F value 0.3666 0.4800 0.5419
cost 1.0 3.0 5.0 8.0

precision 0.5610 0.5350 0.5292 0.5218
recall 0.5159 0.5186 0.5194 0.5218

F value 0.5375 0.5266 0.5242 0.5217

Table 5: Slack variable cost and performance (leave one file
out)

cost 0.001 0.01 0.1
precision 0.5453 0.5457 0.5195

recall 0.2189 0.2998 0.3905
F value 0.3071 0.3767 0.4370

cost 1.0 3.0 5.0 8.0
precision 0.4810 0.4620 0.4616 0.4462

recall 0.4231 0.4288 0.4354 0.4314
F value 0.4425 0.4367 0.4394 0.4300
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Fig. 6: Slack variable cost and performance (leave one file
out)
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Fig. 7: Slack variable cost and performance (closed)

Fig. 5, 6 and 7 are the performances of the SVM by the
5-fold test, leave one file out and closed test, respectively.
Table 4, 5 and 6 shows the values of the performance.

On the open data test (5-fold and leave one file out), the
F value is the highest at C = 1.0. When the soft margin
cost C is decreased, i.e. soft margins can be useable lightly,
the recall value is rapidly decreased. On the other hand,
the precision is not decreased so fast. This means that the
hyperplane will be placed far from the center of learning
vectors when the large soft margins are allowed. Then, the
classifier tends to labels many emotions. From these figures
and tables, C = 1.0 leads the best performance for our
experiment.

Table 6: Slack variable cost and performance (closed)
cost 0.001 0.01 0.1

precision 0.6763 0.8476 0.9726
recall 0.3091 0.5779 0.9234

F value 0.4242 0.6872 0.9474
cost 1.0 3.0 5.0 8.0

precision 0.9957 0.9986 0.9996 0.9997
recall 0.9914 0.9955 0.9969 0.9979

F value 0.9936 0.9970 0.9983 0.9988

5. Conclusions
We introduced two naive Bayes based method for emotion

estimation of tweets which are appended as comments
to news articles. The new method uses the fact that the
emotions can be classified into four classes and each of them
consists of the two opposite emotions. The new methods are
called the “weighted naive Bayes” and the “two stage naive
Bayes”.

Then, we compared their performances with the simple
naive Bayes method and the SVM by the evaluation experi-
ments. From these results, the SVM marks high performance
when the learning data contains the trends of the evaluation
data. Naive Bayes based methods have robustness to learning
settings. The weighted naive Bayes is the best performance
among naive Bayes based methods. The performance of this
method marked about 5.5% more than that of the SVM in
leave one file out test, but 1.3% less in the simple cross
validation.

For the future study, decision of Th and Tc are important
problem to use our methods. Since two stage naive Bayes
uses both of Th and Tc, effective threshold decision method
is more important for this classifier. Any other classifier
can be applied at every stage of the two stage naive Bayes
method. This problem is also remained for the future study.

In this paper, news article body has not been used. If we
can make some bias of emotion distribution, it will contribute
to the performance of our methods.
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Abstract— Non negative matrix factorization (NMF) is the
method to decompose a non negative matrix into two non
negative matrices. NMF is used in many fields for extracting
some features and the effectiveness had been recognized
in the application for the analysis of sound signal or text
mining. However, its theoretical verification is not easy
because NMF is not an unique. In this paper, we investigate
on an affine algebraic variety of NMF, and propose the
feature extraction method of cross-site scripting attacks.

Keywords: Non negative matrix factorization, Affine algebraic
variety, Gröbner Basis, Feature extraction, Cross-Site scripting

1. Introduction
In many fields on information theory, a feature extraction

plays an important role. NMF is known as one of the feature
extraction methods, and it is used in many fields such as text
mining [1], bioinformatics [2] [3], spectral data analysis [4]
and image processing [5], and the effectiveness has been
widely recognized. Let X,A and B be matrices whose
elements are non negative rational number. The goal of NMF
is to obtain the decomposition

X = AB.

We can see easily that this decomposition is not unique. A
specific example is(

1 1
0 1

)
=

(
1
2 1
0 1

)(
2 0
0 1

)
=

(
1
4 1
0 1

)(
4 0
0 1

)
.

The derivation method of NMF had been studied (for
example [6]), but the result of NMF depends strongly on
the choice of initial numbers. Therefore, it is not easy to
investigate why NMF is useful in real application.

In this paper, we investigate the property of an affine
algebraic variety of NMF, and propose the feature extraction
method of cross-site scripting attacks by using the property.
We had already proposed the classification method of SQL
injection attacks by using the algebraic property of NMF
[7]. In [7], we considered the following decomposition, and

classified SQL injection attack by using the information of
(a11a12) and (a21a22).(

x11 x12
x21 x22

)
=

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
On the other hand, we consider the decomposition(
x11 x12 · · · x1n

)
=
(
a11 a12

)( b11 b12 · · · b1n
b21 b22 · · · b2n

)
,

and propose the detection method by using the information
of (

a11 a12
)

and (
b11 b12 · · · b1n
b21 b22 · · · b2n

)
.

The rest of this paper is organized as follows. Section 2
summarizes on NMF. Section 3 prepares for algebraically
consideration on NMF. Section 4 presents the main result
of this study and proposes the detection method of cross-
site scripting attacks. Section 5 detects cross-site scripting
attacks and Section 6 concludes this study.

2. Non Negative Matrix Factorization
In this section, we will outline the algorithm concerning

NMF. Firstly, let us prepare symbols as below.
X : P × S matrix
A : P ×R matrix
B : R× S matrix
xps : (p, s) element of X
apr : (p, r) element of A
brs : (r, s) element of B

Here, 1 ≤ p ≤ P , 1 ≤ r ≤ R and 1 ≤ s ≤ S. Let us
consider the following decomposition.

X = AB.

Since the above decomposition of matrix has not uniqueness,
some appropriate methods for extracting some feature of a
given data are required. A lot of algorithms for realizing such
decomposition had been studied [6] [8]. In this section, we
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will introduce the algorithm of Lee and Seung’s multiplica-
tive update rule [6]. The multiplicative update rule is given
by

apr = apr
[XBT]pr
[ABBT]pr

brq = brq
[ATX]rq
[ATAB]rq

.

Here, [·] is matrix and [·]ij is (i, j) element of the matrix [·].
This multiplicative update rule is derived from the following
optimization problem.

minimize ||X −AB||2

subject to apr ≥ 0, brq ≥ 0.

Here, || · || is a Frobenius norm. The calculation result of the
multiplicative update rule depends on an initial value of apr
and brq.

From now on, we will give a calculation example of the
multiplicative update rules. Let

X =

(
1 1
0 1

)
and, we iterated 50 times the multiplicative update rules. If
we set initial values as below.

A =

(
1 1
1 1

)
,

B =

(
1 1
1 1

)
.

Then, we have the following decomposition.

X =

(
0.30 0.83
0.64 0.00

)(
0.01 1.55
1.20 0.64

)
.

If we set initial values as below.

A =

(
1 0.1
0.1 10

)
,

B =

(
10 100
1 10

)
.

Then, we have the following decomposition.

X =

(
0.01 0.04
0.00 0.11

)(
84.24 52.63
0.02 9.25

)
.

From the above two calculation example, we can see that
the result of the multiplicative update rules show different
trends by the choice of initial values. Although the NMF is
not unique, NMF should have some rule. In this next section,
we will investigate the affine algebraic variety of NMF.

3. Affine Algebraic Variety of NMF
In this paper, we investigate of the following NMF.

X = AB, (1)

where
X =

(
x11 x12 · · · x1n

)
,

A =
(
a11 a12

)
and

B =

(
b11 b12 · · · b1n
b21 b22 · · · b2n

)
.

This decomposition is obtained from the following equa-
tions.

fi = a11b1i + a12b2i − x1i
for i = 1, 2, · · · , n. Let Q≥0 be a set of non negative rational
numbers, and

S = Q≥0[a11, a12, b11, b12, · · · , b1n, b21, b22, · · · , b2n]

be a polynomial ring with non negative rational number co-
efficients. Then, we see that the NMF of Eq. (1) corresponds
to the affine algebraic variety

V = V (f1, f2, · · · , fn) = {P ∈ Q2n+2
≥0 | fi(P ) = 0, 1 ≤ i ≤ n}.

Let us consider the defining ideal of V

I(V ) = {g ∈ S | g(P ) = 0, P ∈ V }

to investigate the property of V .
Let

aα = aα1
11 a

α2
12 b

α3
11 · · · b

α2n+2

2n

be a monomial in the polynomial ring S. The multi-index
α = (α1, α2, · · · , α2n+2) corresponds to Z2n+2

≥0 , where Z≥0
is a set of non negative integers. We define an order α > β
if and only if α1 = β1, · · · , αi−1 = βi−1 and αi > βi
for some i (1 ≤ i ≤ 2n + 2) and α, β ∈ Z2n+2

≥0 . This
order is called as a monomial order, and it has the following
properties.
• There exists a minimum element in an arbitrary subset

of Z2n+2
≥0 .

• It holds α > β, α = β or α < β.
• If α > β, then α+ γ > β + γ for any γ ∈ Z2n+2

≥0 .
Here, we assumed

α+ γ = (α1, α2, · · · , α2n+2) + (γ1, γ2, · · · , γ2n+2)

= (α1 + γ1, α2 + γ2, · · · , α2n+2 + γ2n+2),

and aα = 0 if α = (0, 0, · · · , 0). In this study, we assume
the following lexicographic order:

a11 > a12 > b11 > · · · > b1n > b21 > · · · > b2n.

Let LT(f) be the maximum term of the polynomial f in the
lexicographic order. LT(f) is called as a leading term of f .
Moreover, we define

LT(I) =< LT(g) | g ∈ I >
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for any ideal I ⊂ S.
Definition 1: Let I be an ideal of S and {h1, h2, · · · , hk}

be generator of I . If

LT(I) =< LT(h1),LT(h2), · · · ,LT(hk) >

holds, then {h1, h2, · · · , hk} is called a Gröbner basis of I .
Definition 2: Let d be a non negative integer, and S≤d be

the set of total degree is less than or equal to d in S. We
define

I≤d = I ∩ S≤d.

Then, the affine Hilbert function of I is defined by

HFI(d) = dim(S≤d/I≤d).
The affine Hilbert function is the function on d.

Definition 3: The polynomial which equals to HFI(d) for
sufficiently large d is called the affine Hilbert polynomial of
I . We denote the affine Hilbert polynomial of I by HPI(d).

Theorem 1: Let I be an ideal on S. The dimension of I
is defined by the degree of HPI(d).
We can see the proof of Theorem 1 in [9].

In general, there is no guarantee that the set
{h1, h2, · · · , hk} of the generator of I is the Gröbner
basis of I . However, it is well known that Gröbner basis
is obtained by using the Buchberger’s Algorithm. The
following S − polynomial is fundamental to get Gröbner
basis. The S − polynomial of f and g is defined by

S(f, g) =
LCM(f, g)

LT(f)
f − LCM(f, g)

LT(g)
g,

where LC(f) is the coefficient of LT(f) and LCM(f, g)
is the least common multiple of LC(f)LT(f) and
LC(g)LT(g).

4. Main Result
4.1 Main Theorem

In this section, we will prove the following theorem.
Theorem 2: The dimension of V is 2n− 1.

(Outline of Proof of Theorem 2)
Firstly, we will compute the Gröbner basis of the ideal

I =< f1, f2, · · · , fn >,

where fi = a11b1i + a12b2i − x1i and i = 1, 2, · · · , n. For
1 ≤ i < j ≤ n, let

fij =
LCM(fi, fj)

LT(fi)
fi −

LCM(fi, fj)

LT(fj)
fj ,

and
J =< f1, · · · , fn, f12, · · · , fn−1,n > .

Then, we can see that

S(fi, fij) = S(fj , fij) = S(fi, fkl) = S(fij , fkl) = 0

in S/J , for 1 ≤ i < j < k < l ≤ n. Therefore,

{fi, fij |1 ≤ i < j ≤ n}

is the Gröbner basis of I . From this, we can see that the
degree of the affine Hilbert polynomial of I(V ) is 2n + 1.
(Q. E. D).

Theorem 2 shows the freedom degree of NMF in Eq.
(1). In order to decompose matrices uniquely, we de-
fine some equations on a11, a12, b11, · · · , b2n depending on
x11, · · · , x1n. In this study, we will consider the following
NMF. (

x11 x12 · · · x1n
)

=
(
a11 a12

)( b11 b12 · · · b1n
b21 b22 · · · b2n

)
.

4.2 Proposed Detection Algorithm
Firstly, let us define x11, x12, · · · , x1n. We define symbols

as follows:
li : input string (j = 1, 2, · · · )
|lj | : strength of lj
L : set of l
si : character in L (i = 1, 2, · · · )
|si| : total number of si in L

Let

xi =

[
1000 · |si|∑J

j=1 |lj |

]
.

Here, [y] is the greatest integer that is less than or equal
to y. We multiplied 1000 to get double digits integer. We
collected 30 cross-site scripting attacks from [10] [11]
and generated 50 normal sample. Then, we obtained the
following Table 1. Here, normal sample are composed of

Table 1: Characters in Cross Site Scripting Attacks
Variable Characters Value

x1 " (double quotation mark) 36
x2 < (less than sign) 25
x3 > (grater than sign) 25
x4 / (slash) 24
x5 ’ (single quotation mark) 22
x6 space 21
x7 ) (right parenthesis) 19
x8 ( (left parenthesis) 19
x9 = (equal) 19
x10 U (yen sign) 18
x11 ; (semicolon) 12
x12 - (hyphen) 31
x13 | (vertical bar) 20
x14 % (percent) 18
x15 + (plus) 11
x16 * (asterisk) 11
x17 & (ampersand) 5
x18 { (left brace) 3
x19 } (right brace) 3
x20 [ (left bracket) 3
x21 ] (right bracket) 3
x22 ? (question mark) 1

the input of name, address, e-mail address, phone number,
html grammar and Wiki grammar. Characters s1, · · · , s11
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and s12, · · · , s22 occurred frequently in our collected attack
sample, respectively.

Secondly, let us define a11 and a12. We define a11 and
a12 as attack feature element and normal feature element,
respectively. We compute a11 and a12 in the following way.

a11 =

[
x1 + · · ·+ x11

10

]
a12 =

[
x12 + · · ·+ x22

10

]
We multiplied 1

10 to get double digits integer.

Finally, let us define b11, · · · , b2,22 in the following way.
Let LA and LN be the set of attack sample and the set
of normal sample, respectively. For i = 1, 2, · · · , 22, we
compute

x
(a)
i =

[
1000 · |si|∑

l∈LA
|l|

]
+ ε

x
(n)
i =

[
1000 · |si|∑

l∈LN
|l|

]
+ ε,

where ε = 0.001. By adding ε, we got x(a)i > 0 and x(n)i >
0. From Theorem 2, we can see that the dimension of I(V )
becomes 0 by adding the following equations:

b1i
b2i

=
x
(a)
i

x
(n)
i

.

Therefore, we can obtain unique decomposition by
computing the above equations.

5. Detection of Cross-site Scripting
In this section, we will detect cross-site scripting attacks

using the process in section 4.1.

5.1 Cross-site Scripting Attack
Cross-site scripting attacks are executed by injecting code

such as JavaScript, VBScript, ActiveX or HTML, and attack-
ers can gather individual information, change user settings
and show a false advertising for user by using this attack.
Cross-site scripting attacks come from the HTTP request,
form fields on web page or cookies. If users get caught in a
trap that attackers set up, then the data of the trap are sent
to web application. And when the data come back to user,
the attack is executed. The following are specific sample of
cross-site scripting attacks.
l1 <IMG SRC="javascript:alert(’XSS’);">
l2 perl -e ’print "<SCRIPT>alert(ẌSS)̈</SCRIPT>";’ >

out
l3 ;̈alert(’XSS’);//

l4 ’<STYLE>BODY-moz-
binding:url("http://ha.ckers.org/xssmoz.xml#xss")
</STYLE>

The above 4 sample will be used for the detection test later.
Moreover, the following 5 normal sample will be also used
for the detection test.

l5 123-4567
l6 ’2010nen11gatsu10nichi
l7 1-2-3RoppongiMinatoku
l8 [graph:id:text:text(:image)]
l9 |!text|

5.2 Learning Process
In the learning process of our proposed model, characters

are extracted to detect attacks. From our collected sample,
we extracted 11 characters s1, s2, · · · , s11 that well appear
in attack sample, and 11 characters s12, s13, · · · , s22 that
well appear in normal sample in the following way. We call
{s1, s2, · · · , s11} (resp. {s12, s13, · · · , s22}) attack feature
(resp. normal feature) in this paper. The character si is
classified attack feature (resp. normal feature) if x(a)i ≥ x(n)i

(resp. x(a)i < x
(n)
i ).

5.3 Detection Rule
By using the process of Section 4.1, we can com-

pute the following two matrices from the given data
{x11, x12, · · · , x1n}.

A =
(
a11 a12

)
B =

(
b11 b12 · · · b1n
b21 b22 · · · b2n

)
.

Firstly, we explain on the role of the matrix A. The element
a11 of A is determined by appearance frequency of attack
feature s1, s2, · · · , s11. Similarly, a12 of A is determined by
appearance frequency of normal feature s12, s13, · · · , s22.
Therefore, it may be said that input l is attack (resp. normal)
if a11 > a12 (resp. a11 < a12).

On the other hand, it would appear that the first row of
B (resp. the second row of B) shows the feature of attack
(resp. the feature of normal). If a11 = a12, we detect in the
following process. Let

dA(b1i, b2i) =

{
1 (b1i ≥ b2i)
0 (b1i < b2i),

for i = 1, 2, · · · , 11, and

dN (b1i, b2i) =

{
1 (b1i ≤ b2i)
0 (b1i > b2i),
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for i = 12, 13, · · · , 22. Then, we detect l as attack (resp.
normal) if bA ≥ bN (resp. bA < bN ), where

bA =

∑11
i=1 dA(b1i, b2i)

11

bN =

∑22
i=12 dN (b1i, b2i)

11

We will explain by using specific samples.

5.3.1 Example 1
For test sample l1, we have the following decomposition.

X = (2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

A =
(
1 0

)
B1 =

(
2 1 1 0 2 1 1 1 1 0 1
0 0 0.2 0 1.6 0 0.5 0.5 0.2 0 0

)
B2 =

(
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1.1 1.1 0 0 0 0 0 0.1

)
,

where B = (B1B2). In this case, l1 is detected as attack
because a11 > a12. From the result of B1 and B2, we can
see that values of the element in the first row of B1 are
greater than values of the element of the second row of B1.

5.3.2 Example 2
For test sample l8, we have the following decomposition.

X = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)

A =
(
0.001 0.001

)
B1 =

(
0 0 0 0 0 0 679 679 0 0 0
0 0 0 0 0 0 321 321 0 0 0

)
B2 =

(
0 0 0 0 0 0 0 0 250 250 0
0 0 0 1.1 1.1 0 0 0 750 750 0.1

)
,

where B = (B1B2). In this case, l1 is detected as normal
because a11 = a12 but bA < bN . From the result of B1 and
B2, we can see that values of the element in the second row
of B2 are greater than values of the element of the first row
of B2.

5.4 Simulation Result
Here, we summarize the result of the detection test. In

this simulation, we extracted attack feature and normal
feature from 30 attack sample and 50 normal sample, and
we prepared 4 attack sample and 5 normal sample for the
detection test shown in Section 5.1.

To show the effectiveness of our proposed detection
method, we compared our proposed method with the de-
tection method of Naive Bayes classifier. Let PA(si) and
PN (si) be the probability that si appears in attack and

normal, respectively. We compute PA(si) and PN (si) in the
following way. For i = 1, 2, · · · , 22, let

PA(si) =
x
(a)
i + 0.001∑J

j=1(x
(a)
i + 0.001)

PN (si) =
x
(n)
i + 0.001∑J

j=1(x
(n)
i + 0.001)

.

By adding 0.001, PA(si) and PN (si) become
always positive value. Assume an input l including
{si1 , si2 , · · · , siK}. We detect l as attack (resp. normal) if∏K
k=1 PA(sik) ≥

∏K
k=1 PN (sik) (resp. otherwise).

Table 2 shows the detection result of our proposed method
and Naive Bayes method. The detection results of our

Table 2: Detection Result
Input Proposed Method Naive Bayes

l1 (attack) attack attack
l2 (attack) attack attack
l3 (attack) attack attack
l4 (attack) attack attack
l5 (normal) normal normal
l6 (normal) normal normal
l7 (normal) normal normal
l8 (normal) normal normal
l9 (normal) normal normal

proposed method and Naive Bayes method were 100%. To
investigate the point of difference between our proposed
method and Naive Bayes method, we prepared two obfus-
cation attack sample l10 and l11. The following the part of
the obfuscation attack sample.

$=~[];$={___:++$,$$$$:(![]+"")[$],

Table 3: Detection Result of obfuscation attack sample
Input Proposed Method Naive Bayes

l10 (attack) attack normal
l11 (attack) attack normal

Table 3 shows the detection result of obfuscation attack
sample. Our proposed method could detect two obfuscation
attack sample, but Naive Bayes method judged these sample
as normal. From the result of NMF, we could see that the
characters of single quote and double quote have important
role to detect obfuscation attack sample.

6. Conclusions
In this paper, we investigated the algebraic property of

NMF, and proposed the detection method of cross-site
scripting attacks by using the algebraic property of NMF.
Moreover, by comparing to the method of Naive Bayes, we
showed the effectiveness of our proposed method. However,
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we could not collect sufficient amounts of attack sample. So,
we need to collect sufficient amounts of attack sample, and
to do same simulation of this study. This is our important
future work.
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Abstract— The continued fraction method for isolating the
positive roots of a univariate polynomial equation is based
on Vincent’s theorem, which computes all of the real roots
of polynomial equations. In this paper, we propose two new
lower bounds which accelerate the fraction method. The
two proposed bounds are derived from a theorem stated
by Akritas et al., and use different pairing strategies for
the coefficients of the target polynomial equations from the
bounds proposed by Akritas et al. Numerical experiments
show that the proposed lower bounds are more effective than
existing bounds for some special polynomial equations and
random polynomial equations, and are competitive with them
for other special polynomial equations.

Keywords: continued fraction method, Vincent’s theorem, local-
max bound, first-λ bound

1. Introduction
The real roots of univariate polynomial equations are more

useful than the imaginary roots for practical applications in
various engineering fields. Thus, this paper focuses on the
computation of all real roots of polynomial equations. For
polynomial equations without multiple roots, we can isolate
each root into a specific interval. The accuracy of the isolated
real roots can be easily enhanced using the bisection method.

The continued fraction (CF) method for isolating the
positive roots of univariate polynomial equations is based on
Vincent’s theorem [2], [11]. This method isolates each pos-
itive root using Descartes’ rule of signs [3], which focuses
on the coefficients of the polynomial equations, and can
be accelerated by an origin shift. Thus, several coefficients
of a polynomial equation are transformed into nonzero
coefficients, even in the case of sparse polynomial equations
that have many zero coefficients. The Krawczyk method [8],
which is based on numerical verification, was developed
to isolate the positive roots of polynomial equations which
have many zero coefficients. In this paper, we focus on the
CF method for isolating the positive roots of polynomial
equations which have many nonzero coefficients.

To accelerate the CF method, the choice of the origin
shift is important. For the shift value, we should use a lower
bound of the smallest positive root of the target polynomial.
In other words, we must compute this lower bound to
accelerate the CF method. We can obtain the lower bound of
positive roots of a polynomial equation from the upper bound
of the replaced polynomial equation corresponding to the
original equation. The Cauchy bound [9] and the Kioustelidis
bound [7] are well-known upper bounds of the positive roots
of polynomial equations, but these bounds are known to
produce overestimates in some cases. Akritas et al. have
given a generalized theorem including the Cauchy bound and
the Kioustelidis bound [1]. Using pairing strategies derived
from the generalized theorem, they proposed new upper
bounds called the first-λ bound, the local-max bound, and
the local-max quadratic bound.

In [10], a lower bound generated by Newton’s method
is proposed. In this paper, we propose two lower bounds
that are more effective than that based on Newton’s method:
the “local-max2” bound and the “tail-pairing first-λ” bound.
These are derived from the local-max bound and the first-λ
bound, respectively, and use a different pairing strategy from
the original bound. The local-max2 bound is always better
than or equal to the local-max bound. The tail-pairing first-λ
bound is expected to be more suitable for the CF method
than the first-λ bound.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the CF method based on Vincent’s theorem,
and Section 3 introduces the bounds proposed by Akritas
et al. Section 4 proposes the new lower bounds, before
Section 5 reports the results of performance evaluations of
the proposed lower bounds. We end with a summary of our
conclusions in Section 6.

2. Continued fraction method
In this paper, we discuss the computation of positive roots

x ∈ R that satisfy the following polynomial equation:

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0, (1)
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where ai ∈ Z and an 6= 0. Note that we need not consider
the case x = 0 as one of the roots of f(x) = 0, since an = 0
is satisfied if any real root is equal to 0.

In addition, all the polynomial equations have rational
coefficients and multiple roots in the interval [u, v], (−∞, v],
(u,∞], or (−∞,∞) (u, v ∈ R), and can be transformed into
Eq. (1) in x ∈ (0,∞) using certain operations. For details,
see [10].

2.1 Continued fraction method
The CF method aims to compute the positive roots of

a polynomial equation f(x) = 0. It is based on Vincent’s
theorem [2], [11], and isolates the real roots in (0,∞) using
Theorem 1, known as Descartes’ rule of signs [3].

Theorem 1 (Descartes’ rule of signs): For a polynomial
equation

f(x) = a0x
n + · · ·+ an−1x+ an = 0, x ∈ R, ai ∈ R,

let W be the number of “changes of sign” in the list of
coefficients {a0, a1, . . . , an}, except for ai = 0, and let
N be the number of positive roots in (0,∞). Under these
definitions, the following relation holds:

N =W − 2h,

where h is a non-negative integer.

Using Theorem 1, the number of positive roots of the poly-
nomial equation f(x) = 0 is determined as the following
conditional branch:

• Case where W = 0: f(x) = 0 does not have any
positive roots in the interval x ∈ (0,∞).

• Case where W = 1: f(x) = 0 has only one positive
root in the interval x ∈ (0,∞).

• Case where W ≥ 2: the number of positive roots of
f(x) = 0 cannot be determined.

If W = 1, the isolated interval should be set to (0, u_b],
where u_b denotes the upper bound of the positive roots of
f(x) = 0. Computation methods for the upper bound of the
positive roots of f(x) = 0 are described in Section 3.

In the case that W ≥ 2, the interval (0,∞) should first be
divided into two intervals. Then, Descartes’ rule of signs can
be applied to each interval. In the CF method, the interval
(0,∞) is divided in (0, 1) and (1,∞). This division is
performed by the replacement x→ x+1 and x→ 1/(x+1).
Using the replacement x → x + 1, the interval (0,∞) of
the replaced polynomial equation corresponds to the interval
(1,∞) of the original polynomial equation. Similarly, using
the replacement x → 1/(x + 1), the interval (0,∞) of the
replaced polynomial equation corresponds to the interval
(0, 1) of the original polynomial equation. The intervals
(1,∞) and (0, 1) do not include the case x = 1. To solve for
this case, we must check that a constant term of the replaced

Table 1: Synthetic division for g5(x).
a0 a1 a2 a3

a0 a0 + a1 a0 + a1 + a2

a0 a0 + a1 a0 + a1 + a2 a0 + a1 + a2 + a3
a0 2a0 + a1

a0 2a0 + a1 3a0 + 2a1 + a2
a0

a0 3a0 + a1

polynomial equation vanishes after either replacement. In
other words, if an = 0 in the replaced polynomial equation,
then x = 1 is a root of the original polynomial equation.

The replacements described above require the coefficients
of the replaced polynomial equation to be calculated. This
calculation can be performed by synthetic division. As an
example, Table 1 shows the calculation of the coefficients
of

g5(x) = a0(x+ 1)3 + a1(x+ 1)2 + a3(x+ 1) + a4. (2)

As can be seen in Table 1, the coefficients of x3, x2, x1, and
x0 in g5(x) are a0, 3a0+a1, 3a0+2a1+a2, and a0+a1+
a2+a3, respectively. Note that the computational complexity
of the synthetic division for obtaining the coefficients of the
replaced polynomial equation for a replacement x→ x+ 1
is O(n2), where n is the highest order of the polynomial
equation.

2.2 Acceleration using a lower bound
The CF method requires many replacement operations

x → x + 1 and x → 1/(x + 1). If the positive roots are
much larger than 1, then the execution time increases, since
we must repeat many replacement operations x → x + 1.
Thus, to decrease the execution time, the lower bound of
the smallest positive root of a polynomial equation should
be used as a shift.

The procedure for computing the lower bound l_b of
f(x) = 0 is as follows:

1) Replace x with 1/x in f(x).
2) Compute u_b, the upper bound of the positive roots

of the replaced polynomial equation.
3) Obtain l_b as l_b = 1/u_b.

However, the replacement x → x + l_b should not always
be adopted, since l_b is not sufficiently large to reduce the
execution time if l_b ≤ 1. Thus, the replacement x→ x+l_b
is only adopted in f(x) if l_b > 1.

3. Computation of the upper bound of
positive roots

The Cauchy rule [9] is a well-known idea for computing
the upper bound of the positive roots of f(x) = 0. The
Kioustelidis bound is related to the Cauchy rule [7]. How-
ever, both of these bounds are known to overestimate the
upper bound in some cases.
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To overcome this problem, Akritas et al. derived the
following generalized theorem for computing the upper
bound of the positive roots of f(x) = 0.

Theorem 2 (Akritas, 2006): Let f(x) be a polynomial
with real coefficients, and assume a0 > 0. Let d(f) and
t(f) denote its degree and number of terms, respectively.
In addition, assume that f(x) can be reshaped as follows:

f(x) = q1(x)− q2(x) + · · · − q2m(x) + g6(x), (3)

where the polynomials qi(x), i = 1, . . . , 2m, and g6(x)
have only positive coefficients. Moreover, assume that, for
i = 1, 2, . . . , m, we obtain

q2i−1(x) = c2i−1,1x
e2i−1,1 + · · ·

+ c2i−1,t(q2i−1)x
e2i−1,t(q2i−1)

(4)

and

q2i(x) = b2i,1x
e2i,1 + · · ·+ b2i,t(q2i)x

e2i,t(q2i) (5)

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i), and the
exponent of each term in q2i−1(x) is greater than the
exponent of each term in q2i(x). If t(q2i−1) ≥ t(q2i) for
all indices i = 1, 2, · · · ,m, then the upper bound of the
positive roots of f(x) = 0 is defined by

u_b = max
i=1,2,...,m

{(
b2i,1
c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)

−e2i,t(q2i)

}
,

(6)

for any permutation of the positive coefficients c2i−1,j , j =
1, 2, · · · , t(q2i−1). Otherwise, for each of the indices i for
which we obtain t(q2i−1) < t(q2i), we break up one of
the coefficients of q2i−1(x) into t(q2i)− t(q2i−1) + 1 parts,
so that t(q2i) = t(q2i−1). We can then apply the formula
defined in Eq. (6).

Note that the ideas underlying both the Cauchy and Kiouste-
lidis bounds are included in this theorem.

The sharpness of the upper bound is dependent on pairing
coefficients from the non-adjacent polynomials q2l−1(x) and
q2i(x) for 1 ≤ l < i.

For example, consider the polynomial

3x3 − 5x2 + 4x+ 7. (7)

In this case, we can create the pair{
3x3,−5x2

}
.

However, for the polynomial

3x3 − 5x2 − 4x+ 7, (8)

we cannot create the trivial pair, since the polynomial has
only one positive coefficient. In this case, since

3x3 =
3

2
x3 +

3

2
x3 = x3 + 2x3,

we can create the pair as{
3

2
x3,−5x2

}
,

{
3

2
x3,−4x

}
or
{
x3,−5x2

}
,
{
2x3,−4x

}
.

Using Theorem 2, Akritas et al. proposed the “local-max”
bound and the “first-λ” bound as follows:

Definition 1 (“local-max”): For a polynomial equation
f(x) = 0 given by Eq. (1), the coefficient −ak of the
term −akxn−k in f(x) = 0 is paired with the coefficient
am/2

t of the term amx
n−m, where am is the largest positive

coefficient with 0 ≤ m < k and t denotes the number of
times the coefficient am has been used.

Definition 2 (“first-λ”): For a polynomial equation f(x)
given by Eq. (3) with λ negative coefficients, we first
consider all cases for which t(q2i) > t(q2i−1) by breaking
up the last coefficient c2i−1,t(q2i) of q2i−1(x) into t(q2i) −
t(q2i−1) + 1 equal parts. We then pair each of the first λ
positive coefficients of f(x), encountered as we move in
non-increasing order of exponents, with the first unmatched
negative coefficient.

Note that the computational complexity of these bounds is
O(n).

Akritas et al. also proposed the “local-max quadratic”
bound as follows:

Definition 3 (“local-max quadratic”): For a polynomial
equation f(x) given by Eq. (1), each negative coefficient
ai < 0 is “paired” with each of the preceding positive
coefficients aj divided by 2tj . That is, each positive co-
efficient aj is “broken up” into unequal parts, as for the
locally maximum coefficient in the local max bound. tj is
initially set to 1, and is incremented each time the positive
coefficient aj is used, and the minimum is taken over all j.
Subsequently, the maximum is taken over all i.

From Definition 3, the local-max quadratic bound is
computed as

u_bLMQ = max
ai<0

min
aj>0:j>i

j−i

√
− ai

aj

2tj

. (9)

Note that the computational complexity of this bound is
O(n2).
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4. New upper bounds
In this section, we propose two new upper bounds for

the positive roots of a polynomial equation. The first is the
“local-max2” bound, and the second is the “tail-pairing first-
λ” bound.

4.1 Local-max2 bound
The local-max2 bound is derived from the local-max

bound. To compute the local-max bound, the largest positive
coefficient am is broken up into unequal parts am/2t(t =
1, · · · , s + 1). For the local-max2 bound, we first break
up the largest positive coefficient am into unequal parts
am/2

t(t = 1, · · · , s). Then, since

am −
(am

2
+ · · ·+ am

2s

)
=
am
2s
, (10)

we use am/2s, which is the remaining part of am, as the
last pair. It is obvious that the local-max2 bound is better
than or equal to the local-max bound for all polynomials.

Algorithm 1 describes the implementation of the local-
max2 bound. As for the local-max bound, the complexity of
computing the local-max2 bound is O(n).

For example, consider the polynomial

x3 + 10100x2 − x− 10100. (11)

For the local-max bound, we pair the terms
{

10100

2 x2,−x
}

and
{

10100

22 x2,−10100
}

, and obtain a bound estimate of 2.

For the local-max2 bound, we pair the terms
{

10100

2 x2,−x
}

and
{

10100

2 x2,−10100
}

, and obtain a bound estimate of
√
2.

As a result, the upper bound of the local-max2 bound is
better than that of the local-max bound for the polynomial
(11).

4.2 Tail-pairing first-λ
The tail-pairing first-λ bound is derived from the first-λ

bound. As for the first-λ bound, if there are more negative
than positive coefficients, we first break up the last positive
coefficient into several parts. In addition, we pair positive
coefficients with unpaired tail negative coefficients when
the number of positive coefficients is greater than that of
negative coefficients.

Although it is not always better than or equal to the first-λ
bound, we expect the tail-pairing first-λ bound to be better
for the total number of shifts. The CF method performs the
replacement x→ x+l_b many times. Thus, pairing negative
coefficients of low degree with positive coefficients is an
important task. In the tail-pairing first-λ bound, we pair high-
degree coefficients with low-degree coefficients whenever
possible.

There are two strategies for computing the tail-pairing
first-λ bound. In the first strategy, we initially pair negative
coefficients in the corresponding list, and then pair the tail

Algorithm 1 Implementation of the “local-max2” bound.
cl← {an, an−1, · · · , a1, a0}
if n+ 1 ≤ 1 then

return u_bLM2 = 0
end if
j = n+ 1
negativeIndices = {}
for i = n to 1 step −1 do

if cl(i) < 0 then
negativeIndices = negativeIndices ∪ i

else if cl(i) > cl(j) then
if count(negativeIndices) > 0 then

t = 0
l = count(negativeIndices)
for k = 1 to l − 1 do

t++
tempub = (2t(−cl(negativeIndices(k))

/cl(j)))1/(j−negativeIndices(k))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end for
tempub = (2t(−cl(negativeIndices(l))

/cl(j)))1/(j−negativeIndices(l))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end if
j = i
negativeIndices = {}

end if
end for
if count(negativeIndices) > 0 then

t = 0
l = count(negativeIndices)
for k = 1 to l − 1 do

t++
tempub = (2t(−cl(negativeIndices(k))

/cl(j)))1/(j−negativeIndices(k))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end for
tempub = (2t(−cl(negativeIndices(l)

/cl(j)))1/(j−negativeIndices(l))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end if
return u_bLM2
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negative coefficients. We call this the “tail-pairing first-λ
type-I bound”. The second strategy pairs the tail negative
coefficients first, and then pairs the negative coefficients in
the corresponding list. We call this the “tail-pairing first-λ
type-II bound”. Algorithm 2 describes the computation of the
tail-pairing first-λ type-I bound. As for the first-λ bound, the
computational complexity of both tail-pairing first-λ bounds
is O(n).

For example, consider the polynomial

x5 + 2x4 − 3x3 + 4x2 − 5x− 1010. (12)

For the first-λ bound, we pair the terms
{
x5,−3x3

}
,{

2x4,−5x
}

, and
{
2x2,−1010

}
, and obtain a bound esti-

mate of
√
1010/2 = 50000

√
2. For the tail-pairing first-λ

type-I bound, we pair the terms
{
x5,−3x3

}
,
{
2x4,−1010

}
,

and
{
4x2,−5x

}
, and find a bound estimate of 4

√
1010/2 =

100 4
√
50. For the tail-pairing first-λ type-II bound, we pair

the terms
{
x5,−1010

}
,
{
2x4,−3x3

}
, and

{
4x2,−5x

}
,

which gives a bound estimate of 5
√
1010 = 100. Thus, the

tail-pairing first-λ bounds are better than the first-λ bound,
and the tail-pairing first-λ type-II bound is better than the
type-I bound for this polynomial.

5. Numerical experiment
In this section, we present numerical results that evaluate

the effect of the proposed bounds.

5.1 Contents of the numerical experiment
To evaluate the effect of the proposed bounds, we imple-

ment the CF method with the following bounds:
• FL+LM: (max(FL,LM))
• LMQ: local-max quadratic bound
• TPFL-I+LM2: (max(TPFL-I,LM2))
• TPFL-II+LM2: (max(TPFL-II,LM2))

Note that FL, LM, TPFL, and LM2 denote the first-λ bound,
local-max bound, tail-pairing first-λ bound, and local-max2
bound, respectively.

As test polynomial equations, the following were used:
• Laguerre: L0(x) = 1, L1(x) = 1− x, and Ln+1(x) =

1
n+1 ((2n+ 1− x)Ln(x)− nLn−1(x))

• Chebyshev-I: T0(x) = 1, T1(x) = x, and Tn+1(x) =
2xTn(x)− Tn−1(x)

• Chebyshev-II: U0(x) = 1, U1(x) = 2x, and Un+1(x) =
2xUn(x)− Un−1(x)

• Wilkinson: Wn(x) =
∏n

i=1(x− i)
• Mignotte: Mn(x) = xn − 2(5x− 1)2

• Randomized polynomial
The randomized polynomials are defined as

f(x) =
r∏

i=0

(x− xi)
s∏

j=0

(x− αj + iβj)(x− αj − iβj),

(13)

Algorithm 2 Implementation of the “tail-pairing first-λ”
bound.
cl← {an, an−1 · · · , a1, a0}
λ← the number of negative elements of cl
if n+ 1 ≤ 1 then

return u_bTPFL = 0
end if
posStartIndex = n+ 1
negTailIndex = 1
while negTailIndex ≤ n+ 1

and cl(negTailIndex) ≥ 0 do
negTailIndex++

end while
while λ > 0 do

while posStartIndex >= 0
and cl(posStartIndex) ≤ 0 do
posStartIndex−−

end while
posEndIndex = posStartIndex+ 1
while posEndIndex >= 0
and cl(posEndIndex) ≥ 0 do
posEndIndex−−

end while
negHeadStartIndex = negHeadEndIndex
negHeadStartIndex = posEndIndex
while negHeadEndIndex >= 0
and negHeadEndIndex ≤ negTailIndex
and cl(negHeadEndIndex) ≤ 0 do
negHeadEndIndex−−

end while
posCount = posEndIndex− posStartIndex
negHeadCount = negHeadEndIndex
−negHeadStartIndex
j = posStartIndex
call Algorithm 3
call Algorithm 4

end while
return u_bTPFL

where xi, αj , βj ∈ R. Note that the parameters xi, αj , and
βj were randomly set in the following range:

−109 ≤ xi, αj , βj ≤ 109. (14)

The parameter s was set to 40, 490, 740, or 990, and r was
set to 20. We then generated 100 test polynomial equations
for each combination of parameters. All polynomials were
preprocessed to have integer coefficients using the method
introduced in [10].

The experiments were performed on an Intel Core i7
3770K CPU with 32 GB of RAM, with GCC 4.6.3 used
as the C compiler. In addition, we used GMP [4], since the
CF method needs multiple-precision arithmetic to compute
the coefficients in the replaced polynomial equations.
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Algorithm 3 Subroutine 1 of the “tail-pairing first-λ” bound.
if negHeadCount > 0 then

i = negHeadStartIndex
while negHeadCount > 0 do

if posCount == 1
and negHeadCount > posCount then
k = negHeadCount− posCount+ 1
for v = 1 to k do

tempub = (−cl(i)/(cl(j)/k))1/(j−i)

if tempub > u_bTPFL then
u_bTPFL = tempub

end if
negHeadCount−−
λ−−
i−−
while i ≥ 0 and cl(i) == 0 do

i−−
end while

end for
else

tempub = (−cl(i)/(cl(j))1/(j−i)

if tempub > u_bTPFL then
u_bTPFL = tempub

end if
negHeadCount−−
λ−−
i−−
while i ≥ 0 and cl(i) == 0 do

i−−
end while

end if
posCount−−
if posCount > 0 then

j −−
while cl(j) == 0 do

j −−
end while

end if
end while

end if

5.1.1 log2 optimization

log2 optimization is used in various open-source soft-
ware [5] [6]. Assume that we wish to calculate bounds of
the following form in multiple-precision integer:

(
−b
c

) 1
d−e

, c > 0, b < 0, d > e > 0, (15)

using division and root functions. It takes a considerable
amount of time to calculate the bounds, and the execution
time for each function depends on the bit-length of the

Algorithm 4 Subroutine 2 of the “tail-pairing first-λ” bound.
while posCount > 0

and negHeadEndIndex < negTailIndex do
i = negTailIndex
tempub = (−cl(i)/(cl(j))1/(j−i)

if tempub > u_bTPFL then
u_bTPFL = tempub

end if
posCount−−
λ−−
if λ == 0 then

break
end if
negTailIndex++
while negTailIndex >= 0
and cl(negTailIndex) ≥ 0 do
negTailIndex++

end while
if posCount > 0 then

j −−
while cl(j) == 0 do

j −−
end while

end if
end while

arguments. Here, we can use log2 to find the bounds
1

d− e
(log2(−b)− log2 c) , (16)

and the execution time of log2 for multiple-precision integer
does not depend on the bit-length of the argument. There-
fore, we can avoid division and root functions in multiple-
precision integer by comparing log2 values. The bounds
computed with log2 can be worse than those given by the
division and root functions. However, this method saves a
lot of time in computing the bounds, and is fast in terms of
total execution time.

5.2 Results
Table 2 lists the execution time for special polynomial

equations, and Table 3 lists that for random polynomial
equations. Our proposed bounds are more effective than
FL+LM and LMQ for the Laguerre polynomial and the
Chebyshev polynomial, and are competitive with FL+LM
for the Wilkinson and Mignotte polynomials. The maximum
speed-up for the Laguerre polynomial is about 1.19, and
for the Chebyshev-I and -II polynomials it is about 1.12
and 1.14 times, respectively. TPFL-II+LM2 is more effective
than TPFL-I+LM2 for some special polynomial equations.
We can see this tendency for random polynomial equations:
both TPFL-I+LM2 and TPFL-II+LM2 are more effective
than FL+LM and LMQ. We can also see that TPFL-II+LM2
is more effective than TPFL-I+LM2.
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Table 2: Execution time for special polynomials.
Polynomial Degree Time (s)

Class FL
+LM LMQ TPFL-I

+LM2
TPFL-II
+LM2

Laguerre 100 0.01 0.01 0.01 0.01

Laguerre 1000 43.51 48.20 41.77 36.57

Laguerre 1500 221.10 242.69 217.21 189.34

Laguerre 2000 704.95 755.48 683.57 617.01

Chebyshev-I 100 0.01 0.01 0.01 0.01

Chebyshev-I 1000 40.22 41.11 36.30 36.48

Chebyshev-I 1500 206.87 210.86 184.45 185.61

Chebyshev-I 2000 650.85 638.67 590.36 590.36

Chebyshev-II 100 0.01 0.01 0.01 0.01

Chebyshev-II 1000 40.48 40.88 35.74 35.56

Chebyshev-II 1500 203.53 210.73 182.73 182.67

Chebyshev-II 2000 652.94 636.42 599.48 579.28

Wilkinson 100 0.00 0.00 0.00 0.00

Wilkinson 1000 4.53 4.92 4.52 4.54

Wilkinson 1500 22.45 23.82 22.46 22.46

Wilkinson 2000 70.46 73.97 70.59 70.60

Mignotte 100 0.00 0.00 0.00 0.00

Mignotte 1000 0.04 0.04 0.04 0.04

Mignotte 1500 0.12 0.12 0.12 0.12

Mignotte 2000 0.27 0.27 0.27 0.27

Table 3: Execution time for random polynomials.
Parameters Degree Time (s), Avg (Min/Max)

FL+LM LMQ

s = 40
r = 20

100 0.015(0.01/0.02) 0.0188(0.01/0.03)

s = 490
r = 20

1000 29.046(19.15/43.61) 30.161(17.47/49.39)

s = 740
r = 20

1500 135.59(94.78/203.07) 139.06(92.1/211.72)

s = 990
r = 20

2000 415.37(296.62/645.55) 425.47(270.36/835.35)

Parameters Degree Time (s), Avg (Min/Max)

TPFL-I+LM2 TPFL-II+LM2

s = 40
r = 20

100 0.0145(0.01/0.02) 0.0127(0.01/0.02)

s = 490
r = 20

1000 27.325(19.05/38.39) 26.88(17.22/39.38)

s = 740
r = 20

1500 128.07(91.69/179.71) 123.84(86.17/176.16)

s = 990
r = 20

2000 384.11(266.41/617.17) 368.36(271.71/603.31)

6. Conclusions
In this study, we have proposed new lower bounds based

on the local-max bound and the first-λ bound for accelerating
the CF method. The local-max2 bound is sharper than or
equal to the local-max bound. The tail-pairing first-λ bound
is expected to be more suitable for the CF method than the
first-λ bound, because of the need to replace x → x + l_b
many times in the CF method. The numerical results show
that the average execution time of the CF method with
both the local-max2 bound and the tail-pairing first-λ bound
is faster than or nearly equal to that with the local-max
bound, first-λ bound, and local-max quadratic bound for all
polynomial equations.
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Abstract— The simplification of 3D modeling in today’s
computer world remains challenging, and systems to support
such modeling also need to be developed. It is further
necessary in 3D modeling to incorporate subjective eval-
uation by users into optimization techniques. In this study,
support for 3D modeling was investigated, and user fatigue
(a disadvantage of interactive genetic algorithm usage) was
reduced via a multi-player approach. A scalable system was
also constructed to prevent overload-related delays from
exacerbating user fatigue.

1. Introduction
The rapid advancement of computers in recent years has

enabled the creation of high-quality 3D computer graphics
on PCs and game consoles. The proliferation of 3D printers
and the availability of applications such as Google SketchUp
and Metasequoia have also simplified and popularized 3D
modeling. However, the simplification of such modeling in
today’s computer world remains challenging, and systems
to support it also need to be developed. Optimization tech-
niques related only to computer technology are not suited to
3D modeling, which is based on subjective user evaluation.
Against such a background, this study involved the use of an
interactive genetic algorithm for evolution calculation toward
optimization based on user-computer interaction.

The interactive genetic algorithm enables adaptation to
music, design, writing support and other areas where quanti-
tative evaluation is difficult by allowing users themselves to
perform evaluation, selection, termination and other conven-
tional genetic algorithm operations. However, the algorithm
has its own problems, such as user fatigue and small pop-
ulations, as operations that are automated in conventional
genetic algorithms must be performed manually. The burden
on users increases with population size, but search efficiency
decreases if the population size is reduced to ease this
burden. In past studies, this burden was mitigated to a
certain degree by changing the mutation ratio and using
past genes to solve the above problems. However, as not
all related issues had been resolved, it was necessary to
find a solution from a different viewpoint based on these
past studies. In the present study, an interactive genetic
algorithm was implemented with a large number of users.
Evaluation frequency and the burden on users were reduced

by sharing the same gene pool and acquiring ideas from
other users. Other factors to be considered are changes in
people’s attitudes and the formation of diverse cultures and
values associated with the recent progress of globalization.
The influence of such changes is evident in 3D modeling
and design, which are based on human sensitivity. The
application of a multi-player interactive genetic algorithm to
3D modeling alleviates the burden on the user by reducing
the frequency with which evaluation must be performed and
also supports the provision of diverse 3D models.

However, as the application of such a method may result
in system overload, a scalable system was constructed in
this study to prevent overload-related mental fatigue among
users. Cloud computing technology, which has come to the
fore as a new mode of operation to replace conventional
server-client-type computing, was used to create the system.
Open-source cloud computing software was used to provide
extensibility and flexibility to the system in addition to
other cloud benefits such as cost-effectiveness, availability
and scalability. Scalability must also be taken into account
for databases. As conventional SQL relational database
management systems are not suited to a system involving
distributed management using multiple computers or scale
enlargement, this study involved the adoption of NoSQL,
which can be used to process enormous amounts of data by
having individual pieces of genetic hardware act as a single
system. Flexible and enriched functionality was realized
using MongoDB a document-oriented NoSQL data model.

To address the risk of possibly losing diversity of solutions
and individual preferences due to the same gene pool being
shared by many users, clustering based on the k-means
method was performed to create new individuals and remove
those with low evaluation values in each cluster.

A web application prototype satisfying these requirements
was created and verified in the study. This paper gives an
overview of the system constructed and the technology used
for it.

2. Interactive genetic algorithm (IGA)
Interactive genetic algorithm usage is an optimization

method based on user-computer interaction and users’ sub-
jective evaluation, and involves evolutionary calculation for
genetic algorithms. Users evaluate the solution group subjec-
tively and selection is based on this evaluation. Following
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such evaluation and selection, the genetic algorithm oper-
ations of crossing and mutation are performed to create a
new solution group. In the majority of interactive genetic
algorithms, the ending is also determined by users. The use
of subjective evaluation allows the adaptation of such algo-
rithms to art, music, design, construction, writing support
and other areas where quantitative evaluation is difficult. As
the adoption of user evaluation means a smaller population
size and fewer generations than with conventional genetic
algorithms, an algorithm for convergence at high speed is
necessary. The mutation ratio is also high because diverse
individuals are presented to users.

However, interactive genetic algorithms have their own
problems, including user fatigue and a small population size
due to the use of manual evaluation and selection. Such
algorithms also involve a tradeoff relationship in which the
burden on users increases if the population size is increased
to improve search efficiency, and efficiency decreases if the
population is made smaller to reduce the burden.

To alleviate the problem of user fatigue associated with in-
teractive genetic algorithms, it is necessary to have solutions
converge at high speed and reduce evaluation frequency. Al-
though a variety of measures have been taken to address the
issue (such as mutation ratio modification, use of past genes
and user interface improvement) no fundamental solution has
yet been found. In this study, user fatigue was reduced by
allowing a large number of users to share the same gene
pool and assimilate the ideas of others. This method also
enables the presentation of diverse solutions to users.

However, diversity of solutions and individual preferences
may be lost in multi-player interactive genetic algorithms if
the convergence rate is inappropriate. It is also difficult to set
an appropriate convergence rate in such algorithms featuring
large numbers of uncertain elements. Accordingly, clustering
via the k-means method (reference:“ Some Methods for
Classification and Analysis of Multivariate Observations,
Proceedings of the 5th Berkeley Symposium on Mathemati-
cal Statistics and Probability”) was performed in this study
to create new individuals based on crossing and mutation
in each cluster and to update the population by removing
individuals with low evaluation values in order to maintain
the diversity of solutions and individual preferences.

Fig. 1: Maintenance of the diversity of solutions and indi-
vidual preferences via clustering

3. Cloud Foundry
3.1 Cloud Foundry overview

Cloud computing has advanced rapidly in recent years,
and many companies and organizations benefit from the
provision of services using related technology. However,
technologies used in the field of cloud computing are
many and varied, and individual companies and organiza-
tions provide services using different technologies. As a
result, user convenience may be impaired by vendor lock-
ins depending on specific cloud services and other adverse
effects. Against this background, efforts to standardize cloud
computing technology have become active, and open-source
cloud computing software has advanced rapidly in recent
years.

Cloud computing is divided into three types - Software
as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) - depending on the type
of service provided (reference: NIST Definition of Cloud
Computing). Cloud Foundry is a type of open-source PaaS
software developed and provided by VMware. PaaS provides
databases and development environment platforms, and al-
lows the construction of private PaaS environments. VMware
also uses this to provide its cloudfoundry.com service.

Cloud Foundry also supports diverse languages, runtimes,
frameworks and databases. It is easy to change application
deployment, the number of instances and related perfor-
mance, and databases using a command line tool called cf.

3.2 Cloud Foundry structure
Figure 2 shows the structure of Cloud Foundry (reference:

Welcome to Cloud Foundry)
(reference: Welcome to Cloud Foundry)

Fig. 2: Cloud Foundry Architecture

Cloud Controller
　 This provides the management function of Cloud
Foundry. Application deployment, modification and other
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state changesfor all components are performed via this
application.

Router
This routes HTTP traffic from outside to appropriate com-

ponents (usually applications running on Cloud Controller
or a DEA node). It works in a way similar to that of the L7
load balancer in the OSI reference model.

DEA(Droplet Execution Agent)
This provides an agent function to receive commands from

Cloud Controller and control the execution of applications.

Health Manager
This provides an application monitoring function on Cloud

Foundry. It monitors the status of applications by sending
Heartbeat data to the DEA and requesting repairs from Cloud
Controller when an abnormality is detected.

Messaging (NATS)
This provides a messaging server function to mediate data

exchange between components within Cloud Foundry, for
which unique middleware called NATS is used.

Services
These provide deployment of databases and other services

and bind to applications. Services can be integrated into
Cloud Foundry via the Service Broker API.

Warden
This provides an application isolating function on the DEA

and reduces influence between applications with a container
system.

User Account and Authentication (UAA) Server
These provide the user authentication function for Cloud

Foundry.

4. 3D modeling
Web 3D is a type of web data and a genre of 3D graphics

based on a virtual 3D space that can be changed with the
passage of time or operated freely by users.

Virtual reality modeling language (VRML) is a data format
for Web3D and a medium that represents virtual 3D spaces.
It was designed for use on the Web, and can be run online
using a VRML browser or a regular browser with the
corresponding plug-in. It comes in text file format with a .wrl
extension. A VRML file consists of five elements - header,
comments, nodes (fields), prototype and route.

Header
The first line of a VRML file is a header containing the

VRML version number and character encoding, such as

#VRML V2.0 utf8

This indicatesthe use of VRML version 2.0 and UTF8
character encoding.

Comments
The second and subsequent lines starting with # are

comment lines. Characters on these lines are for information
only and have no function.

Nodes
A three-dimensional space created using VRML consists

of various elements called nodes. Statements describing
individual nodes are called node statements.
The basic form of a node statement is

Node type name {field…. }.

Node typenames are used to identify nodes, including those
representing objective forms (e.g., spheres and cylinders),
group nodes (e.g., transforms and groups) and appearance
nodes representing the appearance of solid bodies as de-
scribed below.

Fields
Each node has various attributes called attribute fields.

Node names begin with an upper-case letter and field names
begin with a lower-case letter to set them apart. Fields are
identified by field names. The basic form of a field is

Field name Field value .

The fieldvalue is given as the value of the field designated
by the field name.
Node statements can also be written as field values and nodes
can have a nested structure.

Transform nodes
As with group nodes, transform nodes bring multiple nodes

together and designate the transformation of the group. The
center of the bounding box is designated by the bboxCenter
field, the size of the bounding box by the bboxSize field,
the node movement position by the translation field, node
rotation by the rotation field and the node magnification fac-
tor by the scale field. The scaleOrientation field designates
rotation against the node assigned in the children field before
magnification/reduction in the scale field. The children field
expresses multiple shape and group nodes as one node.
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Transformnode definition format� �
Transform{
　 translation x y z
　 rotation x y z r
　 scale x y z
　 scaleOrientation x y z r
　 bboxCenter x y z
　 bboxSize x y z
　 children [child nodes　…　]
}� �

The restof the node definition is omitted.

Shape nodes
Shape nodes define the shape and appearance of solid

bodies. The shape (e.g., rectangular solid or sphere) can
be designated in the geometry field, and the color, texture
and other values are designated in the appearance field. The
appearance node can be omitted.

Box nodes
Box nodes define the shape of rectangular solids. The n

lengths in the x, y and z directions are designated in the size
field.

Sphere nodes
Sphere nodes define the shape of spheres. The radius is

designated in the radius field.

Cylinder nodes
Cylinder nodes define the shape of cylinders. The radius,

height, bottom, side and top conditions are designated in the
radius, height, bottom, side and top fields, respectively.

5. Structure and implementation of the
proposed system

In this study, a web application prototype was created to
realize 3D modeling using a multi-player interactive genetic
algorithm. As extensive access (to systems? websites?) and
prediction of the number of accesses have become difficult
due to the proliferation of computers in recent years, flexible
and scalable systems are necessary in large-scale web appli-
cation development. With this in mind, a system featuring
high flexibility, availability and scalability was constructed
using cloud computing.

The same issue applies to databases. The relational
database management systems that represent the mainstream
in conventional database technology have abundant functions
and outstanding consistency, but performance improvement
based on scaling out is difficult. Accordingly, they are not
suited to large-scale web applications that require flexibility
and extensibility. This study involved the use of NoSQL,

which enables performance improvement by scaling out
based on distributed architecture. Enriched functionality was
also realized using a document-oriented database (a NoSQL
data model).

Figure 3 gives an overview of the entire system. Users
access the application prototype web page via the Internet
using PCs, smartphones, tablets and other digital devices to
evaluate a 3D model. The evaluation data are sent as HTTP
requests, and loads are distributed using a load balancer. The
IGA program is run in the(each?) instance, and performance
improvement can be easily achieved by scaling out. Data
received and results are stored in the NoSQL database,
which is a document-oriented data model with outstanding
scalability and abundant functions.

Fig. 3: Schematic diagram of the system

5.1 System implementation
In this study, the cloudfoundry.com service provided via

VMWare on a trial basis was used (reference: Welcome to
Cloud Foundry). Service users can set up an account free
of charge, and PaaS implemented on Cloud Foundry can
be accessed using a command line tool called cf. Although
usable resources are limited, viability was confirmed using
this service because it allows operation in the same way
as when a Cloud Foundry environment is constructed in the
operator’s own environment. At cloudfoundry.com, operation
can also be controlled via a graphical user interface (GUI) or
a command line interface (CLI). Figure 4 shows application
deployment via the CLI.
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Fig. 4: Deployment status

� �
1. Creationof initial population (population size: N)
2. Display of individuals presented (no. of individuals
presented: M)
3. Evaluation by users/completion if the optimum solu-
tion exists
4. Update of evaluation values
5. Clustering using the k-means method based on genes
6. Selection of two individuals for crossing based on
evaluation results
7. Creation of new individuals via crossing and mu-
tation (evaluation value: average of the two selected
individuals)
8. Removal of one individual with a low evaluation
value
9. Repetition of 6 to 8 for each cluster
10. Selection of individuals for presentation based on
evaluation results
11. Return to 2� �

Fig. 5: Program execution procedure

MongoDB, which is a document-oriented data model, was
used as the NoSQL database. MongoDB is used to store
and manage documents described by JSON as data models
and to manage groups of documents as collections. The
consistency of results is guaranteed and the model has a
variety of applications, including MapReduce and an index
function (reference: Basic Knowledge of NOSQL).

In the prototype of the application created in this study,
the system was constructed with the following

No. of instances:3
Memory :512MB
Database:MongoDB
Database capacity:0.5GB

The application prototype was executed via the procedure

shown in Fig. 5.

5.2 Implementation of 3D modeling
In this study, VRML object nodes were grouped and

synthesized using a transform node. The object nodes used
were box, sphere and cylinder types. As these nodes did
not have fields defining coordinate movements, movement
was made by grouping individual nodes using the transform
node. The field value x representing the size was1 ≤ x ≤ 4,
and y representing the central coordinate of the object was
−3 ≤ y ≤ 3.

VRML files can be embedded in HTML using an embed
tag.(Ex.:< embed src = "VRML0.wrl" width = "300" height
= "200" > )

Figure 6 shows an example of an object synthesized with
a transform node, and Fig. 7 shows the VRML file template
used. In Fig. 6 it can be seen that the center of a solid body
with the size of 1, 2 and 3 in the x, y and z directions
is in the coordinate (-1, -2, -3). In Fig. 7, N objects are
synthesized and expressed as one by transforming genes in
the“OBJECT”part as in the case shown in Fig. 6. In the
translation field of the transform node, the center of gravity
(a, b, c) of the synthesized object is calculated as x = -a, y
= -b and z = -c to move the coordinate centering around the
center of the object.

Fig. 6: Example of an object
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Fig. 7: VRML file template

5.3 Interactive genetic algorithm implementa-
tion

A program was produced by setting the selection method,
crossover method, mutation rate, population size, number of
individuals presented and initial evaluation of the interactive
genetic algorithm as follows:

Selection method:roulette wheel selection
Crossover method:two-point
Mutation ratio :3%
Population size:100
No. of individuals presented:8
Initial evaluation value :5
No. of clusters :10

In this study, genes had the shape, size and central coordi-
nates of an object expressed in 7 bits. Genetic information
details are given below.

Genetic informationof the interactive genetic algorithm� �
1. Object shape (0: box; 1: sphere; 2: cylinder)
2. Object size a (box: center value x-coordinate; sphere:
radius, cylinder: radius) (1 ≤ a ≤ 4 )
3. Object size b (box: center value y-coordinate; cylin-
der: height) (1 ≤ b ≤ 4 )
4. Object size c (box: center value z-coordinate) (
1 ≤ c ≤ 4 )
5. Object center value x-coordinate (−3 ≤ x ≤ 3 )
6. Object center value y-coordinate (−3 ≤ y ≤ 3)
7. Object center value z-coordinate (−3 ≤ z ≤ 3 )� �

5.4 Web application prototype
The application prototype is mainly expressed in JAVA.

HTML page output and selected value transmission are
achieved using JSP, and other processes are completed using
a servlet.

3D modeling in the application prototype using an inter-
active genetic algorithm is performed mainly via the three
steps outlined below. The Initialization button is used for
individual and database initialization. In gene initialization,
genes are created randomly within the range of the genetic
information parameters shown in the overview of the in-
teractive genetic algorithm implementation. The evaluation
value is reset to 5. User evaluations of eight individuals
presented are then sent to the IGA program using the Cross-
ing button, and new individuals are presented to users after
the evaluation values for individuals, clustering, crossing,
mutation, removal of individuals and other processes have
been updated. In the evaluation of individuals, Good, Normal
and Bad are expressed by values of +1,± 0 and -1,
respectively, and the default is Normal. When a satisfactory
individual is created, operation is ended by selecting the
individual’s Fin radio button and clicking the Finish button.

6. Operation confirmation
The web application prototype deployed on Cloud

Foundry was actually operated in the study. The page shown
in Fig. 8 was displayed by installing the browser plug-in and
accessing the specified URL (http://medialabo.cfapps.io/).
The Crossing button was clicked after evaluation to see
newly created individuals.

The document in the database was stored as shown in
Fig. 9. In this document,“name”is the individual number,
“order”is the gene arrangement,“value”is the evaluation
value and“ cluster” is the relevant cluster number.

Fig. 8: Top page
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Fig. 9: MongoDB document (data format)

7. Conclusion
In this study, a web application prototype in which 3D

models are created on Cloud Foundry was created and
verified. As a result of this verification, a scalable system
was constructed and its operation was confirmed.

However, object production rules for matters such as for-
mal grammar and production of initial individuals according
to purpose still need to be established in order to realize a
3D modeling support system. The authors plan studies on
more practical and new 3D modeling methods with focus
on these issues.

In future work, it is first necessary to verify scalability
in a large-scale system by constructing a Cloud Foundry
environment and conducting loading tests on Hokkaido
University’s private cloud.

In regard to interactive genetic algorithms, comparison
and verification need to be conducted by improving pa-
rameters, reusing optimum solutions found and extending
application to interactive genetic programming (iGP) using
tree-structured genes for interactive genetic algorithms.

To support coordination among large numbers of users, it
is necessary to verify and compare methods to replace the
k-means approach.

For 3D modeling, verification and comparison are needed
concerning the production of objects via the establishment
of formal grammar or other production rules and the trans-
formation of initial individuals into models according to
purpose.
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Selecting Strategies in Particle Swarm Optimization
by Sampling-Based Landscape Modality Detection
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Abstract— If the landscape of the objective function is
unimodal, the efficiency of population-based optimization
algorithms (POAs) can be improved by selecting strategies
for local search around a best solution. If the landscape is
multimodal, the robustness of the POAs can be improved
by selecting strategies for global search in search space.
We have proposed a method that estimates the landscape
modality by sampling the objective values along a line and
counting the number of changes in the objective values
from increasing to decreasing and vice versa. In this study,
in order to improve the performance of particle swarm
optimization (PSO), we propose to select a proper strategy
according to the landscape modality: The gbest model is
selected in unimodal landscape and the lbest model is
selected in multimodal landscape. The advantage of the pro-
posed method is shown by solving unimodal and multimodal
problems and by comparing it with standard PSOs.

Keywords: Particle swarm optimization, Landscape modality,
Landscape modality estimation, Lbest model, Gbest model

1. Introduction
There exist many studies on solving optimization

problems using population-based optimization algorithms
(POAs) in which a population or multiple search points are
used to search for an optimal solution. For example, swarm
intelligence algorithms inspired by collective animal behav-
ior have been studied such as particle swarm optimization
(PSO)[1], [2] and ant colony optimization. Also, evolution-
ary algorithms inspired by biological evolution have been
studied such as genetic algorithm, evolution strategy and
differential evolution[3], [4]. In general, POAs are stochastic
direct search methods, which only need function values to
be optimized, and are easy to implement. For this reason,
POAs have been successfully applied to various optimization
problems.

In this study, we paid attention to improve PSO. There
are two models or movement strategies in PSO: the gbest
model where each search point or a particle moves toward
the best point in the population and the lbest model where
each search point moves toward a best point in the neighbor
points. It is known that the gbest model can solve unimodal
problems efficiently but the strategy cannot solve multimodal
problems stably and the search by the strategy is sometimes

trapped at a local optimal solution. In contrast, it is known
that the lbest strategy is robust to multimodal problems
but the strategy cannot solve unimodal problems efficiently.
However, the landscape of a problem to be optimized is often
unknown and the landscape is changing dynamically while
the search process proceeds. Thus, it is difficult to select a
proper strategy.

We have proposed a simple method that detects the
modality of landscape being searched: unimodal or not
unimodal[5], [6], [7]. In the method, some points on the line
connecting between the centroid of search points and the
best search point are sampled. When the objective values
of the sampled points are changed decreasingly and then
increasingly, it is thought that one valley exists. If there
exists only one valley or the landscape is unimodal, the
gbest strategy is adopted. In this case, it is expected that
the strategy can realize efficient search. If the number of
valley is greater than one, the lbest strategy is adopted. In
this case, it is expected that the strategy improves the diver-
gence of the search and prevents premature convergence.
The effect of the proposed method is shown by solving
13 benchmark problems including unimodal problems and
multimodal problems.

In Section 2, related works are briefly reviewed. Detecting
landscape modality is explained in Section 3. The optimiza-
tion problem is defined and PSO is explained in Section 4.
PSO with detecting landscape modality is proposed in Sec-
tion 5. In Section 6, experimental results on some problems
are shown. Finally, conclusions are described in Section 7.

2. Related Works
Many studies on strategy selection and parameter tuning

have been done in order to improve the efficiency. The stud-
ies can be classified into two main categories: observation-
based and success-based control[5], [6], [7].

1) observation-based control: The current search state
is observed, proper strategies or parameter values
are inferred according to the observation, and strate-
gies and/or parameters are dynamically controlled.
FADE(Fuzzy Adaptive DE)[8] observes the movement
of search points and the change of function values be-
tween successive generations, and controls algorithm
parameters. DESFC(DE with Speciation and Fuzzy
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Clustering)[9] adopts fuzzy clustering, observes parti-
tion entropy of search points, and controls a parameter
and the mutation strategies between the rand and the
species-best strategy.

2) success-based control: It is recognized as a success
case when a better search point than the parent
is generated. The strategies and/or parameters are
adjusted so that the values in the success cases
are frequently used. It is thought that the self-
adaptation, where strategies and/or parameters are
contained in individuals and are evolved by applying
evolutionary operators to the parameters, is included
in this category. DESAP(Differential Evolution with
Self-Adapting Populations)[10] controls algorithm pa-
rameters including population size self-adaptively.
SaDE(Self-adaptive DE)[11] controls the selection
probability of the mutation strategies according to
the success rates and controls the mean value of a
crossover rate for each strategy according to the mean
value in success case. JADE(adaptive DE with op-
tional external archive)[12] and MDE_pBX(modified
DE with p-best crossover)[13] control the mean and
power mean values of two parameters according to
the mean values in success cases.

In the category 1), it is difficult to select proper type
of observation which is independent of the optimization
problem and its scale. In the category 2), when a new
good search point is found near the parent, parameters are
adjusted to the direction of convergence. In problems with
ridge landscape or multimodal landscape, where good search
points exist in small region, parameters are tuned for small
success and big success will be missed. Thus, search process
would be trapped at a local optimal solution.

In this study, we propose a new observation-based control
in the category 1). As a problem independent observation,
landscape modality is adopted and it is estimated whether
the problem is unimodal or multimodal using sampling. It is
thought that a proper strategy or algorithm parameters can
be selected if the landscape modality can be identified.

3. Detecting Landscape Modality using
Sampling

Search points in a current population or a set of search
points P = {xi|i = 1, 2, · · · , N} are used to detect
landscape modality using sampling[5], [6], where N is the
number of search points or population size. The range of
search points is determined, a line is drawn in the range,
and equally spaced points are sampled along the line.

3.1 Sampling
The objective values are examined along the following

line, which connects the centroid of search points xg and

the best search point xb.

x = xg + λ(xb − xg) (1)

xg =
1

N

N∑
i=1

xi (2)

xb = arg min
xi∈P

f(xi) (3)

where λ is a parameter for deciding the position of a point
on the line. The range of the search points [xmin,xmax] can
be given as follows:

xmin
j = min

i
xij (4)

xmax
j = max

i
xij (5)

The range of the λ, [λmin, λmax] satisfies the following
condition:

xmin
j ≤ xg

j + λ(xb
j − xg

j ) ≤ xmax
j (6)

Thus, if (xb
j − xg

j ) is positive, the range of the λ is given
by:

λmin = max
j

xmin
j − xg

j

xb
j − xg

j

(7)

λmax = min
j

xmax
j − xg

j

xb
j − xg

j

(8)

If (xb
j −xg

j ) is negative, xmin
j and xmax

j in the equations are
exchanged.

In order to decide M sampling points {xk|k =
1, 2, · · · ,M}, λk is given as follows:

λk = λmin +
λmax − λmin

M − 1
(k − 1) (9)

zk = xg + λk(x
b − xg) (10)

Figure 1 shows an example of the sampling, where search
points are shown by black circles, the centroid is shown by a
white circle, sampling points are shown by triangles in case
of M = 6.

3.2 Landscape Modality
In the obtained sequence {f(zk)|k = 1, 2, · · · ,M}, hill-

valley relation is examined. For each point, the function
dir(·) is introduced in order to judge whether the change
is increasing or decreasing:

dir(zk) =

 1 (f(zk+1) > f(zk))
−1 (f(zk+1) < f(zk))

dir(zk−1) (otherwise)
(11)

Figure 2 shows an example of detecting unimodal landscape,
where the objective values are shown by the function of λ.

The landscape modality is identified using the number of
changes in dir function. If the value of dir changed from
-1 to 1 only once or there is no changes, it is thought that
one valley exists and the landscape is unimodal. Otherwise,
the landscape is not unimodal.
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Fig. 1: An example of sampling for detecting landscape
modality.
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Fig. 2: An example of detecting unimodal landscape.

4. Optimization Problems and Particle
Swarm Optimization
4.1 Optimization Problems

In this study, the following optimization problem (P) with
lower bound and upper bound constraints will be discussed.

(P) minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , n,

(12)

where x = (x1, x2, · · · , xn) is an n dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.

4.2 Particle Swarm Optimization
An animal such as an ant, a fish, and a bird has limited

memory and ability to perform simple actions. In contrast,
a group of animals such as an ant swarm, a fish school,

and a bird flock can take complex or intelligent actions such
as avoiding predators and seeking foods efficiently. Swarm
intelligence is defined as the collective actions of agents that
act autonomously and communicate each other. PSO[2] is a
swarm intelligence based optimization method which was
inspired by the movement of a bird flock. PSO imitates the
movement to solve optimization problems and is considered
as a population-based stochastic search method or POA.

Searching procedures by PSO can be described as follows:
A group of agents minimizes the objective function f . At
any time t, each agent i knows its current position xt

i

and velocity vt
i. It also remembers its personal best visited

position until now x∗
i and the objective value pbesti.

x∗
i = arg min

τ=0,1,··· ,t
f(xτ

i ) (13)

pbesti = f(x∗
i ) (14)

Two models, gbest model and lbest model have been pro-
posed. In the gbest model, every agent knows the best visited
position x∗

G in all agents and its objective value gbest.

x∗
G = argmin

i
f(x∗

i ) (15)

gbest = f(x∗
G) (16)

In the lbest model, each agent knows the best visited position
x∗
l in the neighbors and its objective value lbesti, where l

is the best visited position in the neighborhood.

x∗
l = arg min

k∈Ni

f(x∗
k) (17)

lbesti = f(x∗
l ) (18)

where Ni is the set of neighbor agents to i. The velocity of
the agent i at time t+ 1 is defined as follows:

vt+1
ij = wvtij + c1 rand1ij (x

∗
ij − xt

ij) (19)

+ c2 rand2ij (x
∗
lj − xt

ij)

where l = G in the gbest model, w is an inertia weight
and randkij is a uniform random number in [0, 1] which
is generated in each dimension. c1 is a cognitive parameter,
c2 is a social parameter which represent the weight of the
movement to the personal best and the group/neighbors best
respectively.

The position of the agent i at time t+1 is given as follows:

xt+1
i = xt

i + vt+1
i (20)

4.3 Algorithm of PSO
The algorithm of PSO is defined as follows:
1) Initializing agents: Each agent i with a position xi

and a velocity vi is created. xi is randomly generated
in the search space S, namely each element xij is
a uniform random number in [lj , uj ]. vi is the zero
vector where every element vij=0 in this study. The
best visited position is set to the initial position,
namely x∗

i =xi.
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2) Selecting the best agent: The id of the best agent G is
decided.

3) Stopping if termination condition is satisfied: The
algorithm is stopped when the number of function
evaluations reaches the maximum number of evalu-
ations FEmax.

4) Updating agents: The position and velocity of each
agent i are updated according to Eq.(19) and Eq.(20),
respectively. The each element of the velocity is trun-
cated in [−Vmaxj , Vmaxj ]. If the objective value of the
new position is better than the personal best value, the
personal best visited position is replaced with the new
position. If the objective value of the new position
is better than the group best value, the group’s best
visited position is replaced with the new position.

5) Go back to 3.

5. Proposed Method
In this section, a method of selecting a movement strategy

dynamically is proposed for PSO.

5.1 Strategy selection
In general, if divergence of agents is kept to realize a

global search, it can be avoided to be trapped at a local
solution but the efficiency of the search will be reduced.
If convergence of agents is enforced to realize local search
around the best agent, the efficiency of the search is im-
proved but the search will be trapped at a local solution.

In PSO, the gbest model can realize the local search and
the lbest model can realize the global search. In the lbest
model, the neighborhood of agents is defined as a topology
such as star topology, ring topology, mesh topology, and
so on. In this study, the ring topology is adopted, where
agents are connected in the order of the agent numbers. The
neighborhood size Nneighbor is an important parameter in
the lbest model. Small neighborhood size strengthens the
global search and large neighborhood size strengthens the
local search. When the size is same as the population size,
the lbest model becomes the gbest model. In this study,
the gbest model is selected for unimodal landscape and the
lbest model with Nneighbor = 5 including the agent itself is
selected for multimodal landscape.

5.2 Proposed algorithm
Figure 3 shows the proposed algorithm named LPSO(PSO

with detecting Landscape modality), where TL is the interval
of iterations when landscape modality is estimated, Nsmall

is the neighborhood size for the global search, and Nlarge

is the neighborhood size for the local search. Lines with ’+’
at the first column are the modification to standard PSO.

If the number of direction changes from decreasing to
increasing and vice versa is 1 or zero, the landscape modality
is estimated as unimodal. However, the estimation should
be done carefully because the sampling is done in a small

region and the number of sampling points is small. Thus,
the number of successive unimodal estimations is counted
and if the number is equal to or greater than Nunimodal the
landscape is identified as unimodal.

Initialize P;
Evaluate all x in P;
G=argmin{i|xi∈P} f(xi)
+unimodal=0;
for(t=1;t ≤ T;t++) {
+ if(t%TL==1) {
+ changed=landscape modality estimation in P;
+ if(changed==0 || changed==1) unimodal++;
+ else unimodal=0;
+ }
+ if(unimodal≥Nunimodal) Nneighbor=Nlarge;
+ else Nneighbor=Nsmall;

for(each agent i in P) {
l=best agent in i’s neighborhood

of size Nneighbor;
for(each dimension j) {

vij=wvij+c1rand1ij(x∗
ij-xij)

+c2rand2ij(x∗
lj-xij);

if(vij>Vmaxj) vij=Vmaxj;
else if(vij<−Vmaxj) vij=−Vmaxj;
xij=xij+vij;

}
Evaluate xi;
if(f(xi) < f(x∗

i )) {
if(f(xi) < f(x∗

G)) G=i;
x∗
i =xi;

}
}

}
returns x∗

G as the best solution;

Fig. 3: Algorithm of LPSO.

6. Solving Optimization Problems
In this study, well-known thirteen benchmark problems

are solved.

6.1 Test Problems and Experimental Condi-
tions

The 13 scalable benchmark functions are shown in Table
1[12]. All functions have an optimal value 0. Some char-
acteristics are briefly summarized as follows: Functions f1
to f4 are continuous unimodal functions. The function f5
is Rosenbrock function which is unimodal for 2- and 3-
dimensions but may have multiple minima in high dimension
cases[14]. The function f6 is a discontinuous step function,
and f7 is a noisy quartic function. Functions f8 to f13 are
multimodal functions and the number of their local minima
increases exponentially with the problem dimension[15].

Independent 50 runs are performed for 13 problems. The
dimension of problems is 30 (D=30). The maximum number
of evaluations FEmax is 200,000. The parameters of PSO
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Table 1: Test functions of dimension D. These are sphere,
Schwefel 2.22, Schwefel 1.2, Schwefel 2.21, Rosenbrock,
step, noisy quartic, Schwefel 2.26, Rastrigin, Ackley,
Griewank, and two penalized functions, respectively[16].

Test functions Domain

f1(x) =
∑D

i=1 x
2
i [−100, 100]D

f2(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i
j=1 xj

)2
[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =∑D−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

] [−30, 30]D

f6(x) =
∑D

i=1bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1 ix
4
i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1 −xi sin
√

|xi| + D ·
418.98288727243369

[−500, 500]D

f9(x) =∑D
i=1

[
x2
i − 10 cos(2πxi) + 10

] [−5.12, 5.12]D

f10(x) =

−20 exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(
xi√
i

)
+ 1

[−600, 600]D

f12(x) =
π
D
[10 sin2(πy1) +

∑D−1
i=1 (yi − 1)2

{1 + 10 sin2(πyi+1)} + (yD − 1)2]
+
∑D

i=1 u(xi, 10, 100, 4)
where yi = 1 + 1

4
(xi + 1)

and u(xi, a, k,m) = k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) =
0.1[sin2(3πx1) +

∑D−1
i=1 (xi − 1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}]
+

∑D
i=1 u(xi, 5, 100, 4)

[−50, 50]D

are selected according to [17]: Number of agents N = 30,
w = 0.729, c1 = c2 = 0.729×2.05 = 1.49455 and Vmaxj =
0.5(uj − lj). The parameters of LPSO are: The number
of sampling points M = N , TL = 200, Nunimodal = 5,
Nsmall = 5 for the lbest model and Nlarge = N for the
gbest model.

6.2 Experimental Results
The performance of three algorithms, gbest model PSO,

lbest model PSO, and LPSO are compared. Table 2 shows
the experimental results. The mean value and standard
deviation of best objective values over 50 runs are shown
in the top row for each function. The number of success
runs, where the algorithm can find the near optimal value
less than 10−7, is shown in the bottom row. The best results
among all algorithms are highlighted using bold face fonts.

The gbest model PSO attained the best results in unimodal
functions f1, f2, f3 and f4. Also, the gbest model attained

the best results in multimodal functions f5, f8 and f9. It is
thought that the gbest model is suitable not only to unimodal
functions but also to functions where search points need to
move a fairly long distance such as f5 and f8. The lbest
model PSO attained the best results in multimodal functions
f12 and f13, and in the step function f6.

It is thought that LPSO will show the intermediate per-
formance between the gbest model and the lbest model.
Nevertheless, LPSO attained the best results in multimodal
functions f10 and f11, the step function f6 and the noisy
function f7. Thus, it is shown that dynamic selection of the
gbest model and the lbest model can attain better result than
pure gbest or lbest model.

LPSO got the first and second rank among three algo-
rithms and did not get the worst rank in all functions. The
average ranks of the gbest model, the lbest model and LPSO
are 1.85, 2.42 and 1.73, respectively. LPSO attained the best
performance as for the average rank.

The average success runs over 13 functions in the gbest
model, the lbest model and LPSO are 21.00, 20.46 and
30.62, respectively. LPSO attained the best performance as
for the average success runs.

Therefore, it is thought that LPSO showed the most stable
performance.

As a reference, convergence graphs of test functions are
shown in Figure 4, where the mean best objective values of
LPSO, the gbest model PSO and the lbest model PSO are
plotted over the number of function evaluations.

7. Conclusions
It is difficult to select a proper optimization strategy,

because the proper strategy depends on the optimization
problem and also on landscape currently being searched.
In this study, in order to select a proper strategy of PSO
dynamically, a dynamic selection of strategies is proposed
where the gbest model is selected in unimodal landscape and
the lbest model is selected in multimodal landscape. Various
13 functions are solved and the results are compared with
those of the gbest and lbest models of PSO. It was shown
that the proposed method sometimes outperformed the pure
models and attained the most stable performance.

In the future, we will apply the dynamic selection of
strategies to various algorithms. Also, we will apply the
dynamic selection of algorithms such as an algorithm in
unimodal landscape and another algorithm in multimodal
landscape.
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Table 2: Experimental results on standard PSOs and the proposed method. Mean value ± standard deviation and the number
of success runs in 50 runs are shown.

gbest model PSO lbest model PSO LPSO
f1 7.650e-118 ± 2.779e-117 3.392e-46 ± 7.533e-46 3.562e-109 ± 2.449e-108

[50] [50] [50]
f2 1.306e-39 ± 9.139e-39 4.722e-29 ± 3.509e-29 1.378e-38 ± 7.001e-38

[50] [0] [50]
f3 1.451e-13 ± 2.707e-13 1.912e+03 ± 9.675e+02 7.385e-13 ± 1.811e-12

[50] [0] [50]
f4 1.058e-06 ± 2.506e-06 1.496e-01 ± 8.532e-02 1.476e-06 ± 2.992e-06

[11] [0] [11]
f5 1.139e+01 ± 1.731e+01 7.128e+01 ± 4.073e+01 3.450e+01 ± 3.424e+01

[0] [0] [0]
f6 2.900e+00 ± 6.275e+00 0.000e+00 ± 0.000e+00 0.000e+00 ± 0.000e+00

[19] [50] [50]
f7 5.543e-03 ± 2.994e-03 1.047e-02 ± 3.555e-03 4.201e-03 ± 1.557e-03

[0] [0] [0]
f8 3.043e+03 ± 6.714e+02 4.394e+03 ± 5.930e+02 4.313e+03 ± 5.978e+02

[0] [0] [0]
f9 7.245e+01 ± 1.612e+01 1.030e+02 ± 1.701e+01 7.466e+01 ± 1.933e+01

[0] [0] [0]
f10 1.626e+00 ± 1.053e+00 1.581e-14 ± 4.884e-15 1.105e-14 ± 5.012e-15

[10] [50] [50]
f11 2.472e-02 ± 3.357e-02 3.149e-03 ± 9.259e-03 6.191e-04 ± 1.844e-03

[19] [16] [39]
f12 1.826e-01 ± 3.576e-01 1.135e-21 ± 7.942e-21 4.147e-03 ± 2.031e-02

[28] [50] [48]
f13 8.743e-02 ± 3.750e-01 1.350e-32 ± 0.000e+00 1.352e-32 ± 1.726e-34

[36] [50] [50]
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Fig. 4: Convergence graphs.
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A Study on Non-Correspondence in Spread between Objective
Space and Design Variable Space in Pareto Solutions
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Abstract— Recently, a lot of studies on Multi-Objective
Genetic Algorithm (MOGA), in which Genetic Algorithm is
applied to Multi-objective Optimization Problems (MOPs),
have been reported actively. MOGA has been also applied
to engineering design fields, then it is important not only to
obtain Pareto solutions having high performance but also to
analyze the obtained Pareto solutions and extract the knowl-
edge in the designing problem. In order to analyze Pareto
solutions obtained by MOGA, it is required to consider both
the objective space and the design variable space. In this
paper, we define“Non-Correspondence in Spread”between
the objective space and the design variable space. We also
try to extract Non-Correspondence area in Spread with the
index defined in this paper. This paper applies the proposed
method to the trajectory designing optimization problem and
extracts Non-Correspondence area in Spread in the acquired
Pareto solutions.

Keywords: Non-Correspondence, Objective Space, Design Vari-
able Space, Distributed Area, Multi-objective Optimization Prob-
lem

1. Introduction
Genetic Algorithm (GA) is expected to be effective

for solving Multi-objective Optimization Problems (MOPs),
which maximizes or minimizes multiple objective func-
tions at the same time. Recently, Multi-Objective Genetic
Algorithm (MOGA), applying GA to MOPs, are getting
much attention and a lot of studies have been reported[1].
Generally, it is difficult to obtain the optimized solution
satisfying all objective functions because of their trade-offs.
Then, it is necessary to obtain Pareto solutions which are not
inferior to other solutions in at least one objective function.

In recent years, it is reported that MOGA is applied
to engineering design problems in the real-world due to
the improvement of computing performance[2][3][4]. In the
engineering design problems, it is required not only to obtain
high performance Pareto solutions using MOGA but also to
analyze and extract design knowledge in the problem. And
in order to analyze Pareto solutions obtained by MOGA, it is
required to consider both the objective space and the design
variable space.

Obayashi obtained Pareto solutions for aircraft configura-
tion problem by MOGA and tried to analyze the obtained
Pareto solutions through the visualization of the relationship
between fitness values and design variables using Self Orga-
nizing Map (SOM)[2]. Kudoet al. proposed a visualization
method that visualized the geometric distance between data
in the design variable space based on their relationship in
the objective space and analyzed the relationship between
the fitness values and the design variables in the conceptual
design optimization problem of hybrid rocket engine[5].

In this paper, we analyze obtained Pareto solutions con-
sidering the objective space and the design variable space,
and we especially focus on“Non-Correspondence”between
two spaces. In this study, we have introduced 3 patterns of
Non-Correspondence between the objective space and the
design variable space.

• Non-Correspondence in Sequencen
• Non-Correspondence in Spread
• Non-Correspondence in Linear Relationship

We have already reported on the Non-Correspondence in
Sequence[6]. In this paper, we define“Non-Correspondence
in Spread”and propose the quantitative index to extract Non-
Correspondence area in Spread. Non-Correspondence area in
Spread is the area where solutions are distributed densely in
the objective space but are distributed widely in the design
variables space, and vice versa. Moreover, this paper extends
the index of non-correspondence to more practical index,
which allows a designer to select the contributory design
variables and fitness functions and to define the distance
function.

This paper applies the proposed method to the trajec-
tory designing optimization problem known as DESTINY
(Demonstration and Experiment of Space Technology for
INterplanetary voYage)[7] provided by Japan Aerospace
Exploration Agency (JAXA). We apply NSGA-II (Non-
dominated Sorting Genetic Algorithm-II)[8] to this prob-
lem and analyze the extracted Non-Correspondence area in
Spread in the obtained Pareto solutions.
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2. Non-Correspondence in Spread
2.1 Definition of Non-Correspondence in
Spread

In this paper, we focus on Non-Correspondence in Spread.
The area with Non-Correspondence in Spread, called Non-
Correspondence area in Spread, is defined as the area where
solutions are distributed densely in the objective space but
are distributed widely in the design variables space, and vice
versa. (Hereinafter we call simply“ Non-Correspondence
area”). Figure 1 shows an example of Non-Correspondence
area. In Fig. 1, data 5-6-7-8 are distributed widely in the
design variable space compared to the distribution of the
objective space. It is important for designer to know this
area in Pareto solutions because designer can select design
variables from many design patterns in consideration of the
cost of design or difficulty level of design.

objective space design variable space
Obj1

Obj2

V1

V2

1

2

3

4

5

6

7

8

1
2

3
4

5

6

7

8

Fig. 1: Non-Correspondence are in Spread

2.2 Index for Non-Correspondence Area in
Spread

Here, we define the quantitative index for Non-
Correspondence in Spread to extract the Non-
Correspondence area. The index is calculated in the
following procedure.

1) Define the neighborhood radiusϵ (eq. (1)) in the
objective space or the design variable space.

2) Extract the individuals as target individuals within
radiusϵ from individual i.

3) Calculate the center of gravity of the target individuals.
4) Calculate the index for Non-Correspondence in Spread

vi according to eq. (2).
By the above procedure, the indexvi is calculated for

each individual. The neighborhood radiusϵ is defined by
eq. (1). In eq. (1),η denotes the parameter that defines
the neighborhood radius,flmax, flmin mean the maximum
and the minimum fitness values in the Pareto solutions for
objective functionl, and Mf is the number of objective
functions.xlmax, xlmin mean the maximum range and the
minimum range of design variablesl, andMd is the number
of design variables. If the neighborhood is defined in the
objective space, the upper equation in eq. (2) is employed

and otherwise the lower equation is employed to calculate
the value of indexvi. In eq. (2), ddik is the normalized
Euclidean Distance between target individualk and the
center of gravity in the design variable space,dfik is that in
the objective space,N is the number of the target individuals
and vi is the index for individuali. Individuals with large
indexes are distributed densely in the objective space / design
variable space and distributed widely in the design variable
space / objective space.

ϵ =



√∑Mf
l=1(flmax−flmin)2

η

(Neighborhood was defined in the objective space.)√∑Md
l=1(xlmax−xlmin)2

η

(Neighborhood was defined in the design variable space.)
(1)

vi =


1
N

∑N
k=1(ddik)

2

(Neighborhood was defined in the objective space.)
1
N

∑N
k=1(dfik)

2

(Neighborhoodwas defined in the design variable space.)
(2)

In the above index, the more the value of every de-
sign variable / fitness in the target individuals is different
one another, the larger the indexvi becomes. However,
a designer often want to analyze or focus on a certain
design variable(s) / fitness function(s). Besides, there is often
desirable difference value of design variable / fitness while
fitness values / design variables are similar one another. For
example, designers of rockets want to find the solutions that
fitness values are similar,i.e. keeping the performances, but
the launching date of the rocket have one month distance
each other. Then, they can relaunch the rocket expecting the
same performance when it had a trouble in the first launch.

The procedure to calculate the indexvi is extended by
the selection of design variable / fitness function and the
definition of the distance based on Gauss function. The
extended index is calculated in the following procedure.

1) Define the Neighborhood radiusϵ (eq. (1)) in the
objective space or design variable space.

2) Extract the individuals as target individuals within
radiusϵ.

3) Select the desirable design variable or fitness valuej.
4) Calculate the averagexij of designvariable / fitness

value j in the target individuals .
5) Calculate the indexvij according to eq. (3).

By the above procedure, the indexvij (j ∈ d, f ) is
calculated for each individual. In the following equations,
N is the number of the target individuals,sijk denotes
the degree of similarity between individuali and target
individual k in j, µj is the desirable different value of the
design variable / fitness valuej, xjk is the value of the
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design variable / fitnessj of individual k, dijk denotes the
difference betweenxjk andxij , andσ is the parameter of
Gauss Function. The image of eq. (4) is shown in Fig. 2.

vij =
1

N

N∑
k=1

sijk (3)

sijk = exp(− (dijk − µj)
2

σ2
) (4)

dijk = |xjk − xij | (5)

sijk

µj dijk

1

σ

0

Fig. 2: Image of eq. (4)

When the indexvij for individual i is close to 1, there are
some individuals which have similar fitness values / design
variables and have the design variable / fitness valuej with
the differenceµj one another around the individuali. When
eq. (6) is used in the calculation of indexvij instead of
eq. (5), what the indexvij is close to 1 means that there
are some individuals having the differenceµj in j from the
individual i.

dijk = |xjk − xji| (6)

3. Experiment
In this paper, we applied the above calculation to the

trajectory designing optimization problem "DESTINY" pro-
vided by JAXA and analyzed the obtained Pareto solutions.

3.1 Trajectory Designing Optimization Prob-
lem

The aim of this problem is to reach the moon as early
as possible with less fuel and to reduce the degradation of
the solar array panel of the spacecraft due to the damage
by the radiation of the Van Allen belt. As shown in Fig.

3, the spacecraft is launched by Epsilon Rocket and put
elliptical orbits around the earth. Once being put in orbit,
the spacecraft is released and accelerates with Ion Engine
until it reaches the moon. The spacecraft firstly aims to gain
the altitude of perigee and switches to gain the altitude of
apogee on the way, then it gradually moves closer to the
moon.

This paper tries to optimize of trajectory designing of the
spacecraft until it reaches the moon ((1),(2) in Fig. 3). The
objective functions, the design variables, and the range of
each design variable in this problem are shown in TABLE
1, TABLE 2, and TABLE 3, respectively.V 6 is used in the
case of optimization for 6 objective functions. As shown in
TABLE 1, this problem can be expanded to six objective
optimization problem. This paper deals with 5 objective
functionsObj1, Obj2, Obj3, Obj4, Obj5 in TABLE 1.

（1）Launch by Epsilon Rocket

（2）Acceleration with Ion Engine （3）Lunar Swing-by

（5）Escape from L2 Halo Orbit

（4）Injection into L2 Halo Orbit

L2

perigee

apogee

Moon

Earth

Fig. 3: Consept of DESTINY

3.2 Experimental Condition
NSGA-II was applied to the problem described above and

2000 Pareto solutions were obtained. We employed SBX[9]
for the crossover and Polynomial Mutation[10]. Crossover
rate was 1.0, mutation rate was 0.2, population size was
715, and generation was 100.

Figure 4 shows the visualization result of the distribution
of obtained Pareto solutions in (a)the objective space and
(b)the design variable space by Multi-Dimensional Scaling
(MDS)[11].

Table 1: Objective Functions

Obj1 time to reach altitude of 20000km Min
Obj2 IES (Ion Engine System) operation time Min
Obj3 the timeto reach the Moon Min
Obj4 the maximumeclipse time Min
Obj5 the timeto reach an altitude of 5000km Min
Obj6 Initial massof the spacecraft Max

3.3 Extraction of Non-Correspondence Area in
Spread

The result of the indexes for Non-Correspondence in
Spread calculated by eq. (2) for obtained 2000 Pareto
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Table2: Design variables

V 1 : Launchingdate
V 2 : Launchingtime
V 3 : Switchingapogee-perigee date
V 4 : Rangeof IES operation time in perigee rise phase
V 5 : Rangeof IES operation time in apogee rise phase
V 6 : Initial mass of spacecraft

Table3: Ranges of design variables
V 1 2017/1/1～2018/1/1
V 2 00:00:00～24:00:00
V 3 90～365[days]
V 4 0～180[degrees]
V 5 0～180[degrees]
V 6 350～450[kg]

(a) objective space

(b) designvariable space

Fig. 4: Distribution of Pareto Solutions

Solutions, in which the neighborhood was defined in the
objective space, are shown in Fig. 5. Neighborhood radiusϵ
was set asη = 8 in eq. (1). The parameter of neighborhood
radius ϵ was not sensitive and the results were not much
changed by the difference ofϵ in the experiments of this
paper. The individuals in Fig. 5 are sorted in descending
order of the indexvi. The vertical axis shows the value of

the indexvi and the horizontal axis shows the individual
label.

We focused on the top 50 individuals with large indexes.
Figure 6 shows the result of visualization of the distribution
in which these 50 individuals are colored by red on the result
of the objective space and the design variable space shown
in Fig. 4. As shown in Fig. 6, the individuals with red color
are distributed widely in the design variable space compared
to the distribution in the objective space. We extracted 2
individuals in these 50 individuals and the fitness values and
design variables of them are shown in TABLE 4.

In TABLE 4, each fitness value in the second and the
third rows is normalized by the maximum and the minimum
fitness values of the obtained Pareto solutions into the range
of [0,1], and each design variable is normalized by the
feasible ranges shown in TABLE 3 into [0,1]. In TABLE
4, though A and B have similar fitness values each other,
the design variables are widely different. For example, the
launching dates are March and December, the launching
times are 1 in the midnight and 8 in the morning, andV 3
and V 5 are also different. In this area, there were some
individuals that design variables are widely different with
similar fitness values.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000

Individual Lavel

v
i

Fig. 5: Value of Index vi in eq. (2) for each Individual
(Neighborhood : Objective Space)

Table 4: fitness values and design variables of selected
individuals (A, B)

Normalized Value Actual Value
A B A B

Obj1 0.006 0.011 1434.70 1437.75
Obj2 0.846 0.910 8545.60 8713.77
Obj3 0.035 0.0005 401.08 395.65
Obj4 0.097 0.167 1.524 2.009
Obj5 0.018 0.085 217.71 221.07
V 1 0.201 0.916 2017/3/15 2017/12/1
V 2 0.051 0.336 01:13:47 08:4:14
V 3 0.977 0.313 358 175
V 4 0.999 1.000 179.94 180.00
V 5 0.818 1.000 147.99 180.00

The resultof the indexes in eq. (2), in which the neigh-
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A
B

(a) objective space

(b) designvariable space

Fig. 6: Distribution of Pareto Solutions for Non-
Correspondence Area (Neighborhood : Objective Space)

borhood was defined in the design variable space are shown
in Fig. 7. Neighborhood radiusϵ was set asη = 8 in eq. (1).
Figure 7 shows the value of indexvi for each individuals
same as Fig. 5.

Figure 8 shows the result of the visualization of the
distribution of the top 50 individuals with large indexes. As
shown in Fig. 8, the individuals with red color are distributed
widely in the objective space compared to the distribution in
the design variable space. TABLE 5 shows the extracted 2
individuals C and D in Fig. 8 in the same way with TABLE
4. In TABLE 5, though C and D have similar design variables
each other, the fitness values are widely different. In this
area, there were some individuals that fitness values were
very sensitive to the change of design variables. Thus it is
required for the designer to choose or design very carefully
a Pareto solution in this area.

Figure 9 shows the result of the indexvi1 in eq. (3) for the
obtained 2000 Pareto solutions, in which the neighborhood
was defined in the objective space and focused on the
launching dateV 1 in the design variables. Figure 9(a) shows
the result ofµ1 = 0.04 (two weeks), Fig. 9(b) shows the
result ofµ1 = 0.08 (one months), and Fig. 9(c) shows the
result of µ1 = 0.33 (four months). Neighborhood radiusϵ
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0 500 1000 1500 2000
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v
i

Fig. 7: Value of Index viin eq. (2) for each Individual
(Neighborhood : Design Variable Space)

(a) objective space

C

D

(b) designvariable space

Fig. 8: Distribution of Pareto Solutions for Non-
Correspondence Area (Neighborhood : Design Variable
Space)

was set asη = 8 in eq. (1) andσ was 0.1. The visualization
results of the top 50 individuals with large indexes in each
case are shown in Fig. 10.

The fitness values and design variables of individual E and
F, G and H, I and J in Fig. 10(a),(b),(c) are shown in TABLE
6(a),(b),(c), respectively. Note thatV 1 and V 2 are cyclic,
so the difference between 2017/12/31 and 2017/1/1 is 1 day
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Table 5: fitness values and design variables of selected
individuals (C, D)

Normalized Value Actual Value
C D C D

Obj1 0.660 0.857 1801.06 1911.56
Obj2 0.226 0.061 6891.16 6452.99
Obj3 0.660 0.890 497.49 533.10
Obj4 0.156 0.694 1.938 5.689
Obj5 0.290 0.385 231.23 236.01
V 1 0.750 0.750 2017/10/1 2017/10/1
V 2 0.382 0.385 09:10:59 09:14:16
V 3 0.038 0.038 100 100
V 4 0.999 0.985 179.95 177.37
V 5 0.864 0.841 155.53 151.43

(a) µ1=0.04

(b) µ1=0.08

(c) µ1=0.33

Fig. 9: Value of Indexvi1 in eq. (3) for each Individual
(Neighborhood : Objective Space)

and that between 00:00:00 and 23:59:59 is 1 second. We can
see that the Pareto solutions having the desirable difference
in V 1 with similar fitness values could be extracted. In
the launch of a Rocket, due to some troubles, the day of
launch is often put off. Then, by the extraction of the area

E

F

(a) µ1=0.04

G

H

(b) µ1=0.08

I

J

(c) µ1=0.33

Fig. 10: Distribution of Individuals in the Objective Space

where the launching date is desirably different from other
individuals having similar fitness values and the selection
of a Pareto solution in this area, the launch of the rocket
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can becarried out on another date keeping the expecting
performance (fitness values).

Table 6: fitness values and design variables of selected
individuals (E, F, G, H, I, J)

　　　　 (a)µ1=0.04
Normalized Value Actual Value
E F E F

Obj1 0.879 0.932 1923.56 1953.71
Obj2 0.060 0.025 6449.80 6355.44
Obj3 0.886 0.968 532.34 545.1
Obj4 0.694 0.674 5.689 5.547
Obj5 0.761 0.728 254.73 253.07
V 1 0.767 0.807 2017/10/7 2017/10/22
V 2 0.368 0.351 08:49:58 08:25:57
V 3 0.003 0.009 90 92
V 4 0.996 1.000 179.37 180.00
V 5 0.848 0.842 152.68 151.64

　　 　　 (b)µ1=0.08
Normalized Value Actual Value
G H G H

Obj1 0.651 0.674 1796.35 1808.79
Obj2 0.283 0.282 7043.66 7040.11
Obj3 0.619 0.653 491.21 496.42
Obj4 0.128 0.102 1.742 1.556
Obj5 0.640 0.667 248.68 250.02
V 1 0.786 0.709 2017/10/14 2017/9/16
V 2 0.309 0.302 07:25:32 07:14:13
V 3 0 0 90 90
V 4 1.000 1.000 180.00 180.00
V 5 0.877 0.876 157.78 157.61

　　 　 　 (c)µ1=0.33
Normalized Value Actual Value
I J I J

Obj1 0.627 0.628 1782.43 1783.20
Obj2 0.231 0.177 6905.06 6761.41
Obj3 0.798 0.754 518.73 512.08
Obj4 0.337 0.368 3.200 3.413
Obj5 0.016 0.080 217.62 220.81
V 1 0.211 0.904 2017/3/19 2017/11/27
V 2 0.917 0.326 22:01:41 07:50:07
V 3 0.147 0.150 130 131
V 4 1.000 0.999 180.00 179.99
V 5 0.839 0.842 151.02 151.64

4. Conclusion
In this paper, we defined Non-Correspondence in Spread

between the objective space and the design variable
space. We proposed the quantitative index to extract Non-
Correspondence area in Spread. Moreover, this paper ex-
tended the index of non-correspondence to more practical
index, which allowed a designer to select the contributory
design variables or fitness functions and to define the dis-
tance function as the desirable difference. This paper applied
the proposed method to the trajectory designing optimiza-
tion problem known as DESTINY provided by JAXA and
analyzed the extracted Non-Correspondence area in Spread

in the obtained Pareto solutions. This paper showed that
the Pareto solutions having the desirable difference in the
launching dateV 1 with similar fitness values could be
extracted. For the future work, we will apply to other
problems with more objective functions and feedback the
defined index and the extracted knowledge into the search
and study Non-Correspondence in Linear Relationship.
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Abstract—In this paper, we propose a task scheduling algo-
rithm for multiprocessor systems with Turbo Boost and Hyper-
Threading technologies. The proposed algorithm minimizes the
total computation time taking account of dynamic changes of
the processing speed by the two technologies, in addition to
the network contention among the processors. We constructed
a clock speed model with which the changes of processing
speed with Turbo Boost and Hyper-threading can be estimated
for various processor usage patterns. We then constructed a
new scheduling algorithm that minimizes the total execution
time of a task graph considering network contention and the
two technologies. We evaluated the proposed algorithm by
simulations and experiments with a multi-processor system
consisting of 4 PCs. In the experiment, the proposed algorithm
produced a schedule that reduces the total execution time by
36% compared to conventional methods which are straightfor-
ward extensions of an existing method.

Keywords-Task scheduling algorithm, Multicore, Turbo
Boost, Hyper-Threading

I. INTRODUCTION

In recent years, multicore processors have been widely
used in various computing environments including data
centers and supercomputers. Since the produced heat by
the processors is limiting their clock speed, technologies
that change clock speed according to the temperature and
power consumption of the processor are employed in the
latest processors. Such technologies are used in the proces-
sors manufactured by Intel and AMD, and they are called
Turbo Boost and Turbo Core[1]. We refer to both of the
technologies by Turbo Boost, hereafter. Turbo Boost is a
technique for increasing the clock speed of some processor
cores within the thermal specification when other cores are
inactive and the temperature of the processor die is low.
Some processors also employ a technology called Hyper-
Threading[2] that enables the physical resources of one
physical processor to be shared between two or more logical
cores to improve the overall throughput.

Task scheduling methods are methods for assigning a
series of tasks to a parallel processing system. If we simply
apply existing task scheduling methods such as [3], [4],
[5] to a system consisting of multicore processors, many
tasks are likely to be assigned to a same multicore processor

because communication between cores on a same processor
die is much faster than communication between dies. In
this case, Turbo Boost cannot drastically increase the clock
speed of the cores since almost all of the processor cores
are active. In some cases, distributing tasks over different
dies yields a better schedule because of the boosted clock
speed. Thus, we need a scheduling algorithm that takes those
technologies into account in order to derive the optimal
schedule for systems with these technologies. There is diffi-
culty for some existing scheduling algorithms to consider
these technologies, since if tasks are scheduled by those
methods that assigns tasks one by one to each processor
core, the clock speed for executing the task can be slower
than the estimation at the time of assignment, since the clock
speed slows down as the subsequent tasks are assigned to
the other processors on the same die.

In this paper, we propose a new task scheduling method
that takes account of both Turbo Boost and Hyper-Threading
technologies and minimizes the processing time. The pro-
posed method takes a task graph specifying dependency
among tasks by a directed acyclic graph (DAG) and a
processor graph specifying the network topology among
available processors, and outputs a schedule which is an
assignment of a processor to each task. We constructed a
clock speed model for estimating the change of effective
processing speed of each core with Turbo Boost and Hyper-
Threading. We then constructed a new scheduling algorithm
that can more accurately estimate the effective clock speed
of each core, utilizing the proposed model.

In order to evaluate the proposed method, we conducted
simulations and experiments with actual processors. We
compared the proposed algorithm with two algorithms which
are extension of the Sinnen’s scheduling algorithm[6] that
takes account of network contention, and our clock speed
model is integrated in a straightforward way. As a result, our
method reduced the total processing time by up to 36% in
the experiments with a real system. The difference between
the scheduled processing time and the actual processing time
was 5% in average, and thus we confirmed the task schedul-
ing by our method is effective in the real environments.
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II. RELATED WORK

There are many kinds of task scheduling algorithms. In
this paper, we assume that task scheduling is assigning a
processor to each task, where the dependence of the tasks is
represented by a directed acyclic graph(DAG). The problem
to find the optimal schedule is NP-hard[6], and there are
many heuristic algorithms for the problems.

List scheduling is a classical task scheduling method that
assigns the processor that can finish each task to the task in
order of a given priority of the tasks. The priority can be
given by performing topological sorting on the dependence
graph of the tasks, for example. Sinnen et al. extended
the classical list scheduling algorithm, and proposed a new
method that takes account of the communication delay and
network contention[6]. This method assigns the input tasks
to the processors while bandwidth in communication paths
are reserved for each task so as to minimize the total
processing time.

Song et al. proposed a dynamic task scheduling method
that executes linear algebraic algorithms on multicore sys-
tems with shared or distributed memories. This method
scales well, but only applicable to specific tasks.

Jongsoo et al. proposed a task scheduling program called
Team scheduling that assigns stream programs to multi-
core processors [8]. Existing stream programs adjust data
transmission timings depending on the data size in the
given stream graph so as to efficiently utilize buffers of
the processors. This technique is called Amortize. However,
deadlock may occur when a large stream graph is input.
Team scheduling achieves deadlock-freeness by applying
Amortize to a part of the stream graph and suppressing
buffer utilization. Moreover, this method achieves better
throughput for the same buffer size as the existing methods.

Gotoda et al. proposed a task scheduling method which
minimizes recovery time from a single processor failure in
multicore processor environments[7]. This method is based
on the algorithm [6] proposed by Sinnen et al., and assigns
tasks to processors considering both network contentions and
recovery time in case of failure of a multicore processor, and
produces the optimal task schedule.

As far as we surveyed, there is no existing methods that
consider the changes of clock speed by Turbo Boost or
Hyper-Threading on a multicore processor system. Unlike
these existing methods mentioned above, we propose a new
method which targets the environments with a multicore
processor system with Turbo Boost and Hyper-Threading.
The proposed scheduling method minimizes the total execu-
tion time of the input task graph taking account of the two
technologies and network contention.

III. MODELING TURBO BOOST AND HYPER-THREADING

In this section, we briefly describe Turbo Boost and
Hyper-Threading technologies. The, we describe our model

for estimating effective clock speeds determined by the two
technologies.

A. Turbo Boost and Hyper-Threading

Turbo Boost is a technology for boosting the clock speed
for each core according to the computing load on the
processor die. It monitors the temperature and the electric
power consumed by the die and dynamically increase the
clock speed of some cores if other cores are not used[1].
In this paper, we assume that it determines the clock speed
only by the computing load of the all cores on the die.

Hyper Threading is a technology for sharing hardware
resources of a physical core among multiple logical cores[2].
When more than one threads are executed on a physical core,
the performance of the threads are lower than when only
one thread is executed on the physical core. We model this
change of execution speed by regarding the clock speed as
the index of execution speed at each core, and lowering this
speed index of each logical core according to the load on
the other logical cores. Hereafter, we call this speed index
effective clock speed.

B. Modeling

As mentioned above, Turbo Boost and Hyper-Threading
technologies can be modeled so that it automatically changes
the effective clock speed according to the kind of computa-
tional loads on each core. We also assume that the effective
clock speed is instantly changed according to the change of
core usage, in the course of task execution. It is also assumed
that each processor is in one of the following states: (1) idle,
(2) computation heavy, (3) memory access heavy, and (4) in-
between of (2) and (3).

In order to construct the model, we developed a program
that consists of two parts: the part that swaps two randomly
selected elements of an 80MB array, and a part that iter-
ates a simple loop staying in the L1 cache. The program
repeats executing these two parts in turn. We adjusted the
number of loops in the second part of the program, and
measured the time to execute this program on multiple cores
simultaneously. We specified the processor affinity to each
thread so that all threads are executed on the specified cores.
We calculated the effective clock speed from the measured
processing time.

We used a PC with Intel Core i7 3770T (2.5GHz, 4
physical processors, 8 logical processors, single socket),
16GB memory, Windows 7 (64bit), Java SE (1.6.0 21, 64bit).
We used Intel Turbo Boost monitor (Ver2.5) and CPU-Z
(Ver1.61.3) to measure the physical clock speed. We first
observed how the physical clock speed changes when the
number of active physical cores is changed. We show the
result of measurement in Table I. The left column shows
the processor state, where the 4 pairs represent the usage of
four physical processors and each pair like [2, 1] indicates
the usage of logical processors within the corresponding
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physical processor. The right column shows the clock speed
for the corresponding processor usage. The table shows that
the clock speed does not depend on the ratio of memory
access, but depends only on the number of active physical
cores.

In our proposed scheduling method, Hyper-Threading is
used only if tasks are already assigned to all physical
cores. Thus, we assume that when two logical threads are
running on a physical core, the effective clock speed only
depends on the ratio of memory access at each logical core.
We calculated the effective clock speed from the ratio of
execution time by each logical processor to the execution
time when one thread is executed on each physical core.
The results are shown in Table II.

We constructed a model for effective clock speed from the
results above, and we will determine the clock speed from
the usage of the processor at which task nodes are assigned
using this model.

IV. PROBLEM FORMULATION

In this section, we formulate the problem of task schedul-
ing taking account of Turbo Boost and Hyper-Threading
technologies. The symbols used in this paper is summarized
in Table.III.

The task scheduling is to find the schedule S that min-
imizes the total execution time lt(S) from the given task
graph G and processor graph N . A schedule is a tuple of
an assignment of a processor to each task, the starting and
finishing time of each task node, and the information of
bandwidth reservation on each processor link.

A task graph G is a DAG in which each node represents
a task to be performed. Each node in a task graph is called a
task node. The amount of computation to finish task node v
is denoted by Ccomp(v). A directed arc in the graph is called
a task link, and a task link from node va to vb indicates that

Table I: Effective clock speed with Turbo Boost

EffectiveProcessor states
clock speed

[ 2, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ] 3.7
[ 2, 1 ], [ 2, 1 ], [ 1, 1 ], [ 1, 1 ] 3.5
[ 2, 1 ], [ 2, 1 ], [ 2, 1 ], [ 1, 1 ] 3.3
[ 2, 1 ], [ 2, 1 ], [ 2, 1 ], [ 2, 1 ] 3.1
[ 3, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ] 3.7
[ 3, 1 ], [ 3, 1 ], [ 1, 1 ], [ 1, 1 ] 3.5
[ 3, 1 ], [ 3, 1 ], [ 3, 1 ], [ 1, 1 ] 3.3
[ 3, 1 ], [ 3, 1 ], [ 3, 1 ], [ 3, 1 ] 3.1
[ 4, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ] 3.7
[ 4, 1 ], [ 4, 1 ], [ 1, 1 ], [ 1, 1 ] 3.5
[ 4, 1 ], [ 4, 1 ], [ 4, 1 ], [ 1, 1 ] 3.3
[ 4, 1 ], [ 4, 1 ], [ 4, 1 ], [ 4, 1 ] 3.1
[ 1, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ] 2.5
[ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ] 2.6
[ 3, 3 ], [ 3, 3 ], [ 3, 3 ] [ 3, 3 ] 2.3
[ 4, 4 ], [ 4, 4 ], [ 4, 4 ], [ 4, 4 ] 2.5

Processor state: 1:idle, 2:computation heavy, 3:memory access heavy, 4:in-between
of 2 and 3

Figure 1: Example task graph

Figure 2: Example processor graph

task va must be completed before task vb begins. A task link
e also represents communication between two nodes, and the
amount of data transfer for this link is denoted Ccomm(e).
The set of all task nodes and the set of all task links are
denoted V and E, respectively. Fig. 1 shows an example of
a task graph consisting of 3 task nodes and 2 task links.

A processor graph is a graph that represents the network
topology between processors. A node with only one link is
called a processor node, that corresponds to one processor
core. A node with two or more links is called a switch. A
switch is not capable of executing a task but only relays
communication. An edge is called a processor link, and it
represents a bidirectional communication link between pro-
cessors and switches. One multicore processor is represented
by multiple processor nodes, a switch and processor links
connecting them. The set of all processor nodes and the set
of all processor links are denoted P and R, respectively.
freq(p, s) denotes a function that gives the effective clock
speed of processor p from the state s of all cores on the
same die. Fig. 2 shows an example of a processor graph
consisting of three processor cores and three switches, or
two multicore processors and a switch.

In this paper, we use a network contention model based
on the model proposed by Sinnen et al.[6], and we make
the following assumptions. When data transfer is performed
over network links between two processor nodes, due to
bandwidth limitation these network links cannot perform

Table II: Effective clock speed with Hyper-Threading

Processor Ratio of
states exec. times

Effective clock speed

[ 1 , 1 ] 1.0 2.5
[ 2 , 2 ] 0.84 2.6
[ 3 , 3 ] 0.76 2.3
[ 4 , 4 ] 0.79 2.5
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Table III: Symbols used in this paper

Symbol Meaning
V Set of all task nodes
E Set os all task links
P Set of all processor nodes
R Set of all processor links

lt(S) Completion time of the last task node in sched-
ule S

G Task graph
N Processor graph

Ccomp(v) Computation cost for task node v ∈ V
Ccomm(e) Communication cost for task link e ∈ E
freq(s) Effective clock speed determined from proces-

sor state s
ni Task node for the i-th task

w(v) Execution time for task node v
c(e) Communication time at task link e

proc(n) Processor assigned to task node n ∈ V
pred(ni) Set of all parent nodes of ni

other data transfers. We also assume the following conditions
are satisfied: if data are transferred through a series of
processor links, downstream links cannot start data transfer
before upstream links; communication inside a same die
finishes instantly; all processors on a same die share a
network interface that can be used to communicate with
devices outside the die; all communication links outside dies
have the same bandwidth. Data transfer corrensponding to
task link e over a communication link outside dies requires
Ccomm(e) length of time. One processor can execute only
one task at a time. A task node cannot be executed until
all execution of parent nodes and all corresponding data
transfers are finished. It takes Ccomp(v)/freq(p, s) length
of time for processor node p to finish execution of task node
v, where s is the state of all cores on the same die as p.

V. PROPOSED ALGORITHM

In this section, we explain our scheduling algorithm.
This scheduling problem is known as NP-Hard[6], and thus
we propose a heuristic algorithm considering both network
contention and change of clock speed with Turbo Boost and
Hyper-Threading technologies by extending the scheduling
algorithm proposed by Sinnen et al.[6]. We use the clock
speed model described in Section 3 for this purpose.

Algorithm 1 List scheduling
INPUT: Task graph G = (V,E, w, c) and processor graph
H = (P,R).

1: Sort nodes n ∈ V into list L, according to priority scheme
and precedence constraints.

2: for each n ∈ L do do
3: Find processor p ∈ P that allows earliest finish time of n.
4: Schedule n on p.
5: end for

Algorithm 2 Scheduling considering network contention
INPUT: Task graph G = (V,E, w, c) and processor graph
H = (P,R).

1: Sort nodes nj ∈ V into list L in descending order of bl,
according to precedence constraints.

2: for each n ∈ L do do
3: Find processor p ∈ P that allows earliest finish time of nj ,

taking account of network bandwidth usage.
4: for each ni ∈ pred(nj) in a definite order do
5: if proc(ni) 6= p then then
6: determine route R = [L1, L2, ..., Ll] from proc(ni)

to p.
7: schedule eij on R.
8: end if
9: end for

10: schedule nj on p.
11: end for
12: return the schedule.

Scheduling algorithms based on the list scheduling do not
perform well with systems where clock speeds of the proces-
sors are controlled by Turbo Boost or Hyper-Threading. This
is because the list scheduling assigns a processor to each task
node in turn, and it cannot know the effective clock speed
for each task during assignment, since the effective clock
speed is influenced by the execution of succeeding tasks.
The proposed method tentatively assigns processors to the
all succeeding tasks assuming that these succeeding tasks
are executed in a predetermined fixed clock speed. Then, it
estimates the execution time of the tasks by applying the
proposed model for the effective clock speed. Although this
execution time is calculated using the tentative schedule, we
regard this execution time as an approximation of the actual
execution time and make the schedule based on it.

Hereafter, we first explain the traditional list scheduling
algorithm, followed by the extension by Sinnen et al. for
considering network contention. Then, we give the details
of the proposed algorithm.

A. Existing Algorithms

The classical list scheduling algorithm is shown in Al-
gorithm 1. In the list scheduling, each task is assigned to
the processor that allows the earliest finish time of the task,
in descending order of bl, that is the length of remaining
schedule.

The algorithm proposed by Sinnen, et al. is shown in
Algorithm 2. Below, we give explanation for the pseudocode.

Line 2 to 11: Each task node nj ∈ L is assigned a processor
in order of the position in L.
Line 3: The processor assigned to nj is determined taking
account of network bandwidth usage. Reserved bandwidth
in line 7 is referred here.
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Algorithm 3 The proposed scheduling algorithm
INPUT: Task graph G = (V,E, vstart, Ccomp, Ccomm), pro-
cessor graph N = (P,R) and frequency model freq

1: Sprev = an empty schedule
2: Sort nodes in V into list L in descending order of the length

of succeeding tasks, according to precedence constraints.
3: for ni ∈ LFni is the first element in L do
4: Scur = an empty schedule, Tcur = ∞
5: for each pi ∈ P do
6: Scand = Sprev

7: for each preceding task nj of ni do
8: if pi is not assigned to nj on Scand then
9: Determine route r = [L1, L2, ..., Ll] from the

processor assigned to nj to pi
10: Reserve bandwidth Ccomm(the task link from nj to

ni) on route r in Scand

11: end if
12: end for
13: Calculate finishing time of ni including communication

time assuming that ni is executed on pi with the fixed
clock speed, and add the information of finishing time to
Scand

14: Schedule all unassigned tasks in Scand using Algorithm
2 and substitute the resulting schedule for S′

cand

15: Calculate execution time of each task node in S′
cand with

the proposed model for effective clock speed
16: if the total execution time of S′

cand < Tcur then
17: Scur = Scand, Tcur = the total execution time of

S′
cand

18: end if
19: end for
20: Remove ni from L
21: Sprev = Scur

22: end for
23: return Scur

Line 4 to 9: Bandwidth of eij is reserved for the network
route between the processor assigned to ni (which is the
parent node of nj) to the processor assigned to nj .

B. Scheduling Considering Frequency Change

The pseudo code for the proposed algorithm is shown
in Algorithm 3. In the algorithm, Sprev , Scur and Scand

retain portions of schedules in which only a part of the
all assignment is specified. The total execution time for
these incomplete schedules can be calculated by assigning
processors to the all unassigned tasks using algorithm 2,
and then applying our clock speed model. Sprev retains the
best incomplete schedule in which the all tasks prior to ni

are assigned, and other tasks are not assigned. Scur and
Tcur retain the current best incomplete schedule in which
ni and the prior tasks are assigned, and the corresponding
execution time, respectively. Below, we give explanation for
the pseudocode.

Line 3 to 22: A processor is assigned to each task node.
Line 5 to 19: Each processor pi is tentatively assigned to
the first task ni in list L so that the processor that achieves
the earliest finish time of the all tasks is found.

Line 7 to 13: Processor pi is assigned to task link ni.
Line 14: The all succeeding tasks after ni are scheduled
assuming that they are executed in a fixed clock speed.
Line 15: The total execution time for this schedule is
calculated using the proposed clock speed model.
Line 16 to 18: The best processor to be assigned to ni is
determined by the execution time.

VI. EVALUATION

In order to evaluate the efficiency of the schedule gen-
erated by the proposed method and the accuracy of the
proposed model for effective clock speed, we conducted
experiments using a real system and simulation-based com-
parisons.

A. Compared Methods

As we described in Section 2, we could not find an
existing task scheduling method considering Turbo Boost
or Hyper-Threading. In order to make fair comparisons,
we integrated our clock speed model into the Sinnen’s
scheduling algorithm in a straightforward way and made
two methods: SinnenPhysical that is a scheduling algorithm
that tries to assign only physical processors to the tasks,
and SinnenLogical that tries to assign all logical processors
to the tasks. These two methods are extended so that
they utilize the clock speed model when choosing the best
processor that allows the earliest finishing time of each task1.

As a preliminary experiment, we compared SinnenPhys-
ical and SinnenLogical with the original method proposed
by Sinnen et al. that does not consider the changes of
clock speed at all, and confirmed that SinnenPhysical and
SinnenLogical generate better schedules than the original
algorithm for our system configuration.

B. Configuration

We used a PC with Intel Core i7 3770T (2.5GHz, 4 phys-
ical processors, 8 logical processors, single socket), 16GB
memory, Windows 7 (64bit), and Intel 82579V Gigabit Eth-
ernet Controller as a computing node. The system consists
of four of these PCs connected with Gigabit Ethernet. We
implemented the programs to execute the scheduled tasks
using the standard TCP socket with Java SE (1.6.0 21, 64bit).
In order to eliminate the influence of the operating system,
we stopped the background tasks except the ones required
for continuing the minimum operations of the OS. We set
the threads’ affinities to each of processor cores so that each
task node is executed on the core specified by the schedule.
We tested the two real network topologies shown in Fig. 3.
For the simulation, we also tested a fully-connected network
topology. We used 420Mbps as the bandwidth of processor

1At Line 3 in Algorithm 2, the processor assigned to nj is determined
taking account of the two technologies. Only already assigned tasks are
considered to estimate the effective clock speed.
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Figure 3: Processor graphs used in evaluation

links outside the dies, that is obtained by measuring the
network bandwidth on the above system.

We used task graphs for Robot Control and Sparse Matrix
Solver from the Standard Task Graph Set[9], [10] in our
evaluation. The Sparse Matrix Solver has 98 nodes and 177
links and represents a sparse matrix solver of an electronic
circuit simulation generated by the OSCAR FORTRAN
compiler. This graph has relatively high level of parallelism.
The Robot Control has 90 nodes and 135 links. The Robot
Control task graph represents a parallel task for Newton-
Euler dynamic control calculation for the 6-degrees-of-
freedom Stanford manipulator. The Robot Control task has
lower level of parallelism compared to the Sparse Matrix
Solver. Since the ratio of computation and memory access
is not specified in these task graphs, we used the 4th state
of the processor load, which is in-between of computation
heavy and memory-access heavy states described in Section
3, for the all task nodes.

C. Efficiency of Generated Schedules

We evaluated the efficiency of generated schedules by
comparing the generated schedules with the proposed
method and the two comparison methods. We calculated the
execution time of generated schedules with simulation, and
measured the execution time on the real system by assigning
and executing tasks on the processors in the real system. We
performed simulations with the combinations of the two task
graphs and the three processor graphs. In the experiments,
we combined the two task graphs and the two processor
graphs except the fully-connected topology.

We compared the total execution time of the schedules
generated by the proposed method to the schedules generated
by the compared methods. The simulation results and the
experimental results are shown in Fig. 4 and 5, respectively.
These results show that the proposed method reduced the
total execution time by up to 43% in the simulation, and up
to 36% with the real system. We can see that the proposed
method has greater effect on the Sparse Matrix Solver task
than on the Robot Control task. This is because the Robot
Control task has less parallelism, and this limits the freedom
for scheduler to choose a processor for each task. Thus, the
algorithm has smaller freedom for controlling the generated

schedule. The results also show that our method has greater
effect on the tree-shaped or the star-shaped network topology
than the fully-connected topology. This is because the fully-
connected topology requires less communication time than
other two toplogies.

D. Accuracy of Effective Clock Speed Model

In order to evaluate the accuracy of the proposed model
for effective clock speed, we compared the total execution
time of the task graphs on the real system with the simulated
results. Fig. 6 and 7 show the results. In the experiment, the
error of the estimated execution time was no more than 7%,
and the average error was 4% . We also chose 20 random
task nodes from the graphs and compared the distribution of
the execution time for each of the nodes with the simulated
results. Fig. 7 shows the 90%-tiles of the measured execution
time with the simulated time. The maximum error was 16%
and the average error was 8.5%.

The difference between the results in the simulation and
the experiments is probably coming from the fluctuation
of network bandwidth and the processor load by the back-
ground tasks in the OS. However, the errors in the results
are not significant, and the proposed clock speed model is
sufficient for estimating the execution time of each task with
Turbo Boost and Hyper-Threading.

VII. CONCLUSION

In this paper, we formulated the problem for generating
task schedules minimizing the total execution time of task
graphs considering network contention and multicore pro-
cessors with Turbo Boost and Hyper-Threading technolo-
gies. We also modeled the two technologies so that the
effective processing speed of each core can be estimated.
Then, we developed a new task scheduling algorithm for
the problem. In the experiments for evaluation, the proposed
algorithm produced a schedule that is 36% faster than the
compared methods. Since the proposed method makes the
system finish execution of the tasks earlier, it also contributes
for saving power consumption of the whole system. As a
part of our future work, we are going to make our algorithm
capable of accepting multiple task graphs in real time.
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Figure 4: Simulation result
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Figure 5: Results with real devices
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Multiple Precision Integer Multiplication on GPUs

Koji Kitano and Noriyuki Fujimoto
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Abstract— This paper addresses multiple precision integer
multiplication on GPUs. In this paper, we propose a novel
data-structure named a product digit table and present
a GPU algorithm to perform the multiplication with the
product digit table. Experimental results on a 3.10 GHz
Intel Core i3-2100 CPU and an NVIDIA GeForce GTX480
GPU show that the proposed GPU algorithm respectively
runs over 71.4 times and 12.8 times faster than NTL library
and GMP library, two of common libraries for single thread
multiple precision arithmetic on CPUs. Another experiments
show also that the proposed GPU algorithm is faster than the
fastest existing GPU algorithm based on FFT multiplication
if bit lengths of given two multiple precision integers are
different.

Keywords: multiple precision integer, parallel multiplication,
GPGPU, CUDA

1. Introduction
Multiple precision integer arithmetic finds several applica-

tions, for example in primality test of a large number which
is important in public-key cryptography. There are many
works on multiplication that is of wide application of all
other multiple precision arithmetics. These representatives
include Karatsuba method [7], Toom-Cook method [19], 4-
way method [22], 5-way method [22], and Strassen FFT
multiplication [16]. Time complexities of these methods are
O(n1.585),O(n1.465), O(n1.404), and O(n1.365) respectively
where n is the number of bits of a multiplicand and a multi-
plier, but in the study [21], Zuras compares implementation
of these methods in C language and assembly language
on HP-9000/720, and reports that the naive O(n2) method
is the best for small numbers and that all naive methods
are faster than FFT multiplication which has advantage in
time complexity for large numbers. Finally, Zuras concludes
that FFT multiplication is not always the fastest even for
extremely large numbers (> 37,000,000 bits).

On the other hand, research on GPGPU (General-Purpose
computation on Graphics Processing Units) has much atten-
tion in recent years, and several works on multiple precision
integer multiplication with a GPU are known. The fastest
work of these existing works is the implementation [2] of
FFT multiplication on GPUs. This method puts multiple
precision integers into a 2393216 -ary number and com-
putes multiple precision integer multiplication by Karatsuba
method except that one digit × one digit is performed by
FFT multiplication. This method is fast if the bit lengths of

a multiplier and a multiplicand are the same and multiples
of 393216. However, it is significantly slowed down if the
bit lengths of a multiplier and a multiplicand are different
or not multiples of 393216, because in such a case given
two numbers are promoted to numbers of the bit length
that is the smallest multiple of 393216 not smaller than
the bit length of the larger number of the two numbers [2].
Moreover, currently required bit length in cryptology is a
few thousands.

In this paper, we propose a novel data-structure named a
product digit table and presents a GPU algorithm to perform
the multiplication with the product digit table. The proposed
method is different from the FFT multiplication in that there
is no need to promote given two numbers even if the bit
lengths of the two numbers are not the same. In addition,
since the proposed method represents numbers in 232 -ary,
efficiency loss is relatively low even for numbers of a few
thousand bits.

The remainder of this paper is organized as follows. In
Section 2, we briefly review existing algorithms for GPUs. In
Section 3, we present the proposed GPU algorithm in detail.
In Section 4, we show some experimental results. In Section
5, we give some concluding remarks and future works. Due
to the limited space, we illustrate neither the architecture nor
the programming of GPUs in this paper. Readers unfamiliar
with these are recommended the studies [4], [8], [13], [14],
[15].

2. Related Works
As far as we know, except below, there is no existing

research on multiple precision integer multiplication for
GPUs.

In the study [2], the authors improved their result in
the study [1], and implemented a method on CUDA such
that Karatsuba method divides the whole multiplication into
multiplications of smaller numbers which are performed by
Strassen FFT multiplication. Their experiments show up to
4.29 times speedup with a single core of a 2.93 GHz Intel
Core i7 870 and an NVIDIA GeForce GTX480 in integer
multiplication of length 255 Kbits to 24.512 Mbits.

In the study [6], the authors reported 0.8 to 2.9 times
speedup relative to CPU library mpFq [5] with SSE2 instruc-
tions in integer multiplication of length 160 to 384 bits for
a 3 GHz Intel Core2 Duo E8400 and an NVIDIA GeForce
9800GX2.

In the study [21], under the assumption that many inde-
pendent four arithmetic operations in multiple precision are

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

236 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



given, the authors proposed a multiple precision arithmetic
library which executes each operation with a single thread,
and report about 4 times speedup relative to CPU library
GNU MP [3] in 30720 integer multiplications of 2048 bits
× 2048 bits with a single core of a 2.80 GHz Intel Core i7
and an NVIDIA GeForce GTX280.

In the study [18], the authors implemented the modular
algorithm [9] which can execute in O(n) time a multipli-
cation of two numbers represented in the residue number
system, while transformation of an n word integer from and
to the residue number requires O(n2) time.

In the study [20], the authors reported about an optimiza-
tion of multiple precision integer multiplication of 1024 bits
× 1024 bits with Karatsuba method on CUDA.

In the study [12], the authors implemented a multiple
precision multiplication with FFT on CUDA and reported 10
times speedup, but the used CPU and GPU are not shown.

3. The Proposed Method
3.1 A Product Digit Table

We can compute an integer multiplication by manual cal-
culation as shown on the left side of Fig. 1. In the example,
the base is 10. We consider computing the multiplication
with a table as shown on the right side of Fig. 1. An element
of the table is a quotient or remainder when dividing by the
base a product of one digit of a multiplier and one digit of
a multiplicand. Therefore, we can independently compute
each element. For example, a white 2 on a black ground in
the table is a remainder of division of 8 × 4 by base 10,
and a white 4 on a black ground is a quotient of division of
5 × 9 by base 10. We can get the product by computing the
summation column by column in the table and propagating
the carries. We call such a table a product digit table. Fig. 2
shows a typical shape of a product digit table for a product
of a multiple precision integer A of a digits and a B of b
digits (a ≥ b). Each element only in gray-scaled area A1,
A2, or A3 has a value. Fig. 2 implies that a product digit
table has the following properties.

Fig. 1: Manual calculation of a multiplication and the
corresponding product digit table

Fig. 2: Shape of the product digit table in case of a digits
× b digits

• The number of the columns in A1(A3) is equal to b.
• The number of the rows of a column in A1(A3) is

monotonically increasing (decreasing) two by two if the
columns are seen from left to right.

• The number of the columns in A2 equals a−b, and the
number of the rows in A2 is exactly 2b.

When A and B in a base BASE are stored respectively
in an array A[0.. a-1] and an array B[0.. b-1] (A[0] and
B[0] are the least significant digits), the algorithm in Fig. 3
generates a product digit table of A × B on a 2D array T.
Each element of T that is not assigned a value is don’t care.
Fig. 4 shows an example of a product digit table that is made
up by the algorithm if A is a five digit number and B is a
three digit number.

3.2 Data Structure
Each element of a product digit table is computed based

on a product of one digit of A and one digit of B. We
set BASE=232 to execute the computation of the product as
efficiently as possible. This setting makes every product fit
in 64 bits (unsigned long long type on GPUs). Therefore, we
can compute each quotient by 32 bits shift to the right for a
product of length 64 bits and each remainder by computing
one digit × one digit as in 32 bits ( unsigned int type ).

In the proposed GPU algorithm, we basically allocate
a thread to each column of a product digit table so that
both summation computation for each column and carry
propagation can be done in parallel. However, if we directly
use a product digit table in Fig. 2, the amount of computation
and memory access would be imbalanced among threads
allocated to the columns in A1 or A3. Hence, we represent
a product digit table as a 2D array of size a× (2b) as shown
in Fig. 5, rather than a 2D array of size (a + b) × (2b)
as shown in Fig. 2. In the rest of this paper, for a product
digit table in the load balanced form, R1 is defined as the
rectangle that corresponds to A2 and R2 is defined as the
rectangle that corresponds to the two triangles A1 and A3

(See Fig. 2 and Fig. 5). Fig. 6 shows an example of a
product digit table in the load balanced form. Notice that the
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Fig. 3: An algorithm for constructing a product digit table

Fig. 4: An example of a product digit table generated by the algorithm in Fig. 3 (in case that A is a five digit number and
B is a three digit number)

order of the elements in each column never affects the result
of a multiplication in question. Hence, we can arbitrarily
arrange the elements within their column. R2 in Fig. 5 has
the following properties.

• The horizontal length is b, and the vertical length is 2b.
• A border line that splits R2 into A1 and A3 lies between

the 2α-th row and the (2α + 1)-th row in the α-th
column from the right.

• In the β-th row, B[β/2] is referred in all columns, and
in the α-th column, A[α] is referred at the top row
and the indices of the referred elements of A cyclically
increase one by one every two rows.

3.3 Algorithm
We divide R2 into tiles of width BLOCK_SIZE elements

and height (BLOCK_SIZE × 2) elements as shown in Fig. 7.
In the proposed algorithm, each thread block (block for
short) has BLOCK_SIZE threads and is allocated to a tile
so that each thread computes a summation of a column of
the tile.

The tile can be categorized into three types: tiles with A1

elements only, A3 elements only, and the both elements. We
respectively refer these types as T1, T3, and T13. In a tile of
the type T13, a conditional branch is needed and therefore
the execution efficiency is lower than that of the type T1 or
the type T3. However, the slow down for a whole program
is negligible because the number of tiles of T13 is much
smaller than the total number of tiles of T1 and tiles of T3.
In fact, the parallelism of a block is sustained in a tile of T1

and a tile of T3.
Each block accesses BLOCK_SIZE × 2 elements of

A and BLOCK_SIZE elements of B. This enables each
thread to compute the column summation only with values
on shared memory. Device memory accesses to load the
elements into shared memory can be coalesced, because each
block refers contiguous elements of A and B.

3.4 Detail of Implementation
We illustrate what computation is to be performed for R2.

Regardless of the type of a tile, the first thing for a block
to perform is loading necessary elements on device memory

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

238 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



Fig. 5: A product digit table in load balanced form (general
case)

into shared memory. Then, each thread of a block computes
a summation of elements in the allocated column col. Each
thread of a block that computes T13 separately computes two
summations of A1 elements and A3 elements. Then, each
thread adds the summation of A1 elements to index col of
an array C to store the answer, and adds the summation of
A3 elements to index col+a of C. We call a CUDA C kernel
function for rectangle R2 mul_Bint_a.

Next, we explain a kernel function for rectangle R1. This
function is identical to the function for rectangle R2 except
that indices to refer A, B, and C are changed. We call a
CUDA C kernel function for rectangle R1 mul_Bint_b.

If the number of digits is enough large, almost all elements
of C are likely to exceed the base 232 at this stage with high
probability. Thus, we perform carry propagation to make all
elements smaller than the base. We divide this processing
into two steps for efficiency. The first step is to separate each
sum in C into the least significant digit and the carry. We
call a CUDA C kernel function for the first step mul_Bint_c.
Note that the used base 232 is large enough to limit each
carry at most one digit. Therefore, we can regard all the
least significant digits form a multiple precision integer with
base 232. Similarly, all the carries form a multiple precision
integer. Hence, in the second step, we add these two multiple
precision integers.

We explain the detailed implementation of the second step.
In general, a multiple precision integer sum involves carry
propagation, which is essentially sequential. In the worst
case, carry propagates from the least significant digit to
the most significant digit, which requires the computation
time such that a single thread computes the whole sum.
Our implementation is essentially the same as "carry skip
adder" [10] that is one of implementations of a full adder in
hardware. However, we devised our implementation as below
so that addition is quickly done if only short propagations

are occurred. Our implementation utilizes a fact that the
possibility that at least one carry arises is very small because
the base is 232. Fig. 8 illustrates the idea behind our
implementation, but here the used base is 10 for simplicity.

At first, from given two arrays A and B we generate
in parallel an array I to store carry information as shown
in Fig. 8. The carry information is 1 if the sum of the
corresponding two elements is larger than the base, 2 if it is
equivalent to the base-1 (it is 9 in Fig. 8), or 0 if it is neither
of the above two. Next, for every element whose carry
information is 2, in parallel we change 2 to 1 (0) if its right
neighbor is 1 (0). Notice that 2 such that its right neighbor
is also 2 is not changed. We repeat this parallel processing
until all 2s are disappeared. Then, we compute and store the
sum total of three elements: the corresponding two elements
of given two multiple precision integers and the final carry
information of the two elements. Finally, we change each
element of the array to a remainder of it divided by the base.
The changed array is the multiple precision integer sum. This
process needs barrier synchronization among blocks, so we
achieve this by dividing the whole process into three kernel
functions mul_Bint_d, mul_Bint_e and mul_Bint_f. These
functions are executed only once in the order of mul_Bint_d,
mul_Bint_e and mul_Bint_f.

4. Experiments
In this section, we compare the proposed method with

NTL [17] and GMP [3], two representatives of existing
multiple precision arithmetic libraries for a single CPU
thread, and also with Emmart et al.’s FFT multiplication on
GPUs [2] that is the fastest of existing studies on multiple
precision integer multiplication on GPUs.

For each test, 3.10 GHz Intel Core i3-2100 and an
NVIDIA GeForce GTX480 was used. Basically, we used 64
bit Windows7 Professional SP1 as an OS and Visual Studio
2008 Professional as a compiler, but only for GMP programs
we used 64 bit Linux (ubuntu 11.04) as an OS and g++
4.5.2 as a compiler because GMP does not officially support
Windows. We used CUDA Ver 3.2 and display driver Ver
285.62. We used 48KB shared memory. The used versions of
NTL and GMP are respectively 5.5.2 and 5.0.4. The NTL
does not use SIMD instructions such as SSE instructions,
but the GMP uses SSE2 instructions and MMX instructions.
Both NTL and GMP are single-threaded libraries. Multi-
threaded versions of them do not exist yet. Parallelizing them
seems to be hard work. Therefore, the CPU programs use a
single core only.

At first, we show a comparison between the proposed
method and NTL. Table 1 (Table 2) summarizes execution
times of a multiplication with the proposed method (NTL)
for two multiple precision integers of length 8 Kbits to
256 Kbits. Table 3 shows the corresponding speedup ratios.
These tables indicate that the proposed method is faster than
NTL in all cases and the maximum speedup is over 70 times.
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Fig. 6: An example of a product digit table in the load balanced form (reconstructed from the table in Fig. 4)

Fig. 7: Thread block allocation for a product digit table in
the balanced form

Next, we show a comparison with GMP that is known to
be faster than NTL in general. Table 4 summarizes execution
times of a multiplication for the same multiple precision
integers as the integers in Table 1 and Table 2. Table 5 shows
the corresponding speedup ratios. Although these results are
inferior to the results for NTL, we can see over 10 times
speedup.

In addition, we conducted a speed comparison with Em-
mart et al.’s FFT multiplication on GPUs. Emmart et al.
reported 255 Kbits × 255 Kbits with GTX480 takes 0.207
msec. Under the almost same condition of 256 Kbits × 256
Kbits, the proposed method takes 0.5922 msec as shown in
Table 1. Hence, if bit lengths of given two multiple precision
integers are the same, Emmart et al.’s FFT multiplication is
about three times faster than the proposed method. However,
if bit lengths of given two multiple precision integers are
different, the proposed method is faster than Emmart et al.’s
FFT multiplication. For example, consider the case of 256
Kbits × 8 Kbits. As noted in Section 1, Emmart et al.’s
implementation is based on FFT of 383 Kbits. Thus, values
smaller than 383 Kbits must be promoted to 383 Kbits to be
multiplied as 383 Kbits × 383 Kbits. In fact, they reported
383 Kbits × 383 Kbits with GTX480 takes 0.200 msec, but
255 Kbits × 255 Kbits takes 0.207 msec due to additional
time for promotion. So in their implementation, the speed
in 256 Kbits × 8 Kbits is at least the speed in 383 Kbits
× 383 Kbits. In contrast to this, as shown in Table 1, the
execution time of the proposed algorithm is shortened if
either a multiplier or a multiplicand is smaller than the other.

Fig. 8: An algorithm for computing a multiple precision
integer sum

For example, the execution time of a multiplication of 256
Kbits × 8 Kbits is about 13 times faster than a multiplication
of 256 Kbits × 256 Kbits. In summary, in case of 256 Kbits
× 8 Kbits, the proposed method is about 4.57 times faster
than Emmart et al.’s GPU implementation (0.207 msec /
0.0453 msec).

5. Conclusion
We have proposed a novel data structure named a product

digit table, and we have presented an algorithm that fast
executes a multiple precision integer multiplication on GPUs
based on the product digit table. The proposed method
is based on manual calculation, so in case of a multiple
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Table 1: Execution times of A × B with the proposed algorithm on a GPU (msec) (Data transfer time between a GPU and
a CPU is not included)

HHHHHB
A

8Kbits 16Kbits 32Kbits 64Kbits 128Kbits 256Kbits

8Kbits 0.0211 0.0290 0.0292 0.0311 0.0364 0.0453
16Kbits 0.0290 0.0212 0.0301 0.0334 0.0426 0.0607
32Kbits 0.0292 0.0301 0.0248 0.0395 0.0570 0.0934
64Kbits 0.0311 0.0334 0.0395 0.0530 0.0946 0.1671
128Kbits 0.0364 0.0426 0.0570 0.0946 0.1610 0.3110
256Kbits 0.0453 0.0607 0.0934 0.1671 0.3110 0.5922

Table 2: Execution times of A×B with NTL library on a CPU (msec)
HHHHHB

A
8Kbits 16Kbits 32Kbits 64Kbits 128Kbits 256Kbits

8Kbits 0.094 0.179 0.357 0.695 1.388 2.799
16Kbits 0.179 0.273 0.560 1.031 2.049 4.059
32Kbits 0.357 0.560 0.777 1.574 3.068 6.666
64Kbits 0.695 1.031 1.574 2.464 4.590 9.455
128Kbits 1.388 2.049 3.068 4.590 6.989 13.972
256Kbits 2.799 4.059 6.666 9.455 13.972 20.766

Table 3: Speedup ratios of the proposed algorithm to NTL
HHHHHB

A
8Kbits 16Kbits 32Kbits 64Kbits 128Kbits 256Kbits

8Kbits 4.5 6.2 12.2 22.3 38.1 61.8
16Kbits 6.2 12.9 18.6 30.9 48.1 66.9
32Kbits 12.2 18.6 31.3 39.8 53.8 71.4
64Kbits 22.3 30.9 39.8 46.5 48.5 56.6
128Kbits 38.1 48.1 53.8 48.5 43.4 44.9
256Kbits 61.8 66.9 71.4 56.6 44.9 35.1

Table 4: Execution times of A×B with GMP on a CPU (msec)
HHHHHB

A
8Kbits 16Kbits 32Kbits 64Kbits 128Kbits 256Kbits

8Kbits 0.035 0.053 0.089 0.158 0.284 0.552
16Kbits 0.053 0.074 0.117 0.215 0.396 0.779
32Kbits 0.089 0.117 0.165 0.286 0.543 1.072
64Kbits 0.158 0.215 0.286 0.385 0.748 1.486
128Kbits 0.284 0.396 0.543 0.748 0.997 1.912
256Kbits 0.552 0.779 1.072 1.486 1.912 2.602

precision integer multiplication of the same bit length, our
algorithm runs slower than FFT multiplication. However,
if bit lengths of given two multiple precision integers are
different and their bit numbers are not extremely large, our
algorithm is better than FFT multiplication.

Future works include further optimization of our imple-
mentation, in particular for integers of length a few thousand
bits intended for the real problem including public-key

cryptography.
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Abstract— In the framework of floating codes, a block of
flash cells stores data in the form of binary numbers. The
fundamental approach in constructing a coding scheme is by
assigning cells to bits. However, the way to assign cells to
bits is not simple, as the frequency of changes of the value
of the bits is not known. This makes it difficult to partition
the cells in a block in proportion to the frequency of the
changes of bit value where the most updated bit has the
most number of cells assigned to it. In this study, we discuss
a novel coding scheme to dynamically assign cells to bits. At
the beginning, there is a pre-determined assignment of cells
to bits, but the coding scheme allows reassignment of cells if
needed. The proposed coding scheme gives a very low write
deficiency. A novel idea is discussed in this manuscript.

Keywords: flash code, flash memory, phoenix flash code, binary-
indexed, absorb, revive

1. Introduction
Flash memory devices are currently constrained by the

write asymmetry property. It is easy to increase the charge
in one flash cell, i.e., perform a cell write, but decreasing
a charge in a cell is not possible except by emptying the
charges simultaneously in all cells of a block. This operation
is referred to as a block erasure.

A block erasure is not only time-consuming but also
causes some damage to the device. It has been estimated
that a block of cells can only accommodate about 104

to 105 block erasures before it becomes unreliable [6]. It
is therefore desirable to delay block erasures as much as
possible, by designing good coding schemes, in order to
extend the lifespan of flash memory devices.

A flash code is used for decoding and encoding digital
information in a flash memory. The performance of a flash
code is normally evaluated by measuring its write deficiency.
This is computed by taking the difference between the
maximum possible and the actual number of cell writes. A
lower write deficiency is clearly preferred.

One of the most popular flash codes in literature is the
Index-less Indexed Flash Code (ILIFC). This flash code
partitions a block of cells into sub-blocks, called slices. Each
ILIFC slice has exactly k cells, where k is the number of
bits of the data represented by a block. Encoding is designed
so that it is possible to infer both the bit index (that a slice

represents) and the bit-value by just reading the cell-values
within the given slice [5].

Binary Index Flash Code (BIFC) introduced the partition-
ing of a flash code into smaller slices. Unlike ILIFC which
uses k cells per slice, BIFC uses slices of size s = O(log k).
The drawback in BIFC is that there is an overhead write
deficiency of s − 2 for every slice. Generally, however, the
BIFC flash code has a better write deficiency than the ILIFC
when k is sufficiently large [9].

More recently, the Dual Mode Flash Code (DMFC) was
introduced, combining the BIFC with a Simple Segmentation
coding scheme. Experimental results using DMFC show that
it has a significantly lower write deficiency than any of the
previously designed flash codes in the average case [11].

In this study, we improve the DMFC further by using
Phoenix Flash Code (PFC), a recently developed coding
scheme that allows reassignment of cells to bits.[2] In the
original version of PFC, the reassignment of cells contains
a slight overhead cost which contribute to O(n) to the write
deficiency. We introduce a modified version of the reas-
signment to remove such overhead. The detailed discussion
of PFC is in Sect. 3. Afterwards, we combine PFC, with
the modified reassignment, with the BIFC. We refer to this
latter flash code as PFCB and will be discussed in Sect. 4.
Computer simulations show that this flash code is superior,
even when compared to the DMFC and this is shown in
Sect. 5.

2. Preliminaries
A block of flash memory is a sequence of n cells. Each

cell stores an integer value from Aq = {0, . . . , q − 1}, and
this value is referred to as the cell-level. A cell has three
type states. A cell with a value of 0 or q − 1 is said to
be empty or full, respectively. If a cell is neither empty nor
full, then that cell is said to be active. All cells within a
block are ordered. The value of the i-th cell is denoted by ci
where 0 ≤ i < n. A tuple (c0, . . . , cn−1) ∈ An

q represents a
possible state of a block. For two states C = (c0, . . . , cn−1)
and C ′ = (c′0, . . . , c

′
n−1), we write C � C ′ if ci � c′i for

all 0 ≤ i < n, and C ≺ C ′ if C � C ′ and C 6= C ′. A
state can transit from C to C ′ if and only if C ≺ C ′, as
state transition is accomplished through cell writes. Similar
to individual cells, a block has three type of states. A block
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is empty if all cells within the block are empty. A block is
full if all the cells within a block are full. Otherwise, the
block is active. The notion of “states”, “≺” and “type of
states” are extended to subsets of cells in a natural manner
[3], [10]. A block of flash memory cells stores a k-bit data
D = (d0, . . . , dk−1). The data D is updated through a write
operation which flips the value of a single bit in D.

A flash code F = (E ,D) contains two functions which are
used to update and retrieve the data stored within a block.
The decode function D : An

q → (d0, . . . , dk−1) retrieves the
value of the data stored in the block of flash memory cells.
The encode function E : {0, . . . , k − 1} ×An

q → An
q ∪ {E}

is applied to the block for every write operation. The encode
function first attempts to accommodate the write operation
by applying cell writes to the block following a pre-specified
procedure. If successful, this operation produces a new block
state C ′ = E(i, C) where D(C) and D(C ′) only differ in
the i-th bit. Otherwise, the encode function returns a block
erasure E.

Since a block has n cells and each cell has a maximum
of q − 1 levels, then in the ideal case a flash code can
accommodate each write operation with one cell write.
Hence, the maximum number of write operations by the ideal
flash code is n(q − 1). This expression is used in a metric
for the performance of flash codes. Specifically, the write
deficiency of a flash code F, denoted by δ(F ), is computed
using the formula δ(F ) = n(q−1)− t, where t is the actual
number of write operations accommodated by the flash code
F . A write deficiency of zero is the ideal case.

3. Phoenix Flash Code
Phoenix Flash Code (PFC) is a very recently developed

flash code. Its encoding process is somewhat similar to
stacked segment encoding (SS encoding)[11]. This is es-
pecially true when there is an equal distribution of write
operations among the k bits of data. PFC starts with dividing
the block into smaller groups called segments. A segment
Si = (ci,0, . . . , ci,k−1) where ci,j = cik+j , 0 ≤ i < n

k .
Each segment has k cells and is cyclic in the context of
the cell adjacency. This implies that the left adjacent cell
of ci,0 is ci,k−1 and the reverse also holds true. For each
active segment Si, cell ci,j is initially assigned to dj where
0 ≤ j < k. The bit-value of dj is computed using the parity
of the cell assigned to it. An example is shown in Fig. ??
using segment S1.

Following the encoding process of the SS encoding, it
can be observed that the assigning of cells to bits is not
flexible enough to accommodate non-uniform distribution of
write operations. PFC solves this problem by incorporating
two operations, called absorption and revival. These two
operations are used only when one cell is about to become
full in the current write operation. In all the other scenarios,
PFC acts similar to SS encoding.

Fig. 1: Mapping a PFC segment to data bit-values.

The first operation, absorption, is used to allow some cell
to take over the adjacent cell within a segment. Originally,
cell ci,j in segment Si is assigned to dj . If the absorption
operation is applied to ci,j , then the right-adjacent cell ci,j′ ,
where j′ = (j + 1) mod k, is reassigned from dj′ to dj .
We can view the result of the operation as dj′ has either
been reassigned to a cell in the nearest available segment
Si+x(x is some positive integer) or has become unassigned.
Both are acceptable if we assume that an unassigned bit has
a value of 0. Consider the segment in Fig. 1. Observe that
in the next write operation for d4, the encoding process will
increase the cell-value of c1,4 which makes the cell full. This
will invoke the absorption operation and reassign c1,5 to d4
as shown in Fig. 2.

The absorption operation is incomplete on its own. Al-
though we cannot observe any error in the previous example,
this is only because cell ci,5, referred to as the adsorbate,
has an even cell-value. This causes no problem because
absorbing a cell with even parity does not affect the value
of the bit assigned to the absorber. In the case when the
adsorbate has an odd parity, the absorption operation by
itself will cause problems with data integrity. To remedy
this conundrum, we also invoke the revival operation. This
operation is performed to preserve data integrity by applying
a cell write to “revive” the bit previously assigned to the
adsorbate.

We will discuss two approaches for the revival operation.
We will follow the same symbols and notation as used in
the discussion of the absorption operation. The first is a
simple and straightforward approach and does not require
any change to the absorption operation. In the event when the
revival operation is invoked, the operation simply increases
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Fig. 2: Updating d4 causes the (even parity) d5 to be
absorbed.

Fig. 3: Applying the first approach of the revival operation
to d2.

the cell-value of ci,j′ and ci+x,j′ by 1 each. Take note that
cell ci+x,j′ of segment Si+x is the cell to which dj′ is newly
assigned. This approach is the same as the one discussed in
[2]. An example can be seen in Fig. 3.

We can observe that if a segment needs only one more
cell write to make it full, then only one bit is assigned to all
of the cells of that segment. We can further observe that in a
full segment, the bit assigned to the cells of the full segment
has a bit-value of 0, assuming k is even. This implies that
from the perspective of the decoding function, we can ignore
full segments as they have zero significance to the value of
the data. The same goes for empty segments. Thus, we will
only focus on active segments. Furthermore, a bit can only be
assigned in one segment at a time. The core of the decoding
function is to determine which cells are absorbed and which
are not. This will enable us to know to which bit the cells
are assigned. With the descriptions of the absorption and
revival operations mentioned above, we can state that a cell
is independent, i.e. not absorbed, if its left adjacent cell is not
full. Once assignment of cells to bits is known, computing
the bit-value is simply done by computing the parity of the
appropriate cell-values.

There are three factors to the write deficiency. The first is
the unused cells that were not enough to form one segment.
There will be exactly n mod k such cells, which is at most
k − 1. The second factor is the extra two cell writes used
for each revival operation. In a segment, we can apply at
most k− 1 revival operations. Overall, this contributes to at
most O(n) to the write deficiency. The third factor is from

Fig. 4: Applying the second approach of the revival operation
to d2.

the active segments left upon block erasure. There can be
at most k − 1 active segments. A loose upper bound to its
contribution to write deficiency is O(k2q). Hence the total
write deficiency is at most O(n+ k2q+ kq) = O(n+ k2q).

As we can see from the above discussion, the first ap-
proach for the revival operation comes with an overhead cost
that is at most O(n). Similar with BIFC, this is an issue when
n is significantly larger than k and q. The second approach
was designed to remove this overhead. Some modifications
on the absorption operation and decode procedure are needed
to successfully replace the previous version of the revival
operation.

As mentioned before, the revival operation is only invoked
when the adsorbate cell, i.e., ci,j′ as stated in the previous
discussion, has an odd parity. The second approach starts
with delaying the cell write to ci,j , the absorber cell, that
would have rendered it full. Instead, it directly applies a cell
write to ci+x,j′ . In doing so, it transfers the data information
of dj′ from ci,j′ to ci+x,j′ and causes ci,j′ to be implicitly
absorbed by ci,j . This saves the flash code from applying the
extra two cell writes as stated in the first approach. Hence
removing the overhead cost. The second approach of the
revival operation is illustrated in Fig. 4.

The second approach of the revival operation requires
some modification to the decoding procedure. Specifically,
the way to determine if a cell is either independent or
absorbed. It is not enough to merely check if the adjacent
cell to the right is full because with the second approach,
there is now a possibility to have cells that are absorbed that
is adjacent to non-full cell on the former’s right. However, a
cell can only still be assigned to one segment at a time. Let
the set T = {Sa1

, . . . , Sar
} be the set of active segments in

state of the block C. We first process the rightmost segment
Sar using the same rule to determine between absorbed and
independent cells as the one in the first approach. This is
allowed because no revival operation has been applied to
Sar

otherwise there should exist an active segment Sar+1
,

which in turn negates that Sr is the rightmost active segment
in block C.

Starting from Sar−1
to Sa1

, we still follow the same rule
to determine between absorbed and independent cells, except
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Fig. 5: Visual representation of PFCB and BIFC partitions.

we amend one more rule. For every active cell cai,j in
segment Sai that is labelled as independent by the previous
rule, the amended rule dictates that if dj is already assigned
to a cell or cells in Sax

, x > i, then cai,j is labelled
as absorbed. Afterwards, we can proceed similarly as the
decoding procedure in the first approach and compute of the
bit-value of each bit of the data.

By removing the overhead cost of using the revival opera-
tion, we are able to reduce the upper bound write deficiency
of PFC from O(n + k2q) to O(k2q). This performance is
comparable to the first phase encoding of ILIFC [5].

4. Combining PFC and BIFC
In the previous section, the implementation of the second

approach removed one of the factors of write deficiency of
PFC. In this section, we will discuss a method to diminish
the effect of the first factor, the cells that was never used as a
segment, to the write deficiency. In our modified flash code
we combine PFC and BIFC [11], and refer to this as the
Phoenix Flash Code with BIFC (PFCB). We first divide the
block into two major partitions. In the left partition, we fit as
many PFC segments as possible, i.e., m = bn/kc segments.
The (possibly empty) right partition is then allocated for the
BIFC slices. See Fig. 5 for this. This implies that BIFC only
uses the cells which are not enough to form a segment, thus
addressing the write deficiency due to the n mod k cells
in the original Phoenix Flash Code. Note that if there are
further remainder cells that cannot form a BIFC slice, these
cells are incorporated in the PFC partition.

Whenever it is possible to update some i-th bit using the
PFC partition, the appropriate PFC segment(s) is updated.
Otherwise an appropriate BIFC slice is updated. Only when
both options are not possible does a block erasure occur.
When n is significantly larger than k, the portion for
BIFC may seem insignificant in relation to the entire block.
However, there are still more than enough cells to form many
slices to continue the encoding process than it would have
been without the BIFC partition.

5. Results
We simulated the performance of different flash codes and

compared the resulting write deficiencies. In the simulations,
the block size was fixed at 2048 cells and the maximum
charge of a cell was set to 7. The bit size k was varied, and

�

����

����

����

����

�����

�����

� ��� ��� ��� ��� ����

����

����

����

�
��
��
��
�
��
	�
�


	�

��	


Fig. 6: Simulation results using uniform distribution.
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Fig. 7: Simulation results using one bit dominating 50% of
the updates.

for each k value, 30 experiments were run, and the average
write deficiencies were reported.

We tested the performance of the flash codes in two
different distributions. In the uniform distribution, each bit
has an equal probability of 1/k of being updated. We first
investigate the improvements brought about by modifying
the revival operation of the original PFC to incorporate the
second approach and also the improvements brought about
by incorporating the BIFC partition. Fig. 6 and 7 clearly
illustrate the significant improvements to the original PFC.
We then compare the PFCB with other flash codes and the
results shown in Fig. 8 indicates its superiority, even against
the previous best DMFC. As a side note, the write deficiency
graphs of ILIFC and BIFC each shows a sharp increase at
some k value. This can be attributed to the fact that at the
specific k value, the number of bits in the data is larger
than the maximum number of possible slices that may be
assigned. Thus, there is at least one bit which cannot be
assigned to a slice (after the slices have been assigned to
the other bits), and this causes a block erasure to be called
upon first update for that bit.

We also test the performance of the PFCB against other
flash codes in a non-uniform distribution. Here 1 bit has 0.50
probability of being updated, while the rest of the other bits
have a uniform 0.5/(k − 1) probability of being updated.
In this distribution, the proposed flash code is even more
significantly superior as shown in Fig. 9.
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Fig. 8: Simulation results using uniform distribution.

Fig. 9: Simulation results using one bit dominating 50% of
the updates.

6. Conclusion
In this study, we propose a new flash code that combines

the Phoenix Flash Code (PFC) and the Binary Indexed
Flash Code (BIFC). Simulation results indicate that it has a
significantly better write deficiency than existing flash codes
in literature. Generally, a better write deficiency leads to a
longer lifespan for flash memory devices.

It would be interesting to investigate other techniques for
lowering the write deficiency of flash codes, by perhaps
developing new operations. Future studies can also explore
other ways of combining two or more flash codes, and
evaluating the resulting performance.
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Abstract— This paper describes CILIX, a compact and
powerful implementation of a CIL virtual machine work-
ing on resource-poor wireless sensor nodes. CILIX can
process CIL programs on a device that has such limited
computational resources as an 8-bit/16-bit CPU, 32-KB
program memory, and 4-KB RAM. It provides many useful
functions for a sensor node, including an I/O manager
with UDP, FAT 32, thread control, and dynamic program
replacement. For developing software on sensor nodes using
CILIX, developers can chose programming languages from
C#, C++/CLI, Visual Basic, J++, F#, and the many other
languages supported by the .NET Framework.

1. Introduction
A process virtual machine, which enables portability by

abstracting each device and operating system, also presents
a standard programming interface across a range of target
platforms [1]. This mechanism reduces the cost of de-
veloping a program that works on various sensor devices
with different platforms. Currently, Java Virtual Machine
(JVM) and Virtual Execution System (VES) for Common
Intermediate Language (CIL) are the two most popular
process virtual machines used on personal computers. In
this paper, we denote an implementation of VES as CIL-
VM. Several JVMs have been implemented on resource-poor
sensor devices. For example, SimpleRTJ [2] and Darjeeling
[3] provide the execution environment for Java code on small
sensor devices that have an 8-bit/16-bit CPU, 2- to 4-KB
RAM, and 32- to 128-KB program memory. Due to these
existing JVMs, we can develop software for small sensor
nodes in the powerful Java development environment. JVM
only supports Java, so developers cannot choose any other
programming languages.

On the other hand, CIL-VM can execute programs de-
veloped in various programming languages, for instance,
J++, C#, Visual Basic, and C++/CLI, F#. In other words,
a developer can choose her favorite language in which to
develop software on a device with CIL-VM. Two imple-
mentations of CIL-VM are available to execute programs on
small computer devices. The more popular one is Common
Language Runtime (CLR) by Microsoft, which provides
CLR as a runtime system of CIL included in the .NET Micro

Framework (NMF/SPOT) for such small computer devices
as mobile phones, smartphones, and industrial embedded
computers that have a 32-bit CPU and 64-KB RAM. The
other is presented in the Mono open source project. Mono’s
CIL-VM works on various small computer devices that
have Linux, a 32-bit CPU, large RAM, and large program
memory. Each implementation requires a 32-bit CPU and
over 64-KB RAM to work; however, most sensor devices
have only an 8- to 16-bit CPU, 2- to 4-KB RAM, and 32-
to 64-KB program memory. It is important to reduce the
RAM size for sensor devices because it increases both the
cost to implement hardware devices and their physical size.

Thus, to provide an executable CIL system for small
sensor devices, we designed CILIX, which requires only an
8- to 16-bit CPU, 4-KB RAM, and 32-KB program memory.
In this paper, we describe the detailed technical issues for
designing and implementing such small devices.

In the design of CILIX architecture, we focus on the
following three requirements:

1) Compatibility: CILIX must have high compatibility
with the existing implementations of CLR and Mono
virtual machines.

2) Functionality: CILIX must provide the necessary func-
tions for wireless sensor devices.

3) Memory-Saving: For porting on small memory de-
vices, CILIX’s program size should be much smaller
than existing CIL-VMs. Moreover, we introduce a
mechanism to reduce the size of the CIL program
stored in the memory.

In general, strong compatibility and functionality increase
the program size of the runtime system. Our main challenge
is to develop techniques to reduce the required program
memory without any deterioration of compatibility and func-
tionality.

The fully compatible CIL-VM described in ECMA 335
[4] has many functions not used in CLR, which is included
in the .NET Framework.1 For example,sleepingfunctions
increase the program size. In our first approach to reducing
program memory, we omit them in our designed VM after
we investigate the necessity of every function described

1These functions may be supported in the future or perhaps Microsoft
just added as many functions as possible.
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in ECMA 355. In the second approach, we identify the
functions that require large program size, but that are used
only for limited purposes. It is impossible for small resource-
poor devices to provide all the functions of the full version
CIL-VM described in ECMA 355 [4] because the full
version of CIL-VM is designed for rich computer devices
that have a 32-bit CPU, large RAM, program memory, and
various I/O devices. To develop a CIL-VM with reason-
able compatibility, we checked all the functions in CIL-
VM presented by ECMA 355 and the number of program
codes generated by both the compilercsc.exe in the
.NET Framework and thegmcs command provided by the
Mono project. We carefully chose functions that are not
implemented on CILIX from the viewpoint that they are
very rarely used for small sensor devices. For example,
functions to execute unmanaged code are available for using
existing native libraries such asWin32API.dll, but small
sensor devices have no such libraries. Therefore, we do not
support any functions that execute unmanaged code on a
sensor device. The details and the reasons for our choices
of functions are described in Section 2.4. Section 3 presents
information to implement a CIL-VM that has substantial
compatibility to the existing CIL-VMs.

We also introduce a mechanism called a Metadata Pre-
Processor (MPP) to reduce the size of the CIL program
to be executed on a sensor derive. The large CIL program
also consumes memory space on a device, because the CIL
program code must be stored on the program memory. The
PE (.exe) file that includes the CIL program code has some
redundant and unused data in the runtime. Our implemented
MPP removes such unused data and compresses the redun-
dant data.

We implemented CILIX on ATMega128L (8-bit CPU,
4-KB RAM, 128-KB program memory), MSP430, (16-bit
CPU, 4-KB RAM, 32-KB program memory), and TWE-001
(32-bit CPU, 128-KB RAM, 128-KB program memory). To
check both the size of the program memory and the com-
pression ratio of the program code by MPP, we developed
several programs for encoding, data compression, numerical
treatment, sorting, and so on. Moreover, we compared the
processing time and the size of the used memory on our
implemented CILIX with existing virtual machines in CLR
and Mono. As a result of these experiments, we show that
CILIX can execute CIL program code for practical usage on
several small sensor devices that have limited computational
resources.

2. Requirements and Design
As mentioned in Section 1, we designed CILIX to meet

three requirements: having high compatibility with existing
CIL-VM; providing available functions to work on a wireless
sensor device; and reducing both the size of CILIX and
the CIL program stored on ROM or flash memory. In this

Fig. 1: CILIX Architecture

section, we show the CILIX architecture after explaining our
three requirements.

2.1 Compatibility
The virtual machine brings a standardization of envi-

ronments to develop software by abstracting the diverse
platforms of sensor devices. In other words, compatibility
with existing virtual machines is one of the most important
requirements in porting a virtual machine to a new platform.
Therefore, we designed CILIX as a highly compatible VM
that can execute a CIL program (.exe file) compiled by
existing compilers, such ascsc.exe provided by Microsoft
andgmcs provided in the Mono project. Even though CILIX
has high compatibility with existing VMs, it is difficult to
implement a fully compatible VM on a small sensor device
that has only limited computational resources. To achieve
both high compatibility and porting onto a resource-poor
device, we carefully removed the unsuitable functions that
are too expensive to implement on a sensor device.

2.2 Functionality
The CIL-VM defined in ECMA 335 is designed as a

simple virtual 32-bit stack-based processing unit, similar to
JVM. The CIL-VM only has such essential functions as
number calculation, transferring data on the memory, and
controlling the executed program. In general, to support
practical functions, for example, I/O management, threading,
and file systems, developers implement these functions as
a class library. To archive both the reduction of the size
of CILIX and to provide useful functions for developing
program code on a sensor device, we implemented the
following three significant functions as an embedded class
library in CILIX:

1) Dynamic program relocator
2) Interfaces for typical I/O devices (sensors and wireless

communication devices)
3) Multi-threading controller
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These functionsare supported by most existing middle-
ware for small sensor devices. We implemented them as a
class library that has compatibility with the .NET Framework
class library. For example, we implemented the embedded
Thread class to support the multi-threading mechanism.
Our implementedThread class also has methodsrun(),
stop(), wait(), and so on.

Each method provides the same function as the method
implemented in theThread class, which is included in the
.NET Framework class library.

2.3 Memory-Saving

Reducing memory is the most significant technical issue
to introduce virtual machines into limited-resource devices.
Increasing the size of the logical memory, such as EEPROM,
flash memory, and RAM, increases the physical size of the
device and its price. In other words, we can use a small,
low-price sensor device to reduce the program size.

We determined the minimum hardware requirements for
the device, which has 4-KB RAM and 32-KB program
memory (EEPROM and/or flash memory). As mentioned in
Section 1, our required minimum hardware is smaller than
most existing sensor devices. The price of the minimum 8-
16-bit device, which has 4-KB RAM and 32-KB program
memory, is lower than $5.Richer 8-/16-bit devices than
our minimum requirements provide little price advantage
for 32-bit devices. Therefore, we chose the above minimum
hardware requirements.

2.4 CILIX Architecture

The CLI specifications are defined in ECMA-335 [4][5].2

ECMA-335 has four partitions, I–IV, each of which has
independent page numbers. In this paper, the following
notation, “ECMA P-X Y P,” means pageY in partitionX
of ECMA-335. For example, ECMA P-II 183 P means page
183 in partition II, and ECMA P-XS.Y means sectionY
in partitionX.

The CILIX runtime system has the following four runtime
modules:

• Executer: loads and executes CIL program data from
EEPROM or flash memory.

• Process Manager: controls the start-up and the stop-
ping of the virtual module and also has a function to
dynamically replace the program data on the memory.

• Platform-independent I/O Manager: provides a method
to access I/O devices and only includes program code
that is independent from device architecture, such as
processing string data, conversion of data types, and so
on.

2We recommend referring toThe Common Language Infrastructure
Annotated Standard[5] as a technical document for CIL-VM. It has many
helpful annotations to the original ECMA-335.

• Platform-dependent I/O Manager: provides a method
to access physical I/O devices and includes device-
dependent program code.

Figure 1 shows the runtime system architecture of our
designed CILIX. CILIX is composed by runtime modules
and a Metadata Pre-Processor (MPP), which compresses the
size of the CIL program data (exe* file) MPP is an
independent module from the runtime system that can reduce
the total size of the CIL program data by removing unused
program code from aexe *

3. Implementation
This section describes the implementation of CILIX. We

show the information for the implementation of CIL-VM,
which has substantial compatibility with existing runtime
systems, before we explain the non-CLI modules to provide
convenient functions for wireless sensor devices. For the
I/O control module, we only describe the essential ideas to
implement it.

3.1 Substantial Subset of CLI
As mentioned in the previous section, ECMA defines

the CLI specifications, but existing compilerscsc.exe
and gmcs do not generate all the CIL operations, the
metadata tables, and the signatures described in ECMA.
To reduce the program size of the runtime system, we im-
plemented CILIX as a substantially compatible CIL virtual
machine without functions for supporting such unused data.
We extracted theminimum indispensableinformation from
ECMA to implement CILIX, which can execute any CIL
program code generated bycsc.exe and gmcs without
unsupported functions, as explained in the previous section.
To obtain information, we investigated a number of.exe
files generated by existing compilers for C#, C++/CLI, and
Visual Basic.

In the rest of this subsection, we describe the information
to implement CILIX.This information is available for devel-
opers who want to implement another CIL virtual machine.

3.2 Process Management Module
This module, which has several important functions for

controlling a process on a sensor device like a small em-
bedded operating system, provides these functions: process
initialization, multi-thread control, dynamic program reloca-
tion, and restoring from an exception. For the initializing
process, the module allocates memory for the program and
loads the data used in the program onto the runtime memory
from the program memory. Next we describe the other
functions.

3.2.1 Dynamic Program Relocator

CILIX provides a function to change a CIL program to
execute by relocating the program code on the program
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memory. The Program Relocator can read program code
from a MicroSD card or a remote server by wireless com-
munication to put the read data into the program memory
(flash memory).

The relocation process is very simple. When we use the
wireless communication method for relocation, we must
send a special packet to inform the next packet including
the new program code. If the I/O manager of the wireless
device finds the spatial packet, the manager informs the
Process Manager who stops the program’s execution before
the Relocator starts to work. The program code is transferred
as a set of UDP packets next to the special packet. We
describe UDP-based communication in the next subsection.
After the Relocator retrieves the program code from the
buffer in the I/O manager, the Relocator puts the program
code into the program memory. Finally, the Process Manager
initializes and starts the new program.

For MicroSD cards, we put them into a MicroSD card
slot. When the I/O Manager of the SD Card (SPI) finds
a new MicroSD card, the Manager checks a file named
/program.hex based on the FAT32 format. If the Man-
ager finds the program, it informs the Process Manager who
performs the same processes as for using a wireless device.

3.2.2 Thread Controller

A typical process on a sensor node is a combination of
a program to read a value from a sensor in an interval and
a program to send a set of read values to the server. In
this case, we want to concurrently execute two programs
on a sensor device. CILIX supports a multi-thread control
mechanism, which is available for such uses. The Thread
Controller of CILIX provides simple concurrent processing
in a sensor device. Each thread has an independent heap area
and a buffer to back up the data in the managed area. CILIX
has a memory space for the managed area of the current
thread. This memory space stores the global variables used
in the runtime.

To exchange the current thread with a suspended thread,
CILIX moves all the data in the managed area into the
current thread’s buffer after CILIX stops to execute the
current thread. Next, it moves all the data in the buffer in
the suspended thread and switches to the heap area. Finally,
it executes a new current thread with the heap area and
manages all the thread’s data.

The context switching interval can be given by the de-
veloper. As a default setting parameter, CILIX switches the
thread every 160 opcodes.3 In our implementation, CILIX
can manage any number of threads as long as the device has
memory space.

To maintain compatibility with the .NET Framework,
we implement three embedded classes: System.Threading.-

3Note that we only give this value through our experiments to execute a
number of practical programs on sensor devices.

Monitor, System.Threading.Thread, and System.Threading.-
ThreadStat.

3.2.3 Restoring from Exception

When an exception occurs and notry/catch block
catches it, CILIX must process the restoring from the
exception. If the device has a process management system
such as an operating system, the system recovers the un-
caught exception. On small devices without such a recovery
system, CILIX recovers the exception. CILIX provides two
alternative methods; the runtime system restarts the program
in the first method, and the runtime system halts the process
and waits for the program code sent from the server.

3.3 I/O Control Module
A small sensor device has various types of I/O devices,

for example, thermometers, acceleration sensors, UART, SD
cards, and radio frequency devices for wireless communi-
cation, LEDs, and LCDs. In general, developers must write
specific program code for each individual device. To abstract
I/O devices, we introduce a UDP-based interface in the
design of an I/O control module. CILIX allows us to access
each I/O device with UDP packets.

Our design offers the following three benefits:
1) Selecting a device with a port number: to change the

device to the access mode, a developer only changes
the port number related to the device.

2) Emulation of a device as a UDP program on a PC: we
can build an I/O device as a program with a UDP port
on a PC for debugging.

3) Concentration of device-dependent code insend and
recv: any CIL program can only access an I/O device
through thesend andrecv methods. In other words,
all the program code, which depends on each I/O
device, is gathered into these methods.

CILIX supports reading the/program.hex file from
FAT32 sectors on SPI devices. We only suppose the usage
of SPI devices to transfer a CIL program file from a PC to
a small device. CILIX does not currently support reading
other files or writing data onto an SPI device because we
must add too much code to support those functions. For
reading a program file, CILIX does not use UDP packets
to improve the time to load program code in the memory.
The runtime system automatically checks the SPI device to
determine whether it has a program file to load during the
runtime system’s initial process.

4. ICT Application for Agriculture
In this section, we show an application systems using our

designed virtual machine.
To improve flower yields, we built a remote environmental

monitoring system using our 17 sensor nodes in two green-
houses from July to December in 2012. This application
system consists of the following three sub-systems (Fig. 2):
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Fig. 2: Environmental monitoring system deployed in greenhouses

Table 1: Middleware specifications for wireless sensor devices

Name Type Language Program relocatable
TinyOS OS nesC, TinyScript (Java, C#) yes
Smart-Its Library C yes
PAVENET OS C yes (IrDA)
Ubiquitous Chip OS ECA rules yes
BTnodes OS C/C++ yes (Bluetooth)
Nano-RK OS C no
SimpleRTJ VM Java no
Darjeeling VM Java yes
Sun Spot VM Java yes
Mate VM bytecode yes
ASVM VM TinyScript, motlle, and TinySQL yes
VM* VM Java yes
NMF VM+OS C#, VB.NET, Managed C++ yes
Cilix VM C#, VB.NET, Managed C++ yes

Table 2: Hardware requirements of middleware for wireless sensor devices (minimum hardware requirements of each
middleware.)

Name CPU Bit of CPU ROM RAM
TinyOS Atmega128L (MICA Mote) 8bit 128KB+EEPROM4KB 4K
Smart-Its PIC18F6720 16bit 128KB + EEPROM 1KB 4KB
PAVENET PIC18F452 (U-cube) 16bit 32KB + EEPROM 256B 4KB
Ubiquitous Chip PIC16F873 14bit 4KB + EEPROM 128B 192B
BTnodes Atmega128 8bit 128KB + EEPROM 4KB 4KB
Nano-RK Atmega128 (Fire Fly) 8bit 128KB + EEPROM 4BKB +

SROM (64KB+180K)
4KB

SimpleRTJ Atmega128, ARM, H8 8/16/32 bit 14-36KB 0.2KB
Darjeeling Atmega128, MPS430 8/16 bit 128KB 4-10KB
Sun Spot ARM920T 32bit 4MB 512KB
Mate Atmega128L (Mote) 8bit 128KB+EEPROM4KB 4KB
ASVM Atmega128L (Mote) 8bit 128KB+EEPROM4KB 4KB
VM* Atmega128L (Mote) 8bit 128KB+EEPROM4KB + ex-

tra FLASH 512KB
4KB

NMF ARM7/9/Cortex M3, ADI
BlackFin

32bit 256KB 64K

Cilix ATmega128, MSP430 8/16/32bit 32KB 4KB

1) Wirelesssensor network: gathers sensor data in green-
houses.

2) Translator: receives sensor data from the sensor net-

work and sends them to the server by a 3G/4G
network.

3) Sensor data server: stores and retrieves sensor data.
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The key system is the wireless sensor network that consists
of TWE-001-based wireless sensor nodes. Each sensor node,
which has the CIL program of our implemented virtual
machine, obtains data from each sensor by the CIL program.
The size of the compiled CIL program (exe file) is 16 KB,
but our MPP compresses it to 4 KB. At the beginning of
this experience, the measurement period was one minute on
all the sensor nodes, but later we often changed the period
(1-10 minutes) to optimize the balance between energy
consumption and the value of the data on each sensor.
Several times we also rewrote the program to change the
routing protocol and the data compression algorithm to fit
the sensor network. In the modification process, we used
a function for a dynamic program relocation with wireless
communication to reduce the cost of rewriting the program
on each sensor node deployed in a large greenhouse. Our
CIL virtual machine reduces the cost of program develop-
ment because many existing Windows programmers have
mastered how to develop applications for sensors network
for a short period.

5. Related Work
In this section, we describe such previous proposed mid-

dleware as operating systems and virtual machines and
explain the position of our implemented CILIX in them.
Table 1 and 2 show the existing middleware systems and
virtual machines.

The middleware for small sensor nodes can be classified
into two types of software. The first is operating systems,
such as TinyOS[6], Smart-Its[7], PAVENET[8], Ubiquitous
Chip[9], BTnodes[10], and Nano-RK[11]. The second is
virtual machines, such as Darjeeling[3], SimpleRTJ[2], Sun
Spot[12], Maté[13], ASVM[14], and VM*[15]. Several sys-
tems present both functions; for example, the .NET Micro
Framework (NMF) [16] includes both a virtual machine and
an operating system. We focus on the cost of developing
programs on a sensor node for each proposed system.

TinyOS is one of the most common operating systems for
developing a program on a wireless sensor device. It pro-
vides necC and TinyScript as the programming languages,
even though they are not so popular for developing programs
for resource-rich computer devices. The programs developed
in the Ubiquitous Chip are described as a small set of simple
ECA rules. However, the developers must be familiar with
the techniques to write a program with event-driven rule-
based languages. Smart-Its presents libraries to develop a
program on a PIC device with C language. Several operating
systems only allow C language for program development.
For instance, BTnode provides an environment to develop
a program on a sensor device with Bluetooth, PAVENET
supports a function for real-time hardware processing on a
small device, and Nano-RK can be used for developing a
program to process data on a sensor node in real time. To

develop a program on a sensor device, we must use a specific
programming language for each operating system.

Virtual machines can be classified into two types of
systems: a subset system of Java Virtual Machine (JVM)
and one with an original language (not Java). Maté[13] has
a non-Java virtual machine, which can execute a program on
TinyOS. The internal language of this virtual machine has
a set of 24convenientoperation codes for wireless sensor
devices. For example, it has a function to retrieve data from
a sensor device with only one-byte operation code, which
enables us to reduce the size of the program code. ASVM,
another non-Java virtual machine for TinyOS, allows us to
customize the set of operation codes. The original virtual
machine achieves both powerful functions and a method to
reduce the size of the program code; however, we do not
choose a programming language to develop software on a
sensor device.

On the other hand, there are several subsets of JVM, such
as SimpleRTJ, VM*, Sun Spot, and Darjeeling. To execute
a Java program on a limited-resource device, SimpleRTJ
provides a mechanism to pack and compress both the
runtime system and the Java program code into a small
program module. Darjeeling presents a program converter
from original Java byte code to compressed byte code.
Since Darjeeling also provides a virtual machine to execute
compressed Java byte code, it enables us to execute a
Java program on a resource-poor device. VM* , which is
a virtual machine implemented on a MOTE device, reduces
the program code by the following two mechanisms. The
first removes unused code from the.class file, and the
second selects a minimum set of modules to execute Java
byte code. Sun Spot presents a virtual machine to execute
Java byte code without any conversion; however, it requires
a rich device to execute a program. Every virtual machine
has several implementations for 8-bit, 16-bit, and/or 32-bit
CPUs. Each virtual machine allows us to develop a program
only with Java programming language.

As mentioned, most existing middlewares limit the en-
vironment to develop a program on a sensor device. On
the other hand, CIL-VM can execute programs written in
several programming languages, including C#, C++/CLI,
J++, Visual Basic, and F#. The .NET Micro Framework
(NMF) provides a runtime system for a 32-bit CPU, but it
cannot support 16-/8-bit CPUs. Because small sensor devices
usually have an 8-/16-bit CPU, a developer cannot use it to
develop programs on them. Since our CILIX can execute a
CIL program on such a limited-resource device with an 8-
/16-bit CPU, we can develop a program with many different
programming languages.

6. Conclusions
This paper presented the design and implementation of

CILIX, which can work on an 8-/16-bit CPU, 4-KB RAM,
and 32-KB program memory with reasonable compatibility
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to existing CIL-VMs. We implemented CILIX on three
devices, ATmega128L, MSP430, and TWE-001, and exper-
imentally evaluated the performance of our implemented
CILIX with them. We showed that CILIX can execute CIL
program code with practical processing times on each device
with limited resources. We hope our research leads to the
development of another CIL-VM.
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Abstract - The purpose of this paper is to re-examine the 
analysis of Ishijima et al. [2], providing a more comprehensive 
analysis on the sentiment of the Japanese economy that appears 
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1 Introduction 
  Sentiment analysis is gaining increasing interest in both 
academia and businesses. As the sentiment invisibly reflects the 
atmosphere of economic activities and the psychology of 
economic agents, analyzing the sentiment helps us understand 
the economy and security markets in a more sophisticated way. 
With such a conception, Ishijima et al. [2] analyzed the 
sentiment towards the Japanese economy that might appear in 
daily news articles. In fact, they created an index that accounts 
for the frequency of occurrence of words that affirmatively or 
negatively describe the current economic situation. Articles 
were taken from the Nikkei, a popular business newspaper in 
Japan. They then performed statistical analysis to examine 
correlations between the sentiment index and Tokyo Stock 
Exchange prices. Interestingly, they concluded that the index 
significantly predicts stock prices of three days in advance. 
 The purpose of this paper is to re-examine the analysis of 
Ishijima et al. [2], providing a more comprehensive analysis on 
the sentiment of the Japanese economy that appears on the 
Nikkei articles. To this end, we extend their analysis in two 
dimensions: One is to expand data coverage, and the other is to 
create variations of the original sentiment index.  
(1) Data that covers 29-year-horizon: 
 In their study, Ishijima et al. [2] only covered a period of 
five years that ranges from January 2007 to September 2012. In 
contrast, we work on a longer sample period that covers years 
from March 1984 to September 2012. On a yearly basis, we 
examine the predictability of stock prices by our sentiment 
indexes.  
(2) Variations of sentiment indexes: 

 We reconsider the methodology of creating index and 
newly propose four indexes. The detail of our methodology is 
the following: 
 
Scoring process 
 We quantify the sentiment along one-dimensional 
semantic axis; that is from negative to positive feelings. For 
every single word that appears in the Nikkei, we match it to the 
prescribed semantic dictionary developed by Takamura [3]. If 
it matches, we record the score paired with the word that 
represents how much it associates the negative feeling with the 
Japanese people. In this scoring process, there are two aspects 
that we can deal with. One is about how to score on each of 
matched words and the other is about how far we will cover the 
Nikkei pages ‒ just headlines or entire set of articles. We will 
elaborate on each of these aspects.  
 
Scoring method 
 The semantic dictionary (Takamura [3]) provides, to each 
of contained words, the score that ranges from -1 to 1. The score 
shows the closer the score becomes to -1, the more negative 
feeling people associates the word with, and vice versa. We 
then exploit the score in two ways: Using the raw score or 
rounding to the nearest integer score that is either +1 or -1. We 
call the former scoring “real-valued” and the latter “integer-
valued.” In the latter integer-valued case, we round to -1 if the 
raw score ranges between -1 and 0, and otherwise +1.  
 
Coverage of source in the Nikkei 
 Then we summed up these scores over the following two 
sources: One is limited to headlines, the other covers the entire 
set of articles. We call the former coverage “Headlines Only” 
and the latter “Entire Set of Articles.” These two ways of 
counting scores make us understand how important the 
sentiment exhibited in headlines is in predicting the stock prices, 
as comparing the stock price predictability of sentiment in the 
entire set of articles. 
 With the above-mentioned methodology, we can have 
two scoring methods and two extents of coverage in the Nikkei. 
It results in four ways to create the sentiment index. While, in 
Ishijima et al. [2], they only created and examined one of four 
sentiment indexes; that is the integer-valued article sentiment 
index in our category. 
 The rest of this paper is organized as follows. Section 2 
elaborates on how to create sentiment indexes. Section 3 builds 
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our models. Section 4 implements an empirical analyzes in the 
Japanese stock markets. Section 5 concludes the paper. 

2 Creating Sentiment Indexes 
Source: the coverage of pages to pick words 
 Every page in newspapers is comprised of pairs of 
headlines and articles. The place where the word appears either 
in headlines or in articles might affect the impact of how much 
the reader will invoke positive or negative sentiment on that 
word. In this aspect, we strictly distinguish the words in articles 
from the words in headlines. We clarify on this by introducing 
some notations. 
 In the newspapers delivered at day 𝑡𝑡 , we have 𝑛𝑛𝑡𝑡

(𝐻𝐻) 
headlines and 𝑛𝑛𝑡𝑡

(𝐴𝐴)  articles. Each headline and article are 
denoted by 𝐻𝐻𝑖𝑖,𝑡𝑡 �𝑖𝑖 = 1,⋯ ,𝑛𝑛𝑡𝑡

(𝐻𝐻)�  and 𝐴𝐴𝑙𝑙,𝑡𝑡 �𝑙𝑙 = 1,⋯ ,𝑛𝑛𝑡𝑡
(𝐴𝐴)� . 

Each headline and article have 𝑛𝑛𝑖𝑖,𝑡𝑡
(𝐻𝐻)  and 𝑛𝑛𝑙𝑙,𝑡𝑡

(𝐴𝐴)  words, 
respectively. The words in headline 𝐻𝐻𝑖𝑖,𝑡𝑡  and article 𝐴𝐴𝑙𝑙,𝑡𝑡  are 
denoted by 𝑊𝑊𝑖𝑖𝑖𝑖,𝑡𝑡

(𝐻𝐻) �𝑗𝑗 = 1,⋯ ,𝑛𝑛𝑖𝑖,𝑡𝑡
(𝐻𝐻)�  and 𝑊𝑊𝑙𝑙𝑙𝑙,𝑡𝑡

(𝐴𝐴)  �𝑚𝑚 =
1,⋯ ,𝑛𝑛𝑙𝑙,𝑡𝑡

(𝐴𝐴)�, respectively. 
 At this point, we introduce the aggregate notation to 
represent whichever the word that comprises either headlines 
or articles. This enables us easier to articulate how to quantify 
the sentiment in the discussion that will follow. The coverage 
of pages to pick words is limited to either headlines or articles 
and is denoted by 𝒢𝒢 ≔ {𝐻𝐻,𝐴𝐴} . We simply call 𝒢𝒢  as the 
“source.” We then let 𝐺𝐺 ∈ 𝒢𝒢  to show either headline 𝐻𝐻  or 
article 𝐴𝐴 .Then in the newspaper delivered at day 𝑡𝑡 , 𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑡𝑡

(𝐺𝐺) 
denotes the 𝑗𝑗-th word �𝑗𝑗 = 1,⋯ ,𝑛𝑛𝑖𝑖,𝑡𝑡

(𝐺𝐺)� that comprises the 𝑖𝑖-th 
source 𝐺𝐺𝑖𝑖,𝑡𝑡 �𝑖𝑖 = 1,⋯ ,𝑛𝑛𝑡𝑡

(𝐺𝐺)�. 
 
Semantic dictionary 
 The semantic dictionary (Takamura, [3]) is denoted by 
𝒟𝒟 ≔ ��𝐷𝐷𝑘𝑘 , 𝑆𝑆(𝐷𝐷𝑘𝑘)��𝑘𝑘 = 1⋯𝐾𝐾� . That is, the dictionary 
comprises pairs of word and its semantic score that ranges from 
-1 to +1. Regarding the semantic score, the closer to -1 (or +1) 
the score becomes, the more negative (or positive) feeling the 
word invokes to the Japanese people.  
 
Semantic index: two methods to quantify the positive or 
negative feelings 
 We define the indicator function to count if the word that 
appears in the source matches one of listed words in the 
dictionary.  

 𝐼𝐼𝑖𝑖𝑖𝑖,𝑡𝑡
(𝐺𝐺)(𝑘𝑘) ≔ �1 �if 𝑊𝑊𝑖𝑖𝑖𝑖,𝑡𝑡

(𝐺𝐺) matches 𝐷𝐷𝑘𝑘�
0 (otherwise)

 (1)  

In the aspects of how to score the positive or negative feelings, 
we introduce two methods to create the sentiment indexes. 
 
(1) Real-valued sentiment index 
 The first way is to exploit the semantic score 𝑆𝑆𝑘𝑘 = 𝑆𝑆(𝐷𝐷𝑘𝑘) 
that is assigned to the listed word 𝐷𝐷𝑘𝑘. We define this first way 
as the “real-valued sentiment index:” 

 𝑥𝑥𝑡𝑡
(𝐺𝐺,𝑅𝑅) ≔���𝐼𝐼𝑖𝑖𝑖𝑖,𝑡𝑡

(𝐺𝐺)(𝑘𝑘) ⋅ 𝑆𝑆𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝑛𝑛𝑖𝑖,𝑡𝑡
(𝐺𝐺)

𝑖𝑖=1

𝑛𝑛𝑡𝑡
(𝐺𝐺)

𝑖𝑖=1

 (2)  

For the source 𝐺𝐺 = 𝐻𝐻 that the coverage of pages to pick words 
is limited to headlines, the real-valued sentiment index is given 
by 𝑥𝑥𝑡𝑡

(𝐺𝐺,𝑅𝑅) = 𝑥𝑥𝑡𝑡
(𝐻𝐻,𝑅𝑅). In the same way, for the source of 𝐺𝐺 = 𝐴𝐴 

(articles), the real-valued sentiment index is given by 𝑥𝑥𝑡𝑡
(𝐺𝐺,𝑅𝑅) =

𝑥𝑥𝑡𝑡
(𝐴𝐴,𝑅𝑅). 

 
(2) Integer-valued sentiment index 
 The second way is to round the semantic score 𝑆𝑆𝑘𝑘 to the 
nearest binary integer that is either -1 or +1. Introducing the 
integer variable for each of semantics scores: 

 𝐽𝐽𝑘𝑘 ≔ �+1 (if 0 < 𝑆𝑆𝑘𝑘 ≤ 1)
−1 (if − 1 ≤ 𝑆𝑆𝑘𝑘 < 0) (3)  

We then define the second way as “integer-valued sentiment 
index”: 

 𝑥𝑥𝑡𝑡
(𝐺𝐺,𝐼𝐼) ≔���𝐼𝐼𝑖𝑖𝑖𝑖,𝑡𝑡

(𝐺𝐺)(𝑘𝑘) ⋅ 𝐽𝐽𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝑛𝑛𝑖𝑖,𝑡𝑡
(𝐺𝐺)

𝑖𝑖=1

𝑛𝑛𝑡𝑡
(𝐺𝐺)

𝑖𝑖=1

 (4)  

Reminding that each of two sentiment indexes has the option in 
picking the source, – either headlines (𝐺𝐺 = 𝐻𝐻) or entire set of 
articles (𝐺𝐺 = 𝐴𝐴)  – we thus have four types of sentiment 
indexes in the analysis. 
 
 As a summary, we use the following notation to represent 
these four sentiment indexes (s.i.).  

 

𝑥𝑥(𝐺𝐺,#)

≔

⎩
⎪
⎨

⎪
⎧𝑥𝑥

(𝐻𝐻,𝐼𝐼) (integer− valued headline s. i. )
𝑥𝑥(𝐻𝐻,𝑅𝑅) (real− valued headline s. i. )
𝑥𝑥(𝐴𝐴,𝐼𝐼) (integer− valued article s. i. )
𝑥𝑥(𝐴𝐴,𝑅𝑅) (real− valued article s. i. )

 (5)  

where 𝐺𝐺 denotes one of the sources 𝐻𝐻 or 𝐴𝐴 and # denotes the 
scoring method that is either integer-valued “𝐼𝐼” scoring or real-
valued “𝑅𝑅” scoring.  
 Along the procedures that we described above, we 
created 29-year daily time-series of four sentiment indexes 
based on headlines and articles from the Nikkei. We remark 
that these sentiment indexes are normalized so that they have 
zero means and unit standard deviations. Due to space 
limitation, we omitted reporting summary statistics and time-
series charts of our sentiment indexes. 

3 Model 
 To explore whether or not our sentiment indexes are able 
to predict stock prices, we will exploit the vector auto-
regression (VAR) model that is conventional one in the 
econometrics literature. For each of two cases in terms of the 
scoring method, we estimated three VAR(p) models which 
comprise either (1) Model H: headline sentiment index, (2) 
Model A: entire article sentiment index, (3) Model H&A: both 
headline and article sentiment indexes, as well as stock log-
returns. Namely, each of three models is specified as follows: 
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Model 
H 𝑦𝑦𝑡𝑡 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖

(𝐻𝐻,𝑅𝑅 𝑜𝑜𝑜𝑜 𝐼𝐼)
𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡 (6)  

Model 
A 𝑦𝑦𝑡𝑡 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖

(𝐴𝐴,𝑅𝑅 𝑜𝑜𝑜𝑜 𝐼𝐼)
𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡 (7)  

Model 
H&A 

𝑦𝑦𝑡𝑡 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖
(𝐻𝐻,𝑅𝑅 𝑜𝑜𝑜𝑜 𝐼𝐼)

𝑝𝑝

𝑖𝑖=1
+ 𝛾𝛾𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖

(𝐴𝐴,𝑅𝑅 𝑜𝑜𝑜𝑜 𝐼𝐼) + 𝜀𝜀𝑡𝑡 
(8)  

 Within these VAR(p) model specifications, the Granger 
causality can be stated if the sentiment indexes ( 𝑥𝑥(𝐺𝐺,#) ) 
Granger-cause (G-cause) stock log-returns ( 𝑦𝑦 ), the past 
sentiment indexes should help predict the stock log-returns, 
beyond prediction by past stock log-returns alone. Using these 
three VAR(p) models, we will implement the three Granger 
causality tests (G-tests).  
(1) “G-test for Model H” tests whether or not the headline 
sentiment index G-causes stock log-returns by exploiting 
Equation (6). The null hypothesis is 𝛽𝛽𝑖𝑖 = 0 (𝑖𝑖 = 1⋯𝑝𝑝).  
(2) “G-test for Model A” tests whether or not the entire article 
sentiment index G-causes stock log-returns by exploiting 
Equation (7). The null hypothesis is 𝛾𝛾𝑖𝑖 = 0 (𝑖𝑖 = 1⋯𝑝𝑝).  
(3-1) “G-test 1 for Model H&A” tests whether or not the 
headline sentiment index G-causes stock log-returns by 
exploiting Equation (8). The null hypothesis is 𝛽𝛽𝑖𝑖 = 0 (𝑖𝑖 =
1⋯𝑝𝑝). 
(3-2) “G-test 2 for Model H&A” tests whether or not the entire 
article sentiment index G-causes stock log-returns by 
exploiting Equation (8). The null hypothesis is 𝛾𝛾𝑖𝑖 = 0 (𝑖𝑖 =
1⋯𝑝𝑝). 

 

4 Empirical Analysis in the Japanese 

Stock Market 
 While the Nikkei is daily published and delivered with a 
few no-issue days, the Japanese stock market is closed every 
weekend. To handle such daily data set that is partially missing 
and hence inconsistent in frequency, we follow the approach of 
Bollen et al. [1]. That is, we eliminated every Saturday and 
Sunday from complete data set before implementing analysis. 
 Also, before estimating VAR models Eqs. (6)‒(8), we 
implemented augmented Dickey–Fuller tests. For each year, 
we verified that all the time series of stock log-returns, headline 
and article sentiment indexes do not have unit root with 1% 
significance. 
 Table 1 and Table 2 show Granger test results with real- 
and integer-valued sentiment indexes, respectively. For each 
year, three models of Model H, A and H&A or relevant Eqs. 
(6), (7) and (8) are estimated and tested. On each model 
estimation, we searched the lag 𝑝𝑝 from 1 to 7 to identify the 
best (i.e. lowest) 𝑝𝑝 in terms of AIC. For each model estimation 
with the best 𝑝𝑝, the relevant test statistics (“Granger”-labeled 
columns) and AIC values are reported in Tables. 

Table 1: Predictability of “real-valued sentiment index” in 
terms of Granger tests and AICs. Test statistics for Granger 
causality are given in the columns titled “Granger.” *, ** and 
*** mark the test statistics that are 10%, 5% and 1% significant, 
respectively. 

 
 

Table 2: Predictability of “integer-valued sentiment index” in 
terms of Granger tests and AICs. Test statistics for Granger 
causality are given in the columns titled “Granger.” *, ** and 
*** mark the test statistics that are 10%, 5% and 1% significant, 
respectively. 

 
 

Year Lag (p) Granger AIC Lag (p) Granger AIC Lag (p) Granger H Granger A AIC
1984 3 1.12 -10.17 6 1.51 -10.10 6 4.99*** 5.20*** -11.19
1985 7 1.54 -10.46 6 1.78 -10.65 6 3.60*** 3.67*** -11.45
1986 2 1.69 -10.18 6 1.00 -10.44 6 1.91** 1.17 -11.60
1987 2 0.02 -9.21 6 1.78 -9.77 6 0.71 1.64* -11.17
1988 2 1.12 -11.07 6 0.66 -11.38 6 1.88** 1.28 -12.88
1989 2 2.89* -11.53 5 1.39 -12.01 5 1.98** 1.86** -13.70
1990 2 0.14 -8.73 7 1.96* -9.63 5 3.30*** 4.75*** -11.21
1991 2 0.40 -9.37 5 0.52 -10.35 5 3.48*** 4.93*** -11.72
1992 5 1.29 -8.69 5 0.83 -9.48 5 2.06** 2.69*** -10.79
1993 1 1.67 -9.18 5 0.21 -10.03 5 3.17*** 3.69*** -11.29
1994 1 0.41 -9.46 5 0.37 -10.27 5 1.77* 5.12*** -11.52
1995 5 0.94 -9.19 5 0.37 -9.98 5 3.91*** 4.71*** -11.48
1996 5 1.08 -10.05 5 0.53 -11.08 5 1.70* 2.24** -12.61
1997 2 0.07 -8.78 5 1.18 -9.72 5 2.31** 2.49*** -11.21
1998 5 3.01** -8.80 5 2.22* -9.94 5 1.43 3.23*** -11.28
1999 1 0.64 -9.29 5 0.29 -9.99 5 1.60 2.20** -11.22
2000 1 4.35** -8.99 5 1.37 -10.04 6 1.77** 3.74*** -11.36
2001 2 0.32 -8.59 1 0.36 -9.72 1 2.19 2.31* -11.17
2002 2 2.03 -8.90 5 0.94 -10.10 5 0.77 1.42 -11.74
2003 1 0.12 -8.89 5 0.25 -10.30 1 0.54 2.59* -11.99
2004 1 0.16 -9.50 5 1.30 -10.70 1 0.19 2.74* -12.26
2005 5 0.18 -10.10 5 0.30 -11.24 1 4.29** 8.65*** -12.81
2006 5 0.70 -9.37 5 1.74 -10.53 5 1.07 3.57*** -12.27
2007 6 0.42 -9.59 6 0.15 -10.70 5 2.27** 4.40*** -12.32
2008 6 0.37 -7.68 5 0.58 -8.59 5 1.92** 4.48*** -10.15
2009 6 0.95 -8.87 6 0.83 -9.88 6 1.51 1.62* -11.36
2010 5 2.35** -9.24 5 2.26** -10.36 5 1.51 2.72*** -12.02
2011 1 0.19 -9.18 5 1.13 -10.00 5 1.07 1.45 -11.44
2012 2 3.88* -9.71 5 1.13 -10.91 5 1.20 1.04 -12.32

Headline Eq. (6) Article Eq. (7) Headline & Article Eq. (8)

Year Lag (p) Granger AIC Lag (p) Granger AIC Lag (p) Granger H Granger A AIC
1984 1 0.35 -9.76 1 1.06 -10.04 1 2.77* 2.72* -10.19
1985 2 3.03** -10.39 3 3.39** -10.72 1 1.16 0.69 -10.83
1986 1 2.58 -9.62 1 2.21 -9.49 1 3.56** 0.49 -9.79
1987 1 0.20 -8.40 6 1.29 -8.70 1 0.28 2.11 -9.08
1988 2 0.60 -10.37 5 1.87* -10.77 1 0.18 0.98 -11.15
1989 6 1.92* -10.42 1 2.49 -10.86 1 0.12 1.50 -11.11
1990 2 0.04 -7.65 2 1.01 -8.16 2 1.16 0.89 -8.28
1991 1 0.37 -8.69 1 1.36 -9.03 2 2.86** 1.76 -9.39
1992 1 2.07 -8.28 5 1.04 -8.29 1 0.95 0.23 -8.80
1993 4 3.51*** -8.81 1 0.03 -9.06 1 0.87 0.03 -9.34
1994 5 1.32 -9.55 1 0.01 -9.59 1 0.14 0.42 -10.31
1995 1 0.21 -8.86 1 0.11 -9.28 1 0.19 0.52 -9.74
1996 1 2.12 -9.33 1 0.12 -9.73 1 1.70 0.44 -9.91
1997 2 1.04 -8.67 2 0.42 -8.82 2 0.53 0.57 -9.48
1998 2 0.78 -8.49 5 2.05* -8.78 1 1.43 2.12 -9.40
1999 1 0.10 -9.35 1 0.05 -9.57 1 0.11 7.06*** -10.39
2000 1 0.31 -8.41 1 0.65 -9.11 1 0.86 0.67 -9.23
2001 1 1.43 -8.28 1 0.02 -8.48 1 3.02** 0.59 -9.13
2002 1 0.10 -8.82 1 0.91 -9.01 1 0.02 1.70 -9.78
2003 5 2.88* -8.70 4 1.71 -8.63 1 2.73* 2.29 -9.10
2004 1 0.01 -9.38 1 0.00 -9.69 1 2.96* 0.23 -10.38
2005 1 0.48 -9.74 5 0.41 -9.67 5 1.13 1.45 -10.13
2006 1 0.17 -9.24 2 0.13 -9.70 2 0.86 1.02 -10.30
2007 1 1.28 -9.06 6 2.21** -9.27 1 2.41* 3.40** -9.66
2008 1 0.32 -7.62 3 0.41 -7.68 1 1.04 2.16 -8.31
2009 3 1.73 -8.38 6 1.57 -8.02 1 6.26*** 0.91 -8.60
2010 3 1.55 -8.89 5 2.18* -9.22 3 2.64** 1.35** -9.56
2011 1 0.10 -8.61 4 2.43** -8.95 1 1.34 3.48** -9.21
2012 1 0.87 -9.56 3 0.95 -9.86 1 1.95 0.20 -10.36

Headline Eq. (6) Article Eq. (7) Headline & Article Eq. (8)
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Goodness of fit: 
 For both real- and integer-valued cases, Model H&A fits 
best in terms of AICs throughout 29 years. When comparing 
the real- and integer-valued cases, the former performs better 
in the aspects of AICs. Hence, in the following discussion, we 
will mainly focus on the results for estimating Model H&A on 
the basis of real-valued sentiment index. 
 
Predictability of stock prices: 
 From the right most panel in Table 1, Model H&A of Eq. 
(8) persistently shows the predictability of stock prices on the 
basis of real-valued sentiment index. More specifically, the 
article index persistently and significantly Granger-causes the 
stock log-returns in conjunction with the headline index 
(“Granger A” column in that right most panel). Also, the 
headline index Granger-causes the stock log-returns in 
conjunction with the article index (“Granger H” column in the 
same panel). On the flipside, Models H and A (Eqs. (6) and (7)) 
do not seem to provide the persistent Granger causalities. These 
results imply that it is important for our VAR modeling to 
incorporate both headline and article sentiment indexes in order 
to predict stock prices; and that it is insufficient to separately 
introduce either headline or article sentiment indexes1. 
 It should be noted that the Granger causality seems to be 
weakened during some periods. We will elaborate on each of 
these. During the period from 1986 to 1988 that was right after 
the Plaza Accord on 1985, the Japanese market has been a bull 
market and on the way to its peak. In this period, the headline 
sentiment index has stronger Granger causality than the 
article’s except 1987 that has brought Black Monday. 
 In contrast, during the period from 2001 to 2004 that was 
right after the burst of the Internet bubble, in the year of 2009 
that was right after the 2008 financial crisis, and during two 
years from 2011 to 2012 in which we experienced the Japan 
quake and had been trying to recover, the Japanese economy 
suffered from these unusual events. In those periods, the article 
index has stronger Granger causality than the headline index.  
 
Significant lagged variables:  
 Table 3 exhibits the year-on-year estimates of Model 
H&A of Eq. (8) on the basis of real-valued sentiment index. 
Interestingly enough, we found the seven cyclical patterns in 
our estimation results. 
Cycle 1 was significant: For the first 10 years from 1984 to 
1993 except 1986 ‒ that correspond to the 11th business cycle 
defined by Cabinet Office in Japan ‒, two sentiment indexes 
with shorter lags (1 to 2) and longer lags (5 to 6) served as 
significant variables.  
Cycle 2 was not significant: In the next 5 years from 1994 to 
1998 that correspond to the 12th business cycle in Japan, we 
couldn’t find any significant lagged variables on neither 
headline nor article indexes.  

1 Results shown here are those of Granger causality tests on the 
basis of OLS estimators. We remark that the data we handled 
may contain sample biases. Hence, to consider the hetero-
scedasticity due to such possible sample biases, we double-
checked to conduct tests with robust covariance-matrix 

Cycle 3 was significant: In the next 2 years from 1999 to 2000 
that correspond to the Internet bubble, two sentiment indexes 
with lag-of-one and middle lags (3 to 4) were significant.  
Cycle 4 was not significant: During the period from 2001 to 
2005 that was after the burst of the Internet bubble and before 
2008 financial crisis, we couldn’t find any significant lagged 
variables in sentiment indexes, again. 
Cycle 5 was significant: In the 3 years from 2006 to 2008 that 
brought the financial crisis, two sentiment indexes with lag-of-
one and middle lags (3 to 4) were significant.  
Cycle 6 was not significant: During the period from 2009 to 
2010 that was right after the crisis and corresponded to the very 
first two years of the 15th business cycle in Japan, we couldn’t 
find any significant lagged variables in sentiment indexes.  
Cycle 7 was significant: In recent two years after the Japan 
quake, two sentiment indexes with lag-of-two were significant. 
 
Comparison with the relevant work: 
 Ishijima et al. [2] reported that during the period after the 
2008 financial crisis, the integer-valued article sentiment index 
alone significantly predicts stock prices three-days-ahead. This 
can be found in the middle panel titled “Article Eq. (7)” on 
Table 2. Indeed, we can see the significant Granger causalities 
around 2008. Unfortunately, this finding does not seem to be 
persistent when we review this from 29-year-horizontal results 
that we have shown in this paper. 

5 Conclusions 
 We created the 29-year daily time-series of four 
sentiment indexes that reflect the positive or negative feelings 
represented in the Nikkei newspaper. The analysis is based on 
Ishijima et al. [2], but is a sophisticated version of their analysis. 
We showed the persistent predictability of Japanese stock 
prices on the basis of two sentiment indexes that quantified the 
sentiment over headlines and entire articles, respectively. 
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estimators as well. The results were mostly the same in case of 
real-valued sentiment index, but there were found small 
differences in case of integer-valued sentiment index. The 
detail is omitted here due to space limitation. 
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Table 3: Estimated parameters of Model H&A Eq. (8) on the basis of “real-valued sentiment index”: Estimates from 1984 to 
2011. Figures in parentheses show the p-values. *, ** and *** mark 10%, 5% and 1% significant variables, respectively. 
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Abstract— The pipeline pattern for parallel programs is
utilized in a wide array of scientific applications designed for
execution on hybrid CPU-GPU architectures. However, there
is a dearth of tools and libraries to support implementation
of pipeline parallelism for hybrid architectures.
We present the Hybrid Pipeline Framework (HyPi) that is
intended to fill this gap. HyPi provides high level abstrac-
tions in C++ for implementation of pipelines on hybrid
CPU-GPU architectures. It is a generic framework intended
to support a wide range of applications. The complexities
characteristic of such implementations, e.g., partitioning of
input/output data structures, asynchronous memory transfer,
communication between CPU and GPU etc., are handled
by the framework and are therefore hidden from the devel-
oper. HyPi exposes certain degrees of freedom that can be
tuned to optimize the performance of a simulation based
on application specific requirements. We present a detailed
account of the framework design, and evaluate the frame-
work performance using a real-world application from the
domain of computational biology. Results show that HyPi
performs on par with a custom-tailored, hand-tuned pipeline
implementation for the given application.

Keywords: Hybrid pipeline, heterogeneous computing, pipeline
parallelism, Intel Threading Building Blocks, CUDA

1. Introduction
The advent of the CUDA programming model marked

the emergence of mainstream application of accelerator pro-
gramming to scientific computing. Over the years, the said
programming model has evolved significantly; supporting a
substantial number of advanced features. A large number
of algorithms have been ported to the GPU architecture;
several of which are available in CUDA based libraries [1],
[2]. Yet, even today, programming a GPU costs much more
in terms of productivity than programming a CPU for the
same problem. Therefore, even though applications capable
of execution on a GPU may benefit in terms of speedup,
the effort required to engineer such applications reduces
programmer productivity. In short, the decision of whether
or not to port an application to the GPU must balance the
trade-off between application performance and developer
productivity. We term this trade-off the productivity vs.

performance trade-off.
The pipeline pattern [3], [4] for parallel programming covers
a broad range of applications for which the productivity
vs. performance trade-off is evident. A commonly recurring
application in hybrid CPU-GPU architectures is the overlap
of computation and transfer of memory from GPU to CPU
(and vice versa). Other applications include the execution
of different stages of a program on either CPU or GPU, in
order to properly utilize all processing resources [5], [6].
Even though the CUDA programming model provides fea-
tures that make it possible to implement a cross-device
pipeline, e.g., using CUDA streams for asynchronous mem-
ory transfer, the implementation details render the process
rather cumbersome. It is conceivable that if the process
of implementing cross-device pipelines is simplified, re-
searchers will be incentivized to explore the potential of
implementing new algorithms using the hybrid CPU-GPU
pipelining approach.
In this paper we present our Hybrid Pipeline Framework
(HyPi) that is designed to provide high level abstractions for
implementing the pipeline pattern on hybrid architectures. It
is a generic framework intended to support a wide range of
applications that can benefit from a hybrid pipeline. HyPi
hides much of the intricacies inherent in implementing such
a pipeline, while exposing enough degrees of freedom so that
the pipeline performance can be optimized for each individ-
ual application. Moreover, we believe that HyPi can serve
as a test bed for assessing the feasibility of implementing
certain algorithms using the hybrid pipelining approach. It
is important to note that HyPi is available as an external
C++/CUDA library, and does not require any additional
compiler support. The library has been tested with both GCC
and the Intel C++ compiler.
The paper is organized as follows: Section 1.1 presents an
overview of related work, where different applications and
available frameworks for hybrid pipelining are discussed.
Section 1.2 highlights the research gap and our contribution.
A detailed account of framework design is presented in
Section 2. Application of HyPi to a computational biology
simulation is presented in Section 3. This is followed by
comparative evaluation of HyPi against a custom-tailored
pipeline in Section 4. Finally, Section 5 concludes the paper
with a discussion of future work.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 263



1.1 Related Work

Software pipelining has been around as a concept in
computer science for a long time. A rigorous survey of
various methods for software pipelining is presented in [7].
In parallel computing, pipelining has been identified as a
commonly occurring pattern [8], and has therefore been the
subject of study for many a research project.
A thorough literature review of the use of pipelining in
hybrid computing has revealed that pipelining is commonly
utilized in three different situations: 1) Overlapping compu-
tation and transfer of data between CPU memory and GPU
memory; 2) execution of different stages of a program on
either CPU or GPU based on which architecture is better
suited to the computation; and, 3) execution of different
stages of a program on either CPU or GPU for load
balancing and optimal resource utilization. Following is a
selection of works that utilize pipelining in one or more of
the above mentioned situations:
A Pipelined Multi-GPU MapReduce (PMGMR) implementa-
tion is presented in [9] where GPU acceleration is extended
to multiple GPUs. In this work, the primary application of
pipelining is to overlap computation and communication in
order to reduce the communication overheard. The imple-
mentation also makes it possible to process datasets that
exceed both CPU and GPU memory capacity.
In order to harness the power of GPU clusters for MapRe-
duce, a library has been developed [10]. This work focuses
on tackling the challenges of data movement between GPUs,
managing out-of-core data on GPUs, as well as modifying
MapReduce in order to leverage the GPU cluster architec-
ture. The pipelining concept is utilized in terms of overlap
of computation and communication.
The problem of efficient scheduling of MapReduce tasks
on a coupled CPU-GPU chip is dealt with in [5]. Two
different approaches are presented; 1) dynamically dividing
Map tasks onto both CPU and GPU, and 2) pipelining
Map and Reduce tasks between GPU and CPU. Empirical
evidence is provided to show that a pipelining solution where
Map is implemented on the GPU and Reduce is implemented
on the CPU justifies the use of pipelining for MapReduce.
Moim [11] is a MapReduce framework for Multi-GPU
systems that implements a 3-stage pipeline consisting of
input split, map and merge phases. The input split and merge
phases are executed on the CPU, while the map phase is
executed on the GPU. The reduce phase can be executed
simultaneously on GPU and CPU depending on whether or
not the GPU memory can hold the entire partition to be
reduced.
To summarize, in order to improve the performance of the
MapReduce model, two types of GPU acceleration methods
have been employed. In the first approach, both Map and
Reduce are implemented as GPU kernels. In the second
approach, Map is implemented on the GPU, while Reduce

is implemented on the CPU. Justification for the second
approach lies in the fact that the modern GPU architec-
ture is particularly suitable for data parallel applications
that employ the Map pattern [4]. In such an application,
multiple instances of the Map function can be processed in
parallel by many processing elements; thereby maximizing
the utilization of processing resources on the GPU. However,
a parallel implementation of the Reduce pattern processes
data in such a way that the resource utilization (in terms
of processing elements) follows a tree like pattern, i.e., the
number of required processing elements (or the degree of
parallelism) decreases over time. Therefore, utilization of
the processing resources is not consistent throughout the
function. Even though dynamic parallelism [12] can be used
to improve resource utilization [13], kernel design becomes
exceedingly complicated.
Hybrid CPU-GPU pipelining is not limited to MapReduce.
A 3-stage CPU-GPU pipeline for eigenvector and eigenvalue
determination is presented in [6]. The work establishes
the significance of utilizing a hybrid pipeline for optimal
resource utilization and presents a stochastic queue monitor-
ing strategy for parallel applications based on the pipeline
pattern.
The concept of hybrid CPU-GPU pipelining has also been
applied in computational biology, where the problem of
enumeration of elementary flux modes in metabolic networks
was parallelized using an OpenMP and CUDA based solu-
tion [14].
The capability to implement a hybrid CPU-GPU pipeline
has been introduced within the context of the FastFlow [15]
framework. The FastFlow framework was extended by intro-
ducing an abstraction for creating and executing a pipeline
with user-defined stages. A GPU-enabled linear algebra
library can be called from within a stage, making it a GPU
execution stage. Therefore, different stages of the pipeline
can execute on either the CPU or the GPU.

1.2 Research Gap and Our Contribution
Most of the above mentioned related work concentrates

on either utilizing pipelining for a specific programming
model such as MapReduce, or a particular application.
Therefore, most of these works lack generalizability. In
contrast, the framework described in [15] is much more
general and useful for a larger number of applications.
The framework we present in this paper is not limited to
any specific application or a programming model such as
MapReduce. It is a generalized framework similar to the
FastFlow pipeline presented in [15], and provides features
that overcome certain limitations of the FastFlow pipeline.
Our Hybrid Pipeline Framework (HyPi) is built on the
pipeline functionality provided by a widely used and robust
parallel programing model, i.e., Intel Threading Building
Blocks [16]. HyPi provides the following features that stand
out in comparison to other frameworks:
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• Automated management of CUDA streams and events
for asynchronous CPU-to-GPU and GPU-to-CPU
memory transfer.

• Automated management of communication between
GPU and CPU using the callback functionality intro-
duced in CUDA 5.0.

• The possibility of multi-threaded execution of CPU
stages of the pipeline.

• Automated partitioning of input/output data structures.
In addition to presenting a detailed account of the features

mentioned above, this paper provides a thorough analysis
of the major issues in implementing such a generic frame-
work with CUDA. To the best of our knowledge, no other
framework provides all the features available in our Hybrid
Pipeline Framework (HyPi).

2. Framework Design
In the rest of the document, we refer to the CPU as Host,

and the GPU as Device.

2.1 Overall Pipeline Design
One of the major HyPi design objectives is to provide the

programmer with a familiar interface for pipeline implemen-
tation. Based on our positive experience with Intel Threading
Building Blocks (TBB) [16], we decided to use TBB as
the foundation for the pipeline. TBB is a free and open
source multithreading library from Intel, which provides a
reliable and efficient abstraction (tbb::pipeline) for pipeline
implementation on multicore CPUs. Each stage of a pipeline
is implemented as a C++ class that inherits tbb::filter.
There are two possible ways in which HyPi can be used to
facilitate the implementation of a hybrid pipeline: 1) using
HyPi stages, and 2) using custom-tailored stages.
When using HyPi stages, the programmer does not need to
implement the pipeline stages. Instead, classes predefined in
the framework are used. The following types of stages are
pre-implemented in the framework:

• DeviceFilter: This class represents a pipeline stage
that executes a CUDA Device kernel. It automatically
handles partitioning of input/output data structures,
asynchronous memory transfer to and from the De-
vice, and callback mechanism required to inform the
following pipeline stage of the completion of Device-
to-Host result data transfers. Details of these features
are covered in Section 2.2.

• CallbackFilter: This stage usually follows the Device-
Filter and encapsulates the Device-to-Host communica-
tion that takes place using callbacks. In TBB, a typical
pipeline stage proceeds with executing its function as
soon as it receives a token from the previous stage. The
token generation function in DeviceFilter and initiation
of memory transfer work asynchronously. Therefore,

the stage that follows DeviceFilter must not just wait for
the token, but also the corresponding memory transfer
confirmation. The CallbackFilter hides this mechanism
from the programmer and passes the token to the next
stage only once the corresponding memory transfer is
complete.

• PostProcessFilter: This class represents a stage that is
required to receive result data from the Device and
process it on the Host.

For the above mentioned automation procedure to work,
the programmer is required to register the signature of the
Device kernel to be used, and a post-processing function to
be called from within the PostProcessFilter. This process
is similar in principle to the MapReduce programming
model where the programmer specifies that Map and Reduce
functions, and the rest is taken care of by the framework.
One or more custom-tailored pipeline stages can also be
provided by the programmer as C++ classes that extend
tbb::filter. Either the entire pipeline can be constructed
in this fashion, or a pipeline with HyPi stages can be
extended to include more stages. For a pipeline that does
not use any of the HyPi stages, Device programming can
be simplified by using a C++/CUDA library provided in
HyPi that exposes functions for automated data partitioning,
automated kernel launch for each partition, and simplified
abstractions for asynchronous data transfer from Host to
Device and Device to Host. In fact, HyPi stages are primarily
C++ classes that encapsulate these functions in an organized
manner. Example of a custom-tailored pipeline initialization
is presented in Figure 1.
Any stage intended for execution on the Device, e.g., Device-
Filter (as well as CallbackFilter), must always operate in the
serial in-order mode. This is because parallelism is achieved
by the Device kernel itself, and does not require multiple
Host threads. Host bound stages however, can operate in
parallel mode as well.

t b b : : p i p e l i n e p i p e l i n e ;

C a l l b a c k F i l t e r m y C b F i l t e r ;
D e v i c e F i l t e r myDevF i l t e r ( . . . params . . . ,

m y C b F i l t e r ) ;
P o s t P r o c e s s F i l t e r m y P P r o c F i l t e r ( . . . params . . . ,

myDevF i l t e r ) ;

n u m P a r t i t i o n s = myDevF i l t e r . g e t N u m P a r t i t i o n s ( ) ;
m y C b F i l t e r . i n i t T r a s f e r r e d F l a g s ( n u m P a r t i t i o n s ) ;

p i p e l i n e . a d d f i l t e r ( m yDevF i l t e r ) ;
p i p e l i n e . a d d f i l t e r ( m y C b F i l t e r ) ;
p i p e l i n e . a d d f i l t e r ( m y P P r o c F i l t e r ) ;

p i p e l i n e . run ( nu mT ok ens In F l igh t ) ;
p i p e l i n e . c l e a r ( ) ;

Fig. 1: A custom 3-stage pipeline initialization using HyPi
stages (backend code).
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2.2 Automation Design Challenges

The following subsections describe design considerations
for each of the major features provided by HyPi.

2.2.1 Partitioning

In hybrid architectures, Device memory is generally much
smaller than the Host memory. Given this limitation, one
important design assumption in HyPi is that the input/output
data structures must be partitioned to ensure that they fit into
the Device memory. Since HyPi is a library, the information
about which data structures are required as arguments by the
user-defined kernel, along with the corresponding sizes of
these data structures, must be provided by the programmer.
Similar to OpenCL [17], each kernel argument is registered
with the framework as part of the initialization code. If
necessary, the size of the output data structure can be
specified as a function of input size. This function must also
be provided by the programmer.
This information is then used by the framework to determine
the maximum partition size for each data structure. In order
to determine the partition size, three factors are evaluated: 1)
total Device memory required by all data structures, as well
as the total Device memory available; 2) impact of partition
size on pipeline performance due to memory transfer be-
tween Host and Device; and 3) efficient utilization of page-
locked [12] Host memory. The user can configure factors
2 and 3 by specifying upper limits for partition size and
page-locked Host memory. Since a small upper limit (i.e., a
value which is much smaller than the total Device memory
available) on partition size may allow multiple partitions to
reside simultaneously in the Device memory, each set of such
partitions is bundled together as a Segment. The segment size
is controlled by the upper limit on page-locked memory. The
use of page-locked memory is necessitated by the fact that
the framework uses asynchronous CUDA calls for all Host-
to-Device and Device-to-Host memory transfers.
Note: The first prototype supports only equal sized linear
data structures for automated partitioning. However, at the
time of this writing, sophisticated algorithms are being
implemented to support a wider range of possibilities.
It is important to note that page-locked Host memory is a
scarce resource. Therefore, in order to keep a good number
of tokens in flight, it is necessary to employ multiple-
buffering [18] for data structures that use page-locked mem-
ory. This way, processing of a single partition results in the
occupation of only part of the page-locked memory. The
next partitions in line can use the remaining portions. In the
meantime, the PostProcessFilter can release the page-locked
memory occupied by the first partition and make it available
for use by further partitions. The multiple-buffering solution
is implemented in HyPi.

2.2.2 Kernel

For HyPi to be able to automatically call the user-defined
CUDA kernel, the kernel must be registered with the frame-
work. As mentioned in Section 2.2.1, kernel arguments must
also be registered. However, CUDA kernel configuration
parameters – such as maximum grid dimension and threads
per block – can be configured by the user.

2.2.3 Stream and Event Management

Once all the required information is available to the frame-
work, for each segment, the kernel processes all partitions.
Depending on the problem size, processing each partition
may require launching multiple grids. For each grid, separate
streams and events are used to ensure efficient asynchronous
memory transfer between Host and Device. All these steps
are handled by the framework.

2.2.4 Device-Host Event Communication

Once a partition has been processed by the Device, output
generated by the kernel is transferred from Device to Host
asynchronously. This means that the Device can start pro-
cessing the next partition without waiting for the Device-to-
Host transfer to complete. Therefore, the DeviceFilter may
issue tokens for which the Host has not yet received the
result data. In order to make sure that the Host is aware
of when the data transfer is complete, callback functionality
introduced in CUDA 5.0 is used. As soon as the data transfer
is complete, a callback function is executed that updates the
state of the CallbackFilter stage. This update is correlated
with the token received from the DeviceFilter. Therefore,
at this point, the CallbackFilter knows that the process is
complete and sends out a token to the next stage.

3. Use Case
In this section, we present the application of HyPi to the

problem of enumerating elementary flux modes in metabolic
networks.
The process of metabolism comprises of chemical com-
pounds, called metabolites, transformed into other chemical
compounds through reactions catalyzed by enzymes. A
group of such related metabolites and reactions can be
viewed as a network, modeled mathematically as a node-
weighted directed hypergraph. A node in such a hyper-
graph stands for the number of molecules of a particular
metabolite; while a directed hyper-edge represents a reaction.
Elementary Flux Modes (EFMs) are minimal subnetworks
that operate at equilibrium. Removal of any component
results in the EFM being unusable. In order to use EFMs
to characterize the behavior of a metabolic system, it is
required to enumerate all EFMs in the system. A commonly
used algorithm for EFM enumeration is the Nullspace algo-
rithm [19]. For a detailed description of the algorithm, we
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refer the reader to [20]. Here we summarize the main steps
of the algorithm:

1) The Nullspace algorithm operates on the Stoichiometic
matrix. Rows in the stoichiometric matrix correspond
to metabolites, and the columns correspond to reac-
tions. The matrix can be viewed as the incidence
matrix corresponding to the hypergraph that represents
the metabolic network to be analyzed. The stoichio-
metric matrix is compressed [21] in order to improve
performance.

2) An underdetermined system of homogeneous linear
equations is solved to obtain the nullspace, where the
stoichiometric matrix is the coefficient matrix. The
nullspace is permuted to simplify further operations.
The permutation results in two parts of the matrix:
R(1) and R(2).

3) For each row in R(2):
a) Algebraic combinations are generated for se-

lected columns in R(2) and bitwise combinations
are generated for the corresponding parts in R(1)

b) Duplicate candidates are removed
c) Each candidate is verified for elementarity
d) The verified candidates are appended as column

vectors to the nullspace
A row in R(2) that has been processed is converted into

a binary representation, and moved to R(1).
Due to its combinatorial nature, the candidate generation
phase is extremely expensive both in terms of computation
and memory. Even for small to medium sized networks,
parallel computation is a necessity.

3.1 Combinatorial Candidate Generation
The combinatorial candidate generation algorithm refers

to the generation of bitwise combinations in R(1). Figure 2
describes the pseudocode. R(1) is split into two bit matrices,
X and Y. A candidate vector is generated by performing a
bitwise OR operation between a column in X and a column
in Y, and then performing a popcount operation on the result
vector. Indices corresponding to the operand columns in X
and Y are stored, marking the result vector as a candidate for
elementarity testing if the popcount is greater than a certain
threshold value λ (determined elsewhere in the Nullspace
algorithm).

In previous work [14], we developed a hybrid pipeline
based parallel solution to the combinatorial candidate gen-
eration problem. There we implemented a pipeline using
OpenMP and CUDA that was tightly coupled with, and opti-
mized for the given problem. In our current work, we present
an implementation based on HyPi stages and compare the
performance of the two implementations. There are three
reasons for choosing this application: 1) The pipeline pattern
is not obviously applicable to the parallelization problem at
hand, and represents a class of problems where an efficient
pipeline implementation is not straightforward; 2) The nature

Input : Matrices: X , Y – Vectors: indX , indY
Integer: λ

Output: Ordered pairs of column indices:
{(x, y) | x ∈ indX and y ∈ indY }

1 foreach colX: column in X do
2 foreach colY: column in Y do
3 candidate = colX ∨ colY;
4 numNonZeros = popcount(candidate);
5 if numNonZeros ≤ λ then
6 store pair (indX[colX], indB[colY]);
7 end
8 end
9 end

Fig. 2: Combinatorial candidate generation algorithm. indX ,
indY contain column indices of X and Y respectively; ∨ is
the bitwise OR operation; λ is a threshold value (as described
in Section 3.1).

of this algorithm is different from those for which pipeline
implementations are typically used (such as those mentioned
in Section 1.1), and therefore presents additional challenges;
and 3) We can compare HyPi performance against a custom-
tailored and optimized pipeline for a complex algorithm.
The hybrid pipeline implementation of combinatorial candi-
date generation (as described in [14]) divides the algorithm
into two phases: 1) Generate; and 2) Map. The Generate
phase is implemented as a CUDA Device kernel. It is
responsible for generating all candidates, computing the
popcount values, and processing the condition to verify if
the result vector should be kept for elementariy testing.
Results from the Generate phase are stored in a bit array.
The Map phase takes this bit array and maps the results
to the corresponding column indices in X and Y. The Map
phase is implemented as a post-processing step computed on
the Host.

3.2 HyPi Implementation of the Candidate
Generation Pipeline

The HyPi implementation of the combinatorial candidate
generation algorithm is done using HyPi stages. Just the
three pre-defined HyPi stages are used, i.e., DeviceFilter,
CallbackFilter and PostProcessFilter. First, the kernel signa-
ture is registered with the framework, so that the DeviceFilter
can automatically call the kernel. Then the Map phase is
registered with the framework as a post-processing function.
In this case, we chose to implement the Map phase as a
multithreaded function parallelized using OpenMP. This is
to show that even though HyPi uses Intel TBB for pipeline
parallelism, it does not imply that the entire program must
be dependent on Intel tools only.
The custom-tailored pipeline from the previous implemen-
tation [14] was encapsulated in what we call the Maximum
Resource Utilization Framework (MRU). MRU is designed
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to utilize all available Host threads when running a pipeline.
This is done by having (in addition to the pipeline imple-
mentation) a Host-only multithreaded version of the given
algorithm. We have an OpenMP parallel version of the
combinatorial candidate generation algorithm. MRU divides
the input into two parts. One part is processed by the
Host-only parallel implementation, and the other part is
processed by the pipeline implementation. This way, no Host
threads are idle while the algorithm is executed. The HyPi
implementation of the candidate generation algorithm also
utilizes MRU as a harness.

4. Evaluation
We compare HyPi performance against: 1) a serial imple-

mentation of the candidate generation algorithm as available
in ElMo-Comp [22], 2) an OpenMP based Host-only parallel
implementation, and 3) the custom-tailored pipeline executed
inside MRU. All our implementations are based on the ElMo-
Comp code base.

4.1 Test Environment
The machine used for performance comparison consists

of an Intel Nehalem EX architecture based quad-core Xeon
E5520 CPU with 4 cores, where each core supports 2
hardware threads. The machine is equipped with 17GB of
RAM. In addition to the CPU, the machine has an NVIDIA
GTX 680 GPU with 4GB of device memory, supporting
compute capability 3.0. All tests were carried out with
CUDA driver version 5.5. However, it is possible to use
the framework with CUDA 5.0, which is the earliest version
supporting the callback functionality. The operating system
used for the experiments is Ubuntu 12.04 LTS. The code
was compiled using GCC 4.6.3 and NVCC 5.5.

4.2 Results
Given the machine available (as described in Section 4.1),

it was not possible to conduct performance comparisons
using real biological networks. This is because even for
smaller networks, memory requirements are too high, and
only three or four networks can be evaluated. This results in
a very small sample against which performance comparisons
can be done. In order to have a larger number of network
samples, datasets of controlled sizes were artificially gen-
erated. Moreover, since we are concerned only with the
combinatorial candidate generation part of the Nullspace
algorithm, our measure of network size is the number of
candidate vectors generated during the execution of the
candidate generation algorithm.
Figure 3 presents a comparison of the serial, Host-only
parallel and HyPi versions of the code. The plot indicates
that as the number of candidates increases, the margin with
which HyPi outperforms the other implementations gets
wider. This behavior is expected, since it was shown in [14]

that a pipeline implementation coupled with MRU is superior
to the other implementations.
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Fig. 3: Performance comparison between serial, Host-only
parallel and HyPi implementations.

Figure 4 plots the performance of the custom-tailored
OpenMP based pipeline implementation (designed during
previous work [14]) with the HyPi implementation. As the
plot depicts, HyPi performance is on par with the custom
tailored pipeline. In fact, HyPi performance is slightly better.
Although the difference is only marginal, we thought it
necessary to investigate the cause.
Even though most of the pipeline design features are shared
among the two implementations, management of tokens in
flight is different. For HyPi, this is handled by the underlying
TBB framework. In tbb::pipeline, the number of tokens
in flight is specified by the programmer. The HyPi results
plotted in Figure 4 are based on pipeline execution with two
tokens in flight (if we change the number of tokens in flight
to one, the resulting HyPi performance is poorer than the
custom-tailored pipeline, which is expected because a single
token essentially serializes the pipeline). The custom-tailored
pipeline on the other hand has tightly-coupled stages without
an explicit notion of tokens in flight. We believe that the
performance improvement seen in HyPi is due to a superior
token management strategy implemented in Intel TBB.

5. Conclusion and Future Work
5.1 Summary

We have presented the Hybrid Pipeline Framework (HyPi)
intended to simplify the process of implementing pipeline
parallelism in hybrid CPU-GPU architectures. The frame-
work is implemented in C++ using Intel TBB and NVIDIA
CUDA, and is suitable for pipeline applications where some
stages execute on the CPU, while others execute on the
GPU. HyPi exposes pre-developed stages as well as library
routines that automate the processes of data partitioning,
asynchronous data transfer from CPU-to-GPU and GPU-to-
CPU, callback mechanism for communication between GPU
and CPU, as well as automated execution of the CUDA
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Fig. 4: Performance comparison between Host-only parallel,
custom-tailored pipeline and HyPi implementations.

kernel over multiple data partitions. We have evaluated the
performance of the framework against a real-world applica-
tion from computational biology, and shown that it performs
on par with a custom-tailored pipeline for the same problem.

5.2 Discussion

In the future, we intend to combine HyPi and MRU (men-
tioned in Section 3.2). At the moment, static load balancing
provided by MRU cannot be used within the pipeline, i.e.,
an individual pipeline stage cannot be replicated on both
the CPU and GPU for load balancing. Instead, the entire
pipeline has to be replicated as CPU code and executed in
parallel using OpenMP threads. Moreover, we believe it is
important to introduce dynamic load balancing, since not all
workloads can be dealt with using static schemes.
Similarly, the automated partitioning algorithms will be
extended to support more complex data structures. At the
moment only linear data structures are supported. Once
these features have been implemented, we intend to test
the framework with other scientific simulations that present
different challenges in terms of hybrid pipelining.
In Section 1, we introduced the term productivity vs. per-
formance trade-off. This term encapsulates our long-term
research objectives. Our hypothesis is that various charac-
teristics of a computational kernel such as Degree of Par-
allelism, Arithmetic Intensity, Degree of Control Divergence
etc., make the kernel suitable for execution on either the
CPU or an accelerator such as the GPU. We conjecture that
a scientific simulation can be broken down into multiple
computational kernels, where each kernel constitutes a stage
in a hybrid pipeline. The assignment of stages to different
execution architectures will depend on the above mentioned
and certain other characteristics. Therefore a scientific sim-
ulation could be executed as a hybrid pipeline. Work is in
progress to investigate this hypothesis, and results will be
presented in a later publication.
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Abstract— Parallel programs written using the standard
Message Passing Interface (MPI) frequently depend upon
the ability to synchronize execution using a barrier. Barrier
synchronization operations can be very time consuming. As
a consequence, there have been investigations of custom
interconnects and protocols for accelerating this operation
and other collective operations in parallel MPI programs.

In this paper, we explore the use of hardware pro-
grammable network interface cards utilizing standard media
access protocols as an alternative to fully custom synchro-
nization networks. Our work is based upon the NetFPGA –
a programmable network interface with an on-board Virtex
FPGA and four Ethernet interfaces. We have implemented a
network-level barrier operation using the NetFPGA for use
in MPI environments. This paper compares the performance
of this implementation with MPI over Ethernet for a small
configuration.

Keywords: NetFPGA, MPI, MPI_Barrier, Synchronization, Col-
lective Operations

1. Introduction
Barrier synchronization can have a significant perfor-

mance impact on programs running on large parallel pro-
cessors. A barrier is a logical delimiter for participating
processes to ensure that all the processes are at the barrier
point in their execution sequence [6]. A participating process
may continue with its execution after it receives a release
notification either from one of its peers or after an appro-
priate set of peer message exchanges indicates that all the
participating processes have called the barrier. Regardless of
the task parallelization, the barrier is a sequential blocking
call for all the processes. It introduces a latency completely
depending on the execution sequences of other processes,
underlying communication infrastructure and the logic of the
barrier implementation.

In the past years, many proposals have been presented
to reduce the latency of barrier synchronizations. They
are classified as software solutions, hardware solutions and
hybrid solutions that involve both hardware and software
aspects. Software barrier proposals are largely independent
of underlying hardware technology [12] [19]. They tend to
be implemented using generic solutions that can be applied
to different platforms by just changing the calls in the user
level library implementation. Software solutions lack the
performance of hardware and hybrid solutions due to the

fact that software solutions are inherently limited by the
hardware, which is not necessarily optimized to implement
barrier logic.

Hardware based and hybrid solutions are typically pro-
posed for specific target platforms such as parallel machines
with custom interconnects, clusters of FPGAs with a specific
communication medium, parallel machines with specific
target topologies, etc [11] [14] [5] [20] [15] [7] [18] [1] [8].
However, not all researchers have access to special purpose
parallel machines. As a result, many researchers build their
own cluster using Commodity Off-the-Shelf (COTS) hard-
ware. This is an active area of research focused on clusters
of workstations, which can be constructed using Commodity
Off-the-Shelf (COTS) processors and hardware to achieve
high performance parallel execution.

This work is focused on investigating how programmable
hardware platforms such as the NetFPGA [13] can be
utilized to implement barriers. The NetFPGA has become a
standard platform for learning and implementing networking
hardware in academic research. To the best of our knowl-
edge, this is the first attempt to utilize the NetFPGA in the
implementation of barrier synchronization. The NetFPGA
platform has been widely used to prototype networking
hardware with the goal of reducing the performance costs
by offloading some specific tasks to the hardware level. It
has standardized interfaces between hardware modules and
software level access to the hardware modules.

It is difficult to claim that our hardware barrier imple-
mentation using the NetFPGA bests all the other hardware
barrier solutions in terms of performance since we do not
have access to all the competitive technologies, and it is not
our goal with this work. However, lowering the barrier logic
into the hardware provides significant performance benefits
compared to software based implementations, and we will
show that our implementation using the NetFPGA does not
conflict with this assumption. There are several proposals
that target different FPGA platforms, which either implement
the entire system on chip, or utilize single FPGA as a
separate networking device such as NIC or switch. However,
our design is different since the NetFPGA provides imple-
mentation standards with a specific development suite. We
completely utilize the NetFPGA development environment,
and thus leverage its extensibility for future functionality.

The remainder of this paper is organized as follows:
Section 2 summarizes the design goals. Section 3 outlines
the implementation details and architectural design. Section
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4 presents performance evaluation of our design. Section
5 provides some background and discusses related work.
Section 6 offers discussion about our work and how it could
be extended in the future, and finally Section 7 concludes
the paper.

2. Design Goals
In this paper, we propose a barrier synchronization frame-

work utilizing the standard infrastructure from the NetFPGA
platform and using standard protocols such as UDP, IP
and Ethernet. The unique contributions of our work are as
follows:

• The design relies on the standard NetFPGA driver
and there is no need to change anything in the OS.
We incorporate some simple changes in the user-level
code, utilizing the Open MPI [2] library to generate the
packets that the NetFPGA recognizes and processes.

• All of our additional hardware modules live in the
user-data-path [4], as recommended by the NetFPGA
user community. Therefore, it is self-describing and
could be extended by someone who is familiar with
the NetFPGA environment.

• We enable a flexible topology that could be created by
connecting different ports of the NetFPGA directly to
each other. The current implementation supports four
distinct physical topologies.

• We are providing a framework that can be easily
extended to other types of MPI collective operations.
We began with the barrier implementation as our base.

• Our work does not require a separate control network
for barrier synchronization as it can perform the syn-
chronization on the network where the data also flows.

3. Implementation
Our FPGA node design is derived from the reference

NIC implementation distributed with the NetFPGA package.
The host communicates with our synchronization engine
through a UDP socket – operating system support for such
sockets is part of the standard package. The NF_Barrier
implementation consists of sending a specially crafted UDP
message, and then blocking until a barrier release message is
received. An added feature of building our implementation
upon the NetFPGA reference NIC is that our node maintains
the ability to forward standard IP packets.

The simplicity of the host interface belies the complex task
that the barrier node must perform. The barrier tracks out-
standing requests by storing the various MAC, IP addresses,
checksum and UDP header fields. These are later used to
generate a message to release the host from the barrier. The
generated release packet must arrive user-space travelling up
to the protocol stack. Therefore, it must be properly formed,
so that none of the layers prevent packet to be processed by
the application layer.

Barrier&Packet&
0..3 4..7 8..11 12..15 16..19 20..23 24..27 28..31 32..35 36..39 40..43 44..47 48..51 52..55 56..59 60..63 

dst_MAC src_MAC_1 

src_MAC_2 type ver IHL Diff_Serv 

Total_Length Identification flags frag_offset TTL Protocol 

Header_Cksum src_IP dst_IP_1 

dst_IP_2 UDP_Source_Port UDP_Dest_Port Length 

UDP_checksum message comm_ID topo_type node_type 

!
Fig. 1: Fields and structure of an actual NF_Barrier packet

3.1 Packet Format
Our design is intended to support a variety of topologies.

We use the packet format presented in Figure 1 to inform
the underlying synchronization hardware about the current
topology. The synchronization hardware state-machine is
customized to support each specific topology.

The message field denotes the packet type. Host processes
handle only two types of message – a barrier start and a
barrier release message. The NetFPGA updates the message
type based on its current state in the state machine. It may
handle other message types based upon the current topology.
For example, with the tree topology, there is an additional
message to indicate that there are children at a barrier, and to
notify the parent NetFPGA that all of its children have called
the barrier. The topo_type field is to specify the network
topology. Currently, we support ring, binary tree, butterfly
and star topologies. The node_type field denotes the node
type in a specified topology.

3.1.1 Life of Barrier Packet in the NetFPGA

Once a packet arrives at the NetFPGA, it is placed in
the appropriate receive queue and is passed to the user
data path. The receive queues attach a module header to
inform subsequent modules about the packet source and
length. From the input queue, the packet arrives at the
output_port_lookup module which examines whether it is a
barrier packet. If it is a barrier packet, based on the state it is
in, the output_port_lookup module determines which ports
the packet is going to be injected. If the packet is going to
be forwarded to multiple ports, the packet is duplicated to
the multiple transmit queues at the same time. If the packet
is not a barrier packet, the packet is handled as a regular
Ethernet traffic, and is forwarded based on the receive queue
number it is received in.

3.2 Supported Topologies
We explain in detail how the organization of NetFPGA

nodes in specific topologies and the communication required
to achieve synchronization.
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3.2.1 Ring Topology

The ring topology has two types of nodes: head and
regular nodes. Head nodes wait for their host to call the
barrier, and then for the rest of the ring to call the barrier.
After the head node learns that all previous nodes are
at the barrier, it initiates a release message to the next
node and to the host. Non-head nodes wait for the nodes
preceding them and their hosts to call the barrier before
sending the MSG_PREV_AT_BR message; they then wait
to receive a release message, initiated by the head node, and
subsequently forward the release message to their host and
successor in the ring.

In the ring topology, port0 is used to connect to the
successor in the ring and port1 is used to connect to the
predecessor node in the ring. On the wire, the synchroniza-
tion packet flow runs in only one direction, which is from
port0 of the current node to the port1 of the next node.

3.2.2 Tree Topology

The tree topology is implemented with three node types:
root, internal, and leaf. As expected, a leaf node has no
children and a root node has no parent. Internal nodes have
both children and a parent. A leaf node waits for the host
to call the barrier, sends a MSG_CHILD_AT_BR message,
waits to receive a release message from its parent, and finally
releases its host. The root node waits for its children and
host to call the barrier (the order is irrelevant), then it sends
a release message to its children and the host. An internal
node is a combination of leaf and root nodes. It initially
waits for its children and host to call the barrier. Then, it
notifies its parent that its host and children have called the
barrier. Finally, it waits for a release message from its parent.
When an internal node receives a release message from its
parent, it forwards the message to its children and host.

In the tree topology, port0 and 1 are used to connect to
children (if any) and port2 is used to connect to the parent
node (if any). In this topology, the packet flow is on both
directions on the link.

3.2.3 Star Topology

The star topology is implemented with 2 node types:
center and regular nodes. Center node will wait for all the
other nodes connected to it to call the barrier. After all
regular nodes send the MSG_AT_BR messages; they wait
for center node to send the release message. The center
node will craft the release message when all the other nodes
and its host call the barrier. It sends the release message to
the regular nodes and its host. In the star topology, if the
node is a regular node, only port0 is used to connect to the
center node. All of the ports of center node could be used to
establish the star topology which is up to 5 nodes because
of the NetFPGA port limitation.

7"node'Binary'Tree'Topology'Packet'Flow'
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(root)'

Host'
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Fig. 2: NF_Barrier packet flow for 7 nodes in a binary tree

3.3 Sample Packet Flow
Figure 2 depicts a sample packet flow scenario for a 7-

node complete binary tree.
1) All the hosts invoke the barrier and the NetFPGAs

receive the MSG_AT_BR messages. The NetFPGA
stores necessary header fields for constructing a release
message when the time comes.

2) Leaf NetFPGAs update the message received from the
host and tell their parents that the node and its children
are all at the barrier even when they have no children.

3) The NetFPGAs that are in between root NetFPGA
and leaf NetFPGAs receive the messages from their
children and since their hosts are also at the barrier,
they forward the message to their parent which is the
root NetFPGA.

4) Since all of its children and the host itself are at the
barrier, the root NetFPGA crafts a release message
with the remembered header fields and sends it to its
children and the host at the same time.

5) Internal NetFPGAs also perform necessary header
field updates, and forward the release message both
to the host and children.

6) The leaf NetFPGAs receive the release message and,
after updating the header fields, they release their host
processes from the barrier.

The preceding scenario demonstrates the packet flow in
our tree design. We are going to present a sample packet
flow for our ring topology in the next section, while we
describe our performance measurement model.

3.4 State Machines
To describe the designs, we provide the protocol state

machines for the various nodes in the tree topology. Figure 3
presents the state machines employed in a full binary tree
topology. Figure 3.d details the meaning of the state names
and transitions between them.

We did not provide figures for the state machines for
ring and star topologies because they are very simple. On
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Fig. 3: State Machines for the binary tree topology (a) leaf nodes (b) root node (c) internal nodes (c) Legend for state
transitions

the other hand, the butterfly topology state machine is not
presented but briefly discussed because it is so complex
compared to the other cases. The non-central node in the star
topology should employ a state machine like a leaf node in
a tree case because its role is to wait for the host to call the
barrier, notify the central node about the barrier call and wait
for the central node to broadcast the release message. The
central node is like the root node in the tree topology and it
waits for regular nodes notifications to generate the release
message. The order of message arrival from the neighbor
hosts does not matter.

The most complex topology is the butterfly. The number
of states is a lot more than other cases because the order
of packet arrival matters in this implementation. There is
no specific node role in this implementation and every node
employs the same state machine unlike other cases discussed
so far. In an 8-node butterfly topology, each NetFPGA must
connect three other NetFPGAs. In addition, it will also
interface to the host. Therefore, there are total of four ways
to receive barrier packets. Since the order of the packet
arrival matters, there are 4!=24 different sequences these
packets can arrive. The order is important, and the ports,
which packets are received from, represent different states.
For example, if it is received from the port1, it means 2
nodes in the whole topology called the barrier. The states
somewhat employ a logic to keep track of who have called
the barrier until then in the whole topology from a single
node’s perspective. Since the butterfly algorithm is a 1-phase
barrier algorithm, there is no release message circulating
between the NetFPGAs and the only release message is sent
from NetFPGA to the host.

4. Evaluation
4.1 Experimental setup and results

Our experimental setup consists of 8 NetFPGAs in hosts
with Intel(R) Core i5-2400 at 3.10GHz CPUs, 4GB RAM,
and a dual Gigabit Ethernet NIC. The NetFPGA ports
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Fig. 4: Performance comparison of NF_Barrier for imple-
mented topologies to generic MPI_Barrier for Open MPI
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Fig. 5: Performance comparison of different topologies
which are currently implemented for NF_Barrier

were directly connected to the each other establishing a
tested topology. In this paper, we present micro-benchmark
results obtained running OSU Micro-Benchmark Suite [3]
for MPI_Barrier. In addition, we are going to describe how
we can precisely time the NetFPGA operations after we
offload the collective to the NetFPGA network.

The benchmark is configured to run 10 million barrier
calls and averaged latency results are recorded. Figure 4
shows the latency of a single barrier operation for different
numbers of hosts and various topologies.

Even though averaged results give us significantly bet-
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Fig. 6: Minimum latency experienced by different topologies
which are currently implemented for NF_Barrier

ter performance compared to the point-to-point Open MPI
implementation, it does not precisely demonstrate how our
design contributes to the overall barrier latency. According
to the results presented in Figure 5, if the number of
nodes is increased by one in ring topology, it introduces
approximately 2µ latency. If the height of the tree increased
by one, it introduces additional 3.5µ. It is also the same
for the butterfly topology, if we increase the number of
nodes by the power of 2. However, because of the node
parallelism, these numbers are expected to be close to each
other since we are introducing a single parallel NetFPGA
processing to the overall processing time. We run our
benchmarks to find out what the minimum latency of a
barrier would be for various hosts in various topologies.
The minimum latencies experienced are presented in Figure
6. The purpose of presenting the minimum results are to
show that the host itself introduces a huge variance to the
overall performance of our implementation. Therefore, it is
not fair to evaluate our design based on average results unlike
some other previous work [8]. As observed in Figure 6,
when the host involvement in barrier latency is minimal, it
provides more precise data for understanding how our design
really contributes to the overall performance. Hence, we can
extrapolate valuable information about processing time of
the NetFPGAs. According to these results, an additional
node to the ring introduces an average of 1.46µs latency,
an increase in the height of the tree introduces 2.95µs of
latency to the leaf nodes, and there is no latency introduced
for the case of butterfly implementation.

We define p as the NetFPGA’s single packet processing
time. In the ring case, if a node is the last one to arrive
barrier call, it will wait for its packet to circulate through the
ring once. Therefore, an increase in the number of nodes in
the ring would introduce extra latency of p to the last node
arrived at the barrier. In a full binary tree, if a leaf node
is the last one to arrive barrier, its notification packet goes
up to the root, and then it is sent back to all the children
as a release packet. Therefore, an increase in the height of
a tree would introduce latency of 2p to the leaf nodes. In
butterfly topology, we expect latency to increase p amount
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Fig. 7: Example packet-flow scenario that describes our
precise performance measurement model

when the number of nodes increase by the powers of two.
However, we do not see consistant results for this case in
Figure 6. The presented numbers are a lot more consistent
than averaging overall latencies and give us an idea about
how fast the NetFPGA processes the packet. So, based on
these results, p is around 1.46µs. However this is still not a
precise measurement.

To precisely measure the NetFPGA processing time, p,
we developed the model pictured in Figure 7. NetFPGA
has a 125Mhz clock and we created a 64-bit timer which
increments on each clock cycle. The steps to measure the
NetFPGA’s single packet processing time in 2-node ring
topology are listed below.

1) The host of the head node manually sends an
MPI_Barrier message to the NetFPGA.

2) The NetFPGA forwards this packet to the second
NetFPGA on the ring. Second NetFPGA then waits
for its host to call MPI_Barrier.

3) The host of the second NetFPGA sends the
MPI_Barrier message to its NetFPGA. The NetFPGA
records the time at a certain place through the data-
path.

4) The second NetFPGA now forwards the packet to the
head NetFPGA, which is the head-node.

5) The head NetFPGA now knows that everyone has
called MPI_Barrier. It generates a release message and
forwards it to the host and the second NetFPGA at the
same time.

6) When the second NetFPGA receives the release mes-
sage from the head NetFPGA, it records the time again
at the same place on the data-path. The difference
between the two recorded timestamps provides the
NetFPGA processing time for both nodes. This data
is written into a packet which is sent to the host as a
release message.

The time measured in this model includes the propagation
delay. However, the propagation delay is negligible since we
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Fig. 8: Precise processing time of NetFPGA for different
topologies and various number of nodes
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Fig. 9: Average latency introduced after MPI_Barrier is
offloaded to the NetFPGA network for various topologies

used short cables to connect the hosts. Based on our precise
measurements, p is 1.32µ. An increase in the number of
nodes in the ring introduces 1.32µ delay, and the results
are presented in Figure 8 that prove the consistency of our
precise measurement. Similar model is used for the tree
topology for the leaf nodes and an increase in the height
of a tree introduces 2p latency. Based on the number of
processing time, we put the estimate results for the butterfly
algorithm, however they are not measured, since it is very
hard to inject packets to the NetFPGAs at the same time
because of the system noise of the different arrival times.

Network’s average performance results after the host
offloads the barrier operation to the NetFPGA still present
valuable information especially for the butterfly topology.
For these measurements we used a similar approach as we
did for the precise measurements. However, in this case
we recorded the timestamp when NetFPGA receives offload
request from the host. The second timestamp is recorded
when the NetFPGA sends the release message to the host.
The difference is attached to the release packet. Measure-
ments for the ring and butterfly are averaged for each host.
However, for the tree case, only the results for the leaf nodes
are averaged since the upper nodes are released quite earlier
than the leaf nodes. Non-leaf nodes can introduce a huge
bias and do not offer how the network processing time is
related with the height of the tree. The results are presented
in Figure 9.

5. Related Work
Zotov [20] proposes a hardware mechanism to synchro-

nize n-dimensional mesh-connected MIMD computers. This
work is one of the most comprehensive works in the
literature about barrier synchronization and maps out the
limitations of different synchronization frameworks. The
work itself proposes a separate control networks for mesh-
connected MIMD computers, and it is different from our
work in three key aspects. This work proposes a separate
control network for barrier synchronization. Instead, our
work implements synchronization on the data network. Al-
masi et al. [5] are also another example claiming that it is
better to have separate barrier logic and build a separate
network to handle the synchronization.

Even though they are not considered as clusters of work-
stations, FPGA based network on chip (NoC) architectures
are also related to our work. Mahr at al. [14] implement an
MPI library for multiprocessor systems on a single chip.
They connect the processing elements on a single chip
in different ways such as a ring topology, star topology
and shared bus. [15] also similarly proposes a centralized
synchronization solution for 8 cores on a single chip. [7]
is another example to achieve barrier synchronization on a
NoC environment. According to [7] the defining feature is
that the barrier release messages are broadcasted to facilitate
the job of storing the source node information. Our work
differs in that sense since we store the source node protocol
information until the end of barrier release message. [18]
discusses scalability and effect of different barrier algorithms
on a NoC based platform. The algorithms investigated in this
paper are central counter, combining tree and dissemination
algorithm. Huang et al. [11] also focus on optimizing MPI
primitives on a NoC system.

Moreover, there are some other proposals for different
platforms. TMD- MPI [16] focuses on MPI_Send and
MPI_Recv implementation in multi-FGPA platforms and
[17] is the extension of their work to unite their design
with a specialized x86 platform. Our work provides both
a distributed barrier implementation and has the potential to
support a variety of network topologies. Previous work [8]
is the most similar to our work, but with some caveats. It
is applicable only for a specific FPGA cluster architecture
and topology - a tree. In contrast, we support a variety of
topologies - all ring, tree and star are discussed in this paper.
In addition, the communication between the FPGA systems
is not using standard protocols as we do in our work. In
another FPGA implementation [10], a single FPGA is used
to collect barrier messages from connected hosts and to
distribute them a release message when all nodes call barrier.
It implements a centralized barrier algorithm employing a
simple state machine. Fabric Collective Accelerator (FCA)
[1] offloads the collective communication burden to Mel-
lanox InfiniBand adapters and switches. Along with that [9]
describes the implementation of a non-blocking barrier call
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with CORE-Direct hardware capabilities introduced in the
InfiniBand NIC ConnectX-2. They provide a list of tasks that
achieves the barrier utilizing recursive-doubling algorithm.
However, unlike our work, this implementation does not
totally implement the barrier collective in the hardware but
defines the routine that employs the primitive tasks provided
by the hardware.

6. Discussion and Future Work
Our design has obvious limitations, including manual

configuration. We leave these to be addressed in future work.
Moreover, even though we integrated our design into the
Open MPI via simply replacing the included MPI_Barrier,
a more significant integration effort is necessary to preserve
the architecture and semantics of Open MPI.

In our packet format we defined a field called comm_ID.
However, it is not used in this design; the goal is to
distinguish active barrier operations, which may run on
simultaneously for different MPI communicators. Each of
the simultaneous barrier operation will require a separate
state machine. Therefore, in order to distinguish the states
of active barrier synchronizations, we are planning to investi-
gate the best way to store the comm_ID with their associated
barrier states. We are currently investigating approaches to
store the (comm_ID, barrier_state) tuples since the read and
write operations for those tuples are going to be almost
equal.

Moreover, we are planning to put hardware logic into
the NetFPGA to learn the topology of the NetFPGA collec-
tive network and configure node roles as appropriate. This
information will be propagated to the MPI environment,
eliminating the hardcoding that comes with the current
design and making it portable to other NetFPGA network
configurations. We are also planning to achieve the self-
configurability without changing any system level driver, and
implementing the logic at the hardware and user-level.

7. Conclusion
In this paper, we have presented preliminary results us-

ing NetFPGAs to implement MPI_Barrier synchronization.
While the hardware designs presented have some limitations,
the results provide strong evidence that this is likely to
be a fruitful research domain. Limitations in our initial
design include lack of mechanisms for failure recovery and
the need for a pre-assigned root node. Our plans include
better and more robust implementations of barriers and other
synchronization mechanisms, performance evaluation on real
parallel code, and integration with MPI libraries.
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Abstract 

Program parallelization involves multiple considerations. 
These include methods for data or control parallelization, 
target architecture, and performance scalability. Due to 
number of such factors, best parallelization strategy for a 
given sequential application often evolves iteratively. 
Researchers are confronted with choices of parallelization 
methods to achieve the best possible performance. In this 
paper, we share our experience in parallelizing a very 
large application (250K LOC) on shared memory 
processors. We iteratively parallelized the application by 
leveraging selective benefits from automatic as well as 
manual parallelization. We used YUCCA, an automatic 
parallelization tool, to generate parallelized code. Using 
the information generated by YUCCA, we improved the 
performance by modifying the parallelized code. This 
iterative process was continued until no further 
improvement was possible. We observed performance 
improvement of 17% compared to 5% improvement 
reported in the literature. The performance improvement 
was gained in very short time and despite the constraint 
of having to use only SMPs for parallelization. 

Keywords: Parallelization, Optimization, Performance, 
Share memory processors 

1 Introduction 
Parallelization at software as well as hardware level 

is extremely important to improve performance of 
software significantly. Program parallelization is most 
fruitful when opted from start of the design phase of an 
application. However, in order to port legacy applications 
onto parallel hardware and reap its benefits, 
parallelization is needed after an application is designed 
and implemented. In order to parallelize the application 
code manually, high proficiency in domain of the 
application as well as parallelization techniques is 
needed. Automatic parallelization tools are a natural 
choice when parallelization is considered after 
development of application. Automatic parallelization 
typically focuses on select techniques and looks for 
specific patterns in the application that have the 
potential to execute in parallel. Choice of appropriate 
automatic parallelization tools is important to parallelize 
applications for specific target platforms. 

In this paper, we present our work in parallelizing a very 
large code set consisting of more than 250K LOC (Lines of 
Code) for shared memory processors. In order to bring in 
improvement in the performance, manually parallelizing 
the application at algorithm level was one option. 
However, considering the massive size of given 
application, it was not feasible to use manual 
parallelization at algorithmic level. YUCCA (User Code 
Conversion Application), an automatic parallelization tool 
developed at our research center, supports 
parallelization for SMPs [1]. We used it to squeeze first 
level of parallelization benefits from the code. By using 
the intermediate results generated by YUCCA, we 
manually improved performance of the application on a 
shared memory processor. In this paper, we present the 
work in exploiting parallelization with respect to a given 
gigantic code and a thorough analysis of success and 
failure of all parallelization strategies that we used. We 
also present a unique literature review by discussing 
various important factors, which are considered crucial 
for parallelization.  

2 Literature Review 
In this section, we highlight some work in the area of 

automatic parallelization and its relevance in case of 
large data sets or large-scale applications. 

2.1. Data Dependence Analysis 
Automatic parallelization tools, which make use 

of static information of the code, ultimately come up 
with code partitions that can be dispatched on multiple 
processors or cores [2, 3, 4]. In order to determine 
partitions of the program, data dependence analysis is a 
must [3, 5]. Programming languages allow access to 
variables in various fashions including arrays, pointers, 
pointers of arrays, arguments to functions, parameters of 
functions etc. Over and above, their scope and visibility, 
different type qualifiers, also play an important role in 
program behavior. Dependency analysis also needs to 
understand side effects of functions called at various 
places in the code. Real life applications do have multiple 
global variables, hierarchical calls to functions, iterative 
and recursive functions etc. As mentioned in [6, 7], the 
analysis becomes crucial when the programs are irregular 
and unstructured. In case of irregular programs, pointers, 
their level of indirection and their ability to contain more 
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than one data points is a crucial factor [7]. Random and 
intuitive nature of program needs extensive data 
dependence analysis in unstructured programs [6]. Basis 
of dependency analysis is the read/update access to the 
variables. In [8], it is claimed that though necessary, a 
thorough end-to-end dependency checking may not be 
required for parallelization. Hence, the analysis is done 
on the basis of values, rather than memory.  

2.2. Large Applications  
Large program code sets typically have code 

distributed across multiple source and header files. 
Probabilistically, large number of LOC tends to cover 
variety of complex program syntaxes. The automatic 
parallelizing tools should be capable of handling and 
mapping of all these syntactical patterns accurately.  The 
efficient use of system resources by the parallelization 
tools becomes an important factor especially in case of 
large applications [9, 10]. Applications having very large 
number of lines are difficult to parallelize, as they require 
a thorough understanding of the application as well as 
the domain [11, 12, 13]. 

Irrespective of the code size, performance benefits of 
parallelization depend on the inherent degree of 
parallelization the code supports. If the chunks into 
which the application is partitioned for parallelization are 
of small size, then switching time between these 
partitions increases. This in turn leads to less 
performance benefit.  

2.3. Overhead of Parallelization 
All parallelization techniques including use of 

APIs (like Pthreads, OpenMP, MPI, Intel TBB, etc.) add 
overhead on parallelized application. In all of these cases, 
the overhead arises from the synchronization and 
context switching time of these APIs. The absolute 
overhead time does not depend on the data size or the 
execution time. It depends on the number of parallel 
threads or processes created and how often the control 
switches from one to another [14, 15]. In [8], since the 
execution is broadly split into two paths, one is 
speculative execution and other is actual execution, most 
of the overheads are placed on the speculative path. 
However, as compared to the 
multithreaded/multiprocessing application, behavior 
oriented parallelization incurs additional overhead for 
protecting the data from unauthorized accesses by 
speculative paths. In order to keep the overhead 
minimum, the parallelization techniques believe on 
parallelizing the calls to the most time consuming 
functions, rather than parallelizing the body of that 
function [16].  

2.4. Avenues of Parallelization 
When parallelizing the source code of an 

application, it can be looked at from many perspectives. 
The most promising way is to find parallelization at the 
algorithm level. For example, an mp3 decoder applies 
same steps on left and right channel of the audio stream. 

These steps can be executed in parallel. Similarly, for 
image processing applications, if the same video stream 
is being used for two different applications, the 
applications can be run in parallel after preprocessing on 
the common video is done. The parallelization efforts at 
this level, though time consuming and difficult, typically 
derive more benefits than the parallelization efforts local 
to application code [17]. Automatic parallelization 
techniques focus on code sections which consume most 
of the application time, loops [18, 3], control paths [19, 
20], etc.  

2.5. Performance Improvement Depends on 
Size of Input Data 

Parallelization tools, which make use of static 
analysis for dependency checking, cannot determine the 
size of input data. Moreover, parallelization tools focus 
only some part of the code / selected control paths in the 
code for parallelization. If the parallelized code and the 
input data are tightly coupled and size of input is large, 
then performance improvement resulting from 
parallelization of the code is more.  

2.6. Target Architecture of Hardware on 

which Parallelized Code is Executed 
The performance improvement because of 

parallelization, needless to say, is dependent on the 
hardware platform on which the parallelized code is 
executed. Number of cores/processors, processing 
speed, memory architecture play important roles in 
deciding performance gain of parallelized applications. As 
described in [6, 10], the shared memory architectures 
typically have multilevel caches, and typically have one or 
two levels of global memory accessible to all processors. 
When multiple applications execute on such hardware, 
with only one thread dedicated to each application, 
processor spends more time on memory access and gives 
less throughput. Data parallel applications tend to give 
more performance on shared memory architectures, 
such as RISC, GPGPUs etc. [21].  

2.7. Static and Dynamic Analysis Methods 
For parallelization of an application, behavior of 

program and the data needs to be modeled. This can be 
done in by analyzing the application at compile time or 
run time. Static analysis methods [2, 22, 14] collect 
information about the behavior of data and program at 
compile time. In order to complete the analysis for all 
possible behaviors of data and code, these methods tend 
to be more conservative and time consuming [22]. Such 
tools need to follow safer approach if the worst-case 
conditions or if the behavior of the program cannot be 
predicted [8]. In case of dynamic methods, the analysis is 
done speculatively based on the partial execution or 
based on the partial visibility to the input data [22]. Few 
analysis methods combine benefits of static and dynamic 
analysis, and analyze the applications in hybrid manner.  
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2.8. Handling I/O 
In most of the algorithms, I/O operations need 

to be executed in the same order as they were in the 
sequential version. Hence, their presence poses a big 
challenge for parallelizing tools [7].  

2.9. Library Code 
Many applications use third party libraries in the 

applications. Absence of their source code can be a 
bottleneck for source code parallelizing tools. In such 
cases, depending on the input and output of the library 
APIs, worst cases need to be considered by parallelization 
tools. This problem gets aggravated if the libraries are 
using difference software languages for their 
implementation [7, 23].  

2.10. Automatic Generation of Parallelized 

Code 
APIs generated by the parallelization tool has to 

support target architecture [24]. APIs like OpenMP, 
Pthreads are used for parallel application executing on 
shared memory architectures, MPI are used for 
distributed memory architectures. OpenCL and CUDA 
provide APIs for GPGPUs. Inserting parallelization 
constructs at proper places in the code without altering 
its semantics and functional behavior is a tough task for 
parallelization tools [25]. 

3 Overview of Automatic 
Parallelization Tool 

YUCCA, ‘User Code Conversion Application,’ is 
an automatic parallelization tool, which parallelizes 
complete projects/code sets, written in C language. 
YUCCA tool (earlier named as S2P tool [1]) is a source-to-
source conversion tool; i.e. when a C application is given 
as input, YUCCA generates parallelized C application as 
output. The parallel code is a multithreaded code with 
Pthreads and OpenMP constructs inserted at relevant 
places. Throughout this text, words ‘code’, ‘program’ and 
‘application’ are used interchangeably and they refer to 
the inputs and outputs of the YUCCA tool. YUCCA inserts 
Pthreads APIs in case of task parallelization and OpenMP 
APIs in case of loop parallelization. YUCCA tool consists of 
a compiler-like front-end that can preprocess, scan and 
parse application code and an intelligent back-end that 
performs static dependency analysis to identify 
parallelizable sections of code [1, 26]. YUCCA’s front end 
synthesizes information about application in an XML 
schema. YUCCA’s back end performs rigorous 
dependency analysis on this information. Results of these 
analysis methods are released to the user. The end result 
of dependency analysis includes a task dependency 
matrix (TDM) similar to static task graph in [2]. TDM is 
nothing but a matrix in which every code section is 
checked against each other for control as well as data 
dependencies [27]. Empty values in the matrix denote 
that there is no dependency in between two code 
sections. Non-empty values denote the dependency in 

the form of line number(s) on which the dependency 
exists between two code sections. Every such code 
section is called as a ‘task’. According to [1], criteria for 
defining boundaries of tasks is ‘first level programming 
constructs’ in ‘main’ function of the C application. 
Expressions, selection statements, control statements, 
iterative statements, function call sites that are 
immediately contained by ‘main’ function form tasks. 
Nested programming constructs are analyzed for 
dependencies; however TDM reports these dependencies 
only at the ‘first hierarchical level’ of main function. The 
information presented in TDM is further used for 
partitioning the code. The code insertion module in 
YUCCA then inserts parallelization constructs around and 
inside these partitions. Scheduler executing on a 
multicore processor [28] schedules the multithreaded 
application generated by YUCCA.  
 

4 OpenMX - Application for Nano-
Scale Material Simulations 
 The code set, which we have considered as case 
study is OpenMX version 3.3. The software package 
OpenMX (Open source package for Material eXplorer) is 
designed for large number of nano-scale material 
simulations [29]. The algorithms used in OpenMX enable 
researchers to study electronic, magnetic, and 
geometrical structures of variety of materials. Hence, the 
package finds applications in areas of biomaterials, 
magnetic materials, nano-scale conductors, carbon 
nanotubes etc. Using this package, researchers working 
in these areas can have deep understanding of various 
complicated and useful materials [29]. Since the package 
is computationally intensive, improving its performance 
by parallelization helps to quickly simulate properties of 
above mentioned materials. The application has earlier 
been parallelized using MPI (Message Passing Interface) 
on distributed memory systems using three methods. 
Results of parallelization can be found on [29]. 

The OpenMX source code consists of 250 LOC spread 
across 192 C files and 10 header files. Work described in 
[30], denotes cost for developing parallel programs in 
terms of Person Minutes per LOC. According to the 
metric specified, mean cost of developing an OpenMP 
application is 24.8 person minutes/LOC. To develop an 
application of size 250K, it would take more than 12,916 
person days (assuming 8 hours per person day). The 
numbers indicated denote the time to develop the 
application rather than parallelize it. Assuming that 25% 
of the effort would be spent in parallelizing the 
application, the effort reduces to 3,229 person days. 
Since the metrics mentioned in the literature mentions 
code development by novice programmers, we would 
still like to reduce it by 50% to consider parallelization 
efforts by parallelization experts. This consideration 
further brings down the efforts to 1614 days. This 
number gives a sense of huge efforts required for 
manually parallelizing an application of size of 250LOC.  
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5 Parallelization of OpenMX using 

YUCCA Tool 
OpenMX code contained varied syntaxes, 

including six level of pointer, macro definitions containing 
approximately 10000 words on a single statement, 
numerous conditional operators etc. As per YUCCA’s 
architecture, a binary expression is formed for each 
expression in the code and hence conditional operators 
are not handled. In order to overcome this, we changed 
the conditional statements to selection statements and 
completed the parsing of the OpenMX application 
through YUCCA. We could successfully parse the entire 
application through YUCCA with all the code complexities 
mentioned above. 
 
The next step to automatic parallelization was the 
execution of YUCCA back-end, which actually does the 
conversion of sequential code to parallel code using 
Pthreads, based on thorough analysis of information 
present in the XML schema. YUCCA tool is capable of 
parallelizing loops and tasks selectively as well as 
simultaneously. In order to generate parallelized C code, 
YUCCA first generated Task Dependency Matrix (TDM) [1] 
showing information about the created tasks and the 
dependencies between all these tasks. After TDM 
generation, YUCCA released parallelized code for the 
entire OpenMX package. Table 1 shows comparison of 
execution time of sequential and YUCCA parallelized 
version of OpenMX application for various input sizes. 
 

Table 1: Benchmarking of parallel execution time of OpenMX 
code 

Input File 
 

Size  
(KB) 

Execution Time of 
OpenMX application 

(mm:ss) 

Percentage 
Improvement 

(%) 
Sequential Parallel 

Methane.
dat 

4 00:12 00:12 0% 

C60.dat 6 01:00 01:00 0% 

DIA216_D
C.dat 

17.8 09:57 10:02 -4.7% 

DIA512_D
C.dat 

36.9 36:24 Memory allocation error 

 

The results mentioned in this section as well as 
subsequent sections are recorded on experimental set up 
mentioned in Table 2. 

Table 2: Testing environment 

Processor Intel i3 processor-dual core (HT) 

Operating System 32-bit Ubuntu Linux 10.04 

Speed 3.2 GHz 

RAM Size 4 GB 

 

The first and second column of table 1 shows the name 
and size of the files. The third column shows the 
execution time of the input file with OpenMX sequential 
version. Fourth column shows execution time of OpenMX 

parallel version generated by YUCCA. Fifth column shows 
the percentage of performance improvement of parallel 
version over sequential version. 

By comparing results of execution of parallelized version 
of OpenMX with the sequential one, we could verify that 
both the versions are functionally equivalent. By looking 
at result table 1, we can see that there is no performance 
improvement after the parallelization. However, there is 
performance degradation for the input file 
‘DIA216_DC.dat’ with large size among the first three 
files. A thorough inspection of the parallelized code leads 
to following crucial observations: 

1. The core computation of the application is handled 
by only one thread, and the computation varied for 
different input files according to the settings we are 
specifying the input.dat file.  

2. By default, YUCCA partitions tasks in the main 
function and inserts parallelization constructs around 
the boundaries of these tasks. In case of OpenMX 
code, the core computation happens at inner code 
level. Hence the code section which performed this 
core time-consuming computation is not parallelized.  

3. There was an overhead because of large number of 
threads created.  

4. For one of the input files (DIA512_DC.dat), we were 
not able to execute the parallelized version 
successfully, because the system ran out of memory. 
As the file size is large, memory required for the 
computation is more. In case of parallelized code, as 
there was more number of parallel tasks, there is a 
limitation on memory available to each thread. This 
limited thread-stack memory did not suffice for the 
computations in case of large files. 

5.1. Customization of Parallelized OpenMX 

Code 

5.1.1. Parallelization of DFT Function 

To get an insight of performance of parallelized 
application, we profiled the OpenMX sequential code 
using Valgrind and found that the function ‘DFT ()’ takes 
around 85% of the total execution time. Since, ‘DFT’ 
function was at 2 levels inside main function, YUCCA 
created only one thread for the whole ‘DFT ()’ function. 
Hence, the core time consuming computation did not get 
parallelized. All the threads, except the thread executing 
DFT function, were idle most of the time. Therefore, we 
realized that parallelizing ‘main’ function will not give any 
performance benefit. Hence, we modified the YUCCA tool 
in such a way that the tool will parallelize the function 
according to user inputs. With a modified version of 
YUCCA tool, we got another parallelized version of 
OpenMX code. 

5.1.2. Cosmetic Code Changes to Reduce the Size of 

TDM 

The parallelized code was once again checked 
for correctness by comparing its results with the results 
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of serial version. Once the functional equivalence was 
tested, we observed that 45 tasks are created, in the 
parallelized code. YUCCA creates one thread per task. 
Because of 45 threads, we started facing the issue related 
to memory exhaustion. In order to fix the memory 
related issues resulting from more number of tasks (and 
thus threads), we made some cosmetic changes to the 
code. As shown in figure 1, we modified the application 
code, such that only limited numbers of tasks were 
created. As per YUCCA design, 5 tasks (and hence 5 
threads) will be created for code in figure 1.a, and only 3 
tasks (and hence 3 threads) would be created by making 
some superficial changes as shown in figure 1.b. 
 
{ 

Selection statement#1; 
Loop#2; 
Loop#3; 
Control statement#4; 
FunctionCall#5; 

} 
Figure 1.a. Sample code snippet before changes 

 
{ 

{ 
Selection statement#1; 
Loop#2; 

} 
{ 

Loop#3; 
Control statement#4; 

} 
{ 

FunctionCall#5; 
} 

} 
Figure 1.b. Sample code snippet after superficial changes 
 
By making similar change in the OpenMX code, less 
number of tasks, and hence threads, were created by 
YUCCA. After making these changes, the parallel version 
executed without any memory allocation errors. 
However, it did not lead to any performance 
improvement as shown in table 3.  
 

Table 3: Benchmarking of parallel execution time after 
DFT parallelization and cosmetic code changes 

Input 
File 

 

Size 
(KB) 

Execution Time 
(mm:ss) 

Percentage 
Improvement 

(%) Sequential Parallel 

Methane
.dat 

4 00:12 00:12 0% 

C60.dat 6 01:00 01:01 0% 

DIA216_
DC.dat 

17.8 09:57 09:58 0% 

DIA512_
DC.dat 

36.9 36:24 36:24 0% 

 

5.1.3. Merging Data Dependency Analysis with Value 

Analysis  

A deeper look at the TDM and the side effect 
analysis report generated by YUCCA gave us the list of 
variables, which were causing the dependency. In one 
case, only one variable was creating interdependencies 
between two tasks. In the dependent task, a function was 
invoked four times. Out of four call sites, first call site 
used a particular literal value of the argument and the 
remaining three function call sites passed another value 
of the argument. Inside the body of function definition, a 
selection statement bifurcated use of these literals to 
different computations. We used value analysis within 
the function definition and gathered that only the first 
call site would pose dependency problems instead of all 
the four call sites. Hence, in the parallelized code, we 
removed the synchronization constructs that were placed 
due to last three call sites. Removal of these constructs 
opened few more opportunities for parallelization. 

5.1.4. Data Privatization 

In another case, the dependency was there due 
to update of an array variable. Even if two different 
memory locations/indices of array are accessed or 
updated by two tasks, YUCCA would treat it like 
dependency pertaining to the entire array variable, when 
executed in task parallelization mode. The array update 
was happening in all parallel tasks and on different 
indices. Moreover, the values were not being utilized for 
any functional calculation. Since the array update 
occurred in the core computation loop of all tasks, each 
following task needed to wait until the completion of 
previous task. To avoid this situation, we applied data 
privatization for the array variable in all the tasks, and 
added code to transfer the values from temporary array 
variable to original array variable after the loop iteration. 
Also the wait and post synchronization signals were 
placed accordingly. Because of this modification, the 
computations in the parallel tasks were happening until 
the point where the data transfer from temporary 
variables to actual array variables happened. Only the 
tasks were waiting for some fraction of time. Therefore, 
we could achieve performance improvement for the 
parallelized version. 

 
By doing manual optimization in YUCCA parallelized code, 
we achieved a performance benefit of 11 – 17%. The 
increment factor depends on the size of the input file. 
From the result table, we could see that the performance 
improvement is less for DIA512_DC.dat file (size: 36.9KB). 
This is because of two reasons. Based on the contents of 
the input file, different computations are performed in 
the application. Other reason is the size of the file. If we 
select files with same input settings, then the percentage 
of performance benefit decreased for files with larger 
size. In the graph shown in figure 2, performance benefit 
obtained for DIA512_DC.dat is less than the benefit 
obtained for DIA216_DC.dat. But the benefit obtained for 
C60.dat is more than what we obtained for 
DIA512_DC.dat. Here the files, DIA216_DC.dat and 
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DIA512_DC.dat have same settings in the input file. 
Hence, when there are files with same settings, then 
performance benefit is less for file with larger size. 

 

 

Figure 2: Size of OpenMX input files versus percentage of 
performance improvement 

5.2. Role of Automatic Parallelization Tool 
for Obtaining Parallelized OpenMX 
Application with Improved 
Performance  

Even if we did some manual modifications in the 
code for optimization, all the modifications were based 
on the results produced by YUCCA tool. There were no 
manual interventions in dependency analysis or task 
creation. As far as task synchronization is considered, we 
changed positions for some of the wait/post signals to 
resolve some dependencies. However, we did not 
add/remove any synchronization signals added by YUCCA 
tool. In addition, there were no dead locks/data races in 
the parallelized code produced by YUCCA tool. We 
reached this conclusion based on testing done on the 
parallelized code regarding functional integrity.  
 

Table 4: Benchmarking of parallel execution time after 
DFT parallelization, cosmetic code changes, value 

analysis, and data privatization 

Input 
File 

 
Size  
(KB) 

Execution Time of 
OpenMX (mm:ss) 

Percentage 
Improvement 

(%) Sequential Parallel 

Methane

.dat 
4 00:12 00:12 0% 

C60.dat 6 01:00 00:51 15% 

DIA216
_DC.dat 

17.8 09:57 08:14 17% 

DIA512
_DC.dat 

36.9 36:24 32:21 11.13% 

 
As mentioned in this paper, there had been past efforts 
of parallelization of OpenMX code. Parallelization of the 
code using MPI was carried out by 3 different ways [29]. 
For 2 processors, the performance improvement was 
always less than or close to 5%. By leveraging the 
strength of automatic parallelization tool and manual 

comprehensive efforts, we could get performance gain 
up to 17% as shown in table 4. Apart from the gain in 
performance improvement, we would also like to 
highlight the speed of parallelization. As mentioned in 
section II, it takes almost 12,916 person days to develop 
the parallel application of the size of OpenMX. As against 
this number, first round of parallelization using YUCCA 
merely took 48 hours. Further superficial changes to the 
application and customization of YUCCA code was 
completed in less than 50 days.  

6 Conclusion and Future Work 
In this paper, we have shown how to combine usage 

of automated tool along with selective changes to the 
code iteratively to achieve best possible parallelization. 
For manual customization, we made use of information 
generated by the tool itself. These efforts involved 
reducing numbers of threads, data privatization, and 
exploiting parallelization at multiple first level blocks in 
the code. By making such changes to the code and 
without even understanding the functionality of the 
code, we could fetch 17% improvement in the 
performance of the code, when executed on shared 
memory processor. We completed parallelization of 250 
KLOC code in about 2 person months. This is estimated to 
3% of the manual effort required for parallelizing such a 
large code. 

The next challenge is to convert the lessons learnt from 
manual parallelization into an algorithm. This algorithm 
can further be used to enhance the automatic tool. 

7 References 
[1] Aditi Athavale, Priti Ranadive, M. N. Babu, Prasad 
Pawar, Sudhakar Sah, Vinay Vaidya, and Chaitanya 
Rajguru, “Automatic Sequential to Parallel Code 
Conversion The S2P Tool and Performance Analysis”, 
Global Science & Technology Forum (GSTF) Journal on 
Computing, 2012, vol. 1, no. 4, pp. 128-137. 
[2] Vikram Adve, Rizos Sakellariou, “Application 
Representations for Multiparadigm Performance 
Modeling of Large-scale Parallel Scientific Codes”, In The 
International Journal of High Performance Computing 
Applications,2000, vol. 14, no.4, pp. 304-316. 
[3] Banerjee, Utpal, Rudolf Eigenmann, Alexandru 
Nicolau, and David A. Padua, "Automatic program 
parallelization”, Proceedings of the IEEE 81, no. 2, 1993, 
pp. 211-243. 
[4] Vivek Sarkar, “Partitioning and scheduling parallel 
programs for multiprocessors”, PhD dissertation, MIT 
press, 1989. 
[5] Anish Sane, Priti Ranadive, and Sudhakar Sah, "Data 
dependency analysis using data-write detection 
techniques", In International Conference on Software 
Technology and Engineering (ICSTE) 2010, vol. 1, pp. 1-9. 
[6] Lumsdaine, Andrew, Douglas Gregor, Bruce 
Hendrickson, and Jonathan Berry, "Challenges in parallel 

0
5

10
15
20
25
30
35
40

Size of Input
File (in KB)

Percentage of
Perfomance
Improvement

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

282 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



graph processing” Parallel Processing Letters 17, no. 1, 
2007, pp. 5-20. 
[7] Brian Armstrong, and Rudolf Eigenmann, “Challenges 
in the Automatic Parallelization of Large-scale 
Computational Applications”, In Proceedings of 
International Symposium on the Convergence of IT and 
Communications, 2001, pp. 50-60. 
[8] Chen Ding, Shen Xipeng, Kelsey Kirk, Tice Chris, Huang 
Ruke, and Zhang Chengliang, "Software behavior 
oriented parallelization", In ACM SIGPLAN Notices, 2007, 
vol. 42, no. 6, pp. 223-234. 
[9] Krepska, Elzbieta, Thilo Kielmann, Wan Fokkink, and 
Henri Bal. "Hipg: parallel processing of large-scale 
graphs”, ACM SIGOPS Operating Systems Review 45, no. 
2, 2011, pp. 3-13. 
[10] Zanni, Luca, Thomas Serafini, and Gaetano 
Zanghirati, "Parallel software for training large scale 
support vector machines on multiprocessor systems”, 
The Journal of Machine Learning Research 7, 2006, pp. 
1467-1492. 
[11] Edward Carmona, “Parallelizing a large scientific 
code-methods, issues, and concerns", In Proceedings of 
the 1989 ACM/IEEE conference on Supercomputing, 1989, 
pp. 21-31.  
[12] Gonina, Ekaterina, Anitha Kannan, John Shafer, and 
Mihai Budiu, "Parallelizing large-scale data processing 
applications with data skew: a case study in product-offer 
matching”, In Proceedings of the second international 
workshop on MapReduce and its applications, 2011, pp. 
35-42.  
[13] Wilson, M. R. "Parallel molecular dynamics 
techniques for the simulation of anisotropic systems”, In 
Advances in the Computer Simulations of Liquid Crystals, 
2000, pp. 389-415. 
[14] Wu, Peng, Arun Kejariwal, and Călin Caşcaval, 
"Compiler-driven dependence profiling to guide program 
parallelization”, In Languages and Compilers for Parallel 
Computing, 2008, pp. 232-248.  
[15] Grama Ananth, Anshul Gupta, and Vipin Kumar, 
"Isoefficiency function: A scalability metric for parallel 
algorithms and architectures”, IEEE Parallel and 
Distributed Technology, Special Issue on Parallel and 
Distributed Systems: From Theory to Practice 1, no. 3, 
1993, pp. 12-21. 
[16] Boby George, Pooja Nagpal, “Optimizing Parallel 
Applications Using Concurrency Visualizer: A case study”, 
Parallel Computing Platform Group, Microsoft 
Corporation, 2010. 
[17] Pankratius, Victor, Ali Jannesari, and Walter F. Tichy, 
"Parallelizing bzip2: A case study in multicore software 
engineering”, Software, IEEE 26, no. 6, 2009, pp. 70-77. 
[18] Carl D Offner, “Modern Dependence Testing”, HP 
Labs, Technical Report HPL-2005-177, September 1996. 
[19] Vinay Vaidya, Pushpraj Agrawal, Aditi Athavale, 
Anish Sane, Sudhakar Sah, and Priti Ranadive, "Increasing 
Parallelism on multicore processors using Induced 
Parallelism", In Software Technology and Engineering 
(ICSTE) 2010, vol. 1, pp. V1-5, IEEE, 2010. 
[20] Aleen, Farhana, and Nathan Clark. "Commutativity 
analysis for software parallelization: letting program 

transformations see the big picture”, ACM Sigplan 
Notices 44, no. 3, 2009, pp. 241-252. 
[21] Slogsnat, David, Markus Fischer, Andrés Bruhn, 
Joachim Weickert, and Ulrich Brüning, "Low level 
parallelization of nonlinear diffusion filtering algorithms 
for cluster computing environments”, In Euro-Par 2003 
Parallel Processing, 2003, pp. 481-490. 
[22] Michael Ernst, “Static and Dynamic Analysis: Synergy 
and Duality”, In International Conference on Software 
Engineering, 2003, pp-25-28. 
[23] Brian Armstrong, and Rudolf Eigenmann, 

“Application of automatic parallelization to modern 

challenges of scientific computing industries", In 37th 

International Conference on Parallel Processing, 2008, 

pp. 279-286. 

[24] Gonzalez-Alvarez, Cecilia, Youhei Kanehagi, Kosei 

Takemoto, Yohei Kishimoto, Kohei Muto, Hiroki Mikami, 

Akihiro Hayashi, Keiji Kimura, and Hironori Kasahara, 

"Automatic parallelization with OSCAR API Analyzer: a 

cross-platform performance evaluation”, IPSJ SIG 

Technical Report, vol.2012-HPC-137 no.10. 

[25] Vandierendonck, Hans, Sean Rul, and Koen De 
Bosschere. "The Paralax infrastructure: automatic 
parallelization with a helping hand”, In Proceedings of the 
19th international conference on Parallel architectures 
and compilation techniques, 2010, pp. 389-400. 
[26] Vinay Vaidya, Priti Ranadive, and Sudhakar Sah, 
“Method and system for speeding execution of software 
code”, PCT/IN2009/000697, 2009. 
[27] Vinay Vaidya, Priti Ranadive, Sudhakar Sah and 
Jaydeep Vipradas, “Method of Reorganizing Tasks to 
Achieve Resource Optimization”, PCT/IN2009/000701, 
2009. 
[28] Vinay Vaidya, Sudhakar Sah, Priti Ranadive, “Optimal 
Task Scheduler For Multicore Processor”, In International 
Conference on Software Technology and Engineering 
(ICSTE), 2010, vol. 1, pp. V1-1 – V1-4. 
[29] J. OpenMX. (2013, May 23). Welcome to OpenMX 
[Online]. Available: http://www.openmx-square.org/ 
[30] Hochstein, Lorin, Jeffrey Carver, Forrest Shull, Sima 
Asgari, Victor Basili, Jeffrey K. Hollingsworth, and Marvin 
V. Zelkowitz, "Parallel programmer productivity: A case 
study of novice parallel programmers”, In 
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 
2005 Conference, IEEE, 2005, pp. 35-35. 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 283



Wait-less Parallel (MPI) Programming:  A 
Disciplined Approach 

 

Ralph Butler, Chrisila Pettey, and Nathan Reale 
Department of Computer Science 

Box 48 
Middle Tennessee State University 

Murfreesboro, Tennessee, USA 

ralph.butler, chrisila.pettey(@mtsu.edu), and ncr2g@mtmail.mtsu.edu  
 
 
 

Abstract - Throughout the years the introductions of new 
programming paradigms have been greeted by many with 
skepticism.  From goto-less (or structured) programming 
[1,2] to lock-free programming [3] there was an initial 
feeling of "how can this possibly work, and if it does will it 
be better than what we already have?"  The idea of wait-less 
message passing can also have a slightly magical feel.  The 
notion of receive carries with it the idea of waiting for a 
message.  However, there is no magic, there are 
technologies that permit you to do it.  But, using those kinds 
of technologies can lead to problems with debugging and 
maintenance.  So we are proposing a discipline on the use 
of wait-less message passing that makes it feasible even for 
applications that have random communication patterns. 

Keywords:  message passing; MPI; wait-less programming. 

 

1   Introduction 
 In the past when people were advocating goto-less 
programming [1], it was realized that to encourage people to 
adopt the model, a more positive view was to think in terms 
of a disciplined approach that became known as structured 
programming [2].  Similarly, in our work, non-blocking 
message passing [6] (including pseudo out-of-band) has 
certain negative aspects such as difficulty of development 
and debugging.  Because of these difficulties, the model is 
less widely used even though it has potential for significant 
performance gains.  So we are proposing the more positive 
terminology of a discipline we call the wait-less model.  
Obviously the goals differ somewhat in that structured 
programming was mostly about ease of maintenance 
whereas our approach emphasizes performance gains.  
Nonetheless they both require a disciplined approach. 
 Anyone who has done much programming with 
MPI [5] knows that there are advantages such as 
performance gains to be had by using constructs such as 
isend and irecv/rsend, but people do not normally write 

code that never waits for anything, i.e. wait-less 
programming.  It is clear that performance gains of that 
nature depend on non-blocking functions.  So the new MPI-
3 non-blocking collectives have made it possible to take 
advantage of non-blocking communication in situations 
where you might like to mimic the ability to deliver out-of-
band data much like in the TCP/IP protocol suite.  So, for 
example, in a branch-and-bound algorithm, a message 
containing a new bound needs to reach all participants ahead 
of most other message types.  By using a non-blocking 
ibcast you can accomplish that if all the ranks are using this 
proposed wait-less model.  A related, but in our view 
slightly different problem that can be tackled with non-
blocking collectives, is the need to solicit help from one or 
more other ranks - for example, in a branch-and-bound 
algorithm where one of the ranks has depleted its work and 
needs to request work from any rank that can provide it.  In 
the case where the ranks have been sharing status with non-
blocking collectives, then a non-blocking send is probably 
sufficient to make the request.  Otherwise a non-blocking 
ibcast or other collective would prove more useful. 
 Wait-less programming is often regarded as 
difficult, so you probably only want to do it for applications 
that involve non-trivial synchronization associated with the 
parallelism.  Parallel libraries [4] already exploit this kind of 
model.  They sometimes operate in a manner much like MPI 
does internally.  In other words, they implement the notion 
of a progress engine.  This means that on every invocation 
to the library, they check to see what things need to be done 
and try to progress each one of them at least a little bit.  
They have the disadvantage that they have to wait until the 
user invokes some library function.  The application has the 
advantage that, if it never waits, it can simply test to see 
which outstanding operations need attention. 
 In the following sections we will describe the wait-
less model and the discipline that constrains the manner in 
which it is implemented.  The discipline is the key because 
it helps you to obtain the benefits of the model and yet 
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alleviate many of the problems associated with maintenance 
and debugging. 
 
2   The Model 
 The model we are proposing is best used for 
applications where random message exchanges have to 
occur at unpredictable times, so in order to make the best 
use of resources we need to be able to compute until 
additional data becomes available and also be able to deliver 
pseudo out-of-band messages that relay that data to other 
processes.  In order to motivate our desire for the proposed 
model, we need to mention other parallel paradigms that we 
see frequently implemented in applications.  Each of these 
paradigms has its place, and can be of use (and should be 
used) in some applications.   
 The first commonly used model is perfect for the 
lock-step interactions of something like a client-server.  For 
this situation send and recv are usually fine.  The second 
scenario would be to use a probe (or an iprobe to alleviate 
waiting) for any source - any tag.  However, the sender in 
this situation cannot do an rsend in circumstances where the 
user's protocol would permit it, so the sending processes 
will have to wait.  Perhaps more importantly, you cannot 
probe a collective - which is something that is needed for 
the pseudo out-of-band messages. 
 When programmers begin their foray into non-
blocking message passing with MPI, they may use the irecv, 
isend/rsend combination in an algorithm like the following: 

 
 process 1           process 2 
 irecv            compute 
 isend                ... 
 compute            rsend (matched to the 
irecv) 
 wait(irecv)               ... 

 
This does take you into the realm where you are starting to 
get better overlap of function.  Unfortunately this is still a 
somewhat lock-step algorithm.  The algorithm must be 
enhanced with test operations on both the irecv and the 
isend with a loop back to the compute portion of the 
algorithm in order to have wait-less message passing.    
 The enhanced algorithm still does not handle out-
of-band message passing.  Out-of-band message passing 
permits the rank to get a message quickly to others, perhaps 
even leap-frogging existing messages.  I.e. high priority 
messages as in the example mentioned above of a rank 
needing to solicit new work.  For such out-of-band message 
passing you could use one of the non-blocking collectives 
such as ibcast and ensure that the other ranks are checking 
for completion of the operation at the top of each iteration of 
their compute loop.   
 To unify the two models of point-to-point and 
collective operations, you need some common technique for 
checking for completion.  Fortunately both of them use the 

MPI_Request, which can always be checked with any of the 
test family, i.e. test, testall, testany. 
 In the next section, we describe our disciplined 
approach for using the irecv, isend/rsend combination with 
the non-blocking collectives to implement the model. 
 
3   The Disciplined Approach 
 In this approach we make use of the fact that all the 
non-blocking operations, both point-to-point and collective, 
produce a request that we can use a test to determine 
completion.  We have chosen the word reap to describe our 
total process of completing a request.  The situation is 
analogous to that of reaping a process from the operating 
system so it does not become a zombie.  However, in this 
case, we not only want to allow MPI to reclaim internal 
resources about the request, but we also need to perform 
necessary cleanup on our side as well – for example freeing 
buffers.  The disciplined approach consists of an 
initialization phase and a loop over four parts as follows: 

initialization:   The initialization phase is where we 
set up any non-blocking calls (either point-
to-point or collective such as irecv's and 
ibcast's) that create a request.  A good 
example of why this needs to be done might 
be to do an ibcast with the master rank as 
the root to establish our presence in the 
collective in case the master needs to get a 
new bound to every process.  It is important 
to register every request so it can be handled 
by a testany in the loop below. 

loop until done: 
testany for all registered requests 
if any was reaped  
 if this request type has an associated 

buffer 
  free the buffer 
 if this request type requires handling by 

the application 
handle the request.  This is likely 
to involve posting additional 
requests.  For example, if it was a 
non-blocking ibcast then you 
need to go back into it and 
register it again. 

if some local work is available  
 perform a portion which may generate 

more local work and may cause more 
isend/irecv/ibcast's that need to be 
registered.  If more work was generated, 
and we have an outstanding request from 
another rank, then one of the non-blocking 
messages will be a reply to that.  On the 
other hand, all local work may have been 
depleted here.  In which case, the issue 
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will be dealt with in the following if 
statement. 

if no local work is available and there is no 
outstanding request for work 

 request some which will likely result in 
additional isend/irecv/ibcast's that have to 
be registered. 

 
4   Experiences and Conclusions 
 Having initially explored this approach in the 
construction of parallel libraries, we decided to further 
investigate it by presenting it as a student research project in 
a graduate classroom with both masters and PhD level 
students.  We motivated the approach by discussing a 
variety of alternatives.  The only serious alternative that 
arose from these discussions (other than those described 
earlier in the paper) was remote memory access (so-called 
one-sided operations).  The most compelling argument 
against the RMA approach was that the holder of a piece of 
data that needs to be broadcast must do a put operation into 
every other rank.  We concluded the conversation of the 
disciplined approach with a branch and bound version of the 
traveling salesman problem as an application that could 
benefit from this approach.  In that discussion we described 
an algorithm that used rank 0 as a server that could act as a 
clearinghouse for available work and distribute new bounds 
as they become available and check for termination.  Since 
the client ranks were where almost all the work gets done, 
we focused on applying the disciplined approach to them.   
One student expressed particular interest in the project and 

went on to implement the traveling salesman project that 
was discussed in class.  He is currently testing his 
implementation on our Beowulf cluster.  After further 
testing we will put his work into our class resources. 
 Wait-less programming is very difficult - both in 
terms of development and debugging.  Because of these 
difficulties, few programmers choose to use this paradigm 
even though it could give them performance gains. But if a 
programmer has a template, a discipline, to follow, this 
makes it more likely that they will program using the model 
and program correctly. Our experiences with our students 
have taught us that the disciplined approach seems to 
alleviate the fear of this kind of programming, and we plan 
to continue using it in the future.  
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Abstract—A single-electron (SE) circuit, which is just 

one type of nanodevice, has been attracting attention 

in the nanotechnology research area. However, we 

have yet to determine the most appropriate 

information processing architecture for the SE circuit. 

So, as a candidate for the architecture, we are 

proposing the application of DOMINO logic theory to 

the SE circuit. DOMINO logic circuit is a logic circuit 

that is based on the behavior of a domino. To make 

sure that the DOMINO logic circuit is the most 

appropriate information processing architecture for 

the SE circuit, we designed and evaluated an actual 

SE calculator that is based on the DOMINO logic 

circuit. To do this, we designed basic logic circuits, 

e.g., OR, AND, and XOR, using the SE DOMINO 

logic circuit, and evaluated them by first conducting a 

Monte Carlo simulation. As a result, we confirmed 

that our circuit performs correctly. 

 

Keywords: single-electron circuit, domino logic circuit, 

single-electron oscillator 

 

1. BACKGROUND 
 AND MOTIVATION 

Nanodevices have recently been attracting attention for 

use as novel devices having unique nonlinear phenomena 

in nanotechnology research area. Single-electron (SE) 

circuits, which are just one type of nanodevice, have also 

been attracting attention because of their unique behavior, 

i.e., the Coulomb blockade phenomenon 
[1, 2]

. We can 

control individual electrons by harnessing the 

phenomenon in the SE circuit. Various useful 

applications of SE circuits have already been proposed 

by many researchers. However, we have yet to determine 

the most appropriate information processing architecture 

for SE devices. In this study, we propose a new logic 

circuit design for the SE circuit for consideration as a 

candidate for the most appropriate architecture. In 

particular, we apply the “DOMINO logic 
[3]

” theory to 

the SE circuit. The DOMINO logic circuit is based on 

the behavior of dominoes. When a domino falls in the 

DOMINO logic circuit, we can assume it represents a 

logical “1.” In contrast, when a piece does not fall, it 

represents a logical “0.” It was previously clarified that 

basic logic circuits, e.g., OR, AND, and XOR, can be 

designed using the DOMINO logic circuit as described 

in Ref. [3]. Mimicking the behaviors of dominoes, i.e., 

“speeds of falling dominoes are constant” and “when two 

falling lines of dominoes collide head-on, both lines will 

stop falling,” is important when using DOMINO logic 

circuits in electrical devices. We use the SE circuit in this 

study to mimic the behaviors of the dominos. We 

appropriately named this circuit a SE DOMINO logic 

circuit. We propose our SE DOMINO logic circuit as a 

candidate for consideration as a new SE circuit in this 

study. Moreover, we aim to design a practical SE 

calculator, e.g., a full adder. The SE calculator will be a 

novel information processing device. We will clarify here 

that the DOMINO logic circuit is the most appropriate 

information processing architecture for an SE device. We 

will present our basic SE DOMINO logic circuit, i.e., OR, 

AND, and XOR, and that by conducting a Monte Carlo 

simulation as a first step in this study, we confirmed that 

their operations are feasible. 

 

2. THEORY 
 We use a SE oscillator (SEO) that consists of a bias 

voltage Vd, a resistance, and a tunneling junction in series 

to mimic the behaviors of dominos in this study. The 

tunneling junction has a threshold value for the electrons 

to tunnel through it, i.e., we can control the flow of 

electrons by changing the bias voltage. Our SEO also has 

a threshold value for changing the voltage at both ends of 

the tunneling junction caused by the electron tunneling. 

Figure 1 shows a schematic of the SEO. Figure 2 shows 

an example of its operation when Vd is bigger than the 

threshold value of the tunneling junction. We can see in 

Fig. 2 that the voltage at both ends of the tunneling 

junction in a SEO rapidly changes at regular time 

intervals, because electron tunneling occurs. 
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We use arrayed SEOs connected together using 

coupling capacitors to mimic “falling domino lines” on 

the SE circuit. Figure 3 shows a schematic of a 

one-dimensional chain of six SEOs as an example. Each 

polar character of the bias voltage of the SEOs is 

inverted to alternating. In Fig. 3, when the signal is 

inputted at SEO V1 as a trigger, the electron tunnels in 

V1, and the node voltage Vnode of the tunneling junction 

in V1 rapidly changes. In addition, the drastic voltage 

change of V1 becomes the input trigger for V2 through 

the coupling capacitor. In this way, the electron tunneling 

occurs one after another. Figure 4 shows the sample 

operation of Fig. 3. We can assume this operation is the 

“falling DOMINO lines” one. However, the electron 

tunneling occurred due to a quantum phenomenon with 

randomness. Therefore, the spreading speed of the 

mimicked falling is not constant, as shown in Fig. 4. We 

propose the use of multiple tunneling junctions 

(multiple-junction SEO (Fig. 5)) instead of a single 

tunneling junction in a SEO 
[4]

. 

 

 

We can set the falling speed to almost constant in the 

lines by using the multiple-junction SEO. Figure 6 shows 

the sample operation of Fig. 5. We can confirm from Fig. 

6 that the voltage change occurs due to multiple electron 

tunnelings. If multiple tunneling junction SEOs are 

arrayed with coupling capacitors just like in Fig. 3, the 

 
Fig.1: Schematic of SEO 

(R=77[MΩ], Cl=4[aF], Cj=10[aF], Rj=0.2[MΩ]) 

 

Fig. 2: Sample operation of Fig. 1 

(Vd=5.7[mV]) 
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Fig.3: Schematic of one-dimensional chain of  

six SEOs 

(R=77[MΩ], Cl=4[aF], Cj=10[aF], Rj=0.2[MΩ]) 

 

Fig. 4: Sample operation of Fig. 3 

(Vd=5.0[mV]) 

 

Fig.5: Schematic of multiple tunneling  

junctions SEO 

(R=77[MΩ], Cj=500[aF], Rj=0.2[MΩ], 50 layers) 
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Fig. 6: Sample operation of Fig. 5 

(Vd=8.2[mV]) 

 

Fig. 7: Sample operation of Fig. 3 when two input 

triggers are provided from both ends 

(R=77[MΩ], Cl=2[aF], Cj=500[aF], Rj=0.2[MΩ],  

50 layers, Vd=±8.1[mV]) 
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operating principle does not change. However, we 

determined that the spreading speed of mimicked falling 

was almost constant.  

The SEO cannot generate the second electron right after 

the first tunneling occurred because the first drew the 

change in Vnode. As a result, the second cannot occur until 

the Vnode is recharged by Vd. Therefore, we can also 

mimic the “stopping falling dominoes by collision.” 

Figure 7 shows the sample operation of Fig. 3, when the 

input trigger provides SEOs from both ends. For an easy 

explanation of Fig. 7, the node voltages of negative 

biased SEOs were multiplied by -1. We can see from Fig. 

7 that the two signals from both ends of Fig. 3 collide at 

V3 and V4, and the propagation of the electron tunneling 

stops. These techniques give us a hint for how to apply 

the DOMINO logic to the SE circuit. 

3. SIMULATION 
 We designed the basic logic circuits, e.g., OR, AND, 

and XOR, using our SE DOMINO logic circuit to 

demonstrate the SE calculator. We used multiple 

tunneling junction SEOs (containing 50 tunneling 

junctions in series) to design a basic logic circuit. We 

designed a multi-function logic circuit that can operate as 

an OR, AND, and XOR circuit, and changed its function 

by changing the bias voltage on one circuit in this study. 

By using the multi-function logic circuits, the structure 

of the circuit could be simplified to design the SE 

calculator. 

Figure 8 shows a schematic of the multi-function SE 

DOMINO logic circuit. In Fig. 8, each blue circle 

represents one SEO, and the coupling capacitor between 

each SEO is omitted. For easy explanation of Fig. 8, we 

assigned a number to each SEO as based on X-Y 

coordinate (X,Y). For example, the SEO connected to 

trigger Ain was numbered (2,4). In the multi-function SE 

DOMINO logic circuit, the input parts were (2,4) and 

(6,4) and the output part was (4,1). We used the Monte 

Carlo simulation to confirm the validity of our 

multi-function SE DOMINO logic circuit. 

First, we confirmed when our SE DOMINO logic 

circuit performed as an OR. Figure 8 describes how to 

set the bias voltage of each SEO for the OR operation on 

the SE DOMINO logic circuit. In Fig. 9, a plus or a 

minus in the circle represents the polarity of the bias 

voltage of each SEO, and a blank circle is a zero biased 

SEO that is a power-off. For an example of the signal 

flow in the OR mode, an input signal from Ain follows 

along the path (2,4)→(3,4)→(4,4)→(4,3)→(5,3)→ 

(5,2)→(4,2)→(3,2)→(2,1)→(3,1)→(4,1) and finally 

arrives at the output part. On the other hand, a signal 

from Bin follows the path (6,4)→(5,4)→(4,4)→(4,3)→ 

(5,3)→(5,2)→(4,2)→(3,2)→(2,1)→(3,1)→(4,1) and 

 
Fig. 8: Schematic of multi-function SE DOMINO 

logic circuit 

(R=77[MΩ], Cl=2[aF], Cj=500[aF], Rj=0.2[MΩ],  

50 layers) 
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finally arrives at the output part. Figure 10 shows the 

simulated operation if Ain was set to logical “1” and Bin 

was set to logical “0”, and also if Ain and Bin were both 

logical “1.” We could confirm from the results that the 

OR mode of our SE DOMINO logic circuit operated 

correctly. 

Next, we confirmed the AND-mode operation of our SE 

DOMINO logic circuit. Figure 11 describes how to set 

the bias voltage of each SEO for an AND. In Fig. 11, a 

plus or a minus in the circle represents the polarity of the 

bias voltage of each SEO, and a blank circle represents a 

zero biased SEO that is a power-off just like shown in 

Fig. 9. Moreover, the bias voltage of only (4,4) was set 

lower than the others. In the lower biased SEO, two 

trigger signals from neighboring SEOs were required to 

produce electron tunneling at the SEO. In the AND mode, 

the path for the signal flows that the input signals from 

Ain and Bin followed was the same as that in the OR mode. 

Figure 12 shows the simulated operation if Ain was a 

logical “1” and Bin was a logical “0,” and also if Ain and 

Bin were both logical “1.” We confirmed from the results 

that the AND mode of our circuit operated correctly. 

 

Fig. 9: OR mode of SE DOMINO logic circuit 

(R=77[MΩ], Cl=2[aF], Cj=500[aF], Rj=0.2[MΩ],  

50 layers) 

 

Fig.10: Simulated operation of OR mode 

(Vd=±8.0[mV])  
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Fig. 11: AND mode of SE DOMINO logic circuit 

(R=77[MΩ], Cl=2[aF], Cj=500[aF], Rj=0.2[MΩ],  

50 layers) 

 

Fig.12: Simulated operation of AND mode 

(Vd=±8.0[mV], Vd at (4,4)=7.4[mV])  
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Finally, we confirmed the XOR-mode operation.  

Figure 13 describes how to set the bias voltage of each 

SEO for XOR. For the XOR-mode operation, the bias 

voltage of (2,2) and (6,2) was set lower than the others. 

In an XOR operation, a signal from Ain follows the paths 

(2,4)→(1,3) and (2,3)→(2,2)→(3,2)→(3,3)→(4,3)→ 

(5,3)→(5,2)→(6,1)→(5,1)→(4,1), and finally arrives at 

the output part. On the other hand, a signal from Bin 

follows the paths (6,4)→(6,3) and (7,3)→(6,2)→(5,2)→ 

(5,3)→(4,3)→(3,3)→(3,2)→(2,1)→(3,1)→(4, 1), and 

finally arrives at the output part. Figure 14 shows the 

simulated operation if Ain is a logical “1” and Bin is a 

logical “0,” and if Ain and Bin were both logical “1.” If 

both input signals from Ain and Bin were a logical “1,” the 

two signals would collide at (4,3) and stop propagating 

as a result of the collision. We could confirm from the 

results that the XOR mode of our circuit operated 

correctly. 

We confirmed the multi-function SE DOMINO logic 

circuit can operate as OR, AND, and XOR circuits. 

However, the multi-function SE DOMINO logic circuit 

was based on the premise that there was no time interval 

between two input signals of Ain and Bin. In other words, 

if there was time interval, the multi-function SE 

DOMINO logic circuit was not able to operate as OR, 

AND, and XOR circuits correctly. For example, when 

there was time interval between the two input signals of 

Ain= “1” and Bin= “1” in XOR mode, two input signals 

should not collide at (4,3) and we may fail to get correct 

output signal “0”. To solve this problem, we have to 

design the circuit which adjusts the time interval of two 

signals in future work. 

 

 

4. CONCLUSION  
AND FUTURE WORK 

We aimed at designing a new type of SE information 

processing circuit in this study. For this propose, we 

proposed the application of DOMINO logic theory to the 

SE circuit. Mimicking the behaviors of dominos is 

required in the circuit in order to use the DOMINO logic 

in the circuitry. For this, we used a SEO chain because 

we can mimic the DOMINO behavior by using SEO 

chains. To make sure that the DOMINO logic circuit was 

a suitable information processing architecture for the SE 

circuit, we designed and demonstrated the basic SE 

DOMINO logic circuits. In particular, we designed a 

multi-function SE DOMINO logic circuit and confirmed 

its correct operation. The multi-function SE DOMINO 

logic circuit can act as OR, AND, or XOR by changing 

the bias voltage. In our future work, we will design the 

circuit which adjusts the time interval of two signals. 

Then, we will combine the adjusting circuit and the 

multi-functions of SE DOMINO logic circuits, and 

design and demonstrate the SE calculator, e.g., a full 

adder by using a simulator. 

We must consider the influence of noise for effective 

operation of our SE circuit. We did not simulate noise in 

this study, because we aimed to design a new type of SE 

information processing circuit. However, we believe we 

can overcome the influence of noise because previous 

studies 
[5,6]

 on the relation between the SE circuit and the 

influence of noise have been ongoing. Therefore, the 

proposals and demonstrations in this study showing that 

the DOMINO logic circuit is a viable candidate for use 

as the most appropriate information processing 

architecture for the SE circuit should be significant. 

 

 

 

 

 

Fig. 13: XOR mode of SE DOMINO logic circuit 

(R=77[MΩ], Cl=2[aF], Cj=500[aF], Rj=0.2[MΩ], 

 50 layers) 

 
Fig.14: Simulated operation of XOR mode 

(Vd=±8.0[mV] , Vd at (2,2) and (6,2)=7.4[mV]) 
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Impact of Thread Synchronization and Data Parallelism on
Multicore Game Programming
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Abstract— Xbox-360 has three cores with six logical
threads and the PlayStation-3 has one master core and six
independent worker cores. According to the current design
trends, multicore processors will be ubiquitous in every
game computer. A game engine has many ‘components’ and
multithreading is an important technique to parallelize the
execution of these components. However, effective program-
ming of multiple threads in multicore systems has challenges
including concurrent processing, thread synchronization,
data and task level parallelism, and load balancing. In this
paper, we investigate the challenges and benefits of thread
synchronization and data level parallelism on multicore
game engine programming. We implement a multi-object
interactive game engine in an 8-core workstation using
single-threaded model (STM), multithreaded asynchronous
model (MAM), multithreaded synchronous model (MSM),
and multithreaded synchronous model with data parallelism
(MSMDP). Experimental results show that MSMDP is the
best and it reduces the execution time up to 50%.

Keywords: Data level parallelism; game engine; multicore archi-
tecture; multithreaded programming; thread synchronization;

1. Introduction
There are many components in a simple modern game

engine. According to the flow of operations, important
components in a single threaded game engine are: Input,
Game Logic, Artificial Intelligence (AI), Physics (engine
for collision detection/response), Audio (for sound), and 3D
Graphics. A rendering engine called “renderer" is required
for 2D or 3D graphics. A graphics package may include
scene graph, culling and sorting, skeletal animation and
rendering. Inside a component, there may be many subcom-
ponents that ‘glue’ together to form a complete package.
Some of these components can be middleware to make
programming easier. An operation from start to finish is
known as a clock cycle.

In addition to standalone game machines, game engines
are nowadays being used for educational, engineering, and
scientific applications [1]. To fulfill the high performance
requirements, game engines are adopting new hardware tech-
nologies like multicore CPUs [2] and software technologies
like multithreaded parallel programming [3], [4].

Many parallel programming techniques are available; one
or more of them can be used in game engine programming.
When components in a game engine are originated from
many different middleware, the design of the library will
most likely dictate which one is more suitable to be used.
Some middleware such as Bullet Physics library includes
multithreading in their application programming interface
(API). Depending on the type of multithreading model
used, some level of data redundancy is required to improve
performance. Therefore, a mechanism to ensure data/cache
coherency is needed in the implementation.

As the number of cores in a processor increases but
the speed of the core has not changed much in the recent
years, multithreading can be very helpful to get as much
performance out of a system as possible to the advancement
of video game technologies. Currently available middleware
used in high-level API, like Open MPI, make the parallel
implementation a challenge. Therefore, various methods
should be evaluated when implementing multithreading in a
game because the components usually never work the same
way. One multithreading technique might not be suitable for
a particular API of a component because of the way it is
built; optimization of multithreaded game engines requires
a lot of experimentations.

In this work, we implement a multi-object video game
engine using middleware from different vendors. Various
multithreaded asynchronous and synchronous models, with
and without data parallelism, are implemented to study their
effectiveness to improve the performance of multicore game
engines.

The rest of the paper is organized as follow: Section 2
reviews some related published articles. Section 3 explains
the impact of data/task parallelism, and synchronization. A
multi-object multithreaded video game engine implementa-
tion is presented in Section 4. Some simulation results are
discussed in Section 5. Finally, this paper is concluded in
Section 6.

2. Background Study
The game industry has surpassed the movie and music

industry in U.S. in 2005 and 2007, respectively. In 2008, the
game industry surpassed the music industry in the U.K. and
is expected to surpass DVD sales in the future. The desire for
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more complex game elements is driving the game industry
forward. Multithreaded parallel programming has potential
to implement complex game engine. However, multicore
CPU (not manycore GPU) is a relatively new technology,
especially in the game development world.

Multicore architecture is a recent design trend and most
vendors are adopting multicore processors to their products.
Multilevel cache memories are common in multicore proces-
sors [5]. The cache memory hierarchy normally has level-1
cache (CL1), level-2 cache (CL2), and main memory. In
most cases, CL1 is split into instruction cache (I1) and data
cache (D1) and CL2 is a unified cache [2]. Performance
and power consumption are impacted by cache misses,
increased usage of main memory, and poor cache memory
arrangement. Using communication that is too fine grained
can cause the cache to be underutilized [6]. A thread reading
the data can receive the set of multiple data objects first
and then process all of them. The effective size of the set
of data objects can be calculated by the size of each line
and the size of the cache line size of the cores. When
communication is too coarse grained, capacity misses could
happen when there are large amount of objects being copied
that are larger than the cache size. Some processors use
shared cache (like shared CL2) that can be accessed by
multiple cores. When more cores access the same cache,
there will be overhead of managing the use of the cache by
multiple processors. Multicore systems are very suitable for
multithreaded processing as multiple threads can be executed
on multiple cores at the same time [5].

Task level parallelism is a popular method for game engine
multithreading, where components run asynchronously in
their own loop or synchronously in a single loop with
multiple forks and joins. An asynchronous model of game
engines has been introduced in [7]. In this model, as soon as
a task is done, it will run immediately from the beginning.
Data sharing could limit the effectiveness of this model
depending on the amount of synchronization required. The
multithreaded game engine introduced in [7] is an asyn-
chronous model that uses multiple render states to buffer
data. In this implementation, there is one ‘world’ state and
three ‘render’ states. For a game engine, data parallelism is
where the same type of data in a component is parallelized
in multiple threads. The use of this in a game engine is when
a component spawns multiple worker threads to process one
type of data. To properly scale a multicore game engine,
task parallelism and data parallelism have to be employed
as introduced in [8].

When the cores are used more evenly, it gives more
opportunities for developers to implement more distributed
and parallel game play elements [9]. Intel Corporation has
used a ‘thread pool’ mechanism to manage tasks as discussed
in [10]. In a thread pool, each component has one or more
tasks that will be queued and threads that are idle or have
finished a task will retrieve a task from the queue to run

next. This ensures that there will be a maximum amount
of threads that can run at the same time. A multicore
architecture is integrated to expose multithreading concept
to game programmers to different number of cores without
recompilation of code.

RedLynx has implemented multithreading in their game
Trials HD [11]. It uses the Bullet Physics Engine for physics
simulation. The library is optimized in-house for the Xbox
360 CPU and the vector units. One of the new features is
the threaded asynchronous resource loading [12]. Developers
can load rendering resources in a thread-safe way and use
them concurrently with the rendering operation.

In this work, we use thread pooling technique and graphics
rendering API to develop a multithreaded game engine to
evaluate the impact of synchronization and data parallelism
on performance of the game engine.

3. Important Techniques for Game En-
gine

Some important techniques used in game engines to
improve performance are briefly explain in the following
subsections.

3.1 Data Level Parallelism
Data parallelism is the distribution of the same type

of data to process across different threads. For a game
engine, data parallelism is where the same type of data in
a component is parallelized in multiple threads [13]. This is
used in a game engine when a component spawns multiple
worker threads to process one type of data. If only data
parallelism is employed, the series of different types of
operations are sequential, only the data of a type of operation
are processed concurrently at one stage. If the type of data
requires communication among themselves, a thread safe
communication system has to be implemented. This method
scales well for many number of processors because the size
of the data for each thread can be divided equally. It may also
be easy to balance the load among multiple cores because
there is only one type of object being processed concurrently.
When the data type does not share data with each other, this
method of parallelism can easily be implemented to scale on
any number of threads. Communication among the threads
can be reduced by grouping the objects that are most likely
to interact with each other in the same thread [14].

3.2 Task Level Parallelism
Task parallelism is the distribution of different task across

different threads. The use of task parallelism in game engine
is by running each component task in its own thread [15],
[16]. There are two model of execution for this method:
the synchronous model and asynchronous model. The syn-
chronized model is where all the tasks of the components
must finish in a single clock cycle. At the end of the clock
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cycle, the application will loop to the beginning to start the
operations in the same order every time. The asynchronous
model is where the tasks of the components can run and
finish at their own time. To share data among the threads, a
synchronization stage can be used in between the clock cycle
in this model. In an asynchronous model all the components
run in their own loop. Some components that do not always
have new data for a single frame are usually implemented
asynchronously such as resource loading, player input, and
networking.

3.3 Data and Task Level Parallelism
To properly implement a game engine that will scale

properly and fully utilize parallelism for various numbers
of cores, both data parallelism and task parallelism have to
be employed. A mixture of task and data parallelism is an
optimum approach to exploit multithreading in game engines
[17]. In this combination, each task can run in parallel
with another task and may spawn several worker threads.
A system may have number of cores less or more than the
number of parallelizable components. In task parallelism, if
there are more cores than the number of types of component
to be parallelized, then if each of the types of component
runs in a single core, there will be cores that are not used.
Therefore, to maximize parallelism, data parallelism should
also be employed to maximize the use of all cores. A highly
data-parallelism design would make it easier to manage tasks
that are sequential as there may only be race condition
among the same type of data being parallelized but may not
fully utilize the concurrency advantage for some components
that are decoupled from each other. A highly task-parallelism
design would cause some cores to be unused as there may
be more cores than the number of different types of tasks
that can run at the same time but having a synchronization
stage with no mutex locking can be easily implemented if it
is the synchronous model. Mixing task and data parallelism
takes advantage of the fact that not all components and data
objects of a game engine are completely dependent.

3.4 Synchronization
Synchronization with respect to multithreading is basically

data synchronization. Synchronization is used to make sure
that the same data are not executed at the same time by two
threads. One method for synchronization is with the use of
mutex (i.e., mutual exclusion). Use of a mutex locking in
a game engine depends on the multithreading model. The
main drawbacks with mutex locks are overhead, deadlocks,
contention, and priority inversion [18].

In some cases, lockless algorithm can be used. In those
cases, a game engine is designed so that mutex locking is
entirely avoided. The easiest method is to have a synchro-
nization stage where all processes must run in sequence.
Another method is to use a message passing system between
threads. This avoids the use of mutex locking when passing

data. Some other synchronization techniques include reader-
writer lock and read-copy-update [9].

4. Test Game Engine
We implement a multi-object game engine: Tower Defense

Game (TDG) in our laboratory to investigate the impact
of thread synchronization and data parallelism on multicore
game engine performance.

4.1 Game Policy
The objective of the game is to defend a main base

structure. The player has to build defensive structures that
will destroy waves of enemies trying to destroy the main
base structure. The player will try to survive as many waves
as possible. Enemies will get harder after every wave. For
every enemy destroyed, the player gains credits which could
be used to build more defenses. Currently, there are three
possibilities to terminate the game - (i) the player defends
the main base structure for 3 minutes (the player wins the
game), (ii) the main base structure is destroyed (the player
loses the game), and (iii) abnormal termination.

4.2 Different Implementations
The video game engine is implemented using single-

threaded model and various multithreaded models (with
and without synchronization). We briefly explain different
implementations below.

• Single Threaded Model (STM):
The first operation is to capture input events and put
it in a buffer; this is an input / output (I/O) operation
with the operating system. The order of operations in
the single threaded implementation is:

1) Capture input
2) Update input operation
3) Update game logic
4) Update AI
5) Update physics
6) Process navigational mesh updates
7) Simulate physics
8) Render graphics

• Multithreaded Asynchronous Model (MAM):
There are two threads; each thread has independent
clock cycle. The update graphics stage in this model
reads the data buffered from the updates of the other
thread. The order of operations is:
Thread 1:

1) Capture input
2) Update game logic
3) Update AI
4) Update physics
5) Process navigational mesh updates
6) Simulate physics
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Thread 2:
1) Update graphics
2) Render graphics

• Multithreaded Synchronous Model (MSM):
In this lockless implementation, data synchronization
is done in the serial stage only. In the parallel stage,
all the operations run in parallel, each on a different
thread. The order of operations is:
Serial Stage:

1) Capture input
2) Update logic
3) Update AI
4) Update physics
5) Update graphics

Parallel stage: (One possible order)
1) Process navigational mesh updates
2) Simulate physics
3) Render graphics

• Multithreaded Synchronous Model with Data Paral-
lelism (MSMDP):
This implementation is a combination of task and data
parallelism using the multithreaded synchronous model.
It is similar to the synchronous model but the physics
will have 2 worker threads to process collision detec-
tion. In the physics simulation thread, two more threads
are spawned during the collision detection stage. This is
considered parallelism within a component. The order
of the operations is:
Serial stage:

1) Capture input
2) Update logic
3) Update AI
4) Update physics
5) Update graphics

Parallel stage: (One possible order)
1) Update navigational mesh
2) Simulate physics
3) Perform collision detection on object batch 1
4) Perform collision detection on object batch 2
5) Render graphics

5. Experimental Results
In this work, we develop a multi-object game engine

using C++ in a multicore computer to explore how the
performance of a multicore game engine is influenced due
to data parallelism and thread synchronization.

5.1 Important System Parameters
The workstation used in this experiment is an 8-core (dual-

processor, quad-core per processor) system from Intel, runs
at 2.13 GHz, and has 6 GB of RAM. The operating system

used is the Linux Debian 6.0. Output parameters include:
the number of frames generated per minute, processing time
for each frame, processing time for each component, and
speedup factor, S(P) = T(S)/T(P). Where, T(S) is the best
sequential time and T(P) is the run time due to the parallel
implementation.

5.2 Results and Discussion
We start with exploring the generation of diffirent frames

by a single-threaded multi-object game engine. Then we
study various multithreaded models of the game engine.
We compare the performance and speedup due to various
implementations: STM, MAM, MSM, and MSMDP.

First, we examine the number of frames generated due to
various implementations for a 3-minute simulation of the
game. As illustrated in Figure 1, the multithreaded syn-
chronous model with data parallelism game console gener-
ates more frames per minute than any other consoles. Single-
threaded game console generates about 4,750 frames per
minute, multithreaded asynchronous and synchronous both
generate about 5,000 frames per minute, and multithreaded
synchronous with data parallelism generates about 5,050
frames per minute.

Fig. 1: Number of frames generated in one minute simulation
of the Tower Defense Game.

Second, we investigate the maximum time required to
process different frames. As shown in Figure 2, the single-
threaded game console takes the maximum amount of time
to process a frame when compared with other multithreaded
models. MAM shows improvement over STM. Building a
proper asynchronous multithreaded engine requires a lot of
time and it will be more complex than a synchronized model
in most cases. The asynchronous model of execution will
most likely require more memory to implement and as such
it is only recommended in cases where user experience can
be improved by components running at their own clock
cycle. It is also observed that multithreaded synchronous
model with data parallelism console takes the minimum
amount of time to process a frame.
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Fig. 2: The average maximum processing time for each
frame.

Third, we study the maximum time required to process
different components. As shown in Figure 3, the components
are found to have different amount of time for processing.
The physics component takes up most of the processing
time; this is because the game uses a lot of physics objects
and operations.

Fig. 3: The average maximum processing time for each
component.

Fourth and finally, we observe the speedup due to the
multithreaded implementations over the single-threaded im-
plementation of the test game engine. According to the
experimental results, the speedup increases as the number
of threads increases (see Figure 4). More than 14x speedup
is achieved due to the multithreaded synchronous model with
data parallelism for 512 threads. This speedup is impressive.
Future video games are expected to be much more complex
than what we have today; speedup of such complex systems
can be significantly increased by applying MSMDP like
GPU computing. In GPU technology, thousands of threads

Fig. 4: Speedup due to multithreaded over single-threaded
implementation of the test game engine.

can be generated for computation extensive systems; the
threads are then run concurrently in parallel on a multicore
CPU with manycore GPU system.

6. Conclusion
Single-processor multithreaded game engines struggle to

improve performance due to the lack of hardware support.
Recently introduced multicore systems have the potential
to improve the performance of multithreaded game en-
gines. However, programming multithreaded game engines
for multicore architectures introduces various challenges in-
cluding data parallelism, thread synchronization, task paral-
lelism, and load balancing. In this work, we explore the chal-
lenges due to thread synchronization and data parallelism by
developing a multicore video game console (called Tower
Defense Game). We develop C++ programs for single-
threaded and several multithreaded models with and without
data parallelism. Experimental results support the fact that
the multithreaded models outperform the single threaded
model. Although different game components take different
amount of processing times (see Figure 3), the multithreaded
synchronous model with data parallelism generates more
frames and takes less amount of time to process the frames
(see Figures 1 and 2).

On an 8-core system, the speedup due to multithreaded
synchronous program with data parallelism is about 14 (see
Figure 4) with respect to the single-threaded implementation.
It is expected that a much higher speedup will be needed
for future game engines, which can be achieved by applying
concurrent/parallel programming techniques like GPU com-
puting.

We plan to implement the entire test game engine (i.e.,
Tower Defense Game) on a CPU/GPU platform to explore
the performance and power consumption in our next en-
deavor.
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Multi-Gbps Fano Decoding Algorithm on GPGPU
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Abstract— The bandwidth requirements for the next-
generation wireless applications are increasing. The
newest standards such as the WirelessHD aim to transmit
signals at high speed in the range of multi-Gigabit per
second (Gbps). At this rate, the processing effort of the
baseband signals becomes challenging. In this paper, we
propose to use GPGPU for parallel processing to offer
multi-Gbps throughput for a sequential convolutional de-
coding algorithm; namely, the Fano algorithm. NVIDIA’s
latest Kepler architecture based K20c GPU and their
CUDA programming platform are used. Some algorithmic
and CUDA-based optimizations are developed to achieve
a throughput of 4.6 Gbps.

Keywords: Fano algorithm, CUDA, high throughput decoding

1. Introduction
Convolutional coding is a subject that can be said to

have started with P. Elias [1]. Inspired by Shannon’s math-
ematical material in communication [2] and Hamming’s
paper on error-correcting code [3], Elias introduced the
concept of convolutional coding. This well-known mecha-
nism in telecommunication is used in signal transmission
over a noisy channel. Decoding a signal is one of the most
time consuming tasks done at the baseband along with the
fast Fourier transform (FFT).

Elias’s algorithm is characterized by its relative sim-
plicity compared to Fano algorithm, another sequential
decoding algorithm, or compared to Viterbi which can be
visualized as a search for the shortest path through a trellis
diagram. Zigangirov [4] and independently by Jelinek
[5], they proposed their implementations of the stack
algorithm. Viterbi introduced the convolutional decoding
known as the Viterbi algorithm [6]. This is an algorithm
which finds the shortest path for a weighted graph [7].
The method used by the algorithm is proven to obtain the
maximum-likelihood decoding (MLD) of a transmission
with inter-symbol interferences [8]. However, the algo-
rithm is notorious for having an exponential complexity
growth in correlation with a long constraint length.

Due to the availability of several GHz of unlicensed
bandwidth around 60GHz, multi-gigabit per second wire-
less communications is drawing a lot of research attention
[9]–[11]. Several international standard organizations and
associations of industrial partners are working to define
specifications for millimeter-waves systems operating in
the 60 GHz band. The WirelessHD consortium is an
industry-led effort to define a worldwide standard specifi-
cation or the next-generation wireless digital network in-
terface specification for consumer electronics and personal
computing products. Due to the increase in bandwidth,

multi-gigabit decoding in wireless communications has
become a challenging task. ASIC/FPGA based sequential
decoders have been proposed; however, a hardware solu-
tion is not flexible and easy to change with new standards.
In this paper, we present design and implementation of
the Fano decoding algorithm as a software solution on
Graphics Processing Units (GPU) that can support the
high-throughput requirements. A GPU provides a parallel
architecture, which combines raw computation power with
programmability [12].

GPUs have only been used for 3D graphics rendering
in the first years of their evolution. With the advent of
technology of GPUs offer high performance of general
purpose processing by executing thousands of threads
simultaneously. GPU provides extremely high computa-
tional throughput by employing many cores working on
a large set of data in parallel. Compute Unified Device
Architecture (CUDA), developed by NVIDIA, is a widely
used programming approach in massively parallel comput-
ing applications [13].

This paper is organized as follows: Section 2 gives a
brief overview of Fano decoding and introduces commu-
nication environments. Section 3 gives the basic design of
the GPGPU-based decoding algorithm. Section 4 explains
the optimizations taken to achieve multi-Gbps decoding
speed. The experimental results are given in Section 5.
Finally, conclusions are drawn in Section 6.

2. Fano algorithm
The Fano algorithm is a tree searching algorithm charac-

terized by a good performance with low average complex-
ity at reasonably high signal-to-noise ratio (SNR) [14]. The
algorithm is a sequential decoding algorithm. Fano does
not claim to propose the maximum likelihood decoding
schema as in the Viterbi algorithm. However, for only
slight decoding accuracy deterioration, the proposed algo-
rithm obtains a nearly optimal decoding performance with
significantly less decoding effort. The tree is composed of
branches and nodes. Each branch of the tree has a weight
that is also called branch metric. Paths are sequences of
branches. The weight of a path is simply the sum of all
of the metrics of its branches.

This is a search algorithm in the sense that the search for
the minimum weight for a path is conducted from the root
to a leaf. The search is sequential and is done from one
node to its neighbouring nodes and so on. The algorithm is
a depth-first tree-searching algorithm. The search goes on
as long as the current node is not a leaf node. The Fano
algorithm moves forward if a branch metric is above a
certain threshold T . On the other hand, it moves backward
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if there is no possible forward move and searches for
other branch candidates. In case neither is possible, T is
tightened. The threshold T is updated based on the branch
metrics statistics. T is initially selected as a multiple of
delta which is the threshold increment. The workflow of
the algorithm can be seen in Fig.1.
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Fig. 1: Flow chart of the Fano algorithm

We use the Fano bit metric, introduced in [15] and [16]:

M(y|x) = log2p(y|x)− log2p(y)−R, (1)

where p(y|x) is the conditional probability density func-
tion(pdf) of the received symbol y given the transmitted
symbol x, p(y) is the marginal pdf of y, and R is the code
rate.
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Fig. 2: Communication System Architecture

We implemented the communication system shown in
Fig. 2 in Matlab environment. We focus on modulation and
coding schemes for the WirelessHD specifications [17].
The code rate is R = 1/2. The modulation is 16-QAM,
and an AWGN channel was assumed, and the output of
the demodulator was 1-bit hard-decision.

A binary convolutional encoder is conveniently struc-
tured as a mechanism of shift registers and modulo-2
adders, where the output bits are modular-2 additions of

selective shift register contents and present input bits.
Selected shift registers are chosen according to generator
polynomials which are g0 = {155}8 and g1 = {117}8,
and the constraint length is K = 7.
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Fig. 3: Convolutional encoder FEC rate 1/2

3. Fano algorithm on NVIDIA GPGPU
3.1 GPGPU Architecture

A GPGPU based on Kepler architecture (GK-
codenamed chip) consists of next generation streaming
multiprocessors (SMX), and each of them has stream
processors (cores). A Kepler GK110 in Tesla K20c imple-
mentation includes 13 SMX units and six 64-bit memory
controllers. The SMX processing core architecture of the
K20c can be seen in Fig. 4. As seen in the figure GPU
has 192 single-precision CUDA cores, 64 double-precision
units, 32 special function units (SFU), and 32 load/store
units (LD/ST).
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Fig. 4: Streaming Multiprocessor (SMX)

Each SMX has 64 KB L1 Cache which can also be used
as shared memory. Global memory of GPU is an off-chip
memory. The SMX can access the global memory, but
access time is slow.
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3.2 GPGPU Coding
In November 2006, NVIDIA introduced CUDA, a gen-

eral purpose parallel computing platform and program-
ming model that leverages the parallel compute engine
in NVIDIA GPUs to solve many complex computational
problems in a more efficient way than on a CPU. CUDA
comes with a software environment that allows devel-
opers to use C as a high-level programming language.
CUDA provides a simple path for users familiar with the
C programming language to easily write programs and
execute them on their devices. It consists of a set of
extensions to the C language to allow direct access to the
board and runtime libraries. CUDA extends C by allowing
programmers to define C functions, called kernels, which,
when called, are executed N times in parallel by N
different CUDA threads, as opposed to only once like
regular C.

CUDA threads may access data from multiple memory
spaces during their execution. Each thread has private
local memory. Threads gathered as blocks having shared
memory visible to all threads of their block and with the
same lifetime as those blocks. All threads have access to
the global memory. There are also two additional read-
only memory spaces accessible by all threads: the constant
and texture memory spaces. The multiprocessor creates,
manages, schedules, and executes threads in groups of 32
parallel threads called warps. An instruction that accesses
addressable memory (i.e., global, local, shared, constant,
or texture memory) might need to be re-issued multiple
times depending on the distribution of the memory ad-
dresses across the threads within the warp.

Fano implementation in CUDA was selected because it
allows programmers to use the board as a parallel execu-
tion platform. Also, we no longer depend on the processing
power of the CPU which is heavily controlled by the OS.
Kepler GK110 supports the new CUDA Compute Capa-
bility 3.5. The following Table 1 summarizes parameters
of Compute Capability for Kepler GPU architecture.

Table 1: Compute Capability of Kepler GPU
KEPLER
GK110

Compute Capability 3.5
Threads / Warp 32
Max Warps / Multiprocessor 64
Max Threads / Multiprocessor 2048
Max Thread Blocks / Multiprocessor 16
32-bit Registers / Multiprocessor 65536
Max Registers / Thread 255
Max Threads / Thread Block 1024
Shared Memory Size Configurations
(KB) 16/32/48

CUDA is dependent on the architecture of the GPU
to be used in. Knowing that architecture, it may allow
further optimizations. Memory access is the limiting factor
of parallel programming. We may have as many threads as
we want, they may be as quick as possible but processing
power is useless if the data transfer is slow. In regular pro-
cessing, we have to wait for the memory to be initialized,

and then we have to wait for the result to be calculated.
In parallel processing, we may multiply the number of
cores working and make the processing strength virtually
unmatched. However, we still have to send the data to
be processed to the memory and get the result from that
memory. Since the processes all run at the same time, their
synchronization may also become a problem.

3.3 GPGPU Implementation
The Fano algorithm is a sequential algorithm, thus it is

not suitable for data-level parallel implementation. In other
words, multiple threads cannot cooperate to work on a
common codeword in parallel. Only task-level parallelism
in which threads work independently in different set of
codewords is possible in the Fano algorithm. Threads in
GPU calculate the codewords individually as shown in
Fig. 5. One demodulated codeword is (200+6)*2=412 bits
where 200 input bits, 6 trailing bits and 2 comes from the
code rate. After calculation, the output is 200 bits which
is the same as the input. After some experiments, 128
threads on each SMX were chosen in order to occupy the
most of GPU’s resources. Consequently, the most effective
decoding could be achieved at high occupancy.
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Fig. 5: Parallel calculation of codewords

The Fano algorithm is implemented on the GPU as
depicted in Fig. 6. The demodulated bits are bound to
the texture memory of the board. This was motivated by
the fact that we need a big memory space to hold inputs
and texture memory has an access pattern adequate for
the algorithm. The memory accesses have spatial locality
as such the immediate adjacent memories are cached. The
output is directed to global memory. Each iteration of the
algorithm is characterized by determining the metric, state
and output corresponding to the current step. This part was
calculated before running the kernel since the number of
states and inputs are well known and common throughout
the algorithm. These common values are put in constant
memory.

Once these precondition variables are found, their values
are stored in registers. Depending on those values, the
algorithm decides on making a move forward or backward.
Current steps and previous ones are also stored in registers.
The algorithm continues until all inputs are decoded or an
overflow is encountered.
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Fig. 6: Flow chart of GPU Implementation for the Fano
algorithm

4. Optimizations
4.1 Queue usage optimization

In memory bound applications such as the one in this
work, memory access is a major bottleneck of paral-
lel computing. Fano algorithm stores previously visited
depths with their respective contexts, that is, metric, state,
LFNB flag. All these three parameters occupy 16 bits.
While the operations to be done at each step are trivial,
the spatial-temporal requirement is huge. Considering the
WirelessHD frame has a depth of 206 in total (200 input
and 6 trailing bits), it required four historic arrays of
206 elements. Tests were carried on to find a correlation
between memory usage and its actual implementation.
This statistical analysis was conducted on testing back
tracings to find the their impact and mechanism. This
revealed that back tracing is very local, generally one or

two steps back. The analysis also showed that the all back
traces for successfully decoded vectors were 16 or less.
While the array implementation fills 206*16=3296 bits,
the queue implementation only requires sixteen contexts
at a time meaning that it only takes 16*16=256 bits in
the memory.

4.2 Memory optimization

Global memory has a high latency, it is a slow access
memory. Hence, the use of registers and shared mem-
ory were prioritized whenever possible. However, such
memory types are small, respectively 255 registers per
thread and 48, 32 or 16 kilobytes per block defined at
compile time by the programmer. In this manner, the
biggest problem is working with inputs and outputs. The
Fano algorithm is a sequential algorithm that advances
from one depth to one of its neighbouring depths until the
codeword is completely decoded or an overflow condition
is met. We used this feature to fetch a new chunk of
inputs at each new sixteen depth which the Fano algorithm
is designed to generate one output bit per iteration. Its
CUDA implementation needed a variant such that we also
used partial outputs as depicted in Fig. 8. This allowed the
algorithm to work on registers rather than global memory.

1 0 0 0 0 1 1 0 … 0 1 0 1 1 1 0 0int

output #1 output #3 output #13 output #15

output #2 output #4 output #14 output #16

Fig. 7: Input/Output representation

Fig. 7 illustrates the int data type being used as a
block of 16 outputs generated by 32 inputs. Each demod-
ulated codeword is composed of 206*2=412 bits, thus we
are able to represent a codeword with d412/32e=13 int
variables. Once the decoding process was completed, the
output was again 206 bits with the last 6 bits being its
trailing bits. The output was represented with d206/32e=7
int variables. Storing 20 int variables during decoding
caused CUDA to use a lot of registers. Accordingly, the
occupancy became low and decoding process took long.
The memory was partitioned as described in Fig. 8. Thanks
to this method, only two int variables, one for the current
input block and another one for the output block, were
used at the same time per kernel. Processed inputs and
outputs were dispatched into shared memory that was used
as an extra storage space. Input and output blocks were
connected in such a way that a new output block was
taken every two times a new input was requested due to
coderate = 1/2. Therefore, an int would hold 1*16 inputs
and 2*16 outputs. Updating mechanism is done when the
algorithm needs to increment of decrement the current
depth.
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Fig. 8: Partial input/output representation

4.3 Look-up tables
The Fano algorithm systematicaly computes at each iter-

ation the next state, metric values and the look for next bit
(LFNB) flag bit. The total effort is about 30 assignments
and 35 ALU operations. The input to this operation is
the current state and input bits. To avoid any unnecessary
calculation, a look-up table (LUT) was prepared. Since
there were 64 states and 4 possible inputs bit combinations
at each iterations, next state, output, metric, values, LFNB
bit were pre-calculated and were stored in this LUT. This
redundant and computationally heavy step was changed
with a mere memory read. A somehow similar idea is also
found in another paper about Bidirectional Fano Algorithm
in which, two decoders process in pair [18]. In there, the
authors used LUT for deciding whether a merged state
was detected. In the current paper, we have six successive
stages constituted by the logical bit output from the shift
registers of the encoder. Hence, each stage constitutes a
6-bit string. The total number of combinations is 26 = 64;
thus, the total size of the look-up table is 64*4*32=8192
bits.

The occupancy analysis of the Fano decoder algorithm
with the mentioned optimizations can be observed on
Table 2. The end result is that SMX fully occupied with
these three changes.

Table 2: CUDA analysis
Theoretical Device Limit

Occupancy per SMX
Active Blocks 16 16
Active Warps 64 64
Active Threads 2048 2048
Occupancy 100.00 100.00%

5. Experimental results
The Fano algorithm for GPGPU was implemented on

CUDA 5.0 environment [19] and executed on NVIDIA’s
Tesla K20c board. All the experiments were conducted on
a 3.2 GHz Intel Core i7-960 processor with 12 GB DDR3
of memory.

The testings revealed that GPGPU based implemen-
tation of the decoder gave a throughput 1.8 Gbps at
the lowest Eb/No, 2 dB, and 4.6 Gbps for 8 dB. The
WirelessHD specification requires a speed of 2.8 Gbps a
modulation of 16-QAM modulation and 1/2 code rate. The
throughput analysis in Fig.9 reveals that the algorithm can
support the required throughput from Eb/No value of 4.5
dB and onwards.
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Fig. 9: Throughput and average number of iterations vs
Eb/No

In the same figure we may note that the most noisy
signals, 2 dB and 2.5 dB require fairly similar decoding
effort with 260 iterations. This is explained by the fact
that, at those Eb/No, like all decoders, Fano algorithn
have a lot of trouble decoding. This translates in the
algorithm to return back into previous steps on move
backs. This makes decoding use more iterations for lower
Eb/No compared to higher Eb/No decoding. On those
higher Eb/No values, the algorithm decodes at an average
of 213 to 220 iterations for 8 dB and 7 dB, respectively.
As the Eb/No value increases, less number of iterations are
required, therefore less back tracing occurs. Note that there
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is a negative correlation between the number of iterations
and the throughput.

WirelessHD works at 60 GHz spectrum, For this very
reason, the signal will have low probability to travel
through walls and obstructing objects. Therefore, we can
assume the transmitter to be at relatively close proximity of
the decoder. This allows the receiver to work at a relatively
low SNR range (2-8 dB) rather than (12-20 dB) since
the information will receive low or negligeable distortion.
Therefore, we can mainly operate at Eb/No=8 dB resulting
on low bit error rate, that is, between 10−5 and 10−6.
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Fig. 10: BER vs Eb/No

The Fig. 11 shows how the number of codewords
(batch size) influences the throughput of the algorithm.
In GPGPU programming, the kernel initialization has a
computing overhead. To mitigate this initialization prob-
lem, we need to process as many codewords as possible at
the same time. As expected, the highest speed was reached
at Eb/No with 4.6 Gbps for 131072 codewords.
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Fig. 11: Throughput vs the number of codewords

6. Conclusions
In this paper, a GPGPU based implementation of the

Fano algorithm is explored to provide multi-Gbps. Look-
up tables were used to avoid redundant calculations. Also,

instead of using the classical Fano algorithm implemen-
tation with a complete historic record, its sub-section
with previous 16 steps records were used in a queue.
This drastically reduces the memory requirement of the
algorithm. Experimental results showed a throughput of
4.6 Gbps and an error rate of less than 10−5 at relatively
low SNR values.
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Abstract— Parallel programming techniques lend them-
selves well to a variety of biological and medical related
tasks. In this paper, we show an application of GPU
programming to the optimization of treatment plans for
cancer. We are specifically focused on a class of radiotherapy
called Intensity Modulated Radiation Therapy or IMRT.
Radiation therapy works by exposing cancer cells to a
clinically prescribed dose of radiation, causing them to die
out. However, care must be taken to avoid applying too high
of a dose to the healthy tissues. Optimization of treatment
plans involves reducing the amount of radiation absorbed
by healthy tissues while ensuring that the tumor receives
a high enough dose for the treatment to be effective. We
demonstrate how to apply parallel programming techniques
to improve the efficiency of an algorithm we previously
developed to improve the quality of radiation treatments by
reducing healthy tissue exposure to the radiation.

Keywords: Parallel Programming, GPU Programming, Computa-
tional Geometry, Kinetic Data Structures, Radiation Therapy

1. Introduction
Developing efficient and optimal strategies for the con-

struction of medical treatment plans is a rising concern
given recent advancements of modern medicine. As the
demand for timely medical services increases with a growing
and longer lived population, the need for automated and
semi-automated methods to quickly formulate high quality
treatment plans has grown to relieve the added burden
on medical professionals. Many of these computational
solutions involve algorithms that lend themselves well to
parallel programming optimizations. We describe one such
optimization to a technique we have previously developed
for use in developing improved radiation therapy treatment
plans for cancer patients.

1.1 Radiation Therapy Treatment
Radiation therapy is one of the primary treatments used

by doctors to combat cancer. The intervention works by
applying a dose of radiation to cancerous cells, which are
unable to repair the damage the radiation does to them
and subsequently die out. To cause enough damage to the
diseased cell a clinically determined radiation dose threshold
must be reached during the course of treatment. Healthy
tissues and organs that surround the tumor or are in the path
of the radiation will also receive some radiation does as well.

Although healthy cells are better able to repair themselves
from the damage caused by the radiation exposure, it is
ideal to keep the dose received by these healthy tissues as
low as possible to avoid causing the patient other health
complications. Clinicians determine the maximum dose that
each healthy tissue and organ can receive before the cost of
damaging the patient’s vital organs outweighs the benefit
of the treatment. Some organs are more susceptible to
radiation damage than others, or are more highly critical
to the patient’s overall health. These are called Organs at
Risk or OARs. When developing treatment plans clinicians
must take care to ensure that the tumor receives the amount
of radiation needed for the treatment to be effective while
protecting the OARs and other healthy patient tissues from
absorbing too high of a dose. This is often complicated
by the fact that these targets are often moving within the
patient’s body as the patient experiences involuntary motions
such as breathing.

Although radiation therapies come in many forms, we fo-
cus on a specific technique throughout the rest of this paper.
Intensity Modulated Radiation Therapy or IMRT is a type
of radiotherapy that involves using a linear accelerator (or
linac) to fire a beam of ionizing radiation at the target tumor.
The beam is mounted on a movable gantry and can be rotated
around the patient to fire at the target from several different
angles, which ensures that the tumor receives a conformal
dose of radiation but the healthy tissues in the path from the
beam source to the target are spared. Another way in which
the healthy tissues are protected is by using a multi-leaf
collimator or MLC to shape the beam to the tumor shape.
The MLC consists of several pairs of metal plates or “leaves”
that can open and close to block sections of the source beam.
By moving the leaves to approximate the shape of the target
tumor in the beam’s eye view (BEV), the healthy tissues
surrounding the tumor are shielded and thus the quality of
treatment is improved. Work related to the optimization of
IMRT treatment plans can be found in: [1], [2], [3], [4],
[5], [6], [7], [8], [9].

One of the challenges in optimizing IMRT treatment plans
is handling the previously mentioned motion of the patient.
As the patient breathes the tumor may shift in position, or
the organs around the tumor may shift. Also, the patient
may move unexpectedly during treatment. Methods that have
been developed to handle the patient’s motion involve using
respiratory gating [10], [11], [12], which involves finding the
time that the tumor moves into the radiation beam’s range.
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These methods develop a “strike zone” used to determine
when to turn the radiation on or off. Having the patient
perform breathing exercises [12] is another method designed
to create a breathing pattern that can be reproduced by
the patient during treatment, improving predictability of the
breathing motion.

We have developed what is to the best of our knowledge
a novel method optimizing treatment plans with patient
motion. Our method involves finding the point in time during
which the target tumor is the least obstructed by other organs
in the beam’s eye view. We can project the 3D shapes of the
patient’s organs and the tumor onto the 2 dimensional field
of the BEV as the 2D cross sectional areas (see Figure 1).
By observing how these shapes move in time, we can find
the time interval during which the cross sectional contour of
the tumor overlaps least with the cross sections of the other
healthy tissues. This would be an optimal time to turn on the
MLC shaped radiation beam, as the beam would penetrate
fewer healthy tissues to reach the target.

Fig. 1: Viewing the target and surrounding tissues and organs
from the radiation source beam’s viewpoint. The 3D objects
are projected as 2D cross sections onto the 2D viewing plane

1.2 Previous Work
Our previous work on GPU programming involved the

design of algorithm development models [13] and applying
GPU programming to the image template matching prob-
lem [14]. We have also used GPU parallel programming
techniques to optimize treatment simulations for IMRT [15].
This work only focused on improving the run time efficiency
of an IMRT treatment plan simulation by parallelizing the
distribution of radiation dosages to each voxel in the CT
volume (obtained from imaging the patient’s organs and the
tumor) of the area of the patient’s body being treated. The
change in dose for each voxel must be recalculated at each

time step for many voxels, but the dose increase received
by each voxel at each step of the simulation is independent
of the others. This made parallelization the obvious choice
for speeding up dose calculations. The contribution of this
paper is to improve the speed of a technique used to
optimize the quality of IMRT treatments (which we first
proposed in [16]), using similar GPU parallel programming
techniques. Contrary to our previous work with IMRT GPU
programming optimizations, we are not simply improving
the efficiency of a simulation, but improving an algorithm
designed to directly optimize IMRT treatment plans.

2. Materials and Methods
2.1 Kinetic Data Structures

In order find the time of minimal overlap, we developed a
data structure and algorithm based on Kinetic Data Struc-
tures (KDS) [17], [18], [19]. A KDS is a data structure that
maintains a set of relations called certificates that provide
a proof of correctness for some underlying property (called
the configuration function) of a system of moving geometric
objects. A KDS can be used to maintain the convex hull of
two moving polygons [20], or the set of nearest neighbors of
a set of moving points [21], and polygon collision [22], [23],
[24]. In our case, we used a KDS to maintain the structure
of the intersection or overlap regions of multiple convex
polygons, which are used to represent an approximation of
the cross sectional slices of the target tumor, OARs and other
regions of interest in the beam’s eye view of the radiation
source in an IMRT treatment.

We are able to make the assumption that these polygons
are convex because if one of these cross sectional areas
possesses a non-convex shape, it can be easily preprocessed
to decompose it into a set of convex shapes. As these
polygons move in time, the structure of the intersection
between the target (the polygons representing the tumor
being treated) and the polygons representing other organs
and tissues (“non targets”) will change. For clarity, we will
only consider one target T and non-target S when describing
the KDS data structure. There may be many targets and non-
targets, but ultimately we are only interested in the regions
of intersection between any individual target, non-target pair.
These regions can be computed independently, and their
areas are computed and summed to obtain the total area
of the intersecting regions, which corresponds to the area of
overlap between the cross sections of the tumor and other
organs, which is the function we wish to minimize.

Let S and T be two convex polygons that intersect, and let
this intersection region be R. The intersection of S and T is
itself a convex polygon. This polygon is defined by a set of
vertices that are one of three types: vertices on the boundary
of S but inside of T , vertices on the boundary of T that
are inside of S, and vertices representing the intersection
of the boundaries of S and T . It follows that whenever a
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polygon vertex from S or T enters or leaves the interior of
the opposing polygon, the set of vertices that make up R is
changed.

This transition from inside to outside can only occur at
times when a polygon vertex overlaps the boundary of the
opposing polygon. For example, a polygon vertex on S could
“collide” with an edge on T as S moves in time. At this point
of time, t, the vertex could be either entering or leaving the
interior of T depending on the directions and magnitudes
of the velocities of S and T and the previous positions of
the vertices and edges of the system. A vertex and edge are
colliding if the vertex’s position lies on the line segment
of the edge, or in other words when the shortest distance
between the vertex position and the edge line segment is
zero. The certificates that make up our KDS are the set
of distances between all S vertices and T edges, as well
as all T vertices and S edges. Whenever one of these
distances becomes zero as the polygons move in time, a
collision has occurred and the configuration function must
be updated accordingly to maintain the correctness of the
data structure representing the intersection region R. In order

Fig. 2: In order to find all collisions, every vertex in S must
have a certificate with every edge of T , and vice versa.
The dotted lines represent the distance functions between
the circled vertex on S and the edges of T that must be
solved for time t

to determine when these collisions occur we must know
how the polygons will move in time. The flight plan of
a polygon describes it’s motion throughout the time interval
that is under consideration. We represent this flight plan as a
list of velocity and duration time pairs. The polygon moves
according to the first velocity in the list for an amount of
time equal to the first duration, and so forth until the final
duration is completed. Knowing this flight plan ahead of
time allows us to predict when collisions (and thus changes
in the configuration function) will occur. It is possible for
us to obtain the flight plan beforehand by using 4D medical
imaging techniques to record the motion of the patient’s
organs (and the tumor) over the desired time interval. Given

that we have the flight plan for each of the polygons we know
whenever the velocity of one of them changes. Between the
times that these velocity change events occur, the velocity
of all polygons and thus all vertices and edges is constant.
During these stable intervals we can compute if and when a
certificate fails and this only happens when a vertex/edge
pair collides. As we are dealing with straight line edges
only we know that any vertex can cross an edge at most
once during the stable interval as the velocity of each vertex
is constant. We can calculate these failure times for all
certificates and throw out any that occur at times that are
outside of the stable interval to obtain a complete list of
collision event times for the interval. If we order these
times from earliest to latest, we can process them in order
of occurrence to maintain the validity of the configuration
function as time passes.

Let n be the number of vertices in S and m be the number
of vertices in T . Since the number of edges on the polygon
is the same as the number of vertices, n and m are also
the number of edges in S and T respectively. It only takes
O(1) constant time to update the configuration function upon
certificate failure. This is because at each event we only need
to add or remove a constant number of vertices from the
intersection region whenever a collision event occurs. The
intersection area R is represented as a circular doubly linked
list that allows for constant time insertion and deletion of
elements (vertices). To find the position in R at which we
must insert/delete vertices, we maintain a lookup table of
all polygon vertices of S that contains a flag that is true if
the S vertex is inside of T and false otherwise. If it is true,
then that vertex must be in R and the lookup table entry
has a pointer to the position of the vertex in R. We have an
equivalent table for T . We also need a lookup table for all
S / T edge pairs that contains a flag that is true if the two
edges intersect and false otherwise. If an S edge and a T
edge intersect then there must be a vertex in R corresponding
to this intersection vertex, and the lookup table contains a
pointer to this vertex in R. We know the vertex and edge that
are colliding from the certificate itself and can find these in
the lookup tables and follow the pointers in the table entries
to the position in R. Thus we can process each collision in
O(1) time with O(n2) space for the lookup tables.

The collision event times calculated above are only valid
during the stable interval, and whenever a velocity of one of
the polygons changes, the failure times must be recomputed
as the change in velocity may change the direction of motion
of any of the vertices in the system. Each vertex in S
participates in m certificates, (see Figure 2) one for each
edge in T , so S contributes a total of O(nm) certificates.
There are likewise O(mn) certificates from T . This is an
O(nm) number of certificates that must be updated upon
any change in velocity in the system. This quadratic time is
not ideal for fast computation, and we observe a considerable
reduction in performance of the algorithm as the number of

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 307



vertices in the system increases. High numbers of vertices
may be required if there are many targets or non-targets,
especially if the cross sectional areas of these are complex
in shape and require many vertices to approximate correctly.
To approximate the smooth shape of many of the tissues and
organs involved, high vertex counts are ideal. However, the
certificate structure is such that during a stable interval the
collision times of each vertex/edge pair is independent of all
the others. This suggests a parallel programming solution.

In order to find the area of intersection between the two
polygons we must triangulate R and then sum the areas of
each triangle. Even with our KDS, which we can use to
update the triangulation in a piecemeal fashion as we do
the structure of R, the time this process takes is linear with
respect to the number of vertices in the system. Between
collision events the vertices of R and their ordering is stable.
The area of a single triangle of the triangulation of R can
be represented by a function that is dependent on time t.
However, in order to find the total area we must compute
the sum of these individual triangle functions:

AREA =

#triangles∑
i=0

wi

√
Ait4 + Bit3 + Cit2 + Dit + Ei

(1)
Where Ai, Bi, Ci, Di, and Ei are constants unique to

each triangle. The constant wi is a scaling weight used as
a multiplier for each triangle area and is unique to each
polygon in the system. This weight is used by clinicians
to adjust the importance of each non-target in the system.
Targets that are highly critical (such as OARs) will be
given higher weights and their areas of overlap with the
target contribute more to the weight function than lower
weighted structures. This weighing process ensures that we
take into account the clinical importance of all organs when
optimizing the IMRT treatment plan.

The form of these triangle area functions is that of a square
root of a quartic function. Due to this complex structure the
sum cannot be minimized by setting the derivative to zero
and solving for the roots of t. This prevents us from finding
an exact solution to the minimization problem. In order to
find the minimum, we must strategically sample the area at
different times and find the minimum of the sampled time.
This involves computing the triangulation of R and summing
the areas of the triangles. Another opportunity for parallel
programming presents itself in the both the triangulation of
R and calculation of the individual triangle areas and their
sum.

2.2 Comparison to Brute Force Methods
Before we discuss the parallel programming solution to

the O(nm) certificate update problem, it is instructive to
see how our KDS, combined with parallel programming
optimizations, improves upon a naive or brute force method

of maintaining the intersection region between the target and
non-target polygons.

Consider our two convex polygons S and T . S and T are
continuously moving in time according to their respective
flight plans, and as they move the combinatorial structure of
R, the intersection region, may change at critical times. In a
truly brute force method, we would have to recompute R at
each time step of the motion, which would be determined by
the minimum time step that can be captured by the medical
imaging technique used to obtain the flight plan. Computing
R involves finding the vertices of T that are inside S and vice
versa, as well as the set of all intersections between S edges
and T edges. At best, each of these steps is an O(nlogn)
procedure, (O(nlogn) time for the point in polygon tests,
and another O(nlogn) for the edge intersection, if the edges
are first presorted). To perform this recalculation at each time
step would be computationally very expensive.

However, one might consider a simple optimization to this
algorithm. Given the structure of R from the previous time
step and that the velocities of S and T are known, we could
in some cases consider only those vertices that are endpoints
of the line segments that are intersecting. Assume that the
boundaries of S and T intersect the minimum amount of
times, which for convex polygons is two. As the polygons
move according to their respective velocities, only a constant
portion of vertices enter or leave R, namely the points that
are near the intersection points. These intersection points are
the result of some edge eT in T intersecting with some edge
eS in S. The nearest vertices on S to the intersection point
should be the endpoints of eS , again because S is convex
polygons. The same holds for T and eT . Moreover, for
each intersecting edge, one of the edge’s endpoints must be
inside the opposing polygon, and the other must be outside.
Now suppose that S and T begin moving horizontally in
opposite directions with constant velocities, as in Figure 3
(a). Eventually, one of the intersection points will have the
same location as the endpoints, as the endpoint will collide
with the boundary of its opposing polygon. We can use the
velocity of the polygons to predict when this will occur,
and we only need check the four endpoint vertices for any
one intersection point for a total of eight vertices (with two
intersection points).

However, this only works for a specific case and does
not generalize to all situations. Convexity alone does not
guarantee this property, and in the worst case all of the
edges of S could be intersecting all of the edges of T , which
requires we check all vertices. Consider if S and T began
moving “towards” each other horizontally as shown above
in Figure 3 (b). The circled vertex in the figure will collide
with the T ’s boundary, and is not one of the intersecting edge
endpoints. This collision which will create new intersection
points, requiring us to consider even more vertices. There
can be a total of O(n+m) intersection vertices in the system,
as in Figure 3 (c).
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Fig. 3: (a) In this case, S and T are moving away from each other, and the vertices surrounded by boxes (around the circled
intersection points) are those that may exit/enter the intersection region, suggesting that we only need to consider these
vertices. (b) However, when S and T move towards each other, the circled S vertex will collide with the boundary of T
before the vertices around the intersection points. (c) In this case, all edge pairs intersect. In the general case, we cannot
guarantee any particular structure of R, so we must check all vertex/edge pairs.

Ultimately we must check all vertex/edge pairs between
S and T for when each of these collisions occur, if they
do at all, every time the velocity of one of the polygons
changes. We must do this because we cannot guarantee that
R is moving according to one of the previously mentioned
situations throughout the entire motion of the polygons.
Checking all vertex/polygon pairs at every velocity change is
exactly our KDS algorithm as described above. There may
be some way to detect intervals when these special cases
hold and optimize the algorithm accordingly, but this is to
our knowledge an open problem.

2.3 Exploiting Parallelism
We can use parallel programming techniques to improve

the performance of our KDS based algorithm at two of the
algorithm’s steps: (1) computation of the certificate failure
times and (2) calculation of the areas of the triangles making
up the triangulation of the intersection region. We desire
improved performance so that the IMRT treatment plans can
be updated quickly. Ideally this update should happen in real
time during the actual treatment as it is impossible to predict
every way the patient can move beforehand. Assuming we
have some way of detecting or predicting a sudden patient
motion during treatment, we could recompute values for
collision times quickly to maintain an optimal treatment
when given the new motion.

The computation of each certificate failure time involves
calculating the distance between a vertex and an edge, where
the vertex is from one polygon of a certain class and the
edge is from a different polygon of the opposite class. One
of these polygons must be a target polygon - a polygon
representing part or all of the target tumor. The other must
be some non-target, which can be a OAR or other organ

or tissue. If the minimal distance is zero, the vertex lies on
the line supporting the line segment of the edge, and it can
be said that the vertex collides with the edge if the vertex
position is within the horizontal and vertical ranges of the
edge line segment.

However, this computation is complicated by the fact
that both the vertex and edge may be moving in time.
To find the time of a collision, if a collision occurs, we
must represent the location of the point and the endpoints
of the edge as functions that vary with time, which can
be derived by standard kinematic equations. The velocities
and initial positions are known and constant during stable
intervals. By substituting these equations for the vertex and
edge endpoints into an equation that projects the vertex onto
the line supporting the edge and calculating the distance
between the projected point and the vertex, we can obtain the
minimal distance as a function that varies with time. Setting
this equation equal to zero and solving for time gives the
time at which the minimal distance between the vertex and
the edge is zero. For polygons S and T , let p = (px, py)
be some vertex on S colliding with T edge eT = (q1, q2)
where q1 = (q1x, q1y) and q2 = (q2x, q2y) are endpoints of
an edge of T . Let VS = (VSx, VSy) and VT = (VTx, VTy)
be the velocities of S and T respectively during the current
stable interval. We define for convenience ∆qx = (q2x−q1x)
and ∆qy = (q2y − q1y). Let tf be the time when p and eT
collide. We have solved for tf in a concurrent work:

tf = − −px(∆qy) + py∆qx − q2xq1y + q1xq1y
−VSx∆qy + VSy∆qx + VTx∆qy − VTy∆qx

(2)

This equation must be computed for all O(nm) certificates
in the system. However, the result for one certificate is
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Table 1: GPU vs CPU Performance

Subdivision #Vertices # Certificates GeForce® 460 GTX Radeon® HD 6630M GeForce® 9800 GTX+
Level GPU CPU GPU CPU GPU CPU

0 20 160 0.475 0 2.755 0.05 1.925 0
1 42 640 0.45 0.025 2.85 .25 1.95 1.15
2 84 2560 0.55 0.125 3.05 0.875 1.2 2.725
3 168 10240 0.625 0.225 5.825 3.65 2.325 9.75
4 336 40960 0.625 1.075 8.625 13.975 4.275 39.4
5 672 163840 1.65 4.25 9.475 55.75 5.85 153.625
6 1344 655360 3.15 16.525 10.775 222.625 16.775 613.475
7 2688 2621440 9.70 63.850 31.1 893.5 50.3 2458.2
8 5376 10485760 35.05 253.325 177.34 3561.5 461.375 9835.50

independent of the others, so these computations can be done
in parallel. We implemented a simple OpenCL kernel that
allows for the parallel computation of the certificate failure
times on a GPU graphics card. We used OpenCL so that
our implementation can be used with graphics cards from
different manufacturers. We pass memory buffers for the x
and y initial coordinates for the vertex and both endpoints
of the edge, as well as buffers indicating the polygon ids
the vertex and the edge come from. We also pass buffers
containing the velocities of the polygons, which can be
accessed by the polygon ids. The kernel calculates the times
when the distance function is zero and returns a buffer with
the results. These results are then tested for failure times that
are within the time range of the stable interval.

We can also apply parallel programming to the second
problem: the area computation. This has not yet been im-
plemented in our current work. Finding the minimum area
involves sampling the area of the intersection region R
at regular time intervals. The higher the sample rate, the
more often we must compute the area and the slower the
program will be. The fact that the polygons of the system
are convex allows us to compute the area in O(n) time, as
the intersection of two convex polygon is itself a convex
polygon and can thus be triangulated in linear (with respect
to the number of vertices in R) time.

We are assured that the number of vertices defining the
R is linear with respect to the number of vertices in S
and T . To see why, recall that the intersection region R
of S and T is composed of three different types of vertices:
intersection vertices or polygon vertices from either S or
T . The maximum number of intersection vertices occurs in
R when all edges of S intersect with at least one edge of
T . In this case the number of edges for S and T must be
equal, and the number of intersection vertices is twice this
number of edges (as seen in Figure 3 (c)). The maximum
number of polygon vertices occurs when one of either S
or T is completely inside the other, and is determined by
the number of vertices in the enveloped polygon. Thus the
number of vertices in R is linear with respect to the number

of vertices in S or T .

In order to compute the area, we must triangulate the
convex region of R by simply picking any vertex on R and
forming triangles with the edges of R on which this vertex
is not incident. We are assured that the number of vertices
is O(n), so we only need to form O(n) triangles. If we
have buffers maintaining x and y coordinates of the initial
positions of the vertices in R as well as a buffer containing
the horizontal and vertical components of the velocities of
each vertex, we can construct a kernel that computes the
areas of the triangles at some time t by forming triangles
with the first vertex in the location buffer and pairs of the
remaining vertices. These pairs must appear in order on the
boundary of R, so the buffer must maintain the ordering of
the vertices of R. Whenever a collision event occurs R is
changed and must be recalculated, which takes O(n) time.
However, if the sampling rate is high enough this linear
time recomputation may be worth the cost, as the number
of sampling times may vastly outnumber the number of
collision events.

The individual triangle areas are computed during the
triangulation by using Heron’s formula, which computes
the area from the length of the three sides of the triangle.
This formula allows us to easily define the triangle area
in terms of the location of each vertex (with each vertex
moving in time). In order to get the three side lengths, the
distances between each pair of vertices on the triangle must
be computed and then entered into the formula. The resulting
triangle areas are returned in another buffer.

However, the goal is to find the total area, so we must
also sum the areas of each triangle. When finding the sum
we must examine each triangle area, and to improve the
efficiency of the summation process a divide and conquer
strategy can be used. This can be done by pairing up all of
the triangle areas, computing the sum of the pairs in parallel,
and repeating this on the resulting sums until a single sum
is returned.
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3. Results and Conclusions
We implemented the certificate failure calculation kernel

using OpenCL and tested it in a prior C++ implementation of
our KDS algorithm. We tested performance on two desktop
computers and one laptop. The performance results (in
milliseconds, averaged over 40 runs) are shown in Table 1
and compared to the KDS algorithm’s performance without
GPU optimization. One desktop had an Intel® i7 2600K 3.40
GHz CPU and was equipped with an NVIDIA GeForce®
460 GTX graphics card. The other desktop contained a 3.00
GHz Intel® Pentium D CPU and an NVIDIA GeForce®
9800 GTX+ card, and the laptop had an Intel® i7-2640M
2.8GHz CPU with an integrated AMD Radeon® HD 6630M
graphics device. The KDS program was given a toy example
consisting of 1 target polygon and 4 non-targets, each
of which had no more than 5 vertices initially. We used
a simplistic subdivision algorithm to quickly increase the
vertex count in these polygons, and each subdivision level
doubles the number of vertices from the previous level.

Our results indicated an overall improvement of roughly
an order of magnitude in processing time. As Table 1 shows,
the GPU parallel programming algorithm performs more
poorly than the non-parallel version when the vertex count
is low. The reason for this may be the added overhead of
transferring the memory buffers from the CPU to the GPU
and back, which for insignificant vertex sizes may cost more
than the benefits of parallelization. Once the vertex count
reaches the hundreds, the GPU algorithm performs up to an
order of magnitude better than the CPU only algorithm.

Future work will include the application of this GPU
programming technique to improve the speed of the triangu-
lation of the intersection region and the computation of the
total area of intersection. The results currently obtained were
derived from a very simplistic kernel design, and it remains
an open task to see if a different design could produce
more efficient results. Overall we feel that the results in
Table 1 show that applying parallel programming models
with GPUs is a cost effective way to improve the efficiency
of optimization algorithms for medical treatment planning.
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Abstract— There is a growing interest in the migration
of legacy sequential applications to multicore hardware
while ensuring functional correctness powered by automatic
parallelization tools. OpenMP eases the loop parallelization
process, but the functional correctness of parallelized code
is not ensured. We present a methodology to automatically
analyze and prepare OpenMP constructs for automatic
parallelization, guaranteeing functional correctness while
benefiting from multicore hardware capabilities. We also
present a framework for procedural analysis, and emphasize
the implementation aspects of this methodology. Addition-
ally, we cover some of the imperative enhancements to
existing dependency analysis tests, like handling of unknown
loop bounds. This method was used to parallelize an Ad-
vance Driver Assistance System (ADAS) module for Lane
Departure Warning System (LDWS), which resulted in a
300% performance increase while maintaining functional
equivalence on an ARM™ based SOC.

Keywords: Automatic Loop Parallelization, OpenMP, Range Test,
Conditional Parallelization, Loop Normalization, Loop Dependency
Analysis

1. Introduction
Modern computer architecture ethos favors a multicore

desgin paradigm for both servers and emedded soultions.
Multicore platforms add a significant overhead to program
development cycles due to added complexities, and strict
verification of compatibility issues. The standard procedure
to increase the throughput of a sequential program, is to
optimize or parallelize the application. Parallelizability of
an application is based on the inter-dependency of the
tasks within that application. Detailed code analysis is
required to decide the dependency and parallelizability of
the tasks in code. Sometimes, the time overhead induced
by multithreading using the OpenMP API may nullify the
parallelization benefits. Thus, availability of multiple cores
does not always guarantee a performance improvement. The
majority of current as well as legacy applications, especially
in safety critical domains like automotive, aerospace, etc.
are sequential. When these applications are parallelized, their
functional correctness for all possible set of inputs is a major
concern. The application performance is essential but is of
lower priority compared to functional correctness. Migra-
tion of these applications to parallel or multicore hardware

requires thorough verification as parallelization may induce
complex errors. For e.g. synchronization errors, deadlocks,
resource contention, etc. using dependency analysis which
plays a major role in parallelization process [13]. Manual
analysis of code for parallelizability is a complex and time
consuming [15] activity depending upon number of lines,
inter-dependent functions, and file count. In these efforts,
human error may still creep in, especially in large code
sets as it is humanly impossible to keep track of multiple
synchronizations across files. This paper focuses on the
mechanism developed to automatically convert sequential
code into parallelized code using OpenMP constructs. This
approach comprises of:

1) automatically analyzing a loop block for dependencies,
and

2) checking functional correctness.
The programmer can then fine-tune the parallelized code
for further optimal behavior. In the upcoming section we
will discuss in detail the methodologies used in the loop
parallelization module of YUCCA tool, which was earlier
known as S2P [3].

2. Literature survey
Automatic parallelization includes analysis of local and

global variables, array indices, inter-procedural dependen-
cies, alias analysis, control flow analysis, etc. Runtime pre-
processing to efficiently reduce the cost of communication
along with non-linear array sub-script analysis for irregular
parallelizable code is handled by automatic parallelization
techniques for irregular scientific applications [11]. Com-
piler guide lines to programmer and semi-automatic loop
parallelization based on iteration analysis, variable induction
analysis is handled by the technique of compiler guided
refactoring [12]. There has been work done in the context
of adaptive work load distribution across OpenMP loops
using machine learning [8]. Machine learning based thread
versioning results in optimum work-share distribution over
the threads. Run-time comparison comes up with optimum
OpenMP combinations in regards of chunk and number of
threads. Fine coarse grain parallelization techniques such
as tiling of a given data set, and performing distinct tile
operation on different processing cores are also being taken
care of by automatic parallelization tools like PLUTO [7]. A
polyhedral model is used in PLUTO to analyze the irregular
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dependencies in nested loops to find opportunities for paral-
lelization. There are tools for automatic parallelization like
Intel Compilers [1], Par4All [2], Cetus [4] etc. described in
the automatic parallelization YUCCA tool [3], which do not
cover implementation in detail.

3. Prerequisites and limitations for loop
parallelization using OpenMP

• Loops to be detected by static analysis for paralleliza-
tion needs to be normalized before processing.

• Loop indices should always be integers.
• OpenMP does not check for data dependencies, data

conflicts, race conditions, and deadlocks.
• OpenMP does not allow static extent scope expanse to

multiple code files.
• The functional correctness of a parallelized block is not

verified by OpenMP.
• Jump statements should not directly or indirectly break

the loop considered for parallelization1.
• The types of variables under consideration are primi-

tives, arrays, and pointers or array references.
• Loop stride and loop conditions are loop invariant.

4. Dependency analysis
4.1 Simple variable analysis

Variable analysis is an essential part of static analysis to
find out the parallelizability of a loop. This section covers
all possible types of variables and scenarios where variables
are used. The typical flow for the proposed methodology is
as shown in figure 1.

The following sections cover some methodologies for
variable analysis.

4.1.1 Prediction of variable values
The dependency analysis gets changed based on the scope

of the variable (i.e. whether the variable is local or global
with respect to the loop). The values of the variables are
identified based on their location.

In example 1, on line 4, variable a is assigned a constant,
10, and in line 5 b is assigned 23. Within the for loop on
line 8, variable c is an expression in the form of the abstract
syntax tree (AST) as shown in figure 2.

The same AST is modified as shown in figure 3
In the same way all the variable are reduced and possible

values of that variables are stored in a list.

4.1.2 Handling of branches
If branching is detected, all the possible paths are noted.

A list comprising of all the possible values for each variable
in each branch is then generated. Branches that cannot be

1Note that jump statements can be used to break nested child blocks, but
not the parent block which is considered for parallelization.

Fig. 1: Flowchart of dependency analysis

Example 1 Sample source code for variable value prediction
1 main () {
2 int a, b, c, i, j;
3 ...
4 a = 10;
5 b = 23;
6 for ( i = 0 ; i < 10; i++){
7 ...
8 c = a + b;
9 b = c + 1;

10 a = a + b + c + 43;
11 }
12 }

c
+
/ \

a b

Fig. 2: AST for expression c = a + b

reached based on variable values are ignored for dependency
analysis. For example,

if (b==12){
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c
+
/ \

10 23

Fig. 3: Modified AST based on figure 2

...
};

If it is known that 12 is not a possible value of b, then the
then path of if statement is ignored.

4.1.3 Read write test
The Read Write Test identifies if there is any loop carried

dependency. It verifies whether a variable written in a loop
is used in the next iteration. We do this by determining if
there is a read access on the variable before a write access.
In case such dependencies exist, the loop is marked non-
parallelizable.

In example 2, x2 is read on line 7 before it is updated.
As the value of x2 written in current iteration is used in the
next iteration, this loop is considered non-parallelizable.

Example 2 Sample code for read write test
1 main (){
2 int i,k,x1,x2;
3 int a[20];
4 ...
5 for (i = 0; i < k; i++){
6 ...
7 x1 = x2 + 4;
8 x2 = x1 + k + i;
9 ...

10 }
11 ...
12 }

In example 3, l2 is read before it is written. Hence, we
mark this loop non-parallelizable as well. However, this
scenario can be handled using the Reduction construct found
in OpenMP.

Another case where the read write test requires some
assistance from other tests is if there is a conditional control
flow in the loop, and the variables are read or modified as
a part of the conditional control flow.

Arrays and pointers in a loop are analysed using other
tests which are explained in the sections below.

4.1.4 XNOR test
As discussed, the read write test considers the position

of a variable, but sometimes it is also needs to consider the
control flow of the loop where the variable is being used.
The XNOR test is used for variables which are accessed first

Example 3 Sample code for reduction
1 main (){
2 int i,k,l1, l2;
3 int a[20];
4 ...
5 for(i = 0; i < k; i++){
6 ...
7 l2 += i;
8 ...
9 }

10 ...
11 }

in a conditional block. If the variable is accessed before the
conditional block, the read write test is considered for each
branch.

The following scenarios illustrate the cases where the read
write test needs the assistance of the XNOR Test.

A variable first accessed in a conditional block is,
(a) only accessed inside the conditional block,
(b) only written in all the branches,
(c) only read in all the branches, or,
(d) read in at least one branch as well as written in another

branch
In scenario a, if variable x is accessed only in the

conditional block, then the read write test is applied on
that variable with respect to each branch separately. If
there is at least one branch that the read write test marks
as non-parallelizable, then the entire loop is marked non-
parallelizable.

In scenario b, if the variable x is first accessed in the
conditional block and all branches have write access to that
variable, then that loop is marked as parallelizable with
respect to variable x.

In scenario c, if the variable x is first accessed in the
conditional block and all branches have read access from
that variable, then the loop is marked non-parallelizable with
respect to that variable. However, if there is a write after the
branch statements, the loop is marked parallelizable.

Static analysis of scenario d cannot determine which
branch of the control flow graph will occur during any
iteration, hence we mark this case as non-parallelizable as
well.

In the example 4, variable b is only accessed in the
conditional block. In one branch it is written first and read
later, and in the other branch, it is read first and written later.
This will cause the read write test to fail in one branch, so
this loop is marked non-parallelizable.

4.2 Variable array analysis
Variable array analysis is different from typical variable

analysis as we need to look through a range of memory
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Example 4 Example 4. Sample code for XNOR test case 1
1 for (i = 0; i < 20; i++){
2 if (k == i){
3 a = b + c;
4 b = a + k;
5 } else {
6 b = k;
7 r = b;
8 }
9 }

locations, and determine memory contention of write as well
as read across this range. Hence, in order to parallelize loops
containing array references, we use the following tests:

4.2.1 Loop normalization
Loop normalization is carried out to ensure that correct

conditions are achieved by the means of analysis. A loop is
assumed to be normal when its stride is 1. For example, a
regular loop in which the loop index i iterates from lower
bound l to stride s in steps of ∆, the normalized iteration is
written as: (i− l+ s)/∆. The loop body condition will also
change accordingly.

Further, to ease the analysis via the range test[5] for array
references, several pre-processing steps need to be followed:

1) Multi-dimensional arrays need to be converted to single
dimensional array. For e.g. a[640][480], can be ex-
pressed as a[640∗480], and all the references to a[i][j]
can be expressed as a[480 ∗ i + j].

2) Array references in a loop should be a function of the
iterators of the current loop and the inner loops, and the
loop invariants. This can be achieved by back tracing
the abstract syntax tree (AST) of array reference.

If the array references are the return values of a defined
function, then the AST of the function definition is back-
traced to its dependency with respect to the iterators. This
converts the array reference into a function of iterators and
invariants.

4.2.2 GCD test
The GCD test [14] is used to identify loop carried depen-

dencies. It works on the basis of solutions to Diophantine
equations. In a loop iteration where we have two or more
array references, and where at least one reference is a
writing operation, the GCD test verifies whether the integral
solutions of the equations are possible.

In example 5, there exists a dependency if and only if we
can find i1 and i2 such that 2 ∗ i1 +K1 = 2 ∗ i2 +K2. The
GCD test ignores the bounds of the loop in a simple case
like this example. Given a bound, we can parameterize the
equations to obtain the range in which there is a possibility
of finding integral solutions.

Example 5 GCD Test example
1 for (i = 0 ; i < 100 ; i ++){
2 a[2*i + K1] = ...;
3 ... = a[2*i + K2];
4 }

4.2.3 Range test
GCD based analysis has the following shortcomings while

trying to analyze and identify a loop carried dependency:
• both the upper and the lower bounds of the loop need

to be known beforehand, and
• arrays inside the loop need to be indexed linearly.
In order to overcome the above shortcomings, the range

test was proposed by Blume et al [5]. This test works for
nonlinear as well as unknown bound conditions.

We have extended the work of [5] to include singular array
references inside a loop. By doing so, we can generate an
OpenMP if clause which can determine, at runtime, whether
a loop can be parallelized.

In example 6, f(i, j, loop invariants) is a mathematical
function of iterator variables i and j, and the loop invariants.
We will go through the process of generating the conditions
under which the outer loop, with iterator i, is parallelizable.
Although this process is explained for an array access inside
an inner loop, it can be generalized for any number of inner
loops [5] as well.

Example 6 Sample Code with loop_invariants
1 for(i= LB_i; i < UB_i; i++){
2 for(j = LB_j; j < UB_j; j++){
3 a[f(i,j,loop invariants)] = ...;
4 }
5 }

Generating conditions: Firstly we need to determine
whether the funciton f(...) is either strictly increasing or
decreasing in the range of i. For that, let

P (i, j, loop_invariants) = f(i + 1, j, loop_invariants)−
f(i, j, loop_invariants) (1)

In order to identify the conditions, we use the sym-
bolic range propagation methods as described in [6].
Since the bounds are unknown, we shall get an interval
[a, b] where a is derived from values of i,j where the
curve P (i, j, loop_invariants) is minimum, and b where
P (i, j, loop_invariants) is maximum. As i and j are increas-
ing in nature, the condition thus derived will be a > 0.

Once it has been determined that the function has a strict
positive/negative slope, we need to assess whether for any
loop iteration i, the range of memory locations accessed
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are different from that accessed by the loop iteration i + 1.
Using methods similar to the range test, we find the lowest
memory location accessed by the index function f(...)
during iteration i+ 1 by fmin(i+ 1, j, loop_invariants), and
the highest memory location accessed by the index function
f(...) during iteration i. This method applies irrespective of
whether the index function is increasing or decreasing.

If the difference between these two memory locations is
greater than zero, we can identify that the concerned loop is
parallelizable with respect to this array variable.

Example 7 Code Snippet 1:
1 #pragma parallel for shared(a)\
2 if( (N > 0) && (N > M2) )
3 for(i = 0 ; i < M1; i++){
4 for(j= 0 ; j < M2 ; j++){
5 a[ N * i + j] = ...;
6 }
7 }

Explanation using example 7: In this example, we have
two conditions in an OpenMP construct, which are resolved
only during runtime. The following can be concluded by
examining example 7:

f(i, j) = N ∗ I + j

Lowerbound(i) = 0, Upperbound(i) = M1

Lowerbound(j) = 0, Upperbound(j) = M2

f(i + 1, j) − f(i, j) = N ∗ (i + 1) + j −N ∗ (i) + j = N

f(i, j) is strictly increasing given N>0; establishes condi-
tion 1. This establishes condition 1.

fmin(i + 1, j) is lowest memory access in loop iteration
i+1. Thus we have,

fmin(i + 1, j) = N ∗ (i + 1) + lower bound of j
= N ∗ (i + 1) + 0

= N ∗ i + N

(2)

Similarly we have

fmax(i, j) = N ∗ (i) + upper bound of j
= N ∗ i + M2

(3)

Difference between equations 2 and 3 needs to be greater
than zero to determine memory independence. This estab-
lishes condition 2 as shown in equation 4.

N ∗ i + N −N ∗ iM2 > 0

N −M2 > 0

N > M2

(4)

Similarly conditions for N < 0 where the function is
decreasing can be determined.

Example 8 Code Snippet 2:
1 #pragma parallel for shared(A)\
2 if ( 2*L1 +1-a > 0 && \
3 *L1 +1 + L2-a-M2 > 0 )
4 for( i =L1 ; i < M1 ; i++){
5 for(j=L2 ; j< M2 ; j++){
6 a[i*i - a*i5 + j] = ...;
7 }
8 }

Explanation using example 8: This example uses a more
complicated array accessing function which uses loop invari-
ants. The following can be concluded by examining example
8:

f(i, j) = i2 − a ∗ i + j (5)

where i and j are loop iterators and a is a loop invariant
which is a constant.

f(i + 1, j) = i2 + 2 ∗ i + 1 − a ∗ i− a + j (6)

Taking a difference of equation 6 and 5 we have

f(i + 1, j) − f(i, j) = 2 ∗ i + 1 − a (7)

For f(...) to be an increasing function, the condition thus
becomes

2 ∗ i + 1a > 0 (8)

thus

i > (a− 1)/2 (9)

fmin(i + 1, j) = i2 + 2 ∗ i + 1 − a ∗ (i + 1) + L2

= i2 + 2 ∗ i + 1 − a ∗ i− a + L2
(10)

fmax(i, j) = i2 − a ∗ i + M2 (11)

Difference between equations 10 and 11.

2 ∗ i + 1 + L2 − a−M2 > 0 (12)

thus for all values of i,

M2 < 2 ∗ i + 1 − a + L2

M2 < 2 ∗ L1 − a + 1 + L2
(13)
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4.2.4 Arrays as loop private variables
The dependency analysis is performed by considering an

array variable as private or shared. If the modified values of
an array are used after the completion of the loop block, and
no dependency exists between any of the array subscripts,
then the array is used as a shared variable using the shared
OpenMP construct. If array values are not required after loop
block, then the array can be used as a private variable. So
the parallelization of a loop is still possible if there is a
dependency existing within an array, but the array is not
required after the loop block execution by the privatization
of the array [13]. By assigning a separate copy of the array
to each thread.

So, the parallelization of a loop is still possible if there
is a dependency existing within an array, but it is subject to
the array not being required after the loop block execution.
The parallelization is acheived through privatization of the
array [13]2.

4.3 Variable pointer analysis
Pointers of variables need to be analyzed separately as

the methodology to understand the memory contention is
different. Our methodology supports a single level of indi-
rection while considering pointer analysis. Memory maps of
each OpenMP thread are considered to determine the correct
OpenMP constructs. There are three major possibilities while
considering pointer access in a loop body which may result
in a loop carried dependency:

1) The value stored at the address to which a pointer
points is altered. Alias analysis [10][9] is done to cap-
ture all the variables which are affected by the pointer
and are used in the loop. Further variable analysis [16]
is done over these variables to identify loop carried
dependencies, if any exist. As a pointer cannot be kept
private with the memory still remaining the same, the
write and read access of that address is kept atomic.

2) The pointer is not modified, but an arithmetic expres-
sion of the pointer is used to modify values different
addresses. Pointers of this form can be converted into
array form as shown below:

p = &A;

∗(p + i) = A[i];

After this conversion, array analysis, as mentioned in
section 4.2, is used to check for parallelizability.

3) The pointer is made to point at a different address. The
first check is to analyze how many times the pointer has
been changed. Separate alias analysis has to be done for
each write operation on that pointer. Variable analysis
is run over all the aliased variables for identification of

2Array privatization is implemented by assigning a separate copy of the
array to each thread.

loop carried dependencies. Precautions taken for case
(1) are also to be considered here.

4.4 OpenMP constructs usage
In this section we look at the OpenMP clauses used for

automatic parallelization.

4.4.1 Identification of OpenMP clause of a variable

The previous sections covered the analysis of different
types of variables. During these analyses, we identified the
appropriate OpenMP clause for each variable. These clauses
are subject to the parallelizability of the loop.

Based on its functionality and location, a single variable
may be assigned multiple OpenMP clauses. In case a conflict
arises due to multiple clauses, the highest priority clause
would be used. Clause priority is based on table 1.

Table 1: Conflict Resolution Table.
Clause 1 Clause 2 Result Clause

Private First-private First-private
Private Last-private Last-private
Private Shared First-private
First-private Last-private Last-private & First-private
First-private Shared First-private
Last-private Shared Last-private & First-private

4.4.2 Structure and union individual element analysis –
OpenMP construct

In case of structures and unions, each element is analysed
separately, and for every element, an appropriate clause
is used. Once the clauses are finalized for each element,
a single clause is decided for the structure based on the
priorities found in table 1.

4.4.3 Static and dynamic clause

Based on the analysis of the code, a corresponding
scheduling clause of OpenMP is used. Here, the focus of
analysis is to identify the conditional code existing within
a parallelized loop. Based on the analysis of conditions,
we determine whether the entire code gets executed. If the
code present within a loop is definite3, then we use a static
scheduling clause along with OpenMP’s standard clause in
order to parallelize the loop. If there are dependencies on
conditional statements like if, while, switch etc. or function
calls within a loop block, then we use OpenMP’s dynamic
scheduling policy.

3That is, not having any dependency during execution on any type of
conditional statements like if, while, switch etc. or function calls within the
loop block
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4.4.4 If clause

During code analysis , if we come across a condition
which needs to be satisfied before the parallelization of code
(as mentioned in range test , section 4.2.3), the condition is
used inside OpenMP’s if clause to increase the probability
of parallelization without losing the correctness of the ap-
plication.

4.5 Experiments and results
We implemented this methodology on an lane departure

warning system. The source code used is ≈2000 lines
of code, and was chosen as a representation of computer
vision algorithms used currently in automotive systems. As
these algorithms pertain to the safety of a driver, it is
extremely important to maintain functional correctness while
improving its performance through parallelization.

The output obtained was cross-compiled for an i.MX 6
Sabrelite board running embedded Linux kernel 3.0.15. The
output obtained was functionally the same for all inputs
as compared to the output of sequential code while giving
algorithm performance benefit of ≈300%.

5. Conclusion
Multiple automatic parallelization techniques exist, but

each one has its own limitations, thus limiting their use to
specific applications. We present the YUCCA tool, which
addresses lexical analysis in order to find opportunities for
parallelization. This paper focuses on:

1) complex loop analysis for optimal utilization of multi-
core technology, and

2) ensuring functional correctness, in order to address the
primary concerns of safety critical applications.

Using the XNOR test (section 4.1.4), the enhanced range
test (section 4.2.3), and the pointer analysis methodologies
presented in section 4.3, we analyze variables within con-
ditional branches. Additionally, we handle unknown loop
bounds as well as variable pointers within a loop. This paper
also covers the usage of OpenMP constructs in order to
parallelize loops, maximize resource utilization, and achieve
improved throughput.

5.1 Moving forward
We are in the process of optimizing our variable pointer

analysis module in order to make it more robust. Addition-
ally, our ability to address function calls within loops is still
in its nascency. Development in this field would benefit if we
could have a standardized test set as well as corresponding
benchmarks (both in terms of performance, as well as in
terms of source code).
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Abstract—In this work a series of applications for parallel
programming is exposed, all of them related to image processing.
A comparison of related works is included, showing the features
and scope of these applications. The third section of this paper
presents a proposal based on hypercubes, as a mechanism
for establishing arrays of processors for parallel computing in
addition to the approaches exposed in the included works, with
the objective of exposing another kind of solution for image
processing in huge data collections.

I. INTRODUCTION

Parallel computing has different approaches and techniques,
and uses multiple resources and platforms to solve complex
problems, in those cases when computer power is required. All
this diversity is related with the type of problem to be solved
and the quantity and classification of the data involved. Once
that the parallel section of an algorithm is identified, usually
there are several alternatives for implementing a solution that
takes advantage of this parallelism.

A. Automatic Road Extraction From Satellite Images Using
Extended Kalman Filtering And Efficient Particle Filtering

There is an extended necessity for using geospatial infor-
mation, in order to make precise visualizations of roads and
terrain, in areas where projects are to be developed, making
this a complex problem to be solved. The analysis of this
information is made by processing satellite images, and the
platform required has a considerably complexity. There are
different methods to solve this problem. Automatic tracking
starts with an automatic seeding of a road segment that
indicates the road centreline, and then the computer learns
relevant information of the road, such as initial direction, step
size, width, and so on. A Road Extraction Method is shown in
the flowchart of the Figure 1. It begins with a given satellite
image, with two filters applied after the automatic seeding
stage. The reference profile and seed point are extracted
automatically by an automatic seeding technique. The edge
of the road is detected using Canny edge detection. The road
network is tracked by a filter until it reaches a road junction
or an obstacle, then it is passed to another filter to initialize
the seed point of the road branch.

Fig. 1. Workflow of Road Extraction Method.

Two algorithms are addressed for automatic road extraction:
Extended Kalman Filtering (EKF) and Particle Filtering(PF).
EKF serves to identify a hidden vari- able that represents the
degree of freedom in the state vector of the dynamic system,
considering the distance along the road as time variable. PF
is a model- based estimation simulation used for Bayesian
models. Since it is necessary to know the current road segment
for the propagation of dynamic models, a pointer is assigned
to the destination road segment. All information of the current
seg- ment of the road, such as directions and neighbours, is
indexed in the database by means of the pointer. The main
approximation of the filter is the Gaussian as- sumption about
the conditional target state distribution given a mode sequence
and observations. The efficient particle filter with 80 particles
yields satisfactory simulation results [1].

Extended Kalman Filter has many applications in comput-
ing and is generally used to minimize error in Non lineal Dy-
namical Systems. As a future work a neural network processed
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by parallel computing is proposed in order to improve the
performance.

B. Parallel and SIMD Optimization of Image Feature Extrac-
tion

There are two main methods for image retrieval in large
data bases: Description- Based Image Indexing and Content-
Based Image Retrieval (CBIR). The first method uses a search
on metadata describing the images, such as tags, key- words,
subject headings or even text; however, it is difficult to capture
the ap- propriate words to describe an image, and in some
applications like surveillance cameras there is no description.
In the second method, the search is conducted by an analysis of
image contents such as colors, shapes or textures, or any other
information derived from the image itself; so, image feature
extraction is the base for CBIR. Image feature extraction has
many other applications, especially when it is done in real
time, such as image filtering, automatic image processing,
automatic monitoring and capturing, and automatic computer
vision [2].

In the paper, authors introduce some optimized methods
of image feature extraction, including both thread level par-
allelism (TLP) and SIMD (single in- struction multiple data)
instruction level parallelism (ILP). Images are consid- ered as
a main theme that is usually what we want to detect. The
scenes above and below, and on the left and right sides are
usually different. So, the frame is divided in five sections,
each of them 1/2 x 1/2 the size of the origin frame, and with
a central section that overlaps the other ones; Figure 2 shows
the division scheme. Four optimization methods are proposed:

1) Adaptive Coarse-grained TLP where each working CPU
deals with one images feature extraction.

2) SIMD optimization on image smoothing and gradient
generating eliminates the high-frequency noise of the
image and prepares it for gradient generating.

3) Eliminate conditional branch and SIMD optimization on
Non-maxima suppression.

4) SIMD optimization on image color feature extraction.
Conditional branches are substituted, this time using
SIMD logical shift-operation instructions.

Results show a speed-up ratio for the TLP optimization
of 8, nearly linear speed-up; this is because every image is
processed in one thread, and there is no dependency between
threads. The SIMD speed-up is not remarkable for relatively
small images, but as the size gets larger, SIMD optimization
shows a good improvement. This is a good example of an
application using more than one parallelism technique simul-
taneously. The first part of the proposal involves techniques
related with the algorithm implementation and scheduling,
while the second stage is based on SIMD characteristics
from the hardware platform, that is, the instruction set of the
processor.

Fig. 2. Division of an image frame

C. GPU Accelerated Automated Feature Extraction From
Satellite Images

This work shows the implementation of computational
power by a parallel architecture based on a GPU (graphic pro-
cessing unit), to match computing requirements for processing
huge data quantum like satellite images. This kind of analysis
for automated feature extraction is very time consuming by
traditional sequential processors, even with multi-cores. This
work focuses on an algorithm for automated feature extraction,
from panchromatic satellite images used for detection of urban
areas and water bodies. The strategy for this solution starts by
copying an image from the CPU memory to GPU memory,
computing all parallel calculations on GPU and then returning
the results to CPU memory.

The solution can be obtained by two approaches. The first
approach consists on dividing the image in rows of pixels, and
then an entire row is assigned to one processing thread, so the
number of threads equals the number of rows. This solution is
faster than the one for a multi-core CPU. The second approach
process in parallel every pixel, assigning one thread to each
pixel. The configuration for threads and blocks is selected to
minimize execution time, making this solution faster than the
first approach.

Synchronization was needed at the end of the whole parallel
computing [3]. The automated feature extraction algorithm is
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formed by four techniques applied to an image for identifying
regions of interest. The main contribution in this work is the
translation of the algorithm from CPU execution to parallel
kernel execution by multiple threads inside a GPU, optimizing
execution time. The best result was obtained using parallel
pixel approach, with a maximum speed up of 1900. Further
extensions of this work include feature extraction from objects
like buildings and roads with a higher accuracy.

Fig. 3. Flow Chart for Urban Area Detection [3].

Image
Author Parallel Processing Data
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Filtering Images
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Operation and
Edge Video

[3] Row-wise Median Image
Threads Filter and

Video

II. BASIC CONCEPTS

Fig. 4. Architecture proposed based on Hypercube approach for parallel
solutions in image processing problems.

A n-dimensional hypercube can be defined by a set of
vertices labelled with a binary representation of the numbers
0 to 2n-1. Two vertices are connected if their labels differ
in only one bit. Its degree and its diameter is equal to n.
This hypercube can be constructed recursively from lower
dimensional hypercubes [4], [5]. Consider two n-1 dimension
cubes whose vertices are labelled from 0 to 2n-1-1, a n-
dimensional hypercube is obtained by uniting the vertices of
the same label, from one cube to the other. This presents
advantages from the point of view of modularity, since it is
possible to gradually increase the size of the network, but this
modularity is limited by the maximum number of connections
originally planned. The hypercube has an optimal routing
algorithm that is simply adapted to an embodiment wired 1.
If determining the order of route, for example by decreasing
bit numbers, the algorithm is free of blockage. The hypercube
topology is much more effective than the mesh topology; for
a network of size N, the diameter and the average distance of
the hypercube evolve according to log2N , whereas in the case
of a 2D grid the order is

√
N .
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A. Basic Concepts and Hypercube Network Fundamentals

N-cube graph. Is an undirected graph that consists of
k = 2n vertices labelled from 0 to 2n − 1, such that there
is an edge between any two vertices if and only if the binary
representations of their labels differ by only one bit[4].

# nodes. Total number of nodes in a topology for a given
dimension [6].

# links. Total number of links in a topology for a given
dimension [6].

Cost. A network with a larger diameter has nodes with
small degree but suffers from long delay in interprocessor
communication [6].

Degree. Is directly linked to the number of ports at a node,
and is also an indicator of the cost of the node. [5].

# edges. Number of edges per node; it is best if this number
is a constant independent of the network size, because the
processor organization scales more easily to systems with large
number of nodes [6].

Hamming Distance. The minimum distance between the
nodes A and B is equal to the number of bits that differ
between the labels for A and B,i.e., to the Hamming distance
H(A,B) [4].

Diameter. Is the largest distance between two nodes; low
diameter is better, since diameter puts a lower bound on the
complexity of parallel algorithms requiring communication
between arbitrary pairs of nodes [6].

Average Distance(d̄). Is the summation of distances of all
nodes from a given node (source) over the total number of
nodes. Average distance plays a key role in determining the
overall delay in a computer network [6].

Bisection Width. The minimum number of edges that must
be removed in order to divide the network into two halves
(within one) [6].

Message Traffic Density (ρ). This factor is defined as ρ ≡
d̄N/L, where L is the total number of links and d̄ is the
average distance.

B. Approach Proposed: Configuring Hypercube Networks

We propose a novel approach to process image astronomical
data using hypercube networks for stellar spectra of 9000. It
is proposed a 6-dimensional architecture, with 64 nodes (28).
Distribution is performed based on the number of galaxies
(1400) and quasars (7600): ten nodes will process 1400
galaxies, 140 spectra per node. Fifty nodes are dedicated to
process 7600 quasars, with 152 quasars spectra per node. Two
nodes collect data and one more node stores the availability
of these data. There is only a node without operation. A 64-
nodes six-dimensional architecture is proposed (see Figure 5)
.

The process begins with the addressing of each node (Figure
6.) The second stage computes the paths between nodes that
can be achieved (Figure 7.) The shortest path is computed
in order to find the faster solution for image stellar data that
can be distributed in our hypercube architecture (Figure 8.)
The shortest path and the longest path can be compared for
statistical data (Figure 8 versus Figure 9.) For a n-dimensional

cube, each CPU has n connections to the other CPUs so wiring
complexity increases logarithmically in proportion to the size,
and the largest path behaves the same way.

Fig. 5. Hypercube networks.

Fig. 6. Binary codes for each dimension and its distribution.

Fig. 7. An n-dimensional network has n possible connections.

III. CONCLUSIONS

Parallel computing is a promising approach for solving
problems associated with image processing. The quantity of
data, the availability of development platforms, but especially
the response times involved are details that finally decide the
way a solution is developed. All the applications analysed
in this work present a valid point of view as solutions,
and even some of them can be interchanged. However, the
most important conclusion from this analysis is the fact that
normally more than one solution can be applied simultane-
ously when solving the problem. Furthermore, is necessary to
determine if the use of resources and time considered for that
implementation is worth the expected results.
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Fig. 8. The shortest route is one movement, while the shortest path between
neighbours is four movements.

Fig. 9. The longer route is six connections.
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Heterogeneous Parallel Architectures
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Abstract— Heterogeneous parallel architectures combining
conventional multicore CPUs with GPUs and other types
of accelerators promise significant performance gains com-
pared to homogeneous systems. However, exploiting the
full potential of such systems is becoming more and more
challenging often forcing programmers to combine differ-
ent programming models and parallelization strategies. A
promising approach to coping with the increased program-
ming complexity is the use of parallel patterns for expressing
certain types of computations at a high-level of abstraction
while relying on the compiler and runtime system to map
such patterns onto a heterogeneous system. In this paper
we present an approach for automatic performance tuning
of high-level pipeline patterns for heterogeneous parallel
systems in the context of a task-parallel component-based
programming model. Our automatic performance tuning
approach attempts to automatically determine the best com-
bination of pattern-specific parameters, parameters exposed
by the runtime system, and machine-specific parameters such
that execution is optimized for a given workload and target
architecture. Experimental results on two state-of-the-art
heterogeneous systems demonstrate the effectiveness of our
approach.

Keywords: parallel programming, patterns, autotuning, heteroge-
neous manycore architectures

1. Introduction
Over the last decade we have seen dramatic changes in

the architecture of parallel systems due to the introduc-
tion of multicore processors and the shift to heterogeneous
parallel systems that comprise different types of execution
units specialized for efficiently processing different types of
computational workloads. Typically, heterogeneous parallel
architectures combine conventional multicore CPUs with
GPUs and other types of accelerators. Such systems have
become increasingly important since they promise signifi-
cant performance gains compared to homogeneous systems.
However, exploiting the full potential of such systems of-
ten requires combining different programming models and
parallelization strategies, which significantly increases the
complexity of application development.

A promising approach for coping with the complexity
of programming heterogeneous parallel architectures is the
use of parallel patterns or skeletons [1], [2], [3], [4], for

expressing certain types of computations at a high-level
of abstraction while relying on the compiler and runtime
system to map such patterns onto a heterogeneous system.
However, mapping high-level parallel patterns efficiently to
different types of heterogeneous target architectures often
requires fine-tuning of various parameters at the application
level (e.g. replication factors of pipeline stages) or runtime
level (e.g. the scheduling strategy), which usually is a time-
consuming tasks and requires detailed knowledge of the
involved compiler(s) and runtime system(s) as well as of
the target architecture. As a consequence, automatic perfor-
mance tuning techniques (also referred to as autotuning)
to automatically search for the best combination of such
parameters have become of growing interest.

In this paper we present an approach for automatic per-
formance tuning of high-level pipeline patterns for accel-
erated parallel systems. Our work builds on a component-
based task-parallel programming framework that has been
developed in the context of the European PEPPHER project
[5], which addressed programmability and performance
portability for single-node heterogeneous manycore systems.
Within the PEPPHER framework, pipeline patterns are re-
alized based on while-loops with source-code annotations
[6]. Pipeline stages usually correspond to calls to multi-
architectural components, for which multiple implementa-
tion variants may be provided. Such component implemen-
tation variants may be optimized for different execution
units of a heterogeneous target architecture, e.g., for a
homogeneous multicore CPU, for a GPU, or for other types
of accelerators. At runtime, for each call to a component a
task is generated, yielding a dynamic task graph. It is then up
to the runtime system to schedule the task graph for efficient
parallel execution on the different execution units of a het-
erogeneous target system. The runtime system chooses for
each task a suitable component implementation variant and
dynamically scheduling its execution onto a free execution
unit of the target architecture such that all available execution
units are utilized and overall performance is optimized.

Within the European Autotune project [11] we have in-
tegrated the PEPPHER high-level programming framework
with the Periscope Tuning Framework [11] for online per-
formance analysis and tuning. Our automatic performance
tuning approach takes into account pattern-specific param-
eters, parameters exposed by the runtime system, as well
as machine-specific characteristics in order to optimize the
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execution of applications with pipeline patterns on hetero-
geneous parallel systems equipped with CPUs and GPUs.

The remainder of this paper is organized as follows:
In Section 2 we provide an overview of the PEPPHER
framework and describe the support for high-level pipeline
patterns. In Section 3 we describe our pipeline coordination
layer which manages the execution of pipeline patterns at
runtime and which exhibits different parameters amenable
to autotuning. Section 4 provides an overview of the Persi-
cope tuning framework and outlines the tuning of pipeline
patterns. In Section 5 we present experimental results using
a real-world face detection application. Section 6 discusses
related work followed by a conclusion in Section 7.

2. High-Level Programming Framework
The European research project PEPPHER [5] developed

a methodology for improving programmability and perfor-
mance portability for single-node heterogeneous many-core
systems. The PEPPHER methodology is characterized by
a component-based programming approach in combination
with an asynchronous task-parallel execution model.

2.1 Multiarchitectural Components
The central idea is to provide performance-critical parts

(typically functions) of applications as components with
multiple implementation variants, called multi-architectural
components. Each such variant is tailored for a different
type of target architecture (CPU, GPU, accelerator) that
may be utilized within a heterogeneous many-core system.
Component implementation variants may be sequential or
parallel and may be implemented with different program-
ming APIs including C/C++, OpenMP, CUDA and OpenCL.
All implementation variants of a specific component must
adhere to the same component interface. Components and
implementation variants are accompanied with meta-data,
supplied via external XML descriptors. Such descriptors
specify the data read and/or written by a component and
provide information about the target platform(s) [7] and
about specific resource requirements or constraints.

For constructing applications from components a set of co-
ordination primitives has been developed. Programmers may
construct applications at a high level of abstraction by in-
voking component functionality from C/C++ codes via their
interfaces and by using source code annotations (pragmas)
to delineate asynchronous (or synchronous) component calls.
With this approach, a sequential program spawns component
calls, which are then scheduled for task-parallel execution by
the runtime system. A source-to-source compiler transforms
annotated component calls such that they are registered with
the runtime system and generates corresponding glue-code.

2.2 Pipeline Patterns
In addition to the basic coordination primitives for des-

ignating asynchronous (or synchronous) component calls

we have developed high-level language support for pipeline
patterns. Pipeline patterns are expressed using annotated
while loops where the loop body comprises calls to multi-
architectural components.

An example of a high-level C++ pipeline code for face de-
tection in a stream of images is shown in Figure 1. The first
pipeline stage reads images from an input file, the middle
stages perform image transformation and face detection, and
the last stage outputs the result images where all detected
faces are marked with rectangles. For the detectFace
stage, two different component implementation variants are
provided within the PEPPHER framework, one optimized for
execution on a conventional CPU core and one optimized
for GPUs. These implementation variants have been re-
engineered from the OpenCV image processing library [10].
By means of annotations, the user can specify what kind
and size of buffers should be generated for passing data
between pipeline stages. Moreover, the user can specify a
replication factor for individual pipeline stages in order to
influence the degree of parallelism during execution. By
changing the replication factors and buffer sizes the user
can quickly experiment with different configurations of the
pipeline. However, the goal of our autotuning approach is
to automatically determine the best values for these tuning
parameters such that overall execution time is minimized.

N = get_max_execution_units ();

#pragma pph pipeline with buffer ( PRIORITY , N*2 )
while ( inputstream >> file ) {

readImage ( file , image );
#pragma pph stage replicate (N)
{

resizeAndColorConvert ( image );
detectFace ( image , outimage );

}
writeFaceDetectedImage ( file , outimage );

}

Fig. 1: A pipeline pattern for face detection in a stream of
images.

2.3 Transformation System
A source-to-source compiler transforms pipeline patterns

into a C++ code that utilizes a coordination layer for
managing parallel execution on heterogeneous many-core
architectures at runtime. Pipeline constructs are analyzed in
order to determine the structure of the pipeline (stage inter-
connection) by analyzing the data types of objects passed
between pipeline stages. For each stage interconnection
corresponding buffer data structures are generated.

The generated target code contains calls to the pipeline
coordination layer which comprises various classes for coor-
dinating the execution of pipeline stages on top of the StarPU
runtime system [8]. At run-time, component invocations
result in tasks that are managed by the StarPU runtime
system and executed non-preemptively.
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3. Pipeline Coordination Layer
The pipeline coordination layer manages all aspects of

execution on a heterogeneous many-core architecture, in-
cluding the automatic management of buffers for data passed
between pipeline stages, the replication of individual stages,
and the coordination of task-parallel execution of pipeline
stages. Internally, the pipeline coordination layer utilizes the
StarPU [8] heterogeneous runtime system.

StarPU is responsible for dynamically selecting suitable
component implementation variants for pipeline stages and
for scheduling their execution to the different execution units
of a heterogeneous many-core system in a performance- and
resource-efficient way. StarPU also manages data transfers
between execution units and provides support for different
scheduling strategies, with the goal of utilizing all execution
units of the target architecture. Data transfers for tasks
are determined based on the XML meta-data provided in
component descriptors, and their costs are taken into account
during scheduling by StarPU. In the following we outline
the major aspects of the pipeline coordination layer and its
interaction with the underlying StarPU runtime system.

The pipeline coordination layer provides several classes
for coordinating the execution of pipeline stages. The
PipelineManager class is used to control multiple pipeline
patterns within an application. The Pipeline class provides
methods for starting, pausing and resuming the execution
of a pipeline pattern, and for dynamically reconfiguring the
tuning parameters of a pipeline (i.e., changing the replication
factor and buffer sizes). The Stage class encapsulates
information on the stage functionality (i.e., the component
that is invoked), connected buffers, predecessor and suc-
cessor stages, and the stage replication factor. The Stage
class provides two methods for coordinating the execution
of a pipelined application: the method execute_async() for
posting a stage for execution to the runtime system and the
method callback() for transferring control back to a stage
object after its associated component has finished execution.
Every stage instance is executed in an asynchronous fashion.

Figure 2 illustrates how a pipeline pattern is being exe-
cuted on top of the StarPU runtime system. The PipelineM-
anager creates a pipeline object and the corresponding stage
and buffer objects. It then starts the pipeline by invoking the
run_pipeline() method of the pipeline object. The pipeline
object then calls the execute_async() method for each stage
object, which initiates the execution of stages, each within
its own thread. Each instance of a stage execution pops
input data from the corresponding stage input buffer, and
then delegates the actual execution of the stage to StarPU
by calling the post() method. From this point on StarPU is
responsible for executing the stage instance by selecting an
appropriate stage implementation variant and scheduling its
execution on a suitable execution unit (CPU or GPU). When
the stage instance has finished execution, StarPU calls the
method callback() to pass control back to the stage object

push()

:Pipeline

:Stage

execute async()

pop()

post()

:Buffer

[ !termina ed ]

[ !terminated  !paused ]

create task()

callback()

:StarPURuntime

submit()

XX

X

run pipeline()

:PipelineManager

loop

<< create >>

<< create >>

<< create >>

<< create >>

loop

Processing Unit

Fig. 2: Pipeline Execution Model.

which then initiates execution of the next stage instance.
StarPU relies on a representation of the program as a

directed acyclic graph (DAG) where nodes represent compo-
nent calls (tasks) and edges represent data dependences. The
runtime system dynamically schedules component calls to
the available execution units of a heterogeneous many-core
architecture such that (1) independent component calls exe-
cute in parallel on different execution units and (2) the "best"
implementation variants for a given architecture are selected
based on historical performance information captured in
performance models. StarPU also manages data transfers
between CPUs and GPUs, ensures memory coherency, and
provides support for different scheduling strategies. Besides
the well-known EAGER scheduling policy, StarPU also
features the Heterogeneous Earliest Finish Time (HEFT)
[9] policy. The HEFT policy considers inter-component data
dependencies and schedules components to workers taking
into account the current system load, available component
implementation variants, and historical execution profiles,
with the goal of minimizing overall execution time by
favoring implementations variants with the lowest expected
execution time.

3.1 Tuning Parameters
The pipeline coordination layer enables dynamic reconfig-

uration by exposing a set of tuning parameters, thus allowing
users or external tools to tune the execution of the pipeline
in order to achieve a desired goal (e.g., to maximize pipeline
throughput). The following tuning parameters are provided:
(1) the stage replication factor, which determines the number
of stage instances that may be executed in parallel, (2)
the sizes of buffers to hold data packets passed between
pipeline stages, (3) the number of CPU cores to be used,
(4) the number of GPUs to be used, and (5) the scheduling
strategy used by StarPU for scheduling component calls to
free execution units of the target system.
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All these parameters have a profound influence on the
performance of applications that rely on pipeline patterns.
Finding the best parameter combination for a given ap-
plication, problem size, and machine configuration is an
elaborate and time-consuming task for users and thus should
be automated as far as possible.

3.2 Performance Metrics
In order to support automatic performance tuning the

coordination layer provides integrated support for measuring
the following performance metrics of pipeline patterns:

• Stage execution time - the execution time of an indi-
vidual instance of a pipeline stage.

• Buffer input processing time - the time to process the
input objects of one buffer.

• Buffer output processing time - the time to process the
output objects of one buffer.

• Buffer size - the size of individual buffers.
• Pipeline execution time - the overall execution time of

one pipeline pattern.

4. The PTF Tuning Framework
The Periscope Tuning Framework (PTF) [11] is an ex-

tension of the Periscope online performance analysis tool
[12]. PTF aims at providing an integrated infrastructure for
performance analysis and automatic performance tuning that
can incorporate expert knowledge to guide the search for
performance problems and tuned code versions.

PTF facilitates the development of tuning plugins that
include codified expert knowledge about the performance
characteristics and computational patterns of the target appli-
cations and the specific tuning problem. Besides the pipeline
tuning plugin presented in this paper, several other tuning
plugins (e.g. for tuning of MPI parameters, for master/-
worker patterns, and for energy tuning via dynamic voltage
and frequency scaing) have been developed in the context
of the AutoTune project [11].

Based on performance analysis, tuning plugins identify
tuning alternatives, so-called tuning scenarios (i.e. different
configurations of tuning parameters), and then proceed to
evaluate them. The evaluation of tuning scenarios may be
performed online, i.e. during a single application run, which
reduces the time required to find the best tuning scenario
dramatically.

Automatic performance analysis is based on formalized
performance properties, e.g., load imbalance or slow pipeline
stages (limiter stages). One or more analysis agents may be
used to search for performance properties in the program
execution under investigation. Analysis agents communicate
with the monitor via the monitor request interface (MRI)
linked with the application process(es) to be tuned. The MRI
monitor performs the measurements of performance data
requested by the analysis agent and transfers the measured
performance data to the PTF.

Tu
ni
ng
	  S
tr
at
eg
y	  

Select	  Tuning	  Plugin	  

Pl
ug
in
	  S
tr
at
eg
y	  

Pre-‐Analysis	  (if	  needed)	  

Execute	  Scenarios	  

Evaluate	  Objec>ves	  

An
al
ys
is
	  S
tr
at
eg
y	  

Search	  for	  Proper>es	  

Performance	  Experiment	  

Performance	  Analysis	  

Search/Select	  Scenarios	  

Fig. 3: The PTF Tuning Model

4.1 The PTF Tuning Model
Figure 3 illustrates the PTF tuning model. As shown in the

figure, a tuning strategy is comprised of an analysis strategy
and a plugin strategy, which may be performed iteratively,
depending on the concrete nature of the tuning problem. The
analysis strategy guides performance analysis and the search
for performance properties, while the plugin strategy guides
the search for optimized tuning scenarios. Once the tuning
process is finished, a tuning report will be generated that
documents the tuning actions recommended by PTF.

The tuning process is usually proceeded with a pre-
processing step of the application source files (not shown
in Fig. 3). Preprocessing comprises code instrumentation
required for performance analysis and static analysis and
is either performed by PTF, which includes and integrated
instrumenter for C/C++ and FORTRAN, or by external tools.
In the case of pipeline patterns, instrumentation is performed
by the PEPPHER source-to-source transformation system.
During the instrumentation phase, also a SIR file (Standard
Intermediate Representation) is generated, which includes
static information about the instrumented code regions to be
utilized by PTF for performance analysis and tuning.

The analysis strategy guides the search for certain (pre-
defined) performance properties, by performing one or more
performance experiments and analyzing the corresponding
performance measurements. In case of a pipeline pattern, the
analysis strategy searches for a limiter stage, which takes
much more time than other stages. If a limiter stage is
found, the pipeline tuning plugin is triggered and attempts to
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Fig. 4: Integration of the PEPPHER framework for high-level pipeline patterns with the Periscope Tuning Framework. Blue
components are specific to the PEPPHER framework, while red components are specific to PTF.

increase the replication factor of the limiter stage such that
overall execution time is reduced. In addition to this specific
plugin strategy, we have realized a general plugin-strategy
finding a configuration of the five pipeline tuning parameters
that minimizes overall execution time.

As shown in Figure 3, a plugin strategy is comprised of an
optional pre-analysis phase, a phase for searching, selecting
and analyzing tuning scenarios within the set of overall
tuning scenarios, and phases for executing tuning scenarios
and evaluating the tuning objectives such that the best tuning
scenarios is identified. For preparation and creation of new
tuning scenarios, plugins can access a search interface,
which enables to apply different search strategies for finding
promising tuning scenarios. In our current implementation of
the pipeline tuning plugin we have used exhaustive search. In
the future we plan to integrate alternative search strategies.

4.2 Pipeline Tuning Workflow
In the following we describe the major steps of the

pipeline tuning workflow according to Figure 4.
First, the application source code is processed by the PEP-

PHER transformations system, which translates high-level
pipeline patterns into a representation that uses the pipeline
coordination layer and inserts monitoring calls for obtaining
the pipeline-specific performance metrics. In addition, a SIR
file (XML intermediate program representation) with infor-
mation about the relevant tuning parameters and code regions
is created. The generated code is then compiled with target

specific compilers and linked with the PTF performance
monitoring (MRI) libraries. During program execution, the
linked MRI monitor is used for communicating measured
performance metrics to the PTF and for (re-)setting the
values of tuning parameters. The tuning plugin decides the
measurements that will be considered for application tuning,
and the modified tuning parameters. The pipeline tuning
plugin constructs the set of tuning scenarios, executes them
by dynamically reconfiguring the pipeline tuning parameters,
and reports the best tuning scenario.

5. Experimental Evaluation
For evaluation we use the OpenCV face detection ap-

plication outlined previously in Figure 1. The application
processes a set of 350 images of nHD (640x360) res-
olution, each containing an arbitrary number of human
faces. For the computationally most demanding component
detectFace(), which is called in the middle stage, two
different implementation variants, one for a single CPU core
and one for a GPU, were utilized. These implementation
variants have been re-engineered from the OpenCV library,
which includes both a sequential C++ version and a CUDA
version, but which had to be slightly adapted to the PEP-
PHER component model.

We present speedup measurements and autotuning results
on two different CPU/GPU systems. The first machine
is equipped with two quad-core Intel Xeon X5550 CPUs
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Fig. 5: Speedup results for face detection application on a
machine with two quad-core CPUs and two Tesla GPUs
relative to the OpenCV baseline version.

(2.66GHz, 24GB RAM) and NVIDIA Tesla C2050 and
C1060 GPUs, respectively. The second machine is equipped
with two octa-core Intel Xeon E5-2650 CPUs (2.0 GHz,
128GB RAM) and 4 NVIDIA Kepler K20 GPUs. As shown
in Figures 5 and 6, we executed the face detection pipeline
on different machine configurations and utilized PTF to
automatically determine the best combination of tuning
parameters such that execution time was minimized.

Figure 5 shows speedup results on the first machine
equipped with Tesla GPUs. The second red bar in the
figure is the OpenCV baseline version, i.e. using the original
OpenCV library which supports using just 1 CPU and 1
GPU. The two blue bars show the results of the autotuned
PEPPHER pipeline versions using 6 CPU cores and one or
two GPUs, respectively. These results clearly demonstrate
that our high-level component-based approach can effec-
tively utilize all execution units of the system. Note also that
no source code changes were necessary to run on the two
different machine configurations with one and two GPUS,
respectively. Using the whole machine a speedup of about 4
has been obtained compared to the OpenCV base version and
a speedup of about 12 compared to the single core version.

Using the PTF tuning plugin, we used exhaustive search
to find the best configuration for the available tuning pa-
rameters. As described in Section 3.1, we considered the
following five tuning parameters: (1) stage replication factor
of the detectFace() stage, (2) input buffer size of
the detectFace() stage, (3) number of CPU cores, (4)
number of GPUs, and (5) the scheduling policy - EAGER
(simple greedy scheduler) versus HEFT (Heterogeneous
Earliest Finish Time) [8]. In total PTF explored 360 possible
configurations, spending about 6 hours in doing so. Finding
the best parameter configuration manually would require sig-
nificantly more time, usually several days of reconfiguration
and performance measurement.
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Fig. 6: Speedup results for face detection application on a
machine with two octa-core CPUs and four Kepler GPUs
relative to the OpenCV baseline version.

In Table 1, we summarize the explored values for each
tuning parameter when tuning the face detection application
on the first machine. With the best parameter configuration
using the whole system (i.e., all CPU cores and all GPUs)
the execution time of the face detection application over the
complete data set was 8.2 seconds. It used a replication factor
of 8, 6 CPU cores, 2 GPUs, buffer size of 32 and HEFT
scheduling policy. The slowest configuration that utilized the
whole system resulted in an execution time of 19.6 seconds.

Tuning parameter Possible values Best configuration
Replication factor 1, 2, 4, 8 8
Number of CPU cores 1, 2, 4, 6, 8 6
Number of GPUs 0, 1, 2 2
Scheduling policy “EAGER”, “HEFT” “HEFT”
Buffer size 8, 16, 32 32

Table 1: Possible values of tuning parameters (first machine).

Figure 6 shows speedup results on the second machine
equipped with Kepler GPUs. Again, the second red bar in
the figure is the OpenCV baseline version. The four blue
bars show the results of the PEPPHER pipeline version using
one up to four GPUs as well as 12 CPU cores. Again no
code changes were required to run the application on these
different machine configurations. Using 12 CPU cores and
1 GPU delivers a speedup of about 7 over the OpenCV
baseline version that uses one CPU and one GPU. Adding
more GPUs results in only modest speedup increases, which
can be mainly attributed to the rather low resolution of
the images. We expect that for higher resolutions greater
speedups with multiple GPUs would be possible due to the
increased computational complexity.

Also on the second machine we used to PTF to find the
best configuration of tuning parameters by exploring 1470
different combinations. The best parameter configuration
using all CPU cores and all GPUs of the second machine
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resulted in an execution time of 4.6 seconds, with a repli-
cation factor of 16, 12 CPU cores, 4 GPUs, buffer size of
32 and HEFT scheduling policy. The slowest configuration
that utilized the whole system resulted in an execution time
of 15.3 seconds.

6. Related Work
Due to the increasing complexity and diversity of par-

allel architectures, there is a growing interest in automatic
performance tuning techniques. Existing autotuning efforts
include self-tuning specialized libraries (e.g., linear algebra
or signal processing) like ATLAS[14] or FFTW[15], tools
that automatically search for best combination of compiler
optimization parameters [16], [17], and tools that search for
best values of application-level parameters [18], [19].

Our approach mainly deals with tuning of parameters ex-
hibited by a runtime library (i.e. our coordination layer) and
thus our work is more akin to the third group (application
tuning) than the first one (self-tuning libraries), because we
execute computational components that are not part of the
library and can behave very differently from each other. Our
efforts are close to the emerging area of (possibly automated)
tuning of OpenCL or CUDA parameters [20], [21].

7. Conclusion
In this paper we presented our work on autotuning support

for high-level pipeline patterns for heterogeneous many-core
architectures. We have developed a pipeline tuning plugin for
the Periscope Tuning Framework, in order to automatically
determine the best combination of performance relevant
tuning parameters exhibited by the pipeline coordination
layer.

In our future work we will experiment with different
search strategies and investigate methods for continuous
online tuning, such that pipeline patterns are automatically
adapted to changing work loads or varying target machine
configurations. Moreover, we will extend our work to other
common parallel patterns and other architectures [22].
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Abstract - As the number of cores increases on chip 

multiprocessors, cache coherence is fast becoming a major 

impediment in improving the performance of the multi-cores. 

This is exacerbated by the fact that the interconnection 

speeds does not scale well enough with the speed of the 

processors. To ameliorate these limitations, several 

mechanisms were augmented to the cache coherence 

protocols to enhance the performance of the multiprocessors. 

These mechanisms include policies such as write-update 

policy, write-invalidate policy etc. However, it has been 

previously shown that pure write-update protocol is highly 

undesirable because of the heavy traffic caused by the 

updates. On the other hand, write-invalidation protocol is not 

the optimal solution as many of the sharers of the cache 

blocks may be reused in the near future. In order to increase 

the efficiency, we introduce a novel update mechanism which 

uses reuse frequency and last touch time of each cache block 

as metrics to take the decision dynamically whether it will 

retain its write-invalidate strategy or will update the sharers 

as in write-update protocol. Our research enhances the 

speedup of MOESI cache coherence protocol by 12 % 

(average) and reduces L1 cache miss rate by 17%. It also 

reduces the network power consumption by as much as 26% 

(5% in average) and the network latency as much as 10%. 

 

Keywords: MOESI; Cache Coherence Protocol; last touch 

time; reuse frequency; core locality; 

 

1 Introduction 

    The current trend in chip multiprocessor (CMP) is to 

incorporate large number of cores. The earlier implementation 

of multi-core technology integrated small number of cores 

(two to four) in to the CMP. But now the industry is heading 

towards larger number of cores on each processor to enhance 

the throughput. For example, IBM Cell Processor has eight 

cores [14], and Tilera TILE64 has [15], 64 cores incorporated 

in a single chip. Along with these technical trends, the cache 

coherence complexity has also increased significantly.  

     Cache coherence is the mechanism that allows maintaining 

the state and value of a cache block in the caches of a chip  

multiprocessor (CMP). It ensures that no data is lost or 

overwritten before the data is transferred from a cache to the 

target memory. Since cache coherence involves significant 

amount of communication over wires, wire speed and 

bandwidth are the major concerns for the improvement of the  

performance and scalability of the cache coherence protocol.  

Due to the fact that, in a CMP the interconnection speed does 

not scale well enough with the increase in core speed, smart 

mechanisms and novel polices are necessary for accelerating 

the performance of the coherence protocols. Chip 

multiprocessors with a small number of cores can use a 

snoop-based coherence protocol which relies on a broadcast-

based interconnect [1]. However, broadcast based 

interconnect uses the bus which degrades the performance as 

the number of cores increases. As snoop-based protocol lacks 

scalability, and therefore directory based protocol [2] is 

widely used in a large scale CMP. The basic idea is to keep a 

directory entry for every memory line. This entry consists of 

its state and a sharing code indicating the caches that contain a 

copy of the line, which are termed as sharers of a cache block. 

On a cache miss, each coherence transaction is sent to a 

directory controller which, in turn, using its corresponding 

entry, redirects it to the cores caching the line, e.g., redirects 

to the sharers of the cache line.  

    This paper examines the design of effective coherence 

mechanisms for a directory based multi-core architecture that 

has a shared last level cache (L2 cache as LLC) which 

maintains MOESI (Modified, Owner, Exclusive, Shared, 

Invalid) [5] cache coherence protocol and ensures the 

correctness of the cache coherence substrate via token 

counting. In this work, the directory-based MOESI token 

protocol is used instead of the broadcast–based token protocol 

(TokenB) [1] to enhance the scalability of the protocol. We 

begin by exploring the directory-based MOESI token cache 

coherence protocol(MOESI_CMP_Token)for multi-core 

processors in a CMP and adapt certain mechanisms to attune 

the directory based MOESI protocol for boosting the 

performance in terms of execution time, power consumption, 

and network latency.  

    The conventional MOESI coherence protocol is a write-

invalidation based protocol and has no mechanism for 

updating the sharers. In a pure write-update cache coherence 

protocol, all the sharers are updated according to the new 
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modified value whereas in a write-invalidation based 

coherence protocol the existing sharers of the cache block are 

not updated according to the new value. Previous researches 

[13] [22] have already shown that pure write-update is highly 

undesirable because of the heavy traffic caused by the 

updates. It has also been shown that in a pure write-update 

protocol the network traffic increases with the increase of the 

CMP size [22]. In this paper we show that simply 

implementing write-invalidate based directory protocol does 

not provide the most effective solution. In our proposed 

mechanism, we keep record of the access frequencies of the 

cache blocks, e.g., the number of times a cache block is reused 

in the past, and term this metric as reuse frequency (RF). We 

also consider the time-based aging of the accesses of the 

cache blocks for better speculation of reuse in the near-

immediate future and have termed the last access time as last 

touch time. In our work, we have incorporated the concept of 

temporal locality of a cache block by means of its reuse 

frequency and last touch time. Many of the cache blocks in the 

shared LLC may show very high temporal locality while the 

others may not. If we can update the sharers of the cache 

blocks which show high temporal locality, then many of the 

requests of the local cores can be satisfied by the updated 

sharers’ content. This will eventually improve the 

performance of the cache coherence protocol in terms of 

execution time and power consumption.  

     To the best of our knowledge, our proposed work, 

Exploiting Reuse-Frequency with Speculative and Dynamic 

Updates in an Enhanced Directory Based Coherence Protocol 

(RFU-Dir), is the first one that applies a smart mechanism 

policy to dynamically update the sharers of only those cache 

blocks who are highly reused in the recent past. The updates 

are dynamic because after each and every write back of an 

individual cache block in the LLC, the decision to update is 

taken dynamically by the Dynamic Speculative Update 

Mechanism Policy (DSP). In this work, we show that RFU-

Dir enhances the speed up of the directory based MOESI 

cache coherence protocol by 12%, decreases L1 miss rate by 

17% (average) and reduces the L1 miss latency by 3.2% 

(average). Our proposed work also decreases network latency 

and L1 replacement as much as 10% and 90% respectively. 

The network power consumption and the directory access are 

also decreased by 5 % (average) and 13% (average) 

respectively. 

     The remainder of the paper is structured as follows. 

Section 2 identifies the motivation of our work, Section 3 

presents the dynamic speculative update mechanism and 

Section 4 presents the methodology with the experimental 

results. Related work is summarized in Section 5. Finally, 

Section 6 outlines the main conclusions of this work. 

2 Motivation 

      Previous researches have shown that, if a cache block is 

used by a core in a CMP, then there is a high possibility that 

the particular cache block will be reused by that core in the 

near-immediate future. In other words, if at time=t0, if core1 

issues an address for a cache block ‘A’ then within a near-

immediate future time interval, t0≤t≤t0+k, where k is an 

integer, there is a high possibility that core1 will again issue 

request for that cache block ‘A’. In our work, we term this 

phenomenon as core locality for a cache block residing in the 

LLC. The conventional pure update–based protocol updates 

the sharers of each and every cache blocks [13]. Updating the 

sharers of each and every cache blocks demands excessive 

bandwidth which has already led the update-based protocol to 

virtual extinction, especially in a broadcast-based snoopy 

protocol [13]. This situation gets worse as large number of 

cores is incorporated in a CMP. On the other hand, a pure 

write-invalidate protocol does not take advantage of the 

updates of the potential sharers which may show very high 

temporal locality. In order to overcome these limitations, we 

make use of the reuse frequency and last touch time of each 

cache block as criteria for the sharers to be updated or not.  

     To understand the motivation of this work, let us now 

assume a scenario where a READ (L1_GETS) request is 

issued for a cache block ‘A’ by core1in a 64-core CMP. Due 

to a read miss in the local core, the request (L1_GETS) is sent 

to the shared LLC and the desired data is sent back to the local 

cache of core1. Let us assume that within a short interval of 

time, in the same way core3, core5, and core19 also have 

issued L1_GETS request for the same cache block ‘A’ and 

eventually all these cores have cached a local copy of the 

block ‘A’. So core1, core3, core5 and core 19 are now the 

sharers of the cache block ‘A’ residing in the LLC.  

     Now, let us assume another scenario that, at time t=t0, 

core17 has issued a WRITE request (GETX) for ‘A’ in the 

LLC and at time t= t0+n, where n is an integer, the modified 

cache block is written back to the LLC. In the write-invalidate 

protocols, none of the sharers are updated after the write back 

to the LLC. However, due to the existing tendency of core 

locality, there is a high possibility of a core to reissue request 

for the same cache block in the near-immediate future. So in 

the near–immediate future, if core 1, core 3, core 5 and core 

19 again reissues request for cache block ‘A’ then all these 

requests will result in coherence misses. This will trigger 

many message passing transactions. This will increase the 

power consumption, network latency, bandwidth contention 

and the execution time. The situation may get worse as the 

size of the CMP gets larger. A novel and smart update 

mechanism policy can improve the performance of the CMP 

by considering the limiting factors of the pure update 

protocol. In our work, we have updated the sharers of only 

those cache blocks which have more potential to be reused in 

the near future and ignore the updates of those sharers which 

are less probably to be used in the future.   

3  Dynamic speculative update mechanism 

3.1  Speculation of high reuse of cache blocks via 

reuse frequency and last touch time 

    High reuse frequency and last touch time in the near-

immediate past enhance the possibility of a cache block to be 

reused in the near-immediate future. So, in our work we have 

considered these two metrics to dynamically update the 
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sharers. To increase scalability we have considered the 

directory based coherence protocol instead of the snoopy 

based protocol, to minimize the bandwidth overhead with the 

increase in the number of cores. When a cache block is not 

present in their local caches then the request (L1_GETS) is 

forwarded to the shared LLC. This situation is depicted in 

Figure 1. In our work, each cache block in the LLC is 

associated with a reuse frequency counter which is initialized 

to zero and is reset when the cache block is evicted from the 

LLC. The reuse frequency counter is incremented with each 

request that comes to the LLC for that cache block. A reuse 

frequency counter achieves high value when several cores 

have issued requests for the same cache block. The high reuse 

frequency of a cache block in the shared LLC also depicts the 

fact that a particular LLC cache block has high possibility of 

having multiple sharers. Again, due to core locality, there is a 

high possibility that the same core reissues requests for a 

cache block within a short interval of time. For this reason, if 

the sharers are updated based on the last touch time then the 

performance can also be improved due to the tendency of 

temporal locality of the cache blocks. 
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Figure 1. Several  READ Requests (L1_GETS) is coming  from different L1 

caches to the same cache block in the LLC because cache miss occurs in 

their corresponding L1 caches.Thus increasing the reuse frequency of the 

cache block in the LLC. 

 

3.2   Implementation of dynamic speculative 

update mechanism policy 

          In this work, we introduce an intelligent and novel 

scheme of speculative update of the sharers which enhances 

performance of the write-invalidation based directory protocol 

in terms of execution time, network latency and power 

consumption. In our proposed work, wherever a write back 

occurs in the LLC, the sharers are not updated for every cache 

block. Instead the Dynamic Speculative Update Mechanism 

Policy (DSP) is being consulted. The sharers are updated only 

when the cache block is being reused again and again in the 

past and has a last touch time in the near immediate past.  

Figure 2(a) depicts the scenario of consulting the DSP and 2 

(b) depicts that after the condition checking of the reuse 

frequency and the last touch time, all the sharers are being 

updated. The constraints of the Speculative Dynamic Update 

Mechanism Policy are described below: 

 

Speculation of reuse via high reuse frequency: The reuse 

frequency of the cache block, whose sharers are to be updated, 

should be greater than the Threshold value (experimental 

value of Threshold=13) to assure the higher possibility of 

being reused in the future, i.e. Reuse Frequency>Threshold. 

 

Speculation of reuse via last touch time: A cache block may 

be reused again and again long before in the distant past, but 

may not be reused in the near immediate future. Updating the 

sharers of such a cache block with high reuse frequency may 

cause a hazard to performance of the CMP. Our work ensures 

the reusability of a cache block in the near immediate future 

by considering its last touch time. A cache block which is 

touched in the near immediate past has a high possibility of 

reuse in the near immediate future due to its temporal locality. 

In this work, the life span time of a cache block is divided into 

many parts, such as, near immediate past, near immediate 

future, distant past. We define the near immediate past as, t0≤
 t≤ t0+k, where k is a integer (experimental value of near 

immediate past is time range of 2000 microsecond in the past 

from the current touch time of a cache block) and distant past 

as, t<t0, (experimental value of distant past is more than 2000 

microsecond time span in the past from the current touch time 

of a cache block). 

 

3.3   Space conflict for the speculative update 

       In our proposed work, when a L1 cache receives a 

speculative update and it does not have enough space to hold 

the line then the LRU line of that L1 cache is evicted. The 

LRU line is evicted instead of cancellation of the update 

request because the cache blocks with high reuse frequency 

has a higher possibility of reuse in the near future compared 

to the least recently used block. 

3.4    Extra hardware  

       Reuse frequency counter is used to keep record of the 

reuse frequency. Each cache line is associated with a reuse 

counter and a 32 bit buffer is used to keep track of the last 

touch time. The reuse frequency counter is assigned an initial 

value of zero and is incremented when a request to that cache 

block is received. For calculating the reuse frequency, we 

used a 4 bit counter per cache line. Therefore, extra hardware 

cost for counters: 
 = (#of cache lines *counter size)/LLC size 

 = [{(1 bank size)*(# of banks)*(counter size)}/ (line size)] 

    / [256*1024*8*# of banks] 

 = [{(256*1024)*64*8*4}/ (64*8)] / [256*1024*8*64] 
 = .007 (0.07% of total LLC size). 

 

 

4 Evaluation methodology and results 

       In this section, we first describe our experimental setup. 

Then we present the experimental results for our proposed 

model validation. We contrast the proposed work with the 

existing invalidation based MOESI token coherence protocol 

(MOESI_CMP_Token) to verify the impact of our proposed 

work in terms of performance evaluation. 

…

… 

…

… 

…

… 
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4.1    Experimental setup  

        In order to evaluate the proposed RFU-Dir scheme, we 

set up a NUCA-based L2 cache model and the parameters are 

listed in TABLE I. We evaluate our system using the 

Virtutech Simics full system execution-driven simulator 

along with GEMS [4] timing model. The network latency and 

power is measured by GARNET simulator [6] and Orion [7] 

simulator respectively. To simulate real applications’ L1 and 

L2 cache behavior, we ran PARSEC 2.1 benchmark suit. 
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2(a). The Cache Controller of the L2 bank in the LLC is consulting the 
Speculative Update Mechanism Policy whether the sharers should be 

updated or not. 
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2(b). Mechanism of updating the sharers in RFU-Dir. 

Figure 2. Sharers Update Mechanism in RFU-Dir. 

 

   We assume a MOESI token based cache coherence protocol 

(MOESI_CMP_Token) among the L1 caches and L2 caches. 

We also assume a two level cache hierarchy where L2 is the 

shared Last Level Cache (LLC) shared by 64 cores in a Chip 

Multiprocessor (CMP). All the L1 caches are local to the 

cores. So there are 64 L1 caches. L1 caches are split into L1-I 

(instruction) and L1-D (data) caches. In the protocol, the L2 

cache is a Non Uniform Cache Architecture (NUCA) based 

model [17] and has 64 banks. We assume the protocol to be 

directory based which has 64 directories. Since our primary 

focus is to reduce the coherence miss rate, improve the 

execution time and reduce the power consumption, this 

processor model is sufficient to evaluate our scheme’s 

fundamental performance. We consider the applications from 

the PARSEC 2.1[8] benchmark suites. We used the default 

input set and sim-large configuration for PARSEC 2.1 

applications. PARSEC 2.1 applications were run to 

completion starting from the beginning of their parallel 

sections and the applications were run for a billion 

instructions starting from their region of interest (ROI). 

 

4.2    Experimental results 

      In this section, the results of the comparative evaluation 

between the conventional directory based MOESI coherence 

protocol and our proposed work is presented. We considered 

the benchmarks from the PARSEC benchmark suit that has a 

certain number of sharers [8].We did not consider the 

benchmarks that have no sharing patterns. In our proposed 

scheme, the threshold value of reuse frequency (RF) and the 

near-immediate past are varied along a range of values but in 

our experiment, we observe that reuse frequency=13 gives the 

most optimal result in most of the cases. The value of the most 

effective reuse frequency depends upon the benchmarks that 

are used. In our case, when the reuse frequency is a very small 

value, e.g. reuse frequency =3, then the result is not enhanced. 

This is because of the fact that when a cache block is touched 

only a fewer number of times, e.g. 3 times, then the possibility 

of reuse of the cache block is much lesser in the future. So, if 

we update sharers of the cache block with low reuse 

frequency then the performance will not be improved. Again, 

when the reuse frequency increases then the possibility also 

increases that the cache block will be reused in the future.  In 

our experiment, when reuse frequency is selected within a 

range 10 to 13 the performance is improved.  However, 

increasing the reuse frequency value greater than 13 degrades 

the performance because in this case the cache blocks are 

overly utilized and has a very poor possibility of reuse in the 

future. So updating the sharers increases the execution time 

and the network power consumption. The near-immediate 

past is considered as an approximate time range of 2000 

microsecond in the past. 

 
TABLE I.  PARAMETERS FOR THE SIMULATED PROCESSORS 

 

PARAMETER  VALUE 

Number of Chips 1 

Number of Cores  

per chip 
64 

Processor Model In-order 

OS Solaris 10 

CPU Ultrasparc-iii-plus 

Main Memory 

Latency 
200 cycle 

Directories per chip 64 

Network Link latency 1 cycle 

L1  Cache 
(ICache,DCache) 

CacheSize SetAssociativity Latency BlockSize 

64KB 4 3 cycle 64B 

   L2 Cache Bank 

      

CacheSize SetAssociativity Latency BlockSize 

256KB 4 12 cycle 64B 

 

4.2.1 Analyzing cache miss rate and its 

consequences 

         Our proposed work decreases the L1 cache miss rate by 

17 % (average) by dynamically updating the local copies 

which have higher possibilities to be reused in the near 
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immediate future. So the possibility is high that when the 

requests are issued for those data blocks they could be 

satisfied by their local caches. Thus it decreases the L1 cache 

miss rate. Figure 3 shows the comparison of the L1 cache 

miss rates (MPKI -Misses per Kilo Instructions) of the 

conventional MOESI protocol and our proposed work, RFU-

Dir. From Figure 3, we can see that for the benchmarks 

bodytrack and fluidanimate, the L1 cache miss rate decrease 

by 30% and 35% respectively. Ferret, freqmine, raytrace, 

swaptions and vips show a cache miss rate reduction of 8%, 

4%, 5.5%, 2 % and 2.5% respectively. In this work, we have 

updated the sharers of the highly utilized cache blocks so that 

they may be reused. Here, we can observe that the reduction 

of the L1cachemiss rate is larger for fluidanimate than for vips 

since fluidanimate has larger degree of sharing patterns than 

that of vips. The number of sharers of the cache blocks varies 

from one application to another. Some applications have a 

higher degree of sharing pattern while others have a lower 

degree. In our work, those applications whose cache blocks 

have larger number of sharers contribute more cache hit rate. 

When a data block is requested by the core and it is not 

present in the local cache then the request in sent to the shared 

LLC. After finding the data from the lower level cache (LLC) 

or from the main memory the data block is sent to the local 

cache. If the local cache does not have enough space to hold 

the data the Least Recently Used (LRU) block is then replaced 

by the incoming data block. It can be observed that our work 

results in increased L1 cache hit rate. This means that many of 

the issued requests are satisfied by the L1 caches. This 

minimizes the cache block requests to the LLC. As a result, 

the total numbers of L1 replacements are decreased. Figure 4 

shows the percentage of the change in L1 replacements in our 

proposed RFU-Dir. Our proposed work decreases the 

replacement of the cache lines of the L1 cache by 44% in 

bodytrack, by 4% in fluidanimate, by 3% in freqmine, by 

90%, raytrace 29%, and by 6% in swaptions. However, vips 

does not show any improvement as the cache blocks of vips 

exhibits less temporal locality. 

    We also notice that the READ (L1_GETS) requests are 

issued to the LLC as a result of the cache misses in the local 

caches. In our proposed work, many of the requests issued by 

the cores are satisfied by the updated values of the sharers 

residing in the L1 cache. The decrease in the number of the 

READ (L1_GETS) requests, coming from the L1caches to 

the shared LLC, is one of the consequences of the increase in 

the hit rate of the L1 caches. Figure 5 shows the decrease of 

the total number of READ (L1_GETS) requests coming from 

L1caches to the shared LLC. 

 4.2.2   Analyzing execution t ime 

 

      Speculative and dynamic updates of the sharers increases 

the L1 cache hit rate which eventually decreases the directory 

accesses and network latency. Directory accesses occur on the 

consequences of cache misses which cause long latencies and 

extra performance overhead. The increased L1 cache hit rate 

is able to minimize many unnecessary transactions such as 

ACK, SEARCH_DATA, SEND_DATA, and NACK which 

also minimizes the average network latency. DSP also 

decreases the L1 miss latency. The decreases of these 

parameters enhance the speedup of our work. Figure 6 shows 

the increase in speedup of each benchmark. From the graph, 

we can observe that our proposed work maximizes the 

speedup of fluidanimate and bodytrack. We have observed 

that the LLC cache blocks of bodytrack have a large number 

of sharers, than many other benchmarks [8]. So, constraints of 

the DSP cause a significant improvement in the speedup of 

the benchmark. Ferret, freqmine, raytrace, swaptions and vips 

show a certain degree of cache blocks’ sharing pattern [8]. For 

this reason, our work increases the speed up of these 

benchmarks to a certain degree in compare to fluidanimate. 

The execution time is also proportional to the total latency of 

the network. If the network latency of a CMP can be 

minimized then it also influences the total execution time. 

Figure 7 shows the comparison of the average network 

latency.  

 

 
Figure 3. Comparison of the decrease in L1cache miss rate (MPKI). 

 

 
Figure 4. Percentage of change of L1 Replacements in RFU-Dir in compare 

to the Convectional directory based MOESI Cache Coherence. 

 

 
Figure  5. Comparison of the number of READ requests (normalized to 
total number of instructions) coming to the shared LLC as  results of L1 

misses. 

Figure 8 shows the comparison of the normalized number 

(normalized to the total number of the instructions)) of 

directory access for tag searching. From the analysis, we can 

see that the increased L1 cache hit rate of RFU-Dir decreases 

the total directory accesses. From Figure 9, we can also see 
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the percentage of decrease in L1 miss latency in RFU-Dir. All 

these factors contribute to the improvement in the speed up of 

RFU-Dir.  

 

Figure  6. Increase in Speed up of RFU-Dir in compare to the conventional 
Directory based cache coherence (MOESI_CMP_Token). 

 
Figure 7. Comparison of the average network latency (microsecond). 

 

 
Figure 8. Comparison of the Normalized number of Directory Accesses 
(normalized to total number of instructions) in Directory based cache 

coherence (MOESI_CMP_Token) and RFU-Dir. 

 

4.2.3    Analyzing power consumption   

 

   Updating the sharers speculatively and dynamically 

improves the hit rate which in turns decreases the total 

number of message passing mechanisms which would 

require extra clock cycles. All these activities may include 

the searching of the tag array in the L1 cache, LLC and also 

in directory, the initiation of the requests of the transactions, 

sending DATA to the requestor, acknowledgements 

(NACK, ACK) etc. All these activities not only increase the 

network latencies and occupy the precious on-chip 

bandwidth but also increase the network power 

consumption. Figure10 shows the change of the network 

power consumption in RFU-Dir compared to the 

conventional MOESI_CMP_Token. It can be observed that 

as the number of sharers in vips is less the locality of the 

reused cache blocks is not dominant. 

 

 
Figure 9. Percentage decrease of L1 cache miss latency in RFU-Dir in 

compare to the conventional Directory based cache coherence 
(MOESI_CMP_Token). 

 

 

5 Related works 

        Previous works in cache coherence have included 

prediction, which have covered a broad spectrum. In [18], 

Eggers and Katz compare write-invalidate and write-update 

snoopy-cache protocols. Eggers and Katz also evaluate two 

extensions to pure write-invalidate and write-update called 

protocol read-broadcast and competitive snooping [19]. 

Eggers and Katz’s competitive snooping protocol is an 

implementation of Karlin’s Snoopy-Reading protocol [20]. 

Grahn et al. [22] proposes competitive-update and showed 

that pure write-update is highly undesirable in the general 

case because of the heavy traffic caused by the updates. Their 

work focus on setting a competitive-threshold value to the 

counter associated to each cache block in the local cache and 

the counter is decremented upon getting an update message 

from a remote processor. When the counter reaches to zero the 

copy of the cache block is invalidated and further updates to 

that cache block are ceased. There are significant differences 

between Grahn et al.’s work and our proposed work. In our 

work we assign the reuse frequency of each cache block in the 

shared LLC as zero and increment the value upon each access 

to that cache block. In our work we have considered the reuse 

frequency as well as the last touch time of the cache blocks to 

take the decision dynamically whether the sharers should be 

updated or not. In [22], Archibald proposed an adaptive write-

invalidate/write-update snoopy-cache protocol. In their work 

they invalidated all other copies of the block when a single 

processor has issued three consecutive writes to the same 

block without any intervening access by another processor. 

Some of these techniques [9] [11] also added states to the 

coherence protocol. Some of the protocols focused on table 

based predictors [3] [10] that predicted messages before their 

arrival and took necessary steps at proper time. 

     In the previous works several coherence protocols [9][12] 

are proposed but an intelligent and novel scheme for a 

directory based protocol has not been studied where the reuse 

frequency and last touch time of a cache block are used to 

speculatively update the sharers. The dynamic and speculative 

updates of the sharers have improved the performance of 

RFU-Dir. We implement RFU-Dir on the directory based 

protocol to enhance scalability and ensure low traffic 
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overhead .We use simple counters and buffers for keeping 

track of the reuse frequency and last touch time for each cache 

block respectively. 

 
Figure 10. Decrease of power consumption in RFU-Dir (in percentage). 

 

6 Conclusions 

      We proposed a speculative-based dynamic update 

mechanism to update the sharers dynamically in the 

conventional directory based MOESI coherence protocol. The 

proposed dynamic update mechanism is not limited to MOESI 

cache coherence protocol. It can also be applied to cache 

coherence protocol like MOSI (Modified, Owner, Shared, 

Invalid), and MSI (Modified, Shared, Invalid). Our dynamic 

and speculative update mechanism can be applied in any 

invalidation directory-based protocol. By using low overhead 

counters and buffers we keep track of the reuse frequency and 

the last touch time of the cache blocks respectively and 

instead of updating the sharers of all the cache blocks in the 

LLC we update the sharers of only those cache blocks which 

are highly reused in the near-immediate past.  

    We showed that simple counters and buffers can effectively 

identify a substantial portion of the sharers which may show 

temporal locality in the near-immediate future. Thus, updating 

those sharers result in improvement in the execution time, 

power consumption and hit rate. Our work also reduced the 

network latency, the L1 miss latency, the total number of L1 

cache replacements and the directory accesses for searching 

the tag arrays. In the future we aim to further improve the 

coherence protocol in terms of performance, power, protocol 

complexity and scalability. 
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Abstract—In this paper we propose a method to detect phases
of an application with similar L2 cache miss behavior. Our pro-
posed algorithm can predict per phase cache miss rate and able
to detect stable phase transitions dynamically. In order to predict
the L2 cache miss behavior of an application for different phases,
We exploit the fractal behavior of cache and propose a miss rate
adaption technique which allows to detect phase transitions. In
this approach we use performance counters already available
in modern processors. Adaptive behavior of the presented work
makes it useful for real time applications. We performed different
applications from modern benchmark to evaluate our proposed
method. We use sniper multi-core simulator to model a multi-
core out-of-order processor resembling the modern Intel Nehalem
processor. Experimental results show that the proposed method
has about 95% accuracy with minimum 2.1% prediction error
and significantly low overhead.

I. INTRODUCTION

Designers always attempt to optimize micro-architectural
parameters such as cache size , window size etc to achieve
the average performance needs of general microprocessors
which are desgined to provide overall good performance
while executing a large variety of workloads. However this
overall optimization approach can cause poor performance
and power dissipation during specific execution phases of
certain programs.In recent days architects have proposed
re-configurable hardware that can adapt dynamically to
improve power, performance criteria [1],[5].
In a reconfigurable environment it is necessary to know the
proper timing to initiate reconfiguration. Prior work shows
that phase boundaries are relatively good choice to perform
reconfiguration [6] ,[7]. Hence accurate detection of stable
phase transition is an important property of dynamically
reconfigurable systems. Moreover hardware assisted phase
detection techniques generally incurs high overhead . Several
researchers proposed reuse of configuration information of
repeating phases to reduce overhead by using various phase
classification techniques [4], [5], [8].
In early works [4], researchers proposed various methods to
track working sets to model memory demands of a given
application effectively. One common approach is to create
an LRU stack and imitate the LRU replacement policy over
collected memory traces[9]. This approach estimates miss rate

curve by counting the number of hits to each stack location
and predict the behavior of page misses against memory
allocation. The run-time generation of miss rate curve using
the mentioned approach is not negligible due to the increasing
data size along with complexity of modern applications.
In this paper we propose an adaptive low overhead method to
detect phases based on their memory demands. Our proposed
on-line method can predict last level cache(L2) miss behavior
per phase on modern commodity processors. In comparison
to main memory and disks , there are several challenges
associate to cache memory optimization[9]. Reducing main
memory misses are more advantageous than reducing cache
misses.In comparison to the cost of miss event , tracking cost
of cache misses and based on that estimating cache miss rate
is considerably higher. Its challenging to reduce the cost of
tracking cache misses than miss penalty. On the other hand
processor gets sufficient amount of time to track misses and
perform calculations before the data from the disk appears
when a misses in main memory occurs. Usual overhead
of on-line phase tracking is high since it needs external
hardware support. The primary challenge is to distinguish
phase changes from random fluctuations.
Our proposed low overhead on-line method can estimate
phase based cache miss rate which can help the designer
to profile per phase cache requirement of the running
application on a modern commodity processor. We exploit
existing performance monitoring units of modern commercial
processors to collect memory traces of the running application.
Our algorithm can process these information on-line to
support optimizations at different system levels such as
virtual machine , operating system and various run-time
programming environments.
We propose a fractal based miss rate estimation approach
for on-line phase detection. Our presented algorithm doesn’t
need any external hardware. Maximum likelihood method has
been used over a small number of sampled cache misses and
cache access data pair to find cache miss rate for the detected
phase.
In order to detect stable phase transition we propose a
counter based approach which will help to differentiate phase
transition from random fluctuations by collecting number
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of consecutive deviations of instantaneous miss rate from
predicted miss rate.
The remaining part of the paper is organized as follows.
Background works and motivation are discussed in Section 2.
Section 3 presents the methodology of the proposed on-line
phase detection technique followed by experimental results
and performance evolution in Section 4. Finally, Section 5
concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Miss rate prediction

Multilevel caches are important feature of modern processor
systems [11],[12] and this trend will continue in future due
to its significance in speeding up processors. A lot of work
has been done to predict cache miss behavior by creating an
analytical model of cache[13],[18]. However ,only a few pa-
pers studied the theoretical approach to understand the source
of cache miss behavior on cache sizes. Based on empirical
observations Chow [13],[14] anticipate that the cache miss rate
is governed by a power law function of cache’s capacity. Based
on this assumption he proposed an analytical model of cache
to calculate the optimum cache hierarchy which can maximize
the performance and reduce the cost. Przybylski et al.[15],[16]
proposed a method to optimize the cache size at various levels
by observing the cache miss behavior with respect to cache
capacity . It is certain that if the size of a small workload
fits the cache then the miss rate will be considerably small in
comparison to large workload. In case of a large workload it
is observed that the miss rate decrease as a power law of the
cache size.
Hartstein et al.[18] formulates an analytical model of cache
access behavior to establish the previously mentioned power
law of cache miss rate theoretically. They observed the cache
re-reference pattern with respect to time and combined that
with a statistical model of cache replacement algorithm to
estimate the cache miss rate in terms of cache size. Their
work reveals that the cache miss rate should vary with cache
size as an inverse square root power law.
In this paper we employ the fractal cache model proposed by
Thiebaut[10] in order to detect phases based on the miss rate.
Gillis and Weiss[19] observed that the memory access of a
program can be seen as random walks. They established an
asymptotic relationship between the range of a random walk
R(n) and the number of steps n. The predicted value of R(n)
is as follows :

R(n)→ A.n1/θ for 1 < θ < 2 (1)

In the above equation A and θ are constants. Theta , the inverse
of the slope of the asymptote, is the fractal dimension of the
walk. Thibaut employs the observation made by Gillis and
Weiss to test the pattern of the accumulated number of misses
with respect to the number of cache references. If the range of
the random walk tends asymptotically towards a straight line ,
the walk is a fractal. Thibaut consider the range of the random
walk R(n) is equivalent to the number of misses since both of

them represent the number of unique cells visited and propose
the following model to describe the asymptotic nature of the
accumulated misses.

Numberofmisses = An1/θ for n >> 1 (2)

Where n is the number of cache references. The behavior of
the accumulated number of misses can be described into two
parts. Considering all cache references are misses (cold cache
misses) at the starting stage of the program , the miss behavior
can be described as

y = n (3)

For the rest of the program , the cache miss behavior is
governed by the fractal model described above and can be
written as

y = A.n1/θ (4)

Since the cold cache period is a small fraction of the full
simulation time , the fractal model can successfully describe
the overall cache miss behavior of a program. Thiebaut include
cache capacity into the fractal model to describe practical
cache miss behavior of a program and proposed the following
model.

C = A.n1/θc (5)

Here C denotes the total number of cache lines. Nc denotes the
number of cache references which brings a finite-size cache
into its full capacity. nc can be computed as

nc = (C/A)θ (6)

Instantaneous miss rate MR can be estimated as the gradient
of the curve at the point nc. Miss can be obtained by deriving
eq (6) with respect to the cache capacity

MR =
Aθ.C1−θ

θ
(7)

It is important to estimate A and θ on-line to make eq (7)
relevant for real time applications.Since cache shows fractal
behavior, the number of misses in the cache of capacity C
follows the straight line of equation

y =MR.n+D for n ≥ nc, (8)

This conforms with Laha, Patel, and Iyer’s observation [20]
that the steady-state number of misses varies linearly with the
number of accesses to the cache. We exploit eq (8) to keep
track of the detected phase based on the previously calculated
miss rate.
We employ maximum likelihood method to estimate these two
parameters based on few samples of number of cache refer-
ences and accumulated number of misses.Maximum likelihood
estimation (MLE) is a powerful method developed by famous
statistician R.A Fisher in early 1920s . The principal idea
is that the underlies probability distribution of the collected
or observed data makes it predictable using the process of
statistical inference. The resulting parameter vector maximize
the likelihood function as well as minimize the error between
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predicted and observed data. In this paper we define the
likelihood function as follows

y(n|x) = A.n(1/θ) (9)

Where the parameter vector x consists of A and θ. We
employ the following chi-square error to measure the goodness
of the predicted number of cache misses.

χ2 =
∑
i

(
yi − y(ni|x)

σi

)2

(10)

III. METHODOLOGY

A. Memory traces per interval

In order to implement our methodology for detecting phases
, we need to record cache access and cache misses in a fixed
interval of time. In our case study environment we collect
number of load and store events associated to L2 cache and
from that information we calculate the number of L2 cache
access as a summation of these two events. We take the sum
of L2 load misses and store misses to collect the number of
L2 cache misses.

B. Interval method for phase discovery

Pioneer work has been done by Allen and Cocke [21] to
convert program control flow into a hierarchy of regions. For
scientific programs, most computation and data access are in
loop nests. Previous studies reveal that phase based analysis
accurately summarize the overall program behavior.
In this work, we divide program execution into fixed-length
sampling intervals (measured in terms of time quanta). Infor-
mation related to Memory access is collected over the fixed
sampling interval which is necessary to compute miss rate
on-line. The miss rate collected over the previous interval
compared to the calculated miss rate of the present phase. A
phase change is indicated if both of them differ by more than a
threshold (th). In this way we locate phases and classify them
with their miss rate through on-line memory access behavior
analysis.

C. On-line phase detection

Most scientific workloads exhibit typical memory demands
for different phases. Within a phase, the miss rate remains
nearly constant[9]. This inspired us to compute miss rate
based on few memory access data to predict the miss behavior
when the monitored program enters a phase and re-calculate
it when a new phase is encountered. Through this approach,
the overhead can be substantially lowered since we need to
compute only A and θ in the eq (7) using the previously
mentioned maximum likelihood method. However, in order to
predict miss rate of different phases an adaptive mechanism
is needed which can sense the phase transition behavior and
set new miss rate to predict the miss behavior of the new
phase.The key challenge is to differentiate phase changes from
random fluctuations.
We propose an effective and simple algorithm to detect

changes for memory access behavior by predicting cache
miss rate. First, we sampled accumulated number of cache
access and accumulated number of misses. Let Aiacc and
M i
acc denote the sampled value of accumulated cache access

and number of accumulated misses during ith time interval
respectively. We can pick K sampled value of accumulated
miss by (Missi +Missi−1 + ............. +Missi−k+1) and
similarly accumulated cache access can be calculated by
(accessi + accessi+1 + ...............+ accessi−k+1).
After K data pair have been sampled we can calculate
Ai and θi by using the maximum likelihood method over
(Aiacc,M

i
acc), (A

i−1
acc ,M

i−1
acc ), ..., (A

i−k+1
acc ,M i−k+1

acc ) and then
Miss rate can be calculated as MRi = f(Ai, θi).Once MRi is
calculated, let (Ajacc,M

j
acc) and (Aj+1

acc ,M
j+1
acc ) be the current

sampled value and let MR = MR(X)|X ∈ (j − k, j). We
can calculate instantaneous miss rate 4MR = (M j+1

acc −
M j
acc)/(A

j+1
acc − Ajacc). We define erra = | 4MR −MR|.

Where erra is the absolute error. If erra ∈ [1 − T, 1 + T ]
, where T a small threshold of choice. We assume the input
signal is in stable phase. Otherwise , we assume that a new
phase is encountered. In this case all the K sampled data is
cleared so the MR based on all those data will not be used.

D. Miss rate adaption

To be consistent on phase detection and corresponding miss
rate prediction , our method needs to detect phase transition
and should correct the miss rate on-line. In order to do so we
propose a method which can adjust A and θ dynamically and
based on the new values it can predict the miss rate for the
detected phase.
As we mentioned before the main challenge is to differ-
entiate stable phase transitions from random fluctuations ,
to overcome this we propose a consecutive miss rate error
counter C . After computation of miss-rate based on K
sampled values , we calculate instantaneous miss rate 4MR.
If absolute error erra is more than the threshold value we
increment the error counter. If C reached a maximum error
count ( 100 in our evolution ) then new miss rate need to be
calculated based on new K samples. In that case we delete all
previous K sampled values and start collecting new samples
of accumulated number of cache access and corresponding
accumulated number of misses till we collect K pair of data.
Once we collect enough data , we recalculate A , θ and miss-
rate based on the method mentioned in the previous section.
However , at any time if the absolute error is less than or equal
to the threshold value , the counter has to be reset. Basically
the error counter counts the number of consecutive deviation
of instantaneous miss rate from the predicted miss rate when
the deviation is beyond a certain threshold value.

IV. EXPERIMENAL RESULTS AND ANALYSIS

In this section, we will evaluate the proposed phased de-
tection based on L2 cache miss rate prediction methodology .
We first plot the collected number of cache misses against
corresponding number of cache access. Then we plot the
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Algorithm 1 MLE(Macc[K], Aacc[K], C)

Input:Macc[K], Aacc[K], C
Output : MR
M̂acc[K]← A.Aacc[K]1/θ

χ2 ←
∑(

M̂acc[K]−Macc[K]
σ

)2
Search A&θ which minimize χ2

MR← Aθ(1−C)1−θ

θ
Return

Algorithm 2 On-line Miss Rate based phase tracking

Initialize:K ← 0 ; Count← 0; Mnew ← 0 ; Anew ← 0;
for all ith interval do
Mi ← Miss at ith interval
Ai ← Cache Access at ith interval
Mold ←Mnew

Aold ← Anew
Mnew ←Mnew +Mi

Anew ← Anew +Ai

if K < SampleNum then
Macc[K]←Mnew

Aacc[K]← Anew
K ← K + 1
if K == SampleNum then
MR←MLE(Macc[K], Aacc[K], C)

end if
else
4M ←Mnew −Mold

4A← Anew −Aold
4MR←4M/4A
if |MR−4MR| > ε then
Count← Count+ 1
if Count > τ then
Count← 0
K ← 0

end if
end if

end if
end for

predicted value of cache misses calculated while running the
applications. The results validate our idea of tracking phase
based on the miss rate of individual phases.Next, we review
the prediction accuracy as well as run-time overhead of the
proposed method.

For the results shown in this paper we used the Sniper multi-
core simulation infrastructure [22] , which has been validated
against real hardware. We configured it to model a multi-core
out-of-order processor resembling the Intel Nehalem processor
(Table 1) . Our workload consists of 8 different applications
from the benchmark SPLASH2 ( fft , fmm , barnes,ocean ,
raytrace , radiosity , water-nsquared , water-spatial). All these
applications represents a broad cache usage characteristics. We

TABLE I: Simuated system specifications

Component Parameters

Processor 2 sockets , 4 cores per socket
Core 2.66 GHz, 4-way issue , 128 entry ROB
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache 8 MB per 4 cores, 16 way, 30 cycle
Main memory 65 ns access time, 8 GB/s per socket
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Fig. 2: Number of L2 Cache Misses vs Number of L2 Cache
Access for FMM

simulated the full applications without fast forwarding in order
to detect various phases.

A. Accuracy and Runtime Overhead

In this section we first evaluate the prediction accuracy of
our proposed method by comparing with the measured values.
Then we evaluate runtime overhead of our method.
Figure 1 illustrates the measured L2 cache misses and the
predicted number of L2 cache misses based on the presented
method. It shows the cache access behavior of 8 different
applications taken from SPLASH2 benchmark. The measured
values of cache access and cache misses are obtained through
the counters available in the performance monitoring unit
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Fig. 3: Number of L2 Cache Misses vs Number of L2 Cache
Access for Ocean(Continuous)
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Fig. 4: Number of L2 Cache Misses vs Number of L2 Cache
Access for Raytrace.
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Fig. 5: Number of L2 Cache Misses vs Number of L2 Cache
Access Barnes.

while the applications are running. For each application we
calculate the miss rate dynamically in-order to keep track of
the running phase. We set 10 milliseconds interval size to
collect data.
Form Figure 1 we can compare the measured value and
the on-line predicted value of L2 cache misses for a given
number of L2 cache access. The fit of our prediction is fairly
good and it can successfully track program phases based
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Fig. 6: Number of L2 Cache Misses vs Number of L2 Cache
Access for Radiosity.
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Fig. 7: Number of L2 Cache Misses vs Number of L2 Cache
Access for Water(sp).
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Fig. 8: Number of L2 Cache Misses vs Number of L2 Cache
Access for Water(nsq).

on their memory access behavior. We use formal relative
error method to calculate the prediction error of the proposed
approach. Relative error is calculated for each interval and
then prediction error is measured by taking the average on it.
Table 2 demonstrates the prediction errors for different work-
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TABLE II: Statistics

Workload Overhead(×103cycles) prediction error(%)

FFT 522 2.48
FMM 187 3.18
Ocean.cont 81 11.40
Raytrace 103 9.81
Barnes 173 3.8
Radiosity 2760 4
Water Spatial 1399 2.9
Water nsquared 1787 2.1

loads. The error varies from 2.1% to 11.4% . Most of them
are less than 4% and average error is 4.95% . Prediction
error for two applications are comparably more. Error of
Ocean with contiguous partition allocation (Ocean.cont) and
Raytrace are 11.4% and 9.81% respectively. Experiment shows
that miss-rate for Barnes and Ocean.cont remain same through
out the full simulation. We can conclude that these two
applications have constant memory access behavior through
the full simulation.
The runtime overhead comes from the computation time of
miss-rate based on the collected number of cache misses
and cache access. Table 2 exhibits the miss-rate computation
time for different workloads . Average computation time is
876 thousand cycles. Radiosity , Water Special (Water.sp) and
Water nsquared (Water.nsq) have higher miss-rate calculation
time than other workloads. The proposed method has lower
runtime overhead than hardware directed phase tracking ap-
proaches since it needs to calculate only A and θ in order to
find miss-rate. Usage of maximum likelihood method makes
it simple to find the optimal values of A and θ based on the
collected sampled values of number of cache misses and cache
access.

V. CONCLUSION

We have successfully classified different phases of a com-
plex workload based on their L2 cache miss-rate behavior
on modern commodity processors by employing the proposed
fractal behavior of cache. The predicted number of cache
misses is close enough to the measured value which is col-
lected while running the application. Accuracy of our method
validate the fractal behavior of L2 cache of modern multi-
core processors. We have implemented our method using
performance monitoring unit commonly available in almost
all modern processors. The low overhead of the proposed ap-
proach makes it useful for real-time applications. We achieved
about 95% accuracy when compared to the measured value
of cache misses. In addition to accuracy and low run-time
overhead , the practical advantage of our proposed method
is simplicity, since it needs to calculate only two parameters
A and θ. The proposed method is cost effective since it does
not require external hardware. Our proposed method would be
beneficial for dynamic cache management, runtime scheduling
and profiling techniques for power aware high performance
computation.
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Abstract—PDPTA 2014 - The Symmetric Multiprocessors
architecture is composed by a complex set of cores, chips and
memory channels that make it difficult to implement a parallel
program that efficiently uses all resources. Another obstacle for
achieving a performance according the resources is added by
algorithms with hard data dependency. Asynchronicity is a key
to get all processors running. Petri Nets have been used for a long
time to model algorithms, but not as a tool to parallel execution.
In this paper we introduce an asynchronous Parallel Execution
Model based on Petri Nets and the process to go from a high
level model to an executable parallel program. The Cholesky
Factorization algorithm is used as a testbed. Tests results yield
values that are near the theoretical peak and open good prospects
to expand the model to other environments and algorithms.

Keywords—Petri Net Modelization - Symmetric Multiprocessor
- Parallel Execution Model - Cholesky Factorization Algorithm.

I. I NTRODUCTION

Tiled algorithms emerge as a solution to the problem of
load balance for dense linear algebra algorithms on multicore
processors [1]. This type of algorithms divides data in square
blocks that are used in subsequent stages of processing until
the final result is reached. This strategy of data division allows
increasing the number of tasks that can be run in parallel when
there is no data dependency among data tiles.

To improve processing performance, the parallel algorithm
has to drive two key concepts: granularity and asynchronicity.
Granularity plays an important role in parallel performance
because the larger the number of blocks, the more tasks that
can be run in parallel. Furthermore, without asynchronicity,
performance decreases due the existence of blocking points in
the algorithm that causes processors to become idle until they
all reach each point.

The combination of a large number of tasks with asyn-
chronicity generates an execution problem: the selection of
the task to be launched and the processor that execute it.
Hundreds or even thousands of tasks running in a machine
with a large number of parallel processors will result in an
overload problem.

In a previous work, [2] we have shown that Petri Net is
a good tool to model and control the execution of a com-
plex parallel algorithm. A high-level modelization based on
Coloured Petri Nets (CPN) [3] has been presented. Transitions

represent the tasks of the algorithm and Places represent
the data parameters used by each task. For example, the
Cholesky Factorization algorithm can be resolved with four
BLAS/LAPACK [4], [5] routines; thus, the CPN that model
that algorithm uses only four transitions with one, two or three
input places according the data blocks used as parameters. No
additional transitions nor places are needed.

The Coloured Petri Net model is good to understand and
analyze the parallel algorithm, but it is too complex to be the
basis for parallel execution. Unfolding a CPN to a Token Petri
Net (TPN) [6] allows working with an equivalent but simpler
net. This unfolding defines a net with the exact number of tasks
the algorithm must execute. In addition, as Petri Nets are good
to model a parallel process, the resulting unfolded net allows
analyzing parallel execution restrictions of the algorithm.

On the other hand, there is a tendency to increase the
number of cores in a Symmetric Multiprocessor machine
(SMP). This feature is given by assembling multiple CPU chips
into the motherboard, normally with two or four slots to add up
to sixteen cores in each one. In order to maintain data locality,
two problems arise with this hardware architecture: efficient
memory management and process affinity [7].

The multiplicity of processors in the SMP machine results
in difficulties with cache memory. Thus, the higher level of
cache memory is shared by one or more cores, based on chip
design. To avoid cache misses, a parallel process that uses a
block of data, should not have more threads than the number
of cores that share the higher cache memory.

Not only the number of threads must be present to mini-
mize cache misses, but also the position of the thread in the
pool of cores, namely, core affinity must be taken into account.
If the threads of a parallel process are distributed in different
chips of the CPU, cache consistence for all threads will have
to copy data between chips, reducing performance.

Both facts, the number and placement of threads, have an
impact on parallel algorithm design. In advance, a double core
division is recommended to have all processors working with
an acceptable level of cache faults. A first level consists in a
series of logical processors, whose quantity must match the
number of higher cache memory partitions. The second level
divides each logical processor into as many threads as physical
cores shares the higher level of cache memory. For example, if
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the higher cache level is shared by four cores and the machine
has 32 cores, it should be divided into eight parallel logical
processors with four contiguous cores each.

Therefore, an efficient SMP machine utilization must not
only use a data block size that minimizes cache misses, but
also the number of cores that share one block of higher cache
memory must be considered. If we add algorithm structure,
the complexity to get an efficient parallel execution is high.

In this paper we present the design and execution results of
a parallel version of Cholesky factorization algorithm, modeled
with Petri Nets and executed on two different SMPs. This
work is the continuation of the one cited above, using the
same algorithm modelization. In this paper, an execution model
that takes into account the hardware variables of an SMP
machine is introduced. The rest of the paper is organized
as follows: the next section presents a brief summary of the
Petri Net model developed before. Section three introduces the
execution model. Results are discussed in Section four and
finally, conclusions and future research are presented.

II. T HE PETRI NET MODEL

In a previous work [2], the model used to analyze and
simulate runnings of a parallel algorithm was introduced. It is
based on Coloured Petri Nets. This high level model is then
unfolded into a Simple Place / Transition net (TPN), which is
used to run the parallel algorithm. A summary is presented.

Figure 1 shows the CPN that represents Cholesky’s al-
gorithm. It has only four Transitions and eight Places; each
Transition represents one routine and each Place represents
one of its parameters. The name of the places follows the
number of the block used in each operation. Color tokens are
represented by< x,y >, multiset repetitions by braces{x},
and functions arcs are only Booleans of the formif(cond).

potr1 trsm2

potr

< i, i >

< i, i >
{n− i}

trsm1

syrk1

gemm2 gemm1

trsm

< j, i >
< i, i >

< j, i >
{n− j}

< j, i >
{j − i− 1}

< j, i >

syrk2

syrk

< j, i >

< j, j, i >

< j, j, i + 1 >
if(i + 1 < j)

< j, j >
if(i + 1 = j)

gemm3 gemm

< i, q >
< j, q >

< j, i, q >

< j, i, q + 1 > if(q < i− 1)

< j, i >
if(q = i− 1)

Fig. 1. Coloured Petri Net that represents Cholesky’s factorization algorithm.

Place in CPN Domain in CPN
potr1

< i, i >, i = 1 . . . ntrsm2
trsm1

< j, i > j = 2 . . . n, i = 1 . . . j − 1, j > isyrk1
gemm1
gemm2 < j, i >, j = 3 . . . n, i = 1 . . . j − 2, j > i

syrk2 < j, j, i >, j = 2 . . . n ∧ i = 1 . . . j − 1 ∧
j > i

gemm3 < j, i, q >, j = 3 . . . n, i = 2 . . . n−1, q =
1 . . . i− 1 ∧ j > i ∧ i > q

Fig. 2. Domains of the Places for the Coloured Petri Net in Fig.1.

Arcs domains are shown in the table of Fig. 2. The
algorithm is generically defined by the CPN, and the number of
tiles in which the matrix is divided is provided as a parameter
in the domain definition. The high level of expressivity of a
simple model can be remarked.

In contrast, the overhead required to represent CPN do-
mains and function arcs in an executable way is expensive in
terms of high performance computing, and it is impractical
to use it directly. Nevertheless, the CPN developed like this,
meets the definition of well-formed CPNs [6]. This type of
nets is easily transformed into a TPN, which has a simpler
computational implementation and is light to execute.

The unfolding of a CPN is defined in Diaz et.al. [6].
Each PlacePj in a CPN has an associated DomainD(Pj);
thus, its unfolding produces as many Places in the TPN as
the cardinality ofD(Pj) in the colored Place, preserving the
repetitions of the multiset. Hence, each Place in the TPN has
an association with a unique value from the pairs (color, place)
in CPN and only one token can live on it.

Transitions are unfolded by generating as many Transitions
in TPN as the cardinality of the Cartesian Product of all the
elements of its domain in the CPN. The cardinality of the
multiset in each Place must be preserved. Hence, each Tran-
sition in TPN is associated with a unique combination from
the Cartesian Product, preserving repetitions of the multisets
of each input Place. Only guards with true values produce
results. By construction, each unfolded Transition represents
an individual event that will be associated with a single task.

Figure 3 shows four examples of unfoldings from CPN to
TPN, forn = 1, 2, 3, 4 square tiles divisions1. Places are shown
in the same order they have in CPN. Their names are not shown
due to space limitations. The order in which each unfolding
is shown is not random: each unfolding ofn divisions has the
same graphic asn − 1 divisions, adding to the top, the tasks
due to larger number of tiles. In this way, the Transitions in
Fig. 3 at the same horizontal level represent the same task in
all figures, ordered from end to start.

The chart in Fig. 3 shows two important aspects of algo-
rithm parallel execution. First, there is a critical path of tasks
execution derived of data dependency, that can not be exceeded
[8]. Each increment in the number of tiles generates a sequence
of potr, trsm andsyrk tasks that must be done serially.

1A tile division of n representsn× n square blocks of data
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Secondly, in the hypothetical case of having an unlimited
number of parallel processors with the same execution time for
all tasks, the minimum time required for the parallel execution
is a function of the number of tile divisions, and clearly, there
is an upper limit of the number of processors that can run in
parallel.

potr

(a)
n=1

potr

trsm

syrk

potr

(b) n=2

potr

trsm trsm

syrk syrk gemm

potr

trsm

syrk

potr

(c) n = 3

potr

trsm trsm trsm

syrk syrk syrk gemm gemm gemm

potr

trsm trsm

syrk syrk gemm

potr

trsm

syrk

potr

(d) n = 4

Fig. 3. Token Petri Net unfolded from the Coloured Petri Net in Fig.1 using
different numbers of square tiles divisions (n).

op \n 1 2 3 4 5 6 8 10 12 15 20
potr 1 2 3 4 5 6 8 10 12 15 20
syrk 0 1 3 6 10 15 28 45 66 105 190
trsm 0 1 3 6 10 15 28 45 66 105 190
gemm 0 0 1 4 10 20 56 120 220 455 1140
total 1 4 10 20 35 56 120 220 364 680 1540
seq.
tasks 1 4 7 10 13 16 19 22 25 28 31

Fig. 4. Number of each task according the tile division.

Figure 3 shows that, when the number of tile divisions is
small, the idleness of all parallel processors is high, due the
strong data dependency. The table in Fig. 4 shows the number
of algorithm tasks based on the number of tile divisions. The
potr task has a linear growth,syrk and trsm have quadratic
growth, andgemm, cubic growth. As stated above, each stage
of processing introduces a group of three serial tasks, except
for the first one has only one. This implies that, for example,
a tile division of five has 13 sequential tasks over the total of
35.

The parallelism of the algorithm with few tile divisions is
poor. Due the cubic growth of thegemmtask, more divisions
generate more tasks and a better capacity for parallel execution.
By contrast, a tile division of 10 results in a large number of
parallel tasks, and an increment of the overload cost. A tile
division with low number of divisions in a SMP machine with
few cores, will be enough to make an acceptable use of its
computational power, but, in machines with 32 or more cores,
a bigger number of divisions and a complex management tool
of tasks to exploit their capacity will be needed.

In the next section, the parallel execution model is de-
scribed. It was developed to handle the combined complexity
of the algorithm and the SMP architecture, and it will be used
as a basis for the execution.

III. T HE EXECUTION MODEL

The previous section shows how to model the algorithm
with Coloured Petri Nets (CPN). Unfolding the CPN to a
simple Token/Place Petri Net (TPN) transform a compact net
into a bigger but simpler one to execute. This section shows
how to execute a parallel algorithm based on TPN.

The Parallel Execution Model (PEM) is defined as a tuple:

PEM = (P, T, I−, I+,M,Π, χ) (1)

where:

• P is a finite set of PlacesPi, with cardinality
|P | = p, i = 1 . . . p.

• T is a finite set of TransitionsTj, with cardinality
|T | = t , j = 1 . . . t.

• I− and I+ are the negative and positive incidence
matrixes of the TPN, with dimensionp × t (I− and
I+ ∈ N

p×t).

• M , is the Mark Vector for Places,p× 1 (M ∈ N
p).

• Mf , is the Final Mark Vector,p× 1 (Mf ∈ N
p).

• Π is a finite set of ProcessorsΠi, with cardinality
|Π | = π, i = 1 . . . π. Each processorΠi has a boolean
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variablee (Πi.e), which is set as either true or false
to indicate if it is running or if it is idle.

• χ is a Boolean variable that implements a mutual
exclusion mechanism overM that allows eachΠi to
updateM securely.

The initial state is:

• M = M0, the initial mark of the TPN.

• χ = true, the exclusion is free.

• Πi.e = true , i = 1 . . . π, because all processors are
idle.

The PEM is very close to Timed Petri Nets [9]. Both share
the concept that firing a Transition is not instantaneous because
there is a time elapsed between the start and the end of the
firing. The same as in PEM, the firing action represents the
execution of a task, but the difference is that in PEM firing is
not done autonomously once the transition is enabled as it is
in Timed Petri Nets. An idle Processor is responsible to fire
the Transition selected among all the enabled ones.

The number of enabled Transitions can be lower or higher
than the number of Processors. As a result of this, we can
have idle Processors with no Transitions to fire or enabled
Transitions waiting for a free Processor, depending on the
number of enabled Transitions in relation to the number of
idle Processors. In the first case, the execution speedup of the
will be poor and this situation must be avoided. In the second
case, the Processor must select the most appropriate Transition
to fire. To do this, we have adopted the general criteria of
selection based on the priority of the Transitions that are in
the “Critical Path” to finish the algorithm.

The implementation of this execution model needs one
Mutual Exclusion (mutex) mechanism to avoid concurrent
reading and writing operations over vectorM , which is the one
that defines the algorithm state. In this sense, the Processors
act serially when selecting the next Transition to fire, waiting
for the mutex enabled.

The Pseudo-code of the PEM execution algorithm is pre-
sented in Fig. 5. In round-robin format, each logical processor
with the enabled flag set on, searches for a task to execute
based on the Petri Net modelization of the algorithm. To
determine which Transitions are enabled, only simple linear
algebra operations are needed. In effect, if we callI−j andI+j
the j-th column (transition) inI− and I+ respectively, the j-
transition is enabled if the vectorial subtractionM − I−j does
not have any negative value. This is defined by functionh,
which has arityh : Np×t,Np×1 → {0, 1}, with parametersM
andI−, and their result values are:

h(j) =

{
0 if (M − I−j ) has negative/s value/s
1 if (M − I−j ) else

j = 1 . . . t

Computingh for all the columns determines all the enabled
transitions ready to be fired at one point of the execution. By
design, each Place of the unfolded TPN is the input Place of
only one Transition. This guarantees no competition between

1 While main a l g o r i t h m no t f i n i s h e d
2 I f can ho ld t h e mutua l e x c l u s i o n
3 Compute h f u nc t ion
4 S e l e c t one t a s k to e x e c u t e
5 Update M by a b s o r b i n g tokens
6 Free t h e e x c l u s i o n
7 Task e x e c u t i o n
8 I n j e c t tokens in M
9 Else

10 Delay
11 Endif
12 End

Fig. 5. Pseudo-code of the task selection algorithm.

enabled transitions for input tokens, and that all enabled
transitions can be fired simultaneously.

To determine the task to be executed, a dynamic scheduler
was developed. It uses a valuation function that is applied to
the set of enabled Transitions, selecting the transition with
highest valuation,Tk. The valuation function is the key for
the parallel processing performance, because when the set
of enabled Transitions has more than one element, it must
select the one that will enable more Transitions in the future,
namely, it keeps the larger number of parallel tasks enabled.
This scheduler is related to Quark [10], which prioritizes data
locality instead of availability of parallel tasks.

Additionally, there is a mapping between each Transition
and each task to be executed, and also a mapping between
each Place and the data block which is used as parameter in
the task. To execute a task, the Processor determines which
task and which parameters are needed from theTk selected
and then runs it.

Steps 5 and 8 of the pseudo-code algorithm represents the
evolution of the execution. Similar to Timed Petri Nets, tokens
are absorbed and injected at two times. In step 5 the tokens
from the input Places ofTk are absorbed, and in step 8, they
are injected to their output Places. Both steps are made with
simple linear algebra operations:

M ′ = M − I−k in 5 at t0 (2a)

M ′′′ = M ′′ + I+k in 8 at t0 +∆k (2b)

and after step 8, potentially new Transitions become enabled.
M andM ′′ are the markings at timet0 and t0 + ∆k, where
∆k is the elapsed time of theTk task execution. The cycle
is repeated until the end of the algorithm is reached, which
occurs whenM = Mf .

The overhead introduced by the parallel execution is de-
fined by three factors. First, the mutual exclusion mechanism,
which uses few cycles of clock. Second, matrix and vector
operations, which are highly optimized to run in milliseconds
with current processors. Third, the selection policy must be
guided by a balancing among selection load and overall
algorithm performance. In fact, the sum of the time of three
factors is several orders of magnitude smaller than the routine
execution, which means a minimum overhead.
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IV. EXPERIMENTS

A FORTRAN program was developed to read, interpret
and execute the model. OpenMP was used as shared memory
model of execution and tests were run over two machines, the
first with four AMD 6344 processors, which conform a 48
cores machine, and a second, with two Intel Xeon E5-2680
chips. Single precision floating point was used for all tests.

There are two requirements of the PEM that limit the
possible stack of compiler / libraries to be used for coding:
nested parallelism and core affinity. Both requirements are the
basis of the PEM and are features that must be present jointly
in the compiler. This fact left only one possibility for each
machine: gfortran with ACML for the AMD-based machine,
and Ifortran with MKL for the Intel-based one.

The configuration of the parallel hardware may vary in
number of cores and chips, so the implementation of the PEM
must be configurable to adapt to the hardware used. Thus, an
XML-style file that contains the settings of the real machine
in which the program runs is used. It contains the first-and
second-level processor division, the type of physical processors
and the mapping between Places with data and Transitions with
tasks. In the software, this feature acts as an intermediate layer
between hardware and algorithm and make tunning easier.

A. The AMD-based machine

The architecture of the AMD-based is as follows: four dies
with twelve cores each. Each die has two blocks of L3 cache
memory associated to a block of six cores. For floating point
operations, the die has one Fused Multiplication Addition unit
(FMA) shared by two cores. Each FMA unit can perform
concurrently one addition and one multiplication of 256 bits,
improving the processing power of the cores that share it. Since
there is an ACML version that is optimized for these FMA
units, it was used but restricting the number of processors to
the model in the PEM model to 24.

The logical hardware division used in the tests wasn×1
processors, wheren is the number of first level processors,
i.e., the second level of divisions has only one core. This
decision was made based on two factors: the first is that the
research focus is over task synchronization, thus, the higher
the number of processors to synchronize, the better the test
to our objectives. Second, the implementation of ACML for
the routines used, has a poor speedup. In effect, the parallel
implementation that uses the FMA units, when using several
threads (six,eight,etc), does not scale properly for the routines
ssyrk, strsm and spotrf. In consequence, the serial version
of ACML was used, running each routine in one FMA unit.
Nevertheless, the affinity concept remains important, because,
as the FMA unit is shared by two cores, the logical processor
division needs to take two consecutives cores to make exclusive
use of one FMA.

Several test results are shown in Table 6. The body presents
time and flops of various combinations of matrix range,
number of parameters and tile divisions.

The analysis of the results brings some conclusions:

• The low number of data divisions has poor results: it
is the effect of poor parallelism when the number of
tile divisions is fewer than six.

procs 8 16 24
range dvs secs flops secs flops secs flops

12000
8 3.14 183 2.89 199 3.12 185

12 2.91 198 2.21 260 2.38 242
15 4.05 142 4.07 141 4.42 130

24000
8 22.11 208 18.98 243 20.33 227

12 19.28 239 13.49 342 14.98 308
15 19.21 240 12.06 382 13.73 336

30000
8 43.05 209 36.99 243 40.90 220

12 36.02 250 25.11 358 25.74 350
15 35.50 254 23.11 389 23.42 384

Fig. 6. Time in seconds and flops in GFlops from tests with matrixranges
of 12000, 24000 and 36000; 8, 16 and 24 processors, and data divided in 8,
12 and 15 tiles with the AMD-based machine.

• A tile division of 15 generates 680 tasks with 1800
parameters, which is the range of the corresponding
incidence matrix. This results in a heavy overload
for the matrix operations when updating the Marking
VectorM . However, this tile division produces a large
number of parallel tasks. A balance must be achieved
between the number of parallel tasks and data tile
range in order to keep the processing/overload ratio
convenient for throughput.

• The best result is for range of 30000, 16 processors
and 15 tiles, which brings 389 Gflops. Since AMD-
based machine has a theoretical processing peak of
998 Gflops2, it represents a processing utilization that
is close to 40% of its peak. Better yet, if we only
consider the sixteen processors used, the effective
processing ratio increases to 58%. These are very
good values considering they are negatively affected
by cache misses, the serial part of the algorithm and
overload.

• Using the 24-processor configuration has no speedup
improvements versus using the 16-processor one. This
is due to a problem in physical memory configuration
because the bank one is the only one used in this
machine, so the memory channel becomes saturated
when all the 24 processors are running.

B. The Intel-based machine

The Intel-based machine used has two Xeon E5-2680 chips,
each of them with eight cores. Thus, the operating system has
a total of sixteen threads available.

Each of the cores of the Intel processor has one AVX unit
(Advanced Vector Extensions) that uses 256 bits registers. It
can perform addition and multiplication operations simultane-
ously over these registers. This feature determines a theoretical
processing power per core similar to that of the FMA unit
available in the AMD-machine.

In the Intel-based machine, tests were executed using Intel
Composer 2013 suite, which includes the MKL BLAS/LA-
PACK implementation. In Fig. 7, a summary of the most
representative results are shown. As with the AMD-based
machine, the best performance is reached when tile division is
twelve.

The analysis of the results brings some conclusions:

2998 Gflops = 2.6 Ghz x 24 fma units x 2 ops x 8 single precision values
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procs 8x1 16x1
range dvs secs flops secs flops

24000 8 17.08 270 13.25 348
12 14.35 321 9.52 484

48000
8 140.59 262 101.73 342

12 109.24 337 70.99 519

Fig. 7. Time in seconds and flops in GFlops from tests with matrixranges of
24000 and 48000, 8 and 16 processors, and data divided into 8 and 12 tiles,
with the Intel-based machine.

• Similar to the results obtained with the AMD-based
machine, the impact of having more tile divisions
is strong: in all cases, division by 12 tiles increases
performance goes up to 30%.

• Going from 8 to 16 logical processors does not scale
properly due to the effect of memory channel satura-
tion. However, performance goes up to 50%.

• Processing a big matrix with 16 logical processors and
12 tile divisions yields a result of 519 Gflop. Consider-
ing the processing power available with sixteen cores,
the rate of use of the physical processors gets near
75% of the theoretical peak, which evidences a very
good management of cache misses and synchroniza-
tions.

A final test was done by fixing the number of tile divisions
and modifying core divisions. The table in Fig. 8 shows time
and flops for a range of 24000 and 48000, 12 tile divisions
and all the remaining combinations for sixteen cores into two
levels. This test was done on the AMD-based machine, but
the scalability was so poor that the results were useless. This
is the opposite with the Intel-based machine. They show a
similar performance regardless of how the cores are divided.
The best performance is achieved with a division of four
logical processors with four cores each, which brings 616
gflops. Considering that the theoretical peak of the machine
is 691.2 gflops, a near-optimum result was obtained.

procs 1x16 2x8 4x4 8x2
range dvs secs flps secs flps secs flps secs flps
24000 12 11.69 392 10.17 453 8.98 513 8.40 549
48000 12 69.73 529 62.72 588 59.81 616 60.33 611

Fig. 8. Time in seconds and flops in GFlops for tests with matrix ranges 24000
and 48000, using 16 threads with double level division, virtual processors x
internal threads (1x16,2x8,4x4,8x2), and data divided into 12 tiles, with the
Intel-based machine.

Finally, the Fig. 9 shows a timeline for the execution of
one of the tests, with a range of 24000, a division of 12 tiles
and 16 processors. Processor idleness can be observed both
at the initial and final stages of the execution, as mentioned
above. Also, there is no idle time while processing and the
low impact of the overload is evident from the absence of idle
areas around the tasks.

V. CONCLUSIONS

The research has several points to highlight:

• It has been shown that Petri Net not only has good
properties to model concurrent systems, but that it is
also a good basis for a parallel execution model. It is

not easy to manage the parallel execution of hundreds
or even thousands of tasks, but we found how to do
it with this tool.

• The execution tool developed can be adopted to any
SMP machine and optimized libraries thanks to the
combination of TPN with the virtual processor defi-
nition, two levels of hardware division and processor
affinity.

• The parallel execution environment developed was
able to reach a real utilization of the processors
very close to its theoretical limit. Asynchronicity and
affinity were the key to this achievement.

• Modeling an algorithm with CPN allows analyzing its
parallel capabilities and brings information about its
possibilities and limitations in the search for better
parallel performance. In particular, we conclude that
applying a tiled division of data to the Cholesky
algorithm does not result in a good performance if
tile division is less than six.

• The XML-style of the model’s parameter file allows
not only adapting it to different machines, but it also
leaves open the capability to switch the algorithm by
only changing the incidence matrix and task mapping.
Thus, any parallel algorithm designed following a well
formed CPN can be executed with a high level of
performance by only changing the incidence matrix
and tuning its virtual processors.

Future work will focus on researching the advantages and
obstacles when using the technique developed with various
algorithms and also using heterogeneous systems, such as
hybrid CPU / GPU systems. An implementation in a distributed
memory architecture will also be studied.
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9
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13
tr11 ge09 ge09 ge09
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15
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16
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1

Fig. 9. Execution timeline, divided in two sections, Intel-based machine, 24000 range, 12 tiles, 16 processors
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Abstract

Many token-based, distributed mutual exclusion
algorithms can be generalized by a single algorithm.
The algorithm’s performance is dependent upon the
logical topology imposed on the nodes and the policy
used to forward requests.

This paper extends the generalized algorithm to
support prioritized, real-time requests in a generalized
fashion and presents models that can be used to analyze
the performance and verify the correctness of the gen-
eralized algorithm. Both safety and liveness properties
are verified. Model checking is also used to analyze
performance. Using the best topology, the generalized
algorithm attains the same worst-case performance as
a centralized algorithm; i.e., three messages per crit-
ical section. In the average case, the generalized al-
gorithm performs better than a centralized one when
the star topology is used. Finally, requests by nodes at
each priority level are processed in order, resulting in
bounded, predictable worst-case response times.

Keywords: distributed algorithm, model checking,
mutual exclusion, real-time, token-based

1 Introduction

Many distributed mutual exclusion algorithms
have been proposed [1, 4, 6, 8, 12, 13, 16, 17]. These al-
gorithms can be classified into two groups [13]. The al-
gorithms in the first group are called permission-based
[1, 4, 6]. A node enters its critical section only af-
ter receiving permission from a quorum of nodes. The
algorithms in the second group are called token-based
[8, 12, 16, 17]. The possession of a system-wide unique
token gives a node the right to enter its critical section.

Lamport proposed one of the first distributed mu-
tual exclusion algorithms [4]. Lamport’s algorithm is
permission-based and requires 3 ∗ (N − 1) messages to
provide mutual exclusion. Another permission-based
algorithm, proposed by Ricart and Agrawala, reduces
the number of required messages to 2 ∗ (N − 1) mes-
sages per critical section entry [14]. Maekawa proposed

a permission-based algorithm in which the number of
messages required is O(

√
N) [6].

Ricart and Agrawala proposed a token-based al-
gorithm which is essentially the same as Suzuki and
Kasami’s algorithm [16]. The maximum number of
messages required by these algorithms is N because
request messages are sent to all other nodes, and the
token is passed in a single message.

By imposing a tree-based logical structure on the
nodes, another class of token-based algorithms has
been obtained. All of the nodes, except for the root
node, are on a path to the root node (a sink node) in
the logical structure. The logical structure determines
the path along which a request message travels. There
are two different types of logical structures: dynamic
and static.

An algorithm, based on a dynamic logical struc-
ture, was proposed by Trehel and Naimi [17]. The ba-
sic notion underlying this algorithm is path reversal.
Path reversal at each node is performed as a request
from node x travels along the path from node x to
the root node. As the request travels, node x becomes
the new parent of each node on the path, except for
node x. Thus, node x becomes the new root node. A
complete analysis of path reversal has been given by
Ginat [3]. The average number of messages required
per critical section is O(log(N)).

If a static logical structure is used, the basic no-
tion underlying the algorithm is what we call edge re-
versal [11]. Edge reversal at each node is performed as
the request from node x travels along the path from
node x to the root node. At each node, the direction
of each edge on the path is changed to point towards
node x; that is, to the neighboring node who sent the
request on behalf of node x. However, the shape of the
logical structure never changes. Suprisingly, this small
change results in algorithms which have a small fixed
upper bound on the number of messages required per
critical section, and the upper bound only depends
on the logical structure. Algorithms based on edge-
reversal were proposed by Neilsen and Mizuno [11] and
Raymond [12]. Raymond’s algorithm assumes that the
static logical structure is an unrooted tree. If the ra-
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diating star topology is used, the average number of
messages required is O(logN). However, this is not
optimal, using a simple star topology with one root
node only requires 4 messages per critical section, two
messages to pass the request, and two for the token.

Neilsen and Mizuno introduced a token-based al-
gorithm that achieves optimal performance with re-
spect to worst-case message complexity [11]; i.e., 3
messages per critical section. They also proposed an-
other algorithm that generalizes all existing token-
based algorithms that impose a logical structure on the
nodes [9]. Both algorithms assume a fully-connected
physical network and a directed acyclic graph (dag)
structured logical network. A node or a token does
not need to maintain a queue of outstanding requests
for mutual exclusion. Instead, the queue is maintained
implicitly in a distributed manner and may be deduced
by observing the states of the nodes. The algorithms
require very simple data structures; each node main-
tains a few simple variables, and the token carries no
(or a very simple) data structure. Furthermore, the
algorithms can adapt to changes in the network.

More recently, the notion of prioritized mutual
exclusion algorithms have been proposed [5, 7, 10, 15].
Mueller’s algorithm extends Trehel and Naimi’s algo-
rithm by incorporating a priority queue at each node.
Our generalized algorithm can also be easily adapted
to operate much like a priority-based scheduler which
schedules tasks based on their priority, and sched-
ules tasks at the same priority level using round robin
scheduling [10]. The basic single-priority, generalized
algorithm can be used to provide round robin schedul-
ing. The other algorithms include dynamic priority
adjustment to prevent starvation and ensure fairness,
at the expense of losing real-time guarantees [5, 15].

To support prioritized, hard real-time requests,
the generalized algorithm is easily extended to pass the
token between different priority levels. Not only can
the topology be generalized, but the algorithms used
to forward requests and preserve real-time behaviour
can be generalized as shown in this paper.

Section 2 introduces the generalized algorithm.
Section 3 presents models that can be used to verify
correctness with respect to guaranteed mutual exclu-
sion, deadlock freedom, and real-time properties for
the highest priority tasks. Section 4 analyzes the per-
formance of the algorithm using these models. Finally,
Section 5 summarizes the results.

2 Generalized Algorithm

We assume that the system consists of N nodes,
which are uniquely numbered from 0 to N − 1. At
any time, each node can have at most one outstanding
request to enter its critical section. Physically, the

nodes are fully connected by a reliable network, but
logically, the nodes at each priority level are organized
in a directed acyclic graph (dag). Nodes in different
levels are assigned different priorities.

Two types of messages, called REQUEST and
TOKEN, are exchanged among nodes. When a node
wants to obtain the token to enter its critical section,
it sends a REQUEST message. A TOKEN message
represents the token; when a node receives a TOKEN
message, it may enter its critical section.

Each node maintains three simple variables: in-
teger variables LAST and NEXT, and a boolean vari-
able HOLDING or SINK. The logical directed acyclic
graph (dag) structure indicates the path along which
a REQUEST message travels and is imposed by the
LAST variables in the nodes. When a node initiates
or receives a REQUEST message, the node forwards
the request to the neighboring node pointed at by its
LAST variable (unless the node is a sink, in which case
its LAST variable is -1).

The NEXT variable indicates the node which will
be granted mutual exclusion after this node. If the
node is currently the last node to be granted mutual
exclusion, its NEXT variable is -1. Thus, by following
the NEXT variables from the token holder to the node
whose NEXT variable is -1, the implicit waiting queue
of pending requests can be deduced. When a node
leaves its critical section, it forwards the token to the
node at the front of the waiting queue and also per-
forms a dequeue operation. That is, it sends a TOKEN
message to the node indicated by its NEXT variable
and sets NEXT to -1 (this corresponds to the dequeue
operation), unless NEXT is already -1. If NEXT is
-1, the node continues to hold the token if it is at the
highest priority level by setting HOLDING to true,
otherwise the token is returned to the highest priority
level as described below.

Semantically, a sink node in the system is (1) the
last node in the implicit waiting queue (i.e., its NEXT
variable is -1), and (2) the last node on the path along
which a request travels within a given priority level
(i.e., its LAST variable is -1). When a sink node re-
ceives a REQUEST message, it enqueues the request
into the implicit waiting queue and becomes a non-
sink. The node initiating the request becomes the new
sink since it is now the last node in the queue. Each
edge in the path must change direction to point in the
direction of the new sink. This is done by the nodes
along the path in a distributed manner as follows.

When a node initiates a new REQUEST message,
it forwards the message to its neighbor indicated by
its LAST variable and sets its LAST variable to -1 to
become a new sink. It remains a sink until it receives
a subsequent request.

When an intermediate (non-sink) node receives
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a REQUEST message from a neighboring node X,
it passes the message to the neighboring node indi-
cated by its LAST variable. Then, the node sets its
LAST variable to any node on the path traveled by
the REQUEST message. If a node receives a subse-
quent request, it forwards the request in the direction
of the new sink. In Trehel and Naimi’s algorithm, the
LAST variable is set to the node that initiated the
request; this is called path reversal. In Neilsen and
Mizuno’s algorithm, the LAST variable is set to point
to the neighboring node from which it received the
REQUEST message; this is called edge reversal.

When a sink node receives a REQUEST message,
it sets its NEXT variable to the identifier of the node
initiating the request. This corresponds to an enqueue
operation. The node also sets its LAST variable to any
node on the path traveled by the REQUEST message.
Note that if a sink node holds the token, but is not
in its critical section (indicated by a boolean variable
HOLDING) when it receives a request, it immediately
forwards the token to the node initiating the request.

const
I = node identifier

var
HOLDING : boolean;
LAST, NEXT : integer;

proc ProcessWork;
begin

if (not HOLDING) then
begin

send REQUEST(I) to LAST;
LAST := -1;
wait until a TOKEN message is received;

end;
HOLDING := false;

critical section (CS)

if (NEXT 6= -1) then
begin

send TOKEN message to NEXT;
NEXT := -1;

end;
else HOLDING := true;

end;

proc ProcessRequest; (receive REQUEST(X1, · · · , Xk))
begin

if (LAST = -1) then
begin

if HOLDING then
begin

send TOKEN message to X1;
HOLDING := false;

end;
else NEXT := X1;

end;
else send REQUEST(X1, X2, · · · , Xk, I)

to LAST;
LAST := Xi for some 1 ≤ i ≤ k;

end;

Figure 1. Generalized algorithm

Because of message delay, there may be several
sink nodes in the system while requests are in tran-
sit. The system is initialized so that only one node
at the highest priority level possesses the token. Ini-
tially, there is only one sink node at each priority level,
and its LAST variable is initialized to -1. In all other
nodes, LAST is set to point to the neighbor which is on
a path to a sink node. When a request reaches a sink
node at a lower priority level, the request is forwarded
as a proxy request to a node acting as the lower level’s
proxy at the highest priority level. Proxy requests are

forwarded just like ordinary requests, but no edges or
paths are reversed as the proxy requests travel to a
sink node (or some node with a pending request).

The complete generalized algorithm for a single
priority level is shown in Figure 1. There are two
procedures at each high priority node: ProcessWork
and ProcessRequest. Procedure ProcessWork is ex-
ecuted when a high priority node I requests for en-
try into its critical section, and procedure Process-
Request is executed when a high priority node I re-
ceives a request from some other high priority node.
In the algorithm, REQUEST messages are of form
REQUEST(X1, X2, · · · , Xk) where X1, X2, · · · , Xk de-
notes the path on which the request traveled and X1

denotes the node where the request originated. Each
node executes procedures ProcessWork and Process-
Request in local mutual exclusion. The only exception
is that a node does not have to execute in local mu-
tual exclusion while waiting for a TOKEN message to
arrive or while in its critical section.

Figure 2. Two priority levels

The prioritized algorithm for low priorty nodes is
similar, except that the boolean variable HOLDING
is replaced with SINK as shown in Figure 2. Initially,
a node in the highest priority level holds the token,
and HOLDING for that node is set to true. Like-
wise, the root node at each lower priorty level has its
SINK variable set to true. When a request from a
low priority node reaches the sink node, a PROXY
REQUEST is sent up to a node at the highest priority
level, called the proxy, and eventually the PROXY RE-
QUEST reaches a node that holds the token or will re-
ceive the token in the future. To further generalize the
algorithm, requests or proxy requests from lower pri-
ority nodes only need to be passed to the point where
they reach a node that is currently requesting the to-
ken. The key point is that all low priority requests
are eventually enqueued in the token. Finally, if a
proxy request reaches the highest priority level, then
it is forwarded just like a regular request, except that
the edges are not reversed and in the generalized case
the request only needs to reach a node that is cur-
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rently requesting the token. Note that higher prior-
ity nodes never request the token from lower priority
nodes so there is no need to dynamically adjust the
edges. When a node that is holding the token passes
the token to a lower priority node, a PROXY TOKEN
message is used to pass the token, and the token is
returned back to the high priority node who sent the
token using a PROXY RETURN message.

3 Verification Model

In this section we provide models that can be used
to verify the correctness of the generalized algorithm
with respect to guaranteed mutual exclusion, dead-
lock freedom, and starvation freedom using UPPAAL
[2]. The model for a single priority level consists of
two templates, ProcessWork and ProcessRequest,
corresponding to the procedures shown above in Fig-
ure 1. Channels are used to model the exchange of
request messages and the token. Global arrays are
used to model the state at each node using the arrays
Holding, Sink, Next, and Last as defined above. Ini-
tially, one node will hold the token, so Holding[i] =

true at that node. Also, the topology is defined by
the initial values assigned to Last.

The first UPPAAL template, ProcessWork, is
shown below in Figure 3. It models the work per-
formed at each node. Initially, all nodes are in the
Idle state. The template is parameterized using id

to identify each node where id ∈ {0, 1, · · · , N − 1}.
At node 0, id = 0, etc. Also, Holding[id] is set to
true at the node currently holding, but not using, the
token. This node can enter its critical section imme-
diately after setting Holding[id] to false to indicate
that the token is in use.

 

Figure 3. ProcessWork template

All other nodes must send a request message to the
node identified by LAST[id], and set LAST[id] = -1.
Upon receipt of the token via a Token message, the
requesting node may enter its critical section. A lo-
cal clock, x, is used to prevent a node from remaining
in it’s critical section forever. The model limits crit-
ical sections to be at most 10 time units through the
location invariant x ≤ 10.

To process requests, the ProcessRequest tem-
plate is used as shown in Figure 4. When a request
message is received, at node id from node p, using
Request[p][id][s]?, the source node requesting to
enter its critical section is node s.

If the node receiving the request is a sink node,
Last[id] == -1, the request can be satisfied immedi-
ately if the node receiving the request is holding, but
not using, the token; that is, if Holding[id] == true.
In this case, the Token message can be sent immedi-
ately. On the other hand, if the token is currently in
use, then the request is simply enqueued by setting
Next[id] = t which is a local meta variable assigned
to s when the request is received.

If the node receiving the request is not a sink
node, Last[id]≥0, then the request is forwarded on
to the node indicated by Last[id].

In all cases, Last[id] is set to the identifier of
the neighboring node which sent the request; that is,
edge reversal is used in Figures 3 and 4. The general-
ized algorithm is slightly more complex because each
node can set it’s Last[id] value to be any node visited
from the requesting node to the sink. Consequently, a
list or queue of visited node numbers must be carried
with the Request message. This is modeled with a
set of global queues that get updated as the Request

travels. One queue is assigned to each node and used
to enqueue the nodes on the path from the given re-
questing node to a sink.

 

Figure 4. ProcessRequest template

The nodes can be initialized to impose any logical
topology. For example, to impose the star topology,
with node 0 as the root, simply set Holding[i] = false
and Last[i] = 0 for all i 6= 0, and Holding[0] = true
and Last[0] = −1.

The generalized ProcessWork template is
shown in Figure 5. By making Init a committed state,
all nodes will enter the Ready state before any nodes
start requesting. The only other change required is to
add a function, initRequest(id), that is used to ini-
tialize the queue passed with the Request message to
contain a single element id.
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Figure 5. Generalized ProcessWork

The generalized ProcessRequest template is shown
in Figure 6. As the Request message travels from a
requesting node to a sink node, the identifier of each
node receiving the request must be enqueued in the
request message. Since UPPAAL messages have zero
capacity, this is modeled using a set of global queues
and a function call enQueue(t,id) to enqueue id on
the queue for the requesting node t. Also, each node
on the path sets Last[id] to be some element in the
queue.

 

Figure 6. Generalized ProcessRequest

The function, someQueue(), relies on a random num-
ber generator, modeled by the RandomValue template
shown below, to randomly select a random element
from the queue carried with the request. Finally, to
support different priority levels, we can add the notion
of a proxy node at the highest priority level, and use
algorithms similar to the above to request the token.

 

Figure 7. RandomValue

Due to space constraints, we only include the pri-
oritized models for edge reversal (extending the tem-
plates shown in Figures 3 and 4), but the generalized
case is similar.

Figure 8. Prioritized ProcessWork

When no requests are pending at the highest pri-
ority level, and a request is pending at some lower pri-
ority level, the token is passed down to allow a node
at a lower priority level to obtain the token using a
ProxyToken message. The first pending request at
each lower priority level is enqueued in priority or-
der in the token. Of course, this may lead to starva-
tion; if there is always a pending request at the highest
priority level, then lower priority requests will not be
satisfied.

Figure 9. Prioritized ProcessWorkLow

For the prioritized case, four templates are used,
nodes at the highest priority level use ProcessWork
and ProcessRequest, and lower priority nodes use
ProcessWorkLow and ProcessRequestLow, as
shown in Figures 8-11.

4 Performance Analysis

To verify the correctness of the algorithm we
have developed analytical proofs of correctness. We
have also verified both safety and liveness proper-
ties using UPPAAL [2] for models such as those
shown in Figure 2. To initialize the system for
that model, abbreviate names by setting P(i) =

ProcessWork(i) and R(i) = ProcessRequest(i)

for i=0,1,2; P(i) = ProcessWorkLow(i) and R(i)

= ProcessRequestLow(i) for i=3,4. It is easy to ver-
ify that the algorithm satisfies mutual exclusion. The
property A[](forall (i:node) forall (j:node)
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((i==j) or not (P(i).CS and P(j).CS))) is sat-
isfied, where node is defined as a new type int[0,4];
that is, only one process can be in its critical section
(state CS) at any time. To verify liveness properties,
we first limit the amount of time each process can
remain in its critical section; otherwise, one node
could stay in its critical section forever. The CS state
has a location invariant of x ≤ 10 for a real-valued
clock x which is initialized to 0 upon entry to the
critical section state. The choice of ten time units is
arbitrary. To verify that a node that wants to enter
its critical section can enter, we verify the property
P(i).Requesting --> P(i).CS; that is, requesting
the critical section “leads to” entry. Formally, a pro-
cess, at the highest priority level, in the Requesting

state eventually reaches the CS state.

Figure 10. Prioritized ProcessRequest

To verify real-time behaviour, real-valued clocks
can be used. For the example shown in Figure 2, each
higher priority node only needs to wait at most 30
time units before entering its critical section. This
can be verified using the models in Figures 8-11 us-
ing the query E<>(P(1).Waiting and P(1).x >= 30)
which is satisfied, and the query E<>(P(1).Waiting
and P(1).x > 30) which is not. Note that clock x is
reset to 0 when entering the Waiting state. This case
occurs when a low priority node is in its critical sec-
tion when all three higher priority nodes request to
enter. In general, starvation freedom is not satisfied
by lower priority processes, so no such bound exists
for low priority nodes unless there is sufficient delay
between subsequent requests. Using simple worst-case
response time analyses, it is easy to show that the
worst-case response time before a given node is allowed
to enter its critical section is found to be the worst-case
blocking time caused by a lower priority node being in
its critical section, followed by the maximum possible
interference that results from all equal or higher prior-
ity nodes requesting at the same time. The models can
be modified to include a minimum delay between sub-
sequent requests. The results match those found using
analytical models and simple response time analysis.

Figure 11. Prioritized ProcessRequestLow

The performance of the algorithm depends on the
topology of the logical structure. The best topology
with respect to message complexity is the star topol-
ogy, with one node in the center and all other nodes
as leaf nodes. For the analysis, we define the diameter
D of a logical structure to be the length of the longest
path in the structure. As the logical structure evolves,
the value of D may also change.

With a single priority level, the upper bound is
equal to (D+1) messages per critical section entry: D
messages for the request to travel to the sink node and
one message for the token to be sent back to the re-
questing node. Thus, using the straight line topology,
the upper bound is N , the number of nodes in the sys-
tem. For the best topology, a star, the upper bound is
3, which is the same as a centralized mutual exclusion
algorithm. To verify this upper bound, counters can
be used, as shown above. Once a request is satisfied,
the counter, count[id], is set back to zero. The model
can be verified to determine the maximum number of
messages required; e.g., E<>(count[2]==3) – on some
path, eventually, does the count reach 3. For the star
topology with edge reversal, each leaf node can require
up to 3 messages per critical section; thus, the prop-
erty E<>(count[2]==3) is satisfied if node 2 is a leaf
node, and the property E<>(count[2]==4) is never
satisfied. Likewise, the central node requires at most
two messages per critical section, and lower priority
node 3 requires at most 5 messages. Not suprisingly,
for the worst topology – a straight line – the worst-
case for path reversal and the generalized algorithm is
N messages, N − 1 REQUEST messages and one TOKEN

message.
If there is more than one priority level, then the

number of messages required at the highest priority
level is only dependent on the number of nodes in the
highest level with the same analysis as above. For
lower priority messages, after the request reaches a
sink node, by traversing at most the diameter of the
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topology used for the given priority level, a proxy re-
quest may need to be forwarded up to the highest pri-
ority level, and to a sink node – again, at most the di-
ameter of the nodes at the highest priority level. The
token is passed to the lower priority node with a single
message, and returned with a single message. Thus,
the worst-case message complexity is DH + DL + 2
for low priority requests, where DH is the diameter
of high priority nodes, and DL is the diameter of low
priority nodes. If the low priority level consists of a
single node, then DL = 0. For the star topology, and
the proxy node set as the root, at most 3 messages
are required per critical section for both low and high
priority nodes.

5 Summary

This paper presented a generalized, prioritized,
token-based algorithm for distributed mutual exclu-
sion. In the generalized algorithm, requests from lower
priority nodes can be processed in different ways – ei-
ther by passing each low priority request up to a sink
at the highest priority level or by only passing low pri-
ority requests up to some other requesting node.

The algorithm imposes very little storage over-
head on each node and in each message. Furthermore,
the algorithm generalizes several existing token-based
algorithms and can be extended for prioritized, real-
time systems. Using the best topology and edge re-
versal, the algorithm attains comparable performance
to a centralized mutual exclusion algorithm; that is,
three messages per critical section entry. In the aver-
age case, the algorithm attains the best performance
of any known algorithm. Real-time performance can
be determined using verification of the models and an-
alytically using response time analysis.
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Abstract - To precisely forecast the load in the power system, 

numerous training data have to be collected from sensors. As 

time goes by, the continuously increasing data cause more 

and more storage and bandwidth requirements. In this article, 

we present a cost-aware short-term load forecasting method 

which uses zonal prediction and multi-resolution data 

compression to reduce data size without significantly 

influence the forecasting accuracy. The user can collect just 

partial data from sensors for forecasting under a predefined 

tolerable prediction error, such that the system is robust 

subject to the precision degradation due to storage or 

bandwidth limitation. The experimental results demonstrate 

that 92.72% bandwidth can be saved with the prediction 

errors slightly increasing from 1.08% to 1.64%. Moreover, 

we also propose a similar-hour selection approach which 

helps the neural network to predict the next hour load. By 

integrating the proposed zonal prediction, similar-hour 

selection, and three-layer neural network together, the 

simulation results show that the prediction errors can be 

reduced to 0.95% ~ 1.18%. 

Keywords: Power system analysis computing; smart grid; 

prediction methods; data compression; neural networks  

 

1 Introduction 

The purpose of short-term load forecasting is to predict 

electricity loads in a short time interval, ranging from 

minutes to several days. It is an essential issue in the power 

system safety, management, and electric transportation 

planning. It is also a challenge to predict short-term loads 

accurately. The load variation is dependent not only on the 

load at the previous hour, but also on the load at the same 

hour on the previous day, the load at the same time in the 

previous week, or other similar days. The electricity load at a 

given time period is also affected by weather conditions, 

seasonal effects, and some anomalous events. There have 

been many methods used in load forecasting, such as 

multiplicative autoregressive models, dynamic linear or 

nonlinear models, autoregressive models, Kalman filtering, 

optimization techniques, and nonparametric regression. The 

most popular method is regression [1], which finds the 

relationship between variables by given data. In [2], a 

regression based daily peak load forecasting method with a 

transformation technique was presented. Recently, it has 

been discovered that the relationship between loads and 

related factors is distinctly non-linear, so regression methods 

are not satisfactory for load forecasting problems. Therefore, 

several methods based on Artificial Intelligence techniques 

such as fuzzy theory [3], expert systems [4], and neural 

networks [5]-[7][10]-[15] on load forecasting have been 

proposed. Among various methods on load forecasting, 

Artificial Neural Network (ANN) has received much 

attention due to its ability to learn complex and nonlinear 

relations. Most ANN methods for load forecasting adopt back 

propagation algorithms [5]: The desire outputs are 

considered as a part of inputs and the training process will 

adjust weights and bias in the network to match the real 

targets. The ANN approach in [6] was used to get the 

relationship between various load, temperature, and dew 

point values. Lately, methods based on similarity also get 

much attention.  

Similar day method in [7] uses the information of the days 

which have similar weather condition including wind-chill 

temperature [8] humidex [9], and weekday index, to the 

forecasted day to estimate the load curve. The selected day is 

required to have the same weekday index and similar 

weather to that of tomorrow. Sometimes the wind-chill 

temperature is used in spring, fall, and winter, and the 

humidex measurement is only used in summer. Another 

similar day method is presented in [10]. The similar day 

selection is based on history load in the same season using 

Euclidean norm with weighted factors. These methods can 

deal not only with the nonlinear part of load curve, but also 

with weekends and anomalous events.  

The methods we mentioned above focus on the forecasting 

model, but few of them have discussed the data used for load 

forecasting. Load forecasting usually covers an area with 

several zones. Different weather conditions and life styles in 

the area both significantly influence the electricity load 

demand. Theoretically, in order to increase the accuracy of 

forecasting results, more source data should be collected 

from sensors. However, continuously increasing population 

leads to rapid growth of data size. Hence how to store and 

transmit these big data has become an important issue. To 

reduce storage and bandwidth requirements without 

significantly reducing forecasting accuracy, we propose a 

cost-aware short-term load forecasting framework in this 
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article. The proposed framework consists of zonal prediction, 

multi-resolution data compression, similar-hour selection, 

and neural networks. We divide an area to several zones. In 

each zone, a similar-hour neural network is applied to 

forecast the load. Then the forecasting results from all zones 

are aggregated to get the final result. Besides, the proposed 

multi-resolution data compression is applied to reduce the 

data size if a prediction error bound is assigned. 

The idea of zonal prediction is inspired from [16], where the 

authors presented an optimal partition technique that 

performs prediction in each zone individually and then sum 

up predicted values as the result of the entire area. The main 

advantage of zonal prediction is reducing bandwidth 

requirements because the server collects only zonal 

forecasting results instead of all source data of sensors. 

Another reason to use zonal prediction is because each zone 

has its own climate and habits of load usage. If we use a 

universal model with a single load and weather information 

to predict the load of the whole area, it may ignore the 

diversity between regions in the area and increase the error 

of prediction. Besides, the load of the entire area is 

influenced by load variations of each zone. It is hard to 

observe the load trend or regularity of the entire area because 

of the complex interaction between influential factors of 

different zones. Compared with the load summation of all 

zones, it is easier to forecast the load of an individual zone 

due to fewer influential factors, so the aggregated zonal 

prediction is more precise than the entire area prediction.  

Similar-hour selection is to find out the time that has the 

most similar load to the requested hour. We use hours 

instead of days because, in our experience, it is more likely to 

precisely forecast the load if more detailed information can 

be provided. An accurate estimated similar hour can increase 

the accuracy of ANN output. The experimental results show 

that each step of the proposed method can effectively reduce 

prediction error. Note that instead of focusing on the ANN 

structure, we mainly focus on the inputs fed into the neural 

networks, so different ANN structures can apply the 

proposed method to improve the estimation accuracy.  

To further reduce transmission and storage overhead of 

source data, the idea of multi-resolution data compression is 

proposed. Here “multi-resolution” means the compression 

rate is adjustable. This idea is inspired by the observation 

that some queries may not need exact forecasting results. For 

example, a user wants to know if the predicted load is in a 

range. In this situation, it is not necessary to collect full-

resolution data from sensors. Thus we apply EZW algorithm 

on source data, and build up the Rate-Distortion relationship 

to estimate the relationship between prediction errors and 

compressed sizes. By applying EZW algorithm, the 

bandwidth and storage requirements can be significantly 

reduced with slightly increasing of errors. The experimental 

results demonstrate that 92.5% bandwidth can be saved with 

the prediction errors increasing from 1.08% to 1.6%. The 

system can save even more required bandwidth if higher 

prediction errors are tolerable. Thus the proposed method is 

suitable for low bandwidth environments or unstable 

networks, such as wireless sensor networks. 

The rest of the article is organized as follows. The four stages 

of the proposed cost-aware short-term load forecasting 

method are presented in Section 2.1 to 2.4. In Section 3, we 

use experiments to demonstrate the performance of each 

stage of the proposed method. The conclusions and the future 

works are drawn in Section 4.  

2 Cost-Aware Short-Term Load 

Forecasting 

A zone-based forecasting method using similar-hour 

approach is developed to predict the electricity load at next 

hour. As shown in Fig. 1, we divide the forecasted area into 

several zones and perform compression and prediction in 

each zone in order to reduce the amount of data and improve 

the prediction accuracy of zonal loads. Inside each zone, we 

first use historical data (include historical weather and loads) 

and the weather forecast of the forecasted time to find the 

similar hour of the forecasted time in the history. Next, we 

send the data of selected similar hour and some other load 

influential factors to a three-layer ANN. The output of the 

neural network is the zonal forecasting load result. Then we 

sum up the prediction values of each zone as the forecasting 

load of the whole area.  

In the following sub-sections, the proposed zonal prediction 

and multi-resolution data compression are described in 

Section 2.1 and 2.2, respectively. Then the similar hour 

selection is discussed in Section 2.3. Finally, in Section 2.4 

the training and forecasting process of our three-layer neural 

network is presented. 

 
Fig. 1. Overview of the proposed forecasting method. 
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2.1 Zonal Prediction 

Load forecasting usually covers a range of area with several 

zones. Each zone has its own climate and habits of load 

usage. TABLE I shows the load and temperature data of 

eight zones of New England in 2008 [17]. It can be seen that 

the electricity load and temperature vary in the entire area. 

Different weather conditions and life styles both significantly 

influence the load demand. 

TABLE I.  LOAD AND TEMPERATURE OF EIGHT ZONES OF NEW 

ENGLAND IN 2008 

Zones Temperature (F) Load (MW) 

Max Min Average Peak 

ME 88 -4 1321 1724 

NH 97 -11 1323 2309 

VT 92 -10 687 1040 

CT 98 -2 3705 6962 

RI 97 8 954 1835 

SEMASS 97 5 1738 3284 

WCMASS 94 0 2072 3635 

NEMASSBOST 94 7 2988 5302 

Range 88~97 -11~8 687~3705 1040~6962 

If the forecasting result simply applies the mean of 

temperature and load in the entire area for prediction, it may 

ignore the diversity between zones in the area and increase 

the error of prediction. Therefore, we divide the entire area 

into several zones and use zonal information for prediction. 

Then these forecasted loads are aggregated (i.e., summed up) 

as the final result of the entire area. Let p be the “precise 

forecast” probability of a zone. Then we use the following 

equation to describe the probability that at least i of N zones 

are precisely forecasted. Here “precise forecast” is defined as 

the event that forecasting error is small enough. 
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From (1), it can be seen that as long as the forecasting error 

of each zone is small enough, there is high probability that 

most zones can be precisely forecasted. Thus the aggregated 

result will be accurate as well. For example, if p = 95% and 

N = 8, the probability that at least 6 zones are precisely 

forecasted is over 99%, i.e., it is very likely that the load of 

the requested area can be also precisely forecasted. 

2.2 Multi-resolution Data Compression 

Each load forecasting method requires historical data for 

prediction. As time goes by, continuously increasing 

historical data will occupy a lot of storage. Thus data 

compression is necessary to reduce storage requirements in a 

large system. However, after decompression from highly 

compressed data, recovered data will cause resolution 

degradation, which reduces the forecasting accuracy. It is 

difficult to balance between the compression rate and 

forecasting accuracy. For this reason, we apply multi-

resolution data compression, so that the user can decide the 

compression rate according to requirements. Another 

advantage of multi-resolution data compression is reduction 

of transmission requirements since some queries do not 

request exact results. For example, a user wants to know if 

the predicted load is in a certain range. In this situation, it is 

not necessary to collect full-resolution data from sensors. To 

reduce transmission rate and save storage, we apply the 

Embedded Zerotree Wavelet algorithm (EZW) [18] on source 

data. The main advantages of EZW algorithm are simple, 

effective, and arbitrary coding rate. Thus it is very suitable 

for low-power sensing or computing devices. Fig. 2 shows 

the R-D (Rate vs. Distortion) relationship of source data of 

different zones in New England. Rate means the compressed 

size, the ratio of compressed data size and source data size. 

Distortion represents the MSE (Mean Squared Error) 

between source data and compressed data, formulated as 

follows, 
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In (2), Ld,t is the load at the forecasting hour t on day d, and 

Lc
d,i,j is the compressed load that represents the source (i.e., 

sensed) loads from Ld,i to Ld,j. It can be seen that all curves in 

Fig. 2 are smooth and have similar downward trends, so the 

server can build up the R-D relationship in the training 

procedure. When a tolerable MSE is given, the required rate 

can be calculated according to the requested distortion. Then 

each zone collects source data according to the required rate 

to save transmission bandwidth. Besides, when a sensing 

device is running out of the storage, the EZW algorithm also 

helps reducing storage requirements by downgrading the 

resolution level of source data. In the next section, we will 

show the relationship between the prediction error and 

compressed size, so that the server can directly calculate the 

required rate from a tolerable prediction error assigned by 

the user. 

 
Fig. 2. R-D relationship of the EZW algorithm in different zones of New 

England. 

2.3 Similar Hour Selection 

Historical loads similar to the forecasted time are usually 

used as inputs for neural networks in load forecasting. The 

question is how to find the most suitable “similar historical 

load.” To solve this problem, some previous researches such 
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as [7] and [10] proposed similar day approaches, where the 

load curve is forecasted using information of the days with 

similar weather conditions of the forecasted day. Instead of 

similar day approaches, we propose the similar hour method 

using a similar hour in history data to enhance the accuracy 

of prediction as mentioned before. The similar hour is 

extracted based on the difference of temperature, dew point 

temperature, previous hour load, and load trend in historical 

load.  

Our similar hour selection is inspired by two observations, 

illustrated by Fig. 3(a) and Fig. 3(b), respectively. In Fig. 

3(a), suppose the forecasting hour is the forth hour, denoted 

as the red vertical line, and the actual load is represented as 

the solid curve. We use the actual load of the forecasting 

hour to exhaustively search for the most similar load in the 

same hour from historical data. The best result and its 

surrounding loads are shown by the dot curve. The 

exhaustive search is to find the hour in history which has the 

minimal load difference to the actual load, so the result can 

be treated as “best match.” In addition to the load of current 

forecasted hour, it can be seen that other parts of the similar 

curve are also very close to the actual one. However it is 

difficult to find out the most suitable similar curve like Fig. 

3(a) because the actual load of the current forecasting time is 

unknown. Fortunately, we observe that if two curves are 

similar in the current hour, there is high probability that they 

will be also similar in the next hour, as demonstrated in Fig. 

3(a). Therefore, we can use the previous hour of the 

forecasting hour to search for the most similar hour. 

(a) 

(b) 

Fig. 3. (a) The actual load curve of the forecasted hour and its most similar 

load curve. (b) The load curves of two consecutive days. 

The second observation is that two consecutive days have 

similar load trends. Here “trend” means the load curve tends 

to increase or decrease. For example, in Fig. 3(b) the load 

curves of 15-Jan and 16-Jan both decrease in the 20th hour. 

During searching for the similar hour, we can utilize this 

feature to filter out the candidates that have the opposite load 

trend to the hour on the day before the forecasted day. This 

can decrease the number of candidates in the search range. 

According to our experiments, on average 25% candidates 

can be filtered out. 

Let Ld,t be the load at the forecasting hour t on day d. Before 

searching for similar hours, two kinds of search ranges are 

defined, the hour search range and day search range. We 

search for similar hours in the hour search range of the day 

search range. The hour search range is set as [t-1, t+1], and 

the day search range is [d-45, d-1] (45 days before the 

current forecasted hour)  [d-410, d-320] (45 days before 

and after the current forecasted hour in the previous year). It 

is unlikely to find out the most similar hour in days far away 

from the forecasting time point because load curves have 

different characteristics in different seasons. For example, 

suppose 15:00 on April 17, 2010 is the forecasting time point. 

Then the search range is every 14:00 to 16:00 from March 3, 

2009 to May 1, 2009 and from March 3, 2010 to April 16, 

2010. 

The observation from Fig. 3(a) shows that if two load curves 

are similar in an hour, they will be similar in the next hour 

as well. Hence, the load of the hour previous to the 

forecasting hour can be viewed as the anchor in order to find 

similar hours in the search range. Thus we apply Ld,t-1 to find 

similar hours in the candidate set {Ld’,t’ | d’  [d-45, d-1]  

[d-410, d-320] and t’  [t-1, t+1]}. Before starting the 

searching process, we can assume that Ld-1,t has the same 

load trend as Ld,t from the observation in Fig. 3(b), so 

candidates that have the opposite load trend to Ld-1,t can be 

discarded first. Then we calculate the load difference 

between Ld,t-1 and candidates, and find out three candidate 

hours with smallest load difference. Among the three 

candidates, the one that has the most similar weather 

condition is selected. Here “the weather condition” means 

temperature and dew point temperature. 

Consequently, the procedure to search for similar hours can 

be described as the following steps: 

Step 1. Let Ld,t be the load at the forecasting hour t on day d. 

Check the trend of Ld-1,t, and set the search range to R =  {(d’, 

t’) |  d’  [d-45, d-1]  [d-410, d-320], t’  [t-1, t+1], and 

Ld’,t’ has the same trend as Ld-1,t} 

Step 2. Search for Ld1,t1, Ld2,t2, and Ld3,t3 such that 
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Step 3. Let Td,t and Dd,t be the temperature and dew point 

temperature of the forecasting hour, respectively. Search for 

the most similar load Ld*,t-1, such that 
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Step 4. (d*, t*) is the most similar hour at time (d, t). 

2.4 Artificial Neural Network 

The estimated similar load Ld*,t* is used for load forecasting 

in this sub-section. Load forecasting needs historical 

statistics to predict the current load demand, but the analysis 

of correlations among historical data is usually complex and 

nonlinear. The Artificial Neural Network (ANN) is suitable 

for load forecasting because it can learn complex and 

nonlinear relations among variables. In this sub-section, we 

use a three-layered Perceptron neural network composed of 

one input layer, one hidden layer, and one output layer. The 

number of hidden neurons is decided by the approach in [15]. 

The ANN starts by setting the estimated optimal number of 

hidden neurons as the square root of the product of the 

number of inputs and the number of outputs, and then the 

number is increased by one. For each hidden neuron number, 

we perform forecasting and record the result for comparison. 

The inputs of ANN are temperature, dew point temperature, 

listed as follows: 1. Temperature: Td,t-1, Td*,t*, and Td,t. 2. Dew 

point temperature: Dd,t-1, Dd*,t*, and Dd,t. 3. Load: Ld,t-1, Ld-1,t, 

and Ld*,t*. 

 
Fig. 4. The ANN used in the proposed method 

Note that in addition to the hour previous to the forecasted 

hour and the day before the forecasted day, the similar hour 

information we found in the previous step is also treated as 

the input. The structure of ANN is shown in Fig. 4. The final 

output is the forecasting load L”d,t at hour t on day d. 

The neural network is trained by historical data. During the 

training procedure, the ANN will automatically adjust the 

weights in the network based on the difference of the neural 

network output and the actual result. To avoid over-fitting, 

we examine the difference between predicted output L”d,t and 

actual result Ld,t. 

   "
,,
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If the value is lower than a assigned threshold , we stopped 

training. Otherwise, the network will continue training for N 

times, where N is a given number. The neural network model 

is trained by using the data of past two weeks before the 

forecasted day and past two weeks before and after the 

forecasted day in the previous year at the forecasting hour. 

For example, if the forecasting time is at 15:00, April 17, 

2009, the training data is at every 15:00 from April 3, 2009 

to April 16, 2009 and from April 3, 2008 to May 1, 2008. 

3 Simulational Results 

The performance of the proposed method for short-term load 

forecasting is demonstrated using hourly weather and load 

data of New England Independent System Operator in 2008-

2010. Data of 2008 and 2009 are treated as historical data to 

forecast electricity loads in 2010. The electricity system in 

New England is divided into eight zones. Each zone has 

individual temperature, dew point, and load demand data. A 

year is separated into four seasons. We select April 15-21, 

July 15-21, October 15-21, and January 15-21 in spring, 

summer, fall, and winter of 2010 for prediction, respectively. 

In our ANN, the learning rate, learning times, and 

termination threshold are set to 0.7, 10000, and 0.01, 

respectively. Unless the absolute error of network output is 

lower than the termination threshold, the ANN will continue 

training until the learning times reach. 

In the following sub-sections, we first show the accuracy of 

the proposed similar hour selection along with ANN. Then 

the benefit of aggregated zonal prediction is presented. 

Finally, multi-resolution data compression is applied to the 

predicted results, and the R-D relationship is illustrated. 

3.1 Proposed Similar Hour Selection and ANN  

TABLE II shows MAPE values of forecasting results 

produced by the proposed method and effects with/without 

the proposed similar hour selection. Note that here we do not 

apply aggregated zonal prediction, so the input of ANN 

includes data in all eight zones. In TABLE II, the proposed 

similar hour selection has a significant improvement in 

summer. The reason might be that the usage of air 

conditioners causes huge electricity consumption, but they do 

not work in fixed time periods every day. Thus the ANN is 

hard to predict the load if it does not apply similar hour 

selection.  

For the purpose of performance evaluation, we exhaustively 

search for similar hours and apply these search results in our 

ANN, shown in TABLE II as well. The exhaustive search is 

to find the best similar hour, whose load value is closest to 

the actual load of forecasted hour in historical data by brute 

force within the same search range as in the proposed similar 

hour selection method. Thus a similar hour obtained by the 

exhaustive search can be treated as the optimal similar hour. 

From TABLE II, we can see the proposed similar selection 

method is close to the optimal results. 
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TABLE II.  MAPE OF THE FORECASTING RESULTS USING PROPOSED ANN 

WITH SIMILAR-HOUR SELECTION 

Season MAPE of the proposed ANN (%) 

without similar 

hour selection 

with similar 

hour selection 

with the best 

similar hour 

Spring 1.87 1.40 1.00 

Summer 4.23 1.47 1.26 

Fall 2.81 1.60 0.93 

Winter 3.30 1.11 0.93 

Average 3.05 1.40 1.03 

Fig. 5 compares forecasting curves with and without the 

proposed similar hour selection in summer. It can be seen 

that without the similar hour as input, the ANN predicts 

loads basically following the trend of previous cycle (i.e., 

loads in the previous day) because the input of ANN includes 

only the load of previous hour and the same hour in previous 

day. Since actual loads (the solid curve) of each cycle have 

different trends, the ANN without using similar hours 

produces wrong results. This phenomenon can be especially 

observed in the second and third cycles from 33th-73th hours, 

where the peak value of solid curve significantly varies in 

each cycle. Thanks to the similar hour selection, the ANN 

can predict much more accurate results. 

 
Fig. 5. The actual load curve and forecasting load curves in July 15-21, 2010. 

3.2 Aggregated Zonal Prediction 

In the previous experiments, data in all eight zones are fed 

into the ANN. In this sub-section, the ANN produces the 

forecasting load for each zone instead of the whole New 

England. Then the eight forecasting loads are aggregated to 

the final forecasting load. The second column in TABLE III 

shows MAPE results after performing the proposed similar 

hour selection, ANN, and aggregated zonal prediction. In 

comparison with TABLE II, there is a 23% improvement on 

average. Besides, the aggregated zonal prediction can also be 

performed with the optimal similar hour mentioned in the 

previous sub-section. The improvement is about 17% on 

average. 

Furthermore, the proposed method is also compared with the 

load forecasting approach proposed by Mandel [10]. Mandel 

et al use Euclidean norm to evaluate the day similarity by 

load slope, load value, and temperature to select similar days, 

and then feed the weather forecast, weekday information of 

the forecasted day, and the load data of similar days into the 

ANN to perform several hours ahead load forecasting. Here 

we only take one-hour-ahead result of the Mandel method to 

compare with the proposed method. For fairness, both 

methods use data of New England for prediction. The results 

are shown in the rightmost column in TABLE III. 

TABLE III.  MAPE OF THE FORECASTING RESULTS USING PROPOSED ANN 

WITH SIMILAR-HOUR SELECTION 

Season MAPE of the aggregated zonal 

prediction (%) 

MAPE of 

Mandel 

method [10] with similar-hour 

selection 

with the best 

similar hour 

Spring 0.95 0.75 1.17 

Summer 1.18 1.12 1.62 

Fall 1.01 0.84 1.09 

Winter 1.05 0.69 1.31 

Average 1.08 0.85 1.30 

 

3.3 Multi-resolution Data Compression 

The above experiments have shown that the proposed 

method can accurately forecast electricity loads. In some 

situations, a user may tolerate a certain degree of errors. 

Thus the EZW algorithm is applied on source data to reduce 

bandwidth and storage requirements. In Fig. 2, we have 

shown the R-D relationship between the source data and 

compressed data. In TABLE IV, the first two columns 

illustrate the average compressed size of source data in all 

eight zones after applying the EZW algorithm. It can be seen 

that 92.72% to 95.97% transmission bandwidth and storage 

are saved as the distortion of source data ranges from 3MW2 

to 21MW2. The side effect of multi-resolution compression is 

somewhat inaccurate forecasting results because imprecision 

source data are applied for prediction. Hence, we also show 

the MAPE of forecasting results in TABLE IV. When the 

average distortion is 3MW2 and the compressed size is 

7.28%, the MAPE is 1.64%. This means 92.72% bandwidth 

and storage can be saved and the prediction error only 

increases about 0.5% MAPE. According to TABLE IV, 

given target prediction accuracy (MAPE), we can compress 

data at the corresponding distortion or compressed size. And 

without sacrificing much prediction accuracy, we can reduce 

considerable bandwidth and storage requirements. 

TABLE IV.  RELATIONSHIP AMONG MAPE, COMPRESSED SIZE, AND 

DISTORTION 

Distortion of 

source data (MW2) 

Compressed size of 

source data (%) 

MAPE of forecasting 

results (%) 

3 7.28 1.64 

6 5.98 2.07 

9 5.32 2.30 

12 4.89 2.74 

15 4.53 3.17 

18 4.25 3.39 

21 4.03 3.53 

TABLE IV can be further divided into two relationships, 

MAPE-D (MAPE vs. Distortion) and R-D, as illustrated in 

Fig. 6. The MAPE-D relationship is roughly a linear curve, 

and the R-D relationship is a standard inverse proportional 
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curve. From the above two observations, it is possible to 

formulate the relationship in TABLE IV. The discussions of 

this part are left for our future works. 

 
Fig. 6. The R-D relationship (dot curve) and MAPE-D (solid curve) 

relationship of forecasting loads 

The two solid curves in Fig. 7 describe the MAPE-D 

relationships of forecasting data using aggregated zonal 

prediction and the entire New England area, respectively. 

The dot curve is the MAPE average of eight zone MAPE 

values. It can be observed that the slope of the proposed 

method is smaller than the two other curves. This means the 

forecasting loads of aggregated zonal prediction are less 

sensitive to the inaccurate source data, such that more 

bandwidth and storage can be saved due to smaller 

compressed size. 

 
Fig. 7. The MAPE-D relationship of forecasting results using aggregated zonal 

prediction, 8-zone average, and whole area, respectively. 

4 Conclusions 

In this article, a zone based neural network using similar 

hour selection method is proposed. The errors (MAPE) of the 

proposed method in four seasons range from 0.95% to 1.18%. 

Besides, we also proposed multi-resolution data compression. 

By applying EZW algorithm, the bandwidth and storage 

requirements are significantly reduced with slightly 

increasing of errors. Thus the proposed method is suitable for 

wireless sensor networks, where transmission rates are 

limited. 

There are other factors that could be taken into account to 

improve the accuracy of proposed similar hour selection and 

ANN, such as weather and humidity. However, too many 

factors may also interfere with the forecasting precision. This 

will be one of our future works. Besides, electricity loads are 

usually periodic. This feature may be useful for compression. 

We will try to let the forecast method more tolerant to data 

distortion through improving the compression techniques. 
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Abstract— High-performance computing systems with
dedicated hardware on FPGAs can achieve power
efficient computations compared with CPUs and GPUs.
However, the hardware design on FPGAs needs more
time than the software design on CPUs and GPUs.
We designed an FDTD hardware accelerator using the
OpenCL compiler for FPGAs in this paper. Since it
is possible to design a hardware automatically from
an OpenCL code, we can implement applications on
FPGAs in a short time compared with the design by
using a hardware description language. According to
the result of the implementation of the FDTD acceler-
ator on the FPGA, the processing speed is faster than
a CPU. Moreover, its power consumption is about one-
tenth of a GPU.

Keywords: OpenCL, FPGA, FDTD method, Hardware
accelerator

1. Introduction
In the field of the high performance computing such

as three-dimensional image processing, electromag-
netic simulation, fluid dynamics and DNA sequence,
a very large scale computing system is required. How-
ever, the power consumption of high performance com-
puter systems becomes a serious problem. The FPGA
is attracting attention as the accelerator for such high-
performance computing systems. A very large scale
architecture for high performance computings can be
implemented on a FPGA because of the advancement
of the process technology. The power consumption
of FPGAs is about one tenth as much as that of
GPUs. However, very long time is required for the
implementation of the FPGA-based accelerator. The
software-based design on CPUs and GPUs needs only
a software code by using C language or CUDA. On
the other hand, the hardware-based design on FPGAs
needs circuit modules for calculations, controls and

connecting to the host PC by using a hardware design
language(HDL).

To solve this problem, Altera Corporation released
Altera SDK for OpenCL [1] which is the OpenCL com-
piler for FPGAs. OpenCL is the programming language
for parallelized heterogeneous multicore architectures.
OpenCL is standardized by the Khronos group [2]. The
source code of the OpenCL is constituted by the host
code and kernels. The initialization, the data-transfer
from the host PC to the accelerator and running the
kernels are described in the host code. The parallelized
computation on the accelerator is described in the
kernel code. As a feature of the OpenCL, the common
source code can be run on the different architectures
by using compilers corresponding to architectures such
as multi-core CPUs, GPUs, the CELL processors and
so on. In order to implement the OpenCL code on
the FPGA board, Altera SDK for OpenCL can be
used. This compiler does not require the HDL design
for the calculation and connecting to the host PC
by PCI express as shown in Fig.1, and the design
time can be reduced. In the recent studies of the
FPGA-based accelerator by using OpenCL, fractal
image processing [6] and AES encryption encoding
[7] have been reported. These studies achieve a low
power and high performance computing compared with
GPUs. In this article, we implement the FDTD (Finite-
Difference Time-Domain) method accelerator by using
the OpenCL compiler for FPGAs. We compare the
performance of the FPGA-based accelerator with a
CPU and a GPU in order to research the utility of
the OpenCL compiler.

2. Implementation of an FPGA-Based
FDTD accelerator by using OpenCL

The FDTD method[3] has been widely used in an
electromagnetic simulation. Since the FDTD method
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Fig. 1: OpenCL implementation on the FPGA

has the high degree of parallelism, there are many
studies which use computer clusters, GPUs [4], [5]
and FPGAs [8]，[9] to accelerate the FDTD method.
Figure 2 shows the flowchart of the FDTD method. It
starts with transferring initial data of the electric and
magnetic fields. Then the initial data are processed to
obtain the electric field information for the first time
step. After that, the boundary conditions are applied.
Then the magnetic field information are obtained and
the boundary conditions for the magnetic field are
applied. These steps are repeated for a given number
of time steps. Equation (1) shows the electric field
computation. Equations (2) and (3) show the mag-
netic field computation. Electric and magnetic fields in
x, y, z directions are denoted byE andH respectively.
The time step is denoted byn and the coordinates
of the 2D fields are denoted byi and j. Note that
the boundaries of the electric and magnetic fields are
calculated differently. ParametersPx, Py, Qx, Qy are
determined by the permittivity, the permeability, the
size of grids and the length of the time step. A detailed
description of the FDTD is given in [3].

En+1
z (i, j) = En

z (i, j)

−Py(i, j)
{

H
n+ 1

2
x (i, j + 1/2)−H

n+ 1
2

x (i, j − 1/2)
}

+Px(i, j)
{

H
n+ 1

2
y (i + 1/2, j)−H

n+ 1
2

y (i− 1/2, j)
}

(1)
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Fig. 2: The flowchart of the FDTD method

H
n+ 1

2
x (i, j + 1/2) = H

n− 1
2

x (i, j + 1/2)

−Qy(i, j) {En
z (i, j + 1)− En

z (i, j)}
(2)

H
n+ 1

2
y (i + 1/2, j) = H

n− 1
2

y (i + 1/2, j)

−Qx(i, j) {En
z (i + 1, j)− En

z (i, j)}
(3)

Figure 3 shows the example of the OpenCL code
for computing the electric field by Eq.(1). Thanks to
the descriptions of global_id(0) and global_id(1) in
line 4 and 5 respectively, the electric and magnetic
fields in the coordinates of the two-dimensional fields
are accessed in parallel. In this implementation, we
make four kernel codes for updating electric fields,
updating magnetic fields, applying boundary conditions
and exciting electric fields. Counting time steps and
running kernels are controlled by the host code. Let
us explain about data-transfers between a host PC to
accelerators. At the first of the FDTD computation,
initial values of electric fields and magnetic fields, and
the values ofPx, Py, Qx,Qy are transferred from a
host PC to accelerators. The values of excited electric
fields are also transferred in every time step. When the
value of time steps reaches the given value, the results
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Fig. 3: An example of the OpenCL code

of the simulation are transferred from accelerators to a
host PC.

3. Evaluation
We implement the FDTD method by C language

on "Intel Core i7 920", and by OpenCL on "nVidia
Geforce GTX 580" and "Nallatech P385-A7 FPGA
board"[10]. This FPGA board has the Altera StratixV
GX A7，a DDR3-SDRAM(8GB) and a PCI-Express.
We use Visual Studio 2010(64bit) and nvidia GPU
computing SDK 4.2 for the compilation on the CPU
and the GPU. We use Altera SDK for OpenCL 13.0
for the compilation on the FPGA. Figure 4(a) shows
the simulation model. This model has N× N grids
(N=128,256,512). The electric field at (N/2,N/2) is
excited as shown in Fig.4(b). The boundary area is
a perfect conductor (Ez = 0). The single-precision
floating-point is used for the simulation.

Table 1 shows the resource usage on the FPGA.
The number of processing units and the degree of
the kernel vectorization can be changed [11]. When
the kernel vectorization is used, each scalar operation
in the kernel, such as addition or multiplication, is
translated to an SIMD operation by the compiler. The
processing units becomes smaller, and the throughput
becomes higher.

Figures 5(a),5(b) and 5(c) show the results of the
simulation of the electric field on the CPU, the GPU
and the FPGA, respectively. As shown in these figures,
the simulation results are almost consistent with each
other. However, there are very small errors since the
rounding of a floating point are different depending on
the platforms.

Table 2 shows the processing time of the FDTD

method. The processing time of the FPGA is about
half of that of the CPU. However, the processing time
of the FPGA is about 22 times longer than that of the
GPU. One of the main reasons is the bandwidth of the
global memory. The bandwidth on the FPGA board is
further narrower than that of the GPU board. In order
to increase the performance on the FPGA, the memory
access to the global memory should be reduced by
improving the OpenCL code. The power consumption
of the FPGA is 25W [6]. This power consumption is
about one tenth of that of GPU board. Based on these
results, the FPGA accelerator can achieve very low
power and high performance computing if the OpenCL
code is improved to reduce the memory access.

4. Conclusion

In this article, we implement the FPGA-based ac-
celerator for the electromagnetic simulation by using
the OpenCL compiler. The processing time of FPGA
is about half of that of CPU. However, the processing
time is longer than that of GPU. The power consump-
tion of the FPGA is about one tenth of that of GPU. For
the future work, we improve the specialized OpenCL
code for the FPGA. For example, the resource usage
of processing units becomes small if the fixed-point
calculation is used. Moreover, we are now designing
the FPGA-based accelerator for the electromagnetic
simulation on antennas and optical devices.
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Table1: Resource usage
PEs LEs FFs DSPs RAMs
1 76965(16%) 127326(14%) 4(2%) 650(25%)
4 144072(31%) 302233(32%) 16(6%) 1411(55%)

16(Vectorization) 204092(44%) 435734(46%) 64(25%) 2042(80%)

Table2: Processing time (s) (Time steps=1000)
CPU(Corei7920) CPU(Corei7920) CPU(XeonE5 2069)

Grids +GPU(GTX 580) +FPGA(NallatechP385-A7)
128×128 0.249 0.156 2.030
256×256 1.294 0.203 2.780
512×512 11.232 0.249 5.400
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Fig. 4: Set up of the simulation
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Fig. 5: Results of the simulation (N=256, Time
steps=250)
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Abstract 
 
A Leader is a Coordinator that supports a set of 

processes to cooperate a given task. This concept is 
used in several domains such as distributed systems, 
parallelism and cooperative support for cooperative 
work. In completely asynchronous systems, there is no 
solution for the election problem satisfying both of 
safety and liveness properties in asynchronous 
distributed systems. Therefore, to solve the election 
problem in those systems, one property should be 
weaker than the other property. If an election 
algorithm strengthens the safety property in sacrifice 
of liveness property, it would not nearly progress. But 
on the contrary, an election algorithm strengthening 
the liveness property in sacrifice of the safety property 
would have the high probability of violating the safety 
property. In this paper, we presents a safety 
strengthened Leader Election protocol with an 
unreliable failure detector and analyses it in terms of 
safety and liveness properties in asynchronous 
distributed systems. 
Keywords : Distributed Computing, Leader Election, 
Asynchronous Distributed Systems, Failure Detectors 
 
1. Introduction 

 
Distributed systems consist of groups of 

processes that cooperate in order to complete 
specific tasks.  A Leader is a Coordinator that 
supports a set of processes to cooperate a given 
task. This concept is used in several domains such 
as distributed systems, parallelism and 
cooperative support for cooperative work. 
To elect a Leader (or Coordinator) in a distributed 
system, an agreement problem must be solved 

among a set of participating processes. This 
problem, called the Election problem, requires the 
participants to agree on only one leader in the 
system [1]. The problem has been widely studied 
in the research community [2,3,4,5,6]. One reason 
for this wide interest is that many distributed 
protocols need an election protocol.  
The Election problem is described as follows. At 
any time, there is at most one process that 
considers itself a leader and all other processes 
consider it as to be their only leader. If there is no 
leader, a leader is eventually elected.  
The so-called FLP impossibility result, which 
states that it is impossible to solve any non-trivial 
agreement in an asynchronous system even with a 
single crash failure, also applies to the election 
problem [7]. That means that there is no solution 
for the election problem satisfying both of safety 
and liveness properties in completely 
asynchronous distributed systems. 
It must be pointed out, however, that the 
impossibility result really means “not always 
possible,” as opposed to “never possible.” As a 
matter of fact, any algorithm that tries to solve the 
Election Problem cannot always make progress 
without violating safety; there exist cases in 
which the algorithm violating safety, although it is 
very unlikely. 
Therefore, to solve the election problem in those 
systems, one property should be weaker than the 
other property. If an election algorithm 
strengthens the safety property in sacrifice of 
liveness property, it would be difficult to progress. 
But on the contrary, an election algorithm 
strengthening the liveness property in sacrifice of 
the safety property would have the high 
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probability of violating the safety property. There 
exists a trade-off between safety property and 
liveness property.  
A stable election protocol, which implies the 
safety strengthened election protocol, is needed in 
a practical distributed computing environment. 
Consider a mission critical distributed system 
such as an electronic commerce system that runs 
multiple servers in which one of them roles a 
master (leader) and others are slaves.  
To have data consistency among the servers in the 
system, this system should not violate safety 
property, which means that all processes 
connected the system never disagree on a leader. 
In those systems the safety property is more 
important property than the liveness property. 
As a classic paper, there is Garcia-Molina’s 
Invitation algorithm to solve election problem in 
asynchronous distributed systems. The algorithm 
strengthens the progress property rather than 
safety and it allows more than two leaders in the 
systems.  
Our idea is based upon the Garcia-Molina’s 
Invitation algorithm for solving the election 
problem in asynchronous distributed systems [2]. 
He redesigns the Bully algorithm for synchronous 
distributed systems into the Invitation algorithm 
for asynchronous distributed systems by using a 
specification that is weak enough to be solvable, 
allowing the algorithm to progress even in 
completely asynchronous distributed systems.  
His specification uses a strong progress 
requirement, allowing executions in which even a 
single process suspicion of the current leader’s 
crash and its attempted leader election from the 
members may lead a progress to elect a new 
leader from all processes. 
We propose an election algorithm that requires 
processes to elect a new leader only when they 
agree with the current leader’s crash. This 
requirement is strong because, if no set of 
processes agrees on the current leader’s crash, no 
progress is made. The requirement is, however, 
much more stronger than the one proposed by 
Garcia-Molina’s Invitation algorithm in that it 
implicitly states that the leader election of any 
process be allowed only on the basis of only it’s 

own knowledge. 
In this paper, we presents a safety strengthened 
Leader Election protocol with an unreliable 
failure detector and analyses it in terms of safety 
and liveness properties in asynchronous 
distributed systems. 
Our algorithm, based on a standard three phases 
commit protocol, is fully distributed. It does not 
extend the asynchronous model of concurrent 
computation to include global failure detectors. 
Progress of the algorithm can be guaranteed only 
in case of minimal violating a safety property. 
The rest of the paper is organized as follows. In 
Section 2, we describe our system model and 
definitions. In Section 3, this paper relates the 
election specification to other ways to solve the 
election problem. In Section 4, this paper provides 
a stable algorithm that solves the Leader Election 
problem. In Section 5, we ensure the correctness 
of the algorithm by proving that it satisfies the 
two properties of the specification given in 
Section 4. Finally, Section 6 summarizes the main 
contributions of this paper and discusses related 
and future works. 
 
2. Model and Definitions 
 
 Our model of asynchronous computation with 
failure detection is the one described in [9,10]. In 
the following, we only recall some informal 
definitions and results that are needed in this 
paper. 
 
2.1 Processes 
 
We consider a distributed system composed of a 
finite set of processes Ω={p1,p2,..,pn} where 
processes are identified by unique id's. 
Communication is by message passing, 
asynchronous and reliable. Processes fail by 
crashing; Byzantine failures are not considered.  
Every pair of processes is connected by a 
communication channel. That is, every process 
can send messages to and can receive messages 
from any other. We assume processes are able to 
probe a communication channel for incoming 
messages. Communication channels are 
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considered to be reliable, FIFO, and to have an 
infinite buffer capacity. A reliable channel 
ensures that a message, sent by a process pi to a 
process pj, is eventually received by pj if pi and pj 
are correct (i.e. do not crash). 
Asynchrony means that there is no bound on 
communication delays or process relative speeds. 
A process that has been infinitely slow for some 
time and has been unresponsive to other processes 
may become responsive again at any time. 
Therefore, processes can only suspect other 
processes to have crashed, using local failure 
detectors.  
A failure detector is a distributed oracle which 
gives hints on failed processes. We consider 
algorithms that use failure detectors. Local failure 
detectors are assumed to be inaccurate and 
incomplete. That is, local failure detectors may 
erroneously suspect that other, operational 
processes have crashed or that crashed processes 
are operational. Since local failure detectors run 
independently at each process, one local failure 
detector may perceive a failure, but other 
detectors may perceive it at a different time or not 
at all. The failure model allows processes to crash, 
silently halting their execution. Because of the 
unpredictable delays experienced by the system, it 
is impossible to use time-outs to accurately detect 
a process crash.  
We assume that a process communicates with its 
local failure detector through a special receive-
only channel on which the local failure detector 
may place a new list of id's of processes not 
suspected to have crashed. We call this list the 
local connectivity view of the process. Each 
process considers the last local connectivity view 
received from its local failure detector as the 
current one.  
 
2.2 Election Specifications 
 
The Election problem is described as follows: At 
any time, as most one process considers itself the 
leader, and at any time, if there is no leader, a 
leader is eventually elected. More formally, the 
Election Problem is specified by the following 
two properties: 

- Safety: All processes in the local connectivity 
view of the process never disagree on a leader. 

- Liveness: All processes should eventually 
progress to be in a state in which all processes 
connected to the system agree to the only one 
leader. 

 
3. Circumventing The Impossibility 

Result  
 

In this section, we relate the election 
specification to other ways to solve the election 
problem.  
- In an asynchronous model augmented by global 

failure detectors, processes have access to 
modules that (by definition) eventually reflect 
the state of the system. Therefore, progress and 
safety can be guaranteed unconditionally. 

- In a timed asynchronous model, processes must 
react to an input, producing the corresponding 
output or changing state, within a known time 
bound. Under this model, progress and safety 
can be guaranteed if no failures and recoveries 
occur for a known time needed to communicate 
in a timely manner. 

- In a completely asynchronous model, progress 
cannot always be guaranteed without violating 
safety and failure detectors in practice 
eventually reflect the system state, but they 
must be considered arbitrary. Correct processes 
react in practice within finite time, but this time 
cannot be quantified. Therefore, in order to 
guarantee a solution, we need a weaker 
specification of the problem. 

 
Our approach falls into the last category that 
originated with Garcia-Molina's work [2]. Our 
election algorithm, however, differs from Garcia-
Molina's in several ways. 
 
- Processes in Garcia-Molina's model do not need 

to wait to get consensus about the current 
leader’s crash. If one process suspects that the 
leader failed, it may attempt to elect the new 
leader. Garcia-Molina's specification says that, 
if one process attempts to be a new leader, it 
eventually should be elected as a leader. Our 
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specification requires all processes in a set to 
agree on the current leader crash before 
changing their new leader. 

- Garcia-Molina's specification allows a solution 
in which the attempted change of a leader 
divides all processes into several sub-groups. 
Our specification does not allow such a sub-
group because it states that if all processes in a 
system agree on a new leader, they must 
eventually accept such a leader.  

 
In our model stability is also required for progress, 
but, at variance of the above case, it is not 
necessarily related to the state of the system. In 
other words, eventual progress is required when 
there is agreement among a set of the local failure 
detectors, even if failures and recoveries continue 
to occur in the system. 
 
4. Election Algorithm 
 

We provide a robust algorithm that solves the 
Leader Election problem given in Section 2. The 
algorithm is based on the three asynchronous 
phases.  
- A prepare phase, in which a process propose a 

new leader that the other processes agree with.  
- A ready phase, in which all process that agree 

on the new leader acknowledge the reservation 
of the potential leader.  

- A commit phase, in which the new leader is 
finally elected, and all process accept it their 
only leader. 

 
4.1 Solution Sketch 
 

The main idea for the algorithm is as follows. A 
process p that is informed by its local failure 
detector of a leader’s crash and that has the 
smallest id among processes in its new local 
connectivity view sends a message to all 
processes in its view proposing to update the 
current leader with the new leader.  
Each process received the message records this 
proposal until the newly elected leader is the same 
as the proposed new leader in its local view. At 
which point, it responds by sending back an 

Accept or Retry message to the process that 
proposed the leader update. The Accept message 
is sent if the process agrees on the proposed 
leader in its local current view.  
Upon sending the Accept message, the process 
reserves the prospective leader, so that no other 
proposal is accepted for that system. Upon 
receiving a Retry message, the proposing process 
restarts the first phase of the algorithm, sending a 
new Propose message to all processes in its view.  
When the proposing process has collected Accept 
messages from all processes in its view, it starts 
the commit phase by sending commit messages, 
ordering other processes in its view to commit the 
leader update. Upon receiving a commit message, 
the processes accept the reserved prospective 
leader as a their new leader. 
 
4.2 Code Description 
 

The code is shown in Fig. 1. The first guarded 
command in Fig. 1 shows how a process p, when 
informed of a change in its local connectivity 
view, set its view to be current and checks if the 
current leader has crashed. If the leader has 
crashed, it set the variable LeaderStatus to be 
false. When leaderStatus is false in the third 
guarded command in Fig. 1, the process p checks 
it is the minimum id among the processes in vp. If 
p is the minimum id, it increases the round and 
proposes itself as a new prospective leader and 
initializes its ack array to zero. 
The second guarded command in Fig. 1 checks 
for incoming messages from other processes. 
These may be proposals for a new leader 
(Propose), rejections to propose a new leader 
(Rej), acceptances of a proposed new leader (Acc), 
orders to commit a new leader (Commit) or orders 
to abort a proposed new leader (Abort).  
Upon receiving a proposal message from process 
q, process p stores the new leader’s id proposed 
by q at position q of the array NewLeader and 
stores the proposed round at position q of the 
array RoundIn, then sets position q of the array 
Prop to true to record the receipt of the proposal 
from q and sets the CurView to false to refresh the 
current view of the system. 
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Upon received vp from FD: 
CurView := true; 
If CurLeader ∉ vp then LeaderStatus := 0;  
end-if 
If p = min(vp) then Round := Round +1;  

  Call start_election();  
end-if 

 
Upon received (Propose,PropLeader, k) from q: 

 Prop:= true; CurView := false; 
NewLeader:= PropLeader ; RoundIn := k; 

 Call reply_election(); 
 

Upon received (Reject, k) from q: 
 If Round = k then  

Send (Abort, Round) to ∀ j ∈ vp; 
   For ∀j ∈ vp, ack[j] :=0;  

end-if 
 

Upon received (Accept, k) from j: 
  If Round = k then ack[j] := 1; 

   If for ∀q∈ vp, ack[q] = 1 then   
Send (Commit, PropLeader, Round) to 

∀q∈ vp; 
For ∀q ∈ vp, ack[q] :=0;  

end-if end-if 

 
Upon received (Commit, PropLeader, k) from j: 

If RoundIn = k then  
CurLeader := PropLeader; 

 LeaderStatus := 1;  
end-if 

 
Procedure Start_election(): 
  PropLeader := p; 

Send (Propose, PropLeader, Round) to  
∀q∈ vp; 

For ∀q∈ vp, ack[q] :=0;  
 
Procedure Reply_election(); 

If ( CurView ∧ Prop ) then Prop:= false;  
If (Newleader≤min(vp)∧RoundIn>Round)  

then Send ( Accept, PropIn) to q; 
Next = RoundIn + 1;  

end-if  
else Send (Reject, PropIn) to q;  

end-if 
 
 
 
 

 
Fig. 1. The Algorithm. 

 
Upon receiving a proposal message from process 
q, process p stores the new leader’s id proposed 
by q at position q of the array NewLeader and 
stores the proposed round at position q of the 
array RoundIn, then sets position q of the array 
Prop to true to record the receipt of the proposal 
from q and sets the CurView to false to refresh the 
current view of the system. 
If process p later agrees on the proposed new 
leader, it sends a response to process q (see last 
guarded command in Fig. 1). The response is 
either an acceptance of the new leader at position 
NewLeader[q] if the minimum id among the 
process in vp is greater or equal than the id of 
proposed NewLeader[q] and the proposed round 
greater than the current round; or it is an rejection 

to the proposed new leader if the minimum id 
among the process in vp is less than the id of 
proposed NewLeader[q] or the proposed round 
less or equal than the current round.  
A rejection to the proposed new leader consists of 
sending back to q the proposed round. An 
acceptance consists of acknowledging the 
proposed new leader at position NewLeader[q].  
We now examine the guarded commands of the 
remaining message types. A process p that 
receives a rejection to the its proposal sends all 
processes in vp a message to abort the proposed 
round and reinitializes the ack array to zero.  
A process p that receives an acceptance regarding 
its proposed new leader receives the proposed 
round. If the received round is equal to the round 
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of the most recent proposal sent, process p sets the 
element at position q in the array ack to 1 to 
record the acceptance.  
Then, it inspects the ack array to check if all 
entries are 1. If so, p starts the commit phase by 
broadcasting its previously proposed new leader 
and the corresponding proposed round PropRound 
to all processes in vp and reinitializes the ack array 
to zero.  
A process p that receives an order to commit a 
new leader at position q from process q, simply 
sets the current leader to the proposed new leader 
and sets the current round to the proposed round. 
 
5. Correctness 
 

We can ensure the correctness of the algorithm 
by proving that it satisfies the two properties of 
the specification given in Section 4. 
 
5.1 Safety 
 
Theorem 1. The algorithm described in Section 4 
satisfies the safety condition of the specification 
(Property 1, Section 2): At any point in time, all 
processes connected the system never disagree on 
a leader.  
 
Proof. Either all processes remain in the start 
state or some process p receives the proposed 
leader as its leader. In the start state, the safety 
property holds since all processes are in the state 
in which a leader has not been elected. If some 
process p receives its leader by committing a 
proposed leader at a given position q, it must have 
received a Commit message from some process q; 
therefore, q must have received Accept messages 
regarding its proposal of a new leader from all 
processes in vp including p. It follows from the 
last guarded command in Fig. 1 that, if process p 
has accepted the proposal of process q, it will not 
accept any other proposal for new leader, making 
it possible to commit at most single proposed 
leader. Therefore, process p either commits the 
process at position q as a new leader or ends up 
with position q by aborting the proposed new 
leader. Therefore safety property holds. � 

 
5.2 Liveness 
 
Theorem 2. The algorithm described in Section 4 
satisfies the liveness condition of the specification 
(Property 2, Section 4): All processes should 
eventually progress to be in a state in which all 
processes connected to the system agree to the 
only one leader. 
 
Proof. By contradiction, a non-progress means 
that the new leader is not elected forever even 
though there is no leader; therefore, no Commit 
messages must be sent. Since the number of 
processes is finite, there must be at least one 
process whose id is the minimum value in vp and 
that process eventually sends a Propose message. 
Call this process p. By the code in Fig. 1, we see 
that, to have no Commit message, each time p 
sends a Propose message, it should be rejected by 
other process. It follows that, in order to abort 
infinitely many Propose messages, other process q 
must reject the proposed messages infinitely often.  
Propose messages are rejected either when the 
minimum id of vp is greater than the id of the 
proposed leader or because of a Propose message 
already has been received (see Fig. 1).  
The first case is ruled out because it implies that 
some process always considers that there is a 
process that is alive and whose id is less that the 
id of proposed new leader. But by strong 
completeness of a failure detector it is 
contradiction.  
The second case is also ruled out, because it 
implies that other process q sends infinitely many 
proposals of the other leader. But by eventual 
strong accuracy of a failure detector, the process q 
knows that there is a process whose id is less that 
its id. Therefore it is contradiction. � 
 
6. Concluding Remarks 
 
  We have presented a robust election protocol 
with a reliable failure detector in completely 
asynchronous systems. We have assumed our 
local failure detectors to be inaccurate and 
incomplete. With this approach, the leader 
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election specification states explicitly that 
progress cannot always be guaranteed. In practice, 
our requirement for progress is weaker than that 
stated in the original specification of having a set 
of processes sharing the same leader.  
In fact, if the rate of perceived a leader failures in 
the system is lower than the time it takes the 
protocol to make progress and accept a new leader, 
then it is possible for the algorithm to make 
progress every time there is a leader failure in the 
system. This depends on the actual rate of a leader 
failures and on the capacity of the failure 
detectors to track such failures.  
In [10], Chandra and Toueg note that failure 
detectors defined in terms of global system 
properties cannot be implemented. This result 
gives strength to the approach of relaxing the 
specification and of having a robust election 
protocol. In real world systems, where process 
crashes actually lead a connected cluster of 
processes to share the same connectivity view of 
the network, convergence on a new leader can be 
easily reached in practice.  
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Abstract - SaaS application gave many aspects of the 

business management. For that it became available and using 

in many domains. It will be needed to realize customer’s 

requirements from design to runtime. In this paper we have 

described the service availability for business process to 

perform the necessity of this kind of application. Depending 

on our SaaS model in three levels of the management we 

applied dynamic analysis by PRISM for availability and 

performance requirement. We followed the probability 

description because it the best way to define QoS 

requirements. It help us to use Markov chain which it 

described transition can occur from any state to other state 

and represented a simple or a compound event. For explain 

our research work we have taken the online booking as a 

running example. The result is we have adapted the SaaS 

online booking system by detecting or predicting violation in 

availability and performance requirements. Finally we 

present a conclusion and future work. 

 Keywords: SaaS application, availability, Markov chain,   
probability 
 

1 Introduction 

  In this paper we have showed the benefits of the 
autonomic management for our new model in SaaS 
application. Exactly we have defined the proportion of time 
for the system is functional and working to represented by 
availability in our model levels.  We started at first by 
describing probability of the availability in the user level 
when the customer requires services from tenant level.  It 
clearly obtained some scenarios for user activities will have 
an effect on the system availability. In the same description 
we introduced availability in the tenant level and the provider 
level.  And the important thing is the availability of the 
services introduced from our SaaS model depends on 
availability of the resources. Secondly we used formal 
language probabilistic computation tree logic (PCTL), and 
continuous stochastic logic (CSL) which they have defined 
QoS requirements obviously. With the quality evaluation 
Markov chain we described discrete and continuous states of 
our model [1]. All processes have explained and verification 
models by used online booking example. We have 
summarized our contributions of this paper as follow: 

� A novelty in availability requirement for our three 
levels in SaaS model.  
� The hierarchy of availability in our model, availability 

of the provider level means availability of the services, 
availability of the services level depends on availability of   
the resources level.  
� Used formal language is probabilistic computation tree 
logic (PCTL) and continuous stochastic logic (CSL) 
which they defined QoS requirements obviously. 
� Quality evaluation model by  DTMCs, CTMCs  
� Approximation of availability and performance metrics 
it has adapted SaaS application and shows what the user 
and the tenant expecting from the system.  
� Empirical evaluation by using PRISM as a model 
checker. It made dynamic analysis for detecting or 
predicting violation of the SaaS application requirements. 
We organized this paper by beginning with the 

description for availability of the SaaS model in section 2.  In 
section 3 we defined the formal definition of QoS 
requirement. By the sequence we introduced the type of the 
quality evolution model in section 4.  In section 5 we have 
described running example for verification model. We made 
the empirical evaluation for availability and performance 
requirements in section 6. In section 7 we mentioned the 
related work. Finally, we present the conclusion and point to 
future work. 

2 Availability of SaaS Model 

 Availability of the user level depends on availability of 
the tenant level and availability of tenant level depends on 
availability of the provider level. Therefore, a detailed of the 
availability and analysis for this architecture can be carried 
out to support design architectural decisions. Different 
variants of this architecture can be modeling and comparing 
with respect to the availability objectives to be fulfilled. For 
example the hierarchy of the availability requirement it 
depicted in figure 1. As we have described new model for the 
SaaS application in our last research. Here we extended it to 
manage availability and performance requirements. First of 
all we show the availability of three levels user, tenant, and 
provider as follow: 

2.1 Availability Model in User Level 

 
 We have taken online booking hotel as example. The 
user level can access through web start with browse, booking, 
payment, and exit. We can describe many scenarios for user 
level by different probabilities as appeared in figure 2 
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          Fig 1 Availability of SaaS Model 

 
Fig 2 Availability Model in User Level 

Here in user level just the customer want to receive services 
from online booking hotel system. But in this level the user 
can do some processes without benefit travel agencies like 
just browse and searching without booking. This will effect 
to the resources availability for other they want to book. That 
can be appeared in scenarios in table 1 below: show different 
type of users by their probabilities in every scenario. 

Table 1 User Level Scenarios 

 
For example in scenario 1 (start-browse-end) the probability 
of user type 1 is 10 percent, user type 2 is 6 percent, and user 
type 3 is 2 percent. The user type has big value of the 
probability that can more effect in availability.  In other 
scenario (Start-browse-search-booking-search-payment-end) 
this completes the booking service and gave good income by 
user type 3 for travel agency.   

 

2.2 Availability Model in Tenant Level 

 We look in tenant or travel agencies level through the 
web of monitoring customer’s booking activity as depict in 
figure 3. Travel agency it can divide the period of booking in 
a normal season or low season this mean resources 
availability in low season will be high. Pij it shows the 
probabilities between states of process in travel agencies 
level.  

 
              Fig 3 Availability Model in Tenant Level 
Probability variable from travel agency to travel agency 
depend on the services introduce and resources availability. 
Availability model in this level is very important to serve 
many users in fewer resources to minimize the costing. 

2.3 Availability Model in Provider Level 

 The provider level need availability model to manage 
all travel agencies. Begin from monitoring all events of travel 
agencies that serve all customers. And modification 
information of travel agencies by adds new agencies or 
deletes any redundancy data for them. After that the system 
in this level can show the costing or payment of the services 
provide from provider to travel agencies.  

 
      Fig 4 Availability Model in Provider Level 

By this description in provider level we showed the 
availability model for services that can be introduce in this 
level. We represented this availability by probabilities 
between states inside the model as depicted in figure 4. 

2.4 Availability Model in Service Level 

 Availability model for service level can depend on web 
server, application server, and data base server that will be 
interact between any level of our model. Any service in 
figure 5 it has need to availability of web server at first to 
browse the service and the next probability for application 
server availability to process the functionality of service 

 

Scenarios type1 type2 type3 
Start-browse-end 10% 6% 2% 

Start-browse-browse-end 20% 10% 12% 
Start-browse-search-end 15% 15% 15% 
Start-browse-search-booking-end 20% 40% 20% 

Start-browse-search-booking-
cancelling-end 

60% 50% 30% 

Start-browse-search-booking-
payment-end 

20% 50% 70% 

Start-browse-search-booking-search-
payment-end 

30% 45% 65% 

Start-browse-search-booking-search-
cancelling-end 

40% 20% 10% 
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   Fig 5 Availability Model in Service Level 
Then it need to availability of database server to modify and 
save data. In the last it need to the web server again to show 
the result or the request of the demand. 

3 Formal Definition of QoS Requirements 

The estimation of the QoS requirements [2] is very 
important for optimization SaaS application in our model. 
We used two formal languages are probabilistic computation 
tree logic (PCTL) and continuous stochastic logic (CSL), 
which they defined QoS requirements obviously.  PCTL is 
defined by the following syntax:  

          Φ::= true |a| Φ⋀ Φ| ￢ Φ |   ��� (Ψ) 

                Ψ::= X  Φ |  Φ ��	   Φ 

Where p ∈ [0, 1], �∈ {<,≤,>, ≥}, t ∈ N ∪{∞}, and a 
represents an atomic proposition. The temporal operator X is 
called next and U is called until. Formula generated from Φ is 
referred to as state formula and they can be evaluated to 
either true or false in every single state. While the formula 
generated from Ψ are named path formula and their truth is to 
be evaluated for each execution path. PCTL can naturally 
represent availability-related properties for a DTMC model of 
the application. For example, we may easily express 
constraints that must be satisfied concerning the probability 
of reaching absorbing failure or success states from a given 
initial state. These properties belong to the general class of 
reachability properties. Reachability properties are expressed 
as  ���(�Φ) which expresses the fact that the probability of 
reaching any state satisfying Φ has to be in the interval 
defined by constraint � . In most cases, Φ just corresponds 
to the atomic proposition that is true only in an absorbing 
state of the DTMC. In the case of a failure state, the 
probability bound is expressed as ≤ x , where x represents the 
upper bound for the failure probability; for a success state it 
would be instead expressed as ≥ x , where x is the lower 
bound for success. PCTL is an expressive language through 
which more complex properties than plain reachability may 
be expressed. Such properties would be typically domain-
dependent, and their definition is delegated to system 
designers. 

We have considered the continuous stochastic logic to 
state properties on CTMC models. For CTMC there are two 
main types of properties relevant for analysis: steady-state 
properties where the system is considered when equilibrium 
has been reached. And it is the transient properties where the 
system is considered at specific time points or intervals. CSL 

is able to express both steady-state and transient properties by 
means of the S and ρ operators, respectively. The syntax of 
CSL is recursively defined as follows: 

Φ::= true |a| Φ⋀ Φ| ￢ Φ | ���|    ��� (Ψ) 

   Ψ::=  X�	  Φ|  Φ ��	   Φ 

Where p ∈ [0, 1], t ∈ R≥0 ∪ {∞}, �∈ {<,≤,>, ≥}, and a 

represents an atomic proposition. The semantics of Boolean 
operators is the same defined for PTCL.  As well as the 
possibility it defines derived operators, both boolean and 
temporal. To address the semantics of S and�, let us first 
introduce the notation π@t, which denotes the state in which 
the execution described by trace π is at time t. As before, π[i] 
denotes the i-th state the execution passed through, thus π@t = π[i] with i =mini {t ≤ ∑ ���

���  }. 
 

4 Quality Evaluation Model 

The uses of models extend beyond the initial design of an 
application support both the evolution of the software 
architecture. And it is devises suitable for reconfiguration 
strategies in dynamic contexts. To model complex 
interactions between components, use other kinds of models 
like Markov chains or more generally state space models. 
Many examples of dependencies among system components 
have been observed in practice and captured by Markov 
models. State-space based model which states represent 
various conditions of the system. Transitions between states 
indicate occurrences of events. State can keep track of 
number in functioning resources of each type, states of 
recovery for each failed resource, number of tasks of each 
type waiting at each resource, and allocation of resources to 
tasks. A transition can occur from any state to any other state 
and can represent a simple or a compound event. For that we 
looked in the Markov chain has two types in discrete and 
continuous time: 

4.1 Discrete SaaS User-Tenant-Provider 

Model 

    State-transition systems augmented with probabilities 
formalizing path-based on properties of Discrete SaaS User-
Tenant-Provider Model (DSUTP) model [3]. We turn to the 
problem of constructing a discrete time Markov chain with a 
given initial distribution, α, and transition matrix, P. More 
explicitly, for the discrete set S = {1, 2, . . . } (the finite state 
space is handled similarly), we assume the existence of: 
(i) An initial distribution α = {αk} giving the associated 
probabilities for the random variable X0. That is, for k ∈ S, 
                                 αk = P{X0 = k}……………..(1) 
(ii) Transition probabilities, pij , giving the desired probability 
of transitioning from state i ∈ S to state j ∈ S: 
                                pij = P{Xn+1 = j | Xn = i}…....(2) 
Note that we will require that α is a probability vector in that 
αk ≥ 0 for each k and    ∑ ���∈�  =1 We further require that for 
all i ∈ S∑ ���∈� =1.                                                             
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We simply says that the chain will transition somewhere 
from state i (including the possibility that the chain transitions 
back to state i). The problem is to now construct a discrete 
time Markov chain for a given choice of α and {pij} using 
more elementary building blocks: uniform random variables. 
Implicit in the construction is a natural simulation method. 

4.2 Continuous SaaS User-Tenant-Provider 

Model 

 A Continuous SaaS User-Tenant-Provider Model 
(CSUTP) is characterized by state changes that can occur at 
any arbitrary time the Index space is continuous and the state 
space is discrete valued [4]. A CSUTP can be completely 
described by: Initial state probability vector for X (t0): 
     ������ = ! , ! = 0,1,2, … … ………….….(3) 
 Transition probability functions (over an interval): 
���', � = ����� = �|��' = ( , )*+ 0 , ' , � -./ (, �

= 0,1,2 … 

   ����, � = 0 1,          () ( = �
0      *�12+3(42   -./ , ∑ ���∈5 6 �', � =

   1 7 (; ,0 , ' , �…………………………….....(4) 
A CSUTP is said to be irreducible if every state can be 
reached from every other state, with a non-zero probability. A 
state is said to be absorbing if no other state can be reached 
from it with non-zero probability. Notion of transient, 
recurrent non-null, recurrent null are the same as in a DSUTP. 
There is no notion of periodicity in a CSUTP. 
 

5 Running Example for Verification SaaS 

Model 

From our activity diagram in previous research we have 
described the workflow representing online booking system 
to customer. We have defined SaaS application in three 
management levels. We have taken samples of the services 
for every level. For example provider level has: (1) modify 
travel level data, (2) monitor events, and (3) reporting, for 
tenant level has: (1) check user form, (2) modify tariff, and 
(3) customer reporting, and user level has: (1) available 
booking, (2) cancelling booking, and (3) searching. The 
costing or payment process for this system classified in two 
types: first payment from customer to travel agencies for 
giving services like booking. Second payment from travel 
agencies to provider for prepares resources and data 
management for them. In our system need to monitor the 
availability of the services, there are some properties will be 
very important like failure rate (FR) of services, the 
costing(C) of the services, execution time (ET) inter-arrival 
rate (µ), and maximum request of services (λ). From property 
we can define some requirements for suitable availability and 
performance metrics for our model: 
  R1: The probability P1 of the service booking failure from 
user web site P1=0.13 
  R2: The probability P2 of the service cancelling failure from 
user web site P2=0.14 

  R3: The probability P3 of the service modify tariff failure from 
tenant web site P3=0.01. 

  R4: The probability P4 of the service monitor event failure 
from provider web site P4=0. 05. 

  R5: The probability P5 the service  demand of booking during 
high season will drop if it take more than 5 second, P5 more 
than or equal 0.5. 
  R6: The probability P6 the  service request of booking during 
high season will drop if it take more than 10 second, P6 more 
than or equal 0.8. 
  R7: The probability P7 the  service request of monitor event 
from provider to tenants will drop if it take less than 7 
second, P7 more than or equal 0.4. 
SaaS application administrators require suitable availability 
in QoS requirements [5]. Approximation of metrics [6] that 
will adapt SaaS application and what the user and tenant 
expecting from system will help administrators. The 
availability services of our three levels model it has depicted 
in figure 6 by DSUTP model.   

 

Fig 6 Online Booking DSUTP Model 
Requirements R1–R4 can be translated in PCTL as follows: 

�9�.;< = =� 4 = 22> The probability of eventually reaching 
state 22 booking failure, which corresponds to the successful 
completion of the session (see Fig. 6) is greater than or equal 
0.13 
�9�.;? = =� 4 = 21> The probability of eventually reaching 
state 21 cancelling failure, which corresponds to the 
successful completion of the session (see Fig. 6) is greater 
than or equal 0.14 
�9�.�; = =� 4 = 23> The probability of eventually reaching 
state 23 modify tariff failure, which corresponds to the 
successful completion of the session (see Fig. 6) is greater 
than or equal 0.01 
�9�.�A = =� 4 = 24> The probability of eventually reaching 
state 24 monitor event failure, which corresponds to the 
successful completion of the session (see Fig. 6) is greater 
than or equal 0.05 
Performance requirement for our model in three levels it can 
realize the continuity of SaaS system activity. We have 
defined the state rate in a time for three levels in our running 
example see table 2. To show these continuous states and 
their requests we have depicted CSUTP model in figure 7.  
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Table 2 State Rate in A time 
 State rate(λ) Value req\sec 

1 Login-cancel 10 
2 Login-booking 15 
3 Cancel process 20 
4 Generate cancel 5 
5 Booking process 30 
6 Generate booking 8 
7 Login-travel agency 5 
 8 Receive job  10 
9 Done job 5 
10 Login-provider 3 
11 Monitor event 5 
12 Modification by provider 20 

 

 
       Fig 7 Online Booking CSUTP Model 

Performance requirements have been mapped into the 
following CSL formula (notice that the notion of time here is 
continuous and not discrete in time steps. 
�9�.A = =��A 4 = 11> The probability of eventually to reach 
state 11 (generate booking) within 5 s is greater than or equal 
0. 5 
�9�.C   = =��;� 4 = 12> The probability of eventually to reach 
state 12 (request booking done) within 10 s is greater than or 
equal 0. 8 
�9�.? = =��D 4 = 5> The probability of eventually to reach 
state 13 (request of monitor event report) less than 0.5 s is 
greater than or equal 0.4 

6 Empirical Evaluation 

We have adapted the SaaS application automatically 
identified by detecting a validation of requirement for our 
model in three levels. The possible verification of 
requirements can be achieved by using model checking 
techniques. We used DSUTP model and connected with 
environment which can effect in SaaS availability may be 
change over a time. The requirements from R1 to R4 are 
depicted by DSUTP for analysis availability requirements 
and represented the failure of services. By CSUTP model we 
have defined R5 to R7 for analysis performance requirements 
[7]. 

6.1 Availability Requirement 

We used PRISM as model checker to dynamic analysis 
temporal logic formula for all possible value. For availability 
we have an assign to configurable SaaS parameters by depict 

the probability variation of the requirements failure to 
consider into valid and invalid range. From figure 6 we have 
supposed some failures for three levels of our model. Here we 
used PRISM coding to DSUTP model failure of online 
booking system services see the listing  1.  

Table 3 The Pseudo-code of DSUTP for R1 to R4 
  A pseudo-code of DSUTP for R1 to R4 
    dtmc 
    module failure 
 1  // local state 
 2   s: [1..24] init 1; 
 3   // state failure 
 4   d: [21..24] init 21; 
 5   [ ] s=1->0.01:(s'=2)+0.39: (s'=3)+0.3: (s'=4) + 0.3:(s' =5) ; 
 6   [ ] s=2 -> 0.86 : (s' =6) + 0.14 : (s' =21)  &  (d' =21) ; 
 7   [ ] s=3 -> 0.87 : (s' =7) + 0.13 : (s' =22) &  (d' =22) ; 
 8   [ ] s=4 -> 1 : (s' =8); 
 9   [ ] s=5 -> 0.95 : (s' =9) + 0.05 : (s' =24) &  (d' =24) ;  
 10 [ ] s=6 -> 1 : (s' =10); 
 11 [ ] s=7 -> 1 : (s' =11); 
 12 [ ] s=8 -> 1 : (s' =12); 
 13 [ ] s=9 -> 1 : (s' =16); 
 14 [ ] s=10 -> 1 : (s' =13);   
 15 [ ] s=11 -> 1 : (s' =14); 
 16 [ ] s=12 -> 1 : (s' =15); 
 17 [ ] s=13 -> 1 : (s' =17); 
 18 [ ] s=14 -> 1 : (s' =18); 
 19 [ ] s=15 -> 0.99 : (s' =19) +0.01 : (s' =23) &  (d' =23) ;  
 20 [ ] s=16 ->  (s' =16); 
 21 [ ] s=17 ->  (s' =17); 
 22 [ ] s=18 -> 1 : (s' =20); 
 23 [ ] s=19 ->  (s' =19); 
 24 [ ] s=20 ->  (s' =20); 
 25 [ ] s=21 -> 1 : (s' =21);  
 25 [ ] s=22 -> 1 : (s' =22);  
 27 [ ] s=23 -> 1 : (s' =23);  
 28 [ ] s=24 -> 1 : (s' =24); 
 Endmodule 

Experimental results about our method we used the 
probabilistic model checker PRISM on the example to verify 
the satisfaction of the previous properties, we got the 
following probabilities: 

         • “Probability of cancelling failure is equal to 0.0014” 
        • “Probability of booking failure for a user is equal to 
0.0507” 
        • “Probability of tariff failure for travel agencies equal to 
0.003” 
        • “Probability of monitor event failure for provider level 
equal to 0.015” 

We supposed input from outside environment to our 
model that has modeling different services. Two services 
from user level cancelling failure and booking failure.  The 
output of PRISM indicated to validation of input because the 
probability 0.0014, 0.0507 for cancelling failure, and booking 
failure respectively inside the range    of requirements 
(cancelling failure from user web site P2=0.14, booking 
failure from user web site P1=0.13). In the tenant level the 
probability of tariff failure is 0.01 no violated in model 
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checker because it 0.003. And so for provider level the failure 
of monitor event for travel agencies activities is 0.05 more 
than the output of PRISM 0.015 it is valid value. The output 
of this analysis is in figure 8 bellow. 

 

 
Fig 8 Analysis of Availability Requirements 

Model checker help online SaaS application to detect the 
violation that will lead to failure it look like prognostics 
strategies [8] to what will happen. And we understand the 
effect of services failure for availability of application. 
Definitely we increased availability of the SaaS application to 
be functional and working. 

6.2 Performance Requirements 

Here we used PRISM coding to CSUTP model of the 
online booking system services for performance requirement 
[9]. See the listing 2. 
Table 5 The Pseudo-code of CSUTP for R5 to R7 

A pseudo-code of CSUTP for R5 to R7 
ctmc 
  module GCbooking 
1 // local state 
2 s : [1..11] init 1; 
3 // value of the drop 
4 d :[10.. 11] init 10; 
5          [] s=1 -> 15 : (s'=3) ; 
6          [] s=3 -> 30 : (s'=7) ; 
7          [] s=7 -> 8 : (s'=11) &(d' =11); 
8          [] s=11 -> 3.5 : (s'=7) ; 
9  endmodule 
10 module Gdonebooking 
11 // local state 
12 s : [1..12] init 1; 
13 value of the drop 
14 d :[11.. 12] init 11; 
15         [] s=1 -> 5 : (s'=4) ; 
16         [] s=4 -> 10 : (s'=8)   ; 
17         [] s=8 -> 2.3 : (s'=4) + 5 : (s'=12) & (d' =12)  ; 
18         [] s=12 -> 3.5 : (s'=8) ; 
19 endmodule 
20 module Gdonereportevent 
21 //local state 
22 s : [1..13] init 1; 
 23 // value of the drop 
 24      d: [12..13] init 12; 
 25      [] s=1 -> 3 : (s'=5) ; 
 26      [] s=5 -> 5 : (s'=9)   ; 
 27      [] s=9 -> 4.2 : (s'=5) + 20 : (s'=13) & (d'  =13)  ; 

 28      [] s=13 -> 5.5 : (s'=9) ; 
 29 endmodule 

  
Again by means of PRISM, we get the following 
probabilities: 
       • “Probability that demand of booking during high 
season will drop if it take more than 5 second, P5=1. ” 

         • “Probability P6 the request of booking during high 
season will drop if it take more than 10 second, P6=1” 
         • “Probability the request of monitor event from 
provider to tenants will drop if it take less than 7 second, 
P7=1” 

We observed that PRISM output not satisfies the 
requirements under the stated assumptions on the behavior of 
the environment because it violated the value input for system 
control. Can see figure 9 analysis the different probability 
services request for the model levels drop generatebooking, 
drop requesbooking, and drop monitorevent for user level, 
tenant level and provider level respectively. 

 
Fig 9 Analysis of Performance Requirements 

Continuous detection of this violation will increase the 
SaaS system performance and define the range of time request 
for every level service of our model. In addition we can predict 
for what will happen for any service level. This analysis 
depend on monitoring specification of system environment and 
it choices for plan state [10].  
 

7 Related Work 

The SaaS application is hot research in recent years in 
[11] they Configurable business process, and isolation 
database to Leverage SMEs. Researchers in [12] they 
innovated multi-layered customization framework to Manage 
the variability of SaaS applications and tenants-specific 
requirements. Ontology is used to derive customization and 
deployment information for tenants cross layers. In [13] 
authors they used Context-oriented Programming to achieves 
a higher customization flexibility by single-version 
application code base. In [14] they Identified requirements for 
such a runtime architecture addressing the individual interests 
of all involved stakeholders. SaaS reference architecture must 
support at design time as well as at runtime. They Self-
optimize the runtime environment according to a tenant’s 
configuration. Authors in [15] they designed Three 
architectural patterns that support variability in multi-tenant 
SaaS environments. In [16] they depicted the design space 
and represent the common and variant parts of SaaS 
architectures. Feature model enhances the understanding of 
SaaS systems, and supports the architect in designing the 
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SaaS application architectures. The research in [17] it defined 
architecture by SaaS application layers for flow 
customization business process. Integration requirements and 
roadmap between SaaS application and on-premise 
applications are introduced in [18] by frame work architecture 
in SBM services. In [19] they designed Systematic approach 
and corresponding tool support for guiding the design of SaaS 
application architectures. Selected features are related to 
design decisions and a SaaS application architecture design is 
derived. They separated data servers for Tenants, separated 
application server, and one distribution server. They 
implemented architecture in [20] to define a SaaS application 
as an organization-based service composition and helps SaaS 
vendors, tenants in modeling and managing their applications. 
All researches didn’t take autonomic management for SaaS 
application. 

8 Conclusions 

This paper has explained the way for autonomic 
management of QoS requirements for SaaS application. We 
have described the availability of SaaS application because it 
is a big issue in business process. To grantee the system 
continuous working we used the probability modeling. That it 
has gave our model high power in dynamic analysis for QoS 
requirements. By PRISM we have insured the model checker 
can give indicator of violation of requirements to detect and 
predict for what will happen. The future work will be 
following the autonomic management of the SaaS application 
for other QoS requirements in our new model.  
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Abstract— Hadoop MapReduce assists companies and re-
searchers to deal with processing large volumes of data.
Hadoop has a lot of configuration parameters that must be
tuned in order to obtain a better application performance.
However, the best tuning of the parameters is not easily
obtained by inexperienced users. Furthermore, most of stud-
ies that address this issue are superficial and cover only
some parameters. This paper presents a systematic review
by identifying current research papers, which addresses
the correlation between Hadoop configuration settings and
performance. In this sense, this systematic review identified
743 papers in 5 researched databases. Applying the steps
for selecting and a few exclusion criteria, the number of
papers was reduced to 40. These papers were analyzed and
classified according to Hadoop configuration parameters
and the goals of the studies.

Keywords: Configuration Parameters, Hadoop, MapReduce, Per-
formance, Systematic Review

1. Introduction
MapReduce, a framework introduced by Google Inc., is a

programming model designed to process large data volumes
in parallel in a distributed environment (clusters) [1].

Hadoop [2] is an open-source implementation of MapRe-
duce and currently have been one of the most widely
used implementations for processing large amounts of data.
Its programming model is divided into two main phases:
the Map and Reduce phases. The reduce phase is divided
between phases shuffle, sort and reduce. This is the inter-
mediate phase.

A large number of companies, research centers and re-
searchers have used Hadoop MapReduce implementations
in applications such as data mining, production of reports,
indexing Web pages, analysis of log files, machine learning,
financial analysis, scientific simulation, statistics, research in
bioinformatics and others [3]. Therefore, Hadoop has been
studied to identify several aspects involving the tuning and
performance.

Current studies show that the performance of Hadoop
MapReduce jobs depends on the cluster configuration, input
data type and job configuration settings [1], [3], [4]. Further-
more, some studies point out that most of the applications
running on Hadoop, show a large difference between the

behavior of the map and reduce phases. For instance, in
some cases the Map phase is computationally intensive, in
other is Reduce and others both [4].

This paper presents an overview of these studies focused
on Hadoop configuration parameters that has influence on
the job performance. The paper explores how the tuning
parameter of Hadoop impacts on the entire system perfor-
mance. More specifically, this research might answer the
following questions:

(1) Which Hadoop configuration parameters has influ-
ences and impact on system performance?

(2) Which parameters are influenced by Hadoop phases?
(3) Which parameters are influenced by workloads char-

acteristics?
This paper is organized as follows. In Section 2, a back-

ground on MapReduce and Hadoop framework, concepts
and theories are presented. Section 3 describes the research
method applied to systematic review. Results are presented
in Section 4 and discussed in Section 5. Section 6 presents
the final considerations this paper.

2. Background
This section presents the main concepts related to this

systematic review.

2.1 MapReduce
MapReduce is a framework of distributed functional pro-

gramming. Its processing occurs in two phases: Map and
Reduce. MapReduce framework divides the work into a set
of independent tasks and manage communications and data
transfers between nodes in the cluster and the related parts
of the system.

Apache Hadoop [2] is the well known and most widely
used implementation of MapReduce. However, the improve-
ment of application performance is directly related to the
setting of the Hadoop’s parameters. To ascertain the rela-
tionship between parameter values and a good performance
is not a simple task, even for experienced users.

2.2 Hadoop
The Apache Hadoop software library allows for the dis-

tributed processing of large data sets across clusters of
computers using simple programming models. It is designed
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to scale up from single servers to thousands of machines,
each offering local computation and storage.

Hadoop is a free, Java-based programming framework that
supports the processing of large data sets in a distributed
computing environment. It is part of the Apache project
sponsored by the Apache Software Foundation.

2.2.1 Execution Parameters

In order to run a program such as a job in Hadoop, an
object configuration job is created and the parameters of the
job must be specified. That is, since the job was created for
MapReduce, it must enabled to run in scale on a cluster [4].
Therefore, in order to avoid some problems such as under-
performance, for example, it is necessary to tuning some
parameters.

Hadoop provides many configurable parameters that lead
to better or worse performance on a cluster. Most of these
parameters take effect on execution of the job and cluster.
In the case of large clusters of machines, these parameters
become quite important and provide an indication of the
performance of this cluster in relation to the submitted job.
Thus, for better system performance, the framework must be
further optimized as is possible.

Hadoop has over 190 parameters that can be specified to
control the behavior of a MapReduce job. Of those, more
than 25 parameters can impact the performance of the task
[5]. Some configuration parameters aim to control various
aspects of the behavior of the task at runtime. Some of
these aspects include the allocation and use of memory,
competition, optimize I/O and network bandwidth usage. If
the parameters are not specified, default values are assumed.

3. Research Method
One method that has gained significant popularity in the

various area of research is the Systematic Literature Review
(SLR or systematic review). Specifically in Big Data, few
systematic reviews are found. Therefore, it is a field to
be explored. More specifically, we found no systematic
review about performance of Hadoop systems related to their
configuration parameters and tuning. In this sense, a review
on this subject in a systematic and rigorous manner, will be
valuable for research and practice.

SLR is a rigorous methodological review of the research
results. Besides adding the existing evidence on a specific
research topic, an SLR is also intended to support the
development of guidelines and consensus for future studies,
based on evidence from several previous studies. Therefore,
a systematic review aims to identify, evaluate and interpret
relevant research about a particular issue, a thematic area
or phenomena of interests using an explicit and rigorous
method [6].

Among the several grounds for make a systematic
review[6], we highlight for this work:

• Identify the directions that current research on the
subject in a matter are taking;

• Provide a background to the new researchers in the field
in order to properly position them regarding what has
been done and the consensus of the community.

A systematic review involves several distinct activities,
which according to [7], summarizes the stages of the sys-
tematic review in three main phases: planning, conducting
and reporting the review. The next subsections detail the
steps taken to produce this study.

3.1 Planning the review
The planning of the systematic review started by devel-

oping a protocol. This protocol specified the process and
methods that would be applied. The protocol specified the
research questions, the research strategy and the criteria for
inclusion and exclusion. This systematic review aims to pro-
vide an overview of studies which apply to performance of
Hadoop systems in regard to their configuration parameters,
answering the research questions mentioned in Section 1.

3.2 Conducting the review
Once the protocol has been agreed, the steps for conduct-

ing the review are presented below.

3.2.1 Research Identification
A systematic review aims to find the largest possible

number of primary studies related to the research topic.
Thus, the first step is the identification of keywords and
search terms. In this study, the keywords and terms have
been used in order to get the relevant work in a broader
way, in relation to the universe of this study [8]. All possible
permutations of the words "Hadoop" and "parameters" were
considered. Moreover, we varied the terms relating to "per-
formance" (see Table 1). For example, the first search string
was: "Hadoop", "Performance Tuning" and "Parameter". All
search terms were searched in full-text, title, and keywords
of all databases listed in Table 2. These databases were
chosen because of their relevance in the scientific community
[6], and for the indexing of the most important confer-
ences of parallel and distributed computing, workshops and
journals. As the objective of this study is to understand
the performance of Hadoop framework by setting the its
parameters, and this is a relatively new research topic, only
studies of 2008 onwards have been searched. The research
was carried out in October 2013, which means that the
publications of the end of 2013 until now may not have
been indexed by the databases. The identification process
produced 1181 papers. This formed the basis for the next
step.

3.2.2 Selection of Primary Papers
The first step after the preliminary identification of papers

was the elimination of duplicate titles. The execution of this
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Table 1: Terms for the search
Terms about Performance

Performance Tuning
Performance Analysis

Performance Prediction
Performance of MapReduce

Performance Model
Hadoop Performance

Job Performance
Self-Tuning

Table 2: Databases researched in the systematic review
Researched Databases
ACM Digital Library

IEEE Xplore Digital Library
Science Direct
Springer Link

Scopus (Elsevier)

step reduced the set for 743 papers. The next step was to
remove the titles clearly not related to the review. This step
reduced the set for 296 papers. Then the abstracts were read
and evaluated, with the following exclusion criteria:

• exclude papers that were clearly not of the hadoop
system area or not applied to hadoop performance or
job performance,

• exclude papers that were not related to the terms of
performance tuning, analysis, prediction, model or self-
tuning,

• exclude papers that were not related to the tuning
parameters or configuration as well as their implications
on performance,

• exclude papers that were just of literature review, as
example, systematic review, and,

• exclude papers without validation method, if it were not
clearly a practical study.

After the execution of this process, the set of papers was
reduced to 124. The full text for all 124 papers was obtained
and read with the same exclusion criteria. The final number
of papers selected for the review was 40, which clearly fitted
to the criteria defined for accomplishment of the systematic
research, which were then analyzed.

3.2.3 Study quality assessment and classification

After reading and analyzing the selected papers, the next
step was to classify them according to parameters studied
for each paper. Due to lack of specific literature on the
topic discussed in this systematic review, the classification of
parameters was based on the definitions and classifications
adopted in the book Pro Hadoop [4], which is one of the
most cited references in the analyzed studies and based on
our own understanding since there are no classifications rat-
ified by the scientific community. In this systematic review,
the purpose of the classification parameters, is answer the

questions raised in Section 1 and show which parameters
have been identified and studied in the works that deal with
the performance of Hadoop.

3.2.4 Data Synthesis
For the synthesis, were extracted the Hadoop configuration

parameters that has influence on the performance, the central
objectives and the experimentation methods.

4. Results
The results of this study are divided into three main

sections, aiming to answer the initial questions. Section 4.1
focuses on identifying parameters which were used in the
detected studies, Section 4.2 focuses on which parameters
are affected by each Hadoop phase and Section 4.3 focuses
on identifying which parameters are related to the workloads
characteristics.

The Table 3 summarizes the parameters. The classification
used in the table answers the first three questions of this
systematic review. Discussions about it follow in the next
sections.

4.1 Configuration Parameters Results
According to the classification adopted, we identified all

parameters that somehow influences system performance
and which have been studied in the papers that we have
identified.

About 29 configuration parameters, which according to
studies analyzed impact on system performance, were iden-
tified. Figure 1 shows a graph that points out the number of
papers by parameters. More details in Section 5.

4.2 Hadoop Phases x Parameters Results
The execution of a MapReduce job is divided into a Map

phase and a Reduce phase. The data output by each map task
is written into a circular memory buffer. When this buffer
reaches a threshold, its content is sorted by key and flushed
to a temporary file. These files are then served via HTTP
to machines running reduce tasks. Reduce tasks are divided
into three sub-phases: shuffle, sort and reduce. The shuffle
sub-phase copies the data output from the map nodes to the
reducer’s nodes. The sort sub-phase sorts the intermediate
data by key. Finally, the reduce sub-phase, which runs the
job’s reduce() function and the final result is then written to
the distributed file system [47].

Studies point out that most of the applications running on
Hadoop, show a large difference between the behavior of
the map and reduce phases. Therefore, it is very important
know which parameters must be tuned according to the
processing phases of an application on the Hadoop. In
Table 3, in the column Parameter Phase, we classify the
parameters which influence the phases of Hadoop: Map,
Reduce and intermediate sub-phases of the Reduce phase.
The sub-phases are classified as Merge/Shuffle phase. In
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Table 3: Configuration Parameters
Parameter
Category

Parameter
Level

Parameter
Phase

Workload Char-
acteristics

Parameter Scientific Papers

Hadoop Cluster
Level

Merge/
Shuffle

IO dfs.replication [9], [10], [11], [5], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21]

dfs.replication.interval [9], [10], [11], [14], [15], [16]
mapred.min.split.size [22], [23]

Number of maps dfs.block.size [9], [10], [11], [5], [24], [12], [25], [13], [14], [15], [16],
[26], [27], [28], [29], [30], [31], [32], [17], [18], [19],
[33], [20], [34], [22], [35]

Job Level Core Job CPU mapred.compress.map.output [12], [29], [17], [22], [36], [37], [3], [23]
mapred.job.reuse.jvm.num.tasks [20], [22], [23]
mapred.output.compression.type [17], [22], [23]
mapred.reduce.slowstart.completed.maps [18], [21], [36], [37], [3], [23]

Memory mapred.child.java.opts [5], [13], [16], [17], [22], [23]
Network mapred.reduce.parallel.copies [17], [22], [38], [19]

Map CPU mapred.map.tasks.speculative.execution [18], [23]
mapred.tasktracker.map.tasks.maximum [9], [10], [11], [12], [13], [14], [15], [16], [29], [17],

[18], [34], [22], [35], [23], [39], [40]
Merge/
Shuffle

CPU mapred.map.output.compression.codec [17], [22], [23]

IO io.file.buffer.size [9], [10], [11], [5], [14], [15], [16], [29], [20]
io.sort.factor [9], [10], [11], [5], [13], [14], [15], [16], [32], [17], [18],

[19], [20], [36], [37], [3], [38], [23]
io.sort.mb [9], [10], [11], [5], [13], [14], [15], [16], [17], [22], [36],

[37], [3], [38], [23], [41]
io.sort.record.percent [9], [10], [11], [5], [13], [14], [15], [16], [22], [36], [37],

[3], [38], [23], [41]
io.sort.spill.percent [9], [10], [11], [14], [15], [16], [29], [20], [34], [22],

[36], [37], [3], [38], [23]
Memory mapred.inmem.merge.threshold [5], [16], [18], [22], [36], [37], [3], [23]

mapred.job.reduce.input.buffer.percent [5], [16], [22], [36], [37], [3], [38], [23]
mapred.job.shuffle.input.buffer.percent [5], [16], [29], [22], [36], [37], [3], [38], [23]
mapred.job.shuffle.merge.percent [5], [16], [18], [36], [37], [3], [38], [23]

Reduce CPU mapred.reduce.tasks.speculative.execution [23]
mapred.tasktracker.reduce.tasks.maximum [9], [10], [11], [12], [13], [14], [15], [16], [29], [17],

[18], [34], [22], [35], [23], [39], [40]
Memory mapred.tasktracker.tasks.maxmemory [42]

Workload Job Level Map CPU mapred.map.tasks [9], [10], [11], [24], [12], [14], [15], [16], [26], [27],
[30], [31], [19], [33], [20], [34], [22], [35], [43], [44],
[42], [45], [46]

IO mapreduce.combine.class [29], [36], [37], [3]
min.num.spills.for.combine [36], [37], [3], [23]

Reduce CPU; IO mapred.reduce.tasks [9], [10], [11], [5], [24], [12], [25], [14], [15], [16], [26],
[27], [28], [30], [31], [32], [19], [33], [20], [34], [22],
[35], [36], [37], [3], [38], [23], [43], [44], [42], [46]

addition, Core Job was listed as a phase that represents those
parameters that directly control essential functions of the job.
The parameter dfs.block.size was classified by phase Number
of maps just to demonstrate that the value this parameter is
what defines the number of map tasks.

4.3 Workloads Characteristics x Parameters
Results

Optimizing Hadoop Performance through the characteris-
tics of workloads are important in order to make full use of
that cluster resources (CPU, memory, IO and network - see
Table 3, in the column Workload Characteristics).

Among other examples, set certain parameters can reduce
the IO cost and network transmission, but can cause a
CPU overhead. This is an example if we configure the
mapred.compress.map.output to parameter to true (default

is false), it will decrease the size of data transferred from
the Mapper to the Reducers, but will add more processing
in the data compression and decompression process [4].
Furthermore, some parameters are correlated with each other.
The relation between the io.sort.mb parameter (the amount
of buffer space in megabytes to use when sorting streams)
and mapred.child.java.opts parameter (Java control options
for all mapper and reducer tasks) is an example. The upper
limit of the former is smaller than the second size. Configure
sufficient Map and Reduce slots to maximize CPU utilization
and configure the Java heap size (for Map and Reduce JVM
processes) so that ample memory is still available for the
OS kernel, buffers, and cache subsystems are other examples
[23].

Workload characterization by CPU, memory, IO and
network (via benchmarks) is essential before performing
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Fig. 1: Number of Scientific Papers per Parameter

any tuning parameters. Furthermore, it is important that we
deploy the parameters are related to the characteristics of
workloads. This allows identifying the parameters that can
be set to obtain best performance.

5. Results Analysis
This section discusses the results of this systematic re-

view and based on the answers from 3 initial questions.
Furthermore, the results obtained from our study identified
the main purpose of the studies analyzed, and the methods
of experimentation and validation used in each study.

5.1 Questions Considerations
Answering the first question, it is clear that about 29

Hadoop configuration parameters are those which more
impact on system performance. From these 29 parameters,
10 parameters were covered over 65% of the papers. We
observed that the most discussed parameters on these works
are mapred.reduce.tasks (The suggested number of reduce
tasks for a job) with 31 papers of the 40 papers surveyed,

mapred.map.tasks (The suggested number of map tasks
for a job) with 23 papers, dfs.block.size (The basic block
size for the file system) with 26 papers and io.sort.factor
(The number of map output partitions to merge at a time)
with 18 papers. These parameters are those that allow the
framework to attempt to provide data locally for the task
that processes the split. Although some parameters have not
been widely exploited by most papers, studies have shown
their importance in relation to performance.

Answering the second question, we identify the parame-
ters that are affected by each Hadoop phase. This will also
allow the targeting of tuning the parameters identified at each
stage of Hadoop if this is required. This approach would be
rather useful if we know the application characteristics and
at what phase it is CPU, IO or network bound, for example.
Thus, the tuning of the parameters would be directed by this
prior knowledge.

Answering the third question, we can observe the param-
eters are impacted according to workloads characteristics.
Thus, it is possible, in future work, observe the workloads
characteristics and working with the tuning of Hadoop
parameters targeted at them.

5.2 Purpose and Experimentation Approach
Results

Related work in this systematic review have had in
common the exploration of configuration parameters and
performance of Hadoop. However, we note that the studies
have different core purposes, as well as different methods
of experimentation. Thus, for better understanding, we clas-
sified the papers according to the main purpose and the
methods applied.

For classifying the experimentation method, it was used
the taxonomy proposed by Zelkowitz and Wallace [48]. In
this taxonomy there are four approaches toward experimen-
tation: (1) Scientific Method, (2) Engineering Method, (3)
Empirical Method and (4) Analytical Method.

Table 4 shows the main purpose of each work and
the main experimentation methods found in the analyzed
papers. Importantly, the identification of the method used
in the analyzed studies are not always as clear to identify.
Some studies show a twofold interpretation. Thus, even with
dubious features, in some cases, we classify according to the
predominant method.

We observed that many studies focused between the
purpose of obtaining performance models (about 22.5%) and
performance prediction (37.5%). Other were divided into
performance analysis and tuning performance, and only one
job to prediction energy and performance penalties. Further-
more, we observed that 67.5% of the analyzed papers have
used the empirical approach as experimentation method, and
32.5% have used the analytical method.

Most studies have adopted an empirical approach in exper-
imental methods. This means that proposed a hypothesis and
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Table 4: Purpose and Experimentation Approach Results
Purpose Approach Scientific Papers
Energy
Prediciton

Analytical [13]

Performance
Analysis

Empirical [32], [43], [12], [26], [21], [15]

Performance
Model

Empirical [18], [40], [33]

Analytical [44], [19], [16], [35], [30], [25]
Performance
Penalties

Empirical [14]

Performance Pre-
diction

Empirical [24], [11], [42], [37], [3], [28], [38], [9],
[10], [29]

Analytical [36], [41], [46], [31], [17]
Performance
Tuning

Empirical [5], [22], [23], [20], [34], [27], [39]

Analytical [45]

validated by a method of statistical analysis. In other words,
data were collected and statistically verified the hypothesis.
On the other hand, some studies have utilized the analytical
method. These studies have developed a formal theory to a
problem, and results derived from this theory were compared
with empirical observations.

5.3 Validation Methods
A further analysis was achieved through the researched

information by this systematic review is about the valida-
tion methods used by the studies. Validation methods were
analyzed in the same manner as the experimentation methods
and were classified according to the taxonomy for software
engineering experimentation [49].

The studies may be classified into three of the twelve
methods considered in the taxonomy. It is noteworthy that
once again, here, papers with dubious interpretations. Thus,
the validation methods with predominant features were clas-
sified. It is possible to observe in Table 5 that most of
the works used mainly dynamic analysis (benchmark) and
simulation to validate their researches. As can be seen, the
controlled dynamic analysis method is the method more used
in researches projects and formal theoretical analysis method
is the least used method.

Table 5: Validation Results
Validation Type Validation

Method
Scientific Papers

Controlled Dynamic
Analysys
(Benchmark)

[18], [24], [5], [45], [22], [36], [42],
[37], [3], [19], [28], [40], [32], [43],
[12], [26], [41], [38], [13], [23], [21],
[34], [27], [46], [31], [30], [39], [25],
[29], [17], [33]

Simulation [11], [14], [20], [35], [9], [10], [15]
Formal Theoretical

Analysis
[44], [16]

6. Final Considerations
A systematic review on the relationship of the Hadoop

configuration parameters and system performance was pre-
sented. The goal was a study to review the most recent re-
search into this context and answer the following questions:
(1) Which Hadoop configuration parameters has influences
and impacts on system performance? (2) Which parameters
are influenced by workloads characteristics? (3) Which pa-
rameters are influenced by Hadoop phases?

The results achieved were able to answer these questions
and provide references for future works directed to its subject
matter. Besides the expected answers, the results analysis
identified the main purpose and the experimentation and
validation methods approached by the examined papers.
Once again, with great importance for reference in future
works.
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Abstract—Parallel decision tree learning is an effective and
efficient approach to scaling the decision tree to large data
mining application. Aiming at large scale decision tree learning,
we present a novel parallel decision tree learning algorithm
in MapReduce framework, called PDTSSE (Parallel Decision
Tree via Sampling Splitting points with Estimation). We first
propose an estimation method for sampling splitting points, which
can effectively handle both categorical and numeric attributes
over large scale data. We also derive an error bound for the
algorithm, and analyze the computational complexities of the
algorithm. Finally, we describe the implementation procedures
in MapReduce framework. Theoretical analysis and experimental
results show that PDTSSE has low computational cost compared
to state of the art classifiers while maintaining the quality of the
generated trees in terms of accuracy, and can scale to large scale
data mining application.

Keywords-Classification; Decision Tree; Sampling; Parallel,
MapReduce

I. I NTRODUCTION

Decision trees are elementary and effective classifiers. They
have been used widely for data mining because of their
high efficiency and accuracy, good readability and robustness
when compared with other classification methods [1], [2].
Decision tree algorithms retain integral dataset in memory
and sort all numerical attributes to decide which is used to
split child nodes. Memory-resident and sorting result in high
requirements on running time and memory storage. These
requirements are two of most significant drawbacks of decision
tree algorithms.

Techniques improving these drawbacks include discretiza-
tion, sampling [3] and parallelization [4]. Catlett [3] proposed
a method that samples at each node of the classification tree,
but this study didn’t consider datasets that were too large to
fit in main memory. Even more unfortunately, discretization
and sampling cause significant losses in accuracy and lack
of reliable [5]. Chan and Stolfo [6] proposed a method that
partitioned the dataset such that each subset fitted in main
memory. However, their results showed that the performance
of resulting decision tree was decreased. Alsabti [7] presented
a decision tree classifier for large datasets called CLOUDS.
CLOUDS reduced the loss of accuracy and narrowed the

Submission to PDPTA’14, Email to first author: cuiyantju@126.com,
second author: yyyang@tju.edu.cn

search space of the best split through sampling the splitting
points and an estimation step for numeric attributes. Since most
of the decision tree algorithms are designed only for memory-
resident data, much work has been dedicated to improve
them. SLIQ [8], SPRINT [9] and ScalParC [10] performed
pre-sorting to increase efficiency when computing the best
numeric split for each numeric attribute at the beginning of tree
growth. BOAT [11], CLOUDS [7] and SPIES [12] replaced
sorting with approximate representations of the training data.
Although pre-sorting and approximate techniques resulted in
more accurate, they could not accommodate very large data
sets. RainForest [2] significantly improved performance over
the SPRINT classification algorithm by adapting the size of
dataset to the amount of main memory. Parallel decision tree
algorithms were studied over these years [4], [13] as well.
SPDT [14] was a parallel decision tree algorithm which was
scalable for streaming data. Most parallel decision trees were
constructed in a breath-first mode [8], [10], [14], [15] because
it balanced loads better.

In this work, we propose a novel parallel decision tree
algorithm namely PDTSSE based on MapRecude framework to
improve these drawbacks. The rest of the paper is structured as
follows. Section II gives a detailed description of the PDTSSE
and its scalable algorithms implemented based on Hadoop
platform. We give the complexity analysis and error bound
of PDTSSE in the Section III. In Section IV, we present
experimental results from a detailed performance evaluation of
PDTSSE algorithm and dwell upon the advantages of PDTSSE
over existing methods. Finally, we conclude in Section V.

II. PDTSSE ALGORITHM

In this section, we initially give detailed description and
design of the PDTSSE algorithm. Two critical procedures
under the framework of MapReduce that handle splitting nodes
and growing subtrees are given as well. We also describe the
entire tree induction process in the Hadoop environment, which
is a successful implementation of MapReduce [16].

A. Algorithm Design

Consider the following problem: given a very large training
setD which is much larger than main memory, each instance
in D hasd dimensions (i.e.xi ∈ Rd, i ∈ {1, 2, . . . , |D|}) with
label yi ∈ {1, . . . , c}. Our goal is to construct a decision tree
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based on the training set with multiple processors in a parallel
distributed environment. In parallel decision tree algorithms,
the primary problems remain finding good splitting points and
partitioning the training set to generate new nodes. Considering
the characteristics of various parallel methods, PDTSSE uses
a breath-first strategy with hybrid parallelism to build the
decision tree. Moreover, in order to reduce running time and
computation cost while achieving high predictive accuracy and
scalability, the following improvements are made: First, SSE
method is employed to derive the best splitters among all alive
intervals for each internal node of the tree. After SSE, domain
sizes of the numeric attributes don’t have any impact on the
performance of our algorithm. Second, for the reason that
the quality of split for a numeric attribute can be computed
independently, we evaluate it in parallel environment based on
gini index after one scan over the data set. Last, the main data
structures used in PDTSSE are the distributed count matrices
which contain summary statistics computed from training set.

Before tree induction, same as SPRINT and ScalParC
algorithms, PDTSSE sorts the values of numeric attributes only
once. The difference is that only numeric attribute lists are split
separately in the following step. Every attribute list contains
attribute value and class value associated with every record,
and then we run a MapReduce on training data and com-
pute approximate equi-depth histograms for every numerical
attribute to get all SS split points. For each categorical attribute,
there is a count matrix associated with it, for each numeric
attribute, a count matrix is associated with every sampling split.
Every count matrix contain the frequency of each class in each
partition, the value of gini index for each split can be calculated
from them. To minimize bookkeeping and communication cost,
PDTSSE passes a hash table of entire training dataset.

A controller lies at the kernel of PDTSSE, The Controller
manages the entire tree induction process using a set of
MapReduce jobs, each of which builds different parts of the
tree at the same time. The controller maintains the components
as following:

• ModelFile(M): In initial state, it’s empty. At any
point, the model file contains the complete classifi-
cation tree constructed so far.

• MRExpandQueue(MRQ): This queue contains n-
odes to be extended to which the inputD is greater
than a given threshold or too large to fit in memory.

• InMemoryQueue(IMQ): This queue contains nodes
to be extended to which the inputD is less than a
given threshold or fits in memory completely.

As tree induction proceeds, the Controller dequeues nodes
off MRQ and schedules jobs to find split predicates for the
expanding nodes. Each job takes as input a set of nodesS, the
training setD∗ and the current state of the modelM . Once the
split predicates are determined, the nodes inS are expanded,
and then the Controller will update modelM with S and their
split predicates, MRQ and IMQ are updated with new child
nodes according to the node size at the end of this step.

The PDTSSE algorithm breaks up the process of construct-
ing a decision tree into a set of MapReduce tasks which can be
divided into two different type of MapReduce jobs according
to the different stages of tree building.

Dependencies exist between the two different tasks.

• MR ExpandNodes : This job is responsible for
collecting summary statistics and computing a set
of candidate splits for nodes in MRQ during tree
building, after then, it will expand tree in parallel.

• MR InMemBuildNodes : This job completes tree
induction for nodes in IMQ with task parallelism.

B. Controller Design

The Controller schedules two types of jobs containing
ScheduleMRExpandNode and ScheduleMRInMemory to
run repeatedly until all the queues are all empty and none
of the jobs it schedules remain running.

Algorithm 1 CONTROLLER

Input: Training DataD, Model M=∅, IMQ=∅, MRQ=∅
1: MRQ.append(root)
2: while MRQ not emptydo
3: ExpandNodeSetS = getExpandNodes(MRQ,M)
4: ScheduleMRExpandNode(S)
5: end while
6: while IMQ not emptydo
7: ScheduleMRInMemory(IMQ,M)
8: end while
9: if MRQ emptyand IMQ empty and jobs finishedthen

10: Exit
11: end if

C. MR ExpandNodes: Expanding Nodes In Parallel

MR ExpandNodes is the kernel component that allows
PDTSSE to train on datasets that are too large to fit in memory.
Given a set of nodesS at one level of the tree, the training
datasetD∗, and the current tree modelM , this job computes
a set of good splits for each node inS and generates new
child nodes. It mainly has two important steps in processing:
Summary Statistics Process and SubTree Building Process.

1) Summary Statistics Process:In the Summary Statis-
tics process, Each mapper maintains two tablesT{n,a,v}[c],
T{n,a,s,l}[c] for categorical and numeric attributes respectively.
We also denoted them asTcategorical, Tnumerical for simpli-
fication, wheren, a denotes the node and corresponding split
attribute respectively,s is a split point of numeric attribute and
l is a indicator variable set to 0 to indicate leaf child, otherwise
set to 1 to indicate right child.

In the Map phase, the training datasetD is partitioned
across a set of mappers. Each mapper loads the current model
M and the input nodesS into memory, and goes through the
assigned subsetD∗ and applies a Map function to each record
in D∗. Local summary statistics can be collected on subsets
of the training data and later aggregated.

The Algorithms executed by each mapper is outlined in
Algorithm 2 and Algorithm 3. Given a training record(x, y), a
mapper will first determine whether the record current reading
is part of the input dataset for a node inS by traversing
the current modelM . Once the node is determined, the next
step is to update count matrixT{n,a} or T{n,a,s} associated
with the current splitter. After all mappers have processed its
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Fig. 1. The overview of PDTSSE algorithm. Decision tree is expanded at the root node after one iteration.

Algorithm 2 MR EXPANDNODESMAP::MAP

Input: ExpandNodeSetS, TreeModelFileM , Training
record(x, y) ∈ D∗

Output: TableT{n,a,v}[c], T{n,a,s,l}[c]

1: n = TraverseTree(M ,x)
2: if n ∈ S then
3: candidate attributesAcandidate ←

getCandidateAttrs(M ,n)
4: for all attributea ∈ Acandidate do
5: v ← attribute value ona in x

6: if a is categoricalthen
7: countMatrixT{n,a} =

getCountMatrix(n, a)
8: addToTable((x, y), T{n,a} )
9: else

10: for all split point s of attributea do
11: addToTable((x, y), T{n,a,s} )
12: end for
13: end if
14: end for
15: end if

input records, they output local summary statistics to master
node. If the candidate attribute is categorical, the key will
be a tuple of the form{n, a} and the corresponding count
matrix T{n,a} as values. Otherwise, the tuple will be of the
form {n, a, s} andT{n,a,s} as values. Subsequently, a combine
function will aggregate the values with the same key to
reduce communication and I/O cost. In the Reduce phase,
each reducer takes the values associated with the particular
key and aggregates values for every key. Finally, the output
of reducers gives the global count matrix corresponding with

Algorithm 3 MR EXPANDNODESMAP::MAP FINALIZE

Input: TableTnumerical, Tcategorical

Output: countMatrixT{n,a}, T{n,a,s} on each noden with
attributea

1: for all countMatrixT{n,a} in Tcategorical do
2: Output((n, a), T{n,a})
3: end for
4: for all countMatrixT{n,a,s} in Tnumerical do
5: Output((n, a, s), T{n,a,s})
6: end for

each candidate split. Thus we can evaluate possible splits for
nodesS in the next step.

2) SubTree Building Process:In the SubTree Building
process, every mapper works on the output from the summary
statistics job, by aggregating the local count matrices with the
same key, we can get expanding nodesS and evaluate the
quality of all possible sampling splits for each node inS at
the same time, then expand tree and generate new child nodes
concurrently in the same way as serial decision tree algorithm.
The gini index of categorical attributes can be calculated from
count matrixT{n,a}. For numeric attributes,ginimin can be
computed from all sampling split points. All the intervals with
giniest ≥ ginimin are eliminate to derive alive intervals. For
each alive interval, we begin to scan attribute listL associated
with this attributer from the boundary, and update count matrix
simultaneously to evaluate the gini index at every split point.

The algorithm executed on each mapper is outlined in
Algorithm 4 and Algorithm 5. Each mapper processes two
types of keys. The first is of the form{n, a} with a value list
V of all the output by the mappers. These partial statistical
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matrices are aggregated to get a single count matrix with
the values for all local statistics information about noden
with categorical attributea. The other type of key that a
reducer processes belongs to numerical attributes. The keys
corresponding to numeric attribute are of the form{n, a, s}.
Here the setV associated with each key is a set of count
matrices consisting of statistics information about SS split
point s corresponding with noden, attribute a. Candidate
attributes on each node can be derived from modelM , for
every node being expanded inS, if the node’s size falls below
a threshold then labeled with majority label. Otherwise, the
best splitter will be chosen from candidate attributes.

Algorithm 4 MR EXPANDTREENODESMAP::MAP

Input: Key k, Value Set V , TreeModelFile M , Table
Tcategorical, Tnumerical

1: if k == n, a then
2: addV to Tcategorical

3: else
4: addV to Tnumerical

5: end if

Algorithm 5 MR EXPANDTREENODESMAP::MAP FINALIZE

Input: Key k, Value SetV , TreeModelFileM , Table
Tcategorical, Tnumerical and Attribute ListsL

1: expandNodeSetS ← getExpandNodes(Tcategorical,
Tnumerical)

2: for all expand Noden in S do
3: yfreq ← getMajorityLabelOfData(n, T{n,a,v}[c],

T{n,a,s,l}[c])
4: Acandidate = getCandidateAttrs(n,T{n,a,v}[c],

T{n,a,s,l}[c])
5: Node size|n| ← SizeOf(n, T{n,a,v}[c], T{n,a,s,l}[c])
6: if |n| ≤ num threholdthen
7: labelNode(n, yfreq)
8: else if identicalLabel(n, T{n,a,v}[c], T{n,a,s,l}[c]) or

isIdentical(n, T{n,a,v}[c], T{n,a,s,l}[c]) then
9: label yidentical ← identicalLabel(n)

10: labelNode(n, yidentical)
11: else
12: Split splitbest ← findBestSplit(T{n,a,v}[c],

T{n,a,s,l}[c], L)
13: for all Noded in nc do
14: UpdateQueues(|d|,M, d,Acandidate, L)
15: UpdateTreeModel(M,n)
16: UpdateNodeCandidateAttrs(n,Acandidate)
17: end for
18: end if
19: end for

Figure 1 gives an overview of PDTSSE algorithm. In each
iteration, a new level of nodes is appended to the tree, that is,
the tree’s depth is incremented by 1. There needs one scan of
entire dataset, once the data scan is complete, local statistical
information is merged and send to the controller, which makes
the splitting decision for each expanding node of the tree and
build child nodes where needed. If the node is already pure
enough, the splitting is stopped and the node is assigned a
label. This building procedure is efficient because only the
count matrices, which are fixed in their size, are kept in main
memory.

D. MR InMemBuildNodes: Tree Induction In Memory

As tree induction progresses, the node size becomes small
enough to fit in memory at lower levels of trees. At such point,
rather than continuing tree induction using MRExpandNodes
task, the Controller completes tree induction in memory using
a different MapReduce job namely MRInMemBuildNodes
with task parallelism. This job partitionsD∗ across a set of
mappers. The map function then processes every record(x, y)
and traverses the tree inM to see whether the record is input
to some noden, wheren ∈ S. If such a node is found, the
map function outputs the noden as the key and a tuple of the
form (x, y) as the value. The reduce function receives as input
a noden (as key) and the set of training records that are input
to the node (as values). At last, The reducer loads the training
records forn into memory and completes subtree construction
rooted atn using in-core algorithm.

III. T HEORETICAL ANALYSIS

In this section, we will give the complexity of splitting and
training error bound of PDTSSE.

A. Complexity of Splitting

Every iteration consists of two steps: an updating step
performed simultaneously by all the processors and a merg-
ing step performed by the master processor. Whenever M-
R ExpandNodes job is executed, it needs a scan over dataset
and attribute lists once for each numeric attribute during
the procedure of summary statistics. After getting the global
information about class distribution for all possible SS splits,
we can choose a split with minimum gini value denoted as
ginimin among all of the SS splits. If the test attributea is
numeric, then go to scan through all the records in the attribute
list corresponding with attributea in the selected sampling
split, and meanwhile use hill-climbing method to evaluate the
lower bound of each interval to derive survival intervals. The
time complexity of this process isO(c × qalive), which is
relevant to the number of label values instead of the size of the
interval. Finally, the best splits is obtained using attribute lists
L and count matrix relevant to the selected split is updated for
each record current read. Thus the computation complexity
of the selection of the best splitginibest depends only on
the number of classesc, dataset size|D| and the number of
survival interval qalive. Since qalive ≪ q where q denotes
the number of intervals, compared with SLIQ and SPRINT,
PDTSSE significantly decrease the computation cost in select-
ing the best split. For large datasets that can’t be loaded into
memory completely once, the number of candidate attributes
in each internal node decreases, so the time complexity of
choosing splitter and communication cost decreases. The only
memory allocation is for the count matrices. As the number of
intervals is constant, operations on count matrices take a con-
stant amount of time. Every processor performs at most|D|/W
matrix updates. There are totallyW × |S| × (Ac +An × q)
count matrices at most, where|S| is the number of leaves
that are to be expanded in the current iteration,W is the
number of processors andAc, An are the number of categorical
attributes and numeric attributes respectively. Assuming that
W, |S|, c, and d are all independent of the dataset size|D|,
thus space and communication complexities is constant.
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B. Error Bound of PDTSSE

In this section, we investigate the training error of PDTSSE.
Assume that impurity functionG, the gap in the impurity
function before and after splitting is denoted as△, suppose
that s is the best split point of splitting attributeai for
a tree noden, so that noden is split according to the
rule x(i) ≤ s. Denote byτ the probability that a record
reachingn is directed to its left child node. Denote further
by pn,j , pL,j and pR,j the probability of labelj in this node
n and its left and right child nodes respectively. Define the
function for the change in value of impurity before and after
splitting△(τ, {pj}, {pL,j}, {pR,j}) = △(n, i, s) as

△ = G({pj})− τG({pL,j})− (1− τ)G({pR,j}) (1)

△ can be calculated precisely at every candidate split using
(1). However, for PDTSSE, it initially divided the values of
a numeric attribute intoB roughly equal-size intervals with
B−1 split pointss1, s2, . . . , sB−1 wheres1 ≤ s2 . . . ≤ sB−1.
Suppose that the best split point iss, andsk ≤ s ≤ sk+1. Since
the number of points in the interval[sk, s] is bounded, there
is a bound on the degree of change in△ if one node is split
at sk instead of the best split points.

For Decision treeT , the training error rate ofT is

eT =
1

N

∑

leaf n in T

|n|(1−max{pn,j})

Assume that the impurity functionG is continuous and satisfies
G({pj}) ≥ 1−maxj{pj}. Thus the inequality implies that
eT ≤ GT whereGT is defined as follows

GT =
1

N

∑

leaf n in T

|n|G({pn,j}) (2)

For our analysis, only one new child node is generated in each
expanding. As the split of categorical attribute is identical to
serial algorithm, here we only consider the numeric attributes.
Let Tt be the tree after thetth iteration for the decision tree
only one node is expanded per iteration, andnL, nR denote
its left and right child nodes respectively. Then

GTt−1
−GTt

=
|n|

N
△ (n, i, s) (3)

Definition 1. An internal noden split by a rulex(i) ≤ s is said
to perform locally well with respect to a functionf({pn,j}) if
it satisfies△(n, i, s) ≥ f({pn,j}). A treeT is said to perform
locally well if every interval noden in it performs locally well.
Finally, a decision tree building algorithm performs locally
well if for every training set, the output tree performs locally
well.

Proof: From (3), we can get that the lower bound of
△(n, i, s) is f({pn,j}), also the upper bound ofGTt

andeTt

is related tof({pn,j}). Suppose thatTt−1 has a leaf for which
|n|
N f({pn,j}) can be lower-bounded by a quantityh(t, GTt−1

)
which depends only ont andGTt−1

. Then from the recurrence
GTt
≤ GTt−1

− h(t, GTt−1
), we can derive a lower bound on

the training error rate of an algorithm that performs locally
well. As a simple examplef({pn,j} = αG({pj}), α ≥ 0.
By (2), and since the number of leaves inTt−1 is t, there
exists a leafn in Tt−1 for which |n|

N G({pn,j}) ≥ GTt−1
/t.

Let ñ be the node which is split in thetth iteration, thus
|n|
N f({pn,j}) ≥

α
t GTt−1

, wheren, ñ represents the best splits
for △n, △ñ respectively. Then we get

GTt−1
− h(t, GTt−1

) =
|ñ|

N
△ñ ≥

|n|

N
△n

≥
|n|

N
f({pn,j}) ≥

α

t
GTt−1

(4)

Let G0 be an upper bound onGTo
, we obtain GTt

≤

G0(t− 1)−α/2 by (4), therefore

eTt
≤ G0(t− 1)

−α/2

Kearns and Mansour [17] give a proof that top-down
decision tree learning algorithms are boosting algorithms, that
is to say, if the functions that label the internal nodes of
the decision tree can weakly approximate the unknown target
function, the algorithm will amplify this weak advantages to
build a tree achieving any desired level of accuracy, so the
performance of resulting tree depends on the local performance
of internal tree nodes.

Theorem 1. Assume that the intervals which PDTSSE operate
on are equal-size. Letx(i) < s is the best split predicate for a
leaf n, then ∀δ ≥ 0. There existsB that only depends on
τ, {pj}, {pL,j}, {pR,j} and δ, such that the splitx(̃i) ≤ s̃
chosen by PDTSSE algorithm withB equal-size intervals
satisfies△(n, ĩ, s̃) ≥ △(n, i, s)− δ.

Proof: Assume thatB is fixed, and consider the split
x
(i) < uk, uk ≤ s ≤ uk+1 and τ̃ , p̃L, p̃R denote the quantities

relevant to this split. Letρj denote the probability that a
training recordx with label j that satisfiesuk ≤ x

(i) ≤ s.
Then τ̃ = τ − ρ0 − ρ1, p̃L,j = (τ · pL,j − ρj)/τ̃ , p̃R,j =
((1 − τ)pR,j + ρj)/(1− τ̃ ).

By the continuity of△(τ, {pj}, {pL,j}, {pR,j}), for every
δ > 0, there existsǫ such that

△(τ, {pj}, {pL,j}, {pR,j})−△(τ̃ , {pj}, {p̃L,j}, {p̃R,j}) ≤ δ

∀ρj ≤ ǫ. Sinceρj ≤ 1
B+1 , we can guarantee thatρj ≤ ǫ by

settingB = 1/ǫ. We thus have△(n, ĩ, s̃) ≥ △(n, i, uk) ≥
△(n, i, s)− δ

Corollary 1. Assume that the standard decision tree algorithm
performs locally well with respect to a functionf({pj}),
and that the functions operating on equal-size intervals. Then
∀δ(pj) ≥ 0, the PDTSSE algorithm performs locally well
with respect tof({pj})− δ({pj}), in the sense that for every
training set there existsB such that the tree constructed by
the PDTSSE algorithm withB bins performs locally well.
Moreover,B doesn’t depend on the size of the training set.

We derive an upper bound on the error rate of PDTSSE
from the theorems and corollary above. Setf({pj}) =
αG({pj}), α ≥ 0. We get from Definition 1 thateTt

≤

G0(t− 1)−α/2. Applying Corollary 1 with δ({pj}) =
α
2G({pj}) = f({pj})/2, we deduce that the PDTSSE’s error
rate is guaranteed to be no more thanG0(t− 1)

−α/4 when
using enough intervals.
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TABLE I. DATA SET SUMMARY.

Dataset #Attributes #Classes #Instances

Segment 22 2 8124

Letter 16 26 20000

Abalone 8 29 4177

Adult 14 2 48842

ISOLET 617 26 7797

Satimage 36 6 6435

Shuttle 9 7 58000

Connect 42 3 67557

Covertype 54 7 581012

Poker hand 10 10 1000000

IV. EXPERIMENTAL EVALUATION

In this section, we show our experiments and present a
detailed performance evaluation of PDTSSE.

A. Experimental Setup and Datasets

We run our experiments on ten datasets from the UCI
repository, the characteristics of these datasets are shown in
Table I.

All of our experiments were performed on a MapReduce
equipped cluster that consists of 5 processors, each of which
was configured to use 2GB of RAM and 320GB of hard drive
space. One as the master node and the others work as slave
nodes. To mitigate the effects of varying cluster conditions, all
the running times have been averaged over multiple runs.

B. Experimental Results

To verify the effectiveness and efficiency of PDTSSE in
the parallel distributed setting, in our first experiment, we
compare the values of gini index of the best splitters generated
by SSE methods to those using direct method (DM), dataset
sampling (DS) and sampling the splitting points (SS) for
different number of intervals. We have presented the results
using 10 and 30 intervals for each numeric attribute. Table
II shows the results of exact and estimated gini index using
different methods.

These results show that the SS method missed the mini-
mum gini index most of the time, the same holds true for the
DS method. The accuracy of the SS method is more sensitive
to the number of intervals, the estimated gini may be not good
when there are not enough intervals. The SSE method we
applied in PDTSSE missed the exact gini index only for a
few cases and the estimated gini generated by the SSE method
is more accurate than those of the SS method. These results
demonstrate that SSE can achieve a very good estimate of the
splitter with minimum gini index.

Our next experiment presents a comparison of time taken in
selecting the best split predicate on the Poker Hand dataset by
PDTSSE, SPRINT and SLIQ under the condition of different
number of processors.

The results of this experiment are shown in Figure 2. It
is apparent that SPRINT needs less of time than SLIQ, and
PDTSSE outperforms other methods when using the same
number of workers, in addition, the time for selecting best
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Fig. 2. Comparison of running time for selecting best splits using different
parallel decision tree algorithms.

TABLE III. T HE ACCURACY OBTAINED FOR DIFFERENT DATASETS.

Dataset C4.5 CART SPRINT
PDTSSE

q=20 q=50

Segment 94.45% 94.38% 94.51% 94.57% 94.57%

Letter 84.51% 83.67% 84.58% 84.12% 84.12%

Abalone 20.13% 21.23% - 20.32% 20.49%

Adult 86.20% 86.17% - 85.86% 86.32%

ISOLET 83.81% 82.89% 84.86% 84.21% 85.31%

Satimage 86.40% 85.75% 86.46% 86.12% 86.54%

Shuttle 99.93% 99.89% 99.87% 99.97% 99.97%

Connect 80.28% 80.32% - 79.96% 80.20%

Covertype - - - 68.18% 68.21%

Poker hand - - - 54.82% 55.38%

splits significantly decreases as the number of workers is
increased.

In next experiment, we give a detailed comparison of
PDTSSE’s accuracy to C4.5, CART and SRPINT using dif-
ferent number of intervals based on 5-fold cross validation
technique. Results in Table III show that the accuracy obtained
by PDTSSE is quite similar or comparable to those of C4.5,
CART and SPRINT. The greater the number of intervals, the
higher accuracy will PDTSSE achieve.

The last set of experiments present the scalability per-
formance of PDTSSE in terms of the parallel running time
obtained for various training set sizes. For these experiments,
we randomly split the dataset Covertype into 5 roughly equal-
size groups, first on a single group, then two groups, and
so on up to five groups. These increasingly larger training
datasets are namedD1, D2, D3, D4 and D5 respectively. In
these experiments, the size of training set is kept constant while
the number of workers changes from 1 to 4.

Figure 3 shows the runtime scalability of PDTSSE. As
expected, training time increases as the amount of training
data is increased. The time, which is related to speedup tends,
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TABLE II. E XA CT AND ESTIMATED GINI USING DIFFERENT METHODS.

Dataset DM
DS SS SSE

10% 30% q=10 q=30 q=10 q=30

Segment 0.7143 0.7313 0.7221 0.7219 0.7162 0.7161 0.7143

Letter 0.9403 0.9421 0.9403 0.9403 0.9418 0.9403 0.9403

Abalone 0.8620 0.8649 0.8625 0.8632 0.8624 0.8620 0.8620

Adult 0.3228 0.3412 0.3356 0.3285 0.3234 0.3259 0.3228

ISOLET 0.9263 0.9475 0.9362 0.9421 0.9412 0.9414 0.9272

Satimage 0.6532 0.6591 0.6546 0.6541 0.6532 0.6532 0.6532

Shuttle 0.1758 0.1758 0.1810 0.1758 0.1758 0.1758 0.1758
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Fig. 3. Parallel Running time versus data size and number of workers.

decreases as the number of processors is increased. In addition,
relative speedups are improved for larger training set sizes.
The results fit the theoretical analysis. For large datasets,
computation becomes a significant factor of the overall running
time, therefore, PDTSSE can be used to classify large scale
datasets.

V. CONCLUSION

In this work, we have presented PDTSSE, a new algorithm
for large-scale decision tree learning in MapReduce frame-
work, which has low memory requirement, high efficiency
and good scalability. We show that sampling splitting points
with estimation is central to PDTSSE. Future works include
extending this algorithm to larger datasets and clusterings. We
will also utilize PDTSSE in practical applications.
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Abstract— The pain comes together with the prevalence of
searching from hybrid clouds for big data, which is induced
by the ambiguity of user expectation, the heterogeneity of
data resources, the complexity of data computation, and the
perceptibility of returned data. In this study, we propose an
adaptive data resourcing model as a pain refliever (or analgesia)
to the aforementioned problems; specifically by the means of:
granular data fusion to the data schema of open source or open
data, elastic computing platform base on networked computers,
fitness oriented query base on semantic situation awareness, and
data visualization via (temporal/spacial) responsive interface. We
achieve good performance by implementing this adaptive method
into a demo system for teamwork, for instance the utilization
of the idle resources, accomplishment of the tracked issues,
and reusability of knowledge experience, etc. And we judge the
conclusion that our adaptive data resourcing method is effective
analgesia to the pain of searching for big data.

Index Terms—Big Data, Hybrid Clouds, Situation Awareness,
Adaptiveness, Teamwork

I. INTRODUCTION

A. Motivations

The large pools of data that can be captured, communicated,
aggregated, stored, and analyzed —is now part of every sector
and function of the global economy. In 2011, a McKinsey
report [1] advocated that the big data is the next frontier
for innovation, competition, and productivity. And it is now
making revolutionary breakthroughs in commerce, science and
society.

However, it is not easy for citizens to keep pace with such an
accelerated society that driven by the big data, much less being
productive. With the exploding amount of data, individuals
or teams, no matter the genius or think tank, all suffer from
the chaos of VUCA[2] (volatility, uncertainty, complexity and
ambiguity) situations. Furthermore, it is apt to come up with
emergent and sophisticated puzzles, which could hardly been
illustrated in a clear description.

B. Purpose and Issues

We name such phenomenon as the pain of searching in big
data, which is caused by

• the ambiguity of user expectation,
• the heterogeneity of data resources,
• the complexity of data computation,

• and the perceptibility of returned data.
Thus, we are aiming to take advantage our limited resources to
invent the analgesia for such a pain, or at least make ourselves
more stress-free.

We came up with both technical and administrative issues:
1) One authenticated hybrid-clouds service is required:

there are many cloud services available in big data,
but most of them are enclosed eco-system from each
other, making it annoying for users switching between
the services.

2) We need a consistent data overview: the data incon-
sistency in the current big data, whether in format or
meanings, makes it very inconvenient for viewing or
processing.

3) An automatic awareness is expected: currently, most of
the search is done base on use input queries, far from
understanding user’s ambiguous expectations

4) A pervasive easy going interface is in need.

C. Contributions
In this study, we propose an adaptive data resourcing model

to relieve the pain of searching in big data, and we decided to
build our own hybrid clouds. Here are main contributions:

1) A granular data fusion base on the data schema of open
source platforms: it involves the data of productivity
management, relation management, integrated library,
and the content management such as blog and wiki.

2) An elastic computing platform base on networked com-
puters: using network setup and Hadoop DFS to build
a computer cluster, and utilize the idle computing re-
sources, such as the retired computers or idle PCs (this
was done via nested virtual machines) of lab mates’.

3) A set of fitness oriented queries and semantic situation
awareness: by the corporation with U.B.I.C. of the
University of Aizu, we implement semantic situation
awareness using MapReduce functions; and also a set
of queries that could easily fetch metadata from the big
data.

4) A perceptible data visualization via (temporal/spacial)
responsive interface: we take advantage of the respon-
sive web UI design and asynchronously visualize the
returned data within tolerated time delay.
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D. Paper Structure

In the fellowing sections, we first illustrate background
and related work in section II. Then we introduce an adap-
tive resourcing model in section III to regulate the fitness,
responsiveness, granularity and complexity of the analgesia
process. In section IV, we the take teamwork management
for a case study to our data resourcing model, and deploy an
integrated system base on hybrid open source tools, involving
productivity management, relation management, integrated li-
brary, and content management for efficient teamwork with
less stress or pains. In section V, we evaluate the case
study and method by analyzing the improvement of teamwork
performance. The upgraded teamwork by using our service is
getting much more smooth and easier, in terms of utilization of
the idle resources, accomplishment of the tracked issues, and
reusability of knowledge and experience, etc; Finally we judge
our conclusion in section V that our adaptive data resourcing
method is effective analgesia to the pain of big data.

II. RELATED WORK

A. Various Information Searching Models

For information retrieval, the most popular model is the
keyword based one, in which a keyword list is input by a
user to describe request for the content of information. The
keyword based searching is equipped with statistical methods
[3], e.g., occurrence frequency of a keyword. Keyword based
information retrieval model has shown great power, e.g..
Google. However, the keyword based information retrieval
model cannot represent the semantic relations between key-
words. To overcome it, a concept-based model was proposed
to show semantic relation among keywords [4]. The model is
built base on the consideration that the meaning of a word is
related with concepts in the real world. Therefore, a content
of information can be summarized by a set of concepts. If a
keyword is inputted, several concepts will be mapped with it
in the model, and information will be retrieved based on the
concepts.

In addition to the concept-based models, more effective
model to understand the user input are semantic based ap-
proaches [5][6] and meta search engine [7][8][9]. Among
them, sentences are indexed instead of words in [6], and
the inputted keywords will be extended based on the public
database, e.g., Wikipedia or WordNet, in order to search closer
results for users in [7][8][9].

B. Cloud based Searching Model

Recently, new information retrieval models become neces-
sary and important with the advancement of cloud computing
technology. When more and more information have been
stored in Cloud, e.g. emails, sensor data, life logs, health
records, and so on, it has become a big challenge to effectively
search information from clouds. Data encryption technology
[10][11] makes data utilization more reasonable. In [11], a
fuzzy based keyword search was proposed over encrypted
data in cloud computing. When inputting a keyword, an edit
distance between the inputted and stored keywords will be

computed and the corresponding files will be shown to users
based on fuzzy theory.

C. Our Unique Focus

However, most of the current services for search from
clouds are enclosed from each other, users could hardly
achieve seamless connection among clouds, unless taking
several jumps even though they have the access permission
to each of them. Meanwhile, the data in different clouds
is generally inconsistent in format or physical meanings,
causing unnecessary and costive data conversion steps before
processing and searching. Furthermore, users are confused
with the various interfaces of different clouds, especially for
those none-professional users. In this research, we are trying
to propose a novel data-resourcing model for a set of data
sources on hybrid clouds.

III. THE NOVEL SEARCHING METHOD

In this section, we illustrate a novel searching method
for big data. We first describe the assumptions in section
III-A, and them define the requirements and properties in
section III-B, and finally we explained a simple algorithm and
evaluation method in section III-C.

A. Assumptions

Normal human’s searching behavior is based on cognitives,
rather than unconscious work. There mainly three types of
cognitive processes, see to Table I. Situation awareness is
the perception of environmental elements with respect to time
and/or space.

TABLE I
RELATIONSHIPS AMONG HUMAN COGNITIVE PROCESS [12][13][14]

Phase
Process (the process toOutcome (a state of

achieve knowledge knowledge
Tactical (short-term) Situation Assessment Situation Awareness

Objective Strategic (long-term) Sensemaking Understanding
Scientific (longer-term) Understand Predict

Based on the cognitive processing model, we made assump-
tions as fellows:

1) Given the big data, situations of the targeted issues could
be sensible through data computation.

2) Lacking the data or information is kind of pain for
human beings, and pain is one of the fundamental
motivations causing human to search for information.
Taking researchers for example, it feels really painful
when one urgent document is missing; thus the expected
information or data is a reliever or analgesia to such a
pain.

3) On the other hand, the pain might be transmitted to
the searching system if the computation cost is too
expensive.

Given the limitation to the current cloud based searching
model that we mentioned in subsection II-C, we summarize
the types of pain of searching in big data:

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

408 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



1) the ambiguity of user expectation,
2) the heterogeneity of data resources,
3) the complexity of data computation,
4) and the perceptibility of returned data.
And it is necessary to introduce an adaptive balance into

the system aided searching, therefore, we illustrate the adap-
tiveness in Figure 1, making it as the ultimate goal for this
study. It will be further explained in Section III-B.
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Fig. 1. Adaptiveness of Data Resourcing in Big Data

B. Requirements and Properties of the Model

Fig. 2. Modeling of Situation Awareness Process

In this subsection, we define the requirements and properties
of the adaptive model, a set of parameters is defined in Table
II. We illustrate the process of situation awareness in Figure

3. The left side is the real world that involves the situations
and issues of the targeted entity µ′ and respectively it is the
cyber world on the right side. And there is the interface Ψ in
the middle, standing for the system interface.

See to Table II for detailed information. The situations of an
entity µ′ (whether a human or object) in the real world contain
the inclusive situations Ωµ′ that are rationally depending on
other entities, and also the exclusive situations Θµ′ that inside
the entity µ′ itself. The state of the situation is migrating
along with the time, for instance ∆S(µ,∆T ) is the situation
migration from time t to (t + ∆T ). We have mentioned the
existence of pain in the previous sections, there are pain factors
P as the subset of situation Sµ′. And the main mission of
the cyber system is trying to relive the pain, which means
returning the analgesia A through the interface Ψ.

TABLE II
PARAMETERS DEFINITION FOR SITUATION AWARENESS PROCESS

PARAM. DESCRIPTION
µ & µ′ The target entity (and the abstract one) in the situation

awareness process;
Θµ′ & Θµ The exclusive real-world situation of entity µ′ and the

abstract one µ respectively;
Ωµ′ & Ωµ The inclusive (dependent) real-world situation of entity

µ′ and the abstract one µ respectively;
t The initial time for situation awareness process;
∆t A period of time while the real world situations Sµ′ is

changing;
S(µ′, t) The real-world situation Sµ′ of entity µ′ at time t;

∆S(µ′,∆t) The transformed real-world situation form S(µ′, t)
after ∆t;

∆T A period of time for the response of Situation Awareness
System;

S(µ, t) The assessed situation to the abstract entity µ at initial
time t;

∆S(µ,∆T ) The situation awareness to the abstract entity µ
at time t+∆T ;

Ψ The interface between real world and the Situation Awareness
System;

P The pains in the real-world situations;
A The analgesia (pains killer) set by situation awareness;
η The element of assessed situation S′ in format of data;

1) The adaptiveness is defined in Eq. 1.

Adaptiveness = αF + βR+ γG+ λE,
where α+ β + γ + λ = 1 (1)

2) Fitness: the output of situation awareness is just-matched
or being more implicit than that of demanded, see to Eq.
2;

F (µ, t) = (A(µ, t)
∩

P (µ, t))/P (µ, t) (2)

3) Responsiveness: the output of situation awareness is just-
in-time or with less delay, see to Eq. 3;

R(µ, t) = ∆T/∆t (3)

4) Granularity: the data schema of the targeted entity is at
least just enough to represent the real information, see
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to Eq. 4;

G = StructureComplexity(S(µ, t)) =

StructureComplexity(Θ(µ, t)
∪

Ω(µ, t)) (4)

5) Elasticity: the computation (transformation) complexity
of situation assessment, see to Eq. 5

E = ComputationComplexity(S(µ,∆T )) =

TransformationComplexity(S(µ, t), S(µ, t+∆T ))
(5)

6) The situation of entity µ′ at time t in real world is
defined in Eq. 6, and the situation migration of entity µ′

from time t to time t+∆T is defined in Eq. 7

S(µ′, t) = Θµ′
∪

Ωµ′ (6)

S(µ′, t)
∆S(µ′,t)−−−−−→ S(µ′, t+∆t) (7)

7) Respectively, in the cyber world, the situation of entity
S(µ, t) of µ at time t is defined in Eq. 8, and the situation
migration S(µ, t) is defined in Eq. 9

S(µ, t) = Θµ
∪

Ωµ (8)

S(µ, t)
∆S(µ,t)−−−−−→ S(µ, t+∆t) (9)

8) The pain is included in real situation Sµ′, see to Eq. 10;
and the analgesia would be the join of real situation Sµ′

and the cyber situation Sµ, see to 11

P ⊆ Sµ′ (10)

A = Sµ
∩

Sµ′ = Sµ
∩

P (11)

The main purpose of the adaptive resourcing is to return
the metadata of analgesia A via the optimization of data
processing; making the data schema just enough to represent
the targeted issues, the volume of the computation is just
executable by the allocated computation resource, and the
returned analgesia being just fit and just in time to to the
pain,

C. The Searching Approach
It is obvious that MapReduce[15] programming model

highly matches the requirement of our adaptive data resourc-
ing, taking the Hadoop[16] as the computation framework for
example, the Distributed File System supports the granularity,
the distributed processing in multi nodes supports the elastic-
ity.

The computation flow is illustrated in Figure 3, the system
take users’ pain (basically users’ situations) or users’ direct
input of queries as system input, and then process the input
in the MapReduce function by considering the constrains of
granularity and elasticity, and finally try to return the data
in fitness and responsiveness. The pseudocode is documented
in Alg. 1, there are a variety of ways optimize the Map and
Reduce function to improve the fitness and responsiveness, we
will explained in detail in future work.

META SEG.

1. Ambiguous 

Queries 

2.Pain

INPUT

ALG.

1. Situations

2. Alg. of 

MapReduce

META DATA

1. Analgesia

PROCESSING OUTPUT

Fitness,
Responsiveness

Granularity
Elasticity

Fig. 3. Flow of Adaptive Resourcing

Algorithm 1 Pseudocode for Adaptive Data Resourcing
1: TRY
2: TRY
3: S ←Map(Ω,Θ)
4: CATCH ERROR ”Error caught in Map function, the

volume of the data exceeds the granularity.”
5: END TRY
6: A← Reduce(S)
7: CATCH
8: ERROR ”Error caught in Reduce function, the computa-

tion of the data exceeds the elasticity.”
9: END TRY

IV. IMPLEMENTATION

A. Implementation Environment and Tools

TABLE III
SYSTEM ARCHITECTURE

Technology for Interface HTML, CSS, JavaScript (jQuery), PHP, Ruby
Project Management Redmine

Relation Management Vtiger
Open Source Platform Integrated Library Koha

Content Wiki MediaWiki
Management Blog Wordpress

Authentication Server Oauth2
Database MySQL

Web Server Apache2
Distributed Framework Hadoop

Operation System Linux, OS X
Network Ethernet, WiFi
Machine Cluster of 6 Macintosh, 5 PCs

and over 20 Virtual Machines running on PCs

The system is implemented and deployed by fellowing
the adaptiveness requirements. We turn to the most popular
technologies, the web programming. The system architecture
is enumerated in Table III.

We deployed a 3 clusters to utilize the idle computation
resources in lab:

• a cluster of PCs for Web service;
• a cluster of physical and virtual machines that running on

lab mates’ PCs for Hadoop, everyone can share his/her
own computation resources depending on the elastic
demand;
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• and a cluster of 6 Macintosh, working as pervasive (inside
lab) display and also the node of sensor networks which
can aware users’ indoor locations.

B. Functions and Services

Base on the Oauth server[17], we fuse the teamwork data
according to the data schema of 5 open source tools, and there
are also many extensions or plugins to fuse extra data source.

a) Blog for Content Management: We need a blogging
system to promote the demos or ideas of team’s, in format
of rich contents such as videos and images. We turn to the
Wordpress since it is the most popular blogging system in use
on the Web[18] at more than 60 million websites[19]. The
Wordpress itself is also a hub of extensions that seamlessly
interconnects with other cloud services, e.g. Facebook, Twitter.

b) Wiki for Content Management: A manual document-
ing tool is also required for teamwork, here we turn to the
MediaWiki, since it is supported by the Wikimedia Founda-
tion, advanced in compatibility and extensions.

c) Integrated Library: The integrated library helps to
management the books, CDs, DVDs in library. There are
more than three options, and we finally choose Koha, for its
advance in licensing, community support, and functionaries
(routing periodicals, inventory control, authorities, generation
of notices to customers, order tracking, etc.), according to [20].

d) Relation Management: The relation management
(RM) platform would provide the service of 1) Contact,
Calendar, and Inventory, etc. There are two potential options,
and we choose the Vtiger rather than the Compierem, mainly
for the reason of extensiveness and compatibility. With some
extensions, the Vtiger is able be seamlessly fused with Google
contact and calendar.

e) Productivity Management: Getting things done is the
most wanted output of teamwork, David Allen’s wide spread-
ing book[21], shared the breakthrough method for stress-free
performance. Allen’s premise is simple: our productivity is
directly proportional to our ability to relax. Here we introduced
an issues tracking open source tool Redmine to: granularly
break down the issues and human resource,

C. Interface of the System

We implement the main page, a responsive web UI, to
encapsulate the aforementioned tools, see to Figure 4. The data
resourcing model in section III generates a set of metadata that
customized for each user, and visualized in the main page.

Taking a specific use case, the issues in backing up research
students’s demo project, for example, we will show how the
data is interlinked via the team working flow, see to Fig. 5:

1) Login to the interface with a global authentication;
2) Break the project down into different sub tasks, and

create issues for each tasks, by setting the issue title,
assignee, time stamp, priority, notes, etc;

3) The back up the technical details, system specifications,
source codes, or other documentations inside the project
management (professional contents) and also the wiki
(general contents);

4) The integrated library records users’ access to library
items;

5) Before the project is accomplished, make the demon-
stration page in Blog.

In such a case, massive data that related with one project is
unconsciously interlinked; it would be possible for a new user
to review the whole story in the main interface, see to Fig. 4.

D. Features of the System

The system achieves several features that we expected:
1) Granularity: the Oauth server consistently fused the

standard data schema in the selected open source tools;
2) Elasticity: the Hadoop on the computer clusters can

support complex computation in different scale
3) Fitness: the situation data that we collected are mainly

related with teamwork, without much noise; and the
Reduce function in MapReduce can gradually improves
the fitness of adaptive data resourcing;

4) Responsiveness: the UI is responsive in layout and also
time due to asynchronous data visualization.

V. CONCLUSION

In this paper, we first proposed a novel method for searching
useful information for a team from big data collected from
hybrid clouds. Our method can deal with the inconsistence of
the data in different clouds and find relations between data
in different clouds based on teams situation. We have made
a prototype based on the method, as a research laboratory
management system, consisting of project management, rela-
tion (including contacts, calendar, and inventory) management,
library, and content (blog with research demos and wiki with
a lot of technical details) management.

The research is significant, since the era of big data is
coming and the current search engines cannot well find the
unclear and ambiguous searching request by multiple members
of a team. It can also be used for recommendation of events,
which should be perfect.

In the future, we will ask more research mates in the
laboratories to use the system and get the feedback from them,
so as to better improve the system. We will also evaluate
our system from the following aspects. (a) response time vs.
quality of the results, (b) the granularity vs. elasticity.

1) Deep Fusion of Hybrid Clouds, Our current demo sys-
tem is still a local cloud service for the first stage. But
with the consistent extensions and standard data schema
that already prepared, we are sooner or later going to
upgrade it as a hybrid-clouds service.

2) Optimize the MapReduce to improve the fitness of the
adaptive data resourcing;

3) With the indoor positioning system based Situation
Awareness, by using RSSI[22] of BLE (such as
iBeacon[23]), we can visualize the activities over the
indoor map, see to Figure 6. Since everyone is using
smartphone with BLE 4.0+ enabled, it is also possible
to introduce automatic checkin checkout service base on
RSSI.
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Fig. 4. System User Interface
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Abstract— MapReduce has emerged as an important
paradigm for building large-scale data intensive applica-
tions. In this paper, we propose algorithms for task allo-
cation and node activation in MapReduce clusters. They
consolidate the system load to a minimum set of active
groups, and thus can save energy significantly. Furthermore,
they are rack-aware and thus can reduce energy consumption
of power-hungry rack components, such as cooling, power
distribution units, and power backup equipment. Experiment
results indicate a reduction in energy consumption up to 30%
when compared to previous algorithms.

Keywords: Big data, MapReduce, Energy proportionality, Cluster,
Node activation

1. Introduction
Large data center operating costs have prompted the con-

sideration of energy management policies. Current solutions
can be divided into two categories: cluster-wide and local
[4]. Cluster-wide policies achieve energy proportionality by
reconfiguring the cluster dynamically. When the cluster load
is very high, most nodes should turn on and share the load.
However, if the cluster load is significantly lower than the
peak load, cluster-wide policies consolidate the load on a
subset of nodes and turning off the remaining nodes. As a
result, the entire cluster can consume energy in proportion
to its load level. Local policies put unused resources in a
low-power state. Typical examples include dynamic voltage
scaling and power-aware storage management.

This paper focuses on cluster-wide energy management
for MapReduce clusters. MapReduce has emerged as an
important paradigm for building large-scale data intensive
applications [13]. It provides a simple and powerful pro-
gramming model that enables easy development of dis-
tributed applications to process vast amounts of data on large
clusters of commodity machines. Recent empirical studies
show that MapReduce clusters have to support highly diverse
workloads consisting of short interactive jobs and long-
running batch jobs [3], [12]. Furthermore, some workload
has high peak-to-average ratios [2]. A cluster provisioned
for the peak load would be often underutilized and waste a
great deal of energy. This means that MapReduce clusters
have high potential to save energy by cluster-wide energy
management.

In this paper, we assume that the cluster is partitioned
into several groups. Each group includes one replica of
every data item. To save energy, we exploit both inter-group
strategy and intra-group strategy. The inter-group strategy
consolidates system load to a minimum set of active groups
so that nodes in other groups can stay at low-power mode for
a long time. The intra-group strategy leverages rack-aware
node activation to reduce the number of active racks for
each group. A recent study on power management for data
center shows that rack-based power management can lead to
several times more energy savings than other solutions that
focus only on the power consumed by node [5].

The contribution of this paper can be summarized as
follows.

• We first propose task allocation algorithms that select
target nodes to execute input tasks. The goal is to
consolidate the system load to a minimum set of
active groups. We present two alternatives on node
selection, group-based and locality-based, which shows
an interesting trade-off between energy consumption
and performance.

• Then we propose node activation algorithms that de-
termines a node to be activated when the system load
increases. Considering the activation relationship of
group, rack, and node, we propose three node activation
algorithms, entire activation, rack-based activation, and
locality-based activation. They also exploit a trade-off
between energy consumption and performance.

• We develop an experiment model of MapReduce cluster
and evaluate the proposed algorithms with respect to
energy consumption and performance.

The rest of this paper is organized as follows. Section 2
presents related work and explains its limitations. Section
3 describes the cluster architecture that we assume in this
paper. Section 4 proposes algorithms for task allocation and
node activation. Section 5 describes the experiment model
and Section 6 analyzes the experiment results. Finally, the
concluding remarks appear at Section 7.

2. Related Work
A number of studies have reported cluster-wide energy

management methods for MapReduce clusters. The covering
set (CS) method [9] is the initial work. It keeps one replica
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Fig. 1: Cluster architecture

of every data item within a small subset of nodes called
CS nodes. CS nodes remain fully powered to preserve data
availability while the rest is powered down. iPACS [7]
presents a CS node set discovery algorithm that finds an
energy-optimized node set with any required degree of data
availability. When the system load changes significantly, it
activates the new CS node set according to the current load.

Sierra [14] motivates our work the most. It extends the CS
method by partitioning the cluster into r groups, where r is a
replication factor. Each node belongs to one of the groups so
that one replica of each data is placed to each group. Similar
to our work, Sierra reconfigures the cluster by activating
or deactivating each group according to the system load.
However, it may suffer from two limitations. First, it lacks
an elaborate task allocation scheme that determines which
nodes are going to execute incoming tasks. As we will de-
scribe at Section 4, the number of idle nodes can be different
according to the task allocation algorithm, especially when
the variance of cluster load is significant. By maximizing
the number of idle nodes, we can increase the probability of
deactivating racks and groups. The next limitation of Sierra
is that it does not consider the order of node activation for
each group. We will show that activating nodes at random
order causes unnecessary energy consumption and longer
execution time for each task.

GreenHDFS [6] and BEEMR [2] also divide the cluster
into several groups. Unlike the CS method, each group
includes different set of data. This causes a data availability
problem when a node in some active group requires any
data stored in deactivated groups. AIS (All-in Strategy) [8]
is a totally different approach. It runs the given jobs with
the entire set of nodes in the cluster to complete them as
quickly as possible. Upon completion of the jobs, every

node is deactivated to save energy until the next run. One
potential drawback is that even with small jobs, AIS still
needs to wake up the entire cluster, possibly wasting energy.
Furthermore, it cannot support real-time jobs that require fast
response time and deadline constraint [1].

3. Cluster Architecture
Figure 1 shows the baseline cluster architecture. The

cluster is partitioned into r groups, and each group stores
one replica of every data item. This means that there are
r replicas for each data item. Group 1 is a primary group.
It has a role to CS nodes [9] and thus always powered on.
As a result, the primary group can ensure the immediate
availability of data items required for real-time jobs. Other
groups may be activated or deactivated according to the
system load. This way we can support the principle of energy
proportionality such that the amount of energy consumed by
the cluster is proportional to the amount of work performed.

We assume that each group consists of n distinct racks
and all nodes in a rack are in the same group. This permits
the entire rack to be turned off when the owner group is
deactivated, allowing additional power savings by turning
off rack-wide equipment such as switches [5], [14]. We
also assume that there is more bandwidth available between
nodes on the same rack compared to nodes on different rack.
Note that this assumption is effective for most configurations
of current data centers. For example, Hadoop prefers within-
rack transfers to off-rack transfers when placing MapReduce
tasks on nodes [15].

The front-end is a single point of contact for a client
wishing to execute a MapReduce job. Typically, a MapRe-
duce job is divided into a number of map tasks and reduce
tasks. The front-end allocates each task to a node in some
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Fig. 2: Task allocation algorithms for map task

active group. The task allocation has to be performed in
an energy-efficient manner not to activate excessive groups
compared to the current load. Furthermore, it tries to take
advantage of data locality to reduce the amount of inter-node
or inter-rack communications. We will describe the proposed
task allocation algorithms at Section 4.1. The front-end also
monitors the system load and compares it to the processing
capacity of active groups. If the system load increases, the
current set of active nodes would not afford additional tasks.
Then the front-end has to turn on new nodes. There are
some alternatives to select new nodes to be activated. We
will discuss this issue at Section 4.2.

4. Proposed Algorithms
In this section, we first describe task allocation algorithms

that determine a node to execute a task. Then we propose
node activation algorithms that determine a node to be
activated to process excessive load.

4.1 Task Allocation Algorithms
We propose two task allocation algorithms, named

group-based allocation (GBA) and locality-based allocation
(LBA). Figure 2 presents the details of both algorithms
for allocating a map task. They take advantage of data
locality to reduce inter-node and inter-rack communications.
Specifically, they first check if the task is data-local, that is,
running on the same node that the required data resides on.

If the node has available slots for the task, the task can be
allocated to the node. Otherwise, both algorithms check if
the task is rack-local: on the same rack, but not the same
node, as the input data. Some task is neither data-local nor
rack local. For the task, GBA checks if any other node in the
current group is available to execute it. On the other hand,
LBA checks if the task is data-local or rack-local for the next
group. If it is not data-local and rack-local for every active
group, then LBA checks the availability of other nodes from
group 1 again.

Note that GBA allocates a task to any node in group 2 only
if no node in group 1 can afford new tasks. This means that
GBA can consolidate the system load to the limited number
of groups. As a result, more groups can be deactivated and
the amount of energy reduction would be significant. LBA
adopts a different approach. It allocates the task to group 2
in case of data-local or rack-local even though some nodes
in group 1 are available. Since LBA takes advantage of data
locality more significantly, it could outperform GBA with
respect to the execution time. However, more groups would
be activated at the same time and thus the amount of energy
reduction is limited.

Allocating reduce tasks are rather simple. To exploit data
locality, they can be allocated to the same node or same
rack of preceding map tasks. If the node or the rack is not
available, the front-end will simply take any available node
from group 1.
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4.2 Node Activation Algorithms
If the set of active groups cannot afford current system

load, the front-end has to activate a new group. Considering
to the activation relationship of group, rack, and node, we
propose the following node activation algorithms.

• Entire activation (EA): When a group is activated,
every rack and node in the group is activated at the
same time.

• Fractional activation (FA): When a group is activated,
only part of entire racks and nodes of the group are
activated according to the system load. To select racks
and nodes to be activated, the front-end considers the
required data of yet-to-be-run tasks. There are two
algorithms of the fractional activation.
– Rack based activation (FA-RBA): It first turns on

a rack that includes the most required data of yet-
to-be-run tasks. Within the rack, nodes are activated
in order according to the system load. Only if every
node in the active racks is activated, FA-RBA turns
on a new rack.

– Locality based activation (FA-LBA): It selects an
inactive node that includes the most required data of
yet-to-be-run tasks. If the node is included in inactive
rack, then FA-LBA turns on the rack first and then
the node.

Note that those algorithms show an interesting trade-off
between energy consumption and performance. First, EA
should spend energy the most since all members of the group
are activated regardless of the system load. However, it can
cope with the following increase of system load without any
turn-on delay. FA activates only part of the group according
to the system load. If the system load increases thereafter,
the rest should be activated with considerable turn-on delay.
This means that FA has some limitation to adapt dramatic
load variation. However, it can save energy significantly
compared to EA.

The trade-off between energy consumption and perfor-
mance also exists between FA-RBA and FA-LBA. FA-RBA
tries to reduce the number of active racks. Since 70% of
data center power goes toward rack-related components,
such as cooling, power distribution units, the switch gear,
and power backup [5], reducing the number of active racks
must contribute to save energy significantly. On the other
hand, FA-LBA just activates nodes that store the required
data the most regardless of rack activation. As a result, it
is possible that many racks of a group are activated while
there are only a few active nodes for each rack. FA-LBA
increases the probability of data-local at the cost of large
energy consumption.

5. Experiment model
To evaluate the performance of proposed algorithms, we

developed a simulation model of the MapReduce cluster

Table 1: Simulation parameters
Parameters Values
Number of groups 3
Number of racks 150
Number of nodes 3000
Number of Map slots per node 10
Number of Reduce slots per node 5
Rack transition time 300 sec
Node transition time 30 sec
Maximum duration of staying at idle state 15 min
Energy consumption of idle node 100 w/h
Energy consumption of active node 500 w/h
Rack power overhead for each node 50%
Fixed energy consumption of active rack 5 kw/h
Intra-rack network bandwidth 64 Gbps
Inter-rack network bandwidth 128 Gbps
Data size of each group 80 TB
Load skew factor (θ) 0.0 ∼ 1.0
Portion of hot data 4%
Probability of accessing hot data 80%

using CSIM discrete-event simulation package [10]. Table
1 shows the simulation parameters. The parameter values
will be used for most experiments unless otherwise noted.
Many of their values are adopted from [5].

The cluster consists of three groups and each group
has 50 racks. The first group is a primary group and is
always powered on. The other groups can be deactivated
according to the system load. We assume a homogeneous
computing environment where the hardware specification
of each device type is same. Specifically, a rack includes
20 nodes, and every node has 10 map slots and 5 reduce
slots. That means a node can execute 10 map tasks and
5 reduce tasks at the same time. Each node can stay at
one of three execution states: active, idle, and off. An off
node does not consume any energy. A node is in active state
when it executes some tasks. When the node completes every
assigned task, it moves to the idle state. We assume that the
energy consumption of idle node is much lower than that of
active node. Furthermore, if any node in non-primary group
stays at the idle state for longer than the threshold (15 min),
the front-end turns off the node. The time taken by the node
to go between idle and off states is set to 30 seconds.

The state of rack is modeled similarly. If any node in a
rack is active, the rack is also active. If every node in the rack
is in off state, it moves to the off state. The transition delay
taken by the rack is set to 300 seconds same to [5]. An active
rack consumes energy in proportion to the number of active
nodes. Similar to [5], we configure rack overhead to be 50%;
i.e. the support-infrastructure like cooling system on each
rack consumes 50% as much energy as the nodes on the rack.
Since the rack may also have equipments like interconnect
bay and power backup that spend energy independent of
node states, we also model that there is significant fixed
energy consumption for each rack [11].

A group contains one replica for each data item. We
configure that the data size of each group is 80 TB, and it is
evenly distributed to the nodes. To model the access skew,
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Fig. 4: Load variation model

we categorize the entire data items into hot set and cold
set. A data item in hot set has a high probability of being
accessed by tasks. The load skew factor, θ, determines how
much portion of hot set is assigned to each rack. Suppose
that Dhot represents the size of entire hot set. We set Dhot

to 3.2 TB which corresponds to 4% of the entire data set
(= 80 TB). If each group includes N racks, the size of hot
set in k-th rack is determined by the following Zipf-like
distribution expression, Dhot ∗ 1/kθ∑N

i=1(1/i
θ)

. If θ is set to 0,
every rack has the same number of hot data items. On the
other hand, if θ is set to 1, the first few racks store most of
hot data items. Figure 3 shows the number of hot data items
assigned to every rack of a group on different settings of θ.
The size of a data item is set to 64 MB.

Figure 4 depicts a load variation model used throughout
the experiments. It consists of three periods, each of which
has a load increasing stage and a load decreasing stage.
The first period lasts for the first seven hours. It is intended
to model the initial situation of the cluster where only the
primary group is active and no node of the primary group
caches anything. The second period starts after the first
period. In this period, the load increases up to the maximum
cluster capacity and then decreases dramatically. The last
period starts near fifteen hours. Unlike the previous periods,
the load increases slowly and thus we can compare the

performance of proposed algorithms under different load
increasing speed. We believe that our load variation model
can capture most of real workload characteristics related to
MapReduce clusters [2], [6].

6. Experiment Results
We implement two versions of task allocation algorithms,

GBA and LBA, and four versions of node activation algo-
rithms, EA, FA-RBA, FA-LBA, and Sierra [14] that chooses
the activated node at random. Performance metrics are en-
ergy usage and response time (turnaround time). The energy
usage is the aggregate power consumed by every rack and
node. We use the number of active racks and active nodes
as a secondary metric to explain the variation of the energy
usage. The response time in seconds is measured as the
difference between when a task is submitted and when the
task successfully commits.

6.1 Energy Usage
We first compare the energy usage. Figure 5 shows the

experiment results. As expected, EA consumes energy the
most because it turns on every rack and node in the activated
group without regard to the system load. On the other
hand, the fractional activation algorithms can save energy by
turning on part of racks and nodes of the group according
to the system load.

Among the fractional activation algorithms, FA-RBA per-
forms best. It can save energy up to 30% compared to EA
as Figure 5.a and 5.b show. This is because FA-RBA turns
on a new rack only if all nodes in active racks are active.
Figure 5.c and 5.d show that the number of active racks is
the smallest at FA-RBA. Both FA-LBA and Sierra consume
more energy due to large number of active racks. The
difference of the number of active nodes is not significant
among the fractional activation algorithms as Figure 5.e and
5.f show. Since Sierra selects a new node at random manner,
the selected node may be any rack in the group. This means
that Sierra would turn on most racks for each activated
group. FA-LBA also turns on more racks compared to FA-
RBA. This is because FA-LBA selects a new node that stores
the requested data items the most, even though the node is in
inactive rack. It prefers to support fast response time rather
than reduce energy consumption.

Task allocation algorithms also affect the energy usage.
Specifically, LBA consumes more energy than GBA. The
difference is significant between the second period and the
third period. Since GBA tries to distribute the system load
to a minimal number of groups, it has more chances to turn
off any group compared to LBA. From Figure 5.c and 5.e,
we can guess that GBA activates the primary group only
between the second period and the third period since the
number of active racks and nodes correspond to the size of
a group. On the other hand, as Figure 5.d and 5.f illustrate,
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Fig. 5: Energy usage (θ = 0.5)

LBA turns on more racks and nodes at that duration, which
means that LBA activates additional groups.

6.2 Response Time
We also compare the response time of proposed algo-

rithms. Figure 6 shows the difference of response times of
proposed algorithms from EA. We select EA as a baseline
since EA turns on every rack and node immediately for an
active group. As a result, it may not experience any transition
delay for any tasks allocated to the group.

For the most part, the differences of response time be-
tween node activation algorithms are not significant. This is
especially true for GBA as Figure 6.a shows. In LBA, the
difference increases at the first period, and Sierra performs
worst among them. At the second period, every fractional
algorithm performs worse dramatically for some point where
the load increases up to the maximum cluster capacity. Since
every rack and node in off state should be activated, many
tasks experience transition delay waiting for the rack and
node will be active. Similar phenomenon also occurs once
for FA-RBA at the third period. FA-RBA tries to reduce the
number of active racks, and thus it may suffer from large
transition delay when the system load increases suddenly
and requires many racks being activated.

6.3 Access Skew
The last experiment compares the energy usage on various

settings of θ. Figure 7 shows the average energy usage at
the first period. When θ is 0, FA-RBA performs best and
it can save energy about 20% of EA. FA-LBA and Sierra

consume much energy compared to FA-RBA. Since every
rack of a group has the same number of hot data items
when θ is 0, the access set of tasks distribute the entire
racks. This means that FA-LBA turns on most racks while
very few nodes would be activated at each rack. As a result,
the fixed energy consumption of active rack takes significant
part of aggregate energy consumption. FA-RBA can reduce
the fixed energy consumption since it tries to minimize the
number of active racks.

The energy consumption of FA-RBA increases in propor-
tion to θ, and it consumes more energy than FA-LBA when
θ is 1. Note that the first few racks store most of hot data
items when θ is 1. Let us suppose that ‘hot rack’ is one that
stores hot data items the most. FA-LBA assigns a task to the
hot rack only if it accesses hot data items. The execution
time of the task should be relatively short since it does not
incur inter-rack communication. On the other hand, in FA-
RBA, the hot rack may be assigned to tasks accessing other
data items. This causes to make the execution time of the
tasks longer. Since many tasks have to access data items
in hot rack, the execution time of the tasks may be also
prolonged. As a result, more racks should be required to
provide map/reduce slots for incoming tasks and thus FA-
RBA may consume much energy.

7. Concluding Remarks
In this paper, we consider cluster-wide energy manage-

ment for MapReduce clusters. We first propose task alloca-
tion algorithms that select target nodes to execute incoming
tasks. Then we propose node activation algorithms that
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Fig. 6: Difference of response time from EA (θ = 0.5)

determine a new node to be activated when the system load
increases. The proposed algorithms consolidate the system
load to a minimum set of active groups, and thus can save
energy significantly. Furthermore, they are rack-aware and
thus can reduce energy consumption of power-hungry rack
components, such as cooling, power distribution units, and
power backup equipment.

To evaluate the performance of proposed algorithms, we
develop a simulation model of MapReduce clusters. The im-
portant experiment results are summarized as follows. First,
the group-based allocation can reduce the number of active
racks and thus can save energy considerably compared to
the locality-based allocation. Next, the rack-aware fractional
activation outperforms other node activation algorithms with
regard to the energy usage. The performance improvement
is up to 30% when compared to entire activation algorithm.
Furthermore, its response time is comparable to other algo-
rithms in most cases.
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Abstract— This paper presents a parallel (GPGPU) ap-
proach for dealing with the turbid workload of adaptive
quadrature, called ‘parallel block-cutting adaptive quadra-
ture’ (PBCAQ). PBCAQ provides speedups as high as 211
times the performance of its sequential competitors. In ad-
dition, it has two intertwined and desirable properties: (1)
its speedups increase as the size of the workloads being
processed increase; and (2) it performs best over definite
integrals requiring larger workloads. These two properties
together make PBCAQ a valuable example of computing an
inequitable, turbid workload on the GPGPU, devices that
require workload simplicity.

Keywords: Parallel processing, GPU, CUDA, SIMT, adaptive
quadrature, numerical integration

1. Introduction
In this paper we explore an efficient implementation of

adaptive quadrature (AQ) on GPGPU architectures. This prob-
lem is selected as an example of an algorithm that exhibits
an unpredictable workload and poses challenges in equitably
dividing work. Problems with these characteristics are gen-
erally difficult to parallelize effectively for the SIMT (Single
Instruction Multiple Thread) parallel model of GPGPUs. This
computing model offers significant performance benefits for
applications with predictable, regular patterns of parallelism
and computation, where a single instruction can be applied to
many data items at the same time (within GPGPU threads).

On GPGPUs, the instruction sequences, called kernels, are
launched by the CPU onto the GPGPU forming groups of
parallel threads, called warps, that will execute concurrently
on GPGPU streaming multiprocessors [1], [2]. Losses of
GPGPU computing efficiency occur when: (1) computing
units sit idle, which happens when loads are not properly
balanced; (2) threads within warps diverge; and (3) warps
sit idle during memory accesses. The additional flexibility
that comes from the SIMT model and GPGPU architectures
cannot easily be exploited without detailed knowledge of such
facets [3].

Some workloads, as that of AQ, are intrinsically difficult to
conform with processing workloads suitable for the GPGPUs.
Often these workloads are resistant to simple or equitable
division. In some instances, it may be because the elements
of the workload are not uniform and cannot be further
divided into uniform elements. In other instances, it may
be because dependences that cannot be discovered statically

make workload division difficult; this type of workload is
known as an amorphous workload [4], [5].1

Another reason that a workload may not easily conform to
GPGPU processing is because the amount of work left to be
done cannot be simply circumscribed. In these cases, the task
of deciding upon equitable work divisions, needed for parallel
load balancing, is either too costly or not possible in principle.
In this paper, we introduce the term turbid workload to refer
to this type of unpredictable workload. Breadth-first search is
a good example of an algorithm with such a workload [6].

Adaptive quadrature (AQ) is another example of an algo-
rithm with a turbid workload. AQ is a divide and conquer
process that is used to refine the approximation of definite
integrals, the area under the curve of a function over a specific
interval [10]. It works by first estimating an approximation of
the area under the curve for the given interval; this approxi-
mation is checked for accuracy (within a given tolerance); if
the integral is not within the tolerance, the interval is divided
in half and each subinterval is approximated recursively;
accurate integrals calculated for subintervals are accumulated.
During this process, integrals are approximated using methods
like the trapezoidal rule or Simpson’s rule. Each time the
interval is divided and work preserved for later processing, it
is unclear how much work is left within each division. Thus,
throughout the processing of AQ, divisions of workload are
unlikely to be equal. These types of problems pose a serious
challenge to parallel speedup and efficiency for SIMT-type
parallelism.

AQ has many applications. Among them are holographic
interferometry [7], multilevel regression models [8], and free-
surface motion in liquids [9]. Any of these applications and
many others would greatly benefit from a GPGPU accelerated
form of adaptive quadrature.

In this paper, a parallel algorithm for GPGPU processing of
the turbid workload of adaptive quadrature will be shown. It is
called ‘parallel block-cutting adaptive quadrature’ (PBCAQ).
PBCAQ is an effective approach for parallelizing adaptive
quadrature. It provides significant speedups over sequential
competitors; on some definite integrals, these speedups can
reach as much as 211 times.

This paper is organized as follows. In Section 2, the basics

1The concept of an amorphous workload is closely tied to the concept of
amorphous data-parallelism put forward by Kulkarni et al [4], [5]. Whereas
amorphous data-parallelism refers to the pattern of parallelism exhibited by
an algorithm, an amorphous workload refers to the workload resulting from
an algorithm whose pattern of parallelism is amorphous data-parallelism.
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Fig. 1: Computational tree for adaptive quadrature after
values of f(x), a, b, and τ are fixed. White boxes represent
mediate computations; green circles represent immediate com-
putations; red stars represent unnecessarily fine immediate
computations.

of adaptive quadrature are described. Section 3 introduces
the continuity assumption, which is the animating principle
behind PBCAQ. Section 4 provides a detailed explication of
the PBCAQ algorithm. In Section 5, the results for PBCAQ
are presented in comparison to sequential AQ versions as
well as modified forms of the PBCAQ algorithm. This paper
concludes with Section 6.

2. Adaptive quadrature
As stated in Section 1, adaptive quadrature (AQ) is a divide

and conquer process that is used to refine the approximation
of definite integrals. Let

∫ b

a
f(x) dx be the integral being

evaluated using AQ over interval i = [a, b] for a given
approximation tolerance τ . During the integration process,
subintervals of i, defined as im = [am, bm], will be approx-
imated within tolerance τm, where τm is τ divided as many
times as the subinterval of i and a ≤ am < bm ≤ b. For
each interval im, AQ evaluates the interval using a coarse
approximation method and a fine approximation method.2 Let
sc be the approximation returned by the coarse method and
let sf be the approximation returned by the fine method. If
|sc − sf | ≤ τm, then im is approximated within tolerance
and added to the overall result; if |sc − sf | > τm, then im is
divided, typically into two halves, and AQ approximates each
of the divisions. Let the divide and conquer approach to AQ
be known as ‘common adaptive quadrature’ (CAQ).

In order to ease discussion, some new terms are needed. Let
a mediate computation be the computation of subinterval im
resulting in an approximation not within tolerance; mediate
computations are the empty, white boxes in Figure 1. Note
that a mediate computation results in its interval, im, being
further divided into smaller subintervals im1, im2, ...imn for
approximation. Let an immediate computation be the compu-
tation of subinterval im resulting in an approximation within

2All of the algorithms tested in this paper were implemented using
the trapezoidal rule for coarse approximation and Simpson’s rule for fine
approximation.

tolerance; immediate computations are the green circles in
Figure 1. Let an unnecessarily fine immediate computation
be an immediate computation of a subinterval im1 within
tolerance at length `1 when a subsuming subinterval im2 of
length `2 (where `2 = `1 ∗ 2x, x ≥ 1) exists and im2 can be
approximated within tolerance; unnecessarily fine immediate
computations are the red stars in Figure 1.

3. The Continuity Assumption
The design of PBCAQ rests upon a key assumption. This

assumption is formally stated below:
Continuity Assumption: Given some continuous function

f(x), an integral approximation method M and a tolerance τ ,
if
∫ b

a
f(x) dx is being approximated using adaptive quadrature

and if subinterval i of length l is approximated by M within
τ , then the intervals adjacent to i of length l, i+1 and i− 1,
will likely also be approximated by M within τ . Similarly,
given some continuous function f(x), an integral approxi-
mation method M and a tolerance τ , if

∫ b

a
f(x) dx is being

approximated using adaptive quadrature and if subinterval i
of length l is not approximated by M within τ , then the
intervals adjacent to i of length l, i+1 and i− 1, will likely
not be approximated by M within τ .

The continuity assumption is a useful guide to avoiding
some of the mediate computations that are normally visited
within the AQ computational tree. With the size of adjacent
intervals as starting points, much of the mediate work of
repeatedly finding correct interval sizes can be skipped.
This means that groups of adjacent intervals can be quickly
approximated.

Within Figure 2, the mediate computations that this as-
sumption eliminates can be seen. PBCAQ finds an initial in-
terval size (depth first) and then, by assuming continuity, tra-
verses the leaves of the computational tree (horizontally) until
the interval size no longer applies; at which point, it either
slightly enlarges or shrinks the interval size (and tolerance);
it then continues traverse the leaves of the computational tree
at the new interval size.3 While mediate computations are not
eliminated, their number can be mitigated by the continuity
assumption.

4. Parallel, block-cutting adaptive
quadrature for the GPGPU
4.1 Basic algorithm

PBCAQ is implemented in NVIDIA’s Compute Unit De-
vice Architecture (CUDA). As such, CUDA nomenclature
will be used throughout. Physically, an NVIDIA GPGPU
consists of some number of streaming multiprocessors (SM),
each of which has some number of cores, usually 32.4 Thus,
if an NVIDIA GPGPU has 14 SMs, then it has 448 cores.
Logically, the primary unit of computation in CUDA is the

3As will be discussed, PBCAQ works on the level of regions (of intervals).
However, the continuity assumption applies just the same.

4At times, cores will also be referred to as compute units.
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Fig. 2: Comparison of computational trees for CAQ (left), SCAQ* and PBCAQ (right). In CAQ and SCAQ, squares and circles,
respectively, represent mediate and immediate computations of intervals; squares with X’s represent mediate computations not
performed by SCAQ. In PBCAQ, rectangles and ovals, respectively, represent mediate and immediate computations of (intervals
within) regions. * Note that SCAQ is described below in Section 4.3

thread such that a single thread will be run on a single core
of a single SM. Threads are organized into blocks and blocks
are organized into grids. While any thread can utilize global
memory on the device, threads within the same block will
execute on the same SM and, thus, are able to utilize shared
local memory. Finally, since the number of threads that can
be launched on a GPGPU vastly outnumber the number of
available cores, threads that are part of the same block are
organized into warps, which are groups of threads that execute
simultaneously on a SM.

AQ algorithms, like CAQ, often work on the level of
individual intervals (and subintervals). PBCAQ, on the other
hand, works by simultaneously approximating huge numbers
of intervals. Let the intervals simultaneously processed on
the GPGPU by PBCAQ be known as a region. When CAQ
approximates an interval i, it compares the error for that
approximation to the tolerance to determine whether it is
within tolerance. When PBCAQ approximates a region r,
it simultaneously approximates all intervals within r on
the GPGPU; it then compares the sum of the errors for
all intervals in r to the tolerance to determine whether
the approximation of r is within tolerance. Thus, PBCAQ
never considers whether the approximation of an individual
interval of a region is within tolerance; instead, PBCAQ
is only concerned with whether a region, as a whole, has
been approximated within tolerance. The distinction between
the individual intervals processed by CAQ and regions (of
intervals) processed by PBCAQ can be seen in Figure 2.

PBCAQ begins by setting length, which is the length of the
region being approximated, to be the entire length from lower
to upper. It approximates the first region at level log2(α ∗
β) (where α ∗ β = 2x, x ≥ 1) such that α is the number
of blocks executed on the GPGPU and β is the number of
threads per block. It continues (depth first) to shrink length
by half, summing all of the errors from all of the blocks (in
the region) approximated on the GPGPU, until it achieves an
approximation within tolerance for the entire region. After
such an approximation, it adds the region approximation to
the total approximation, doubles length and then, moving
from upper to lower, proceeds to approximate the adjacent
region, if there is one, which will continue to be the case until

function PBCAQ(f, lower, upper, τ )
Let α be the number of thread blocks;
Let β be the number of threads per block;
I ← 0.0; length← upper − lower;
Let S and E be apprxs and errs;
while upper > lower do
. Apprxs and errs are generated by thrds in next step;
Approximate length on GPGPU using (α ∗ β) thrds;
barrier;

Reduce apprxs and errs, S and E, on GPGPU;
barrier;

Transfer apprxs and errs, S and E, to host mem;

. Compare error for region to tolerance
if E ≤ τ then
I ← I + S;
upper ← lower;

length← 2 ∗ length;
τ ← τ ∗ 2;

}
. Expansion step

else
length← length/2;
τ ← τ/2;

end if
lower ← max(upper − length, lower);

end while
return I;

end function

Fig. 3: Parallel, block-cutting adaptive quadrature (PBCAQ)

it breaches lower.
Considering the approximation of regions by PBCAQ, let

the region being approximated be rm. PBCAQ (displayed in
Figure 3) breaks rm into α∗β intervals, where α is the number
of thread blocks and β is the number of threads per block.
It submits the region to the GPGPU where each thread is
assigned its own interval to approximate. Each thread will find
both an approximation and an error for its assigned interval.

After each of the α ∗ β intervals are approximated within
the region, the approximations and the corresponding errors
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Table 1: Adaptive quadrature versions tested

Name Description
CAQ Sequential, queue-based, divide

and conquer
SCAQ Sequential, side-cutting
BCAQ Sequential version of PBCAQ
PSCAQ Parallel, side-cutting
PBCAQ Parallel, block-cutting
PBCAQr PBCAQ with coin-flip interval

doubling
PBCAQs PBCAQ with error-slope-based in-

terval doubling
PBCAQg PBCAQ with log of tolerance over

error-based interval doubling

Table 2: Functions and intervals integrated over for testing

# f(x) Intervals
1 e2xsin(3x) 0.0–5.0, 0.0–6.0, 0.0–7.0
2 (xx)−1 0.0–1000.0, 0.0–2000.0, 0.0–

3000.0
3 (4x)cos(2x)− (x− 2)2 0.0–30.0, 0.0–50.0, 0.0–70.0
4 e4x(

√
1 + e4x)r−1 0.0–5.0, 0.0–6.0, 0.0–6.75

5 e−3xcos(5πx) 0.0–10.0, 0.0–20.0, 0.0–30.0
6 sin(10πx)(πx)−1 1e-6–10.0, 1e-6–15.0, 1e-6–

20.0

Function #1 Function #2 Function #3 Function #4 Function #5 Function #6

Fig. 4: Graphs of functions #1–#6

for these intervals must be reduced (summed) into a single
approximation and error bound for the region. This reduction
is done primarily on the GPGPU. After it is complete, two
highly reduced arrays, one containing errors and the other
containing approximations, are transferred back into main
memory for final reduction by the CPU.

The performance benefits of PBCAQ are due to several
factors. First, no mediate computation takes place for the
top part of the computational tree up to level log2(α ∗ β).
This means that approximation of the integral will start for
the first region at approximately level 19.5 Second, using the
continuity assumption, we evaluate adjacent equally divided
intervals within regions. If a region is approximated accu-
rately, the integral of the entire region is achieved and no
further evaluation is needed for this region. Adjacent regions
are then approximated accordingly and only divided further
if the desired accuracy is not achieved for the region. Third,
the abundance of dedicated parallelism in the GPGPU results
in small enough intervals within each region to achieve the
result within the desired accuracy very fast. In fact, this
method would work very well for many core MIMD plat-
forms. Finally, PBCAQ is able to simultaneously approximate
entire regions, made up of hundreds of thousands or more
intervals. It can do this efficiently because it can spread the
approximation of a region across the many threads available
on the GPGPU.

5This assumes α = 2048 and β = 256. These block and thread allocations
values were used for most of the test functions (see Table 2) in this paper.

4.2 Improving the algorithm
Aside from the speedups that come from the simultaneous

region approximation of PBCAQ, there is a means of further
improving its performance. In Figure 3, note the two brack-
eted lines colored blue and labeled “Expansion step”. The
expansion step executes each time a region is approximated
within tolerance. If the next, adjacent region of length ∗ 2
can be approximated within tolerance, then the expansion
step diminishes (unnecessarily fine) immediate computations.
However, if this is not the case, then it increases the number
of mediate computations.

What is needed is a way to execute the expansion step when
it diminishes the number of immediate computations and skip
it when it increases the number of mediate computations.
This need gives rise to three further versions of PBCAQ: (1)
PBCAQr, which executes the expansion step based upon a
random coin-flip; (2) PBCAQs, which executes the expansion
step based upon the slope of the errors returned from the
GPGPU, i.e. when errors decreased over the region; and (3)
PBCAQg, which executes the expansion step based upon the
(natural) log of the tolerance over the sum of the errors
returned from the GPGPU.

While PBCAQs and PBCAQg have obvious value in that
they provide an inductive prediction upon whether the next
region of length will be approximated within tolerance,
PBCAQr, on the surface seems to be useful only as a point
of comparison. However, it has value independent of its
comparative value. PBCAQr makes no prediction. Yet, it does
provide the means to skip the expansion step half of the time,
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while still providing the means to ‘climb out’ of unnecessarily
small values of length.

4.3 Other algorithms
Before moving to the results, there are three additional AQ

algorithms needing description. They were tested along with
CAQ and PBCAQ and help to add context to the results.
The first is ‘side-cutting adaptive quadrature’ (SCAQ) [10].
It is sequential and, like PBCAQ, it utilizes the continuity
assumption from Section 3. It operates on the level of
individual intervals while PBCAQ operates on regions.

The second is ‘block cutting adaptive quadrature’ (BCAQ).
BCAQ is a straightforward sequential version of PBCAQ.
The parallel speedups, presented in Section 5, are calculated
against the best running time of the three sequential versions,
i.e. SpeedUp(P ) = min( runtime(CAQ), runtime(SCAQ),
runtime(BCAQ) ) ÷ runtime(P ). BCAQ was included so
that parallel speedups could also be calculated against the
sequential version of PBCAQ.

The final additional AQ algorithm to mention is PSCAQ.
It is the GPGPU implementation of SCAQ and works on
the level of individual intervals, unlike PBCAQ. It provides
another basis for comparison.

5. Results
Eight different AQ versions were tested. Three of these

versions were sequential while five were for the GPGPU.
The complete list of versions tested appears in Table 1.
They were all compiled with level three (-O3) and fast-math
optimizations.

All of the AQ versions were tested against six functions.
These functions where chosen because of their varying shapes
and the amount of work that their integration engenders.
Given that this paper focuses upon workload issues associ-
ated with AQ, definite integrals containing singularities were
avoided.6 The size of the workloads associated with each
function varied in two ways: (1) by varying the tolerance;
and (2) by varying the interval length. For (1), three different
tolerances were used. In ascending order of precision, they
were: 1e-7, 1e-8, and 1e-9. For (2), each of the functions
and their respective interval lengths, in ascending order by
interval length, are displayed in Table 2. Graphs of these
functions can be seen in Figure 4.

By varying tolerance and interval length, two datasets
were generated. In the first, for each function, the tolerance
was fixed at 1e-9, while the interval length was increased
through the three values available to each function (shown
in Table 2). In the second dataset, the interval length was
fixed to the largest value available to each function, while the
tolerance was decreased through the values of 1e-7, 1e-8,
and 1e-9.7 Runtimes for each version encompass the entire
time of execution, including the data transfer time between

6MATLAB was used to determine whether or not definite integrals con-
tained singularities.

7Note that decreasing the tolerance increases approximation precision and
the workload size.

GPGPU and CPU memories. All of the runtimes for each
dataset were calculated as an average over ten runs.

For the PBCAQ versions, 2048 GPGPU blocks, each with
256 threads, were used with one exception; for function #2,
256 GPGPU blocks, each with 64 threads, were used. These
block and thread counts were chosen by running an analysis in
which the number of blocks and threads in use was varied, as
powers of 2. The block and thread counts that most frequently
yielded the best performance for each function were chosen.

The versions were tested on a single core of an AMD
Opteron 2427 12-core CPU, with 2 NVIDIA Tesla Fermi
S2050 GPUs (only one GPU was used) running CentOS 5.8.
The CPU had 24 Gb of RAM; it also had an 6 ∗ 64 kb L1
instruction cache and 6 ∗ 64 kb L1 data cache, 6 ∗ 512 kb
L2 cache and a 6 Mb L3 cache. The NVIDIA Tesla Fermi
S2050 GPU had 14 streaming multiprocessors each with 32
cores (for a total of 448 cores); it also had 3 Gb of RAM.

From Tables 3 and 4, it can be seen that PBCAQ out-
performs all sequential versions and its parallel competitor,
PSCAQ. For function #1, its speedup climbs from 49 to 100
to 160 as the interval being integrated over goes from 0.0 to
5.0, 6.0, and finally 7.0. Thus, its speedup climbs as the AQ
workload increases (with the length of the interval). The same
is true if the workload size is increased through the tolerance
(Table 4). In fact, this is the case for all functions #1–#6.
For each function, as the length of the interval increases or
the tolerance decreases, and, ipso facto, the workload size
increases, the speedup yielded by PBCAQ increases.

Even though the results in Table 3 appear straightforward,
there are few anomalies to discuss. While the speedups for
PBCAQ are impressive for functions #1 and #3–#5, the
speedups for functions #2 and #6 are less so. The functions
themselves are the cause of this behavior. Focusing on func-
tion #2, after x = 2, it smoothly converges towards zero
as x increases. Of course, the relatively flat shape of the
curve beyond x = 2 means that it can be approximated with
few refinements. This fact can be seen in the results for the
sequential BCAQ for function #2 in Table 3; even though the
interval doubles from 1000.0 to 2000.0, the runtime increases
a modest 7 percent from 625.77ms to 665.70ms. Clearly, the
workload must not have increased significantly even though
the length of the interval most certainly has.8 This means that
PBCAQ is best applied when a definite integral has a sizable
workload; some integrands, like function #2 over 0.0–3000.0,
do not have sizable workloads, which washes out the benefits
of the massive parallelism available on GPGPUs.

As for the versions of PBCAQ that control the execution of
the expansion step, PBCAQg outperforms PBCAQ, PBCAQr,
and PBCAQs. This can be seen in Figure 5. The idea behind
PBCAQg is to skip the expansion step until magnitude of
the ratio of the tolerance over the sum of the errors returned
from the GPGPU reaches a certain threshold. The prediction

8This fact can also be seen in Table 5. Notice, for PBCAQ, the total regions
processed goes from 46, at 0.0–1000.0, to 52, at 0.0–3000.0. Again, this is
a very modest increase in the number of regions needed to approximate an
interval that is 3 times larger than the original.
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Table 3: Results for sequential versions, PSCAQ, and PBCAQ, varying workload by interval length (Tolerance used: 1e-9)

Function # Intervals CAQ SCAQ BCAQ PSCAQ PBCAQ

1 0.0–5.0
0.0–6.0
0.0–7.0

Time (ms)
11,288.87
34,486.96
96,409.17

Time (ms)
9,177.48

26,601.91
72,395.07

Time (ms)
8,821.56
22,220.24
62,780.25

Time (ms)
202.49
612.28

10,338.96

Speedup
43.57
36.29
6.07

Time (ms)
178.98
221.48
390.15

Speedup
49.29

100.13
160.91

2
0.0–1000.0
0.0–2000.0
0.0–3000.0

1,549.33
2,336.04
2,862.15

1,257.47
1,869.56
2,273.70

625.77
665.70
737.75

1,333.77
1,928.50
2,331.90

0.47
0.35
0.32

138.85
136.52
141.17

4.51
4.88
5.23

3
0.0–30.0
0.0–50.0
0.0–70.0

14,972.00
45,909.05
89,595.28

11,075.19
32,493.22
63,430.98

4,584.55
10,478.06
16,670.30

258.03
541.54

1,257.69

17.77
19.35
13.25

160.38
183.58
226.93

28.58
57.08
73.46

4
0.0–5.0
0.0–6.0
0.0–6.75

4,996.91
15,268.57
34,507.96

3,460.79
10,316.79
22,662.23

3,969.29
11,405.98
25,945.51

189.73
428.92

3,811.10

18.24
24.05
5.95

166.16
229.54
333.11

20.83
44.95
68.03

5
0.0–10.0
0.0–20.0
0.0–30.0

5,104.17
6,746.47

13,004.99

4,100.58
5,424.12

10,439.36

3,259.67
6,457.79
9,649.70

179.97
5,350.85
10,206.69

18.11
1.01
0.95

149.08
158.97
174.25

21.87
34.12
55.38

6
1e-6–10.0
1e-6–15.0
1e-6–20.0

2,186.26
3,408.58
4,545.15

1,602.69
2,478.98
3,263.59

1,434.52
1,720.21
2,008.42

248.41
440.34
863.41

5.77
3.91
2.33

143.21
144.61
143.49

10.02
11.90
14.00

Table 4: Results for sequential versions, PSCAQ, and PBCAQ, varying workload by tolerance (Interval used: Largest for each
function; see Table 2)

Function # τ CAQ SCAQ BCAQ PSCAQ PBCAQ

1
1e-7
1e-8
1e-9

Time (ms)
9,053.00

31,309.94
96,233.51

Time (ms)
7,375.65

25,311.32
76,043.28

Time (ms)
6,834.82

20,167.66
66,083.14

Time (ms)
185.69
526.90

10,244.84

Speedup
36.81
38.28
6.45

Time (ms)
165.01
209.98
392.35

Speedup
41.42
96.05
168.43

2
1e-7
1e-8
1e-9

252.41
874.60

2,845.57

223.77
734.23

2,368.34

360.50
489.66
743.82

338.45
810.97

2,329.40

0.66
0.60
0.32

136.09
139.20
141.05

1.64
3.52
5.27

3
1e-7
1e-8
1e-9

8,426.96
26,754.30
89,466.24

6,353.87
20,793.99
65,804.82

1,772.02
5,213.23

17,285.78

213.07
358.08

1,258.73

8.32
14.56
13.73

141.65
162.72
226.60

12.51
32.04
76.28

4
1e-7
1e-8
1e-9

3,395.06
11,004.69
34,473.11

2,832.19
8,751.51

26,058.89

2,170.78
6,877.60

22,837.65

173.19
381.23

3,798.32

12.53
18.04
6.01

153.13
200.75
334.07

14.18
34.26
68.36

5
1e-7
1e-8
1e-9

1,349.30
3,573.15

12,916.33

1,129.17
2,970.11

10,803.44

627.42
2,517.04
9,966.99

1,162.58
2,866.51

10,189.25

0.54
0.88
0.98

138.52
145.83
171.30

4.53
17.26
58.18

6
1e-7
1e-8
1e-9

449.60
1,440.29
4,496.55

342.45
1,093.14
3,402.93

214.35
660.54

2,059.48

301.76
534.15
859.14

0.71
1.24
2.40

140.75
138.98
144.86

1.52
4.75

14.22

made by PBCAQg has the virtue of being easy to compute and
largely accurate at deciding whether the next region would be
better approximated at a larger size. It outperforms the other
versions of PBCAQ because it processes fewer total regions.
This is evident in Table 5 and is the result of avoiding the
execution of the expansion step when the next interval cannot
be processed at a larger size.

On the flip side, PBCAQs seems less effective at predicting

whether the expansion step should be executed for function
#2. This can be seen in Figure 5, where the speedup yielded
by PBCAQs decreases as the interval size increases. In fact,
it is outperformed by PBCAQr, which makes its choice
concerning the expansion step randomly. An explanation can
be found in Table 5, where the total regions processed by
PBCAQs for function #2 is significantly higher than any other
version. Comparing regions rejected and total region counts
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Fig. 5: Parallel speedups of PBCAQ versions, varying workload by interval length (Tolerance used: 1e-9)

Table 5: Rejected regions and total regions processed for
PBCAQ versions, over functions #1 - #4, varying workload
by interval length (Tolerance used: 1e-9)

F# Intervals PBCAQ PBCAQr PBCAQs PBCAQg

1 0.0–5.0
0.0–6.0
0.0–7.0

Rej
22
56
166

Tot
44
112
332

Rej
13
33
84

Tot
37
99
255

Rej
12
25
66

Tot
38
86

236

Rej
8
15
24

Tot
34
76

210

2
0.0–1000.0
0.0–2000.0
0.0–3000.0

25
27
28

46
50
52

21
21
21

51
54
53

8
8
8

415
815
1215

21
23
24

42
46
48

of PBCAQs to the other versions, it can be deduced that
PBCAQs is opting to execute the expansion step only on rare
occasions, forcing it to perform many wasteful unnecessarily
fine immediate computations.

6. Conclusion
Parallel, block-cutting adaptive quadrature (PBCAQ) offers

significant speedups over the sequential versions of adaptive
quadrature. It is also an excellent example of parallelizing
turbid workloads for the GPGPU. In the case of adaptive
quadrature, the continuity assumption provides needed il-
lumination for how to decompose its workload. While the
continuity assumption is not a panacea, it is just enough
to help PBCAQ compute adaptive quadrature quickly and
efficiently.

There are two next steps for this research. First, the
concepts and lessons learned from processing AQ on a
single GPGPU will be used to scale PBCAQ across multiple

GPGPUs on multiple machines. The many-task parallelism
offered by NVIDIA’s Kepler architecture also presents an
interesting target. Second, a more detailed study of turbid
workloads will be done by finding other algorithms sharing
turbidity similar to adaptive quadrature.
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Abstract— We present a parallel tridiagonal Toeplitz solver

for diagonally dominant systems. Our solver utilizes a two

tiered data decomposition. The first is a course grained and

communication free matrix block partitioning. The second is

fine-grained and depends on a fast Fourier transform (FFT)

kernel. Our algorithm is designed to benefit from the use

of parallel FFT processors. Such devices vastly outperform

the general architectures on which other tridiagonal solvers

are most likely to be implemented in terms of both speed of

execution and conservation of energy. Furthermore, ramping

up processor counts to limit or even eliminate agglomeration

is embarrassingly parallel.

Keywords: Tridiagonal Toeplitz, Diagonally Dominant, Linear
System, FFT, Butterfly.

1. Introduction
The ability to solve a diagonally dominant tridiagonal

Toeplitz (DDTT) system of linear equations quickly is cen-
tral to many computational tasks in the sciences, engineering,
signal and image processing, as well as for interactive and
real-time systems in graphics and video. These systems are
at the heart of problems as diverse as cubic spline and B-
spline curve fitting [19], [7], preconditioning for iterative
linear solvers [5], [20], computation of photon statistics
in lasers [14], computational fluid dynamics [41], solving
neuron models by domain decomposition [21], solving sec-
ond order differential equations and numerical solutions to
integral equations [40], [18], and more.

We propose a parallel algorithm to solve a DDTT system
of linear equations
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where |d| > |c| + 1. Here and hereafter we express (1)
as the matrix equation Tx = b, where n × n tridiagonal
Toeplitz matrix T = (ti,j)

n−1
i,j=0, such that ti,i−1 = c,

ti,i = d, ti,i+1 = 1, and ti,j = 0 otherwise, and n-vectors
x = (xi)

n−1
i=0 and b = (bi)

n−1
i=0 . Our algorithm determines a

solution vector by carrying out its computation on carefully

chosen substitute systems that approximate the original
system in question. Its accuracy compares quite well with
other methods. It achieves extreme scalability with the finest
of granularity by utilizing a two tiered data decomposition.
The first is a course grained and communication free matrix
block partitioning. The second is fine-grained and depends
on a fast Fourier transform (FFT) kernel.

FFTs are the underlying mechanism found in a great many
computations [4], [3]. The FFT and inverse FFT (IFFT)
compute the discrete Fourier transform (DFT) and inverse
DFT (IDFT) respectively [9], both in O(n log2 n) arithmetic
operations (ops). The FFT lends itself quite naturally to
parallel implementations requiring O(log2 n) parallel steps.
Application specific integrated circuits (ASICs) and Field-
Programmable Gate Arrays (FPGAs) incorporating Butterfly
circuits allow for efficient parallel computation of FFTs that
essentially avoid many of the bottlenecks one must expect
to encounter when relying on a general purpose architecture.
Our algorithm allows a large number of such devices to
perform entirely independent computation in parallel to
tackle large linear systems. For a given degree of diagonal
dominance it allows throughput to increase in lock step with
input size. Competitive parallel solvers lack either the fine
granularity of the FFT or require agglomeration for effective
utilization of hardware.

The rest of our paper is organized as follows: Background
information appears in the next section. We present original
work that forms the mathematical basis for our algorithm in
Section 3. We present and analyze our algorithm in Section
4. Empirical results are available in section 5. We discuss
application of our algorithm to ill-conditioned systems in
section 6. We conclude the paper with some final thoughts
in Section 7.

2. Background

2.1 Tridiagonal Solvers

The most work efficient known tridiagonal solver is the
Thomas Algorithm. It is essentially Gaussian elimination
in the tridiagonal case and requires 8n − 4 arithmetic
operations (ops). Unfortunately, the Thomas Algorithm is
inherently serial due to data dependencies between succes-
sive iterations. Recursive doubling (RD) [38] and cyclic
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reduction (CR) [17] are examples of fine-grained parallel
tridiagonal solvers. Both require O(log2 n) parallel steps.
CR is, however, the more work efficient of the two requiring
O(n) ops compared to RD’s O(n log2 n) ops. The course-
grained SPIKE Algorithm [33] for solving banded systems
is another O(n) op parallel solver that has been applied to
tridiagonal systems [6].

Recent interest in unleashing the parallel processing power
of Graphics Processing Units (GPUs) has lead to the im-
plementation on GPUs of several well known algorithms
and hybrid variants thereof for solving tridiagonal systems.
CR has a work efficiency advantage over many such par-
allel solvers. However, GPU idiosyncrasies can undo this
advantage [44] unless they are dispensed with effectively
[10]. One of the obstacles to implementing an efficient GPU
based CR is the fact that its stride doubles each step leading
to bank conflicts [44]. Improvements were realized using
register packing, which significantly outperformed previous
implementations [10]. A CPU based LU decomposition
overlapping a necessary data transfer from host to device
eliminated much of the communication on the GPU required
by CR resulting in a significant speedup [29]. Chang et al.
[6] took another approach aimed at distributing independent
work to the thread processors of the GPU. They applied the
SPIKE Algorithm to a tridiagonal matrix.

2.2 Toeplitz Solvers

Morf [26] and Bitmead and Anderson [2] inverted Toeplitz
matrices in n log2

2 n ops. In essence they extended the
complete recursive triangular factorization of a matrix, that
Strassen [39] used to bound the arithmetic complexity of
matrix inversion. In doing so they took advantage of the FFT
based matrix-vector-multiplication available for structured
matrices of Toeplitz type, which is essentially a truncated
polynomial-polynomial-product. A nonsingular triangular
Toeplitz matrix is invertible in O(M(n)) ops [37] based
on Newton’s iteration, where M(n) is the number of ops
required to multiply an n × n triangular Toeplitz matrix by
an n-vector. Over the fields supporting FFT this bound is
O(n lg n). Some minor improvement in the implementation
was proposed by Commenges and Monsionin [8] and related
work [1], [42], [15], and [36], for which the cost of com-
putation is (1.6̄ + o(1))M(n) ops. Additional progress was
made by Schönhage [35] and Murphy [27] both presenting
algorithms requiring (1.5 + o(1))M(n) ops. Harvey’s [16]
further improvement requires (1.4̄ + o(1))M(n) ops.

2.3 Tridiagonal Toeplitz Solvers

A DDTT matrix T , from (1), can be split into the product
of two bidiagonal Toeplitz matrices plus a perturbation term
via application of the quadratic formula. The two possible
equalities are

T =
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where r1 = d±
√

d2−4c
2

, r2 = d − r1. Hereafter, we write
the matrix equations T = LU + P and T = UL + P ′

to represent (2) and (3) respectively. Because we focus on
diagonally dominant T we can always find r1 and r2 such
that |r1| < 1 < |r2| [31] and so it can be guaranteed that L
and U are diagonally dominant as well.

Several algorithms that solve DDTT systems start by
solving LUy = b via backward and forward substitution,
which requires 4n + O(1) ops. Most then apply a correc-
tion step to y to find either an exact solution or a good
approximate solution to x = T−1b = (LU + P )−1b [34],
[43], [22], [24], [23], [31]. The parallel algorithms based on
this split/correct technique [22], [24], [23], [31], all require
some amount of communication during the correction stage.
McNally et al. [25] did away with the correction step and
in so doing eliminated communication between partitions
of the decomposition. They built on the work by Yan and
Chung [43] who recognized that the need for significant
corrections was limited to a small leading segment of the
approximated solution vector y. McNally et al. [25] noted
that in solving ULz = b, significant differences between x

and z were limited to a small number of trailing elements.
They showed that concatenating the appropriate segments of
y and z results in a good approximation of x.

The aforementioned parallel solvers perform a course-
grained decomposition. Murphy [28] deployed the fine-
grained FFT to solve bidiagonal Toeplitz systems. For the
diagonally dominant case a higher level course-grained de-
composition was performed using a banded approximation
to the inverse. This allowed multiple smaller FFTs to stand
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in for a single larger FFT and obviated the need for com-
munication between partitions. Combining the Toeplitz LU
splitting technique with the FFT based bidiagonal Toeplitz
solver results in a solver for DDTT systems that will very
significantly outperform the corresponding non-FFT versions
when executed on FFT processors. Solving a tridiagonal
Toeplitz system by solving consecutive bidiagonal Toeplitz
system each via FFT/IFFT in this manner, however, leads
one to wonder whether a single round of FFT/IFFT can
produce the desired result.

2.4 Decay of the Inverse

The inverse of a DDTT matrix, T , decays exponentially at
a rate dependent on the values c and d as the distance from
its main diagonal increases [11], [30]. Recall r1 = d±

√
d2−4c
2

and r2 = d − r1 such that |r1| < 1 < |r2| and let ε be the
machine epsilon defined as the smallest floating point value
such that 1+ε > 1 and 1−ε < 1 in floating point arithmetic
at a given precision. If αr

dk/2e
1 < ε and αr

d−k/2e
2 < ε

where α =
∑dk/2e

i=0 (r1/r2)
i then beyond a bandwidth k,

where k is odd and centered on the main diagonal, the
values of T−1 are too small to contribute to a numerically
computed matrix-vector product. In such computations a k-
banded approximation of T−1 that matches T−1 within the
centralized k-band is a sufficient substitute for T−1.

2.5 Circulant Substitution

Let n × n matrix Z1 = (zi,j) such that zi,i−1 = 1,
for i = 1, . . ., n − 1, z0,n−1 = 1, and zi,j = 0 for all
other pairs (i, j). Then Z1(v) =

∑n−1
i=0 viZ

i
1 is a circulant

matrix defined by its first column n-vector v = (vi)
n−1
i=0 .

The product of an n × n circulant matrix Z1(v) and an n-
vector x = (xi)

n−1
i=0 can be obtained in O(n log2 n) ops and

O(log2 n) parallel steps via

Z1(v)x = F−1
n (Fn(v) . ∗ Fn(x)), (4)

(see Pan [32], Chapter 2), here and hereafter Fn(u) is the
order n DFT of u, F−1

n (u) is the order n IDFT of u, and
u .∗w = (uiwi)

n−1
i=0 is an element-wise product of u and w,

where n-vector u = (ui)
n−1
i=0 and n-vector w = (wi)

n−1
i=0 .

It is common practice in engineering circles to derive a
quick rough estimate for the solution to a Toeplitz linear
system by substituting a related circulant matrix for its
Toeplitz counterpart [13]. The motivation for this substitu-
tion is two fold. Associated Toeplitz and circulant matrices
exhibit asymptotic convergence and circulant matrices are
diagonalized via the DFT. The latter tells us that the inverse
of a circulant matrix can be computed via FFT. This is done
efficiently by applying the equality

Z−1
1 (v) = Z1(F

−1
n (1 ./Fn(v))), (5)

(see Pan [32], Chapter 2), here and hereafter 1 ./u =
(1/ui)

n−1
i=0 is the element-wise reciprocal of u. (5) indicates

that the set of invertible circulant matrices is closed under

matrix inversion so that together with (4) it is clear that
Z1(v)x = b can be solved by computing

x = F−1
n ((1 ./Fn(v)) . ∗ Fn(b)). (6)

3. The basis for our Algorithm

We exploit a k-banded approximation to T−1. Due to
the documented decay in T−1, we can always increase the
precision of our approximation by choosing a larger k. For
convenience then and without loss of generality we will here
and hereafter assume k = 2i − 1 for an integer i > 0 and
that k is centered on the main diagonal.

We now introduce three matrices depicted in Fig. 1. Here
and hereafter, let U = (ui,j), where un,1 = 1 and ui,j = ti,j
otherwise, let W = (wi,j), where w1,n = c and wi,j = ti,j
otherwise, and let circulant matrix C = (ci,j), where c1,n =
c, cn,1 = 1, and ci,j = ti,j otherwise. We are motivated
to consider these matrices based upon the following lemma
and its two corollaries.

Lemma 1: x′ = U−1b provides a good approximation for
all but the trailing dk/2e elements of x = T−1b, wherever
a k-banded approximation of T−1 will suffice.

Proof:

Clearly the first n−dk/2e elements in the last column of
T−1 can be treated as zero. We can investigate the values of
the corresponding elements of U−1 by applying the Sherman
Morrison formula. We have

U−1 = (T + uvT)−1 =

T−1 − (T−1uvTT−1)/(1 + vTT−1u)

where u = en−1, v = e0, and ei is the ith column of
the appropriately sized identity matrix. Clearly 1+vTT−1u

is a scalar. vTT−1u is the element in the first row and
last column of T−1. This is the smallest value above the
main diagonal of T−1 and as such can be treated as zero.
Therefore T−1uvTT−1 is a very good approximation for
T−1 −U−1 = (T−1uvTT−1)/(1 + vTT−1u). T−1u is the
last column of T−1 and it has already been noted that its
leading n−dk/2e elements approach zero. vTT−1 is the first
row of T−1. Clearly its trailing n−dk/2e elements approach
zero. In fact T−1u and vTT−1 contain the same elements
but in reverse order, due to the persymmetry of a Toeplitz
inverse. The largest value of outer product (T−1u)·(vTT−1)
is in its southwest corner where the perturbation or non-zero
element of T −U occurs and its exponential decay radiates
from there so that no more than dk/2e of the southwestern
most diagonals of T−1−U−1 are significantly different from
zero. We see that the first n − dk/2e elements in the last
columns of T−1 − U−1 as well as T−1 approach zero and
can be treated as such and therefore the same is true of U−1.

Now, left multiply x = T−1b by U . We have Ux =
UT−1b. Obviously UT−1 differs from the identity matrix in
only its last row. Let b′ = UT−1b = (b′i)

n−1
i=0 . Clearly then
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Fig. 1: Four related matrices: C is a circulant matrix sharing its three non-zero parameters with U , W and tridiagonal
Toeplitz T . U and W both differ from T and from C by a single but different element.

b′n−1 6= bn−1 and b′i = bi otherwise. Inspection confirms
that b′n−1 = bn−1 + x0. So we have x = U−1b′, but b′n−1

is unknown to us since x0 is unknown. Fortunately, we will
not need to know b′n−1 when calculating the first n−dk/2e
elements of x via x = U−1b′. The first n−dk/2e elements
of the last column of U−1 will form products with b′n−1 in
each case producing a term approaching zero which will not
contribute to the corresponding entry for x. Clearly then, it
is only computation of the trailing dk/2e elements of x that
depend significantly on the value of b′n−1 and for which our
computation might not provide a good approximation.

Corollary 1: x′′ = W−1b provides a good approxima-
tion for all but the leading dk/2e elements of x = T−1b,
wherever a k-banded approximation of T−1 will suffice.

Proof: Corollary 1 can be proven much the same as
Lemma 1.

Corollary 2: x′′′ = C−1b provides a good approximation
for the central n− k elements of x = T−1b, wherever a k-
banded approximation of T−1 will suffice.

Proof: Corollary 2 follows from Lemma 1 and Corol-
lary 1.

4. Our Algorithm

We reveal our algorithm in two stages. The first is a special
case of the second. It solves Tx = b by solving both Ux′ =
b and Wx′′ = b. According to Lemma 1 and Corollary 2, as
long as dk/2e < n the top half of x′ and the bottom half of
x′′ will be good approximations for the corresponding halves
of x. Solutions to Ux′ = b and Wx′′ = b are obtained by
first solving Cx′′′ = b and then adjusting the leading and
trailing dk/2e elements of x′′′ respectively via two partial
applications of the Sherman Morrison formula. Of course,
we choose to solve Cx′′′ = b because we know from (6)
that the solution can be determined fast via parallel FFT.

Algorithm 1: FFT Based Diagonally Dominant Tridiago-
nal Toeplitz Solver

INPUT: Scalars c, d, k, and n such that
|d| > |c|+ 1 and dk/2e < n
defining n × n DDTT matrix T and
a k-band for its inverse, n-vector b.

COMPUTE: x′′′ = (x′′′
i )n−1

i=0 =
F−1

n ((1 ./Fn(v)) . ∗ Fn(b)),
v = F−1

n (1 ./Fn(v)) = (vi)
n−1
i=0 ,

where v = (d, c, 0, ..., 1)T = (vi)
n−1
i=0 ,

x = (xi)
n−1
i=0 , where

(xi)
bk/2c
i=0 = (x′′′

i )
bk/2c
i=0 −

cx′′′
n−1/(1 + cvn−1)[(vi)

bk/2c
i=0 ],

(xi)
n−dk/2e−1
i=dk/2e = (x′′′

i )
n−dk/2e−1
i=dk/2e ,

(xi)
n−1
i=n−dk/2e = (x′′′

i )n−1
i=n−dk/2e

−x′′′
0 /(1 + v1)

[(v(i+1) mod n)n−1
i=n−dk/2e].

OUTPUT: x ≈ T−1b.

Algorithm 1 requires O(log2 n) parallel steps. Each
FFT/IFFT can be handled on separate FFT processors,
though a single processor will do. Computing Fn(v) and
Fn(b) requires O(log2 n) steps. Element-wise reciprocals
and products are computed in O(1) steps. O(log2 n) steps
complete the computation of x′′′ and v via IFFT. Two
independent applications of the Sherman Morrison Formula
account for all other computation. They are performed
simultaneously for k + 1 elements in O(1) steps. Note that
due to the sparsity of v, Fn(v) can be computed in O(1)
steps if desired.

Algorithm 1 inherits its fine-grained parallelism as well
as its scalability from its underlying FFTs. The FFT is
theoretically infinitely scalable. Realistically, scaling FFT
hardware has its obstacles. We overcome these impediments
by employing a block decomposition of T . The non-zero
blocks of T centered on the main diagonal are DDTT
matrices defined by c and d. They are in essence smaller
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versions of T . Here and hereafter let h = k + 1 and let
2h × 2h DDTT matrix T2h be such a block of T . Let
b̂i = T2hxi where xi = (xj)

i+2h−1
j=i and b̂i = (b̂i,j)

2h−1
j=0 .

Clearly then b̂i,j = bj+i for j = 1, 2, . . . , 2h − 2, whereas
b̂i,0 = bi and b̂i,2h−1 = b2h−1+i are guaranteed only when
i = 0 and when i = n − 2h, respectively. Obviously, xi =
T−1

2h b̂i. Let x̂i = T−1
2h bi, where bi = (bj)

i+2h−1
j=i . Clearly,

if it is true of T−1, then a k-banded approximation of T−1
2h

will also suffice for numerical computation of matrix-vector
products. Therefore, since b̂i and bi differ in at most their
first and last positions, x̂i and xi can differ in at most their
first and last dke positions. We can solve Tx = b then
by solving multiple overlapping instances of T−1

2h x̂i = bi.
Let C2h, U2h, and W2h be 2h× 2h matrices exhibiting the
same structures as C , U , and W respectively. We substitute
C2h for T2h and solve via FFT for each partition. Each
such block matrix computation produces h elements of x.
The first and last partitions are adjusted via the Sherman
Morrison formula to reflect substitutions of U2h and W2h to
determine the first and last h/2 elements of x respectively.

Algorithm 2: Partitioned FFT Based Diagonally Domi-
nant Tridiagonal Toeplitz Solver

INPUT: Scalars c, d, h, and n such that
|d| > |c| + 1 and h/2 < n
defining n × n DDTT matrix T
and a k-band for its inverse,
n-vector b = (bj)

n−1
j=0 .

COMPUTE: x′′′
i = (x′′′

i,j)
2h−1
j=0 =

F−1
2h ((1 ./F2h(v)) . ∗ F2h(bi)),

for i = 0, 1, . . . , n/h− 2, and
v = (vi)

2h−1
i=0 = F−1

2h (1 ./F2h(v)),
where
v = (d, c, 0, ..., 1)T = (vj)

2h−1
j=0

and where

bi = (bj)
h(i+2)−1
j=h(i) ,

x′ = (x′′′
0,j)

h/2−1
j=0 −

cx′′′
0,2h−1/(1 + cv2h−1)[(vj)

h/2−1
j=0 ],

xi = (x′′′
i,j)

3h/2−1
j=h/2 ,

for i = 0, 1, . . . , n/h− 2, and
x′′ = (x′′′

n/h−2,j)
2h−1
j=3h/2

−

x′′′
n/h−2,0/(1 + v1)

[(v(j+1) mod 2h)2h−1
j=3h/2].

OUTPUT: x = (x′T, xT

0 , xT

1 , . . . ,xT

n/h−2, x
′′T)T

≈ T−1b.

Algorithm 2 requires O(log2 h) parallel steps. F2h(v) and
each of the F2h(bi) can be computed in O(log2 h) steps.
Element-wise reciprocals and products are computed in O(1)

steps. O(log2 h) steps complete computation of the x′′′
i and

v via IFFT. The remaining computation consists of two
independent applications of the Sherman Morrison Formula
to correct h elements in O(1) steps.

5. Experimental Results

For proof of concept and to verify numerical stability,
we have tested our algorithm in MATLAB and CUDA
implementations. Table 1 presents representatives of the
many tests we performed to compare our algorithm to
Octave’s sparse system solver, and Octave’s Gaussian Elim-
ination (G.E.) for numerical stability. Our metric is relative
error which we calculate as ||b − T x̂||2/||b||2. Tests were
performed for a number of DDTT systems as well as ill-
conditioned tridiagonal Toeplitz systems chosen to challenge
the numerical stability of our algorithm. System size for all
tests is 1024 × 1024. The relative error calculation does
not differentiate between a localized error and an error
distributed throughout the solution vector. For ill-conditioned
systems both our algorithm and G.E. produce a small cluster
of poor approximations at one end of the solution vector,
but very good results for the rest. For this reason Table 1
fails to provide the full picture for both our algorithm’s and
G.E.’s ill-conditioned system solving. Excluding the trailing
end of each solution vector, the results generated have
similar accuracy for ill-conditioned and diagonally dominant
systems as suggested in Section 5. Although not included in
the table, tests reveal that when |d| < |c|+1 and the matrix
is symmetric or close to symmetric, in which case the matrix
is well-conditioned, our algorithm performs poorly.

Our CUDA implementation was executed on a machine
sporting a Core i7 Q740 running at 1.73GHz and an NVIDIA
GeForce 460M GTX Fermi device. Due to CR’s work
efficiency advantage over the FFT we tested for k = 32
to match with the 32 thread processors of our GPU’s sym-
metric multiprocessor so that both algorithms would enjoy a
processor per datum. After distributing such partitions to all
7 TPs throughput is approximately 0.11 GSPS for CR and
0.14 GSPS for our algorithm when transfer from host to
device is eliminated from consideration. Clearly, GPUs with
their very limited processor counts, their latency riddled and
severely bandwidth limited memory hierarchies, and their
overhead for fetch execute are not the ideal architecture for
our algorithm nor CR. For our algorithm, an architecture
designed to process FFTs will certainly prevail.

6. Discussion

Both fine grained algorithms, CR and the FFT, require
log2 n stages. Each stage of CR generally requires 17 steps.
11 of these 17 steps are floating point multiplications or
divisions and the other 5 are floating point subtractions.
Each stage of a straight forward FFT requires a complex
multiplication followed by a complex addition or subtraction.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

434 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



c / d Condition# Sparse G.E. Alg. 1 Alg. 2
1 / 1.0E+08 1.0E+00 1.1E-16 1.1E-16 2.1E-16 2.0E-16

1 / 64 1.1E+00 8.4E-17 1.5E-16 2.1E-16 2.1E-16
1 / 4 3.0E+00 9.2E-17 1.1E-16 2.1E-16 2.1E-16
4 / 0 5.8E+23 6.9E-01 1.1E-02 1.1E-02 1.1E-02
4 / 1 3.9E+16 1.4E290 3.1E-02 2.4E-02 2.5E-02

1.0E+08 / 1 1.6E+17 NAN 4.0E-02 2.8E-02 2.8E-02
1.0E+08 / 0 5.5E+29 NAN 4.0E-02 3.1E-02 3.2E-02

Table 1: Relative Errors ||b− T x̂||2/||b||2 by Method. For all tests n = 1024 and h = 64.

This can be performed in 3 steps given the necessary number
of floating point units. Complex multiplication requires 2
steps. Given complex numbers a+bi and c+di, where a, b, c,
and d are floating point values their product (a+bi)(c+di) =
(ac − bd) + (ad + bc)i. Floating point products ac, bd, ad,
and bc can all be computed in parallel in a single step by
four floating point units. Thereafter ac − bd and ad + bc
require a single step on two of those four floating point units.
Our algorithm requires a sequence of two FFTs and two
element-wise multiplications. The first of these two element-
wise multiplications involves complex operands. The second
has real operands. These multiplications require no more
than 3 steps. Our algorithm then requires 6 steps (2 floating
point multiplications and 4 floating point additions) for
each of log2 n stages, plus 3 additional steps (2 floating
point multiplications and 1 floating point addition). So
while CR is more work efficient than the FFT, when the
processor count matches the degree of parallelism, the FFT’s
lower workload per processor tilts expected latency in it’s
favor. On many architectures multiplication/division has a
significantly higher latency than addition/subtraction. Fermi
devices however pipeline their operations in a way that
results in an invariant latency across the instruction set.
This works in favor of CR versus FFT on the GPU since
CR has many more multiplications to perform. Additionally,
FFTs can be reformulated to replace each multiplication with
multiple additions. Where addition has a lower latency than
multiplication this can provide a boost to throughput as well
as lower the latency of FFT based computations.

While we lack the expertise to bring together the hardware
components best suited for our algorithm, it is clear that
the main component is readily available both as ASICs and
FPGAs. For instance Dillon Engineering [12] produces a
FPGA capable of producing 25.6 GSPS when configured as
a pipelined 64 point FFT processor. The supporting circuitry
around the FFT processor need only perform a handful of
predetermined floating point operations in an embarrassingly
parallel fashion. Our FFT based algorithm would allow an
array of small FFT processors and their supporting circuitry
embedded on FPGAs to tackle large linear systems by
processing system blocks in complete isolation.

Clearly our algorithm could be implemented on a 64

point device to solve any tridiagonal Toeplitz system where
|c/d| ≤ 1/4. For a real system where |c/d| ≤ 1/2 a few ex-
tra steps can be added due to symmetry in the Fourier image
and the same 64 point device can be applied. At one end of
the spectrum, a single such FPGA could handle all partitions
on its own at a pipelined 25.6 GSPS for real systems. This
is orders of magnitude faster than the GPU implementations.
At the other end of the spectrum two FPGAs could be
assigned to each partition. In addition to the embarrassingly
parallel O(1) step computations, one FPGA would apply
the FFT to the input as it arrives for processing and the
other the IFFT that produces the final output. The FPGAs in
separate partitions work independently in an embarrassingly
parallel manner. Samples per second theoretically approach
25.6 GSPS times the number of partitions. Providing each
processor with its input at a rate to keep the pipeline
saturated is perhaps the biggest challenge. But even the
memory can be partitioned into banks, where the number
of banks equals the number of FFT processors. Each FFT
processor would need to read data from only two banks. It’s
own and that of it’s immediate neighbor. Fortunately, if a
hardware package including the FFT processor(s) can handle
a single partition, scaling up could be almost as simple as
dropping in additional hardware.

7. Concluding Remarks
One of the arguments in favor of the great effort to harness

GPU processing power has been their ready availability and
amortization of their R&D costs due to their applicability
to the video game market. The FFT and therefore FFT
processors find use in myriad different applications. This
also leads to ready availability and cost control, so that FFT
processors are a viable building block on which to base
design of parallel algorithms. In all, our algorithm when
implemented on FFT processors with minimal supporting
circuitry has many advantages over other algorithms. Not
only does it exhibit the finest of granularity, but is designed
for implementation on hardware that can actually take full
advantage of that granularity thereby maximizing parallelism
even for the largest of linear systems. For a fixed k its op
count is O(n) and it requires O(1) parallel steps. That’s
O(n log2 k) and O(log2 k) respectively when k is not held
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constant. Combine the low step count of our algorithm with
hardware designed to carry out these specific computations
and it becomes clear that the algorithm will compete suc-
cessfully.

A MATLAB implementation of our algorithm can be
found at:

http : \\comet.lehman.cuny.edu/bmurphy/tridiagonal
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Abstract 
IO tools in numerical simulations often serve two functions, 
one for writing and reading files to restart calculations and 
the other for writing and processing diagnostic files 
including files for graphics post-processing. For diagnostic 
files, tools directly working for high-level data structures are 
desired, such meshes with adaptive mesh refinement, 
unstructured meshes, and association between meshes and 
variables. Typically, one file in numerical simulations 
involves several or many writings. One of questions about 
the resiliency of IO tools is the following. If a simulation 
was crashed during writing a file, could an IO tool read the 
high-level data structures, meshes and their associated 
variables in the file that was incompletely written? This 
paper describes how a parallel IO library, HIO, is developed 
and modified toward resiliency. The goal of the library is to 
provide sustainable, interoperable, efficient, scalable, and 
convenient tools for parallel IO and data management for 
high-level data structures in numerical simulations. The 
high-level data structures include multi-dimensional arrays, 
structured meshes, unstructured meshes, the meshes 
generated through adaptive mesh refinement, variables 
associated with these meshes, and data defined on particles 
in particle simulations. The library is based on MPI-IO. 
Compared with MPI-IO, the overhead to write the explicit 
users' data structures are very small. To further improve IO 
performance, in addition to meta data, the library could 
buffer problem-size data while keeping users' explicit high-
level data structures. The buffering mechanism improves IO 
performance by a factor 10 to 20 in simulations of multi-
physics. For resiliency, we have designed and implemented 
additional procedure so that the library could read all the 
high-level data within a file even if the file was 
incompletely written due to an interruption of a simulation. 
The cost for the resiliency of the library is very small in 
either performance or space. 
 
1. INTRODUCTION 

Parallel IO and scientific data management have played an 
important role since the beginning of large scale scientific 
computing, and are getting more important due to the 
increase of the scale of the computing. Existing products, 
which have partially addressed the issue, include HDF5 [1], 
SAF [2], CGNS [3], NetCDF [4,7], Silo [5], UDM [6], and 
others. Each of the existing products has certain advantages 
and disadvantages. Some of the products have good 

functionalities for unstructured meshes, but they either don’t 
have efficient capabilities for running on parallel computer 
environments or lack for good parallel I/O performance.  
Some of them are designed for parallel environments, but do 
not have the capabilities to deal with unstructured meshes, 
or they get only a fraction of MPI I/O performance. Some 
have good IO performance but lack the functionality to 
query data sets for their relationship. Some have a decent IO 
performance for large data sets, while they failed to deliver 
the similar performance for small data sets.  
 
One of issues many researchers are looking into is resilience 
of IO tools, particularly IO tools with high-level data 
structures. This paper will describe how an IO library, HIO, 
is structured toward the resilience for high-level data 
structures used in simulations of multi-physics. If a 
simulation is interrupted during writing a file, whether or 
not this file, which contains high-level data structures, could 
be read through the library.  
 
The HIO library is for parallel IO and data management for 
high-level data structures used in numerical simulations. It 
has been developed under Department of Energy (DoE) 
Advanced Simulation and Computing (ASC) program for 
ASC code projects. The HIO library is the further 
development of the UDM library [6]. The development 
include the direct dependent on MPI-IO without middle 
layer between HIO and MPI-IO, buffering mechanism, the 
N-to-M mode, i.e, writing simulation data on N computer 
processors to M files, and a resilient feature. The library 
consists of functionalities for IO and data management in 
numerical multi-physics simulations, such hydrodynamics, 
magnetohydrodynamics, radiation diffusion and transport, 
material mixing, and mechanics. The high level data 
structures include particles in particle simulations, 
structured meshes, unstructured meshes, meshes generated 
from adaptive mesh refinement (AMR), and their associated 
variables defined on cell centers, vertices, edges, or faces of 
the meshes. The library is built on the top of MPI I/O, and 
its I/O performance is very close to that of MPI I/O. 
Therefore, the cost to bookkeeping users’ explicit high-level 
data structures is negligible. To further improve IO 
performance, we buffer data together in the library before 
calling MPI-IO.  We have implemented additional 
procedure for resilience so that a file interrupted during 
writing could be read for the high-level data structured 
contained in the file. The resilient feature is controlled by an 
input parameter. The cost for the resilient feature is small. 
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To our knowledge, the functionality and performance of the 
library are superior to existing products for these data 
structures in simulations of multi-physics.  
 
2. FUNCTIONALITY OF THE LIBRARY 

The HIO library provides IO and data management tools for 
data in particle simulations, single and multi-dimensional 
arrays, structured meshes, unstructured meshes, and the 
mesh generated through block-, patch-, and cell-based AMR, 
and variables defined on these meshes in numerical 
simulations on parallel computer environments. It also 
provides a hierarchical data structure within a data file. The 
files generated through the library are self-described. 

 
One of the important and powerful functionality in the HIO 
library is the management of unstructured meshes and their 
associated variables. The library supports a broad range of 
unstructured meshes, which include meshes with fixed 
shapes, arbitrary polygons, and arbitrary polyhedrons. The 
mesh elements with a fixed shape may be triangles, 
quadrangles, pentagons, tetrahedrons, pyramids, wedges, 
pentagon prisms, and points. A mesh element may be a 
zone, or face, or edge, i.e., a mesh may be a zone-mesh, 
face-mesh, edge-mesh, and points. An edge-mesh may be 
one-, or two-, or three-dimensional, and a face-mesh may be 
either two- or three-dimensional. Mesh elements of a zone-
mesh may be made directly from nodes, or the elements 
may be made from edges, or the elements may be made 
from faces and the faces are then made from either edges or 
nodes. The HIO library also supports ghost mesh elements 
in unstructured meshes, boundary faces, boundary 
edges, boundary nodes, slip faces, slip edges, slip 
nodes, etc. The variables associated with unstructured 
meshes may be node-variables, or edge-variables, or 
face-variables, or zone-variables, and variables may be 
scalars, or vectors, or tensors.  
 

Examples for mesh elements include triangles, quadrangles,  
pentagons, arbitrary polygons, hexahedrons, tetrahedrons, 
wedges, pyramids, pentagon-prisms, and arbitrary 
polyhedrons. The mesh elements may be made from any 
lower level entities, such as faces, edges, and nodes. 

Although the HIO library covers a broad range of 
unstructured meshes, a user only has to set up his/her own 
mesh definition, and all other mesh definitions are hidden 
from the user. For example, for an unstructured zone-mesh 
made from nodes, only the list of nodes for each element is 
needed if the elements are of a fixed shape, such as prisms. 
If mesh elements are arbitrary polyhedrons made from 
nodes, two arrays are needed, one for the numbers of nodes 
for elements, and the other for the list of nodes for each 
element.  Like the capability for structured meshes, the 
association between a mesh and a set of variables is 
automatically built into the library and a file.  

The following is an example to write an unstructured mesh 
with general polyhedrons. To specify the mesh, each 
computer processor has a number of elements, nzone. The 
set of elements have a number of faces and nodes, nface and 
nnode. The arrays, num_faces_for_zone and 
facelist_for_zone, are to specify the elements, and the 
arrays, num_nodes_for_face and nodelist_for_face, are to 
define the faces. The arrays, x, y, and z, are the locations of 
these nnode nodes. All these arrays and sizes are local to the 
processor. Then code to write this unstructured mesh is as 
follows. 
 
meshio_unstructured_mesh m;  
meshio_coord *c = &m->coord; 
meshio_init(meshio_umesh, -1, &m); 
m.dims = 3; 
m.type = meshio_general_mesh; 
m.sizes[0] = nzone; m.sizes[1] = nface; m.sizes[3] = nnode; 
m.num_nodes_for_face = num_nodes_for_face; 
m.nodelist_for_face       = nodelist_for_face; 
m.num_faces_for_zone = num_faces_for_zone; 
m.facelist_for_zone       = facelist_for_zone; 
c->coord[0] = x;  c->coord[1] = y; c->coord[2] = z; 
c->datatype = meshio_double;    
m.datatype = meshio_int;   
meshio_write(meshio_umesh, fileid, &m); 
 
Although a mesh generated through AMR may be 
considered as an unstructured mesh in IO, but it involve 
unnessary memory copies and additional working memory 
requrement. For example, a typical cell-based structured 
mesh is represented by cell center and cell width of each cell 
in each dimension. To convert ths AMR mesh to a typical 
unstructured mesh require some work, and will often 
involve unnecessary (often troubling) redundant nodes. 
With the HIO library, the AMR mesh could be naturally 
handles without any transformation. 

As stated before, for cell-based structured AMR meshes, we 
store the center and width of each element in each 
dimension. Scalar variables associated with the meshes are 
one-dimensional and associated vector variables are two-
dimensional arrays. The association between variables and a 
mesh is automatically built and stored in the file. For block- 
or patch-based AMR structured meshes, each block or patch 
is considered as a standard structured mesh.  

The library also support ghost cells in AMR meshes. Some 
post data anaylizers need variables on ghost cells to derive 
information around interfaces between processor interfaces, 
such as a visualization tool calculating isosurfaces. 

Users can add any description to any object, such as a file 
itself, or an array, or a mesh, or a variable, as long as the 
description is not of the problem-size, and each processor 
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has the same description. More importantly, writing all 
descriptions almost doesn’t have any IO cost, since all the 
descriptions will be buffered together with all the meta data 
and are written at the end of a file when the file is closed.  
 
The number of the descriptions and each description can be 
automatically queried. As writing the description, reading 
any description does not involve any additional IO cost 
since all the descriptions together with all the meta data are 
read into the memory when a file is open.  
 
Writing small data sets into a file on a parallel environment 
will typically result in very low IO performance. The HIO 
library provides an automatic buffering mechanism so that a 
large number of small data sets will automatically buffered 
together before they, together with their names and 
descriptions, are written into a file. Writing small data sets, 
users will get the same IO performance as they get for large 
data sets, and users don’t have to keep track of the locations 
of each individual small data set in the combined buffer and 
a disk file.  
 
To read a small data set, the HIO library actually only 
copies small data set from a buffer to the user’s memory. If 
the buffer is not available yet, the library will automatically 
read the buffer first, and then copy the data. Therefore, the 
library doesn’t involve reading from a disk with a small set 
of data.  
 
To users, all the tedious operations necessary for writing 
and reading the small data sets are behind the scene. Writing 
small data sets is the same as writing big data sets, and even 
the names and arguments of the functions to be called are 
the same. 
 
As stated before, the HIO library buffered all meta together, 
i.e., data used to describe real data, and write the buffer into 
a file when a file is closed. The library also copies small 
data sets into a buffer and then automatically writes the 
buffer into a file when the full becomes full. The buffer 
includes the description of each small data set.  
 
There are at lease two cases in which we have to broad the 
buffering capability. The first situation is encountered for 
data in block- and patch-based AMR. Sometimes, users 
want write each individual block and patch into a files. 
Since there are a large number of blocks and patches, 
writing a complete mesh will involve a large number of IO 
operation if users don’t want to map blocks and patches to a 
full mesh. Each of IO operation will be expensive.  
 
The second case is to further improve IO performance for 
users’ high-level data structures. For example, there are 
about hundred IO operations in a typical simulation of 
Roxane project, which come from the cell-based AMR mesh 
and associated variables, meshes occupied by each material 

and variables defined on the meshes, the unstructured mesh 
used for radiation diffusion and variables defined on the 
mesh, etc.  Figure 1 shows unstructured cells used in three-
dimensional radiation diffusion solvers. Even if there is only 
a single mesh in each file, and associated with this mesh 
could be many variables. Normal, a mesh will constitute a 
few IO operations, and each variable will do one IO 
operation.  Of course, we could buffer them all together and 
execute only one IO operation, but it will typically loss the 
high level structure of mesh and the association between 
mesh and variables. The HIO library provides a mechanism 
to reduce the hundred IO operations into a few without 
losing users’ high level structures. 
 
To initiate the mechanism, users only have to call the 
following function with file id and the size of buffer 
specified, meshio_init_buffer(file_id, buffer_size), The 
parameter file_id is the id of the file created. All the data in 
the subsequent calls of writing will be buffered until the call 
of the following function or the file is closed, 
meshio_finalize_buffer(file_id). All the calls between the 
call meshio_init_buffer and the call meshio_finalize_buffer  
(or closing the file) are the same no matter whether or not 
the buffering mechanism is used. Also users use exactly 
same way to read buffered data as that for un-buffered data. 
 

 
 

Figure 1.  Unstructured cells in three dimensions formed through 
interface reconstrution in a AMR mesh. The unstructure cells are 
used in the radiation diffusion solver in Roxane. 
 
After data, for example, all the meshes and the variables 
defined on the meshes, are written into a file through 
buffering, internally there are two approaches to read these 
data in the library mainly for two different purposes to read 
the file.  The first is to restart a simulation.  The most 
efficient way to read the data is to read each whole buffer 
and then copy the data from each buffer to users’ memory. 
For example, after open a file, a user reads a particular 
mesh. Internally the HIO library first find the buffer 
containing this mesh, and read the entire buffer into memory 
from the file. The buffer is kept in memory until another 
buffer is requested. After reading the mesh, the user reads a 
particular variable. Internally the library copy the variable 
from the buffer to the user’s memory without touching the 
file. This mechanism to read buffered data is extremely 
efficient for restarting. 
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Another case is to visualize a particular variable in a large 
number of files that correspond to different instants in a 
simulation, for example, in the format of movie through a 
visualization tool. In this case, we could not afford to read a 
whole buffer in each file just for ONE variable.  The HIO 
library actually reads only one variable in each of files for 
this case.  Users could choose either of the two approaches 
to read buffered data through the function, 
meshio_buffer_mode(flag_for_buffered_read) with the input 
1 or 0 for flag_for_buffered_read. The typical use to set to 
buffered reading for restarting, and to non-buffered reading 
for visualization. 
 
A file written through the HIO library is self-described. All 
the information in the file may be queried through a function 
in the library. For example, for a given file, users may find 
the number of arrays, meshes, and variables, the description 
of each array, mesh, and variable, and any association 
between meshes and variables. Through the querying 
function in the library, meshes and variables may be directly 
viewed through parallel graphics tools. 
 
After a data object, such as array, mesh, and variable, is 
written into a file, users may read any part of the data object 
in terms of, for example, global ids if global ids are defined, 
or a processor rank, or a space domain.  
 
As stated beore, one of usages of the library is to connect 
data files to visualization tools. All the images presented in 
this paper are produced through the visualization tool 
Ensight. Simulations generate a set of files for visualtion 
through the HIO library, and the set of files could be read by 
either Ensight and VISIT without direct transformation. 

We woule like to mention that the connection bwteen HIO 
and post-processor tools (such as visualiation) is different 
from the connections in many other tools. Since HIO has the 
concept of mesh and associated variables, no matter where 
users write their mesh and varaibles in a file, and no matter 
how to use the library, the HIO reader, which connects tp 
post processor tools, will always be able to find all the 
meshes and their variables. Many IO tools require users to 
write, for example, coordinates and connectivity arrays of a 
mesh to specific places for their readers to identify, while 
variables of a mesh have to write to another special place.  

3. STRUCTURE OF THE LIBRARY 
 

The HIO library is built on the top of MPI-IO. Actually the 
library consists of two parts. The first part is called bio, the 
second part is called meshio, and either of them is also a 
parallel IO library. The library bio is directly built on the top 
of MPI-IO, and meshio is doesn’t directly related to MPI-
IO.  

 
The bio libaray support the hierarchical data structure and 
one dimensional arrarys.To use the buffering capability in 
bio, any arrays written through bio_write between the 
following two functions will be written through buffering. 

• bio_buffer_init(fileid,	  	  name,	  	  size,	  buffer_id)	  
• bio_buffer_finalize(buffer_id) 

 
The bio library itself doesn’t have concepts of high level 
data structures used in simulations, such as meshes and 
variables, but it could be directly used, for example, for 
retarting.  

The functions in bio-layer is tyoically used for restart files, 
which the functions in meshio-layer typically for files used 
in viusalization and connection. Although files generated 
from both layers could be visualized through HIO readers 
and visualization tool (such as Ensight), the structures in the 
two kinds of file are different. To visualize the files 
generated from bio-functions only, users have to follow 
certain assumtions to write files, or users have to write a 
specific reader for their own bio files. In this sense, many IO 
tools and libraries in our community are like this. But, 
meshio-functions are different, and through meshio 
functions users don’t have to follow any assumtions. A 
reader based on meshio-functions could read any meshes 
and variables written through meshio-functions. 

4. BASIC FUNCTIONS AND UAGE 

One of the design principles of the HIO library was a small 
number of functions. The following is the list of main 
functions of the library. 
 
• meshio_set_mcomm(mfiles) 
• meshio_open(filename, mode, fid)           
• meshio_close(fid) 
• meshio_init(type, fileid, obj) 
• meshio_write(type, fileid, obj) 
• meshio_query(type, fileid, filter, nobjs, objs) 
• meshio_clean(type, nobjs, objs) 
• meshio_get_size(type, domain, fileid, obj) 
• meshio_read(type, domain, fileid, objs, nobjs) 
• meshio_init_buffer(fileid, name, buffersize) 
 
The first function is to set the number (M) of files to be 
written in the subsequent files. By default, M is 1 without 
the call of the function. The second and third functions are 
for opening and closing files. The function meshio_init is to 
initialize any object before it is being used, and the object 
includes array, structured and unstructured mesh, AMR 
mesh, and variable defined on any mesh. The function 
meshio_query is for querying, which include querying files, 
querying variables, querying relationship between variables 
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and meshes, querying attributes, etc. The function 
meshio_clean is to release the memory allocated in the call 
of the function meshio_query. The function 
meshio_get_size to determine the sizes of grid zones, faces, 
edges, and nodes for a given part of a mesh, for example, a 
spatial domain, a part associated with a specific processor, 
or a number of elements. The function meshio_read is to 
read attributes and any data for a given part of a mesh, 
which include coordinate, mesh, variable, etc.  
 
The function, meshio_init_buffer, is to create a buffer of 
size buffersize. If this function is called, all the subsequent 
data to be written through meshio_write will be buffered 
into the buffer, and are then written into the file until the 
buffer is full or the file is closed.  
 
A cell_based AMR structured mesh is defined through 
arrays for the centers of elements, x, y, z, and arrays for 
widths of the elements, dx, dy, and dz. The following 
segment of codes shows the usage to write a cell_based 
AMR mesh. 

meshio_Structured_Element_AMR m; 
meshio_init(meshio_smesh_element_amr, -1, &m); 
m.name = meshname; 
m.dims  = 2; 
m.datatype_coord = meshio_double; 
m.size           = nelement; 
m.coord[1]   = x; m.coord[0]   = y; 
m.dcoord[1] = dx; m.dcoord[0] = dy; 
meshio_write(meshio_smesh_cell_amr, fileid, &m); 
 
After a mesh is written, a set of variables can be written into 
the file, and the relationship between the mesh and variables 
is automatically built. The following codes show the usage 
to write a scalar variable defined on elements, zone_density, 
and a vector defined on nodes, node_velocity_x and 
node_velcity_y. 
 
meshio_Mesh_Var   var; 
meshio_init(meshio_mesh_var, -1, &var); 
var.name            = varname1; 
var.mesh_ids[0] = m.id; 
var.type              = meshio_zone; 
var.datatype       = meshio_double; 
var.rank              = 0; 
var.comps[0].buffer = zone_density; 
meshio_write(meshio_mesh_var, fileid, &var); 
 
meshio_init(meshio_mesh_var, -1, &var); 
var.name            = varname2; 
var.mesh_ids[0] = m.id; 
var.type              = meshio_node; 
var.datatype       = meshio_double; 
var.rank                   = 1; 
var.comp_sizes[0]   = 2; 

var.comps[0].buffer = node_velocity_x; 
var.comps[1].buffer = node_velocity_y; 
meshio_write(meshio_mesh_var, fileid, &var);    
 
After a mesh and a set of variables are written into a set of 
files. Any part of the mesh and the variables associated with 
this part of the mesh may be easily read. The following 
segment of codes shows the usage to read a part of mesh 
defined through domain and variables associated with this 
domain. 
 
int                                           nvar; 
meshio_Domain                     domain; 
meshio_Unstructured_Mesh  m; 
meshio_Mesh_Var                 *vars; 
specify mesh and domain 
meshio_get_size(type, domain, fileid, &m); 
allocate space for the part of mesh, and variables 
meshio_read(meshio_umesh, domain, fileid, &m, 1); 
meshio_read(meshio_mesh_var, domain, fileid, &vars, 
nvar); 
 
5. RESILIENCY AND PERFORMANCE 

 
As the first try to address the resilience of the library, we 
would like to be able to read the existing data of a file if IO 
operations are interrupted during writing. Particularly, the 
high-level data structures supported by the library could be 
read through the library. As stated before, the file structure 
and high-level data structures are kept through meta data in 
the library, and the meta data are written into a file as the 
header and tail. The header is of fixed size solely for the 
necessary information about hardware, and the size of the 
tail depends of the usage of the library. The tail is written at 
the end of the file when the file is closed.  
 
This structure of header and tail is specially designed for 
resilient IO operations. If IO operations were interrupted 
before the file is closed, the tail would not be in the file, and 
therefore the structure of the file and high-level data 
structures, which were already written into the file, would 
not be recognized. To overcome this deficiency for resilient 
operations, we provide an additional option for the 
redundancy for the header and tail. In the library, 
immediately after every operation of writing, we write the 
header and tail into a separate file, called the backup file, 
through one processor. The size of the backup file is exactly 
the size of the header and tail. 
 
For normal IO operations, the backup file is an overhead. If 
a file of our library is successfully closed, the backup file 
will not be used. But, if IO operations are interrupted before 
the file is closed, the library will read the backup file to 
determine the structure of the data file first, and then read 
the data in the data file.  
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Figure 2.  Write rates of MPI-IO, bio, and resilient bio for large 
data sets. 
 
The library has an option to generate one backup file for 
each file. But, since the library is developed for numerical 
simulations in which many files will be generated at 
different instants during one simulation, we have an option 
to generate only one backup file for one simulation. The 
backup file of a new data file at a new instant will overwrite 
the backup file of the data file at a previous instant. 
 

 
 
Figure 3.  Write rates of bio and resilient bio for large data sets 
measured by MPI-IO and bio library respectively. 
 
To show the overhead of the resilience feature of the library, 
we implemented a series tests for both bio and meshio 
libraries on the cluster, Moonlight, at the Los Alamos 
National Laboratory. Moonlight has 302 nodes, and each of 
which is comprised of 2 x Eight-Core Intel Xeon model E5-
2670@2.6GHz. The two Xeon sockets (ie. all 16 cores) 
share 32 GBytes of RAM on each node. The scratch space is 
accessed through Panasas parallel file system.  
 
The first set of tests is for IO of large data sets through bio 
library. Each processor has 100 arrays, each of which has 
1,000,000 values of double precision (8 bytes). Therefore, 
the size of file generated through MPI-IO is 800 MByte for 

one processor and 819.2 GByte for 1024 processors. The 
files generated through bio library are slightly larger due to 
meta data included in the files, and they are 9196 Byte more 
for one processor and 9206 Byte for 1024 processors. These 
numbers of 9196 or 9206 Byte are also the size of backup 
file for resilience. Therefore, the cost of bio library or the 
resilience feature in disk space is 0.001% for one processor 
and 0.000001% for 1024 processors. Figure 2 shows the 
performance of writing through MPI-IO, bio without 
resilience, and bio with resilience. In Fig.3, we give the 
write rate measured by MPI-IO and bio respectively. We 
should point out that we have not made any optimization for 
underneath MPI-IO and file systems.  

 
 
Figure 4.  Write rates of MPI-IO, meshio, and resilient meshio for 
large data sets. 
 

 
 
Figure 5.  Write rates of meshio and resilient meshio for large data 
sets measured by MIO-IO and meshio. 
 
The second set of tests is for a large unstructured mesh and 
its associated variables, in which each processor writes 
786432 three-dimensional elements and 274,625 nodes, a 
connectivity array, and 100 variables of double precision (6 
bytes) defined on the elements. The sizes of files generated 
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from MPI-IO, which do not contain any meta data, are 
651,465,240 bytes for one processor, and 667,100,405,760 
bytes for 1024 processors. The sizes of files generated from 
meshio library, which include all the meta data describing 
the unstructured mesh and parallel environment, are 
651,483,994 for one processor and 667,100,629,115 for 
1024 processors. These additional 17,854 and 223,355 bytes 
are the overhead of meshio in disk, and are also the sizes of 
the backup files for resilience. The percentages of the 
overhead are 0.003% for one processor and 0.000003% for 
1024 processors. Figure 4 displays the writing performance 
of MPI-IO, the meshio library, and the meshio library with 
resilience. Figure 5 gives the writing rates measured by 
MPI-IO and meshio respectively. 
 

 
 
Figure 6.  Write rates of MPI-IO, meshio, resilient meshio, 
buffered meshio, and resilient buffered meshio for small data sets. 
 

 
 
Figure 7.  Write rates of meshio, resilient meshio, buffered meshio, 
and resilient buffered meshio for small data sets measured by MPI-
IO, meshio, meshio, and buffered meshio respectively. 

 
The final set of tests is for writing a smaller unstructured 
mesh together with its 1,000 associated variables. Each 
processor has 41,472 three-dimensional elements and  
15,625 nodes, a connectivity array describing the relation 
between each element and nodes.  The variables are double 
precision (8 bytes) defined on elements. The sizes of the 
files generated from MESHIO-IO, which do not have any 
meta data, such as dimensionality, number of processors, 
and data type, are 332,980,440 bytes for one processor and 
340,971,970,560 bytes for 1024 processors. The sizes of 
files generated from the meshio library are 34,400,795 bytes 
for one processor and 35,207,432,315 bytes for 1024 
processors. Figure 6 shows the write rates of MPI-IO, 
meshio, resilient meshio, buffered meshio, and resilient 
buffered meshio. Figure 7 shows the write rates of meshio, 
resilient meshio, buffered meshio, and resilient buffered 
meshio measured by MPI-IO, meshio, and buffered meshio 
respectively. 
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Abstract— Matrix Exponential based algorithm (MEXP) is
a recently developed method for solving a positive definite
system of linear equations. MEXP already outperforms other
state of the art algorithms, such as the Preconditioned
Conjugate Gradient method (PCG), in most cases, on cus-
tomizable hardware platforms such as FPGAs or ASICs. In
this paper we have analyzed the performance of MEXP on
multicore hardware using a shared-memory model called
Cilk and compare it with the Conjugate Gradient method
(CG) and PCG. Our multithreaded MEXP outperforms the
Cilk based PCG and CG methods in terms of parallelism
and execution time as we increase numbers of cores. The
comparison of the performance for the tested benchmark
problems shows that parallel MEXP relatively gives almost
2 to 3 times more speedup than parallel PCG and 5 to 8
times more speedup than parallel CG. Thus, MEXP is more
parallelizable and scalable than both PCG and CG.

Keywords: MEXP, PCG, CG, Cilk, parallelism and speedup

1. Introduction
Solving a system of linear equations is one of the core

problems in numerical and scientific computing. A large
number of direct and iterative methods exist for solving
problem of a linear system [1], [2]. The iterative methods
are preferred over direct methods in case of large and
sparse matrices as they are often computationally efficient
in comparison. Iterative solvers approximate the solution in
successive iterations and can be terminated when a desirable
accuracy is achieved. However, the iterative methods may
take a lot of iterations if the problem is ill-conditioned and
could result in a higher computational time. In iterative
methods preconditioners are often used to improve the
condition number of the problem. Preconditioned Conjugate
Gradient method (PCG) [3] is one of the popular itera-
tive methods for solving systems of linear equations with
symmetric positive definite matrices. One of the co-authors,
Hasan [4] has recently invented a new method called the
Matrix Exponential based algorithm (MEXP), for solving
a positive-definite system of linear equations. It is also an
iterative method. It was developed to run on the customizable
hardware platforms i.e. FPGAs (Field-Programmable Gate
Arrays), ASICs (Application-Specific Integrated Circuit),
etc. On such platforms MEXP can exploit its parallelism and

outperforms the state of the art Preconditioned Conjugate
Gradient (PCG) in most of the cases. There are two main rea-
sons for this. The MEXP method involves computations that
are easily parallelizable on such architectures. The second
reason is that the convergence of MEXP is logarithmically
proportional to the condition number of a linear system
while the convergence of conjugate gradient is proportional
to the square root of the condition number [10], which gives
MEXP an advantage over PCG.

In this paper we have analyzed the performance of the
MEXP algorithm on a shared-memory (multicore) system
to discover its potential of parallelism. The core component
of MEXP which brings the linear system to its solution is
matrix multiplication that has high computational intensity.
The parallel approach of matrix multiplication exists in [9]
which has high parallelism and gives almost linear speedups
due to which MEXP is expected to be highly parallelizable
on multicore machine.

In this research all the parallelization is done with Intel
Cilk Plus [7] and tested on multicore processor. Intel Cilk
Plus is the one of the multicore programming models and
technologies in the landscape of parallel shared-memory ar-
chitectures. The other competing technologies are PThreads,
OpenMP, TBB, etc. The reason for choosing Cilk is its
powerful work-stealing runtime system [8] which does not
let any thread to remain idle if it has completed the task
assigned to it and it also takes care of the underlying details
like load balancing, synchronization and communication
protocols.

The Florida Matrices [11] have been used as testing
benchmarks in our performance evaluation. The Florida
Matrix collection includes problems arising in the areas
of power network, structural engineering and computational
fluid dynamics. The PCG and CG methods do not contain
the ample amount of parallelism to be exploited on mul-
ticore hardware due to which their computational cost and
execution time does not decrease significantly on increasing
threads. The MEXP method exploits full parallelism which
significantly reduces its computational cost and execution
time on increasing worker count. It shows speedups near
ideal case unlike PCG and CG. The parallel MEXP yields
almost 3 times more speedup relatively than parallel PCG on
8-cores whereas it yields almost 5 to 8 times more speedup
than parallel CG.
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In rest of the paper, Section 2 explains design and imple-
mentation of multi-threaded MEXP, Section 3 explains the
Cilk based parallel PCG, Section 4 shows the performance
evaluation results on a multicore system and Section 5 tells
the conclusion and future work.

2. Multithreaded Matrix Exponential
based Algorithm

Matrix Exponential based algorithm (MEXP) is a new
iterative method for solving a system of linear equations.
Some of the advantages of MEXP are: 1) the number
of iterations taken by MEXP vary logarithmically with
the condition number of the problem as compared to the
square root of condition number for most other iterative
methods, 2) when parallelism is exploited in customizable
hardware platforms, the computational complexity of MEXP
is lower than most other iterative methods, and 3) unlike
other iterative methods, MEXP does not require the use of
preconditioners.

Consider a system of linear equations Fx=g, where
F∈Rn×n is a symmetric and positive definite matrix, and
x∈Rn and g∈Rn are vectors. The MEXP algorithm for
solving the above system of linear equations is as follows:

MATRIX-EXPONENTIAL-METHOD(F, g)
1) Find λmax = ||F ||∞
2) Y =

[
In − F (1/λmax) g(1/λmax)

0 1

]
3) while(1)
4) if(||Y11||∞/||Y12||∞ < tolerance)
5) else Y = Y 2

6) x = Y12
Algorithm 1:Matrix Exponential based method.

In Algorithm 1, λmax is an upper bound of the largest
eigenvalue of F. It can be easily computed by finding the
infinity norm of F, ||F||∞. Y is matrix of order n+1 with
four sub matrices. Y11 is initialized with In − F(1 / λmax)
where I is identity matrix, Y12 with g(1 / λmax), Y21 with
zero and Y22 with 1. The algorithm is executed until a desired
tolerance is achieved.

2.1 Parallelizing Matrix Exponential based Al-
gorithm

The parallelizing strategy is to parallelize those parts
of MEXP that are compute-intensive such as computing
the infinity-norm, initialization of matrix Y and matrix-
multiplication. All these matrix operations consist of
independent sub tasks which can be assigned to different
threads and can be executed in parallel to complete their
main tasks using reducers [5] in case of data race and
ultimately to exploit MEXP‘s parallelism on multicore
system . This makes MEXP naturally parallelizable.

Following is the Cilk based implementation of MEXP:

PARALLEL-MEXP(F, g)
1) n = F.rows

2) Y = create matrix of order (n+ 1)

3) R = create matrix of order (n+ 1)

4) lambda_max =NORM-INF-MAT(F , n)
5) INIT-Y-MATRIX(Y , F , n+ 1, lambda_max)
6) while(1)
7) a =NORM-INF-MAT(Y11, n)
8) b =NORM-INF-VECT(Y12, n)
9) if(a/b <tolerance) break

10) else PARALLEL-GEMM(Y , Y , R)
11) Y = R

12) x = Y12
Algorithm 2: Multithreaded MEXP.

NORM-INF-MAT(A, n)
1) temp = create array of size n
2) reducer_max maximum;

3) cilk_for i = 0 to n− 1

4) for j = 0 to n− 1

5) tempi+ = abs(Aij)
6) maximum.calc_max(tempi)
7) return maximum.get_value()
Algorithm 3: Infinity-norm of a matrix.

INIT-Y-MATRIX(Y, F, n, lambda_max)
1) cilk_for i = 0 to n− 1

2) cilk_for j = 0 to n− 1

3) if(i == j)
4) Yij = 1− Fij ∗ 1/lambda_max
5) else
6) Yij = −Fij ∗ 1/lambda_max
7) cilk_for i = 0 to n− 1

8) Yin = gi ∗ 1/lambda_max
9) cilk_for j = 0 to n− 1

10) Ynj = 0

11) Ynn = 1

Algorithm 4: Initializing matrix Y.

NORM-INF-VECT(V, n)
1) temp = create array of size n
2) reducer_max maximum;

3) cilk_for i = 0 to n− 1

4) tempi =abs(Vi)
5) maximum.calc_max(tempi)
6) return maximum.get_value()
Algorithm 5: Infinity-norm of a vector.
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Algorithm 3, 4 and 5 are supporting the parallel imple-
mentation of parallel MEXP (Algorithm 2). The Algorithm 3
finds absolute sum of each row of matrix as an independent
task in parallel and then it finds their maximum using
reducer_max object [12] which is applied instead of syn-
chronization locks to avoid race conditions. By using locks
the execution becomes sequential while using reducers the
execution remains parallel. Algorithm 4 initializes each cell
independently in parallel to set matrix Y to its starting condi-
tion. As the tasks generated to fill matrix Y are independent
therefore, there is no chance of race condition. Algorithm
5 finds the absolute value of each cell of vector as an
independent task in parallel and then it finds their maximum
using a reducer_max object because race conditions can lead
to wrong computational results with simple variable.

In MEXP, the square matrix-multiplication takes longer
than any other parts of this algorithm. The time-complexity
of this part is n3. It involves n2 dot-products. For this
purpose we have used the parallel Cilk based implementation
of BLAS gemm() routine in PARALLEL-MEXP which is
PARALLEL-GEMM and can be found in [6]. The grain size
used in this implementation is 50. Since this is a parallel-
recursive (divide and conquer) approach, at each recursive
call it divides the problem into a sub-problem of order n/2
and executes each call in parallel until the problem size is
reduced to order of 50. There is also another technique called
the Strassen‘s multiplication [9] which has complexity of
O(n2.81) and its Cilk based implementation is also available
but it is numerically unstable therefore, we could not have
used it here.

3. Cilk based Preconditioned Conjugate
Gradient

In this section we present our parallel implementation of
PCG using Cilk which is compared with PARALLEL-MEXP
in terms of speedups and execution time. Below is the
layout of the algorithm:

PARALLEL-PCG(F, g, M, n)
1) x, r, p, z, t, q = create array of size n
2) iteration = 0; rho_new = 0; beta = 0;

3) r = g

4) while(1)
5) PARALLEL-GEMM(M, r, z)
6) rho_old = rho_new
7) rho_new = DOT-PRODUCT(r, z, n)
8) iteration++

9) if(iteration == 1) p = z

10) else beta = rho_new/rho_old
11) cilk_for(i = 0 to n− 1) pi = zi + beta× pi
12) PARALLEL-GEMM(A, p, q)

13) alpha = DOT-PRODUCT(r, z, n)/ DOT-
PRODUCT(p, q, n)

14) cilk_for(i = 0 to n− 1) xi = xi + alpha× pi
15) cilk_for(i = 0 to n− 1) ri = ri − alpha× qi
16) PARALLEL-GEMM(A, x, t)
17) cilk_for(i = 0 to n− 1) ti = ti − gi
18) if(NORM(t, n) / NORM(g, n) < tolerance) break
19) if(iteration == n× 4) break
Algorithm 6: Cilk based Precondition Conjugate Gradient
(PCG).

In Algorithm 6, line 1 x is the initial solution or condition
of the problem F, which is zero by default. In line 14 x is
being updated repeatedly in main loop of this method. In
every next iteration x gets closer to the solution. From line
16 to 19, it computes residual value and checks whether it
is upto certain level of tolerance or not. If tolerance level
gets achieved after some iterations then last updated value
of x is finally the solution of problem F.x = g.

In this algorithm, M is a Chebyshev preconditioner. The
preconditioning is also parallelized and its computational
cost is also included in performance evaluation which
takes O(n3) operations of PARALLEL-GEMM routine. In
performance evaluation we have compared MEXP with
both PCG and CG. Although the performance of PCG
varies depending upon the preconditioner being used. The
reason for choosing Chebyshev preconditioner is that it
is a general preconditioner and its computations are more
parallelizable than the other preconditioners. This is why
in the original paper of MEXP [4], authors have used this
preconditioner while comparing PCG and MEXP, and for
the same reason we have used this preconditioner in this
paper. Following are the parallel algorithms that support the
implementation of PARALLEL-PCG:

DOT-PRODUCT(a, b, n)
1) reducer_opadd sum;

2) sum.set_value(0)
3) cilk_for i = 0 to n− 1

4) sum = sum+ ai × bi
5) return sum.get_value()
Algorithm 7: parallel dot-product.

NORM(V, n)
1) reducer_opadd sum;

2) sum.set_value(0)
3) cilk_for i = 0 to n− 1

4) sum = sum+ V 2
i

5) return sqrt(sum.get_value())
Algorithm 8: parallel norm-2.

In PARALLEL-PCG, Algorithm 7 computes the dot-
product of two vectors a and b of size n in parallel and
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returns the result. Algorithm 8 computes the norm-2 of a
vector V of size n in parallel and returns the result. In both
of the above algorithms the reducer object for addition is
used so that at the end of parallel iterations their results will
be merged in a single result, otherwise, it can introduce the
data-race conditions on a simple variable.

4. Performance Evaluation
In this section, the performance of all the algorithms is

compared in terms of speedups and execution time. The per-
formance evaluation is done on 8-cores Intel (R) Xeon (R)
E5520 2.27 GHz and 8 MB of cache with Linux platform us-
ing Intel Cilk Plus version 14.0.1 (Intel Composer XE 2013).
Compiler optimization switch used is âĂŞO2 by default and
the tolerance level is set to 10-8 for parallel MEXP and 10-6

for parallel PCG and CG. Florida Matrices [11] have been
used as our testing benchmarks. These results are gathered
by using Cilk utility called “Cilkview scalability analyzer"
which tells us the speedups and execution time for different
number of CPU cores (workers or threads). First we show the
speedups among MEXP, PCG and CG. From Figure 1 to 8,
n denotes problem size, κ(F ) denotes condition number of
problem matrix F , s denotes iterations of MEXP, k denotes
iterations of PCG and v denotes iterations of CG.

Fig. 1: Speedups on 494_bus (power network) matrix with
n = 494, κ(F ) = 3.9×106, s = 24, k = 133 and v = 1313.

Fig. 2: Speedups on tomography_500 (computer vision)
matrix with n = 500, κ(F ) = 6.26 × 107, s = 29, k = 3
and v = 408.

Fig. 3: Speedups on 685_bus (power network) matrix with
n = 685, κ(F ) = 5.31× 105, s = 22, k = 71 and v = 555.

Fig. 4: Speedups on msc01050 (structural problem) matrix
with n = 1050, κ(F ) = 9.51× 106, s = 30 and k = 2.

Fig. 5: Speedups on bcsstk27 (structural problem) matrix
with n = 1224, κ(F ) = 7.71 × 104, s = 19, k = 70 and
v = 913.

In Figure 1 to 8, MEXP shows more speedups than
PCG and CG which actually proves the point that it has more
parallelism than CG. The cause of this result is repeated use
of parallel-recursive matrix multiplication technique which
has high performance in terms of parallelism and scalability.
In terms of relative speed of MEXP over PCG on 8 cores
(SpeedupMEXP/SpeedupPCG), it has approximate values from
2 to 3 in these cases and relative speedup of MEXP over CG
(SpeedupMEXP/SpeedupCG) is approximately 5 to 8. MEXP
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Fig. 6: Speedups on bcsstk13 (computational fluid dynamics)
matrix with n = 2003, κ(F ) = 4.57 × 1010, s = 38 and
k = 459.

Fig. 7: Speedups on cage9 (directed weighted graph) matrix
with n = 3534, κ(F ) = 72.3718, s = 7, k = 4 and v = 74.

Fig. 8: Speedups on bcsstk15 (structural problem) matrix
with n = 3948, κ(F ) = 7.97× 109, s = 36 and k = 158.

exhibits more parallelism than CG because it has n times
more work than CG. When this ample amount of work is
divided on physical number of cores, it shows almost linear
speedup and high parallelism. It does not mean that MEXP
beats PCG in terms execution time in every case but in most
cases. From Figure 9 to 16 respectively shows the execution
time graph of MEXP, PCG and CG for 8-cores on same data.

In Figure 9 to 16, parallel MEXP beats parallel PCG in
most cases, in terms of execution time, as we increase the
number of cores. As far as simple parallel CG is concerned,

Fig. 9: Execution time on 494_bus matrix.

Fig. 10: Execution time on tomography_500 matrix.

Fig. 11: Execution time on 685_bus matrix.

in some cases MEXP beats CG from 3 to 8 cores and in
other cases it is expected to beat CG for more than 8 cores
because technique used to parallelize MEXP is much more
scalable (i.e. parallel recursive divide-and-conquer matrix-
multiplication (PARALLEL-GEMM) [6], [9]) than parallel
CG. These results could have been more clear if we would
have more processing cores but due to limited resources
we were just restricted to 8 number of cores. In Figure
15 the case is different because matrix problem is not ill-
conditioned. It has very low condition number value as
compare to other problems in this performance evaluation
thus it produces very less workload and outperforms MEXP
while MEXP performs better on ill-conditioned problems.
In Figure 12, 14 and 16, CG is not shown because it fails
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Fig. 12: Execution time on msc01050 matrix.

Fig. 13: Execution time on bcsstk27 matrix.

Fig. 14: Execution time on bcsstk13 matrix.

to converge to solution on these problems. The reason is
distribution of eigenvalues are clustered together. In that case
people use specific preconditioners for specific problems
but that adds the preconditioning overhead whereas MEXP
does not require preconditioners for any sort of problem.
Therefore, it is evident from these results and analysis that
for shared-memory hardware architecture (on increasing the
number of processing cores) MEXP performs better than
PCG and CG in most cases for ill-conditioned and clustered
eigenvalues problems.

5. Conclusions
In this research, our motivation was to discover the paral-

lelism of the matrix exponential based algorithm (MEXP) on

Fig. 15: Execution time on cage9 matrix.

Fig. 16: Execution time on bcsstk15 matrix.

multicore hardware platform. We parallelized MEXP using
one of the shared-memory platforms called Intel Cilk Plus
and exploit it on multicore system. Parallel MEXP shows
higher parallelism and scalability than parallel PCG and
parallel CG and it outperforms both of these methods in
terms of both speedups and execution time (in most cases).
Parallel MEXP shows approximately 2 to 3 times more
relative speedup than parallel PCG and 5 to 8 times more
relative speedup than parallel CG.

As far as future work is concerned MEXP can be par-
allelized with other shared-memory models and can be
compared to Cilk based MEXP. The performance of MEXP
can also be explore in other various applications of numer-
ical scientific computing and control system theory where
solving a system of positive-definite linear equations over
large data sets is required.
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ABSTRACT: 

At present a large number of earth observation satellite at different spatial resolution are provide remote sensing data for land use 

classification. Due to the continuous nature of real world phenomena, mapping of, land cover classes is a challenge. Further presence 

of mixed pixels also decreases the accuracy of image classification. Fuzzy classification technique such as Fuzzy c-Means (FCM), 

Possibilistic c-Means(PCM) and Noise Clustering (NC)  can be used to handle mixed pixels. Although these classifiers have the 

advantage of classifying mixed pixels by assigning membership value, yet these non contextual based classifiers do not incorporate 

spatial contextual information of a pixel. Use of context eliminates the problem of isolated pixels and improves the classification 

accuracy. In this paper a hybrid algorithm, based upon contextual and NC classifier have been developed using MRF models.  

Smoothness prior and four discontinuity adaptive prior has been used to incorporate contextual information with NC. The developed 

discontinuity adaptive contextual NC classifier has been tested both on coarse and fine resolution dataset i.e. AWFIS and LISS-III 

having spatial resolution of 56 m and 23.5m respectively. It is expected that discontinuity adaptive prior models, improves the 

overall classification accuracy by preserving the edges at boundaries and the classified output is spectrally and spatially consistent.  

 
I. INTRODUCTION 

A hard classification technique of satellite data does not take 
into account gradual spatial variation in land cover classes. To 
incorporate the gradual boundary change problem researchers 
had been proposed the ‗soft‘ classification techniques that 
decompose the pixel into class proportions, minimizes the 
mixed pixel problem using fuzzy logic (Fisher, 1997, Maselli et 

al., 1994). Fuzzy classification is a soft classification technique 
(Binaghi and Rampini, 1993), which deals with vagueness in 
class definition (Foody et al., 1996). Therefore, it can model the 
gradual spatial transition between land cover classes. 
 
Fuzzy c-Means (FCM) (Bezdek, et al., 1980; Ehrlich et al., 
1984., Bezdek et al., 1987) is an unsupervised clustering 
algorithm which has been widely used to find fuzzy 

membership grades between 0 and 1. The aim of FCM is to find 
cluster centres in the feature space such that it minimizes the 
intra-class variation and maximizes the inter-class distances 
using an objective function. Standard FCM algorithm considers 
the spectral characteristics. 
 
Fuzzy c-Means supervised classification algorithm has been 
widely used to classify satellite images with ambiguous land 
cover classes. It is a popular fuzzy set theory based soft 

classifier, which handles the vagueness of a pixel at sub-pixel 
level. FCM has been successful in assigning the membership 
(uij) of a pixel to multiple classes but this assignment is relative 
to total number of classes defined and not absolute 
(Krishnapuram and Keller, 1993, Foody 2000). This is due to 
the constraint imposed on the membership values as given by 
the Eq. (1)  

1

1
c

ij

i

u for all i      (1) 

The main motivation behind Possibilistic c-Means (PCM) 
relates to the relaxaction of the constraint on membership value 
in (1) and gives absolute membership value, as stated by Eq. (2) 

max 0i iju for all j
    

(2) 

In case of PCM, this membership value represents the ―degree 
of belongingness or compatibility or typicality‖, contrary to that 
represented by FCM, where it is, ―degree of sharing‖.  
 
An important aspect in classification is the presence of noise, 
which may have been introduced at any stage of data collection 
and transmission. This affects the performance of any 
classification algorithm. Literature reveals that a good solution 

to this problem does not exist. An ideal solution would be one 
where the noise points get automatically identified and removed 
from the data. A concept of "Noise Cluster‖ can be introduced 
such that noisy data points may be assigned to the noise class. 
The approach is developed for an objective functional type (K-
means or fuzzy K-means) algorithm, and its ability to detect 
'good' clusters amongst noisy data has been aptly demonstrated 
by (Dave, 1991). The approach is applicable to both fuzzy 

supervised classification algorithms as well as regression based 
methods. 
 
In supervised classification, validity plays a pivotal role in 
achieving a robust classification because without the concept of 
validity, it is neither possible to separate the good points from 
the noise points and outliers nor access the quality of the 
solution. The solution to the robust clustering problem requires 
that the algorithm reject noise data before it computes the 

parameter estimates (Dave and Krishnapuram, 1997). 
 
The purpose of study of noise clustering without entropy is not 
only to establish a connection between fuzzy set theory and 
robust statistics, but also to discuss and compare several 
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popular clustering methods from the point of view of robustness 
(Dave, 1990) and (Foody et al., 1995). 
 
The aim of this paper is to study the behaviour of associated 
learning parameters of noise clustering with contextual for 

optimization estimation, using different fuzzy based functions, 
which is used for classification of multi-spectral remote sensing 
data in sub-pixel mode. Very often land cover classes changes 
gradually from one to another, therefore in such condition it is 
difficult to define sharp boundaries between two land cover 
classes and NC with contextual based classification techniques 
can be used to represent such conditions.  In the next section, 
the details of parameters considered in FCM, PCM and noise 

clustering with contextual are provided.  
 

1. CLASSIFIERS AND ACCURACY ASSESSMENT 

APPROACHES 
1.1 Fuzzy c-Means Approach (FCM) 

Fuzzy c-Means (FCM) was originally introduced by Bezdek 
(1981). In this supervised classification technique each data 
point belongs to a cluster to some degree that is specified by a 
membership grade, and the sum of the memberships for each 
pixel must be unity. This can be achieved by minimizing the 
generalized least - square error objective function, 

2

1 1

( , )
N c
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m ij i j

i j A

J U V X x    (3) 

Subject to constraints, 
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c

ij
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for all i  
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ij

for all j
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     (4) 

where Xi is the vector denoting spectral response of a pixel i, x 

is the collection of vector of cluster centers xj, ij are class 

membership values of a pixel, c and N are number of clusters 

and pixels respectively, m is a weighting exponent (1<m< ), 

which controls the degree of fuzziness, 
2

i j A
X x  is the squared 

distance (dij) between Xi and xj, and is given by, 
 

 
2

2
T

ij i j i j i jA
d X x X X A X X

   
(5) 

where A is the weight matrix. Amongst a number of A-norms, 

three namely Euclidean, Diagonal and Mahalonobis norm, each 
induced by specific weight matrix, are widely used. The 
formulations of each norm are given as (Bezdek, 1981),  
 

1

1

j

j

A I Euclidean Norm

A D Diagonal Norm

A C Mahalonbis Norm
    

(6) 

 
Where I is the identity matrix, Dj is the diagonal matrix having 
diagonal elements as the eigen values of the variance covariance 

matrix, Cj  given by, 
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The class membership matrix ij is obtained by; 
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1.2 Possibilistic c-Means Approach (PCM) 

In PCM, for a good classification is it expected that actual 
feature classes will high membership value, while 
unrepresentative features will have low membership values 
(Krishnapuram and Keller, 1993). The objective function, 
which satisfies this requirement, may be formulated as; 
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Subject to constraints; 
 

max 0j iju for all i  
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 µij is calculated from Eq. (8). 

In Eq. (10) where j is the suitable positive number, first term 

demands that the distances from the feature vectors to the 
prototypes be as low as possible, whereas the second term 

forces the ij to be as large as possible, thus avoiding the trivial 

solution. Generally, j depends on the shape and average size of 

the cluster j and its value may be computed as; 
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Where K is a constant and is generally kept as one. After this, 

class memberships, ij are obtained as;  

1
2 1

1

1

ij
m

ij

j

d

    

(12) 

 
1.3 Noise Clustering with Contextual Algorithm 

The idea of noise clustering is based on the introduction of an 
additional cluster that is supposed to contain all outliers (Dave 
and Keller., 1997; Tuia and Camps-Valls, 2011; Upadhyay et 
al., 2013). Feature vectors that are about the noise distance ‗δ‘ 
or further away from any other prototype vector get high 

membership degrees to this noise cluster. The noise prototype is 
such that the distance dcj distance of feature vector xj from vc is 
the fixed constant value 

(13)cjd j  

The specification of the noise distance depends on several 
factors, i.e. maximum percentage of the data set to be classified 
as noise, distance measure, number of assumed clusters and the 
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expansion of the feature space(Klawonn., 2004 ). 
The noise distance proposed in (Krishna.,1998) is a simplified 
statistical average over the non-weighted distances of all feature 
vectors to all prototype vectors. 

1

1 1
(14)

( 1)

c n

i j

i j
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n c
 

Where λ is the value of the multiplier used to obtain δ from the 
average of distances. The memberships of the vectors in the 
data set to the noise cluster are defined as  
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Objective function is given by (Krishna.,1998) 
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Where i= 1,……c, k=1,…….n , resolution parameter δ> 0 and 
weighting exponent m>1. 
n= row*column (image size). The distances are defined as  
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for all ‗k‘ and i=1to (c-1) .The i  denotes the  mean vector of 

each class  and can be defined as  
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 Geman and Geman (1984) did maximum a priori (MAP) 

estimation as statistical criterion using simulated annealing and 
Gibbs Sampler for MRF based image restorations. It was found 
improved restorations at low signal-to-noise ratio. This paper 
explains the equivalence between Gibbs distribution and 
Markov random field (MRF). The restoration was performed 
using the simulated annealing theorem which convergence to 
the global maxima of the posterior distribution. Similar 
simulated annealing algorithm was used in this research work to 

find out the global posterior energy without sticking in a local 
minimum. 
Solberg et al., (1996) used MRF to include context for 
multisource satellite images. It was found that MRF can model 
spatial class dependencies as well as temporal class 
dependencies. MRF model achieved 2% higher classification 
accuracy when same set of image used for the two different 
models. Finally it was conclude that MRF model provide better 
results for classification of multisource satellite images. 

The idea of using this hybrid approach of soft classification 
noise clustering with contextual is a new which helps 
significantly to eliminate noise pixels and improves the 
classification accuracy. 

The sequence of discussion starts with the objective function of 
NC, followed by two sub-sections, each corresponding to one 
of the two objective functions. The objective function of NC 
discussed in Eq.(16). The main concept of the NC algorithm is 
the introduction of a single noise cluster that will hopefully 

contain all noise data points (Cimino et al., 2005). Data points 
whose distances to all clusters exceed a certain threshold are 
considered as outlier. This distance is called the noise distance. 
The basic objective function of NC is given in Eq. (16), 
includes the information about the distance of the feature vector 
(that forms the pixel) from the cluster mean in the feature space 
but it does not include information on spatial context. The 
spatial context here includes the influence of the neighbouring 

pixel on the target pixel in the image space.  
 

The MAP-MRF (Maximum A Posterior Solution-Markov 
Random Field) framework works by maximizing the posterior 

probability which is related to prior and conditional energy 
(Eq.(20)  to Eq.(24)).  
Eq.(20) states the NC objective function formulated using 
smoothness prior. From now onwards the objective function in 
Eq.(20)  will be referred as NC-S.  

22 ,U(u / ) (1 ) (1 ) (20)
ij

,1 1 1 1 1 1

mc n n c n c
md u uu d u ij ijijij ij

i j i i i j j ni

where, 

U(u / )
ij

d = Posterior energy of image µ, given image d. 

λ= Weight for spectral and contextual information (smoothness 
strength). 
uij= Membership value of pixel i of class j. 
n= Number of pixels. 

m= weighing exponent  
2( ) ( ) ( )T

ij j i i j id x A x  

β= weight for neighbors. 

ni= Neighborhood window around pixel . 

δ= resolution parameter 

NC objective functions formulated with discontinuity adaptive 
priors (DA prior) are given in (Eq.(21) to (24)). 
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where, all the symbols have common meaning as described 

above. In addition, γ is the adaptive interaction function (AIF) 

with a value varying between 0 and 1. 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 453



 

 
1.4 Accuracy Assessment Approach 

Silván-Cárdenas and Wang, (2008) developed theoretical 
grounds, for a more general accuracy assessment of soft 
classifications, which account for the soft class distribution 
uncertainty. 
In formal grounds, one requires the agreement-disagreement 
measure to conform Eq. (25), where A and D denote agreement 

and disagreement operators respectively, where 
'

nks
 and 

'

nlr
 

denote the over and underestimation errors at pixel n. 
 

' '

, 1
,
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nk nl

nk nl
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D s r if k
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Practically, it is convenient to express each confusion interval in 

the form kl klP U where Pkl and Ukl are the interval center and 

the interval half-width, respectively. These are computed as 
indicated by Eq.(26) and (27), respectively. The general 
structure of SCM is provided in Silvan-Cardenes and 
Wang(2008). 
 

min min min
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P P
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(27) 

With the availability of IRS-P6 satellite data it is possible to 
acquire spectrally same and spatial different data sets of same 
area with same acquisition time. Due to the uniqueness of 
availability of these data sets, soft fraction images generated 
from coarser resolution data set (e.g. AWIFS, IRS-P6) can be 

evaluated from fraction images generated from finer resolution 
data sets (e.g. LISS-III, IRS-P6) as reference data set acquired 
at same time.  
 
For the uncertainty visualization and evaluation of the 
classification results, the entropy criterion is proposed. This 
measure expresses by equation (28). 
 

j

i 2 ii 1
Entropy(x) -μ(w /x)log (μ(w / ))x   (28) 

 
For high uncertainty, the calculated entropy (Eq. (28)) is high 
and inverse. Therefore this criterion can visualize the pure 
uncertainty of the classification results.  

  
2. STUDY AREA AND DATA USED 

The study area for the present research work belongs to 
Sitarganj Tehsil, Udham Singh Nagar District, Uttarakhand, 

India. It is located in the southern part of the state. In terms of 
geographic latitude/longitude, the area extends from 
28°52‘29‖N to 28°54‘20‖N and 79°34‘25‖E to 79°36‘34‖E. 
The area consists of agricultural farms with sugarcane and 
paddy as one of the few major crops with two reservoirs 
namely, Dhora and Bhagul reservoir. The images for this 
research work have been taken from two different sensors 
namely AWIFS and LISS-III belonging to satellite IRS-P6. The 

AWIFS dataset used here for classification and LISS III for 
referencing purposes. This image of Resourcesat-1 acquired on 
15th October, 2007. 

 
3. METHODOLOGY 

Two datasets namely (AWIFS), and (LISS-III) were 
geometrically corrected with RMSE less than 1/3 of a pixel and 
re-sampled using Nearest Neighbour method at 60m, and 20m 
so that 9 LISS-III pixels corresponds to 1 AWiFS pixels. Fig. 1 

shows the flowchart of the methodology adopted to fulfil the 
objectives of this paper. The six classes of interest, namely 
deciduous forest, eucalyptus plantation, water bodies, crop land 
, non-crop land , and non crop moist land have been taken for 
this study work. Training data was collected with the help of 
field data and testing was conducted while taking 100 samples 
per class and total 600 samples randomly selected. 
 

In order to achieve good identification of information high 
classification accuracy and certain parameters, such as 
resolution parameter ‗δ‘, smoothness controller ‗β‘ , Weight for 
spectral and contextual information (smoothness strength) ‗λ‘, 
and ‗γ‘ is the adaptive interaction function (AIF) have to be 
either determined or optimized for NC with Contextual 
classifier for assessment of optimized values of ‗δ‘, ‗λ‘, ‗β‘ and 
‗γ‘. The range of resolution parameter δ has been taken from 1 
to 106 with the interval of 10, while values of smoothness 

controller ‗β‘ is varying from 1 to 10 and contextual 
information (smoothness strength) ‗λ‘ and adaptive interaction 
function (AIF)‘ γ, is varying from 0 to 1 respectively. Fuzzy 
overall accuracy, fuzzy kappa coefficient and uncertainty in 
accuracy parameters have been estimated for different LISS-III, 
and AWIFS data sets. It has been observed that for fixed 
resolution parameter (δ) i, e 106, and β=2.0, λ=0.7 and γ=0.2. 
The fuzzy overall accuracy as well as fuzzy kappa coefficient is 

optimum as shown in Fig. 3 and 5. It has also observed that 
uncertainty in fuzzy overall also minimum in a given Fig. 4 and 
6. So, it is important to decide what should be the appropriate 
optimized parameter values to be used in noise clustering with 
contextual classifier for image classification.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 

Fig. 1: Methodology adopted 
 

Pre-process 

Coarse Resolution 
MX Data 

Classification Expérimentes 
a) Noise Clustering with Contextual 

Classifier 

 

Image to image accuracy 

Assessment 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

454 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



 

  
LISS-III                                  AWIFS 

 

Fig. 2: Location of study area 
 

4. RESULTS AND DISCUSSIONS 

In Contextual classification, λ is the smoothness parameter that 
controls the balance between spectral and spatial information. 
This parameter is involved in Noise Clustering with Smoothing 
(NC-S) and in Noise Clustering Discontinuing Adoptive Prior 
(NC-DA) models. To optimize this parameter entropy was 
calculated and edge preservation was verified in parallel. It is 

important to verify edge preservation in this work because here 
the developed contextual classifier is for discontinuity adaptive 
image classification. ‗β‘ is the weight given to the neighboring 
pixel in a window in NC-S model. Similarly like lambda 
optimization the entropy and edge preservation have been 

checked to determine the optimized value for β.  is involved in 

DA models, it determines the rate at which AIF reaches zero 

and controls the interaction between two pixels (Li, 1995). 

Estimation of   has been done by calculating entropy values as 

well as by verifying edge preservation.  In Fig. 3 optimization 
of λ,β and γ, for LISS-III image is provided. In Table1 
optimized parameter values for all the models for LISS-IV, 
LISS-III and AWiFS are given. According to Table 1 the 
overall classification accuracy of NC- contextual discontinuity 
adaptive classification was improved and it was more than 93% 

for NC(DA-H3) model . As compare to NC-S the discontinuity 
adaptive contextual NC classifier achieved 0.5% to 5% 
improvement in classification accuracy. It has been found that 
the NC-DA (H3) has achieved the highest overall accuracy with 
93.09 % with minimum entropy value0.021. In this work edge 
verification has been checked for the fraction output images. 
After comparing the overall accuracy for NC-S and NC-DA it 
has been found that NC-DA (H3) provides best classification 

results with highest overall accuracy. So NC-DA (H3) has been 
taken as a best classifier and edge preservation is verified for 
this classifier output as given in Table 1. In Fig. 3 optimization 
of λ, β and γ for AWiFS image is provided. The errors normally 
occurs at the edges (Tso and Olsen, 2005), thus on preserving 
the edges, the overall accuracy is improved as it has been 
noticed in Fig. 3 and Table 1. Thus it is observed that the 
accuracy of NC-DA (H3) is higher than the NC-S and, other 

NC-DA models, so it preserves the edges accurately. From 
Table 1 it is observed that the entropy values are less in NC-DA 
in comparison to NC-S. So it can be concluded that the 
classified output from NC-DA has less uncertainty as compared 
to NC-S.   

 

Fig.3: Optimization of λ and β 

Table 1: Overall maximum fuzzy accuracy NC with Contextual 

classifier 
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NC-S 

λ = 0.7 

and 

β=2.0 

87.5

8 
9.82 0.80 0.23 0.6 

NC(DA-

H1) 

λ = 0.7 

and 

λ=2.0 

89.0

8 
11.05 0.98 0.13 1.25 

NC(DA-

H2) 

λ = 0.7 

and λ 

=2.0 

91.7

6 
13.98 0.87 0.15 3.54 

NC(DA-

H3) 

λ = 0.7 

and λ 

=2.0 

93.0

9 
8.54 0.82 0.09 0.021 

NC(DA-

H4) 

λ = 0.7 

and λ 

=2.0 

88.0

2 
9.06 0.67 0.26 1.34 

 

5. CONCLUSION 

In this research work performance of each classifier was 

estimated based on overall accuracy, fuzzy kappa coefficient, 

uncertainty in overall accuracy and fuzzy kappa coefficient and 

entropy. It has been tried to generate fraction outputs from NC-

S, and NC-DA classifier. These outputs have been generated 

from AWIFS as well as LISS-III images of IRS-P6 data. Fuzzy 

overall accuracy and fuzzy kappa coefficient are relative 

accuracy assessment but entropy is an absolute uncertainty 

indicator. From resultant Table 1 and Fig. 3, while monitoring 

entropy of fraction images for different parameter values, 

optimum parameter has been obtained for NC-DA(H3) model 

which gives highest accuracy (SCM) i.e. 93.097%.While using 

NC-DA(H3) classifier to generate fraction images.The main 

objective of this research work is to develop a sub-pixel 

classifier for classifying moderate and coarse spatial resolution 

multi-spectral dataset using NC-DA MRF models. Another 

objective is to study the four DA models for NC. The efficiency 

for DA models is shown in Table1. In this research work a 

method has been developed to incorporate spatial contextual 
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information in NC using DA MRF models which preserves the 

edges. The optimized value of λ for LISS-III image is 0.7.  

Thus it can be concluded that the role of spatial contextual 

information is less in coarser resolution image whereas for finer 

resolution image the role of spatial contextual information 

increases. From the results of accuracy assessment it is found 

that NC-DA perform better as compare to NC-S. It means that 

as spatial resolution of the image becomes finer while spatial 

context increases. It also observed that using DA prior the 

accuracy was further improved for LISS-III image as compare 

to AWiFS image and DA priors were used to preserve the 

edges. Thus it can be concluded that if spatial resolution 

becomes finer the discontinuities increases and it becomes 

essential to preserve the edge. It has been found from the 

accuracy assessment of AWiFS and LISS-III image that NC-

DA (H3) performs better in case of coarse and moderate 

resolution images among all other DA models. It also can 

preserve the discontinuities for the coarse and moderate spatial 

resolution image. The entropy values were calculated for the 

classified output of NC-S and NC-DA, and it was found that the 

uncertainty in the classified  results are less in NC-DA models 

as compared to NC-S.  
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Abstract— With steady increase in the use of computers, 

problems such as energy demand and space in data centers are 

occurring worldwide. Many solutions are being designed to solve 

these situations, among them is Cloud Computing, which uses 

existing technologies, such as virtualization, trying to solve 

problems like energy consumption and space allocation in data 

centers or large companies. The cloud is shared by multiple 

customers and allows an elastic growth, where new resources 

such as hardware or software, can be hired and added anytime in 

the platform. In this model, customers pay for the resources they 

use and not for all the architecture involved. Therefore, it is 

important to determine how efficiently those resources are 

distributed in the cloud. This paper aims to propose and develop 

a scheduling algorithm for the cloud that could efficiently define 

the distribution of resources within the architecture. 

Keywords—Cloud Computing; Scheduling Algorith; 

Virtualization 

I. INTRODUCTION 

Cloud Computing is seen as a trend in the current scenario 
in almost all organizations. The advantages of using Cloud 
Computing are the reduction hardware and maintenance cost, 
accessibility, flexibility and a highly automated process in 
which the client does not need to concern about software 
upgrading [1]. 

Sabahi [2] defines Cloud Computing as a network 
environment based on computational resource sharing. In fact, 
clouds are based on the Internet and try to disguise their 
complexity for the customers. 

II. CLOUD COMPUTING 

The Cloud refers to the hardware and software delivered as 
services over the Internet by data centers. Companies that 
provide clouds make use of virtualization technologies, 
combined with their ability to provide computing resources 
through their network infrastructure. 

Cloud Computing uses virtualization to create an 
environment (cloud), which allocates instances (virtualized 
operating systems) according to the available resources 
(physical machines). These virtual machine instances are 
allocated in accordance with the physical machines that are part 
of the cloud environment. 

A. Classes of Services 

According to Buyya [3], Cloud Computing is divided into 
three service classes according to the type of services offered 
by providers: Infrastructure as a Service (IaaS), Software as a 
Service (SaaS) and Platform as a Service (Paas ): 

 Software as a Service (SaaS): in this class, the 
applications reside on top of the model, offering 
"software on demand". The applications are accessible 
from various devices such as a Web browser (e.g.: 
webmail). The customer does not manage or control the 
cloud infrastructure, such as network, servers, operating 
systems, storage, or even the application. The collection 
for the service, in this case, can be based on the number 
of users [4]. 

 Platform as a Service (PaaS): provides an 
environment for developers to build, test and deploy 
their applications, not caring about the infrastructure, 
amount of memory or hardware requirements. One 
example of this class is Google Apps service, where it is 
offered a scalable environment for developing and 
hosting Web applications or Microsoft Azure [4]. 

 Infrastructure as a Service (IaaS): in this class of 
service, the customer has the availability of cloud 
processing, networking, storage, and other computing 
resources, where he can install operating systems or any 
other system. The customer does not manage or control 
the underlying cloud infrastructure and pay only for the 
structure used. As examples, it can be mentioned IaaS 
services such as Amazon Elastic Compute Cloud 
(Amazon EC2), Amazon Simple Storage Service 
(Amazon S3), Eucalyptus, OpenNebula and OpenStack 
[4]. 

Besides the three types of services mentioned above, other 
authors also consider: CaaS (Communications as a Service), 
DaaS (Datacenter as a Service), Kaas (Knowledge as a Service) 
and HAAS (Hardware as a Service) [5]. 

B. Benefits from Cloud Computing 

The main benefit brought with the use of Cloud Computing 

is scalability. Servers that are not being used represent 
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problems with management and energy consumption. Full load 

and low load servers use almost the same amount of electricity, 

so servers which are not being used are not viable. With the 

resource provisioning provided by the cloud, based on demand, 

it is easier to scale the system, introducing more resources 

when they are needed. This allows for reduction in power 

consumption and management effort, optimizing the use of 

servers, network and storage space. The economics of clouds 

involve the following aspects [6]: 

 Economy of scale from the providers view: it is 
achieved from big datacenters, minimizing operating 
costs related to power consumption, personnel, and 
management. The minimization is a direct result of the 
assembly of multiple resources in a single domain. 

 Economy of scale from the demand view: occurs due 
to the demand aggregation, reducing inefficiencies 
resulting from load variations, increasing server's load. 

 Economy of scale from the multitenancy view: since 
the degree of sharing can be increased, it is possible to 
reduce the cost of management of servers. 

III. SCHEDULING ON THE CLOUD 

One of the most challenging problems in parallel and 
distributed computing is known as the scheduling problem. The 
goal of scheduling is to determine an assignment of tasks to 
processing units in order to optimize certain performance 
indices [9]. It should be noted that there are two kinds of 
scheduling within the architecture: 

 Scheduler Manager: the scheduling algorithms work 
in order to scale virtual machine instances for 
computing nodes, responsible for the processing. 

 Scheduler hypervisor within the computing node: 
the scheduling algorithm is present in the operating 
system of the physical machine, sharing the processing 
of their cases. 

The cloud has an infrastructure that includes a scheduler 
resource. Differently from an operating system that generally 
works with processes of low granularity, the manager of the 
cloud works with virtual machine instances, if compared to 
processes, it can be said they would be of high granularity. 
Thus, the scheduler of the IaaS cloud application works for 
allocation of virtual machine instances, which must determine 
which node allocates this instance. 

Differently from a common process scheduling, cloud 
virtual machine instance remains active, consuming resources 
or not, until an action (user request or failure 
hardware/software) interrupts processing. Some items must be 
evaluated before the cloud scheduler makes its decision on 
which node should allocate a new request for resources such 
as: 

 Free processing capacity of the node; 

 Amount of total memory available; 

 Amount of secondary memory available; 

 Free ability to read/write secondary memory; 

 Free upstream and downstream capacity of the network. 

 A major problem of scheduling is to determine the cost of a 
task. The cloud has the same problem of how to determine the 
cost of processing, disk, memory and a virtual machine 
instance network before information can be staggered. In such 
cases it is necessary to use an adaptive scheme, in which the 
algorithms and parameters used for scheduling decisions 
dynamically change according to the state of the previous, 
current and/or future feature [7]. 

As it can be seen in Figure 1, the grid computing which is, 
in a way, similar to the one of the cloud, the adaptive 
scheduling is realized with a focus on resource heterogeneity of 
candidates, the dynamic performance of resources and the 
diversity of applications [7]: 

Adaptive 
scheduling

Adaptation of Dynamic 
Performance

Adaptation 
Resources

Adaptation of 
Application

 

Fig. 1. Taxonomy of scheduling in Grid [7]. 

According to Casavant [8], an assumption for a good 
solution in scheduling can be recognized in cases where a 
metric is available for evaluating a solution, this technique can 
be used to decrease the time required to find an acceptable 
solution (schedule). The factors that determine this approach 
include: 

 Availability of a function to evaluate a solution. 

 Time needed to evaluate a solution. 

 Ability to judge according to some metrics the value of 
an optimal solution. 

 Provision of an intelligence mechanism to limit the 
space solutions. 

As discussed, to a cloud environment, the scheduler needs 
to evaluate the conditions of computing nodes (approximate or 
heuristic) before allocating the next virtual machine instance 
(static scheduling), must select the node with more resources 
available, whereas it is not possible to measure accurately the 
amount of resources that need new instance (suboptimal), 
periodically measure (adaptive) and relocate instances if 
necessary (load balancing), to not harm the performance of 
other instances present on the node in question. 

A. Scheduling Algorithm of OpenSource Clouds 

There are several scheduling algorithms used to determine a 
better balancing of processing and distribution of resources. In 
open-source clouds, the main algorithms are deterministic, 
using the scores to determine the node that will be used for 
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processing. This score does not take into account the condition 
of resources available in the cloud and it often affects its 
performance, as well as the services delivered to the customers 
by service providers. 

Considering that the current scheduling algorithms of open-
source cloud to determine static mode cloud resources, this 
study aimed to create a dynamic scheduling algorithm to 
determine which computing nodes within a cloud, have the 
resources to efficiently host new virtual machine instances. 

IV. METHODOLOGY AND TESTING ENVIRONMENT 

A cloud was built to have this work developed. As it can be 
seen from Figure 2, four computers were used, one of them as a 
manager and the others as computing nodes. The management 
system OpenStack cloud was used, and it was chosen because 
it is open-source, belongs to an active community and has 
extensive documentation. 

Virtual Infrastructure 

Management

Nodes

scheduling

Cloud

Virtual Machine

 

Fig. 2. Cloud infrastructure. 

Table 1 describes the initial state of each node, amount of 
memory, network, CPU, number of cores and cache processor 
on each physical node. 

TABLE I 

NODE RESOURCES 

Nodes Network Memory CPU Mhz Cores 

01 100 Mbps 4 GB 2000 4 

02 100 Mbps 4 GB 2000 4 

03 100 Mbps 4 GB 2000 4 
 

Table 2 shows the initial state of the nodes in relation to the 
resources available before scheduling testing. 

 

TABLE II 

AVAILABLE RESOURCES 

Nodes CPU  Network  Memory Disk 

01 99.7 % 100 % 91 % 100 % 

02 99.8 % 100 % 91.2 % 100 % 

03 99.8 % 100 % 90 % 100 % 
 

For better observation of the results and to provide more 
detailed comparison in the development phase, the algorithm 
was tested with two behaviors of virtual machines in an attempt 
to simulate a real production environment. 

 Virtual machines with constant consumption: three 
virtual machine images were created with Ubuntu 
Server 12.04 operating system that runs in its startup 
script that provides a different constant consumption of 
resources (processing, memory, network and disk) for 
each operating system as in Figure 3. 

 Virtual machines with variable resource 
consumption: in this model, the startup script provides 
a varying consumption with the use of threads that are 
initiated randomly. 

 

 

Fig. 3. Instances of constant consumption. 

Assuming that virtual machines can adopt two behaviors 
within a cloud: constant resource consumption and variable 
resource consumption, an algorithm was developed, as shown 
in Figure 4, to create this scenario. 

Start 
Process

CPU usage

Multiple 
processes

Process begins with 1 to 
10 threads

The process 
restarts when the 
subthreads are 

enclosed.

Each subthread 
starts with 1 to 3 
procedures (Disk, 
CPU and network)

Network 
usage

Disk usage

Each procedure 
starts with a random 

life time.

The procedure loops until its 
time to finalize random life.

 

Fig. 4. Simulation consumption script. 
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Initially the script starts 1-10 threads and each of these 
threads start 1-3 new threads containing a specific 
consumption: CPU, disk and network. Note that the memory is 
not inserted in the script, as when a virtual machine instance is 
loaded, the KVM removes the portion of memory available and 
allocates the physical machine to the virtual machine. 

V. RESULTS AND DISCUSSION 

A. Tests with standard scheduling algorithm of OpenStack 

To start the test, thirty virtual machine instances were 
launched using a script that selects instances randomly from 1 
to 3 with different loads, but constant.  

As it can be seen from Figure 5, node 1 has more resources 
available, but node 2 received 10 instances, overloading it more 
than the others. 

 

Fig. 5. Test Release: instances of constant consumption. 

After that, eight variable instances consumption launches 
were made and measurements were carried out for the first ten 
minutes, twenty minutes, thirty minutes and one hour, as it is 
shown in Figure 6: 

 

Fig. 6. Test Release: instances of variable consumption. 

There were variations in resource consumption, but these 
changes followed a pattern. This happened because the 
hypervisor present in the node scheduler has its own system of 
load balancing, balancing resources among active VMs, 
making it possible to specify by an average, the quantity of 
available node resources. 

B. Prototype 

The algorithm prototype consists of two parts: 

 The first must constantly evaluate the free resources of 
each node and save the information in a database. 

 The second should select the node with more resources 
at the time of instantiation of any virtual machine. 

Thus, the algorithm should monitor the amount of free 
resources on each node of the private cloud, should create an 
index for the manager, which may contain the nodes with more 
resources available and should also scale the nodes with more 
resources, as well as new requests of virtual machine instances. 
It should be noted that, in open-source managers, this selection 
is done manually by the user. 

1) Node Resources 
A program that monitors, in predefined time intervals, the 

amount of resources of each node was created. The program is 
written in Python, to be the same language used by OpenStack 
and is present in each node of the cloud. 

To monitor the amount of available resources on the node, 
a library of Python, called PSUTIL was used. This library 
contains functions that evaluate the use of resources such as 
CPU, memory, network, disk. In the specific case of the disk, 
to determine its speed, a test is made to read and write to 
calculate transfer rates. 

The algorithm was scheduled to collect machine 
information and store it in a database. It was scheduled to run 
every five minutes, and that time was based on uptime 
command, found in Unix and Linux systems, which checks the 
load processes in these systems. This algorithm has three 
important functions: 

 resources: this function is performed only once and 
through performance analysis, which determines the 
maximum data transfer capacity of the disk and the 
network, number of cores in the processor, memory and 
processing available. 

 check_node: this function is executed every five 
minutes, storing on a database the amount of resources 
available for that node. 

 check_instance: this function is executed every five 
minutes, storing on a database the amount of resources 
consumed by each instance. 

2) Choice Node 
The second algorithm is present in the manager. This 

should capture all the records present in the database with the 
information of resources for each node, analyses them and 
score them. For this, the algorithm evaluates the records of the 
conditions for the last 24 hours of an active node, taking into 
consideration that this is only a prototype and future revisions 
may take into account the behavior parameterization of the 
nodes using neural networks or other dynamic algorithms. 

To determine the node with more features, it is taken into 
consideration a simple average of the records and weights are 
applied on resources that may influence the performance of a 
virtual machine. In this test, higher weights were prioritized for 
CPU and memory. 

Based on the results, the algorithm chooses the node with 
more resources available before launching the virtual machine 
instance. As it is shown in Figure 7, the prototype could 
distribute the load among the nodes participating in the 
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network more evenly than the current algorithm of the 
OpenStack cloud. 

So, it is extremely necessary to receive feedback from each 
participant from the cloud, demonstrating their real capacity of 
available resources. For instances of constant consumption, the 
prototype achieved its goal when it distributed the resources in 
an equated way among the instances. 

 

Fig. 7. Results of instances of constant consumption. 

As one of the approaches to the use of Cloud Computing is 
the reduction in energy consumption, the prototype could also 
be used to allocate the maximum possible instances on a single 
node, allowing the manager to hibernate nodes not used, 
without compromising the performance of the virtualized 
operating system. 

As in the constant consumption, the prototype worked with 
instances of variable consumption (Figure 8), because it 
evaluates the condition of the nodes before scheduling 
application for VM. In the case of instances of variable 
consumption, future improvements of this algorithm could 
migrate instances of overloaded nodes and monitor these nodes 
after migration. 

 

Fig. 8. Results of instances of variable consumption. 

In open-source clouds, the main algorithms are 
deterministic, using the scores to determine the node that will 
be used for processing. This score does not take into account 
the condition of resources available in the cloud and it can 
hinder the performance of the architecture and affect the 
services delivered to the customers by service providers. 

The results in this paper show that instances that behave 
like processes in the operational system, such as the KVM 
hypervisor, allow the analysis and record of consumed 
resources, as well as the calculation of the amount of resources 
available for each node of the cloud. With this information, it is 

possible to determine at least two policies for scheduling 
requests for virtual machine instances that justify the use of 
Cloud Computing: 

 To distribute the load among the nodes of the cloud, 
thereby improving the quality of service provided; 

 To allocate the maximum instances for a node until its 
exhaustion of resources by turning off unused nodes. 

Therefore, this prototype has shown that feedback 
processes that perform the VM instances is essential to 
determine with some precision the resource capacity of each 
node participating in the cloud, making it possible for a 
manager to decide which policy for operation of the 
architecture will be used, to be chosen among quality of service 
and/or energy savings: 

 Quality of service: to ensure the availability of the 
service to a client, allocating the resources between 
nodes without overloading a particular specific node; 

 Energy savings: it makes possible the large data centers, 
to monitor and to allocate the correct amount of 
instances per node, disabling nodes that are inactive, 
reducing energy consumption and the amount of carbon 
dioxide released into the atmosphere. 

Thus, it is concluded that Cloud Computing provides great 
benefits, among the major energy consumption, physical space 
savings in data centers, easy sizing provisions, APIs for 
external interface, among others. However, determining how 
resources will be provisioned into the cloud is of utmost 
importance to ensure its success and adoption by large 
companies. 
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Abstract Efficient scheduling is critical to achieve high 
performance in grid computing. Scheduling issues are NP-
complete and were extensively studied with various 
algorithms being proposed in literature. To improve 
application performance using grid environment, resource use 
and job scheduling must be efficient. This work proposes 
Artificial Bee colony (ABC) algorithm to locate an optimum 
schedule for dynamic jobs arrival. The performance of the 
proposed methods is evaluated based on make span. In this 
work three initialization techniques namely random 
initialization, orthogonal initialization and chaotic 
initialization is studied and the output presented. Simulations 
were performed with 25 jobs, and resources are grouped into 
5 clusters 

Keywords: Grid Scheduling, Optimization, Artificial Bee 

Colony (ABC), Initialization. 

 

1 Introduction 
Task scheduling algorithms are either Heuristic based or 
Guided random search based. The former is divided into [2]: 
list scheduling, clustering and task duplication. List 
scheduling Heuristics maintains priority based tasks list with 
2 phases: Task prioritizing – to prioritize each task according 
to criteria and processor selection- to select a suitable 
processor to minimize a predefined cost function. Examples 
of heterogeneous system algorithm are Heterogeneous 
Earliest Finish Time (HEFT) and Critical-Path-On-a-
Processor (CPOP). Clustering Heuristics map tasks in a graph 
to unlimited clusters. At every step, selected tasks to be 
clustered can be any task, and not necessarily a ready task. 
Each iteration refines previous clustering by merging clusters. 
When two tasks are assigned to same cluster, they are 
executed on same processor. Task duplication Heuristics 
schedules a task graph by mapping some tasks redundantly, 
reducing inter-process communication overhead.  These 
algorithms performance is dependent on heuristics 
effectiveness. Hence,  they are unlikely to ensure consistent 
results on a range of problems [3], specially when  DAG task 
scheduling problem complexity increases. 
Guided random search based algorithms: These use random 
choice to guide themselves through a problem. Guided 
random search based algorithm have robust performance on 
various scheduling problems, but are less efficient, generating 

higher computational cost than heuristic based algorithms. 
Genetic algorithms (GA) evolve solutions for task scheduling 
problems. Some examples are Tabu search (TS), Particle 
Swarm Optimization (PSO), Simulated Annealing (SA) and 
Ant Colony System (ACS) [4].Heuristic algorithms guarantee 
locating near optimal solution in lower polynomial time. 
Heuristic based list scheduling algorithms include 
Heterogeneous EarliestFinish Time (HEFT) and Critical-Path-
On-a-Processor (CPOP) while Guided random search based 
scheduling algorithms have robust performance on scheduling 
issues. 

Regardless of the EA method under consideration, one 
stage is always common: population initialization. Population-
based optimization algorithms rely on initial population of 
potential solutions. Conventionally, basic random number 
generators (RNGs) initialize population. For years, 
researchers were not interested in the influence of population 
initialization on Evolutionary Algorithms (EA) performance. 
Recent studies suggest the possibility of significantly 
improving EAs performance using different initialization 
methods [5]. Studies show that improving initial population 
increases probability of finding optimum solutions, decreases 
computational cost [6], reduces variance of results [7] and 
improves EAs solution quality [8]   
Initialization procedures are stochastic or deterministic 
methods. Generally the aim of stochastic methods is 
producing random numbers [9]. From a designers’ point of 
view, more random sequence (and less predictable and 
reproducible set) ensures better initial population for 
stochastic algorithms like EAs. Thus, stochastic methods most 
important attribute is cycle time (period length) and degree of 
unpredictability. Though these methods do not produce “true 
random” numbers, they are EAs most used initialization 
methods. Recently, stochastic methods subcategory called 
Chaotic number generators attracted interest [9]. Chaotic 
methods mimic behavior of dynamical systems yielding 
unpredictable point sequences [10]. 

In contrast to first group, Deterministic methods focus on 
uniformity rather than randomness [7]. Researchers believe a 
more uniform initial population enhances EA’s exploration 
ability in early iterations [6] in the absence of prior 
knowledge about a problem. In other words, increasing initial 
population uniformity reduces probability of missing large 
part of search space saving much computational budget. 
Orthogonality is a deterministic method. 
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This study aims to minimize overall job completion time or 
application makespan. Makespan represents time 
lapsedfrom start of first task to end of last scheduled task. 
This study proposes to investigate relationship between 
initial population and final outcome of ABC for grid 
scheduling with optimal makespan.  
 

2 Related works  
Genetic Algorithms (GA) are widely used for optimization 
and it is commonly used for grid scheduling too. Gao et al 
[11] proposed 2 models to predict job completion time in a 
service grid. Two algorithms using predictive models were 
proposed to schedule jobs at both system and application 
levels. GA minimizes average job completion time through 
optimal job allocation on every node in application level 
scheduling. Experiment showed that scheduling system 
using adaptive scheduling algorithms efficiently allocated 
service jobs. A new Space Time GA (STGA) based on 
faster searching and protected chromosome formation was 
proposed by   Song, et al [12]. Jobs were subjected to 
system failures caused by infected hardware, software 
problems or lack of proper security policies, in an open-
resource Grid system’s parallel execution. The process 
models risk and unsecured conditions in Grid job 
scheduling resulting in 3 risk-resilient strategies being 
developed. A Reliable Job Scheduler using Resource Fault 
Occurrence History (RFOH) in Grid Computing was 
proposed by Khanli et al [13].To improve grid scheduling 
reliability, the strategy used Resource Fault Occurrence 
History (RFOH) details. RFOH stored faults and number of 
jobs in execution using this resource. FOHT was updated 
and either resource was unable to complete the job within 
deadline, or a new job was assigned to resource. Based on 
RFOH information GA was used to find an optimum 
schedule. A two level scheduling system, with first level 
being formed by a computing nodes set  – each having a 
local scheduling policy – and a second level of super 
scheduler was proposed by Martino [14]. Local scheduler 
accepts one job at a time allocating it on local hardware 
regarding current (local) information. GRID jobs allocation 
simulation results were presented. Search strategy for input 
case did not converge to optimal case inside limited trials 
undertaken compared to earlier work on 24 jobs. GA 
benefits include improving scheduling quality which is 
discussed. GGAS modular structure allows expansion of its 
functionalities to include other first level scheduling policy 
regarding FCFS being considered. This paper proposes  
local search strategy to improve convergence when jobs to 
be considered are big as in real world operations. 
To improve the efficiency of the GAs it was hybridized 
with other optimization techniques as follows: Adaptive 
job scheduling for Computational Grid based on Ant 
Colony Optimization with Genetic Parameter Selection 
[15] was presented by Mandloi and Gupta where GA was 
combined with ACO algorithm for efficient grid 
environment task scheduling. Jobs arrival, resource request 

and availability entries were simulated, and resource 
brokers designed. Resources were clustered into many 
groups, and ACO algorithm used to find optimal schedule. 
GA controlled ACO algorithm parameters. Job execution 
failure and job completion were taken to evaluate 
performance of new scheduling algorithm. Results proved 
that optimization algorithm using GA and PSO were better 
than FCFS algorithm. presented A Comparative Study of 
GA and ABC for Job Scheduling [16] was presented by 
Selvi and Umarani. For efficient grid environment job 
scheduling, functions similar to Genetic operations and bee 
behavior are combined. Population was initialized by 
processors and jobs number in GA based job scheduling. 
During selection, best individuals were selected. In cross 
over, two different tasks were selected, and assignment of 
machines exchanged randomly. For this, exchange point 
was needed. During mutation, a task was selected randomly 
and reassigned to new processor. Steps from selection to 
mutation were repeated until make span was less than pre-
specified value. To select best source positions in cross 
over and mutation, ABC optimization algorithm was used. 
Simulations were undertaken with five different job sets. 
Results were compared with GA based job scheduling and 
ABC job scheduling. Numerical results showed that hybrid 
GA-ABC job scheduling gave high accuracy, efficiency 
with minimum job completion time when comparing to GA 
and ABC scheduling algorithms.Ant Colony Optimization 
(ACO) is an EA which is popularly used for scheduling. To 
offset new grid environment job scheduling challenges, 
Fidanova et al [17] presented a heuristic scheduling 
algorithm to achieve high throughput computing in a grid 
environment. This is a NP-problem requiring exponential 
time to solve. Hence heuristic algorithm aimed to achieve 
solutions in reasonable time. This paper discusses ACO 
method based heuristic algorithm and formulates strategies 
for grid scheduling. The algorithm guarantees load 
balancing. Chen et al [18] proposed an ACO algorithm to 
schedule large-scale work-flows with various QoS 
parameters to enable users to specify QoS preferences and 
define minimum QoS thresholds for applications. The 
algorithm’s objective is finding a solution meeting all QoS 
constraints and optimizing  user-preferred QoS parameter., 
Seven new heuristics for ACO approach were designed 
based on workflow scheduling characteristics and an 
adaptive scheme  allowing artificial ants to select 
pheromone value based heuristics was suggested. 
Experiments on ten workflow applications with 120 tasks 
demonstrated the new algorithm’s effectiveness. 
For scheduling the tasks in the grid environment, Particle 
Swarm Optimization (PSO) algorithm is used. The 
design/implementation of Hierarchical Discrete Particle 
Swarm Optimization (H-DPSO) for grid environment’s 
dependent task scheduling was proposed by Garg and 
Singh [19]. In HDPSO, particles are dynamic and 
hierarchically arranged with good particles lying above and 
influencing the swarm. The problem’s bi-objective version 
is minimizing makespan and total cost simultaneously 
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when optimization criteria are considered. The H-DPSO 
based scheduler was evaluated via application task graphs. 
Simulation analysis showed that H-DPSO based scheduling 
for grid computing is viable and effective. Tasks 
Scheduling in Computational Grid using a Hybrid Discrete 
Particle Swarm Optimization (HDPSO) [20] was presented 
by Karimi and Motameni. Particles were initialized by 
Min-Min algorithm. For every job, a set of minimum 
completion time on all available processors was found. 
Then for every task, processor which ensured minimum 
expected completion time was selected. Simulations were 
conducted with specific jobs, and processing time for each 
processor was pre-assumed. Makespan and throughput 
evaluated scheduling performance. Experiments were 
conducted 10 times using varied random values. Results 
were compared with algorithms like Min-Min and Max-
Min algorithms. The comparison revealed that HDPSO 
algorithm ensured minimum makespan and maximum 
throughput. Hybrid PSO Algorithm (HPSOA) to resolve 
dynamic Web services selection with QoS global optimal 
in grid workflow was presented by Hu,et al [21]. The 
algorithm’s essence was that dynamic Web Service 
selection problem with QoS global optimal was 
transformed into a multi-objective services composition 
optimization with QoS constraints. Crossover and mutation 
in GA were brought to PSO algorithm to form a mix 
algorithm called HPSOA to solve QoS global optimal 
problem. Theoretical analysis and experiments indicate the 
algorithm’s feasibility and efficiency. 
Some of the other optimization methods used for 
optimizing the scheduling in grid computing are as follows: 
Kim et al [22] developed a binary artificial bee colony 
(BABC) algorithm for grid computing binary integer job 
scheduling problems. A binary artificial bee colony 
extension of BABC incorporating a flexible ranking 
strategy (FRS) to up balance between exploration and 
exploitation was proposed. FRS generates and uses new 
solutions for diversified search in early generations 
speeding up convergence in latter generations. Two 
variants were introduced to minimize makespan. A specific 
number of best solutions are used with FRS initially , while 
in the second run, best solutions number is reduced with 
every new generation. Simulation for benchmark job 
scheduling issues reveals that new method’s performance is 
better than alternatives like simulated annealing, GA, and 
PSO. A grid computing tasks scheduling algorithm based 
on simulated annealing (SA) was introduced by Fidanova 
et al [23]. SA is initial solution generation creating a set of 
neighbours. Tasks are collected in a set and scheduled. Sop 
task arrival time is unimportant. Tasks scheduling is on the 
same machine and form a local queue related to the 
machine. Tasks queue is sent onto the machine when 
running tasks from previous queue. So send time does not 
influence makespan time. When the grid has a cluster like 
part, it is considered one machine, and hence the issue is 
converted to a sequential tasks scheduling problem. 
GLOA- A new Job Scheduling Algorithm for Grid 

Computing [24] was presented by Pooranian et al. Group 
Leader Optimization Algorithm (GLOA) was inspired by 
leaders role in social groups. Problem space was separated 
into many small parts and each processed separately to 
locate an optimal solution in parallel. Convergence in a 
short time is important in optimization problems. GLOA 
finds an optimum schedule for jobs arrival with available 
resources and reached optimal solution quickly. Makespan 
evaluated grid scheduling performance. Results showed 
that makespan was very small compared to other 
scheduling algorithms. 
Some works available in literature are reviewed in this 
section. Literature proposes many GA based heuristics and 
swarm based optimizations for grid scheduling. Algorithms 
try to overcome the problem by fitness function changes. 
Hybridization among different meta-heuristics was 
effective for problems and outperformed single methods. 
However, it is seen that none of the works consider the 
quality of the initial population chosen for the optimization 
problem. The research goal of this study is to investigate 
relationship between initial population and final outcome 
of ABC. 

3 Methodology 
In this study, Random initialization, chaotic initialization 
method based on stochastic methods and orthogonal 
initialization method based on deterministic method is 
investigated. Figure 1 shows the flowchart for the ABC 
algorithm. The steps are explained in the following 
sections. 

 

3.1 Artificial Bee Colony (ABC) Optimization 

Karaboga proposed ABC in 2005 where those involved share 
food sources information with each other. ABC algorithm is 
advantages due to its robustness, fast convergence, high 
flexibility and fewer control parameters [25]. Some tasks are 
performed by specialized individuals (bees) in a real colony 
optimization and they maximize nectar in the hive. ABC 
algorithm adopts three kinds of bees like employed bees, 
onlooker bees, and scout bees. Half the colony includes 
employed bees and the other half includes onlooker bees. 
Bees functions are 

1. Employed bees exploit nectar sources explored before 
providing information to other onlooker bees in the 
hive about food source site quality which they 
exploit. 

2. Onlooker bees wait in the hive and decide the food 
source to exploit based on information shared by 
employed bees [26]. 

3. Scouts search environment randomly to locate a new 
food source based on an internal motivation or 
possible external clues or randomly. 
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To simulate these behaviors, some ABC algorithm steps are 
given below: 

1. Initialize food source position. 
2. Each employed bee produces new food source in the 

site exploiting the better source. 
3. Every onlooker bee selects source based on solution 

quality, produces a new food source in chosen food 
source site exploiting the better source. 

4. To determine source to be abandoned and allocate 
employed bee as scout to search for new food 
sources. 

5. To memorize best food source found. 
6. Repeat steps 2-5 till stopping criterion is met. 

First algorithm randomly produces ( 1,...... )ix i SN


 
solutions in parameters where SN is number of food 
sources. Second, for every employed bee, when its total 
equals half the food sources, a new source is produced by 
the equation (1): 

, ( )i j ij ij ij kjv x x x  
   (1) 

where ij
is a uniformly distributed real random number 

in the range [-1,1], k is index of randomly chosen 
solution from colony (k = int(rand ∗SN) + 1), j = 1, . . .,D 

and D is the dimension of problem. After producing iv


, 

the new solution is compared to ix


 solution and 
employed bee exploit better source. Third, an onlooker 
bee selects a food source with probability (equation 2) 
producing a new source in chosen site by equation 
(1). For employed bee, the better source is exploited. 

1

i
i SN

j
j

fit
p

fit





  (2) 

where ifit is fitness of solution ix


 . After all onlookers are 

distributed to sources, they are checked to ensure their 

abandonment. If the cycles a source cannot improve is greater 

than a predetermined limit, then source is exhausted. The 

employed bee is associated with exhausted source and 

becomes a scout making random search in problem domain by 

equation (3). 

min max min( )*ij j j jx x x x rand           (3) 

 
 

 

Fig 1 Flowchart for Artificial Bee Colony (ABC) Optimization 
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Usually initializations of bee’s food position are done 
randomly. But in this study, it is proposed that the 
initialization of food source is performed using random, 
orthogonal and chaotic methods. 

Random initialization 
Random initialization attempts to generate 

statistically uniform random numbers in a given range. In 
reality, RNGs cannot produce uniform distribution of points 
[27]. This shortcoming is worse when search space 
dimensionality grows or number of points diminishes. 

Orthogonal Initialization 

An orthogonal array states limited combinations are scattered 
uniformly all over space for all combinations. So orthogonal 
design is a potential method to generate a good initial 
population. Also Orthogonal Design (OD) was applied to 
produce evenly scattered points over search space [28]. OD 

produces an orthogonal 2D array like ( )N
ML Q where M is 

population size, N is number of factors, Q levels and L 
denotes Latin square. Q is an even integer and 

JM Q while J is a positive integer that satisfies 
1
1

JQ
N

Q




 . The attributes of orthogonal array are: 
1. For factor present in a column, level occurs exactly 

M

Q  times. This attribute makes resulting population 
uniform. 

2. Array orthogonality is not sensitive to order of 
columns. Hence, reorder is performed on columns or 
removed as the resulting array is orthogonal [29]. 

It is defined as ix to be ith factor, and they continuous, but 
orthogonal design is applicable to discrete factors alone. To 
overcome this, every factor is quantified into a finite number 

of values. Specifically, domain [ , ]i il u is quantized into 1Q  

levels and  ,1 ,2 ,, ,......i i i Q  
levels, where design parameter 

1Q  is odd and ,i j
is given by 

, 1
1

1

                             j=1

( 1)  2 j 1
1

                           j=

i

i i
i j i

i

l

u l
l j Q

Q

u Q






         
      (4)

 

 

Chaotic Initialization 

 

Chaotic motion traverses all states by regularity in all state 
and so chaotic initialization methods ensure better distribution 
in search space due to chaos’s randomness and non-repetitive 
ergodicity [30]. 

( 1) ( ) (0)
, , ,(1 2 | 0.5 |),  0 1k k

i j i j i jx x x     
     (5)

 

Where 
( )
,
k

i jx
is  jth variable of ith individual in kth iteration 

and  is bifurcation factor.Equation (5) shows chaotic 
methods being deterministic. But, resulting chaotic sequences 
are sensitive to initial condition and  outputs are 
unpredictable. 

Chaos is the well-known logistic mapping defined by 

1 (1 ),   [0,1] j=1,2...j j j jz z z z           (6) 

where
jz is value of variable z at jth iteration, and l is chaotic 

attractor. The chaos system includes special characteristics 
like ergodicity, randomicity and extreme sensitivity to initial 
conditions. 

This solves the following continuous parameter optimization 
problem:  

1,max  f(X .....X )
(P)=

.      X [ , ],   i=1,2....,r
r

i i is t a b





        (7) 

where [ , ]i ia b R ; f is real-valued continuous function; r 
the number of optimization variables. 

r chaotic variables are generated by Logistic mappings: 

1 (1 ),   i=1,2,....r, j=1,2...j j j
i i i iz z z         (8) 

where i is serial number of chaotic variables, and i  = 4. Let 
j = 0, and given the r chaotic variables different initial values 

0 ( 1, 2,..... )iz i r  , then values of r chaotic variables 
1 ( 1, 2,..... )iz i r   are produced by Logistic equation and 

encoded into a real-coded antibody. Let j = 1,2,. . . ,N-1, and 
then other N-1 antibodies are produced by same method [31] 

. 
4  RESULTS AND DISCUSSION 

Simulations are conducted with 25 jobs, and the resources are 
grouped into 5 clusters. Three initializations such as random, 
orthogonal and chaotic are performed. The proposed 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

468 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



scheduling algorithm is executed for 3 times. During every 
run Makespan value is calculated. Totally 100 iterations are 
performed. Figure shows the Average Makespan.  

 

Fig 2 . Convergence with different initialization scheme  

It is observed from figure 2 that Average Makespan of 3 runs 
is achieved in the simulation with varying number of 
iterations. The average Makespan of ABC with orthogonal 
initialization with 5 clusters, 25 jobs performs better. 

 
5. CONCLUSION 

A Grid is meant for large scale distributed and parallel 
computing systems where each node shares resources 
dynamically during application execution. Usually resources 
are heterogeneous and distributed geographically. Resource 
selection depends on applications availability, cost and 
Quality of Service (QoS) requirement. Jobs assignment to 
resources should be optimal to reduce makespan, minimize 
allocated resources cost and maximize throughput. It is 
difficult to locate optimal resource allocation for specific jobs 
that lower jobs schedule length. This work proposes an ABC 
algorithm to locate an optimum schedule for dynamic jobs 
arrival. Here, three initialization techniques ie; random 
initialization, orthogonal initialization and chaotic 
initialization are studied and output presented. Simulation 
reveals that Average Makespan of 3 runs is achieved with 
varied iterations. ABC average makespan with orthogonal 
initialization with 5 clusters, 25 jobs performs better than 
random initialization and chaotic initialization 

 
. 
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Abstract- Cloud computing is an emerging  paradigm 
based on distributed services. It is deployed in virtual 
resources to provide services to public customers and 
private organizations. Generally, without security measures, 
distributed cloud services are vulnerable. In this paper, we 
will propose a framework for detecting and repairing 
distributed intrusions in  hybrid cloud. Our framework is 
based on secure mobile agents. 

Keywords:  Cloud computing, security, IDS, Mobile Agent. 

 

1. Introduction  
Cloud providers offer the customers’ services 

requirements.  There are some security issues associated with 
cloud services. These issues fall into two broad categories: 
Security issues faced by cloud providers and security issues 
faced by customers. In most cases, the providers must ensure 
their infrastructure security and their clients’ data integrity 
while the customer must ensure that the provider has taken 
the proper security measures to protect his information. 

Because of its distributed nature, cloud computing 
environments are easy targets for intruders looking for 
exploring possible vulnerabilities. The first defense line to 
face  attackers  is to deploy a firewall to filter unauthorized 
access then  an IDS (Intrusion detection system) in order to 
detect coming attacks. 

 

 
 

In figure 1, we have an NIDS (Network IDS) to monitor 
all cloud network traffics. When an attack occurs, NIDS 
alerts cloud administrator.   

In [1], we proposed a secure cloud architecture based on 
an NIDS as a second line of defense after the firewall. The 
NIDS performance is really approved for detecting attacks. 

But, attacks can be distributed between cloud nodes and 
be hidden for the NIDS. So  to detect them, we will propose  
a framework implementing : 

- A HIDS (Host IDS) in every virtual machine (VM) 
- An intelligent process to correlate between HIDS 

alerts.  
- Secure Agents to execute the correlating process 
We will focus on deploying this framework on hybrid 

cloud environment to: 
- Phase 1 : Detect distributed attacks 
- Phase 2 : Evaluate the attacks risks 
- Phase 3 : Repair attacks 
 
In this paper, we will propose a framework based on 

secure mobile agents to detect distributed intrusions and 
repair the vulnerabilities in hybrid cloud. The repairing phase 
consists on  adding a new security policy in the firewall. 

The reminder of this paper is organized as follows. The 
section 2 discusses some related works in the area of mobile 
agent based IDS. In the next sections, we will describe our 
proposed framework using mobile agents to detect and repair 
intrusions. Then we will explain implementation prototype in 
section 5 to evaluate results in section 6. Finally, we will 
give conclusions in section 7. 

 

2. Related work 
The IDS is based on two simple components architecture: 

collection component and analyzer component. While this 
architecture is effective just for small collections of 
monitored hosts. In fact, centralized analysis limits the 
ability to scale up to handle larger collections. Therefore, 
Mobile Agent-based intrusion detection system, such as 
Autonomous Agents for Intrusion Detection (AAFID) [2], 
follows a hierarchical structure. So, if any part of the internal 
nodes  is disabled, the functioning of that branch of IDS will 
be disqualified.  

In addition, those architectures are not flexible, not 
completely distributed and are not able to respond to attacks 
against intrusion detection system itself.  

 
 
 
 
 
 
 
 
 
 
 
 
 
                    Cloud Environment 
 

VM 

VM 

VM 

Firewall 

NIDS 

Figure 1.  Firewall and NIDS in the Cloud architecture 
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 The IDS performance using mobile agents is considerably 
important to reduce the network load. In this case, agents 
communications should be secured. This issue, which has 
been neglected by most of related works, will be one of the  
main concern when we design our framework . It will be 
based on secure mobile agents to detect distributed intrusions 
in hybrid cloud  .  Table I  illustrates a comparative study on 
related works. 
 

Table 1. Comparing properties of previous related work 

RELATE

D WORK 
ARCHITECTURE NETWORK 

LOAD 
SCALABILITY 

 
[2] 

 
Hierarchical 

 
Distributed  
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node 
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Peer to peer 
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Peer to peer 
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3. Proposal mobile agent IDS framework 
in hybrid cloud 

In this section, we will define the cloud environment of 
our framework, its objectives, components and functions. 

3.1 Cloud environment  
The deployment models of cloud computing are [12]: 
· Public cloud : The cloud infrastructure is provisioned 

for open use by the general public. It may be owned, 

managed, and operated by a business, academic, or 
government organization, or some combination of them. It 
exists on the premises of the cloud provider. 
· Private cloud: The cloud infrastructure is provisioned for 
exclusive use by a single organization comprising multiple 
consumers (e.g., business units). It may be owned, managed,  
 
 
 
 

RESISTIBILITY 

 

AGENT 

SECURITY 
DESCRIPTION 

low  
single point 
of failure 
 

 
 
 
 
 
 
 
 
 
 
No 
security 
approach 
 

Increasing  the resistance to the 
failure of a specific component by 
Using data and function redundancy  

low  
single point 
of failure 
 

Using Mobile Agents to trace 
intruders among the various hosts 
involved in an intrusion 

 
low  
single point 
of failure 

Agents are composed dynamically 
using a genetic algorithm, which 
continually attempts to maximize 
the likelihood of discovering 
existing vulnerabilities. 

Moderate  
No single 
point of 
failure 

Approach was proposed to detect 
distributed intrusion among the 
network by various Agents. 

Moderate  
No single 
point of 
failure 
 

The presented intrusion detection 
system, DIDMA is designed by 
keeping in mind the notion of 
flexibility, scalability, platform 
independence 

low  
single point 
of failure 
 

They show how dynamic 
aggregation provides a mechanism 
for extending existing objects and 
allows us to quickly add new 
features to the system. 

Moderate 
No single 
point of 
failure 

A virtual neighborhood is created 
where neighbors take on the task of 
looking out for each other. 

Moderate 
No single 
point of 
failure 

Applying Mobile Agents 
technology to provide intrusion 
detection for Cloud applications 
regardless of their locations. 

 
and operated by the organization, a third party, or some 
combination of them, and it may exist on or off premises. 
·  Hybrid cloud: The cloud infrastructure is a 

composition of two or more distinct cloud infrastructures 
(private, community, or public) that remain unique entities 
but are bound together by standardized or proprietary 
technology that enables data and application portability (e.g., 
cloud bursting for load balancing between clouds). 
• Community cloud : The cloud infrastructure is provisioned 
for exclusive use by a specific community of consumers 
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from organizations that have shared concerns (e.g., mission, 
security requirements, policy, and compliance 
considerations). It may be owned, managed, and operated by 
one or more of the organizations in the community, a third 
party, or some combination of them, and it may exist on or 
off premises. 
In our proposed framework, we focus on detecting 
intrusions in hybrid cloud. 
 

3.2 Framework objectives 
The main framework objectives are : 

- Distributing correlation and decreasing network load 
: To supervise all the network nodes, a central node 
should query them and collect detected  intrusions 
information to analyze it. So the network traffic will 
increase. To do, we try to adopt a distributed 
correlated system based on mobile agents to reduce 
network load due to the migration of agents  from 
one node to another. 

- Reducing CPU load for each Cloud node:  We try to 
distribute the work load of detecting intrusions 
between nodes instead of centralized it on one 
principal node. 

- Securing communication: We want to adopt a secure 
mobile agents platform within an encrypted 
communication between agents in order to avoid any 
intrusion. 

- Detecting distributed intrusions: An attack against a 
cloud computing system can be silent and not 
detected just in only one node,. In fact, cloud-
specific attacks don’t necessarily leave traces in one 
node. In this way, we propose to analyze IDS traces 
using data mining to detect new attacks. 

3.3 Framework components 
Our framework is based on six actors described as follows 

(see figure2): 
1. An IDS : An IDS is deployed in each node (VM) in 

the hybrid cloud (private and public). The IDS 
monitors the traffics, detects intrusions  and saves 
it in its database. 

2. Correlated  Mobile Agent (CMA): it is a mobile 
agent dispatched to each node in the cloud area. 
The CMA contains the rules to verify in each node 
using the alerts saved in IDS database. In the same 
time, the framework supports two CMA every one 
in each cloud area (public, private) to have rapidly 
a hole idea about the hybrid cloud intrusions. 

3. a Public Cloud Agent (PbCA) : It is a static agent 
implemented in the administrator node in public 
cloud. This agent dispatch  a  CMA to detect 
intrusions and go back with all the results of the 
correlation process. 

4. A Private Cloud Agent (PvCA) : It is a static agent 
implemented in the administrator node in private 

cloud. This agent dispatch  a  CMA to detect 
intrusions and go back with all the results of the 
correlation process. 

5. An Hybrid Cloud Agent (HCA): It is a static agent 
implemented in the administrator node in hybrid 
cloud. This agent query the PbCA and the PvCA to 
start with the detection process in order to evaluate 
the security level in the hybrid cloud. 

6. A Static Agent (SA) :  The static agent is 
implemented in each VM to receive the CMA. 

 

 

 

3.4 Framework Functions 
We will describe the different functions and interactions 

between agents to detect distributed intrusions in the figure 
3. 

The HCA can manage all the hybrid cloud towards its 
cloud area: public cloud and private cloud. The management 
can only be done for one cloud area or the two area in the 
same time depending on the Cloud status.  

Therefore, HCA asks  the PbCA (11) or the PvCA (21) or 
both of them in the same time to report it the distributed 
intrusions detection in their cloud to audit the hybrid cloud. 

The PbCA and the PcCA create a CMA with all the rules 
implemented in its code and dispatch it to the Cloud VM 
(12,22). 

The CMA migrates to the SA (13,23). The SA receives 
The CMA and asks password. This step is very important 
because AS  reject CMA if it is not authenticated.   

After receiving CMA (14,24), CMA asks  information 
stored in the IDS database. It hasn’t permissions to access 
directly to IDS database so SA is the middleware. CMA 
applies all the rules in its data base  to detect distributed 
intrusions in  the VM. When finished, CMA moves to the 
next VM to repeat the same steps done in the first VM. 

After finishing the detection in all the cloud VM, CMA 
reports  the results to its Cloud Agent (PbCA (15) or 
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Figure 2. Mobile Agent IDS Framework  in Hybrid Cloud 
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PvCA(25)) ). The Cloud Agent gives report to the HCA 
(16,26) to supervise the hybrid cloud. 

If any VM is not connected or broken down, the CMA 
discovers the VM status and migrate to the next VM to 
continue its work.  

The distributed detection process can be launched by the 
HCA , the PbCA  or the PVCA.  

 

 
 
 

 

4. Mobile agent based  framework 

fixing vulnerabilities in hybrid cloud   

When the HCA detects distributed intrusion, the cloud 
network administrator should take the necessary security 
measures and apply it immediately.  For that, we propose to 
extend the IDS Framework  in section III to fix 
vulnerabilities and  avoid intrusions (see figure 4) . 

If  intrusions  occurs,  it means that there is a vulnerability 
in the VM or a missing policy security in the firewall. So 
HCA could dispatch a Reparation mobile agent (RMA) to: 

- the vulnerable VM to repair it if there is any service 
to close or to reject any established communication  
with a malicious user.  

- the firewall to apply new security rules to avoid 
intrusions detected.  In this way, firewall should 
implement a Static Agent to receive the RMA in 
order to get rules and apply them. 

 

 
 
 
 

5. Prototype Implementation 
The proposed framework in the previous section is 

illustrating how specific features of the Mobile Agents can 
increase the efficiency of the system and decrease the 
network load as well (see figure 5).  

Bee-Gent Mobile Agent has been used for 
implementation. Bee-Gent technology was first released in 
1999 by Toshiba [13], as a new type of pure agent 
development framework for the advanced network society. 
Its communication framework is based on the multi-agents  
model. The Bee-gent framework is comprised of two types 
of agents: agent wrappers and mediation agents. 
• Agent Wrappers are used to ‘agentify’ existing 
applications. The agent wrappers manage the states of the 
applications, which are wrapped around, and invoke the 
applications when necessary. 
• Mediation Agents support inter-application co-ordination 
by handling all communications among applications. The 
mediation agents move from the site of an application to 
another where they interact with the remote agent wrappers.  

For The IDS, we deployed SNORT[14] in each VM  to 
monitor  the system and the network intrusions. We 
configured snort to save alerts in its mysql database to deal 
with analyzed phase by CMA. 

We choose iptables as a firewall in a linux machine to 
manage the repairing of vulnerability and the application of 
new security rules. 

To implement our architecture, we‘ve chosen the VMware 
vSphere Hypervisor 5 composed of an ESXi and 
vSphereClient. The choice of VMWare ESXI was made 
based on following reasons : 

- Freeware version 
- Solution qualified by the internet community as 

‘stable’ and portable 
- Fully managed through vSphere. 
- Supports hot migration. 

The figure 5 shows  all the framework components to detect 
and avoid distributed intrusions in the cloud area. 
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Figure 4.  Repairing of vulnerability in cloud environment 
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6. Framework Evaluation 
In this section, our mobile agent IDS framework 

performance will be challenged while we are comparing it 
with the performance of client/server IDSs approach. Our 
aim is to verify our IDS features and effectiveness. The IDS 
with Mobile Agent approach claims the less network load 
compared to the client/server approach, by shipping code to 
data instead of shipping data to code . 

In figure 6, we compare the network load (number of 
request exchanged in the network)  for the client-server 
approach and the mobile agent approach according to the 
number of machines. So the mobile agent (CMA) is 
dispatched from the cloud manager (PbCM or PvCM) to 
each VM in the cloud to detect distributed intrusion and 
return back  results. The number of  request  in this case is: 

 
RequestNumber  =  VMNumber + 1  

 
But when we use the client/server approach, the cloud 

manager  should query  each VM to  receive response so:  
 
RequestNumber  =  VMNumber *2 
 

Consequently, the mobile agent concept becomes 
relatively interesting  especially when the count of  VMs 
increases. 

the Bee-Gent mobile agent approach offers two important 
agent features: 

- When the mobile agent migrates to a broken VM, it 
moves to an another to continue its work. So due to 
this property, we avoid the single point  of failure. 

- The mobile agent intercommunication should be 
authenticated and encrypted.  This property avoid any 
attempted attack aiming to intercept agent 
communication. 

Using mobile agents allows to fix  vulnerabilities either in 
the VM or in the firewall by adding new security rules. 

 

 
 

Figure 6.  Evaluation of mobile agent versus 
client/server in IDS Framework 

 

7. Conclusion 
Cloud computing takes the essence of both  Mobile agents 

and virtualization in a way to combine their key benefits. 
The VMs are the ideal platforms for agents to execute safely, 
based on the fact that virtual machine can be used to provide 
secure, isolated sand boxes for the Mobile Agents. In our 
framework, Clouds and Virtualization can benefit from IDS 
approach which mobile agents makes it scalable, flexible and 
cost effective.  

In our future work, we will test this framework for 
detecting DDOS attacks in the cloud environment. 
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Abstract - The choice of relevant features is very important and 
decisive step when building a handwriting recognition system. 
Indeed, a good choice can lead to a powerful system and vice-
versa. Fast Fourier Transform (FFT) is amongst adequate feature 
extraction technique to achieve such an objective. Typical Arabic 
handwriting recognition tasks based on FFT and especially when 
dealing with a big and massive amount of Arabic handwriting 
documents require enough processing power that could not be 
provided by current state-of-the-art workstations. Distributed 
computing architectures and infrastructures appear to be a solu-
tion to afford such a mission.  
Our aim is indeed to distribute the FFT feature extraction tech-
niques using the MapReduce programming model for Arabic 
handwriting feature extraction using Cloud Computing architec-
ture.   
Experiments were conducted on the MapReduce model via the 
Amazon Web service (AWS) Cloud Computing architecture, with a 
real large scaled dataset from the IFN/ENIT database. 
Performance analysis revealed the viability of our investigation; 
moreover, it confirms also that such infrastructures can speed up 
substantially the entire pattern recognition system. 
 

Keywords:  Pattern Recognition, Mapreduce , FFT, Cloud com-
puting 

1.  Introduction   
The main task achieved by any OCR (optical Character 

Recognition) system is to convert a scanned text (offline) or 
handwriting on writing device (online) into a text document. Text 
recognition is a sub field of the pattern recognition area which has 
been the subject of so much research in the past three decades. 

The Recognition of Arabic handwriting characters is a 
challenge in the last few years. This challenge is due to many 
factors such as: first, the great similarity between some characters. 
Second, the shape variation of most of Arabic characters 
according to their position in a given word or sub word 
(morphological problem). Third, the complexity and richness of 
the Arabic calligraphy especially for the Ancient documents. And 
fourth, the existence of words and sub words in a given text. 

These factors become much more difficult when dealing with 
large amount of documents which is our main objective through 
this work. 

However, we believe that a good selection of feature 
extraction technique remains one of the most important steps for 
achieving good recognition accuracy. Such a selection requires the 
knowledge of both, the robust and efficient feature extraction 
technique that can lead to relevant features and the adequate 
hardware architecture that can handle such robust feature 
extraction technique in order to computerize large amount of 
documents in a reasonable time. 

High performances of FFT is a key issue in Arabic 
handwriting recognition system. Nevertheless, it represents a 
complex techniques when  processing a massive database of 
Arabic handwriting text. 

Distributed computing architectures such as Cloud Computing 
technologies  provide enough computing capacities to process this 
kind of complex algorithm.   

Our idea consists on using the programming model  
MapReduce  for processing large Arabic handwriting data sets 
with a distributed FFT algorithm on a real Cloud Computing  
platform. The aim of this work is to demonstrate that the  
performances of FFT on the feature extraction step can be 
achieved by the distribution of FFT using MapReduce 
programming model on Cloud architecture . 

The rest of the paper is organized as follows: Section 2, de-
scribes the feature extraction difficulties of the Arabic handwriting 
Characters.  Section 3 presents a general description of the FFT as 
feature extraction techniques and its complexity. Our approach is 
presented in the fourth section. Section 5 provides  some 
performance evaluation and investigation of our approach. Finally, 
a conclusion with some remarks and future work are presented in 
Section 6. 

2. Arabic handwriting  Features  
The Arabic handwritten language presents  many challenges to 

the Optical Character Recognition (OCR) developer [1] that can 
be presented  as follows: 
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In Arabic language,  a text is composed of cursive words and 
sub words where each of which is formed of consecutive letters 
linked one to another sometimes with some overlaps [2]. Most of 
Arabic alphabet letters are presented by four forms according to 
their position in a given word: isolated form, initial form, medial 
form, and final form. In addition, the corresponding shape of each 
of these forms can be completely different from the others for the 
same character. Moreover, some of Arabic characters have similar 
shape and only diacritic dots make them different but unfortunate-
ly more complicated.  This is why the recognition rate of Arabic 
characters is lower compared to other languages especially Latin. 
These properties will cause a high level of difficulty in the choice 
of the pertinent and relevant features [3] during the design of an 
Arabic OCR system. 

The analysis of Arabic handwriting script is further  
complicated compared to Latin script due to obligatory 
dots/stokes that are placed above or below  most letters. Some of 
the dots and strokes  can be missed in the preprocessing step 
where the text should be cleaned up to be used directly and 
efficiently by the feature extraction technique in the  OCR 
process[1] 

Another difficulty of Arabic handwriting recognition due to 
the different writing styles, in fact Arabic handwriting  can be in 
different style  such as Ruqqah  and some others usually used for 
decorative calligraphy such as Kofi, Thuluth and Diwani. This 
feature will cause more difficulties for recognition and make the 
learning  database of the recognition  system even larger[1]. 

The choice of the robust and efficient algorithm to deal with 
the  relevant and pertinent  features  is very  important and 
decisive in handwriting recognition rate. 

Results of surveys  conducted by Arabic handwriting OCR 
researchers confirm that high performance of the fast Fourier 
transform (FFT) is a key issue for Arabic handwriting recognition 
system, in fact   it represents a robust and efficient features 
extraction technique for Arabic handwriting recognition process 
[4].   

3.  Fast Fourrier transform as a features  
extraction technique 

The FFT is a fast algorithm to implement the Discrete Fourier 
Transform (DFT) [5].   

A FFT  is an algorithm that computes the  DFT and its inverse. 
A Fourier transform converts time (or space) to frequency and 
vice versa; an FFT rapidly computes such transformations 
by factorizing the DFT matrix into a product of sparse (mostly 
zero) factors [6].  

The main  principle of FFT is "Divide and Conquer to break 
down a big problem to a number of  smaller problems and tackle 
them individually". The FFT needs  to satisfy the flowing 
condition [7] . 

∑ cost (sub problem) + cost (overhead) < cost (original 

problem). 

 
The purpose of our system is to recognize large amount of 

Arabic handwriting text using FFT  as a feature extraction 
technique implemented  on distributed architecture .  

The recognition of the Arabic handwriting by  FFT consists 
previously on applying operating the Fourier Transform on the 
contour of the character [8]. First, we start with the detection of 
the contour. Second , the code of Freeman of the contour is 
generated on which one operates the calculation of Fourier 
Transform. Figure 1 depicts the FFT process. 

 

 

Figure 1. The FFT process 

 

Mathematically, the process of Fourier Transform is 
represented by the following equation: 
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Where  

K: the k points of the contour, 

N: is the necessary number in the approximation of the contour by 
the coefficients of Fourier 

na ,
nb ,

nc et 
nd : The coefficients of Fourier corresponding to 

the harmonic n.  
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0a et 0c : The continuous components that correspond to the 
initial points where the frequency is equal to 0. 

 The FFT algorithm computes the DFT and produces exactly 
the same result as evaluating the DFT definition directly. The 
most important difference is that an FFT is much faster. 

FFT represents an efficient and robust feature extraction tech-
nique that uses Fourier Descriptors (FD). In fact, it can be normal-
ized in order to be invariant to the position of the characters 
(translation or rotation), the size and the starting point [9]. But, 
FFT is characterized with a complexity order of O(n log n) [10] 
[11]. 

 Another weakness of FFT applied to Arabic handwriting fea-
tures extraction is that the extracted primitives need a high level of 
memory consuming [12]. 

It appears that the optimization of FFT is as equally demand-
ing as the design of an efficient feature extraction technique. Our 
optimization of FFT consists on using the MapReduce model to 
distribute the FFT algorithm via the cloud computing architecture. 

4. MapReduce model for distributed FFT 
on cloud computing architecture 

MapReduce technique is a programming model for processing 
massive data sets with a parallel and distributed  manner on a dis-
tributed architecture. A MapReduce program is composed of two 
main function: Map() and Reduce() [13].  

In the Map function, the master node takes the input, divides it 
into smaller sub-problems and distributes them to worker nodes. 
In the reduce function, the worker node may do this again in turn, 
leading to a multi-level tree structure. The worker node processes 
the smaller problem, and passes the answer back to its master 
node. Figure 2 explains the MapReduce Model. 

 

 
 

Figure 2:  Map reduce model 

Our idea consists of distributing the computational FFT as fea-
tures extraction techniques across a cluster of virtual servers run-
ning in the Cloud Computing architecture using the MapReduce 
model to analyze and process a large and massive amounts of ara-
bic handwriting texts. The figure below describes the design of 
our approach. 

 

Figure 3: FFT via  MapReduce model  
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The open-source framework Hadoop[14] is used as a tool to 
manage clusters in cloud architectures. The distributed processing 
model MapReduce is used by Hadoop on the Amazon web service 
cloud architecture[15]   in which the FFT task is mapped to a set 
of servers for processing then the results of the map function is 
performed by the reduce function to achieve a single output set. 
The distribution and control  of FFT algorithm is done by a node 
called the master node.  Figure 4 illustrates the AWS MapReduce 
mechanism.  

 

 
Figure 4: AWS MapReduce model 

5. The experimental study  

5.1.  Datasets 

To evaluate the performance of DFFT as features extraction 
techniques based on MapReduce model via the cloud architecture, 
a database with 16000 pages (370 characters/page) is used. 

The reference database is formed of 345 shapes representing 
approximately the different Arabic alphabet randomly chosen 
from the Arabic handwritten word images dataset. This base con-
tains samples of 945 names of Tunisian Towns retrieved from the  
already normalized and preprocessing database IFN/ENIT Institut 
of Communications Technology (IFN),Technical University 
Braunschweig, Germany , Ecole Nationale d'Ingénieurs de Tunis 
(ENIT), Tunisia [16].  Figure 5 represents un sample of the stud-
ied corpus. 

 

 
Figure 5: A sample of the studied corpus 

 

5.2. Experimental environment 

 

To set up an experimental environment that would allow us to 
objectively study the effectiveness of Distributed FFT  across a 
cluster of virtual servers running in a cloud architecture via the 
MapReduce model  in the entire Arabic handwriting recognition 
process , we used the following tools: 

• A local Intel Core 2 Duo desktop having the configuration: 3.00 
GHz *2, 2 GB of RAM running a Windows XP operating sys-
tem, 

• The Cygwin shell to run Linux command [17].   

• The java programming language and   JDK 1.6 was istalled. 

• The Eclipse 3.4 tool was used to program and build our OCR 
application based on FFT as a feature extraction technique. 

• The cascading framework [18] was used to easily and quickly 
develop the Data Analytics and Data management   

• 100 cores using the three Standard Amazon EC2 Instances.  

� The small instances each with 1.7 GB of memory, 160 
GB of instance storage, and 32-bit platform.  

� The Large Instance 7.5 GB of memory, 850 GB of in-
stance storage, 64-bit platform  

� The Extra Large Instance 15 GB of memory, 1690 GB of 
instance storage and 64-bit platform.  

• The Amazon S3 Bucket [19] is  used to store and receive the 
input and  the output  into  and from the cloud  clusters. 

The execution of FFT in AWS MapReduce model should 
respect some steps. First, we start by developing and  executing 
our OCR application based on FFT as a feature extraction 
technique  in the same local host using  Java programming 
language. Second we should Sign Up to amazon web service to 
Upload our  application and data to Amazon S3. The database to 
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upload and  process is very massive, we have  using the AWS 
Import/Export option  based on the  use of  physical storage 
devices. The configuration and the launch of clusters is the third 
step in which  we use the AWS management console to specify the 
number of EC2 instances that will be used in  cluster, and the  
types of instances to use. Finally,  when Amazon EMR will 
automatically terminate the cluster when processing is complete, 
we   retrieve the output from Amazon S3 on the cluster. Many 
tools are used to visualize the output like MicroStrategy[20].  

5.3. Results and analysis 
 

This section  presents the results  and analysis of the 
experimental study conducted in the real IFN/ENIT database 
using distributed FFT as feature extraction technique on 
Mapreduce model on the AWS cloud computing architecture.  

3 running jobs flows are created in cascading AWS 
MapReduce respectively for 3 different transform size ( N= 64, 
N= 128, N= 256).  

The execution time, the speedup factor and the efficiency 
factor  are  chosen to evaluate our experimental [21] . The 
execution time is the maximum length of time that FFT could take 
to extract features from characters   on a specific Amazon EC2 
instances for a definite transform size (N). The speedup refers to 
how much the distributed FFT is  faster than its  corresponding in  
a sequential manner and finally the efficiency factor that refer to 
the pour cent of useful of  resources   

The experimentally derived values of the execution time,  the 
FFT speed up factor and the efficiency factor  on AWS 
MapReduce model for different instances of Amazon EC2 and 
different transform size  are  given in Table 1.  

 

  

TABLE I  EXECUTION TIME, SPEEDUP FACTOR AND EFFCIENCY FACTOR  OF FFT ON  AWS MAPREDUCE MODEL 

The efficiency  factors(%) The speedup factor(%) The execution time(h)  

Amazon EC2 Instances Amazon EC2 Instances Amazon EC2 Instances Number 
of cores 

Trans-
form size  

 
Extra 
large  

Large  Small  Extra 
large 

Large Small Extra 
large 

Large Small 

0.690 0.622 0.566 17.241 15.548 14.158 0.551 0.611 0.671 25  
 

N= 64 0.516 0.495 0.475 25.815 24.740 23.750 
0.368 0.384 0.400 50 

0.452 0.421 0.401 33.929 31.561 30.063 0.280 0.301 0.316 75 

0.388 0.374 0.364 38.776 37.402 36.398 0.245 0.254 0.261 100 

0.880 0.784 0.690 21.991 19.588 17.241 0.432 0.485 0.551 25  
 

N= 128 0.782 0.717 0.679 39.095 35.849 33.929 
0.243 0.265 0.280 50 

0.724 0.685 0.704 54.286 51.351 52.778 0.175 0.185 0.180 75 

0.731 0.704 0.679 73.077 70.370 67.857 
0.130 0.135 0.140 100 

0.905 0.809 0.717 22.619 20.213 17.925 
0.420 0.470 0.530 25  

 
 N= 256 0.852 0.792 0.731 42.601 39.583 36.538 

0.223 0.240 0.260 50 

0.768 0.745 0.792 57.576 55.882 59.375 
0.165 0.170 0.160 75 

0.792 0.731 0.633 79.167 73.077 63.333 
0.120 0.130 0.150 100 

 
The major observations  are as follows: 

• The average test time of FFT  in a sequential mode   is  9.5  
hours and on a distributed architecture with 100 computers 
the execution time is  0.150 hour, 0.130 hour and 0.120 
hours respectively for the three Amazon EC2 Instances. 

• The execution time, The speedup and the efficiency  of 
FFT increase linearly as  FFT size increases and as 
Amazon EC2 Instances integrate more memory capacities.   

Consequently, obtained results confirm that: 

• AWS MapReduce is an adequate framework to speed up the 
FFT feature extraction technique applied in a greedy process ( 
the Arabic handwriting recognition system). In fact if we use 

100 cores with an extra large AWS instance with 256 FFT size,  
we can extract the inerrant and pertinent  features of 1370 
characters in a second with a speedup factor equal to 79%. 

• AWS MapReduce is an efficient tool to develop a distributed  
FFT as a large scale Arabic handwriting feature  extraction tech-
nique . In fact for FFT size equals  to 256 with an extra large 
AWS instance , the system is used for 79%. 

6. Conclusion and perspective 
In this paper, we have proposed an approach to distributed 

FFT as a feature extraction technique for Arabic handwriting 
recognition system using MapReduce Model via cloud computing 
architecture.  
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Experimental results of DFFT on AWS MapReduce are 
presented and confirmed the viability of our investigation. 
Performance analysis confirmed indeed that FFT on AWS 
MapReduce  can provide an effective framework to speed up the 
feature extraction process. 

Further investigations are under study and could extend the 
development of a powerful Arabic handwriting recognition system 
based on MapReduce model via the cloud computing architecture 
which constitutes indeed our main objective.  
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Abstract - We have proposed the broadcast based 

information sharing system: BBISS which deliveries and 

shares the information such as text data and image data by 

broadcast communication in the surrounding area when the 

communication infrastructure cannot be used by large-scale 

disasters. We have already executed a preliminary evaluation 

of the system performance but most appropriate parameter 

values have not been clarified yet. Hence, this paper aims at 

clarifying the optimal values of parameters for BBISS by use 

of network simulators. 

Keywords: Broadcast, Ad hoc communication, Information 

sharing 

 

1 Introduction 

  Large-scale disasters disable communication 

infrastructures such as base stations and servers. In the 

situations, people wish to obtain disaster information and 

safety information by versatile applications such as text, voice, 

image, or video data, in the infrastructures unavailable areas. 

To enable those application without using the infrastructures, a 

novel communication method, to deliver the information in the 

area with only ad hoc communication fuctions on users’ 

mobile communication terminals, is required. 

To tackle with the above issue, we have proposed a 

novel communication system named Broadcast Based 

Information Sharing System, BBISS [1]. The effectiveness of 

the system has been shown preliminarily in [2] and [3]. The 

system uses the redancancy of radio broadcast communication 

to deliver the information efficiently. In addition, the system 

has a function that can complement packet loss to supplment 

unstableness of the radio communication. The study [2] and 

[3] has been shown that BBISS perform the better 

performance than existing methods in term of the information 

reachability and reduction of redundant packet reception. 

Althogh the study [2] [3]show that the performance of BBISS 

depends on its parameters settings, the optimal parameter 

settings have not been studied yet. Therefore, this study 

optimizes the parameters of BBISS through the network 

simulations. 

Section 2 explains the outline of BBISS. Section 3 

shows the optimization of several parameters used in BBISS 

through the newtork simulations. Lastly, Section 5 concludes 

the study. 

 

2 Parameters to be optimized inthe 

proposed system, BBISS 

  As stated in Introduction, we have already proposed the 

BBISS for information sharing without the infrastructure in 

disaster situation.  The details of the system architecture and 

its operation are well described in [2][3]. 

 Here, we only show the parmeters to be optimized. 

(1)  req_threshold: the maximum number of times the 

“Sending state” transits to “Retrans req state”. 

(2) relay_threshold: in the relay decision state, if the number 

of relaying nodes does not reach the relay threshold,  the 

state transits to “Sending state”.  

  As described in [2][3], the selection of these parameters are 

very important to optimize the BBISS operation. In the next 

chapters below, we study the optimization of those parameters. 

 

3 The evaluation by the simulation 

 In this chapter, we optimize the parameter for the 

proposed scheme BBISS by using the network simulator 

OPNET [4]. 

3.1 The simulation environment 

 The simulation environment is as follows. The area size 

is 1000m x 600m. The numbers of nodes in the area are 200 

nodes (Simulation A) and 400 nodes (Simulation B). The 

initial position of nodes is random. All nodes move at a speed 

of (0.00, 4.00) m/s according to the Random Waypoint model. 

The MAC layer of the nodes is IEEE802.11b, the data rate is 

11Mbps. The radius of communication area (one hop radio 

area) is 150m. The payload_size of packet is 1024Byte. The 

number of initiator nodes which generate information is 10% 

of all nodes in the area. The generated information size is 

100kByte, which is constituted by 100 packets.  send_interval 
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between successively sent packets is 33ms.  The parameter 

values of BBISS are set as follows.  relay_threshold is set as 

an integer in the range of 1 ~ 5, and the req_threshold is set as 

an integer in the range of 0 ~ 5. 

3.2 Evaluation items 

    The average values of the following items (i)-(v) are 

found for 100 simulation runs at every value of the random 

seed.  

 

(i) The % of information receiving nodes [%] 

  Among all nodes except the initiator nodes, the percentage of 

the nodes which received the information is shown. The higher 

the percentage is, the better performance is. 

 

(ii) The number of receiving packets in the area 

  The total number of packets that are received by the nodes in 

the area is shown. The smaller the value is, the better the 

performance is. 

 

(iii) The number of receiving packets in the area, (ii) / the 

number of nodes received the information successfully,(i) x 

(the number of all the nodes)/100. 

 To normalize (ii), (ii) is divided by the number of the 

information receiving nodes. The smaller the value is, the 

better the performance is.  

 

(iv) The number of retransmission request packets 

  The total number of retransmission request packets which the 

nodes sent in the area is shown.  

 

(v) The average time of information delivery [s] 

The delivery time (from the instant when information is 

generated in the application layer of the initiator node to the 

instant when the packet has been received by every node and 

reaches the application level) is averaged across all the 

receiving nodes. The smaller the value is, the better the 

performance is. 
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(b) Simulation B : 400 nodes 

 

Fig. 1 Simulation result for (i) the percentage of information receiving nodes in the area 
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(b) Simulation B : 400 nodes 

 

Fig. 2 Simulation result for (b) the num. of receiving packets in the area 
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3.3 Simulation Results and Consideration 

The results of the simulations are shown in Fig. 1 ~ Fig. 5.  

 

 (i) The % of information receiving nodes [%] 

  The results of Simulation A and Simulation B were shown 

in Fig. 1 (a) and (b), respectively. 

In Simulation A, the case where req_threshold was more 

than or equal to 3 and relay_threshold was more than or equal 

to 2, the % of information receiving nodes was more than 95%.

 In Simulation B, when req_threshold was 2, 3, 4, or 5 and 

when for each req_threshold, relay_threshold was 2, the % of 

information receiving nodes were the highest among the cases 

where other values of relay_threshold was set. 
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(a) Simulation A : 200 nodes 
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(b) Simulation B : 400 nodes 

Fig. 3 Simulation result for (iii) the num. of receiving packets / the num. of information receiving nodes in the area 

 

0

500

1000

1500

2000

2500

3000

re
la

y
_
th

.=
1

re
la

y
_
th

.=
2

re
la

y
_

th
.=

3

re
la

y
_

th
.=

4

re
la

y
_

th
.=

5

re
la

y
_
th

.=
1

re
la

y
_
th

.=
2

re
la

y
_

th
.=

3

re
la

y
_

th
.=

4

re
la

y
_

th
.=

5

re
la

y
_
th

.=
1

re
la

y
_
th

.=
2

re
la

y
_

th
.=

3

re
la

y
_

th
.=

4

re
la

y
_

th
.=

5

re
la

y
_
th

.=
1

re
la

y
_

th
.=

2

re
la

y
_

th
.=

3

re
la

y
_

th
.=

4

re
la

y
_

th
.=

5

re
la

y
_
th

.=
1

re
la

y
_

th
.=

2

re
la

y
_

th
.=

3

re
la

y
_

th
.=

4

re
la

y
_
th

.=
5

re
la

y
_
th

.=
1

re
la

y
_

th
.=

2

re
la

y
_

th
.=

3

re
la

y
_

th
.=

4

re
la

y
_
th

.=
5

req_th. = 0 req_th. = 1 req_th. = 2 req_th. = 3 req_th. = 4 req_th. = 5

T
h

e 
n

u
m

. 
o

f 
 r

et
ra

n
s.

 r
eq

 p
ac

k
et

s

BBISS parameters
 

(a) Simulation A : 200 nodes 
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(b) Simulation B : 400 nodes 

Fig.4 Simulation result for (iv) the num. of transmitted retransmission req pakcets in the area 
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(a) Simulation A : 200 nodes 
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(b) Simulation B : 400 nodes 

Fig. 5 Simulation result for (v) the average time of information delivary 
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Furthermore, comparison of simulations A and B showed 

that the % of information receiving nodes was less in 

Simulation B than that in Simulation A. This can be explained 

as follows. Since the number of nodes in the area in 

Simulation B was larger than that in A, the number of relaying 

nodes was larger and the data flame collisions was increased. 

 

(ii) The number of receiving packets in the area 

  The results of Simulation A and Simulation B are shown 

in Fig. 2 (a) and (b), respectively. 

 In Simulations A, and B, in all the req_threshold cases, the 

larger relay_threshold was, the more the number of receiving 

packets was. Here, in the Simulation A, if the req_ threshold 

was larger than or equal to 3 and relay_threshold was the 

same value for each req_threshold, no major difference in the 

number of receiving packets appears even if the value of 

req_threshold was made larger. 

 

 (iii) The number of receiving packets in the area / the number 

of nodes that received the information successfully 

  The results of Simulation A and Simulation B are shown 

in Fig. 3 (a) and (b), respectively. 

 In Simulation A for all req_threshold, the larger 

relay_threshold was set, the larger the value was shown.  In 

Simulation B, the case where req_threshold was more than or 

equal to 3, the larger relay_threshold was set, the larger the 

value was shown. 

 

(iv) The number of retransmission request packets 

  The results of Simulation A and Simulation B are shown 

in Fig. 4 (a) and (b), respectively 

When req_threshold was set to 0, retransmission request 

packet was not sent and so the value was 0. In Simulation A, 

regardless of req_threshold, the larger relay_threshold was, 

the more retransmission request packets were transmitted. In 

Simulation B, regardless of req_threshold, the case where 

relay_threshold was more than or equal to 3 or 4, the total 

number of retransmission request packets were maximum. 

 

(v) The average time of information delivery [s] 

  The results of Simulation A and Simulation B are shown 

in Fig. 5 (a) and (b), respectively 

 In Simulation A, the cases where req_threshold were more 

than or equal to 2, no significant difference were shown for the 

same value of relay_threshold. In Simulation B, the larger 

req_threshold was, the larger average time of information 

delivery was performed. 

 The case where req_threshold was 0 both in Simulation A 

and B, the average time of information delivery was shorter 

than the cases where req_threshold was greater than or equal 

to 1.   

The results can be explained as follows. The case where 

req_threshold was 0, the time was short, because the nodes do 

not send retransmission request packets. 

 

3.4 The optimum value of the parameter 

  The optimum value of the parameters in BBISS is 

discussed according to the simulation result. 

In terms of (i) the percentage of nodes that received 

information successfully, the optimum value of req_threshold 

is more than or equal to 3, and that of relay_threshold is more 

than or equal to 2  in Simulation A and for Simulation B, the 

cases where  req_threshold is 2 and over and relay_threshold 

is 2 is considered to be optimum. 

  Taking into account of (iii) the number of receiving 

packets in the area / the number of nodes that received the 

information successfully, the optimum values of req_threshold 

is greater or equal to 3 and the value of relay_threshold is 2 

for Simulation A and for Simuation B, req_threshold is larger 

than and equal to 2 and relay_threshold is equal to 2 is 

optimum. 

  Lastly, taking into account of (v), for Simulation A, same 

as (iii), the case where  req_threshold is greater than or equal 

to 3 and relay_threshold is 2 is optimum. For Simulation B, 

considering that the smaller the req_threshold is the smaller 

the value(v) is, the case where  req_threshold is equal to 2 and 

relay_threshold is 2 is optimum Thus, we can conclude that 

the optimum values of the BBISS parameters are 2 or 3 for req 

req_threshold and 2 for relay_threshold . 

 

4 Conclusions 

 We have proposed Broadcast Based Information Sharing 

System (BBISS) which can deliver and share image and text 

data size infomration in the infrastructures unavailable area by 

using a broadcast communication. In this paper, we studied the 

optimum parameters for BBISS by the network simulations.. 

Acording to the simulation results, we can conclude that the 

optimum value of req_threshold is 2 or 3 and that of  

relay_threshold is 2. The future issueto be tackled is whether 

the optimum values got in this paer will be suitabe for other 

simulation conditions such as node density and mobiity seed. 
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Abstract – Large-scale disasters frequently happen in Japan. 

People in disaster areas may try to send and get safety 

information of themselves, their family or friends. However, 

since communication infrastructure including servers are 

often unavailable in the situations, it may be difficult for the 

people to share the information using the infrastructure. To 

solve this problem, we have proposed Broadcast Based 

Information Sharing System, BBISS, which can communicate 

in peer-to-peer (P2P) manner without servers and the 

communication infrastructures. On the top of BBISS, we 

develop a safety information sharing application to actually 

enable users to utilize the service. The paper reports the 

prototype design and the implementation of the application 

and future study issues. 

Keywords: Ad hoc communication, Safety information, 

Application 

 

1 Introduction 

 After a large-scale disaster happens, we wish to confirm 

the safety of their family and friends. In the case where we are 

in a remote area from the disaster areas, we may try to obtain 

the safety information by telephones or e-mails that enable us 

to connect to people in the disaster areas. In addition, the 

services: Message dial 171 [1] or Web 171 [2] are provided 

in Japan. The services require communication infrastructures, 

such as public telephone networks, mobile networks, internet 

connections, and servers, to be available. In the disaster areas, 

since the communication infrastructures may be unavailable 

due to physical damages, congestions, or power failures, it is 

difficult for us to obtain the safety information from the 

services. In the case, we have no other ways except for 

posting at disaster shelters to share the information [3]. Since 

the way cannot share the information quickly and correctly, it 

may cause a spread of false rumors in the areas. 

 We have proposed Broadcast Based Information 

Sharing System, BBISS, which does not require the existing 

infrastructure [4]. The system requires only broadcast 

communication functions of IEEE802.11 wireless LAN in ad 

hoc mode at mobile terminals. To actually make people to 

make the most of BBISS, we develop a safety information 

sharing application on the top of BBISS. 

 This paper is organized as follows. Section 2 describes 

existing safety information sharing ways and their problems. 

Section 3 and Section 4 describe outlines and a way of 

implementation of our safety information sharing application, 

respectively. Section 5 explains user tests of the application. 

Lastly, Section 6 concludes the study. 

2 Current safety information sharing 

ways and problems 

 Today, we usually confirm the safety of our family and 

friends through the telephone. In Japan, telephone operators 

recommend to use message dial services or internet message 

board services because telephony is often out-of-service due 

to traffic congestion. In addition, internet applications: twitter 

[4] and SNS, telephone applications: LINE [5] and Skype [6] 

are coming to be used. Although the systems are useful 

outside the disaster areas, it may be difficult to use the 

systems in the disaster areas damaged seriously. It is because 

the communication infrastructure may be out of order due to 

power failure or physical damage. Even if we have radios or 

handy televisions instead of cell phones, we cannot obtain 

local information of the disaster areas and safety information 

on our family and our friends. 

 To share the safety information in the disaster areas 

seriously damaged, we have only one way to put up posters 

on the bulletin boards at disaster shelters. In the posters, 

names and pictures of the victims, contact information, names 

of shelters, and others are shown.  

 Below, advantages and disadvantages of the safety 

information sharing using the message dial services, using the 

internet message board services for the disasters, and using 

the bulletin boards at the disaster shelters. 

The message dials/the internet message board services for the 

disasters: 

 Though television programs and advertisements 

encourage using them, many people do not use them [3]. 

 We cannot use them when the communication 

infrastructures are unavailable. 

The bulletin boards at the disaster shelters: 
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 No difficulties. We can describe freely and easily. 

 It is difficult for us to find the necessary information for 

us among many patches of paper. 

 It takes much time if we have to share information at 

other shelters. 

 If we cannot get to the evacuation shelters, we cannot 

post and share the safety information. Therefore, it may 

not possible to share the information by immobile 

victims. 

 

3 Safety information sharing application 

 Considering the problems mentioned in Section 2, we 

develop the safety information sharing application on BBISS. 

3.1 Assumed environment 

 The application assumes a following environment. A 

Large-scale disaster happens and disables public telephone 

networks, mobile networks and internet accesses. Although 

the users in the area may have smartphones, tablet PCs, or 

laptop PCs, they have no available IP addresses and gateway 

information after the internet connectivity is lost. In addition, 

existing ad hoc network routing protocols are usually not 

installed and unavailable. Only broadcast communication of 

IEEE802.11 wireless LAN ad hoc mode is available in the 

terminals.  Hence, the application must assume that the users 

share the safety information by mobile devices without 

communication infrastructures and servers. 

3.2 BBISS and safety information sharing 

application  

 To distribute information to all terminals in the area 

without ad hoc network routing protocols, Simple Flooding 

(SF) and other improved flooding methods have been 

proposed. Since the methods are usually used to transfer 

control messages in the routing protocols, the information that 

should be sent must be containable in just one packet. When 

the information cannot be contained in one packet, the 

information must be divided into multiple packets. Therefore, 

in order for the information to be reassembled correctly, all 

the divided packets must be received successfully at an 

information receiving node.  

 To satisfy the above requirements, we have already 

proposed a novel information delivery method, BBISS and 

shown its effectiveness. As shown in Fig.1, to enable the 

people to actually take advantage of the BBISS, we develop a 

safety information sharing application on the top of BBISS. 

The application makes it possible for the users to transmit 

safety information to neighboring nodes (users). By repetition 

of the operation, the information is delivered all over the area. 

Safety information sharing application

Broadcast Based Information Sharing 

System, BBISS

Broadcast communication

(IEEE802.11 WLAN, ad hoc mode)

UDP/IP

 

Fig. 1 Implementation of the safety information sharing 

application 

3.3 Expected effect of the application 

 As mentioned in Sections 1 and 2, at this point in time, 

we have no other ways except for the posting at the disaster 

shelters to share the safety information so that we have to 

suffer inconvenient and slow information sharing.  To make 

matters worse, people outside the disaster area cannot 

recognize the information submitted in the infrastructure 

unavailable areas. Our application is expected to have the 

following effects compared with the information sharing by 

the posters on the bulletin boards.  

a. Making it possible to share the information rapidly 

 In the disaster area, using the bulletin boards, it is 

difficult to gather together in a large number of safety 

information. Since it is necessary to gather the information 

and paste them on the bulletin boards by someone’s hand 

work, it is not possible to share the information rapidly.  

 On the other hand, the application makes it possible to 

share the information rapidly, because the safety information 

is digitized, delivered, and shared rapidly in the area. 

b. Improving the accessibility 

 To submit and share the safety information using the 

bulletin boards, the users have to write the information on 

paper, get to the bulletin board and paste or confirm the 

information. Therefore, it is difficult for aged people and 

injured people to submit and share the information. On the 
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other hand, since the application enables them to submit and 

share the information at the place where they are, the 

application can contribute to the improvement of usability.  

 In Japan, the other problem is that, people from abroad, 

who are not familiar with Japanese, tend to be information 

refugees [10][11]. They cannot understand the safety 

information which is written in Japanese on the bulletin board. 

Furthermore, it is difficult for them to submit their safety 

information as Japanese understandable. Therefore, to enable 

them to share the information easily, the application should 

support multilingual navigation. 

c. Making it possible to cooperate with the area outside the 

disaster area 

 In the case where internet connection is recovered or the 

case where internet accessible terminals appear in the area, 

the information should be submitted to the Internet. The 

function is our future issue to be tackled. 

3.4 Functions and requirements of the 

application 

 The application is composed of the submission function 

and the view function. The submission function needs to be 

inputted user’s name, day of birth, and safety state as required 

information, and some message as optional information.  The 

view function is required for users to be able to view the 

received information from other terminals (users). Assuming 

the disaster happened and the infrastructures are unavailable, 

the application should be usable for every smartphone or 

tablet PC user, regardless of the age or the native language. 

The following explains the requirements to the application. 

a. Simple design 

  Assuming to be used by various people in 

confusion after a disaster, the application should have a 

simple and clear design. Moreover, the application should 

able to be operated without instructions or helps.   

b. Multilingual navigation 

 The displayed language should be switchable to English, 

Chinese, or Japanese, for the user needs. 

c. Multiple submissions 

  Assuming the case where there is a person who submit 

the information, we may have to submit his information on 

the behalf of him. Therefore, the application has to be able to 

submit the information in addition to oneself. 

4  Implementation of the safety 

information sharing application 

4.1 Information sharing system  

 BBISS is an information sharing system that runs on top 

of the broadcast communication on the ad-hoc mode using 

IEEE802.11 series wireless LAN. In this paper, we 

implement an information sharing system that simulated the 

BBISS on the UDP / IP by socket programming on Windows 

PCs. The specifications of the PCs are shown in Table 1 and 

2. The suppressive function of redundant relay of information 

and the retransmission function of unreached packets are 

omitted to simplify the implementation. Then, we implement 

the safety information sharing application on the above 

environment. 

Table 1 Spec for the PCs in the implementation (laptop PCs) 

Type ASUS X301A-RX 

CPU Intel Pentium B970, 2.3GHz, 2 cores 

RAM 4GB 

OS Windows 7 Home Premium 64bit 

WLAN Logitec LAN-W150N/U2 (IEEE802.11b) 

 

Table 2 Spec fot the PCs in the implentation (tablet PCs) 

Type ASUS VivoTab Smart ME400C 

CPU Intel Atom Z2760, 1.8GHz, 2 cores 

RAM 2GB 

OS Windows 8 

WLAN Broadcom 802.11bgn SDIO (IEEE802.11b) 

 

4.2 Screen design of application  

 The screen design of the application is shown in Fig.2. 

The application is composed mainly of four screens (Screens 

#1~#4).  The contents of each screen, the principal screen 

components, and the operating procedure are shown below. 

 

Screen #1：Initial screen 

 

(a) Language selection buttons 
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The buttons are for switching the displayed language to 

Japanese, English, or Chinese. 

(b) "Send the safety information" button 

The button is for sending the safety information at Screen #2. 

(c) “Display the received information” button 

The button is for displaying the safety information received 

from the surrounding terminals at Screen #4. 

 

Screen #2：Screen to send safety information (Required 

inputs） 

 

(d) Name input box 

The user’s name is input to the box. The information is used 

for user identification. 

(e) Date of birth selection box 

The date of birth of the user is selected from the calendar. 

The information is used for user identification. 

(f) Safety state selection buttons 

The user's safety state is selected from the three buttons. The 

user’s safety state to be selected from three: "Safe",  "Minor 

injured but can move", and "Can’t move", where each of the 

(b)

(c)

(a)
(d)
(e)

Screen #2

Screen #1 Screen #3

Screen #4

(f)

 
 

Fig.2 Screen transition of safety information sharing application 
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state has  each color as  red, yellow, and green(blue) , 

respectively which is same as traffic signals. If “Next” button 

is pressed, the screen transits to Screen #3. However, if the 

user’s name is not input, or either safety state or date of birth 

is not selected, the screen transits to the error screen when the 

"Next" button is pressed. 

 

Screen #3：screen to send safety information (Arbitrary 

input)  

If necessary, the user can input any message in the input box. 

It is possible to enter his location, phone numbers, email 

addresses, and the like. After “Submit” button is pressed, 

input information is transmitted by BBISS to the surrounding 

terminals, and is displayed "transmission completed". 

 

5 Evaluation of the safety information sharing 

application  
 To show the effectiveness of the application, we took 

a questionnaire survey. The candidates for the survey were 15 

students who were not concerned the development of the 

application at Tokai University. The PCs showed in Table 1 

are used. The survey date was Wednesday, April 30, 2014. 

Impression about the application: 

Q.1: Is the screen of the application clear? 

Yes: 15 of 15 

No: 0 of 15 

Q.2: Do you operate it intuitively? 

  Yes: 10 of 15 

  No: 5 of 15 

Q.3: For Q.2: what is the difficulty in the use? 

 To input the date of birth is difficult: 9 of  15 

 To recognize whether the state button is pressed or not: 

1 of 15 

 To understand what the date should be input (the date of 

today or the user’s birthday), at the calendar input box: 1 

of 15 

 No answer: 4 of 15 

The function should be installed in future: 

The survey gave the following opinions about the function 

that should be installed in future. 

 The date of birth selection box should be simplified. 

 An entry example of the name should be displayed. 

 If the rescue list with only users who selected "can’t 

move" was outputted, it would be more useful. 

 The safety information to be displayed should be 

updated in real time. 

 To select the safety state was intuitive and easy to 

understand for the users because the state buttons were simple 

color: green, yellow, and red.  However, it was difficult for 

the users to select their date of birth because it was selected 

from the calendar box, which is implemented for the 

simplification. The box should be pull-down menus in the 

future. 

 In future, we plan to install the following functions. The 

application assumed to be used by general people. Assuming 

the local government’s use, the function to output a list of 

users who selected "can’t move" may be useful. Furthermore, 

in addition to safety state and text information, the function to 

submit pictures may be helpful in rescue activities and 

recognizing damage situations. 

 

 
Fig.3 Implementation of the application (on laptop PCs) 
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Fig.4 Implementation of the application  (on laptop PCs) 

 

 
Fig.5 Implementation of the application (on tablet PCs) 

 

6 Conclusions  

 We have studied the safety information sharing 

application without using existing communication 

infrastructure for the case where the infrastructures are out of 

order due to the large-scale disaster happenings. In this paper, 

we designed and developed the safety information sharing 

application on top of BBISS, and implemented it on the 

laptop PCs. Then we experienced the application and took the 

questionnaire survey to test subjects. The evaluation results 

showed the effectiveness of the application and the functions 

should be installed in future. 

 In future, we plan to improve the application based on 

the obtained comments on the evaluation.  In addition, in this 

study, the application was implemented on the laptop PCs, 

therefore we plan to implement the application on general 

portable information terminals, and carry out a practical test 

cooperating with local governments. 
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Abstract - A Location aided Ad Hoc Network is one of the 
effective information transfer methods in the disaster situation. 
This method requires the GPS (Global Positioning System) to 
obtain location information. However, nodes cannot 
necessarily obtain their own location information in the 
disaster situations because GPS function of mobile devices are 
usually fully supported by infrastructure (network provider) 
and may not work in such situation. In addition, there may be 
many nodes that do not have GPS devices. Hence, the number 
of nodes are limited that can participate in above mentioned 
location aided MANET (Mobile Ad Hoc Network). In this 
paper, we propose a method enabling GPS unavailable nodes 
to join the network by supplementing their own location data 
from GPS available nodes. In addition, we make preliminary 
evaluation of the method and show its effectiveness. 

Keywords: Ad hoc network, Greedy forwarding, Global 
positioning system 

 

1 Introduction 
  MANET (Mobile Ad-hoc Network) has been studied as 
a technology for building infrastructure-independent and 
autonomously distributed controlled network in the disaster 
situation. Some kinds of MANET have there are methods to 
efficient communication by using the location information 
obtained by GPS.  

 However, since this location information aided method 
assumes that all nodes must be able to obtain the location 
information by use of GPS, nodes that cannot obtain the 
location information cannot participate in the network. GPS 
that runs on the popular device can be classified into two 
types. One type is supported by positioning satellites and the 
other is supported by mobile communication infrastructure. 
The latter may become unusable if the infrastructure becomes 
out of order in the disaster situation. In addition, there are too 
many nodes that do not have GPS. Namely, assuming the 
disaster situation, nodes that can obtain the location 
information and those that are considered to be mixed in the 
network area. 

 We propose a method to make nodes that cannot obtain 
location information participate in the location-aided network 

by giving location information to those nodes from nodes that 
can obtain location information. 

 Section 2 describes the greedy forwarding method that is 
a basis of our proposal and our proposal itself. In section 3, 
we evaluate the proposed method through network simulation 
and show its effectiveness. Section 4 concludes this paper. 

2 Delivery method 
  This section firstly shows the greedy forwarding method 
as a respresentative of conventional location information 
aided approach. Then it proposes a location data 
supplementing information transfer method 

2.1 Greedy forwarding 
 The greedy forwarding method is one of the methods 
used in location aided MANETs. In the case of general 
information transfer methods of MANET without location 
data, a source node broadcasts data packets to neighboring 
nodes and then all nodes that receive the packet relay the 
packet by broadcasting. This method is often called “simple 
flooding”. In contrast, greedy forwarding enables directional 
communication to the destination by selecting one of the 
neighbor nodes as a next hop node by using the location 
information. In this greedy forwarding method, nodes 
periodically exchange their own location information got by 
GPS and IDs among neighbor nodes by HELLO packets.  By 
use of exchanged location information, each data 
transmission node before sending can select the next hop 
node according to the criteria whether the node is the closest 
to the destination or the transmission node can forward the 
packet by the biggest distance to the node to be selected The 
node selected as the next hop node performs the same 
procedure as the prior transmission node that results in	 
realization of efficient communication. 

2.2 Proposed method 
 The location-aided MANET assumes that all the nodes 
can obtain their own location information by GPS. However, 
GPS that runs on the popular device can be classified into two 
types. Some positioning satellites support one type and the 
other is supported by mobile communication infrastructure. 
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The latter may become unusable in the disaster situation 
because infrastructure becomes out of order. In addition, there 
are a number of nodes that do not have GPS. For these 
reasons, it may not be effective in case of using the 
conventional location aided approach based on, e.g., greedy 
forwarding. 

 Therefore, we propose a method that enables nodes 
cannot obtain location information to participate in the 
location-aided MANET by giving location information from 
the nodes that can obtain location information. Same as the 
greedy forwarding method, our proposal utilizes HELLO 
packets from GPS available neighbors and collects location 
information in the Hello packets. By the collected information, 
GPS unavailable node can guess its own location and 
participate in the network with guessed location.  

 We describe the method below. In our proposed method, 
we call the node LS-node (Location information Server node) 
that can obtain location information and the NL-node (Non 
Location information node) that cannot obtain location 
information. The method consists of two phases that are the 
preparation phase and the transmission phase. 

2.2.1 Preparation phase 
 In this phase, each node exchanges information by 
HELLO packets and calculate evaluation values of 
themselves. This self-evaluation value is used for whether 
NL-nodes can participate in the location-aided MANET based 
on the proposed method or not, and it is also used as materials 
for determining next hop node after nodes participate in the 
network. This self-evaluation consists of the evaluations of 
location information and movement. 

 The evaluation of location information consists of the 
calculation of the location coordinate and assessment of the 
accuracy of the location coordinate. And the evaluation of 
movement the calculation of the velocity of each node, which 
is used to avoid selecting the node that moves fast as a next 
hop node. The details of the preparation phase are as follows. 

i. Obtaining location information 

Each node obtains location information. LS-node 
obtains the location information by GPS that is 
equipped in the nodes. NL-node collects the location 
information in the HELLO packets from the 
neighboring LS-nodes, estimates its own location and 
then treats the estimated location information as its own. 

Each node judges the location coordinate and assesses 
its. In this paper, the location information contains two 
factors. One is the position coordinate (hereinafter 
referred to as oi) itself and its accuracy (hereinafter 
referred to as si). oi is an essential element to participate 
in location-aided MANET because each node selects 
the next hop node based on this information. On the 
other hand, si is important for NL-nodes. In the case of 

NL-nodes, the positional error may occur because NL-
nodes estimate the location information based on the 
location coordinates collected from neighbor LS-nodes. 
Therefore, it is necessary to assess the accuracy of the 
estimated location coordinate. And si is the value that 
assesses the accuracy.  Calculation methods of 
assessment are given below. Each LS-node uses the 
position coordinates that obtain from its own GPS as oi. 
In addition, the value of si is set to the highest value 
because the positional error hardly arises. NL-node by 
use of the location coordinates got from the neighbor 
LS-nodes draws circles that imitate the transmission 
range whose center is the location of each LS-node by 
and treats the center of the overlapping area in circles as 
the position coordinates. Moreover, each NL-node 
calculates the size of the overlapped area and treats it as 
si to estimate the accuracy of the coordinates. The 
calculation method is changed depending on how many 
numbers of circles make the overlap. However, the 
number of circles to make the overlap may become 
enormous. Hence, in this paper, we restrict the number 
of circles in the case of 1 - 3. Each NL-node calculates 
only three recent location information if the numbers of 
circles becomes more than four. The number of circles 
is decided by how many HELLO packets are received. 
In the case that si is 0 (there is no overlapping) or πr2 
(multiple circles coincide together) we give the case the 
lowest values of evaluation because it is assumed that it 
doesn’t fulfill as the accuracy of the positional 
coordinates.  It is described below how to calculate the 
overlap area for the cases where two circles form the 
overlap and more than three circles do. 

 When there are two LS nodes nearby a NL node, 
there is an overlapped area in the two circles.   In this 
case, the center of the straight line that links the 
intersection points of two circles is set as a provisional 
position coordinate. And then the overlapped area is 
calculated and it is treated as the accuracy of the 
position coordinates.  

When three nearby nodes form the duplicated area, the 
area that three circles make can divide into three cases. 

Case 1  In the case that two circles duplicate perfectly 
among three circles, it is regarded that two circles 
duplicated are a single circle and then calculation of 
overlapped area with other circle just like the case of 
two circle overlapping. Fig.1 shows an example of this 
case 1. 

 

Fig 1. An image of case 1 
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 Case 2  In the case that one of three circles 
contains the overlapped area that other two circles make, 
the circle containing the overlapped area is not required 
to be considered, therefore calculation of the 
overlapped area of remaining two is made. Fig.2 is an 
example of this case 2. 

 

Fig 2. An image of case 2 

 Case3   In the case that any circle does not 
completely contain the overlapped area that other two 
circles make. The provisional coordinate is that of the 
circumventer of the triangle that is made by lines 
between intersection points of three. See Fig.3. 

 

Fig 3. An image of case 3 

ii. Judgment of location and its assessment on the accuracy 

Each node calculates its own velocity, mi. Each node, 
whichever it is LS or NL, obtains own location 
information multiple times and then calculates own 
velocity by using those differences of coordinates and 
that of   time when calculation is made. 

iii. Calculation of node velocity, mi 

Each node calculate Et
i by using si and mi. Et

i to be used 
for each node to make a decision to participate in the 
network and a judgment of the appropriateness to be 
selected as a next hop node. The formula to calculate Et

i 
is following. 

【The formula to evaluate each node】 

𝐸!! = 𝑓(𝑠! ,𝑚!) 
 

The value of Et
i is decided according to Table 1. The 

smaller si and mi are, the higher the value of Et
i is. It is 

because the smaller the movement of each node is, the 
higher the evaluation of each node is. 

Table 1. The value of Et
i 

si＼mi 0 <mi ≤  1 1 <mi ≤ 5 5 <mi ≤ 10 
si = 0 0 0 0 

0<si ≤πr2/4 9 7 5 
0<si ≤πr2/2 8 6 4 
0<si≤πr2 7 5 3 
πr2 ≤ si 0 0 0 

r : the radius of the radio coverage of each node 

iv.  Calculation of Et
i  

After each NL-node is permitted to participate in the 
network in the step iv, each NL-node judges whether it 
can treat itself as a LS-node or not. This judgment is 
made by use of severer condition. We assume the 
positional error with GPS should not exceed 50m and 
so decide the condition to be a LS-node accordingly. 
The positional error must be less than πr2/25 (radius = 
250m).  

v. Judgment to be an LS node  

Each node notifications the values calculated in above 
steps (position coordinate, node ID, and Et

i) by using 
HELLO packet. The payload of the HELLO packet is 
following. 

! Node ID 

! Location information 

! Evaluation of the nodes (Et
i) 

vi. Notification of node ID, (provisional) coordinate and Et
i 

by Hello 

Each node performs above steps at a certain interval in 
the preparation phase. LS-nodes perform above 
processing when each LS-node just obtained the 
location information by GPS. And NL-nodes perform it 
when each NL-node just obtains more than two HELLO 
packets from LS-nodes within last 2 seconds. 

2.2.2 Transmission phase 
 When each node transfers data packets, it transits to the 
transmission phase. While each node does not need data 
transfer, it remains in a preparation phase. The transmission 
node considers value of Et

i of neighbor node i notified by 
HELLO packets and di that is a distance from the neighbor 
node i to the destination node, and determines whether the 
node i to be selected as a feasible next hop node. After 
determining the next hop node, the transmission node sends a 
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data packet to the node. Repeating this procedure, packets can 
be reached to the destination node. The detail of transmission 
phase processing is as follows. 

i. The transmission node receives Et
i and location data of 

neighbor node i by HELLO packets. The HELLO 
packet is the same as packets that each node broadcasts 
in step vi of preparation phase.  The value of di, 
distance from node i to the destination is calculated here. 
Here di is not an actual distance but a normalized value 
form 0 to 10 according to Fig.4. 

ii. The transmission node adds Et
i and di and calculates Ei 

of the transmission evaluation of node i. 

【The transmission evaluation formula】 

𝐸! = 𝐸!! +   𝑑! 
 

 

Fig 4. Evaluation value of di 

iii. The transmission (or relay) node selects the node with 
the best Et

i value in the communication area as a next 
hop node. 

iv. The relay node broadcasts the packet containing a node 
ID of the next hop node.  

v. The nodes that received the data packet check the node 
ID contained in the data packet. And then, if the node 
ID coincides with its own node ID, it finds it is selected 
as a next hop relay node. And it performs same 
procedure shown above, selects the next hop node, and 
transmits the data packet to the next hop node. If the 
node ID is not congruous with its own node ID, it 
discards the packet. These operations are repeated until 
the data reaches the destination. 

3 Evaluation 
 We evaluated the proposal method by comparison with 
existing greedy forwarding algorithm using the simulator 
created by the script language. The simulation conditions are 
shown in Table 2. 

 

 

Table 2. Simulation condition 

Configuration 
Simulated area 1000×1000m 

Setup of nodes 
Coverage 250m 

Number of nodes 100 
Default LS-node ratio 

(Nodes other than LS-nodes 
are NL-nodes) 

1~100％ 

Moving velocity 
(Random way point *) 1 to 10 [m/s] 

The participating conditions to a network 
Qualification to participate Eti ≠ 0 

Threshold to be LS-node 0 < si <=πr2/25 
The selection condition of a node 

Select the best result of the following calculation 
Ei=Eti+ di 

 

*【Random way point model】  

i. The destination coordinate is defined at random. 

ii. The speed is decided at random within a range from 1 to 
10 [m/s]. 

iii. A node moves at a fixed speed selected in ii to the 
destination. 

iv. It stops for random time at the destination coordinate.. 

v. Back to i 

3.1 Contents of evaluation 
 The items evaluated in the simulation are shown below. 

I. Node participation ratio in the network and number of 
NL-nodes treated as LS-nodes 

How many NL-nodes can participate in the network and 
how many NL-nodes can be treated LS-node 

II. Reachability 

Among randomly positioned nodes, a source node and a 
destination node are selected, between which a multi-
hop communication is made. The reachability is defined 
as the ratio of packets that reach the destination 
successfully to total packets sent averaged over all the 
trials of simulation.  

III. Average number of hops 
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How many hops are required to reach destination node 
averaged for all the packets. It is calculated to know 
whether we can reduce the number of hops by 
introducing our idea.  The evaluation method for 
average number of hops is defined as the total number 
of hops divided by the total number of times of 
reaching. 

3.2 Results of the simulation 
I. Node participation ratio in the network and number of 

NL-nodes treated as LS-nodes. 

Figure 5 shows the number of nodes that is able to 
participate in the network and the number of nodes that 
become to be LS-nodes for the case where the number of 
LS-nodes is 15 among 100 nodes in the network. 
Vertical axis indicates the number of nodes and 
horizontal axis indicates the simulated time. The top 
most line shows the summation of the numbers of LS-
nodes and nodes that could participate in the network. 
According to the figure 5, at an average of 59.5% of NL-
nodes during simulated times (60 seconds) becomes 
possible to participate in the network. And we show that 
it is 1.23% NL-nodes can be treated as LS-nodes at an 
average during simulated time. 

Fig 5. Participation ratio of nodes 

According to the results, it is clear that the number of 
nodes that can participate in the network increases by 
applying the proposal method. Therefore, we can expect 
to raise the reachability and to reduce the average 
number of hops, which are shown below. 

II. Reachability 

Figure 6 shows the reachability. The vertical axis 
indicates the reachability and horizontal axis indicates 
the number of LS-nodes.  As a result, our proposal can 
achieve high reachability (successful communication) 
even if the number of LS-node is small. When the 
number of LS-node is only 20, our proposal can achieve 
80% reachability but on the contrary the conventional 
greedy method cannot at all. It shows our proposal is 
highly effective. This is because our proposal can make 
the NL-nodes participate in the network that results in 
high reachability. 

 

Fig 6. Reachability 

III. Average number of hops 

Fig.7 shows the average number of hops when the 
packet reaches the destination. The vertical axis 
indicates average number of hops and the horizontal axis 
indicates the original number of the LS-nodes in the 
network area.  Our proposal achieves that it is less hops 
than that of greedy forwarding. Below 10 LS-nodes, 
greedy cannot realize any communication. This result 
means that the transmission node became able to select 
the best next hop node from among the many candidates 
by applying the proposed method.  

 

Fig 7. Average number of hops 

4 Conclusions 
 In this paper, we have proposed a new algorithm to 
enable nodes that do not obtain the location information by 
themselves to participate in the location-aided MANET using 
the location information given by other nodes that can obtain 
location. Through the simulation study, we have shown that 
our proposal can improve packet reachability drastically 
compared with existing greedy algorithm.  Further study is 
needed on evaluation when node mobility is considered. 
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Abstract - How to efficiently reduce the number of packets of 

broadcasting in Mobile ad hoc network (MANET) is very 

important inevitability for saving energy and prolonging life 

time. Most of previous researches based on broadcast 

approaches do not welll consider avoiding redundant packets. 

However route discovery from a source to specific destination 

based on broadcasting causes large increase of unnecessary 

packets and affects the scalability. According to this research 

we propose two approaches, the first approach is the use of 

the connected dominating set (CDS) utilizing information of 

two-hop neighbors in ad hoc network, where searching 

minimum number of neighbors. The Second is based on 

Location-Aided Routing Protocol (LAR) or Geocast that is 

powerful to find specific area where destination node is. 

Eventually based on two base algorithms above, in this 

research we implement our algorithm (Location-aided Route 

Discovery based on two-hop neighbor information) and 

analysis via relationship between CDS and LAR. Finally, we 

find the effective factors to reduce the number of overhead 

packets and number of redundant rebroadcasting by our 

algorithm to precisely select the forwarding node. We 

compare our algorithm with the Direct Flooding and Geocast 

through computer simulation. The simulation result shows that 

our proposal decrease the number of overhead packets in Ad 

Hoc network on broadcast compared with existing algorithms. 

Keywords: Direct-Flooding, Geocast, Tow-hop, Route 

Discovery.  

 

1 Introduction 

  A mobile ad hoc network (MANET) has been widely 

used to support communication for such as terms of military, 

education, medical and emergency. Normally a mobile ad hoc 

network is easily deployed because it is combined by a group 

of independent mobile nodes without infrastructure. 

Consequently a mobile ad hoc network can normally operates 

in an emergency situation via broadcasting a message or 

information to the other user for requesting collaboration. 

 The simplest flooding algorithm has been already known 

to cause the broadcast storm problem [1], [2]. Basically, in the 

flooding operation, source (S) sends the message to all the 

neighbors and then every neighbor will forward the packets 

until reaching the destination (D). But the problem is a time 

for holding the communication, that is, a batteries of nodes 

are consumed much and lifetimes of nodes and network are 

very limited. Hence, reducing  number of packets is 

significant factor where decelerating the lifetime of node. 

Recently there are various algorithms of broadcast operations 

to reduce unnecessary packets which are show below. 

 First category, the CDS [3],[4] is utilizing information of 

two-hop neighbor nodes, in short S exchanges information 

among itself and neighbors. The neighbor who has minimum 

number of neighbors is selected as the next sender before 

packets are transmitted. Basically, this research, is calculating 

connected dominating set by using marking process. 

However, since the CDS algorithm just finds the minimum 

connected dominating set for each node, it is possible for S 

cannot find position of D. 

 Second category is a local broadcast algorithm in 

wireless ad hoc network reducing the number of transmission 

[5] and broadcast redundancy in ad hoc wireless network [6]. 

In additional, both researches [5] and [6] are extended from 

the Dominant Pruning (DP) and Distributed Dominant 

Pruning [4] which are local broadcast algorithms that can 

eliminates redundant transmission based on two-hop 

information for neighbors and then find minimum number of 

forwarding nodes. However [5] and [6] are different objective 

from our own proposal. Because they just show that they 

decrease the number of retransmission node by coverage 

transmission range without specified location of D so the 

consumption of overhead packets will also increase.  

 For third category is the direct flooding described in [7] 

Beacon-less routing (BLR). The author proposes the routing 

of packet to reduce routing overhead. BLR does not require 

neighbor nodes to broadcast Hello-message (Beacon 

Message) and avoids drawback such as extensive uses of 

scarce battery-power. BLR has good performance to 

guarantee that packets will reach to D. In contrast the 

consumption of overhead packets stills increases because S 

selects all neighbor nodes located in determined area neighbor 

nodes are possible to forward packets together. 

 As for fourth category, several geographical routing 

protocols (LAR) by use of global positioning system (GPS) or 
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we call Geocast, are proposed in [8], [9]. In this algorithm, 

the source S is using distance determine by coordinate 

cov(x,y) and compare distance between each neighbor node to 

D in the communication area. And therefore S can selects a 

neighbor node to forward packet which has distance closest to 

D. The operation of Geocast is better than BLR in a sense that 

S specifies a location of D and can reduce the number of 

transmission node. But the consumption of packets still 

increases because S selects neighbor node without considering 

the number of two-hop of neighbor information. 

 In this paper, we first follow the CDS method to 

calculate the minimum number of neighbor nodes. Second, we 

follow the fourth category above to estimate distance between 

neighbor nodes and D. In this regard, we can establish the 

probability by relationship between CDS and Geocast. By use 

of the probability that is the main mechanism of our  proposal, 

S precisely selects neighbor node who forwards the packet. 

 This paper will be organized as follows. Section 2 

reviews related works. In section 3, we describe our own 

proposal. In section 4 we present an evaluation. Finally 

conclude this paper.  

2 Related Work 

 In this section, we describe the previous works of the 

broadcast solution and problem.  

2.1 Flooding algorithm 

 The flooding algorithm [1] is a simplest operation by 

directly forwarding packets to all the neighbor nodes in the 

network. So this approach has many problems such as the 

consumption of packets, the redundancy of transmission node 

and the collision of packets.   

2.2 Direct flooding algorithm (Beacon-less routing) 

 Basic principle of this approach BLR [7] is fixable than 

Flooding algorithm. See Fig. 1. When S sends a packet to D, 

as first step, S determines the position of D and stores its 

current position (coordinates X, Y), and then S broadcasts a 

packet by attaching information (coordinates of S itself and D) 

into the header of the packet. Identically each node that 

receives the packet replaces the previous position by their 

current its own position in to the header of the packet before 

forwarding packet to the next hop. Subsequently if a packet 

reaches neighbor node, the position information of the 

previous node will be extracted from the header of packet. 

Therefore neighbor of S easily decides to relay the packet or 

not. The node will relay the packet if the node is located in the 

specific area (forwarding area shown in gray). Since the BLR 

avoids any beaconing mechanism such as Hellos, it is not 

necessary to know the neighbor node information. But the 

number of packets is increasing because multiple nodes relay 

the packets and redundant packets exists in the forwarding 

area. 

 

Fig. 1.       Direct flooding Route Dicovery Scheme. 

2.3 Geocast(Location-Base Multicast Algorithms) 

 Y. Ko, and H. Vaidya proposed Geocast LBM [10] 

similar to LAR [11] by considering the GPS (global 

positioning system). Fig. 2 shows Geocast. Geocast assumes 

each node broadcasts his own position on Hello packets 

periodically so each node can know its neighbors’ position 

(coordinate). When S initially forwards a packet, this 

mechanism follows three steps: first step, the multicast region 

is specified by S. Second step, S calculates DISTS (distance 

between S and D). Third step, S it compares distance from 

each neighbor node to D. For example, node S has neighbors 

I, N and K. If DISTs ≥ DISTi, node i (i=I, N or K) is a 

candidate forward packet. Else if DISTD < DISTi, node i (I, N, 

K) is not a candidate to forward packet. S selects a node (e.g., 

node I) as next forwarding node, if the node has the shortest 

DIST to the destination (or multicast region). Thus node I 

replaces the coordinate (XS,YS) by its own coordinate (Xi,Yi). 

Likewise, the operation is iterated until reaching the region. 

 

Fig. 2.       Location-Base Multicast Scheme. 

3 Our Proposal Methods 

 In this section, we propose a broadcast scheme 

algorithms to reduce the number of redundant packets by 

improving the efficiency of CDS and Geocast ILAR [12].  

 The main advantage of CDS is that it centralizes the 

whole network into small connected dominating set sub 

network, which means only a gateway keeps routing 

information, Hence as long as network topology change does 
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not affect this sub network, there is no need to recalculate 

routing table.  

 An improved location-aided routing (ILAR) is improved 

from LAR. In this scheme, the author first decides a baseline, 

which is the line between node S and D, for route discovery.  

When the request packet is broadcasted, a node in request 

zone based on baseline is chosen as the next broadcasting 

node.       

 According to existing algorithms above, we propose 

three route discovery methods to find relay node. First method 

considers the minimum average distance between two-hop 

neighbor of S and D. The second method considers the 

probability by relation between distance of neighbor of S to D 

and the number of neighbor node of S. The third method 

considers the probability by relation between distance of two-

hop neighbor of S and the number of two-hop neighbor of S. 

3.1 Method 1 

 Based on communication by Hello message exchange, 

CDS can determine an information of one-hop (vi) and two-

hop neighbor (v’i) of S. Ore specifically, while node S is 

crossing message to exchange information and coordinate 

with neighbors, S also collects id of neighbor node by 

receiving short packet message (“hello” message) and 

position of neighbor nodes including two-hop neighbor 

information. It can selects the best of neighbor node by 

processing the header of packet before broadcasting initial 

packet.  By this way we can calculate the average distance 

from two-hop neighbor of S  to D. 

   

Fig. 3.  Method 1 minimum average distance two-hop  

 To calculate the average distance from two-hop neighbor 

of S, we define d(v’1 , D)… d(v’4 , D) that are distances 

between node v’i and D. Then we can find the average 

distance from neighbors of node S to D in the equation below. 

 1 2( ' , ) ( ' , ) ... ( ' , )
( )

( )

i
avg i

i

d v D d v D d v D
d v

n v

  
  (1) 

Eq. 1. where davg(vi) represents the average distance for 

neighbors of sender, then n(vi) is the number of neighbors of 

neighbor (vi)  but except the sender (previous node) as shown 

in Fig. 3. (e.g. node v1 does not include node S for calculating 

average distance because node S is sender). Finally S decides a 

neighbor node as a next sender and sent RREQ (Route 

REQuest) which has minimum average distance in   Eq. 2.    

 

 { ( )}avg i
i

Select min d v


  (2) 

3.2 Method 2 

 Second method, we consider the probability by relation 

between distance of neighbors of S to D and the number of 

neighbor node of S. Same as first method, a sender collects 

two-hop neighbor information but it is different from first 

method in the fact S collects distances from one-hop 

neighbors (vi) to D shown as Fig. 4.  

 

Fig. 4.  Method 2 finding probability from distance two-hop  

Fig. 4. shows both of node v1 and v2 are neighbor of S 

and they have neighbor nodes such as N(v1)= { S, v2, v3, v4, v5 

}, N(v2)={S, v1, v3} and d(v1,D), d(v2,D) are distances between 

node v1, v2 to D. Therefore in Eq. 3, we find the probability 

(distance between node vi  and D) divided by the summation of  

d (v1,D), d(v2,D) … d(vi,D)  (total of distance neighbor nodes 

of S to D). Absolutely if a neighbor node of S is closest to D, it 

will get high probability. 

 

 

1 2

( , )
( ) 1

( , ) ( , ) ... ( , )

i
avg i

i

d v D
p v

d v D d v D d v D
 

  
 (3) 

As a next step we find the probability by considering the 

number of neighbors of each neighbor node of vi. In Eq. 4, 

n(vi)  is the number of neighbors of neighbor vi that is two-hop 

neighbors of the sender (In Fig. 4,  i.e. n(v1) = 5 and  n(v2) = 

3). n(vi) is divided by summation of all number of two-hop 

neighbors of S. So if  neighbor of S (e.g., vi ) has minimum 

neighbors, it will get the high probability.   

 

 

1 2

( )
( ) 1

( ) ( ) ... ( )

i
n i

i

n v
p v

n v n v n v
 

  
 (4) 

Finally, from Eq. 3 and 4 we get the probability that is a 

combination of the probabilities of distance and the 

probability regarding the neighbor node vi.   
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(5) 

Here, the probability Pr(vi) is relationship between 

distance node vi  to D and  number of neighbor node vi. 

Subsequently node S selects next neighbor node given by 

probability Pr(vi). This method can avoid the consumption of 

overhead packet because S can precisely select a neighbor 

node to forward packet.  

 

3.3 Method 3 

As for the third method, we consider the probability by 

relation between distance of two-hop neighbor of S and the 

number of two-hop neighbor of S, In Fig.5. Like operation in 

[12], we assume that how S selects two-hop neighbor for 

calculating the average distance. For node v1, we define the 

baseline 1 that connects node v1 and D. Next the baseline 2 

crosses over on baseline 1 by angle 90
o
 degree. Subsequently, 

two-hop neighbor located on the right hand side of baseline 2 

is selected by S for calculation davg(N(vi)) such as v’3, v’4, v’5 

but for node v2 is not selected because it is located on the left 

hand side, where davg(N(vi)) means average distance from 

neighbors of vi , i.e., two hop neighbors of S to D. 

 

Fig. 5.  Method 3 Sender collects information from node A and B 

Before S initially broadcasts a packet, it collects 

neighbor node information from node A and B same as first 

method and second method i.e. in figure 6 (a) N(A) ={ E, I, 

F}, in   Fig. 6. (b) N(B)={F,G,H}. Then we denote davg(N(A)) 

and davg(N(B)) represent average distance from two-hop 

neighbors to D.  

 

Next we will find the average distance of two-hop 

neighbors to D assuming we already know the coordinates of 

two-hop neighbor nodes and destination node i.e. node C: d(C, 

D), E: d(E, D), K: d(K, D) and I: d(I, D). Then we determine 

the average distance of two- hop neighbors  by Eq.6. 

 

 

Fig. 6.  Method 3 Sender collects information from node A and B 
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From Eq.6 we find average distance, where d(v
’
1, D), 

d(v
’
2, D).. d(v

’
i, D) are distance from two-hop neighbor of S to 

D and nselect(vi) is number of neighbor nodes of vi that is 

selected as neighbor nodes same as Fig.4. Next step we define 

∆davg in  Eq.7 that represents the reference value or the total 

average distance of neighbor node of vi. Here, n(S) is a 

number of neighbor nodes S. 

 

 1 2' ( ) ' ( ) ... ' ( )

( )

avg avg avg i

avg

d v d v d v
d

n S

  
   (7) 

 In Eq.8 we calculate ∆navg is mean reference value or 

total average number of two-hop neighbors of S. where n(vi) is 

the number of neighbor nodes vi , and n(S) is the number of 

neighbor nodes S. Then S estimates the total average neighbor 

nodes by the relation distance two-hop neighbor to D and the 

number of neighbor node.  

 

 1 2( ) ( ) ... ( )

( )

i
avg

n v n v n v
n

n S

  
   (8) 

Then we apply the exponential probability function [13] 

to each method by use of ∆davg, d’avg(vi)  , nN(vi) and ∆navg to 

select the possible neighbor node to forward packet. 

 

 Case 1: If d’avg(vi)  > ∆davg and nN(vi)> ∆navg 

 ( )' ( )
r( ) 1

( ' ( ))

avg

N i

n

n vavg i

i

avg i

d v
v e

Max d v

 
 
     (9) 

 Case 2: If d’avg(vi)  < ∆davg and nN(vi)> ∆navg 
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 Case 3: If d’avg(vi)  >∆davg and nN(vi)< ∆navg 
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 Case 4: If d’avg(vi)  <∆davg and nN(vi)< ∆navg 
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 (12) 

Equation from  Eq.9 to Eq.12 represent  the four cases 

by function of probability, where Pr (vi) is combined by 

relation distance and number of neighbor node. First Case 

d’avg(vi)  > ∆davg, nN(vi) > ∆navg  means that node vi has average 

distance larger than total average distance and number of 

neighbor has larger than total number average of two-hop 

neighbor. So for this case, the probability is very low. 

Therewith for second case, d’avg(vi)  < ∆davg, nN(vi) > ∆navg 

means that node vi has average distance smaller than total 

average distance and number of neighbor has larger than total 

average number of neighbor two-hop. So for this case, the 

chance of probability has higher than case 1. Similarly third 

case, d’avg(vi) > ∆davg , nN(vi) < ∆navg  is same as case 1 but the 

number of neighbor has smaller than total number average of 

two-hop neighbor wherefore the chance of probability in case 

3 also has value higher than case 1. Thereupon fourth case 

d’avg(vi)  < ∆davg, nN(vi) < ∆navg means that when both of a 

average distance and number of neighbor have smaller value 

than total average distance and total number average of two-

hop neighbor. So the probability is highest. Therefore S selects 

node vi  which has the highest probability to broadcast packet.  

 

4 Evaluation 

4.1 Assumption and scenario geographic 

 We propose two assumptions. The first is that node S 

transmits packet to D by maximum distance for 1 time slot via 

broadcast. In addition we assume S is located in around south 

west corner and D is located in around north east corner. Then 

position of each node is set according to random uniform 

distribution in area 600x600 m
2
 and the radio transmission 

range is 150 m.  Similarly the Second case is that we assume S 

transmits packet to D but the initial position of S is randomly 

selected for 1000 time slots. Based on two assumptions 

above, we set four patterns of network topology for simulation 

such as pattern 1 for 50 nodes in Fig. 7. pattern 2 for 100 

nodes in Fig. 8. pattern 3 for 150 nodes in Fig. 9. pattern 4 for 

200 nodes in Fig. 10. 
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Fig. 7.  pattern 1 for 50 nodes 
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Fig. 8.  pattern 2 for 100 nodes 
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Fig. 9.  pattern 3 for 150 nodes 
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Fig. 10.  pattern 4 for 200 nodes 

4.2 Results 

 In this path we present some result of this research, first 

path shows the number of overhead packets in one time slot 

and 1000 time slots by varying the number of nodes from 50 

to 200. Second path shows the average number of nodes 

rebroadcasting in one time slot and 1000 time slots by varying 

the number of nodes from 50 to 200. 

 Fig. 11. shows the average overhead of direct-flooding 

(α=60
o 

in Fig.1.), Geocast, our own proposed method 1, 2 and 

3 within different density of mobile nodes when S and D are 

maximum distance in 1 time slot. The number of overhead 

(packets) of direct-flooding is very large because the 

consumption is made via large number of transmission node. 

Next the Geocast is better than Direct-flooding. In contrast for 

our proposal method 1, 2 and 3 the overhead of packets are 

increasing very slowly and the control of overhead packet is 

better than two previous algorithms. When we are varying the 

number of total nodes to 200, in our proposal method 1, the 

number of overhead packets is larger than Geocast because 

method 1 does not precisely selects the next node. Anyway for 

method 2 and 3, overhead are smaller in any node density than 

method 1 and the other approaches. 

 Fig. 12. shows the average overhead of direct-flooding, 

Geocast, Own propose method 1, 2 and 3 with different 

density of mobile node when S is chosen randomly and it 

sends RREQ packet (random sender)  to D  in 1000 time slots. 

Then the average overhead of direct-flooding is larger 

because S selects all neighbors in forwarding area for sending 

RREQ packet that is traditional flooding algorithm. Likely the 

reason from above, Geocast is better than direct-flooding but 

the number of overhead packets are large than our proposal 

method 1, 2 and 3. Since we are varying the number of mobile 

nodes to 200 thereupon the method 1 has the consumption of 

overhead packets larger than proposal method 2 and 3. 

 Fig. 13. shows the number of transmission node or hop 

count with different density of mobile node for 1 time slot 

(maximum distance). The number of transmission nodes of 

Direct-flooding is larger than Geocast because direct-flooding 

selects all neighbors to in forwarding area to send RREQ 

packet. Since Geocast reduces the number of nodes compared 

with direct-flooding but the number of relay nodes for 

Geocast is large because packets are broadcasted within 

multicast region. Anyway for our proposal, three methods are 

very small compared with two previous algorithms because S 

initially broadcasts packet only one node selected to forward 

RREQ packet. 

 Fig. 14. Shown that average number of transmission 

node or hop counts with different density of mobile node for 

1000 times slot (Random Sender). The reason is same as that 

given above, the number transmission node of Direct-flooding 

and Geocast  are larger  than our proposals. 

 

Fig. 11.  Number of Packet VS Density of mobile nodes (Maximum distance) 

 

Fig. 12.  Number of Packet VS Density of mobile nodes (Random sender) 
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Fig. 13.  Number of redundant rebroadcasting VS Density of mobile nodes 

(Maximum distance) 

 

Fig. 14.  Average Number of redundant rebroadcasting VS Density of mobile 

nodes (Random Sender) 

  

5 Conclusion 

 In this paper, we address the problem of efficient data 

transmission in mobile ad hoc network. Constantly selecting 

the best node according to the probability makes conventional 

routing discovery have lowest overhead packet. Facing the 

fact that selection of the best next hop is very difficult in 

existing geographic broadcasting mechanism, we propose 

Location-aided route discovery based on two-hop neighbor 

information over Ad Hoc Network inspired by geographic 

routing. For all the simulation result, it shows how precisely 

our proposals select the forward nodes and reduces redundant 

packets which has good results even in case of varying density 

of node and network topology. So our proposal method offers 

adaptability which improves the performance by simulation in 

term the number of overhead packet and number of 

transmission node comparing with direct-flooding and 

Geocast. Finally we confirm the performance and efficiency 

of our proposal is better than existing methods. We need 

future study on evaluation more in detail by varing network 

topology or considering mobility. 
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Abstract – In the disaster situation, mobile ad-hoc networks 

can be considered as one of the communication means when 

communication infrastructure is unavailable. Under the 

situation, a number of redundant packets with power 

consumption should be suppressed to save battery and prolong 

the network life. In this paper, we propose an efficient 

broadcast based information transfer method using location 

data to reduce the redundant packets with achieving high data 

reachability. 

Keywords: Ad Hoc Network, Broadcast  

 

1 Introduction 

  Information technology has rapidly been spread in 

Japanese society. The Internet, a portable information device 

and something like that are the necessaries for our lives. 

However, communication infrastructure must be essential to 

these technologies. In case of emergency, the communication 

infrastructure may become unable to handle a large amount of 

access and base stations may be physically disrupted. When 

communication infrastructure is unavailable, we cannot 

transmit information if you know where you want to send to, 

because telecommunication cannot be used without IP address 

in such a case. Urgent information such as situation of damage 

and confirmation of someone’s safety should be distributed 

without waiting for the recovery of communication 

infrastructure. 

 Recently, wireless ad hoc network has been actively 

studied as a communication means when communication 

infrastructure is unavailable. The wireless ad hoc network can 

be immediately constructed by only gathering information 

terminals in some region. In addition, the network constructed 

with only mobile information terminal that can communicate 

with each other is called mobile ad hoc network (MANET).  

 When communication infrastructure is unavailable, 

studies on simple flooding (SF) [1] and directional flooding [2] 

have been proposed as delivery systems of information. 

However, both of which have problem of power consumption 

due to redundant packets and that of information loss due to 

packet collision before packets reach the destination. 

 In this paper, we propose information transfer method 

over MANET using location data without depending on 

communication infrastructures. Proposed method is aiming to 

reduce redundant packets and to achieve high data reachability 

at the stage of not being able to use the IP address just after the 

disaster. We show that proposed method is more efficient than 

existing methods through evaluation using a simple network 

simulator. 

 Section 2 describes algorithms and problems of existing 

methods. Section 3 explains the proposed method. And then, 

section 4 shows effectiveness by results of simple network 

simulator. Finally, section 5 concludes this study. 

2 Existing methods 

 Routing protocol over MANET is mainly classified into 

two types. One is topological-based routing. The other is 

location-based routing. The latter routing is widely proposed to 

solve a problem of scalability against topological-based 

routing such as AODV (Ad hoc On-Demand Distance Vector) 

[3] or OLSR (Optimized Link State Routing Protocol) [4]. And 

furthermore, location-based routing has two approaches of 

next-hop forwarding method and directional flooding method. 

 

 In the next-hop forwarding method, each node 

periodically sends ID and location data of itself in a packet to 

neighborhood nodes. Referring to the neighborhood location 

data, a node that relays the packet selects a next relaying node 

which has the biggest forwarding distance from the relay node 

to the end node or which is the closest to the end node. This 

method to select a next relaying node is called greedy 

forwarding [5]. 

 

 In the directional flooding method, neighborhood nodes 

broadcast one after another toward the end node. At this time, 

each node rebroadcasts the packets without specifying next 

hop nodes. A node that receives the packet, however, does not 

rebroadcast it without any qualification but does only when 

needed based on the location data of a start node, a node just 

before or the end node. Moreover in directional flooding, a 

node that receives the packet independently of other nodes 

decides whether to rebroadcast or not just based on 

geographical conditions. More specifically, a “transmission 

zone” between a starting node (or a relaying node just before) 

and the end node is defined, and simple flooding is executed 

only inside the zone. When a node receives a packet, it does or 
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does not rebroadcast the packet depending on whether it is 

inside the zone or not. 

 

 However, these location-based routings generate a large 

number of packets because each node informs its own location 

data to each other among neighbors that results in large power 

consumption. As for the directional flooding, it is not clear how 

to define appropriate transmission zone. On the other hand, 

when communication infrastructure is unavailable in the 

disaster situation, it is concerned that topological-based routing 

cannot be used due to presupposition that IP address must be 

assigned to each node. Therefore, we aims at realizing 

broadcast-based data transmission with less or without 

HELLOs and without definition of transmission zone. Below, 

we firstly consider broadcast by simple flooding as the easiest 

communication means over MANET to compare with our 

proposal. 

 

2.1 Simple Flooding 

 Simple flooding (SF) is widely used as a classic 

information delivery method of the broadcast. A basic 

algorithm of SF is as follows. 

1. An initiator node creates a message and broadcasts a 

packet containing the message around each nodes within 

one-hop radio area. 

2. Each node that receives a packet rebroadcasts it in a same 

manner as step 1 if it receives the packet for the first time. 

While the packet has been already, the node discards the 

packet. 

 SF does not require assigning IP address to each node, 

and is an information delivery method in order to distribute 

information to all nodes in the network. Therefore, if SF is used 

to send information to a specific node or an area, it generates 

many redundant packets in the directions other than that to a 

destination and causes more power consumption. 

 A next part explains an information discovery method 

related to a specific node based on the next-hop forwarding 

algorithm by applying greedy forwarding without using IP but 

with use of location data provided by GPS. And this method 

does not use Hello message explicitly to soften the problem of 

next-hop forwarding method as described below. 

2.2 A method of information discovery using 

GPS over MANET [2] 

 As an existing method of information discovery using 

GPS over MANET, a method has been proposed that aims to 

reduce a redundant packets and power consumption in a case 

of not using IP address. The algorithm is as follows. 

1 As shown in Fig. 1(a), the start node identifies the 

destination and the neighborhood of the destination. It 

finds its own location using GPS, and determines an angle 

“a” on either side of the line that connects itself with the 

destination. Within the one-hop radio, the area bound by 

angle “a” is called the reply area, and angle “a” is called 

the reply area angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Step 1 

(a) Outline of the method (Step 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Step 2 

(b) Outline of the method (Step 2) 

 

Fig. 1 Outline of the method 

2 As shown in Fig. 1(b), the start node broadcasts a packet 

that queries whether the recipient of the packet is the 

“target node” that holds information about the destination. 

3 A node that has received a query packet, recognizes its 

own location using GPS, and 

3.1  if it is the target node, it broadcasts a reply packet 

declaring that it is the target node; 

3.2  if it is not the target node and is located within the reply 

area, it broadcasts a reply packet declaring that it is not 

the target node and also indicating its location coordinates. 

4 If the start node receives a reply packet declaring that the 

sender is the target node, the start node requests it to send 

the information about the destination. The node sends the 

target information using an existing routing protocol, 

such as DSR (The Dynamic Source Routing) [6], with its 

location as the origin if IP addresses are already available. 
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In case IP address are unavailable yet, some other 

methods such as location aided routing or broadcast will 

be used. If the start node receives no reply packet 

declaring that the sender is the target node, it calculates 

the distance between each node from which it received a 

reply and the destination based on the location 

coordinates included in the reply packet, and sends a 

request packet (RQP) to the node nearest to the 

destination. 

5 The node that has received the RQP repeats steps 2 

through 4 successively, just as the start node. 

 This algorithm of method realizes suppressing redundant 

packets because of not broadcasting to each nodes except the 

destination node. In addition, it realize reducing the send and 

receive times of each nodes because of determination of the 

angle. 

2.3 Problems of existing methods 

 In case that information is distributed not using IP address 

when communication infrastructure is unavailable, SF 

generates a lot of redundant packets in broadcasting to reach a 

particular node. Furthermore, routings such as a method of 

information discovery using GPS over MANET also generate 

a lot of redundant packets because each nodes exchange 

location data to each other. Moreover, local maximum problem 

may occur and cause the loss of packets due to selection of a 

node with the nearest distance to destination node as shown in 

Fig. 2 [5]. 

 

 

 

 

 

 

 

        S                                                         D 

 

 

 

 

 

Fig. 2 Local maximum 

 

3 Proposed method 

 Based on the existing methods and background above, we 

propose an efficient transfer method without using IP address. 

In the supposed environment, it is assumed that each node can 

obtain its own location data by using GPS and coordinate of 

destination area. In addition, it is also assumed that it is 

difficult to assign IP address to each node due to the physical 

disruption of communication infrastructure. Each node is a 

mobile information device and can broadcast data on the 

IEEE802.11 wireless LAN. 

3.1 Requirements 

 The requirements for the method are as follows: 

- It does not require routing methods based on IP address but 

only broadcasting. The idea comes from the problem that IP 

address assignment is difficult in case of infrastructure 

disruption including DNS service due to disaster. 

- Each node transfers information to destination area with a 

light processing burden to suppress redundant flooding and to 

reduce redundant packets. A mobile information device should 

suppress power consumption as much as possible and reducing 

redundant packets directly lead to suppressing power 

consumption. 

- Moreover, proposed method achieves high data reachability. 

3.2 Algorithm for forwarding 

1 Initiator node broadcasts a packet including location data 

of both itself and destination in addition to data. 

2 A node that receives the packet calculates two distances 

by referring to location data of initiator node, destination 

node and itself. One is the distance between itself and the 

destination node. The other is that between the initiator 

node and the destination node. At this time, the node 

rebroadcasts if it is nearer to the destination than the 

initiator node, or the node does not rebroadcast if not. 

Furthermore, even if it is the case above, the node does 

not rebroadcast either in the case that the node receives 

multiple number of the same information packets within 

random time, before sending. 

3 The step 1 and 2 are repeated until the destination node 

receives the packet. 

4 If a destination node receives the same packets more than 

twice, the packet from second is discarded. 

3.3 How to realize the requirements 

 Our proposal executes information transmission by only 

broadcasting, IP address is not needed. The number of 

redundant packets can be reduced because all nodes does not 

rebroadcast but some limited nodes rebroadcast. In addition, 

unlike the method that a node determines a relay node one by 

one such as next-hop forwarding method, high data 

reachability is expected to be achieved with reducing 

redundant packets because only limited number of node relays 

packets. 

4 Evaluation 

 This section evaluates the proposed method in 

comparison with the existing method by use of simple network 

simulator that is written in a script language.  

      An invisivle route      

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 511



4.1 Simulation environment and conditions 

 In location-based routing, data reachability changes 

significantly depending on the number of nodes in the area.   

 The simulation conditions are shown in Table 1. 

Number of nodes (N) 50, or 50～100 

Trials 1000 

Simulated area (map) 1000m × 600m 

Radio coverage (radius) 200m 

Reply area angle (a) 150° 

Distance of destination Middle, or long range 

 

Therefore, the reachability evaluation is made for various cases 

of the number of nodes, i.e., from 50 to 100 nodes. And in the 

case of evaluation of total number of sent and received packets, 

number of nodes is fixed to 50 nodes. Each node is set in the 

area randomly and there is 1000 map patterns. The simulated 

area is 1000m x 600m and the radius of the radio coverage of 

each node is 200m. Reply area angle in Fig. 1 is 150 degrees 

because the existing study shows 150 degrees is optimum value. 

We prepare two patterns of distance from the initiator to the 

destination: middle range distance and long range. The middle 

range sets the initiator node on the center of the simulated area 

and the destination node on the edge of northeast of the 

simulated area. The long range sets the initiator node on the 

southwest and the destination node on the northeast. If each 

node receives the same packets less than 3 times within a given 

random time, each nodes can rebroadcast. 

4.2 The contents of evaluation 

 The evaluation is made by comparison among SF (section 

2.1), discovery (section 2.2) and our proposal for (a) the total 

number of sent and received packets and (b) packet 

reachability. 

 As for the comparison (a), all broadcasted packets and 

received packets in the network are counted in SF. The total 

number of packets including query packets, reply packets, 

request packets and data packets is counted for the discovery. 

All the broadcasted packets and received packets are counted 

for our proposal. It is desired to reduce as much as possible 

with keeping high data reachability. As for (b), we count 

probability of reaching the destination, i.e., how many times in 

1000 times simulation sent packet is reached to the destination, 

by varying the density of the node (that is number of nodes) in 

the simulated area. It is desired that the probability of reaching 

the destination comes up to 100% as much as possible. 

4.3 Simulation results and consideration 

 The Evaluation results are shown in Fig. 4 to Fig. 6. Fig. 

4 and Fig. 5 show the evaluation results for (a) total number of 

sent and received packets averaged for 1000 trials of the map 

patterns. Fig. 6 shows probabilities of reaching the destination 

by varying node density from 50 nodes to 100 nodes averaged 

among 1000 times trials for each density. 

 As shown in Fig. 4, comparing the proposed method with 

the existing discovery and SF, we succeeded in reducing a 

number of redundant packets for middle range distance case, 

since it shows that total number of sent and received packets 

can be decreased. As shown in Fig. 5, we succeeded in 

reducing for the long range distance case as well. However, it 

must be avoided to decrease reachability by reducing total 

number of packets. As shown in Fig. 6, the proposed method 

maintains more high data reachability than the existing 

methods. From the above, it can be seen that proposed method 

is efficient. 

 

 

 

 

 

 

Fig. 4 Total num. of sent and received packets (middle) 

 

 

 

 

 

 

Fig. 5 Total num. of sent and received packets (long) 

 

 

 

 

 

 

Fig. 6 Data reachability 
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5 Conclusion 

 In this paper, we propose an efficient broadcasting 

information transfer method using location data without using 

IP address when communication infrastructure is unavailable 

in such a case as disaster situation. And this proposal is 

evaluated by simple network simulator. The results of this 

evaluation shows we have succeeded in reducing a number of 

redundant packets and achieving high data reachability 

compared with existing methods. 

 This proposal is on the presupposition that each nodes are 

fixed. Therefore, we should plan to study that it is expected to 

improve the results if each nodes move on. 
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Energy Efficient Data-Driven Networking Processor
with Autonomous Load Distribution Capability
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Abstract— Energy efficiency is one of the crucial issues
for the processors realizing battery-operated devices to
lengthen the lifetime of wireless network systems. CUE, a
data-driven processor, is one of promising energy-efficient
processors because of its real-time multiprocessing with
essential power consumption. The CUE is realized by an
elastic circular pipeline whose elastic capability enables to
preserve processing time naturally even when the number of
valid data exceeds a given design target temporarily due to
the fluctuation of input traffic.

In this paper, a data-driven networking processor with
autonomous load distribution capability is proposed to pro-
vide higher-level elastic capability against the larger input
traffic fluctuation without any additional controls resulting
in the degradation of the energy efficiency. In the processor
proposed, the CUE’s in chip multiprocessor or many-core
architectures are deconstructed and every processor module
is placed on a parallelized circular pipeline in order to
integrate the distributed elastic capabilities.

Keywords: data-driven processor, real-time multiprocessing, self-
timed pipeline, many-core processor, load distribution

1. Introduction
Wireless network systems such as wireless M2M

(machine-to-machine) system and wireless sensor network
system are one of promising technologies to realize not only
convenience but also safety for both human life and social
infrastructure. Since they are mainly composed of battery-
operated devices and the power budget of the battery is
strictly limited, energy efficiency of processors is one of
crucial issues to lengthen their lifetime.

Each processor in such battery-operated devices executes
both signal processing and networking protocol handling
programs. Although the processing load of the processor
varies depending on the input traffic fluctuating dynamically,
the execution of those programs is imposed strict time
constraints. That is, the processor should provide not only
thrifty power consumption but also real-time multiprocessing
against the load fluctuation.

To realize real-time multiprocessing with essential power
consumption, the authors have already studied a series
of data-driven processor, named CUE [1], [2]. The CUE
realizes data-driven processing scheme in which operation

execution is initiated on the arrival of input data as long as
computational resources (i.e. pipeline stages) are available,
thus it realizes the real-time multiprocessing without extrin-
sic program-execution overheads such as context switching
and interrupt handling resulting in power dissipation. More-
over, the CUE is realized as a circular pipeline structured
by self-timed elastic pipeline in which each pipeline stage
autonomously transfers valid data based on local negotiation
between adjacent pipeline stages. As a result of this local
data transfer, the valid data in the self-timed elastic pipeline
can be transferred between the pipeline stages even when
the other valid data is hold at a following pipeline stage.
Therefore, the CUE provides elastic capability against in-
stantaneous load fluctuation without any additional controls
or circuits.

In order to improve the energy efficiency, chip multi-
processors or many-core processors are commonly used to
convert the parallelism inherent in target programs into core-
level parallel execution. The core-level parallel execution
increases the throughput and thus makes it possible to
lower the supply voltage and decrease power consumption
while retaining the throughput, i.e. the energy efficiency
can be improved compared with the single-core processor.
In the chip multiprocessor or many-core processors, the
processing load in each core may vary depending on the
input traffic, and the instantaneous increase of the input
traffic increases the number of valid data in the pipeline
of the core. Generally, the maximum number of acceptable
valid data is given as a design target, and clock-synchronized
pipelines can deal with the valid data only when the number
of valid data is within the design target.

In contrast, CUE-based chip multiprocessor or many-core
processor can deal with the load fluctuation beyond the de-
sign target. Already the chip multiprocessor implementation
of the CUE has been studied and its ultra-low-power feature
has also been proven [2], [3], [4]. Existing CUE-based chip
multiprocessors are realized by interconnecting the CUE’s
by using a token router which is a switch-based network
and realized by self-timed elastic pipeline [4]. By virtue of
the elastic capability, the circular elastic pipeline can accept
the valid data when the number of valid data is over the
design target. In such crowded circular elastic pipeline, data
processed in a pipeline stage may wait to be transferred until
the following pipeline stage becomes available. This transfer
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wait time can be absorbed within the elastic capability.
However, the transfer wait time increases the processing time
of the CUE when it exceeds the elastic capability. Moreover,
the continual occurrence of the processing time increase may
result in the violation of the real-time multiprocessing. Such
situation where the processing time increase continually
occurs is called overload. Consequently, the processing time
increase should be avoided in order to avoid the overload
situation.

In this paper, a data-driven networking processor with
autonomous load distribution capability is proposed to avoid
the processing time increase by extracting the elastic capa-
bility exhaustively instead of additional controls or circuits
resulting in the degradation of the energy efficiency. As long
as the processing time increase is absorbed by the elastic
capability, the processing time of the CUE is retained and
only essential power is consumed. That is, the maximum
number of valid data in the circular elastic pipeline absorbing
the processing time increase fully is the design target to
guarantee the real-time multiprocessing with essential power
consumption. As for the chip multiprocessors or many-core
processors, the elastic capability is distributed over the cores
and thus the transfer wait time in a core can be absorbed
only by using the elastic capability of the core even when
the elastic capabilities over the other cores are leftover.
Therefore, the design target can be enhanced if the leftover
elastic capabilities are utilized and the enhanced design
target leads to the improvement of the energy efficiency.
To realize the enhancement of the design target of the
chip multiprocessor or many-core processors, the cores are
deconstructed and every processor module is placed on a
circular elastic pipeline to integrate the elastic capabilities
distributed over the cores. The effectiveness of the processor
structure proposed is discussed with the object of the design
target.

2. Data-driven networking processor
To guarantee the real-time multiprocessing with essential

power consumption, in the circular elastic pipeline of the
data-driven networking processor CUE, the number of the
valid data should be within the design target. The design
target is determined depending on the elastic capability.

In this section, the operating principle of the circular
elastic pipeline is explained, and the elastic capability is
discussed focused on the signal propagation time. In addi-
tion, the leftover elastic capability of the chip multiprocessor
configuration of the CUE is discussed.

2.1 Circular elastic pipeline
The CUE’s circular elastic pipeline is realized by self-

timed elastic pipeline (STP). In the STP, only pipeline stages
with valid data are driven exclusively as a consequence of
the localized data transfer called handshake. The valid data
is called token.
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Fig. 1: Self-timed elastic pipeline.

Figure 1 shows the basic structure of the STP in which
each stage consists of a data-latch (DL), functional logic
(FL) and transfer control unit (C). The STP employs four-
phased handshake [5]. Based on the four-phased handshake,
the tokens in the STP are transferred between adjacent
stages by using transfer request signal (send signal) and
acknowledge signal (ack signal) which are based on negative
logic, as follows.

• (0) Reset: After the assertion of the reset signal, each
C negates both its send signal and ack signal.

• (1) The C asserts its ack signal after its send signal is
asserted.

• (2) After the assertion of the ack signal, the preceding
C negates its send signal.

• (3) After the negation of the send signal, the C asserts
both its gate open signal (cp) and its send signal and
concurrently it negates its ack signal, only if the ack
signal from the succeeding C is negated. As a result,
the token is latched in the stage to which the C belongs.

• The succeeding C repeats the above steps similarly to
the C.

This handshake not only concentrates dynamic power
consumption into the pipeline stages with valid data but also
provides the CUE with elastic capability.

The elastic capability can be defined by the propagation
time of the signals in the STP. As shown in figure 2, the
minimum time for handshake at a pipeline stage is(Tf+Tr),
whereTf andTr denotes the send signal propagation time
and the ack signal propagation time respectively. When the
temporal distanceD(t) which means the signal propagation
time on the critical path of the circuit between two adjacent
tokens is equal to or greater than(Tf + Tr), the token can
be transferred atTf because the ack signal arrives before
send signal andTr is overlapped. On the other hand, when
D(t) is temporarily less than(Tf + Tr), the transfer of the
token is postponed untilD(t) becomes equal to or greater
than (Tf + Tr). This postponed time is called transfer wait
time in this paper.
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Fig. 2: Timing chart of handshake.

���������������	
��
��

���

���� ����

���� ����

��������	
����������	��
���	

�������
	����
������������
���	��

���������������

�

�

�

�
� �

� �

Fig. 3:Data-driven networking chip multiprocessor (4-core).

The transfer wait time can be absorbed if it is equal to
or less than the temporal marginD(t) − (Tf + Tr) of the
following token. That is, the sum of theD(t) in the circular
elastic pipeline determines the elastic capability to absorb the
transfer wait time, and thus it should be exhaustively utilized.
However, the current chip multiprocessor configuration of
the CUE may leave a part of the elastic capability.

2.2 Elastic capability in existing chip multipro-
cessor

The chip multiprocessor version of the CUE can be easily
realized by interconnecting the CUE’s by using a token
router, as shown in figure 3. The token router is a switch-
based multi-stage interconnection network whose switch is
realized by the merge (M) and branch (B) stages.

The circular elastic pipeline realizes the circular data-
path indispensable to execute programs directly. Figure 4
shows the functional block diagram of the CUE. The CUE
consists of matching memory (MM), program storage (PS),
functional processing unit (FP) and memory access (MA).
As shown in the figure 4(a), the CUE processors are realized
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Fig. 4: Data-driven networking processor: CUE.

by a circular pipeline connecting the MM, PS, FP and MA
by using merge and branch stages. The merge stage accepts
tokens from two preceding stages in order of arrival and
transfers the tokens to a succeeding stage while the branch
stage transfers each token to one of two succeeding stages
selectively. With this structure, the concurrent operations
of the target programs can be naturally exploited over the
circular pipeline as long as the pipeline stage is available.

In the CUE processors, each operand is packetized with
information required to execute operations into token in
order to execute operations independently from each other.
The information of the token is called tag. The tag consists
of operation code, destination node number and generation.
The generation is the number used to identify the stream
to which the data belongs and specify the order of the data
in a stream. On the other hand, every operation is assigned
unique number which is called destination node number, and
the destination node number is used to identify an operation
to which the data is input.

The MM, PS, FP and MA are used to execute an operation
according to the tag. The MM provides temporal storage
to keep tokens whose operation code represents binary
operation, until the arrival of the paired tokens, and it outputs
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either atoken containing two operands for binary operation
or a token containing single operand for unary operation.
To realize the pairing of tokens, the MM is realized by a
content-addressable memory (CAM) whose key consists of
the generation and destination node number. The operand
or a pair of operands in the token output from the MM is
processed according to the operation code in the FP, and the
FP outputs a token whose data is the result of the operation.
After that, the operation code of the token is replaced with
that of an operation specified by the destination node number
of the token in the PS storing operations of the target
programs.

The circular elastic pipeline is shared among the oper-
ations in order to reduce the circuit area which is rather
limited in early sub-micron process technology era and is
becoming inconsequential compared to power consumption
in deep sub-micron and beyond era. As for the power
consumption, the MM may occupy more than a half of the
power consumption required to execute an operation because
the detection of the arrival of the tokens in the MM is
typically realized by using the CAM in which the keys stored
are thoroughly compared to the input key for every incoming
token.

Fortunately, more than a half of the operations of the
protocol handling can be executed without driving the MM.
Such operations are classified into two types: single-operand
operations and single-operand with constant operations. An
example of the former is an operation to realize incre-
ment/decrement operation and that of the latter is an op-
eration to read/write memory with absolute address. These
two types of operations are collectively called single-token
operations, because they can be executed after an input token
arrives.

To realize the essential power consumption, an optimized
circular pipeline has been proposed [2]. In the optimized
circular pipeline, a bypass route is realized to execute the
single-token operations without driving the MM, as shown
in the figure 4(b).

Figure 5 shows the UDP/IP handling program’s processing
time measured by using the test chip of the latest CUE,
named ULP-CUE [2]. Although the processing time is kept
to be approximately constant regardless of multiplicity which
means the number of streams processed concurrently, the
processing time slightly increases when the multiplicity is 4.
This is because the number of tokens temporarily exceeds
the design target. As a result, theD(t) becomes temporarily
less than(Tf + Tr) and thus the transfer wait time appears
on the processing time.

The problem is that the transfer wait time in a CUE can
be absorbed only within the sum ofD(t) − (Tf + Tr) in
the CUE and thus it may appears on the program execution
time even though the sum ofD(t) − (Tf + Tr) is left
in the other CUE’s in the chip multiprocessor. Generally,
enhancing the design target requires finer pipelining of the
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Fig. 5: Processing time of CUE.

processor modules and thus it results in the increase of
the power consumption. Consequently, the leftover elastic
capability should be exhaustively utilized to improve the
energy efficiency.

3. Energy efficient data-driven network-
ing processor architecture

In the CUE, the concurrency of the operations is naturally
deployed over the circular elastic pipeline by virtue of
the self-timed elastic pipeline (STP). As described in the
previous section, during the deployment of the concurrency,
transfer wait time is absorbed as long as the number of
tokens is within the design target. However, when the
number of the tokens exceeds the design target, the transfer
wait time appears and increases the processing time of the
CUE.

In this section, the design target is modeled by focusing
on the elastic capability and a circular elastic pipeline to
enhance the design target temporarily is discussed.

3.1 Model of design target
In order to keep the number of tokens in the circular

elastic pipeline within the design target, target programs
should be designed to suppress the fluctuation of the number
of tokens. With such programs, the number of tokens may be
constant while a token laps the circular elastic pipeline [6].
Based on this fact, an assumption that the number of tokens
remains while a token laps the circular elastic pipeline is
introduced, and the design target is modeled based on the
assumption.

In the circular elastic pipeline,(Tf + Tr) of a pipeline
stage is usually different from that of the other pipeline
stages. For example, the arbitration at a merge stage may
postpone the arrival of the ack signal and thus theTr may
be increased during the arbitration. Moreover, it is difficult to
strictly retain the designed signal propagation time through
circuit implementation phase in which unexpected delays are
produced by design tools and fabrication environment.
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Fig. 7: Minimum operation execution pipelines.

As shown in figure 6, by virtue of the handshake of
the STP, tokens autonomously attempt to keepD(t) ≥
Tmax, whereTmax denotes the largetst(Tf + Tr) in the
circular elastic pipeline. The tokens withD(t) ≥ Tmax are
transferred between stages atTf , and thus the sum ofD(t)

can be
∑

Tf at maximum. Based on these facts, the number
of tokens, which is denoted byPtotal, should satisfy equation
(1) to assureD(t) ≥ Tmax for each token.

∑
Tf ≥ Tmax × Ptotal (1)

Based on the equation (1), the design target, which is
denoted byPDT , is defined by equation (2).

PDT = ⌊
∑

Tf

Tmax
⌋ (2)

3.2 Circularization of operation execution
pipelines

In the chip multiprocessors, it is difficult to forecast the
runtime fluctuation of the number of tokens (Ptotal) for each
core, and thus it is impossible to share the leftover elastic
capability without additional control or circuit which enables
dynamic load control. However, the tokens in the circular
elastic pipeline autonomously retains theirD(t) ≥ Tmax as a
result of the handshake, as shown in the figure 6. That is, the
temporal marginD(t) − Tmax can be shared among tokens
without no additional control or circuit. This fast leads to
the circularization of the operation execution pipelines.

As shown in the figure 4(b), a single token operation can
be executed with only PS, FP and MA in principle and the
binary-operand operations are executed with PS, FP, MA and
MM. Based on these facts, the operation execution pipelines
can be categorized into two types: unary-operand operation
type and binary-operand operation type. Figure 7 shows
these pipelines. To realize the execution of the unary-operand
operation, PS and FP/MA are used to fetch operation and
execute a given operation, as shown in the figure 7(a). On the
other hand, to actualize the operation between two operands,
the operand arrived first should be temporally stored until
the other operand arrives, and thus the MM is introduced in
front of the PS, as shown in the figure 7(b).

To circularize the operation execution pipelines, the unary-
operand operation execution pipeline and the binary-operand
operation execution pipeline is unified to realize a building
unit corresponding to a CUE, and the output of the building
unit is connected to the input of the other building unit.
Figure 8 shows a circularized operation execution pipeline
corresponding to a 2-core chip multiprocessor. In the cir-
cularization, the transfer control of the PS and FP/MA is
modified to provide bypass routes to drive the MM only
for the binary-operand operations. Such transfer control
modification can be realized by using already-proposed bi-
directional transfer control circuit [7]. The bi-directional
transfer control circuit can provide 2-input and 2-output for
every pipeline stage. It is true that the structure proposed
requires the bi-directional transfer control circuits but they
are less than the interconnection network in the chip multi-
processor.

In the circularized operation execution pipeline, target
programs can be easily assigned to the PS’s. As described in
the section 2, a unique destination number is assigned to each
operation, and the operation is stored to the PS. The tokens in
the circularized operation execution pipeline flow circularly,
and thus the operations are also assigned circularly. This
can be easily realized by modulo operation, as shown in
figure 9. In the data-driven programs, a sequence number
named rank is commonly used to identify the location on the
critical path of the program. The figure 9 shows an example
of the case where the number of building units is 2. In this
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Fig. 9: An example of program assignment to circularized
operation execution pipeline.

case, the reminder of the modulo-2 operation against the
rank indicates the PS to which the operations are stored.

With the circularization discussed above, the temporal
marginD(t) − Tmax can be shared among all of the tokens
in the circularized operation execution pipeline without any
additional control or circuit.

3.3 Parallelization of circular pipeline
The circularized operation execution pipeline can deploy

the concurrent operations of the target programs over itself
naturally as a result of the handshake of the self-timed
elastic pipeline. However, the instantaneous increase of the
concurrency of the operations may result in the increase
of Tmax of the largest pipeline stage, and thus the design
targetPDT may decrease resulting in the fear to increase
processing time of the target programs. ThereforeTmax

should be kept constant even when the concurrency of the
operations increases instantaneously.

The instantaneous increase of the concurrency is brought
in the circular operation execution pipeline by the copy of

tokens. For instance, the output tokens of the copy at rank=1
program shown in the figure 9 are applied discrete operations
at rank=2. The copy is realized by making the handshake
twice for a token, and thus(Tf + Tr) of the pipeline stage
realizing the copy doubles instantaneously during the copy.
That is,Tmax may double due to the copy.

To absorb such instantaneous increase of theTmax and
retain thePDT , the circularized operation execution pipeline
is parallelized. Figure 10 shows the parallelized circular
operation execution pipeline. The parallelization provides
two pipelines, and thus the pipeline stages which are busy or
handshaking can be bypassed by transferring the tokens to
the parallel pipeline stages. In this figure, it is assumed that
the copy is realized in the FP/MA. To assure the operation
fetch in the two pipelines, the parallel PS’s store the same
operations. The number of the FP/MA is 4 and thus the
throughput can be the same as that of a circularized operation
execution pipeline with 4 building units. Moreover, one MM
is shared between the parallel two pipelines. This is because
the number of binary-operand operations is expected to be
less than that of the unary-operand operations.

With the parallelized circular operation execution pipeline,
the elastic capabilities over the chip multiprocessor can be
integrated by virtue of the circularization of the operation
execution pipelines, and thePDT can be retained against
the instantaneous increase of the concurrency as a result of
the parallelization of the circular pipeline.

3.4 Estimation of elastic capability
The pipeline proposed provides the CUE with the in-

tegrated elastic capability against input traffic fluctuation.
To show the effectiveness of the pipeline proposed, the
integrated elastic capability is estimated quantitatively based
on the ULP-CUE and UDP/IP program which are explained
in section 2.

TheTmax and
∑

Tf of the ULP-CUE are measured by the
post-layout circuit simulation of the ULP-CUE, and they are
approximately3nsec. and 14nsec. respectively. According
to these measured results and the eq. (2), thePDT of the
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Fig. 10: Parallelized circular operation execution pipeline.

ULP-CUE is 4. Moreover, thePtotal during the execution
of the UDP/IP with one input packet is 1. That is, it may
be expected that 4 packets can be processed simultaneously
without the processing time increase. However the measured
processing time indicates that only two packets (i.e. mul-
tiplicity=2) can be processed without the processing time
increase, as shown in the figure 5. This is because thePDT

decreases instantaneously at runtime.
On the other hand, the parallelized circular operation ex-

ecution pipeline makes it possible to not only keep thePDT

but also integrate the elastic capabilities distributed over
cores. If two ULP-CUE’s are deployed over the parallelized
circular operation execution pipeline, thePDT becomes 16=
2×2×4 because the parallelized circular operation execution
pipeline realizes two parallel pipelines for two ULP-CUE.
As shown in the figure 5, the processing time of the UDP/IP
program is approximately 80µsec., and thus it is expected
that the real-time multiprocessing can be guaranteed without
any additional controls even when the number of input
packets becomes 16 from 1 during approximately 80µsec.

The circuit size of the parallelized circular operation
execution pipeline deploying two ULP-CUE’s is comparable
with that of a chip multiprocessor with four ULP-CUE’s.
However, in the chip multiprocessor, it is impossible to
distribute the input packets with different data length (i.e.
different processing load) to cores properly, and thus the
PDT of the chip multiprocessor with four ULP-CUE’s is
determined by that of one ULP-CUE. Moreover, the pro-
cessing time in the chip multiprocessor increases due to
the interconnection network, and thus the energy efficiency
degrades. In contrast, the processor proposed enables to
increase thePDT in proportion to the number of building
units.

4. Conclusions
In this paper, a data-driven networking processor with

autonomous load distribution capability is proposed to avoid
the processing time increase by exhaustively extracting the
elastic capability of the self-timed elastic pipeline. In the pro-
cessor proposed, cores are deconstructed and every processor

module is placed on a circular pipeline in order to integrate
the elastic capabilities distributed over the cores. Moreover,
the circular pipeline is parallelized to prevent the concurrent
execution of the operations from being a bottleneck of the
circular pipeline. With this parallelized circular pipeline, the
amount of the acceptable load fluctuation can be scaled along
with the number of original cores, and thus the real-time
multiprocessing can be preserved against the input traffic
fluctuating dynamically without any additional controls. The
result of the quantitative evaluation on an actual application
program will be presented at conference.
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Abstract— This paper presents a multimode and multichan-
nel FFT (MM-FFT) circuit for mobile broadband wireless
access (MBWA), wireless local area network (WLAN) and
wireless personal area network (WPAN) applications. Using
the proposed MM-FFT architecture based on the self-timed
pipeline (STP) circuit, variable-point and multiple-streams
FFTs are capable of achieving a high throughput even
if each FFT point and sampling rate are different from
others. The proposed architecture improves its performance
by utilizing both spatial and pipeline parallelism inherent in
FFT calculation.

The proposed MM-FFT circuit was designed and syn-
thesized using a 65 nm CMOS standard cell library. The
post-synthesis simulation results indicated that the proposed
circuit could achieve 4.0 G sample/s at maximum, which is
5 times faster than the original MM-FFT circuit.

Keywords: heterogeneous wireless communication, multimode
and multichannel, FFT, self-timed pipeline, spatial parallelization

1. Introduction
The amount of data traffic on wireless networks has been

increasing exponentially in recent years. Meanwhile, usage
of smart wireless devices has widely spread. To accommo-
date such huge traffic and provide uniform user experience
in ubiquitous environment, heterogeneous wireless network
(HetNet) has been investigated [1].

Our research project aims to establish a self-timed pipeline
(STP) implementation for the dependable wireless systems
(DWS) [2] supporting multimode and multiband interfaces
like HetNet. Since the STP circuit inherently has a clockless
passive operation mode [3], [4], it can flexibly process any
combination of signal streams even if they are sampled at
different frequencies.

Digital modulation techniques employed in typical Het-
Nets are based on orthogonal frequency-division multiplex-
ing (OFDM) or single-carrier frequency-division multiplex-
ing (SC-FDM), and fast Fourier transform (FFT) circuit is
one of key components in DWS stations and user terminals.
This is because FFT is utilized not only for digital modu-
lation but also for channel estimation [5] realizing seamless
handover among heterogeneous cells. That is, a multimode
and multichannel FFT module adaptive to different charac-
teristics enables us to select optimum modulation, channel,
and network dynamically depending on individual wireless

communication condition. This sort of seamless handover in
DWS will also contribute to energy efficiency.

There have been many studies on high-speed FFT circuits
[6], [7], [8], [9] which can be applied to 2.4 G sample/s wire-
less personal area network (WPAN) standard. Flexible-radix-
configuration multipath-delay-feedback (FRCMDF) FFT cir-
cuit [6] supports triple modes for WPAN, wireless local area
network (WLAN), and mobile broadband wireless access
(MBWA) applications. However, this circuit operates only
in a single mode at the same time. Therefore, a basic
architecture of multimode and multichannel FFT (MM-FFT)
circuit based on the STP circuit was proposed in [7], its
performance could not reach to 2.4 G sample/s required for
WPAN. This paper proposes spatial parallelization technique
of the previous MM-FFT circuit and evaluates it by 65 nm
CMOS circuit design. Post-synthesis simulation results show
the proposed MM-FFT circuit achieves 4.0 G sample/s in
512-point single mode and 2.0 G sample/s in 512-point dual
mode.

2. Self-Timed Pipeline
Each pipeline stage of the STP consists of a data latch

as a pipeline register, function logic, and transfer control
unit named C-element. The basic structure of the STP is
shown in Figure 1. The data latch, function logic, and C-
element are denoted by DL, Logic, and C, respectively. The
data is packed with tag into packet form, and the packet
is transferred between the pipeline stages as a result of the
communication between the C’s in the adjacent stages. The
communication is performed stage-by-stage according to the
4-phase handshake protocol [10] by using transfer request
and acknowledge signals which are called send signal and
ack signal respectively. The stage-by-stage transfer unit
holds a state of each pipeline stage independently, and the
states of the stages are defined below according to the
handshake protocol. Here, the C-element in thei-th stage
is denoted byCi.

• Reset state: The send and ack signals are negated after
the assertion of the reset signal.

• Idle state: TheCi waits until thesendi is asserted.
• Busy state: Thesendi is asserted at the beginning of

the transfer of the packet from the precedent (i− 1)-th
stage. After the assertion of thesendi, theCi asserts its
ack signalacki. In response to the assertion, theCi−1

negates thesendi. After that, if and only when both
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Fig. 1: Self-timed pipeline.

the sendi and acki+1 are negated, theCi asserts the
ToDLi to open theDLi and it assertssendi+1 at the
same time. As a consequence, the packet is latched in
the (i+1)-th stage, and thei-th stage goes to idle state.
Otherwise, theCi waits until the acki+1 is negated
while it keeps its send and ack signals.

The successive stages receiving the assertion of the send
signal go to busy state and their C’s repeat the same transfer
control sequence individually. Forwarding latency of a C-
element for transferring the data from a DL to the succeeding
DL is adjusted to delay time of a critical path in the stage,
including the response time and setup time of the DL. Its
backward latency is adjusted to the hold time of the DL.

This stage-by-stage transfer control of the STP suggests
the timing of the power controls. That is, in the idle
stages, the circuit of the DL and combinational logic can be
powered-off, i.e., the supply-voltage can be cut, while that
of the C and sequential logic can be powered-down, i.e., the
supply voltage can be lowered enough to keep the circuit’s
states [11]. Moreover, in the busy stages, those circuits
should be powered-down enough to assure the switching of
the transistors, i.e., the supply-voltage can be lowered as
long as the required switching speed is achieved [12].

3. Parallelism in FFT
The single carrier FDE module performs on the receiver

side after the FFT calculation to combat frequency-selective
fading and phase distortion [5]. To equalize the transmitted
data in frequency domain, a pilot signal is used for esti-
mating the transfer function and the noise power in the air
channel. Therefore, after the received data are transformed
from time domain to frequency domain by FFT, they are
equalized based on estimated results and then retransformed
to time domain by IFFT.

In the case of OFDM, FFT is also used for modulating
data onto each subcarrier and IFFT is for demodulating
data on each subcarrier. Furthermore, in multiple-input

multiple-output (MIMO) antenna configuration, a multichan-
nel FFT/IFFT circuit is necessary in a transmitter/receiver.

Therefore, we aim to implement an MM-FFT circuit in
which multiple FFT operations of variable sizes are si-
multaneously performed for multiple input signal sequences
sampled in different frequencies.

Originally FFT is a fast version of discrete Fourier trans-
form (DFT). N point DFT is defined by the equation (1).

X(k) =

N−1∑
n=0

x(n)W kn
N

W kn
N = e−j2πkn/N , k = 0, 1, ..., N − 1

(1)

where the input sequence of N complex datax(0), x(1),
…, x(N − 1) is transformed into an N-periodic sequence of
complex data.

In the Cooley-Tukey FFT algorithm, radix-r butterfly
operations are recursively applied toN input signals, and
the depth of recursion islogrN . In each recursion, the
number of butterfly operations (i.e.,r-point FFT) is N/r
and they can be calculated in parallel because there is no
data dependency among them. An example of a decimation-
in-frequency FFT (N=8, r=2) is shown in Figure 2. As seen
in this dataflow diagram, four butterfly operations can be
concurrently executed in each recursion step.

x(０)

x(４)

x(２)

x(６)

x(１)

x(５)

x(７)

x(３)

X(０)

X(４)

X(２)

X(６)

X(１)

X(５)

X(７)

X(３)

step0 step1 step2

Fig. 2:Dataflow diagram of radix-2 decimation-in-frequency
FFT (N=8).

If the dataflow diagram of FFT shown in Figure 2 is
interpreted based on the dynamic dataflow model [3], mul-
tiple instances of the same FFT diagram can be allowed
to be executed by introducing a channel identifier, which
differentiates an instance among them. In the same way, the
dataflow diagram of a butterfly operation can be interpreted
for multiprocessing of the butterfly if every data flowing the
diagram have a set of identifiersID, which is composed
of channel identifierch, step identifierstep, and butterfly
instance identifier within the stepbtf . In this case, it is
necessary to provide a function supplying an appropriate set
of operands with those identifiers and storing intermediate
data in the memory buffer. This parallel execution scheme
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in caseof radix-2 butterfly is illustrated in Figure 3. In the
figure, every operand and result of butterfly are identified
by ID(ch, step, btf) and multiple sets of operands are
issued from the commutator consecutively. The commutator
manages the number of operand sets for executable butterfly
instances, which represents the degree of parallelismPch.
At the same time, the commutator attaches appropriate
identifiers to those issued operands.

x0

x1

X0

X1

W

k

Commutator with buffer

Input sequences

with ID(ch)

Output sequences

with ID(ch)

Operands 

with 

ID(ch, step, btf)

Intermediate results 

with 

ID(ch, step, btf)

# of butterfly

instances: P

ch

# of FFT 

points: N

ch

Fig. 3: Parallel execution scheme of multiple butterfly in-
stances.

As long as the butterfly operation with a correct set of
identifiers is executed under dynamic dataflow model, valid
execution of multiple FFT calculations is guaranteed even if
the size of an FFTNch and the sampling frequency of its
input data sequence are different from others.

do {
btf += Pch;
if (btf >= (Nch/r)) {

step++;
btf %= (Nch/r);

}
} while ( step < logrNch);

Fig. 4: ID handling function in commutator.

Furthermore, it is noted that the topological connectivity
of signal flow graph of FFT shown in Figure 2 is invariant
but this graph can be modified to a uniform structure [7].
This uniform type of FFT structure allows the commutator to
fetchr operands from the buffer memory in parallel. Because
the memory access pattern is uniform at all steps, the buffer
memory can be simply composed ofr single-port memory
banks.

Figure 5 shows a dataflow graph representation of the
proposed parallel execution scheme of MM-FFT. Firstly, the
input complex data is stored in multi-bank buffer memory
consecutively. If a set of operands for the first butterfly
is ready to be computed, an instance of FFT is initiated
and Pch sets of identifiers IDs are issued at ID handling

module according to input data arrival. After that,r operands
are read from the buffer memory in parallel based on
the issued ID. Similarly, twiddle factors are read from TF
lookup table in parallel and radix-rbutterfly is calculated.
The r resultant data from the butterfly are written into the
buffer memory in parallel. Then, preparation of a continuous
butterfly operation is conducted as defined in Figure 4. After
executing the last butterfly in the FFT instance, the output
data read from the buffer memory are reordered.

Store Input

Read 

buffer

Radix 4 Butterfly

TF

Lookup

Write buffer

Reorder

End?

N point Complex Data

with ID(ch)

Yes

Butterfly ID (ch, step, btf)

N point Complex Data

with  ID(ch) 

No

ID handling

(ch, N

ch

)

Buffer

Fig. 5: Dataflow diagram of the radix-4 multichannel
scheme.

4. MM-FFT Architecture
The MM-FFT architecture was designed to process multi-

ple streams in parallel, where every stream can be calculated
in different mode, i.e., the number of FFT points or sampling
rate.

In order to realize the dataflow shown in Figure 5, it is
essential to maintain stable dataflow in the STP without
any pipeline bottleneck as well as to guarantee atomic
(i.e., read-after-write) accesses of intermediate data stored in
the buffer memory during execution. Therefore, the buffer
memory accesses must be integrated at the single STP stage.
Moreover, intermediate resultant data of radix-rbutterfly are
written in different buffer addresses from that of operands
when the uniform type of FFT structure is employed. Thus,
in our design, we adopt dual buffer memory modules each
of which is used for butterfly operations in either even step
or odd step of the FFT. It requires2Nch words SRAM for
Nch-point FFT. As a result, MM-FFT engine is designed as
shown in Figure 6 to utilize the passive operation mode of
STP. This FFT engine operates as follows.
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Fig. 6: STP implementation of the MM-FFT.

All data flowing in the pipeline has an operation code
op as well asID(ch, step, btf). The op is assigned one of
operations, i.e.,in, read, write, or out. Every stage in the
STP-based MM-FFT engine changes its operation depending
on op of the packet.

• input phase: Nch input data from a channelch consec-
utively arrive at one of input ports of the merge stage.
At that time, each input data is composed as a packet
form including a complex number,ch identifier, index
i(=0,...,Nch-1) andop(= in). The input data reaching to
the buffer memory stage is written in a place associated
with index i of the packet.

• instantiation phase: If op of a packet arriving at the
ID handler stage isin, an FFT for the channelch may
be instantiated. Only whenr operands necessary for the
first butterfly are stored in the buffer memory, an FFT
instance for the channelch is initiated. ID(ch, 0, 0)
for the first butterfly is issued withop(= read). After
that, succeeded butterfly instances are instantiated with
ID(ch, 0, 1),..., ID(ch, 0,Pch-1) within the allowable
degree of parallelismPch.

• read phase: If op of a packet arriving at the buffer
memory stage isread, r operands for thebtf -th but-
terfly instance are read out from the buffer memory
in parallel. Their addresses can be calculated from
ID(ch, step, btf). To allow those parallel accesses, the
buffer memory is composed of dualr-way memory
banks. If thestep is even, the operands are read from
the first set ofr-way memory banks. If odd, the second
set is accessed for operand fetches. At the same time,
(r − 1) twiddle factors necessary for the butterfly are
fetched from the twiddle factor lookup table in parallel.
Since the lookup table holds twiddle factors only in the
fourth quadrant, each lookup data needs the change of
quadrant by swapping the real and imaginary number,
or changing on one(or both) sign(s) of the number(s).

• butterfly phase: If op of a packet arriving at the

butterfly stage isread, a butterfly instance is executed
usingr operands andr − 1 twiddle factors.

• prerelease ID phase: Ifop of a packet arriving at the
ID handler stage isread, this stage prepares to write
r resultant data to the buffer memory. In the uniform
type of FFT, all results of a butterfly should be stored to
one of memory banks. Therefore, word length of each
memory bank is expanded tor × (length of a complex
word). By this expansion, all results are written at the
same time. In this prerelease ID phase,r results are
packed into one word withop(= write) to prepare for
the next writing phase.

• write phase: If op of a packet arriving at the buffer
memory stage iswrite, a packed result of thebtf -
th butterfly instance is written in the buffer memory.
Its address can be calculated fromID(ch, step, btf).
If the step is even, the intermediate result of the FFT
is written in the second set ofr-way memory banks.
If odd, the first one is accessed for the result storing.
After writing the result, the ID packet is transferred to
the ID handler stage. In this stage,ID(ch, step, btf) is
updated based on the function defined in Figure 4 and
then op is changed toread. If step exceedslogrNch,
the FFT operation is finished and buffered data are
output. In this case,op is changed toout.

5. Spatial Parallelization of MM-FFT
The degree of pipeline parallelism realized by the MM-

FFT architecture is limited by the number of STP stages.
That is, in order to improve the pipelined parallel processing
performance, it is necessary to divide every STP stage finer.
However, some STP stages cannot be divided more, e.g.,
the buffer memory stage. Therefore, we focus on the spatial
parallelism in FFT in place of the pipeline parallelism to
further improve the FFT performance.

As illustrated in Figure 2, theN -point FFT calculation
is recursively divided intor (N/r)-point FFT’s in each
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step. Sincethere is no data-dependency among(N/r)-point
FFT’s, each of them can be independently calculated on
an corresponding MM-FFT circuit. Therefore, in addition
to multiple MM-FFT modules, we introduce a single-step
MM-FFT module to realize the first step radix-rbutterfly
operations. This module can be implemented to simplify
the MM-FFT architecture as shown in Figure 7. In this
simplified single-step MM-FFT architecture,step and Pch

are fixed to zero andNch/r respectively, the prerelease
ID module and dual r-way memory bank can be reduced,
and the resultant data of the butterfly stage are directly
output. Figure 8 illustrates the spatially-parallelized MM-
FFT structure, whererf denotes radix in the first step,rl
denotes radix in latter recursive steps of FFT, andPs denotes
the degree of spatial parallelism.
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single FFT
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Input sequences

with ID(ch)

Single r-way

memory banks

Issue

ID(ch, 0, btf)
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ch

# of FFT 

points: N

ch

Fig. 7: Simplified architecture for single-step MM-FFT.

The first-step MM-FFT module is similar to multi-path
delay feedback configuration [13]. After input data from 0
to (rf − 1/rf )Nch are stored in multi-path FIFO buffer,
radix-rf butterfly operations in the first step are begun to
be executed. Resultant data are consecutively distributed to
the latter MM-FFT modules and they are processed there in
parallel. The destination module of resultant data is decided
based on(btf mod Ps).

The radix rf in the first-step MM-FFT module can be
flexibly altered from 2 to 8 according toNch(= rf ×
rintegerl ), while rl is fixed. That is, the proposed architecture
can process multiple streams in parallel even if the sampling
rate or the number of pointsNch is different each other.

Here, it can be noted that the number of the latter MM-
FFT modules may be less thanlogrl(Nch − 2rf ) because
the MM-FFT module itself can process multiple streams as
long as its processing resource is enough to do those. In other
words, spatial parallelismPs, i.e., the number of the latter
MM-FFT modules, can be optimized at the circuit design
phase, depending on the cost-performance requirement of
target wireless applications.

Since the total number of butterfly operations forNch-
point FFT can be calculated byNch/r times logr Nch and

Pch butterflies of those are simultaneously processed in
pipeline, the total processing time of the original MM-FFT,
TMM−FFT , can be estimated by equation (2).

TMM−FFT =
Nch logr Nch

rPch
STf (2)

whereS denotes the number of STP stages andTf denotes
the average data-forwarding time in a STP stage, i.e., the
circulation time of the STP ring isSTf .

Based on the equation (2), the total processing time of the
proposed MM-FFT,TFFT , can be estimated by equation (3).

TFFT = SfTff +
Nch logrl

Nch

rf

PsrlPch
SlTfl (3)

whereSf andSl denotesthe number of STP stages in the
first single-step MM-FFT module and the latter MM-FFT
modules respectively, andTff andTfl denotes the average
data-forwarding time. Because the total number of butterfly
operations in each latter MM-FFT module is reduced byPs

and rf , TFFT is shortened except for the small overhead
time of the first step MM-FFT module,SfTff .

6. Evaluation
In order to evaluate the performance and area of the

proposed MM-FFT circuit, its STP circuit is designed using
a 65 nm CMOS standard cell library. The specifications of
this circuit are as follows. The word length of a complex
data is 32 bits; 16 bits for real part or imaginary part. 2 bits
are assigned for integer and 14 bits are assigned for fraction
part. The number of FFT points can be altered from 64 to
1024 points. The radixrf and rl are four. The degree of
pipeline parallelismPch for a single channel can be altered
from 1 to 16 and that of spatial parallelismPs is fixed to four.
The number of STP stages,Sf andSl, are respectively 4 and
30. The designed STP circuit was described by Verilog-HDL
and synthesized by Design Compiler, Synopsys Inc.

Table 1 shows total cell area of the proposed circuit and
the original MM-FFT circuit. In those circuit implementa-
tions, the signal data and twiddle factors are stored in SRAM
modules, i.e., data mem. and TF mem. The cell area of
memory accounts for 70 % of the total cell area.

Table 1: Total cell area of the synthesized circuit.

MM-FFT Logic data mem. TF mem.

Proposed
cell/bit 118464 cells 96K bit 30K bit

area [mm2] 0.67 1.51 0.27

Previous[7]
cell/bit 25865 cells 64K bit 24K bit

area [mm2] 0.15 0.37 0.05

Although hardware cost of the proposed circuit is 4.3
times larger than the MM-FFT, throughput of the proposed
circuit is 5 times faster than the MM-FFT in the case of
Nch = 512, r = 4, rf = 4, andrl = 4.
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Fig. 8: Spatially-parallelized MM-FFT architecture.

As for the performance of the designed circuit, post-
synthesis simulation results revealed that the equation (3)
nearly estimated the performance. However, actualTf could
not be optimized in our design work. We thus recalculated
post-synthesis simulation results by assuming thatTf is 1
ns in average. This assumption is realistic according to our
LSI fabrication experiences of STP-based data-driven chip-
multiprocessor [14], [15]. Based on this assumption, the
potential performance of the designed circuit is shown in
Figure 9 in the case of single input stream.
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Fig. 9: FFT performance comparison of the designed circuit
(single stream).

In this figure, the horizontal axis denotes the degree of
pipeline parallelismPch and the vertical axis indicates the
maximum sampling rate (throughput) which can be achieved
by the designed circuit. In the case of double input stream
such as multiple-input multiple-output (MIMO) scheme, the

performance for each stream’s FFT is falls in half but it is
scalable without any parallel processing overhead.

In the case of 4 pipeline stages in the first-step MM-FFT
module, radix-8 in the MM-FFT and 30 pipeline stages in
the MM-FFT is shown Figure 10. According to the equation
(2), the throughput is basically irrelevant to the number of
streams as long as processing resource is enough for those.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 4 8

T

h

r

o

u

g

h

t

p

u

t

[

G

 

s

a

m

p

l

e

/

s

]

Degree of Pipeline Parallelism P

ch

Nch=512, rf=8, rl=8

Nch=1024, rf=2, rl=8

Nch=2048, rf=4, rl=8

Limit of double stream

Fig. 10: FFT performance estimation (rs = 8).

Since this circuit is designed to assume data transfer time
is 1 ns and four data is simultaneously input, maximum input
rate is limited up to 4.0 G sample/s in the case of single
input stream. In the case of two input streams with same
sampling rate, this upper boundary is decreased to half, i.e.,
2.0 G sample/s. This boundary is drawn by a dotted line in
the figure. Thus, the performance is limited at 4.0 G sample/s
in the case ofNch = 512, Pch = 8, and single input stream
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but it is sufficient to apply the proposed circuit to WPAN
standard (IEEE802.11ad) application (Nch = 512, 2.4 G
sample/s). This indicates that a HetNet application shown in
Table 2 can be accommodated by the proposed circuit.

Table 2: An applicable set of air interfaces.
Air interface WPAN WLAN MBWA

(Example) (IEEE802.11ad) (IEEE802.11n) (LTE)

# of pointsNch 512 2048 128

Sampling rate
2.4 0.04 0.02

(G sample/s)

# of streams 1 2 2

MIMO channels — 4 —

If two streams of the 2.4 G sample/s WPAN application
are accommodated, the designed circuit cannot process them
because of the upper limitation of the performance 4.0
G sample/s. For the further performance improvement, the
number of parallel input data should be expanded from four
to eight.

7. Conclusion
In order to establish dependable and heterogeneous wire-

less network systems, mobile devices should be equipped
with a multimode and multiband interface for stable wireless
communication. Such mobile terminals would be useful and
sustainable so as to provide uniform experience for users.

This paper focuses on the multimode and multichannel
FFT (MM-FFT) used for MIMO OFDM and SC-FDE and
proposes a spatial parallelization technique of the MM-FFT
circuit based on STP circuit. Evaluation results indicated that
the proposed circuit could achieve throughput higher than
the original MM-FFT circuit [7]. Furthermore, the proposed
STP implementation will be feasible to the required perfor-
mance for current heterogeneous wireless communication,
e.g., 2.4 G sample/s for WPAN, 2-stream 20 M sample/s for
WLAN, 2-stream 40 M sample/s for MBWA. This evaluated
condition is assumed for a typical case of HetNet so that
benchmark evaluation in case of other usage scenario should
be further studied.

Since mobile devices and terminals have to operate at
low power consumption, the proposed circuit must cooperate
with typical low power techniques, e.g., dynamic voltage
scaling (DVS) [16]. Since the degree of pipeline paral-
lelism Pch in the proposed circuit can be adjusted along
with dynamically-scaled supply voltage, the circuit could
contribute to lower its power consumption. Quantitative
evaluation on such energy efficiency will be reported in other
article.
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Abstract— With advanced semiconductor technology,
higher dependability and low power consumption of LSI
chip is required more and more. That is, a kind of resilient
capability to allow partial failure but to work with a
self-recovery mechanism by the remaining part of LSI chip
must be provided. In this study, we focus on the timing-error
which is one of the transient fault of LSI’s and we then try
to improve dependability of the self-timed pipeline (STP)
circuit which is one of necessary technologies in future
heterogeneous many-core LSI chips. This paper proposes
a timing-error detection and recovery circuit applicable
to data latches in STP without impairing its autonomous
behavior. The proposed timing-error recovery circuit is
localized within a stage to guarantee the STP’s handshake
protocol. For a preliminary evaluation, we applied the
proposed circuit to five-stage 32-bit integer multiplier
module by using 65nm CMOS standard cell library.

Keywords: self-timed pipeline, dependability, timing-error, error
detection, error recovery

1. Introduction
Steady performance improvement of modern computer

systems due to the advanced semiconductor integration tech-
nology for LSI chips is indispensable for the development of
information society. According to Moore’s law, over several
ten-billions of transistors are estimated to be integrated on a
LSI chip in 2020. However, more integrated transistors must
cause more failure rate of the LSI chip. This is because the
failure rate of the chip could be approximately proportional
to the number of transistors. Furthermore, the transistor char-
acteristics will vary widely due to the downscaled process
variations [1]. Therefore, the dependability of the LSI chips
will become more important in the future, especially in case
of emergent situations.

There has been studied about dependable and low-power
clock-synchronous pipeline circuits such as Razor flip-flop
[2], Canary flip-flop [3], and so on. Those circuits aimed to
improve the dependability as well as to reduce the design
margin provided for dynamic voltage and frequency scaling.
By introducing those flip-flops, average supply voltage can
be reduced, i.e., energy efficiency of the circuit will be
improved.

However, there is little study on dependable self-
timed circuits required for globally-asynchronous locally-
synchronous (GALS) like network-on-chip module of het-
erogeneous many-core chips. This paper thus focuses on
dependable and energy-efficient self-timed pipeline (STP)
circuits [4], [5], especially data-latch timing-error detection
and recovery circuit for the STP. In the following section,
the basic structure and behavior of the STP circuit are
briefly introduced and its timing-error tolerance issues are
discussed. A timing-error detection and recovery circuit for
the STP is proposed in section 3. In section 4, its timing
constraints in the circuit design phase are described and
preliminary circuit design of a 32-bit multiplier based on
the proposed circuit is reported.

2. Timing-error tolerance of STP
In the self-timed pipeline (STP) circuit, every pipeline

stage intercommunicates (hand-shakes) with its neighbor
stages and processes a stream of data at stage-by-stage.
The “hand-shake” protocol enables the stage to process and
transfer the data autonomously. This section introduced basic
structure and behavior of the STP circuit and then addresses
its timing-error tolerance issues in comparison with related
works.

2.1 Self-timed pipeline
STP circuit is configured as shown in Figure 1. Each

pipeline stage is composed of a data latch DLi operating
as a pipeline resister, a Logic, and an autonomously driven
element Ci which is used for controlling data transfer
between adjacent pipeline stages. Every data is transferred at
stage-by-stage based on localized control signals (send and
ack signals) between adjacent pipeline stages as follows.

1) (Master reset) After resetting the whole STP, allsend
andack signals are asserted.

2) (Phase 1: sending) After completing a send process at
stagei−1, Ci at stagei opens the data latchDLi when
both sendi and acki+1 signals are asserted. At the
same time,sendi+1 signal is negated for its succeeded
stagei+1.

3) (Phase 2: receiving) After that,acki+1 signal is negated
by Ci+1. This indicates thatstagei+1 is receiving the
data transferred fromstagei.
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4) (Phase 3:completion of send process)Ci then intends
to complete the data transfer. At that time,sendi+1 is
asserted again.

5) (Phase 4: completion of receive process) After that,
acki+1 signal is asserted again byCi+1. This indicates
that stagei+1 has completed to receive the data from
stagei.

6) The above steps are iterated as long as there are data
in the pipeline.

DL : data latch C : transfer control circuit

Data

Fig. 1: Basic structure of self-timed pipeline.

reset

delay

delay

Fig. 2: Data-transfer control circuit for STP.

For those data-transfer steps, all send and ack signals
are designed in negative logic in this paper. Our STP
circuit operates based on the 4-phase hand-shake protocol
with bundled data. In order to implement quasi-Muller’s C
element by using standard CMOS cell libraries, a circuit
proposed in [4] is employed in this paper. As shown in
Figure 2, this circuit is composed of two SR latches, and
4-input nand gate, and two delay cells. The former SR
latch keeps a receiving state whether the stage completes
to receive data from its preceded stage or not (completion
or receiving). The latter SR latch keeps a sending state
whether the stage completes to send data to its succeeded
stage or not (completion or sending). Both latches thus
hold a completion state when the C element is initiated
by the master reset signal. The output of the nand gate is
negated whensendi andacki+1 are asserted, the state in the
former SR latch is changed fromreceiving to completion,

and the state in the latter SR latch issending. The delay
time of two delay cells should be adjusted depending on the
latency time of critical path and setup/hold time of the DL
within the Logici of the pipeline stage.

Since all wires within the STP are localized in their
corresponding pipeline stage, its timing optimization efforts
on signal integrity such as clock skew problem are not severe
compared with that of the globally synchronous pipeline
circuit. STP can operate robustly even if tact time of a certain
pipeline stage is longer than that of other stages. However,
in such case, the pipeline throughput is degraded so that
the pipeline tact of every stage should be optimized and
shortened in its circuit design phase.

2.2 DL timing-error in STP
DL timing-error detection and recovery in STP is impor-

tant not only to improve STP’s resiliency against process
and environmental variability but also to eliminate design
margin effective for STP’s dynamic voltage scaling (DVS)
technique [6] in terms of low power consumption.

As for the clock synchronous circuits,in-situ timing-
error monitoring is very effective for dependable low-power
circuit with DVS so that many circuits have been proposed
[2], [3], [7]. Most of them employ duplicated logic circuits
and detect timing-error by comparing their results. For
example, a Razor flip-flop [2] shown in Figure 3 can detect
timing-error by comparing an output of a main flip-flop with
that of a shadow latch controlled by a delayed clock. If a
timing-error occurs on the main flip-flop, the valid data kept
in the shadow latch is written back to the main flip-flop
for correcting the error in the next clock cycle. By using
the Razor flip-flop and controlling supply voltage along
with error frequency, the design margin of supply voltage
and frequency can be reduced. However, the Razor flip-
flop requires the complex hardware such as a counterflow
pipeline [8] to recover the timing-error.

In place of such error recovery hardware, a Canary flip-
flop proposed in [3] aims to predict timing-error for con-

Main 
FF

Comp
arator

0

1

Shadow 
Latch

Fig. 3: Block diagram of Razor flip-flop.
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Fig. 4: Block diagram of Canary flip-flop.

trolling the supply voltage. In the Canary flip-flop shown in
Figure 4, an input signal to the shadow latch is delayed and
the shadow latch is driven by the same clock signal of the
main flip-flop. Thus, it does not need the complex hardware
but there is a severe assumption that any timing-error does
not occur at the main flip-flop. As a result, the reducible
design margin of the Canary flip-flop is smaller than that of
the Razor flip-flop.

In order to minimize the design margin, detection and
recovery of the timing-error is also essential in the case of
the STP circuit. Although the error recovery hardware such
as the counterflow pipeline can be introduced in the STP,
autonomous behavior by virtue of the localized handshake in
the STP will be lost. Therefore, a DL timing-error detection
and recovery circuit for the STP is proposed in the following
section.

3. DL timing-error recovery for STP
If the Razor flip-flop is applied to the STP for DL timing-

error recovery, a ToDL signal in a STP stage has to be
asserted again when a timing-error occurs at the stage. As
described in the previous section, the ToDL is asserted as a
result of handshake with neighbor stages. In order to assert
the ToDL again, the handshake process with neighbor stages
must be reset and restart. This means that the complex
recovery hardware such as the counterflow pipeline is also
required even in the STP, which might increase circuit and
performance overhead beyond the single stage.

Therefore, we propose a timing-error recovery circuit
localized in a single STP stage. The proposed circuit is
illustrated in Figure 5. As shown in this figure, a timing-
error monitoring function is realized in the same way as
the Razor flip-flop, i.e., it is composed of a main flip-flop
driven by the ToDL, a shadow latch driven by the delayed
ToDL, and a comparator of both output data. When a DL
timing-error occurs at an STP stage, a multiplexer selects the
valid data stored in the shadow latch. After the valid data

is successfully processed and transferred to the succeeded
pipeline stage, the control signal of the multiplexer must be
reset to 0. This is because a timing-error might not occur at
the next pipeline phase. Since the completion of pipelined
process at the STP stage can be detected by the rising edge
of theacki+1 signal, this signal is utilized as an enable signal
(eni) to the multiplexer. This sort of an extended flip-flop
for DL is named OK flip-flop in this paper.

The control signals from all OK flip-flops within aDLi

are aggregated to a single representative signal (errori).
That is, when a DL timing-error occurs at any OK flip-flop
in the DLi, the errori signal is asserted. In this case, the
valid data is delayed and transferred along with the delayed
ToDLi signal. If the assertion of data-transfer start signal
sendi+1 is delayed for the same time as the delayed ToDL,
the valid data can propagate through the (i+1)-th logic circuit
(Logici+1). This selective delay circuit for the OK flip-
flops is shown in Figure 6. As a result, the timing-error
can be recovered and the wrong data can be successfully
corrected. In the case of Razor flip-flop, the error recovery
process additionally needs one or more clock cycle(s). On
the contrary, the recovery time of the proposed circuit can be
adjustable to the delay time for the ToDL. If the process or
environmental variation of the circuit is small, the recovery
time can be shortened. Furthermore, since the proposed
timing-error recovery circuit is localized within a stage to
guarantee the STP’s handshake protocol, the recovery time
might be buffered because of the elastic buffering capability
inherent in the STP circuit. This kind of feature cannot be
found in the clock-synchronous pipeline circuit so that it is
very unique to the STP circuit.

0

1

Main
FF

Comp
aratorShadow

Latch

Delay

Fig. 5: Block diagram of OK flip-flop.

4. Signal timing
4.1 Signal timing of STP

In general, forwarding latency required to transfer valid
data from one set of data-latches to a set of data-latches in
the succeeding stage is calculated by the sum of response
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Fig. 6: STP implementation capable of DL timing-error
recovery.

time of the data latchτq, delay time of a critical path in
the logicτcp, and setup time of the data latchτsetup. Thus,
handshake time of STP must be adjusted to the forwarding
latency. As explained in Section 2, the original STP circuit
operates based on the 4-phase handshake protocol so that
latency timeTf required from the first to the third phase of
the protocol has to exceed the forwarding latency.

After completing the data-transfer, the data latch has to
receive the next data correctly. Therefore, backward latency
time Tr required for the fourth phase must exceed hold time
of the data latchτhold.

Tf ≥ τq + τcp + τsetup (1)

Tr ≥ τhold (2)

Using the two parameters and, it is then possible to define
pipeline throughput as 1/(Tf +Tr) and pipeline efficiency as
Tf /(Tf +Tr). Pipeline throughput is a measure of packet flow
rate through the pipeline. Pipeline efficiency is the proportion
of net processing time spent on packet processing in terms
of pipeline throughput.

If the equation (1) is not satisfied in runtime, i.e., a timing-
error occurs, the proposed OK flip-flop detects the timing-
error and the third phase involved inTf is prolonged by the
proposed circuit to process the valid data in the logic circuit.
Although the equation (2) might be not satisfied in runtime,
this issue is not covered in this paper.

4.2 Signal timing related to OK flip-flop
When any timing-error does not occur at all, the output

of the main flip-flop propagates to the next logic circuit
(Logici+1) in the same way as the original STP circuit. In
this case, the control signal of the multiplexer in OK flip-
flop is negated. This means that the third handshake phase is
not prolonged, i.e., assertedsendi+1 is not delayed. In terms
of the pipeline throughput and power consumption, there is

C C

Shadow
Latch

Comp
arator

T( ack↓)T(send↑)

T(comp)

To Main-FF From Main-FF

… Shadow
Latch

T(error↑)

Constraints to operate AND (from ToDL↑)
Constraints to operate send-MUX (from ack↓)

To MUX
To Main-FF

AND

send-MUX

: T(comp) � T( ack↓)
: T(error↑) � T(send↑)

Fig. 7: Timing constraints of STP with OK flip-flop.

small overhead related to the multiplexer in OK flip-flop and
the multiplexer to select the send signal.

If a timing-error occurs, some constraints on signal timing
within the proposed circuit are satisfied. Significant timing
constraints are related to two multiplexers. Figure 7 illus-
trates critical paths concerning on those constraints.

The first one of those constraints is related to the control
signal of the multiplexer in OK flip-flop. This control signal
is generated by a comparison result of the comparator
and the negatedacki+1. In the case of timing-error, the
comparison result must be settled before the negatedacki+1

arrives in order to prevent any glitch at the control signal of
the multiplexer. If this constraint is guaranteed, both input
signals of the multiplexer are apparently settled before the
control signal is asserted to indicate the occurrence of a
timing-error. Signal transitions of the errori are shown in
Figure 8. Figure 8(a) shows the case of no timing-error and
the figure (b) shows the case of the occurrence of a timing-
error. As seen in this figure, errori signal is originated from
asserted ToDLi and derived from two paths. One is from
ToDLi to errori via ToDL_delayi and eni and the other is
via sendi+1 andacki+1.

(b) with a timing-error(a) without any timing-error

�� ��� �������

( )

Fig. 8: A timing chart of STP with OK flip-flop.
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The secondconstraint is related to the multiplexer se-
lecting an original send signal or a delayed send signal.
As indicated by two double lines in Figure 7, a control
signal errori and two input signals of the multiplexer are
originated fromacki+1 signal. On the one hand, during the
first handshake phase,errori must be negated to select an
original send signal that is not a delayed send signal. On the
other hand, during the third handshake phase, an appropriate
send signal must be selected depending on whether a timing-
error occurs or not. When the timing-error occurs, the
asserted send signal must be delayed and the original send
signal must not propagate to the next stage through the
multiplexer. In this case,errori signal must be asserted
before the original send signal is asserted. If this constraint
is violated,sendi+1 signal wave will have a short glitch and
the proposed circuit will fail to recover the error.

As seen in this timing chart, if thesendi+1 signal is
delayed as same as the delay timeδTf of ToDL_delayi,
the error can be recovered by the proposed circuit. In this
case, the forwarding latency will be prolonged toTf + δTf .
This overhead time for recovering the timing-error is flexibly
optimized along with the delay variability of the logic circuit
in stage-by-stage at the circuit design phase. Since the
proposed circuit is still faced with the short path problem
like the Razor flip-flop, reasonableδTf might be about a
half of Tf .

Therefore, the proposed circuit will work well when the
variability of the critical path delay is less than 50 % and the
shortest path delay in the logic circuit is longer than the half
of the critical path delay. Furthermore, the recover latency is
localized within the single stage so that it might be buffered
because of the elastic buffering capability inherent in the
STP circuit.

For the feasibility study on the proposed circuit, a 32-
bit integer multiplier circuit was designed by using a 65nm
CMOS standard cell library. As shown in Figure 9, the
designed multiplier is divided into five pipeline stages and
it is composed of four 16-bit multipliers and a 64-bit
adder circuit. The proposed OK flip-flop is applied to every
pipeline stage and it is controlled by the C element with
variable delay.

The designed multiplier was described by Verilog HDL
and synthesized by Design Compiler of Synopsys Inc. Ta-
ble 1 summarizes the synthesized results in comparison with
the original STP implementation of the same multiplier. In
the case of no timing-error, the forwarding latency of the
proposed circuit was slightly prolonged because there is
latency of the multiplexer to select the output of the main
flip-flop and the shadow latch. In this design, the delay time
for ToDL is set to 5 ns. When the timing-error occurs at a
pipeline stage, the forwarding latency of the stage becomes
1.5 times longer than the normal case. As for the cell area
overhead, the proposed circuit is 1.7 times larger than the
original STP implementation. In general, the logic circuit
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MUL : 16-bit multiplierADD : 64-bit adder OP : operation code

1:upper
0:lower

Fig. 9: STP implementation of 32bit multiplier with the OK
flip-flop.

part is more dominant in the pipeline stages compared with
DL and C and it is possible to apply the proposed circuit to
limited stages so that it is expected that the area overhead
would decrease in the case of actual STP circuits such as
data-driven processor [4], [9].

Table 1: Latency and area of the designed multiplier.
STP implementation OK-FF D-FF ratio

normal case:Tf [ns] 9.58 8.9 1.08

error case:T ′
f [ns] 14.49 - -

cell area [mm2] 0.036 0.021 1.71

5. Conclusion
This paper discussed a data-latch timing-error detection

and recovery for the self-timed pipeline (STP) circuit to
improve its dependability and the energy efficiency. The
proposed circuit including OK flip-flop and variable de-
lay can recover the timing-error within the single pipeline
stage. Additional latency for the error recovery could be
autonomously absorbed because of STP’s elastic buffering
capability as long as the pipeline occupancy does not reach
the maximum pipeline efficiency.

Since the paper reported only preliminary evaluation
results on post-synthesis design, post-layout design for an
actual LSI application must be evaluated in terms of latency,
die area, and power consumption with dynamic voltage
scaling (DVS).
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Abstract - Existing communication infrastructure may be 

unavailable in disaster situations. Under the situations, it is 

difficult to share information composed of multiple packets, 

such as text, image, and audio data in the communication 

infrastructure unavailable areas. To enable information 

sharing without using existing communication infrastructure 

in the areas, we have proposed a novel system “Broadcast-

Based Information Sharing System (BBISS)”. The paper 

evaluates the performance of BBISS by the network 

simulations. The simulation results can conclude that the 

proposed method achieves the high information reachability 

without significantly increasing of the number of packet 

exchanges.  

Keywords: Broadcast, Ad hoc communication, Information 

sharing 

 

1 Introduction 

 Communication carriers equip backup systems and 

batteries to prevent the communication infrastructure 

disruptions due to disasters. However, the above approaches 

taken by communication carriers are not sufficient to endure 

traffic congestions by confusion owing to the disasters, it is 

difficult to share the information among victims and to 

execute the rescue and recovery activities. In the 

infrastructure unavailable situations, damage and safety 

information are necessary to be shared by text, image, voice, 

or video data in the area. The information to be shared is as 

follows: 

1. Announcement of damage information and evacuation 

instructions:  The announcement may be broadcast by 

voices using microphones and speakers by local 

governments, polices, or firefighters in usual. 

2. Sharing information such as safety information, 

searching, buzzes in the area:  The information may be 

shared by notices and posters among the victims, the 

local governments, the police, or the firefighters. 

However, there is no convenient and efficient alternative 

way using the notices and posters. 

Applications that enable the above information sharing are to 

disseminate generated information to the whole area. For the 

objective, we have proposed Broadcast-Based Information 

Sharing System (BBISS). That is a novel information sharing 

system which uses ad hoc communication in [1].  

 The paper evaluates the performance of BBISS through 

the network simulations and shows the information sharing 

architecture constructed by BBISS. The paper is organized as 

follows. Section 2 explains outlines and problems of existing 

information delivery methods using broadcast based 

communication. Section 3 revisits BBISS proposed in [1]. 

Section 4 shows the effectiveness of the proposed methods 

through the performance evaluation by network simulations. 

Lastly, Section 5 concludes the study. 

2 Existing information delivery methods 

using broadcast communication  

 The ad hoc network architecture has been studied as a 

networking technique in the infrastructure unavailable 

situations, and many routing protocols have been proposed. In 

general, available IP addresses must be assigned at nodes in 

the network to communicate using routing protocols. 

However, the IP addresses are often not available in the 

infrastructure unavailable situations owing to the large-scale 

disaster. Moreover, some servers must be required to collect 

and disseminate the information to adopt the existing client-

server applications. Considering the above problems, the 

existing ad hoc network architecture cannot be applied to the 

applications discussed in the Section 1. 

2.1 Simple flooding 

 The Simple Flooding (SF) has been implemented in ad 

hoc network routing protocols to deliver routing messages in 

the broadcasting manner [2]. Although SF is one solution to 

disseminate the information to the area, it has following 

problems. In this method, when a node receives a packet, the 

packet is broadcast if it has never received before (non-

identical packet). Therefore, since many nodes broadcast the 

packets and data frame collisions occur, the packet 

reachability is degraded. Probabilistic scheme and Counter-

based scheme have been proposed as the methods without 

HELLO packet exchanges and dedicated devices such as GPS 
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(Global Positioning System) [3][4]. However, since the above 

methods do not assume to deliver the information consisting 

of multiple packets such as data files, they do not take into 

account the communication reliability of information made 

from multiple packets.  

2.2 Counter-based scheme 

 In this method, whether to relay or not is determined by 

how many times an identical packet has been received. The 

basic procedure is explained below. 

1. On receiving a packet, a node sets its counter at 1 if the 

packet is non-identical to ever received packet. Identical 

packets are rejected. 

2. The counter value is incremented by 1 if an identical 

packet has been received during an arbitrary period of 

time (decision_time). 

3. If the counter reaches a threshold value (c_threshold) 

after expiration of decision_time, broadcasting is 

canceled. 

  The assumed information types for applications 

shown in Section 1 among the nodes are file download type 

information such as text, image, voice, and video, which are 

composed of multiple packets, in addition to single-packet-

messages. Since, the above delivery methods shown in 

Sections 2.1 and 2.2 cannot complement unreached packets, 

they are not suitable to the applications. 

3 Proposed method, BBISS 

Here, we revisit and show the idea of BBISS which we have 

already proposed in [1] for facilitating understanding. 

3.1 Assumed environment 

 The nodes are wireless communication devices such as 

smartphones, tablet PCs, or Laptop PCs. The nodes in the area 

have no available IP addresses and gateway information, and 

they can communicate only by broadcast communication of 

IEEE802.11 series wireless LAN. Since the proposed system 

can be implemented over the general UDP/IP platform by 

socket programing, the proposed system is easily 

implemented with flexibility on the existing terminals. The 

shared information is assumed text information (in several 

Kbytes size) and image information (in several hundred 

Kbytes size), both of which consist of multiple packets. 

3.2 Requirements 

 We consider the system needs to meet the following 

requirements #1 to #3. 

 Requirement #1: IP addresses, gateway information, 

and servers at the nodes are not used. 

 Requirement #2: Unreached packets must be 

complemented without TCP (Transmission Control 

Protocol) and unicast transmission to assure the 

communication reliability. 

 Requirement #3: The battery charge consumption of the 

communication terminals should be saved.  

 

3.3 Design of the proposed system 

3.3.1 Packet format 

 Three types of packet formats: Normal packet, 

Retransmission packet, Retransmission request packet are 

defined in this method as shown in Fig.1. The packet type is 

recognized by the “a. Packet type field”. The packet formats 

for the Normal packet and for the Retransmission packet are 

same except for the “a. Packet type field”. The roles of the 

each field are explained below: 

a. Packet type (packet_type), 2Byte: The packet type 

(Normal packet, Retransmission packet, Retransmission Req 

packet) is recognized by this field. 

b. Initiator node ID (init_id), 8Byte: The ID of the 

information initiator node, i.e. the information originator, is 

recognized by this field. Each node must be assigned a unique 

ID such as a MAC address of a wireless communication 

interface of the communication terminal. 

c. Information ID (info_id), 2Byte: The field shows the ID of 

the information, which is given by the initiator node, is unique 

for each initiator node, and may be overlapped with that of 

other initiator nodes. 

d. Packet sequence number (packet_seq), 4Byte: The 

sequence number of the packet in the information is 

recognized by the field, which is unique for each information. 

e. Packet total (packet_total), 4Byte: The number of 

packets of which the information is recognized by the field. 

Lower layer

header
BBISS header

b.

init_id
c.

info_id
d.

packet_seq

g. data_payload

e.

packet_total
a.

packet_type
f

relay_node_id
  

(a) Normal and Retransmission packet 

 

 BBISS header

b.

init_id

h.
unreached_packet

seq#1

Unreached packet seq.numbers

a.

packet_type

Lower layer

header

…
h.c.

info_id
unreached_packet

seq#n
 

(b) Retransmission Req Packet 

 

Fig.1 Packet format 
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f. Relaying node ID (relay_node_id), 8Byte: When a 

relaying node (that is a node except for the initiator node) 

relays the packet, the field is overwritten with the node ID of 

the relaying node. The field is used when a relaying node 

counts how many other nodes are relaying the information on 

the Relay decision state described later. Here, the field is 

empty when the packet is generated at an initiator node.   

g. Data (data_payload): Divided data is contained in the 

field. The size of the field is determined by the parameter 

payload_size. 

 In addition, Retransmission Req packets contain the 

following.  

h. Unreached packet sequence numbers: If a node finds 

that some packets are missing for received information, all the 

sequence numbers of unreached packets are described here, 

and informed to the neighboring nodes. 

3.3.2 Operation of the proposed method 

 The operation of the proposed method is explained 

below. The proposed method operates according to the state 

transition diagram shown in Fig. 2. In the figure, the transition 

conditions are shown at the side of the arrows. Here, the 

“transmission” means broadcast transmission. 

i, Initiation state: information generation: When a node 

generates information, the state transits from “Null state” to 

“Initiation state”. Initiator divides information into multiple 

packets according to payload_size. Each packet contains 

Initiator ID and Information ID. Then, the state transits to 

“Sending state” after the waiting time which is determined by 

Random(min, max). 

Receiving Retrans. req.Initiation Null

Retrans. wait.

Retrans. send.

Sending Relay decision

Null

relay_wait_timeexpired  & 

the num. of relaying nodes >= relay_threshold

retrans_wait_timeexpired  & 

no Retrans.Req packets are received

retrans_wait_timeexpired  & 

Retrans.Req packets are received

All Normal packets are sent

Normal packets are created

All Normal packets are received

req_wait_timeexpired  & 

some Normal packets were not received

relay_wait_timeexpires  & 

the num. of relaying nodes < relay_threshold

Retrans.Req packets are sent

Packet  for new  

info is received

req_threshold exeeds

All Retrans.packets
are sent

Information is generated

byapplication

 
Fig.2 State flow diagram for BBISS 
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Fig.3 Sending and Receiving states 
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Fig.6 Relay decision and Sending states 
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ii, Sending state: information sending and relaying:  The 

initiator node sends the packets sequentially with a fixed time 

interval which is determined by send_interval. After sending 

all the packets, the state transits to “Retrans. wait. state”. 

iii, Packet receiving state : As shown in Fig.3, when a node 

received a packet which is a part of information which has not 

been received yet (That is distinguished by the combination of 

init_ID and info_ID.), the state transits from “Null state” to 

“Receiving state”. Then the node waits for req_wait_time 

which is determined by the expression (1). Here, 

num_of_packets means the total number of packets for the 

information, which is described on packet_total field in the 

each packet. Random_max means the maximum value of 

Random(min, max). 

req_wait_time = 

2 × (send_interval × num_of_packets) + Random_max (1) 

 During the period, if the node received all the packets of the 

information, the node break req_wait_time immediately. Then 

the state transits to “Relay decision state” shown in Fig.4. If 

the node does not receive the packets of the information 

(owing to data frame collisions or other problems) after 

expiration of req_wait_time, the state transits to “Retrans req 

state” shown in Fig.5 to request to retransmit the unreached 

packets. Here, the number of times the state transits to 

“Retrans req state” is limited to req_threshold. If the number 

of times reaches the threshold, the state transits to “Null state”. 

This means that the retransmission requests are not 

transmitted anymore, and the information receiving is failed. 

iv, Relay decision (the node decides whether to relay the 

information or not): The node waits for relay_wait_time 

which is determined by Random(min, max). During the period, 

the node counts the number of nodes relaying the same 

information (relaying node), which is distinguished by the 

combination of init_ID, info_ID, and relay_node_ID. After 

the period, if the number of relaying nodes is not reached to 

relay_threshold, the state transits to “Sending state”. As 

shown in Fig.6, the node relays the information.  

v, Retrans. req. state:  The node waits a period which is 

determined by Random(min, max). Then the node transmits 

Retransmission Req packet(s) in which sequence number(s) of 

unreached packet(s) shown in Fig.7, and the state transits 

“Receiving state”. 

vi, Retrans. wait. State:  The node waits for  

retrans_wait_time which is determined by the expression (2). 

If the node receives Retransmission Req packet(s) during the 

period, the state transits to “Retrans. send. state” after the 

period. If the node does not receive any Retransmission Req 

packets during the period, the state transits to “Null state”.  

retrans_wait_time = 

 2 × num_of_pakcets × send_interval + 2 × Random_max  (2) 

vii, Retrans. send. State:  The node transmits retransmission 

packet(s) are indicated in retransmit by Retransmission Req 

pakcet(s) with the fixed interval time send_interval. Here,  the 

node retransmits the packet(s) only once evan if it receives 

multiple Retransmission Req Packet(s), during 

retrans_wait_time period at the previous state “Retrans. wait. 

state”. When the node finishes retransmitting the 

retransmission packets, the state transits to “Retrans. wait. 

state”.  

4 Evaluation by the simulations 

  Although we have shown the possible effectiveness of 

our proposal in [1], the evaluation made was preliminary, to 

make the evaluation mare in detail, this section shows the 

performance comparison of BBISS with the existing methods 

through the network simulator OPNET [5]. 

4.1 Operation of the proposed method 

 The simulation conditions are described below. The 

simulation area is defined as 1000m×600m. We assume 

networks with 100, 200, 400, and 800 nodes. The initial 

positions of the nodes are set to be random. All nodes move at 

a speed of [0.00, 4.00] m/s according to the random waypoint 

model. This model is based on the human walking and 

running speed. The configuration of each node is described 

below. The node Mac layer is IEEE802.11b with the data rate 

Retrans.Req
Packet

Retrans.
Packet

Retrans. send.

Retrans. req.

 
Fig.7 Retrans. req. and Retrans. send. States 

 

Table 1 Parameters for each delivery method 

 c_threshold relay_threshold send_interval 
Range of 

 Random(min, max) 

SF - - 

0.064 s (0.064, 0.640) s 
C4 4 - 

C3 3 - 

C2 2 - 

Ba4 - 4 

0.064 s (0.064, 0.640) s 
Ba3 - 3 

Ba2 - 2 

Ba1 - 1 

Bb4 - 4 

0.032 s (0.032, 0.320) s 
Bb3 - 3 

Bb2 - 2 

Bb1 - 1 
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of 11 Mbps. The communication range is 150m radius. The 

information generated by initiator node is delivered by Simple 

Flooding (SF), Counter-based scheme (CF), or BBISS, using 

the parameter shown in Table 1. Here, in CF, 3 sets of 

parameters, C4-C2 are determined, and in BBISS, 8 sets of 

parameters, Ba4-Ba1 and Bb4-Bb1 are determined. In SF and 

C2, the interval time of Random(mix, max) is inserted 

between packets when the node relays a packet. packet_size is 

1024Byte. 

 In addition to the above, the following 2 conditions, 

Simulations #1 and #2, are assumed. In Simulation #1, 5% 

nodes of all nodes are information initiator nodes. Each 

initiator node generates one information data of 20kByte (i.e. 

20 packets). In Simulation #2, 1% nodes of all nodes are 

information initiator nodes. Each initiator node generates one 

information data of 100kByte (i.e. 100 packets). Total number 

of packets initiated is same between Simulations #1 and #2. 

4.2 Evaluated items 

 The average values of the following items (i)-(v) are 

found for 100 simulation runs at every value of the random 

seed. Here, the information data generated by only one 

initiator node is evaluated, so the information data generated 

by the other initiator nodes are as background traffic. 

(i) The % of the information receiving nodes: The % of 

nodes that received the information to the total nodes 

successfully except for the initiator node of the information is 

shown. The higher the percentage is, the better the 

performance is. 

(ii) The num. of receiving packets in the area: The total 

number of packets that are received by the nodes in the area is 

shown. Here “receiving” means that a data frame is received 

and transferred to upper layer. The smaller the value is, the 

better performance is. 

(iii)  (ii) / The number of information receiving nodes: To 

normalize (ii), (ii) is divided by the number of the information 

receiving nodes, { (i) x (total num. of nodes) / 100}. The 

smaller the value is, the better the performance is. 

(iv) the num. of transmitted Retransmission Req packets in 

the area 

(v) The average time of information delivery: The time 

between the information is generated at the initiator node and 

received at the receiving node (all packets that are composing 

the information are received) is calculated. The nodes could 

not receive the information are eliminated. The times at all 

receiving nodes are averaged. The smaller the value is, the 

better the performance is. 

4.3 Simulation results and discussion 

 The simulation results are shown in Figs. 8~12.  

(i) The % of the information receiving nodes 

  The simulation results for Simulation #1 and #2 are 

shown in the Figs. 8 (a) and (b), respectively. The % for 

BBISS was higher than that for SF and CF regardless of the 

number of nodes and simulation cases. 

  The results can be explained as follows. In SF and 

CF, a node decides whether to relay a receiving packets or not 

at each time when the node receives the packet. Since the 

operation caused many redundant relay-transmissions, many 

packets were lost due to data frame collisions. To make the 

matter worse, these methods did not equip the function to 

complement the lost packets. Therefore, these methods proved 

to have low percentage. On the other hand, BBISS 

outperformed SF and CF. In BBISS, the node determines on 

the performance or nonperformance of the information 

relaying at the time when the node completes the information 

receiving. The operation made the packet transmissions 

dispersive. In addition, BBISS performed the retransmission 

attempts. Therefore, BBISS proved to have the higher 

percentage than those of SF and CF. 

(ii) the num. of receiving packets in the area 

 The simulation results for Simulation #1 and #2 are 

shown in the Figs. 9 (a) and (b), respectively. Although the 

results in BBISS depended on the parameter setting, some 

cases for BBISS proved to have the larger number than that 

for SF and CF. The reason seemed that the (i) for BBISS was 

increased. The more specific discussion will be shown in the 

evaluation of (iii). 

(iii)  (ii) / The number of information receiving nodes 

 The simulation results for Simulation #1 and #2 are 

shown in the Figs. 10 (a) and (b), respectively. Ba2, Ba1, Bb3, 

Bb2, and Bb1 for BBISS performed the same value as the 

best existing method C2 in both Simulations #1 and #2. 

Considering the results of (i), Ba2, Ba1, Bb3, Bb2, and Bb1 

for BBISS performed high percentage of information 

receiving nodes without increasing the packet reception 

(traffic). 

(iv) The num. of transmitted Retransmission Req packets in 

the area 

 The simulation results for Simulation #1 and #2 are 

shown in the Figs. 11 (a) and (b), respectively. In the cases 

where the numbers of nodes in the area were 100 and 200; 

those were small numbers, or low node density, the smaller 

the values of relay_threshold were, the more the 

Retransmission Req packets transmitted. The result can be 
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explained as follows. Since the node density was low, the 

cases with the small relay_threshold saved relaying, and then 

the packets were not delivered to the whole area. As the result, 

the number of Retransmission Req packets was increased. On 

the other hand, in the cases where the numbers of nodes in the 

area were 400 and 800; those were large numbers, or high 

node density, an opposite result to the above was given. The 

larger values of relay_threshold were, the more the 

Retransmission Req packets were transmitted. The result can 

be explained as an opposite reason to the above.  Since the 

node density was high, the cases with the large 

relay_threshold did not save relaying, and the relay 

transmissions performed, and the packet losses due to data 

frame collisions were increased. As the result, to complement 

the packet losses, the number of Retransmission Req packets 

was increased. 

 As mentioned in the evaluation (i), since BBISS 

outperformed the existing method, we can conclude that the 

retransmission operation on BBISS can contribute to the 

information reachability. Although we have not discussed the 

number of Retransmission Req packets specifically, we have 

to optimize the parameters considering the number of 

Retransmission Req packets sent in the companion paper. 

That is because parameters which perform the smaller number 

of Retransmission Req packet may perform the less unreached 

packets or the higher information reachability and low traffic 

load. 

(v) The average time of information delivery: 

  The simulation results for Simulation #1 and #2 are 

shown in the Figs. 12 (a) and (b), respectively. In Simulation 

#1 where the generated information size was small (20kByte), 

the results for Bb4-Bb1 showed the smaller results than the 

results for Ba4-Ba1 because Bb4-Bb1 set smaller values of 

Random (min, max) than Ba4-Ba1. Although the results for 
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(b) Simulation #2 

Fig.8 Simulation result for (i) the percentage of information receiving nodes in the area 
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(b) Simulation #2 

Fig.9 Simulation result for (ii) the num. of receiving packets in the area 
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(b) Simulation #2 

Fig.10 Simulation result for (iii) the num. of receiving packets / the num. of information receiving nodes in the area 
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BBISS were the same as or 1-2 seconds longer than the results 

for the best existing method  

C2, the differences were small, so that can be negligible. On 

the other hand, in Simulation #2, where the generated 

information size was large (100kByte), the results for BBISS 

showed larger than the results for the existing methods. Bb4-

Bb1 for BBISS showed 5-10s longer results than the best 

existing method C2. 

 Considering the evaluation (i), we can conclude that 

BBISS showed the longer delivery times than the existing 

methods in return for the improvement of the information 

reachability. The shortening the delivery time for BBISS by 

adjustment of the parameters is our future issue to be tackled. 

5 Conclusions 

 This study evaluates the performance of BBISS through 

the network simulations. The simulation results can conclude 

that BBISS outperform the existing flooding methods in terms 

of the information reachability without increasing on traffic. 

The parameter optimizations are our future issue to be tackled, 

some of them are shown in the companion paper. 
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Fig.11 Simulation result for (iv) the num. of transmitted retransmission req pakcets in the area 
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(b) Simulation #2 

Fig.12 Simulation result for (v) the average time of information delivary 
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Traffic regime and 1/f noise for a specific approach to a city

R. Thieberger
Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel

(Dated: May 5, 2014)

We examine the traffic lights regime to enable the fastest overall approach to a city for a specific
case. The case involves a traffic light where one continues on the main road, into which additional
cars are entering at the light. At this intersection an alternative route begins , which is longer
but into which no additional cars are entering. To keep the total number of vehicles constant, we
subtract on the main road,far from the intersection, the same number of cars as were added at the
intersection. We calculate the Fourier transform of the average on each traffic light cycles of the
velocity on the main road and bypass. We obtained different results for different cases. All the cases
can be written as 1/fα. We check by least squares the value of α. As changes in acceleration will
also influence the noise, we check also the alpha for the change in acceleration.

1. INTRODUCTION

In a previous study,[3] , we examined a specific
traffic problem. We wish in this study to change
somewhat the previous assumptions and add the
possibility of changing the duration of a certain
traffic light. To make our exposition clearer we
describe again the procedure given in our previous
study. This traffic problem mimics to a certain
degree a real situation. We did not try to obtain
the actual values as we wish here just to show the
feasibility of our approach. The real situation we
encounter when entering the city of Beer Sheva,
Israel, from the North-East. The specific light we
are considering here is governed by the local coun-
cil of the last suburb. The council decided not to
let the through light to be longer than the one go-
ing to the suburb. Therefore the main question
posed is whether by prolonging the period of go-
ing through the suburb(called here ”the bypass”)
one may gain in the overall amount of cars enter-
ing the city, although those specific cars going on
the bypass may lose time. The main purpose of
this paper is to point out the method. We will use
elementary cellular automata for our purpose.

Empirical observations of traffic show that at
high enough densities the behaviour of traffic be-
comes quite complex. Therefore, Cellular au-
tomata is one of the most used methods for evalu-
ating traffic and that is because of their speed and

complex dynamic behaviour. Cellular automata
were first studied by Ulam and von Neumann ([2]).
An important contribution to the field was in the
work of S. Wolfram [1] who introduced classifica-
tions, used in the present study. The elementary
cellular automaton is a collection of cells arranged
on a one dimensional array. Each cell can obtain
just two possible numbers: one and zero. The
”time” is discreet and at each time step all the cell
values are updated synchronously. The value of
each cell depends just on the values in the previous
step of that cell and its two neighbours. Wolfram
names each elementary cellular automaton with a
binary numeral, which he calls: ”rule”. This value
results from reading the output when the inputs
are lexicongraphically ordered. This will become
clearer when we will explain the rules which we
use. The rules we used are taken from the cellular
automata model as proposed by Gershenson and
Rosenblueth[4] .

In addition to velocities and fluxes we are also
interested in the power spectrum of the average
velocities over a cycle. This value gives us the
main contribution to the noise. All the cases can
be written as 1/fα. We obtain three regions for
the value of α, before the jammed region, during
the onset of the jam and for the denser region.
We check by least squares the value of α. We will
consider this expression in the section dedicated to
calculating the noise.
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TABLE I: Wolfram rules used in this model

t − 1 t184 t252 t136

000 0 0 0

001 0 0 0

010 0 1 0

011 1 1 1

100 1 1 0

101 1 1 0

110 0 1 0

111 1 1 1

2. THE MODEL

We will deal here only with the ”microscopic ”
models were we consider each individual vehicle.
Our highways are represented by an array of cells,
each cell has the values zero or one. One repre-
sents a vehicle and zero an empty portion of the
highway. We assume that the magnitude of a cell
corresponds to the average length of a vehicle. In
figure 1, we show the layout of our model. At a
certain point we have a bifurcation where there are
two different ways to proceed and at a later point
where they merge again. This model represents in
a simplistic way the posibility of using two alter-
native routes (the main route and the ”bypass”)
when approaching a city from a certain direction
of suburbs. We add the possibility that additional
cars are coming into the main road and are re-
moved when approaching the city. So that overall
the number of vehicles is preserved. The rules,
which are the same as used by Gershenson and
Rosenblueth [4] , are given in Table 1. In figure 2
we give the rules at different locations along our
array.

In our analysis we distinguish between four re-
gions:

i. The ”bypass region”(denoted by iq).
ii. The region on the main road between the

entrance and exit of the ”bypass”(denoted by ipe).
iii. The whole of the main road(denoted by ip).
iv. The part of the main road from the second

traffic light and on(denoted by t).

2.1. Measures.

The density, ρ, is given by the number of ’ones’
(i.e. vehicles) devided by the general number of
cells. Initially we take this value to be the same
for the three sections. We check how this value
changes in the different regions. Here we are in-
terested only in the equilibrium values. The veloc-
ities, v, denoted by vp, vq, vpe and vt, are given
by the number of cells which change in one step
from 0 to 1.

Another measure which interests us in this study
is the ratio beween the average time it takes to
traverse the ”bypass” to the average time it takes
on the main road between the two merging points.
We will denote this value by ’qdpe’.

In our calculation, space and time are just ab-
stract quantities. Still if concrete numbers are de-
sired, one can quote[4] were one cell represents five
meters, and a time step represents a third of a sec-
ond, which gives us about 50 km/hour, roughly the
speed limit within a city.

2.2. The grid

The schematic picture of our specific problem is
given in fig 1. A general view of the grid is given
in fig 2. The schematic car movement is given in
fig 3. We denote the cells on the main route by
ip and the cells on the bypass by iq. The cells
between ip = istop and ip = istop1 we denote by
ipe. The cells after ip = istop1 we denote by ipt.
At ip = istop the vehicles move on the main road
or on the bypass according to the ’lights’, the time
going on the bypass may be longer than the one
going straight on the main road. We will check
how this influences the overall speed of travel.

In fig3 we show schematically the movements of
the vehicles. We have two stop lights (denoted by
’1’ and ’2’ on the diagram). When the movement
is on the ”main road” diagram ’a’ gives us the
movement. When we enter or exit the ”by pass”
then ’b’ gives us the rules.

We have a parameter telling us the amount of
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FIG. 1: The movement of vehicles

FIG. 2: The grid

FIG. 3: The movement of vehicles

”cars” added to the main road at the junction of
the bypass. This same amount is deducted from
the ”main road” farther away and is done in or-
der to preserve the total number of vehicles. The
actual addition of cars is governed by a random
number which depends on the parameter(i.e. the
percentage of cycles when a car is added).

3. NOISE

Traffic noise is one of the most important souces
of noise polution. It is well known that this is a
health hazard. In this study we wish to check the
frequency distribution of the noise. It was shown
by Takayasu and Takayasu[7], that we obtain 1/f
noise. Let us explain here this term: ”1/fnoise”
refers to the phenomenon of the spectral density,
S(f), of a stochastic process having the form:

S(f) = const./fα
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When α = 0 we say that we have white noise. If
α = 1 we say we have pink noise. If α = 2 we say
we have brown noise. To understand better this
term see Procaccia and Schuster[5] and Erland et
al.[6]. An Indian group[8] made measurements in
a number of locations and obtained a mostly pink
noise in a large range of frequencies. To obtain
S(f) we make the Fourier transform of the veloc-
ities. To perform our Fourier transform we take
the averages over each light cicle and study the
frequencies of these averages over all the cycles
taken in our calculations. We compare the results
to the 1/fα by a least square test.

4. RESULTS AND DISCUSSION

We used a fixed grid: The main road was com-
prised of 1200 cells, the ”by pass” 300 cells and
the distance between the two lights was 120 cells.
We used the ”green wave” regime. As we have
just two lights it was shown by Gershenson and
Rosenblueth [4] ,that in this case one does not get
different results using the ”self-organizing” regime.

We introduce a vehicle on the first intersection
for 40% of the steps and we eliminate the same
number of vehicles on the last point of our main
route, again per unit time.

In Fig 4 we show the change in velocity of the
main road, after the second traffic light (vt), as
function of the car density. In this case we assume
the same duration of the red and green lights at
the first intersection.

We see in this figure that the average velocity
changes from free flow to the jammed region at
about ρ = 0.6. In the next figure (Fig5), we show
the change of the appropriate flux as function of
the density.

We denote by jw-1 the number of additional
green light at the first intersection enabling cars
to go by the bypass. That means that in Fig4 it
is assumed that jw is 1. The maximum value for
jw will be 12, as that is the cycle between green
and red lights in our calculation. In the next three
figures we wish to show the changes of different
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FIG. 4: The change in velocity as function of the den-
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parameters as a function of jw for a specific den-
sity, which is at the beginning of the transition
from free flow to the jammed region. We chose
ρ = 0.486. The purpose is mainly ilustrative, but
it is similar in other regions.

In figures 6 we show the change in velocities of
the by pass(vq) and the velocity between the two
traffic lights on the main road(vpe).

In all the cases, we see a strong change at jw=7.
Quite clearly, the average velocity on the bypass
increases as more cars are going that way and, at
the same time, the average velocity on the main
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road decreses.
To get a better understanding of the traffic sit-

uation we have to check the relation between the
times a car needs to arrive at the second traffic
light on the bypass and on the main road. This
relation is denoted by

qdpe = time(q)/time(pe)

. In Fig7 we show this relation, and we see again
that at jw=7 we obtain a large change.

We averaged the velocities over a traffic light
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FIG. 8: The values of α as a function of density.

cycle and studied the power spectrum. The value
we are interested in is α, in the expression 1/fα.
We give this value in Fig8.

This is an interesting result. When we increase
the density so that we reach the transtion from
free flow to the jammed region the noise shoots up
from white noise to brown noise and then setles in
the region of pink noise.

In conclusion, we can say that our calculations
give us a wide range of information which can be
applied for specific cases so that the traffic light
regime can be chosen with much less trial and error
than without such a guided approach.
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Synthetic Earthquakes Obtained with Two Cellular 
Automata Models and Comparison with Real Seismicity 
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Abstract - The most useful models in the earthquake 
description are supposed to have a stress distribution, which 
is usually modeled by means of a cellular automaton with 
homogeneous distribution. The geological evidence has shown 
that the Earth crust during an earthquake is broken into 
fragments in a scale range that goes from millimeters to 
hundreds of kilometers and it has in its structure a fractal 
distribution. In this work two cellular automata have been 
used to describe a seismic fault; properties of the models 
observed in real seismicity have been obtained, especially the 
Gutenberg-Richter law. 

Keywords: Cellular automata, earthquakes, seismicity, 
fractals, Gutenberg-Richter law 

 

1 Introduction 
  A lot of geological phenomena are scale free. The 
invariability of the scale is  equivalent to a fractal distribution, 
which requires a power law dependece between the the 
number of objects of a specific size with the size. The concept 
of self-organized criticality (SOC) was introduced by Bak et 
al. [1] as a general organizing principle governing the 
behavior of spatially extended dynamical systems with both 
temporal and spatial degrees of freedom. Composite open 
systems having many interacting elements organize 
themselves into a stationary critical state with no length or 
time scales other than those imposed by the finite size of the 
system. This statistical self-similar behavior is reflected 
through several empirical power-laws in geology and 
geophysics [2]. In such a state, a smaller event often begins a 
chain reaction that can lead to a catastrophe. According to 
Bak et. al. [1, 3], the temporal “finger print” of the SOC state 
is the presence of 1/f-α noise and its spatial signature is the 
emergence of scale invariant (fractal) structure. The scale 
invariance is a well-known property of a lot of geological 
structures and phenomena. This statistical self-similar 
behavior is reflected through several empirical power-laws in 
geology and geophysics [2, 4]. The earth’s crust can be seen 
as a hierarchical set of shapes and sizes suitable for a fractal 
description [5]. The so called Gutenberg- Richter (GR) law 
for the size distribution of earthquakes is a typical power law 
of the seismology [7]. In fact, as Bak [7] has asserted, any 
theoretical or numerical SOC-earthquake model has to 
reproduce the GR-law as a first proof of its seismic 
consistency. 

 In the model of Burridge-Knopoff (BK) [8], the 
behavior of a real seismic fault is modeled by describing the 
dynamics of a linear spring-block array using differential 
equations. Similar BK type models have been extended to 2 
and 3 − D versions and they have been very successful in 
reproducing not only the GR law but several other properties 
of real seismicity [9,10]. Here, several interesting properties 
of models which are concomitant with properties of real 
seismicity are shown. A comparison has been made between 
the model of Olami, Feder and Christensen (OFC) [11, 12] 
this is a two dimensional non conservative cellular automaton 
model, and the model proposed by Barriere and Turcotte (BT) 
[5] that introduced a fractal structure fractal inside the cellular 
automaton. 

 

Fig. 1.  The one dimensional spring-block model of Burridge and Knopoff 
(BK), see reference [8]. 

 The earth lithosphere is broken into about dozen mayor 
rigid plates and several minor ones. These plates slowly grind 
against each other, building up stress and creating faults. 
Seismic slip is associated with earthquakes and refers to 
motion due to a frictional instability between the two sides of 
a fault. After undergoing seismic slip, the formerly sliding 
rock experiences an interval of little or no motion during 
which the stress on the rock recharges. The elastic strain 
increases monotonically on a fault, resulting in an increase of 
stress. Once the stress accumulates to the breaking strength, 
this region becomes unstable and rapidly rebounds or slips to 
a lower, more stable stress state. After the earthquake 
subsides, tectonic forces renew the gradual buildup of stress 
on the fault, eventually culminating in another earthquake 
[13] and so on. 
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 The Gutenberg-Richter law establishes that the 
earthquake occurrence frequency is related to the magnitude 
m by means of the relationship 

 𝑙𝑙𝑙𝑙𝑙𝑙10𝑁𝑁(𝑚𝑚) = 𝑎𝑎 − 𝑏𝑏𝑚𝑚, (1) 

where a and b are constants and N(m) is the number of 
earthquakes larger than m in a specific time interval. 
Although the relationship (1) is universal, the values of a and 
b depend on each region. The constant a specifies a regional 
level of seismicity. The values of b are approximately 
between 0.75 and 1.54. A power-law means that a quantity M 
can be expressed as a power of other quantity s: 

 𝑀𝑀(𝑠𝑠) = 𝑠𝑠−𝜏𝜏  (2) 

 As fractals are characterized by power-law distributions, 
when M(s) versus log s is plotted a straight line is obtained. 
The exponent τ is the straight-line slope. Besides the 
Gutenberg-Richter law, seismologists have obtained 
empirically a lot of power-laws in seismology. Aki [14] 
showed that the Gutenberg-Richter law is equivalent to 

 𝑁𝑁 ≈ 𝐴𝐴−𝐷𝐷 2�  (3) 

where A is the rupture surface and D is the fractal dimension 
of the seismic fault. A relation between b and D is obtained as 

 𝐷𝐷 = 2𝑏𝑏 (4) 

 Therefore the fractal dimension D of the seismic region 
is two times the b value. 

2 The OFC and the BT models 
 The OFC earthquake model is the first example for a 
supposedly self-organized critical yet non conservative 
model. The model consists of equal blocks located on a plate, 
which is supposed to be in the fault (Fig. 2). Each block is 
connected to its neighbors by harmonic springs and they are 
lugged individually by other springs subject to other plate that 
moves with a constant speed. When the upper plate is moved 
slowly, it causes that the force (or stress) linearly increases in 
each block, to the point where the force equals a threshold 
(the force for the fault breaking), after that, the block slips to 
a state of residual force. A sliding block transfers force to its 
nearest neighbors, if these neighbors receive sufficient 
additional force to cause the slipping and so on, it can 
generate a chain reaction or a synthetic earthquake that is 
stopped once all the blocks are down of the threshold. 

 It should be emphasized that the representation of the 
faults as objects of two dimensions does not imply that the 
faults are smooth, as objects without structure. However, a lot 
of structure is included upon discretizing the fault plane. 
Olami et al. [9, 10] assumed that the block that is moved will 
slip to the zero force position. An LxL arrangement of blocks 
is defined by (i, j), where i and j are integers whose values are 

between 1 and L and if the displacement of each block from 
its relaxed position on the lattice is xi,j, then the total force 
exerted by the springs on a given block (i, j) is expressed by 
[7, 8]  

𝐹𝐹𝑖𝑖,𝑗𝑗 = 𝑘𝑘1�2𝑥𝑥𝑖𝑖 ,𝑗𝑗 − 𝑥𝑥𝑖𝑖−1,𝑗𝑗 − 𝑥𝑥𝑖𝑖+1,𝑗𝑗 � + 𝑘𝑘2�2𝑥𝑥𝑖𝑖 ,𝑗𝑗 − 𝑥𝑥𝑖𝑖 ,𝑗𝑗−1 −
𝑥𝑥𝑖𝑖 ,𝑗𝑗+1] + 𝑘𝑘𝐿𝐿�𝑥𝑥𝑖𝑖 ,𝑗𝑗 �                                                              (5) 

where K1, K2 and KL are the elastic constants. The force 
redistribution in the position (i, j) is given by the following 
relationship,  

 𝐹𝐹𝑖𝑖±1,𝑗𝑗 → 𝐹𝐹𝑖𝑖±1,𝑗𝑗 + 𝛿𝛿𝐹𝐹𝑖𝑖±1,𝑗𝑗 ;  𝐹𝐹𝑖𝑖,𝑗𝑗±1 → 𝐹𝐹𝑖𝑖,𝑗𝑗±1 + 𝛿𝛿𝐹𝐹𝑖𝑖,𝑗𝑗±1; 𝐹𝐹𝑖𝑖,𝑗𝑗 → 0 

                                                                                       (6) 

where the force increment in the nearest neighbors is given 
by,  

 𝛿𝛿𝐹𝐹𝑖𝑖±1,𝑗𝑗 = 𝑘𝑘1
2𝑘𝑘1+2𝑘𝑘2+𝑘𝑘𝐿𝐿

𝐹𝐹𝑖𝑖,𝑗𝑗 = 𝛼𝛼1𝐹𝐹𝑖𝑖,𝑗𝑗             (7) 

where α1 and α2, are the elastic ratios. As can be observed the 
force redistribution is not conservative. The model is 
homogeneous because the same values of α1 and α2 are 
considered in the entire grid. If α1 = α2 the model is isotropic. 
Olami et al. made the mapping of the spring-block model into 
a continuous, non conservative cellular automaton. The most 
approximate values to real seismicity are produced for α-
values around 0.2. This is reasonable, because if it is assumed 
that all the elastic constants are in the same scale (K1 ≈ K2 ≈ 
KL) then α ≈ 0.20  (see Eqs. 7 and 8). In Fig. 3 it is shown a 
time series of synthetic earthquakes obtained with this model. 

 

Fig. 2.  Geometry of the spring-block model of Olami, Feder and 
Christensen (OFC). 

 It has been proposed that a seismic fault model must be 
able to produce power laws of the type of the GR-law. 
However, the ability to produce a power law does not mean 
that the model will be useful, because it also must be able to 
reproduce other phenomena and lead to features that the 
seismologists could observe in real faults [13]. The 
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cumulative seismicity was calculated, which was obtained by 
adding the number of blocks that are relaxed in each one of 
the events, and then it was plotted it in function of time. Such 
graphics are stair-shaped plots similar to those of real 
seismicity. Angulo-Brown and Muñoz-Diosdado [9, 10] have 
reported that these stair shaped graphics are a characteristic of 
the model. They found that the synthetic cumulative 
seismicity in the long-term situation could be bounded by a 
straight line, whose slope depends on the system size and 
cannot be arbitrarily large. 

 

Fig. 3.   A time series with 16,500 synthetic earthquakes obtained from 
dee OFC model with α = 0.2. 

 The basic BT model is a bi-dimensional sand pile 
model. The standard cellular-automata model has a grid of 
boxes of equal size. Particles are randomly dropped into these 
boxes. Barriere and Turcotte [5] considered a grid with a 
fractal distribution of sizes, each box representing a fault. The 
random addition of particles to the boxes is analogous to the 
addition of stress to a zone of crustal deformation. A 
redistribution of particles from a box is the analog of an 
earthquake. The number of particles redistributed from a box 
is a measure of the strength of the synthetic earthquake. Big 
boxes have big earthquakes; small boxes have small 
earthquakes. Some of the redistributed particles are lost from 
the grid and the remainders are transferred to other boxes. 
This transfer is analogous to the transfer of stress during an 
earthquake from the fault on which the earthquake occurred 
to adjacent faults. When the redistribution from a small box 
results in instability in a big box the instability in the small 
box is the analog of a foreshock. When redistribution from 
large boxes triggers instabilities in the smaller boxes, these 
are the equivalent of aftershocks. 

 Barriere and Turcotte [5] considered the four models 
illustrated in the Figs. 4-7. In model 1 a square box is divided 
into four equal sized boxes at first order. At second order two 
diagonally opposite boxes are further divided into four boxes. 
This construction can be extended to any desired order. The 
Fig. 4 shows the construction of this model at 5th order, the 

smallest boxes are considered of size one, so at 6th order there 
is a 32x32 grid. For this case N1=64 boxes of characteristic 
size r1=1, N2=32 for r1=2, N3=16 for r3=4, N4=8 for r4=8, 
N5=4 for r5=16 and finally N6=2 for r=32. The following 
equation can be used to calculate the fractal dimension 
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where Nn  is a number of objets (or fragments) with a 
characteristic linear dimension rn, using n=3 it is obtained D 
=ln(8/16)/ln(4/8)= 1. 

  

 

 

 

 

 

 

 

 

Fig. 4. Illustration of fractal cellular automata model numer one. 

 Model 2 illustrated in the Fig. 5 is a variation of model 1 
with the same fractal dimension. In model 3 the square box is 
again divided into four equal sized boxes at first order. But at 
second order only one box is retained and three are further 
divided into four boxes. It is shown at 5th order the third 
model in Fig. 6, in this case, N1=108 for r1=1, N2=27 for 
r2=2, N3=9 for r3=4, N4=3 for r4=8, and N5=1 for r5=16. 
Therefore with n=3 the fractal dimension of third model is D 
=ln(3/9)/ln(4/8)=ln3/ln2= 1.585. In model 4 a square box is 
divided into nine equal sized boxes at first order. At second 
order, three boxes along a diagonal are retained and the other 
six boxes are further divided into nine boxes. This model is 
showed in Fig. 7 at 3th order, in this case N1=324 for r1=1, 
N2=18 for r1=3, and N3=3 for r3=9. The fractal dimension of 
the fourth model is D=ln(3/18)/ln(3/9)=ln6/ln3= 1.6309. 

Barriere and Turcotte applied the following three cellular-
automata rules to their four models: (i) Particles are added 
one at a time to randomly selected boxes. The probability that 
a particle is added to a box is proportional to the area A of the 
box. (ii) A box becomes unstable when it contains 4A 
particles. (iii) They considered two alternative rules for 
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redistribution. In the first, particles are redistributed to 
immediately adjacent boxes or are lost from the grid. The 
number of particles redistributed to an adjacent box is 
proportional to the linear dimension of the box. In the second 
rule, particles are redistributed into the four adjacent regions 
that have the same size as the unstable box. The number of 
particles redistributed to a box is proportional to the area of 
the box. (iv) If after a redistribution of particles from a box 
any of the adjacent boxes are unstable, one or further 
redistributions are carried out. In any redistribution the 
critical number of particles is redistributed. Redistribution is 
continued until all boxes are stable. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Illustration of fractal cellular automata model numer two. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Illustration of fractal cellular automata model numer three. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Illustration of fractal cellular automata model numer four. 

 The size of the total event is defined as, 

 𝐸𝐸 = ∑ 𝑓𝑓𝑖𝑖𝐴𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1  (1) 

where Ai is the area of the region that becomes unstable, fi is 
the frequency or number of times that a region of area Ai 
participates during the event, the smallest box is supposed to 
have size one. The magnitude M of the synthetic event is 
defined as M = log (E). 

3 Results 
 In the OFC model the probability distribution of 
earthquake magnitude frequency was obtained and with these 
graphics the values of the b exponent of the GR law were 
obtained. The distribution forms a straight line that is 
extended in several orders of magnitude, before the line is 
curved downward due to the finite size effect (see Fig. 8). 
This is similar to the real GR law as it is shown for instance 
in Fig. 9, the GR law for the region in the Mexican Pacific 
south coast  that goes from Colima and Jalisco states to the 
Oaxaca state passing by Michoacán and Guerrero states. After 
that, the cumulative seismicity was calculated to investigate if 
in this case a straight line bounds the stair-shaped graphics in 
the long-term situation. Actually the staircase-shaped plots 
were obtained (Fig. 10). 

 The stability for the cumulative seismicity stair-shaped 
graphs in the long-term situation was obtained and this means 
that there are straight line slopes that are superior bounds of 
the staircases. Actually, we have observed these kinds of plots 
in the seismological zones of Oaxaca, Guerrero, Michoacán 
and Jalisco-Colima in Mexico [15]; all of them have been 
characterized by one value of the b exponent of the GR-law. 
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Fig. 8. Distribution of synthetic earthquake magnitude in a 100x100 system 
with open boundary conditions. The network is divided into two parallel 
regions with α -values, 0.225 and 0.175, respectively, 1000,000 events.  

 

Fig. 9. Real GR law for the seismogenic region of the south of the Mexican 
Pacific coast, note at the end the effect of finite size  

 As can be seen in the plots as the one shown in Figs. 10 
(Colima- Jalisco region), 11 (Michoacán region), 12 
(Guerrero region) and 13 (Oaxaca region)  it seems that they 
can be characterized also by the value of the slope mf  of a 
long-term straight line. It means that, for real earthquakes, as 
in the synthetic seismicity, in the long-term behavior the 
envelope of the stair-shaped plots seems to tend to a straight 
line, so when quiescence is produced the plot tends to return 
to the historical slope of the seismological region. 

 

 

Fig. 10. Cumulative synthetic seismicity. The structure of the stair-shaped 
plots can be seen when less events are plotted. 

 

Fig. 11. Number of earthquakes with Ms ≥ 4.3, for the Colima-Jalisco region 
in the Mexican Pacific coast, between 17.8 and 19.8º lat. N and 103 and 
105.8º long. W, from January 1, 1969 to April 30, 2010, with depths less or 
equal to 60 km. Note the two precursory seismic quietude. 

 The cellular automata with fractal structure were 
programmed for the four models proposed by Barriere and 
Turcotte using the rules described in the previous section, we 
considered fourth to eighth order. In these models the patterns 
of synthetic seismicity are similar to the patterns of real 
seismicity. The cumulative seismicity has also a staircase 
shape that is bounded by a straight line. In table I the mf   slope 
values obtained for each one of the fractal models with 
different orders are summarized.  

 For this model it was also carried out the frequency and 
magnitude statistics and it was found that these fractal models 
reproduce the Gutenberg-Richter law. For instance, the 
analysis results for the second fractal, sixth order are shown 
in Fig. 8, the slope of the straigth line b =0.49± 0.04, this 
result is in agreemment with the equation (1). 

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  | 553



 

Fig. 12. Number of earthquakes with Ms ≥ 4.3 , for the Michoacán region in 
the Mexican Pacific coast. 

 

Fig. 13. Number of earthquakes with Ms ≥ 4.3, for the Guerrero region in the 
Mexican Pacific coast. 

 

Fig. 14. Number of earthquakes with Ms ≥ 4.3 , for the Oaxaca region in the 
Mexican Pacific coast. 

  

TABLE I.  SLOPE MF  OF THE STRAIGHT LINE ASSOCIATED TO THE STAIR 
GRAPHICS OF THE ACCUMULATED SEISMICITY FOR EACH ONE OF THE FRACTAL 

AUTOMATON MODELS WITH DIFFERENT ORDERS, D IS THE FRACTAL 
DIMENSION 

Mo
del D Order 

  2 3 4 5 6 7 8 
1  1 - 1.10 1.39 1.68 1.93 2.23 2.49 

2 1 - 2.94 3.86 4.76 5.36 6.63 7.58 

3 1.58 - 1.93 3.73 7.29 13.8 26.0 49.0 

4 1.63 2.7 8.28 23.8 67.5 - - - 

 

 

Fig. 15. Statistical distribution of the frequency logarithm and the magnitude 
for a synthetic seismicity pattern obtained with the second model, sixth order. 
Note the agreement with the Gutenberg-Richter law with  b =0.49± 0.04. 

 In Table II, the values of the b parameter for each one of 
the used models are shown. It can be observed in Table II that 
for the models 1 and 2 the values of b are close to the value 
0.5, which approximately is one half of their respective fractal 
dimension D=1, therefore for the fractal models 1 and 2 they 
fulfill the Aki [12] relationship D=2b quite well. However, 
for the fractal models 4 and 5 where the respective 
dimensions are D =1.585 and D =1.631 a relationship D< 2b 
is observed. 

TABLE II.  VALUES OF THE COEFFICIENT B OF THE GUTENBERG-
RICHTER LAW 

Mo
del D Order 

  2 3 4 5 6 7 8 
1  1 - 0.54 0.54 0.53 0.50 0.50 0.50 

2 1 - 0.49 0.49 0.48 0.48 0.48 0.47 

3 1.58 - 0.67 0.67 0.55 0.55 0.54 0.54 

4 1.63 0.66 0.59 0.56 0.81 - - - 
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4 Conclusions 
 The OFC and BT models qualitatively reproduce many 
of the properties observed in real seismicity, so they are good 
models to model seismic faults. Catalogues of synthetic 
seismicity have been obtained with similar properties to the 
catalogues of real seismicity, based in the characteristics of 
this fractal model it can be proposed that this catalogues can 
be used to study aftershocks and foreshocks. The results are 
similar to the ones obtained with real data, so this research is 
in the correct way to have in the future a more appropriate 
model for a seismic fault based on a spring block model. 
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Abstract—This paper presents a parallel implementation of the
Hybrid Bi-Conjugate Gradient Stabilized (BiCGStab(2)) iterative
method in a Graphics Processing Unit (GPU) for solution of
large and sparse linear systems. This implementation uses the
CUDA-Matlab integration, in which the method operations are
performed in a GPU cores using Matlab built-in functions. The
goal is to show that the exploitation of parallelism by using
this new technology can provide a significant computational
performance. For the validation of the work we compared the
proposed implementation with a BiCGStab(2) sequential and
parallelized implementation in the C and CUDA-C languages.
The results showed that the proposed implementation is more
efficient and can be viable for simulations being carried out
with quality and in a timely manner. The gains in computational
efficiency were 76x and 6x compared to the implementation in
C and CUDA-C, respectively.

Keywords: Matlab, GPU, CUDA, BiCGStab(2).

I. INTRODUCTION

A linear system is a linear equations finite set applied in a
variable finite set. Sparse and large linear systems may appear
as result of the modeling of various computer science and
engineer problems [18]. To solve such systems, iterative meth-
ods are more indicated and efficient than exact methods [20].
Iterative methods use less memory space and reduce rouding
errors in computer operations [15]. Such methods perform
successive approximations in each iteration to obtain a more
precise solution for the system.

Classical iterative methods such as Jacobi and Gauss-Seidel
are considered easy to deploy and use [17]. Nevertheless,
despite this feature both may have a slow convergence or even
not converge for large systems [20]. Another disadvantage is
that when the coefficient matrix is not square (number of rows
equal to the number of columns), these two methods can not
guarantee the linear system convergence. As a consequence,
the research and implementation of computational methods
are considered important tasks in various areas of science,
particularly those that involve the solution of large linear
equations systems [6].

There are several methods for solution of linear systems.
Some of them are considered good in relation to the computa-
tional cost. However, the computational performance may be

affected if the size of the system is large. In some cases in
which the linear systems to be solved are very large, the com-
putational processing may last too many days and the meth-
ods solution speed difference are significant. Consequently,
the implementation of efficient and robust methods such as
the Hybrid Bi-Conjugate Gradient Stabilized (BiCGStab(2))
becomes important and often necessary for the simulations
are performed with quality and in a short time [2]. The
BiCGStab(2) is an iterative method developed for solving large
and sparse linear systems and is considered a good one [6].

Several studies have used the computational resources of
Graphics Processing Units (GPU) to solve large and sparse
linear systems. For instance, Bowins [2] presented a compari-
son of computational performance between the Jacobi method
and the Bi-Conjugate Gradient Stabilized (BiCGStab) method.
In that work, both methods were implemented in two versions:
sequential and parallelized. Based on the results obtained,
he showed that as the size of the system increases, the
parallel implementation outperforms the sequential in terms
of computational efficiency.

Weber et al. [21] presented graphics processing unit (GPU)
data structures and algorithms to efficiently solve sparse linear
systems that are typically required in simulations of multi-
body systems and deformable bodies. Their solving method
results in a speedup factor of up to 13 in comparison to other
sequential and GPU methods.

More recently, Paula et al. [6] proposed a parallelization
of the BiCGStab(2) method for solving linear systems using
Compute Unified Device Architecture (CUDA) and compared
the computational performance between the sequential and
parallelized versions of the method. They showed that from
the computational point of view, the parallel version of
BiCGStab(2) method is more efficient.

In this context, this paper presents a parallel implementation
of the BiCGstab(2) method, which uses the CUDA-Matlab
technology in a GPU for solving linear systems. The goal
was showing that the proposed implementation can be more
appropriate and, through its use, it is possible to enable the
efficient solution of large and sparse linear systems for in-
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creasingly complex (larger) systems can be solved in a timely
manner. To achieve this goal, we performed a comparison with
the implementation of the BiCGStab(2) method proposed by
Paula et al. [6] in the solution of linear systems of varying
sizes. The results showed that the computation time can be
significantly reduced with the implementation proposed in this
paper. It was possible to obtain speedup gains of 76x and 6x
compared with the sequential and parallelized implementation
proposed in [6], respectively.

The remainder of this paper is organized as follows. It is
detailed in Section II the BiCGStab(2) iterative method. Sec-
tion III describes the CUDA and its integration with Matlab.
The materials and methods used to achieve the objective of the
work are described in Section IV. The results are presented
and discussed in Section V. Finally, Section VI contains the
conclusions.

II. BICGSTAB(2) METHOD

The solution of a linear equations system Ax = b, where
An×n is the coefficient matrix and bn×1 the vector of in-
dependent terms, may require a huge computational effort
especially when A is very large. For example, to solve a linear
system one can use an iterative method. Iterative methods
perform successive approximations in each iteration to obtain
a more accurate solution and are recommended for large linear
systems with sparse matrices [1].

Iterative methods are classified into two groups: stationary
and non-stationary methods [6]. The stationary methods use
the same information at each iteration, i.e., the results of one
iteration are used for the next iterations [18]. In non-stationary
methods, the information used may change with each iteration.
The non-stationary methods are difficult to implement but
may provide a faster convergence for the system and are
more suitable even when the coefficient matrix is dense (non-
sparse) [20].

The BiCGStab(2) is a non-stationary iterative method de-
veloped by van der Vorst and Sleijpen [18]. This method
combines the advantages of BiCGStab and Generalized Min-
imum Residual (GMRES) method [14]. Consequently, the
BiCGStab(2) is considered a robust method and with conver-
gence guarantee superior to BiCGStab, suitable for solution
of linear systems generated in the solution of differential
equations of fluid flow [18].

Algorithm 1 shows a snippet of pseudocode for the algo-
rithm of BiCGStab(2) method. A full pseudocode can be ob-
tained in [6]. Some adjustments were made naming comparing
with the original algorithm. In the Algorithm 1, the Greek
letters represent scalars, lowercase letters represent vectors
expressed in matrix form, capital letters represent matrices,
and parentheses with comma separated vectors represent scalar
products between vectors.

In step 38 of the method, so that the vector xi+2 is
sufficiently precise, the higher value corresponding to the
difference between the results of each term of the vector x
in two consecutive iterations, divided by the result of the term

in the current iteration, should be less than a given accuracy
as, for example, max(xi−(xi−1)

xi
) < 10−5.

Algorithm 1: Snippet of pseudocode for the algorithm of
BiCGStab(2) method.
1. r0 = b - Ax0
2. r̂0 = r0
3. ρ = α = ω1 = ω2 = 1
4. v = w = p = 0
5. for i = 0, 2, 4, ... do
6. ρ̂ = -ω2ρ

Even BiCGStab step: from step 7 to 16
7. ρ = rTi r̂0 ...
16. xi = xi + αp

Odd BiCGStab step: from step 17 to 27
17. ρ = sT r̂0 ...
27. t = As

GMRES(2)-part: from step 28 to 38
28. ω1 = rT s ...
36. xi+2 = xi + αp + ω1r + ω2s
37. ri+2 = ri - ω1s - ω2t
38. If xi+2 is accurate, stop.
39. end for

III. CUDA
Compute Unified Device Architecture (CUDA) was the

first Application Programming Interface (API), created by
NV IDIA R© in 2006, to allow the GPU could be used for
a wide variety of applications [4]. CUDA is supported by
all graphics cards from NV IDIA R©, which are extremely
parallel, having many cores with many memories and a
memory cache shared by all cores. The CUDA code is an
extension of the C computer language (CUDA-C), where a
few keywords are used to label the parallel functions (kernels)
and their data structures [3].

Since its inception, several studies have used CUDA to
parallelization of various types of problems. For instance,
Yldirim and Ozdogan [22] presented an algorithm as a clus-
tering approach based on wavelet transform for parallelization
on GPU using CUDA-C. Fabris and Krohling [9] proposed an
algorithm of evolution implemented in CUDA-C for solving
optimization problems. Atasoy et al. [1] presented a eliminat-
ing method implemented in CUDA-C using Gauss-Jordan to
solve systems of linear equations. Paula et al. [6] used CUDA-
C to parallelize the BiCGStab(2) method for solving linear
systems of varying sizes. Finally, Paula et al. [8] proposed a
parallelization strategy for phase 2 of the Successive Projec-
tions Algorithm using CUDA-C.

In order to help programmers, the MathWorks R© has
developed a plugin able to do integration between CUDA
and Matlab. Make use of Matlab to GPU computing can
enable applications to be more easily accelerated. GPUs can
be used with Matlab using the Parallel Computing Toolbox
(PCT). The PCT provides an efficient way to speedup codes
in Matlab language, running them on a GPU [11], [7]. For
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this, the programmer must change the data type to input a
function to use the commands (functions) in Matlab that were
overloaded (GPUArray). Through GPUArray function one
can allocate memory in the GPU and make calls to various
functions of Matlab, which are performed on the GPU’s
processing cores. Additionally, developers can make use of
the PCT CUDAKernel interface to integrate their code in
CUDA-C with Matlab [13].

The development of applications running on the GPU using
the PCT is usually easier and faster than using CUDA-C
language [12]. According to Little and Moler [11], this is
because aspects of exploitation of parallelism are implicitly
performed by the PCT itself, freeing the programmer from
many inconveniences. However, the organization and the num-
ber of threads to be executed on the GPU cores can not be
managed manually by the programmer. Still, it is important to
emphasize that in order to be used, the PCT requires a graphics
card from NV IDIA R©.

After CUDA-Matlab integration, few studies have used this
technology. For example, the NV IDIA R© [5] released a book
that demonstrates how programs developed in Matlab can be
accelerated using GPUs. Simek and Asn [16] presented an
implementation in MATLAB with CUDA for compression
of medical images. Kong et al. [10] accelerated some func-
tions in Matlab for image processing on GPUs. Reese and
Zaranek [13] developed a manual programming GPUs using
Matlab. More recently, Paula et al. [7] proposed a parallel
implementation of the Firefly Algoritm using CUDA-Matlab
for variable selection in a multivariate calibration problem.
Based on the results of these works, we note that, in future,
the PCT may be more used due to the fact of allowing a
code in Matlab can be easily parallelized. Therefore, instead
of implementing a kernel function and set the amount and
organization of threads blocks, the programmer must only
identify which parts of your code are parallelizable and make
use of the built-in Matlab functions.

IV. EXPERIMENTAL

The GPU was initially developed as a flow-oriented technol-
ogy, optimized for calculations of data-intensive applications ,
where many identical operations can be performed in parallel
on different data [4]. Unlike a Central Processing Unit (CPU),
which executes only a few threads in parallel, the GPU was
designed to run thousands of them [8].

As previously mentioned, one can explore parallelism in
GPUs using the PCT plugin, which provides an efficient
way to speedup codes in Matlab language invoking functions
that are overloaded to run in the cores of a GPU from
NV IDIA R©. Thus, this paper presents an implementation of
the BiCGStab(2) method in Matlab, which uses this technol-
ogy. The proposed implementation is analogous to Algorithm
1. Initially, the data are transferred to the GPU memory.
Soon after, the method begins execution and all operations
are performed in the GPU’s processing cores for threads that
are created and managed implicitly by the PCT.

All the linear systems used in this paper were generated
using Matlab (version R2013a) built-in functions. The coef-
ficient matrix (A) of each system was generated randomly
using the function gallery(′dorr′, n) , which returns a square
matrix of dimension n, sparse and diagonally dominant. The
diagonal dominant characteristic indicates that the sum of all
elements in a row is not greater than the main diagonal element
of the matrix. The vector of unknowns (x) was randomly
generated by randn(n, 1) function, which returns a vector of
n rows and 1 column. The vector of independent terms (b)
was generated by multiplying the matrix A and vector x. For
each system generated was passed to BiCGStab(2) only the
matrix A and the vector b which, after attempting convergence
system, returned vector x.

To evaluate the computational gain obtained by implement-
ing the parallelized method, it was recorded the time spent on
each iteration of the BiCGStab(2) algorithm.

The purpose of this paper was not to compare the differ-
ences between Matlab and solution methods, but only use
Matlab to generate the random systems and compare the speed
of calculation of the methods in the solution of several linear
systems.

A. Computational setup

All calculations were carried out by using a desktop com-
puter with an Intel Core i7 2600 (3.40 GHz), 8 GB of RAM
memory and a NV IDIA R© GeForce GTX 550Ti graphics
card with 192 CUDA cores and 2 GB of memory config. The
Matlab R2013a software platform was employed throughout.

V. RESULTS AND DISCUSSION

The results obtained with the BiCGStab(2) parallelized
method were compared with its sequential implementation,
in order to verify the computational gain obtained with
parallelized implementation. Additionally, a comparison was
made with implementations (sequential and parallelized) of
BiCGStab(2) proposed by Paula et al. [6]. The comparative
graphs of processing time (in seconds) of different linear
systems solved with the BiCGStab(2) method (sequential and
parallelized) in Matlab are shown in Figures 1 and 2.

Figure 1 shows that the sequential implementation may be
more efficient for linear systems with dimensions ranging from
10 to 1000. This is due to the fact the algorithm of the method
contain inherently sequential operations. For example, the
scalar products running sequentially on the CPU, depending
on the size of the system, may have a significantly reduced
computational time compared to the same time of execution
in cores of the GPU. Likewise, the operations between scalars
(steps 8, 13 and 34, for example) can not be divided between
multiple threads and, consequently, this may result in poor
performance when executed by a single GPU thread. Further-
more, due to the existence of an overhead associated with the
parallelization of tasks in GPU, the size of the system to be
solved must be taken into consideration [3], [6], [8].

On the other hand, Figure 2 shows that for systems with
dimension greater than 1500, the parallelized BiCGStab(2)
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Fig. 1. Comparison of calculation speed for systems with dimension between
10 and 1000.
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Fig. 2. Comparison of calculation speed for systems with dimension between
1500 and 4000.

exceeds the sequential implementation. In this case, in com-
parison of computational efficiency, the speedup gain obtained
was approximately 2.59x. Therefore, the implementation that
uses the GPU would be more appropriate since the size of the
system used is greater than 1500×1500.

Figure 3 shows a comparison between the proposed se-
quential implementation and the sequential implementation
proposed by Paula et al. [6]. The BiCGStab(2) implemented in
Matlab is much higher compared to the same implementation
in C language. It is observed that the time for implementation
proposed by Paula et al. [6] requires a computational effort
which increases approximately exponentially with the size of
the system, while the time for implementation in Matlab is
less pronounced. The speedup gain provided by the sequential
implementation in Matlab was approximately 76.75x. Conse-
quently, the use of the method implementation in Matlab can

provide a more significant gain of computational performance.
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Fig. 3. Comparison of calculation speed for systems with dimension between
1500 and 4000 between sequential implementations of the BiCGStab(2) in
Matlab and C.

Figure 4 shows a comparison between the proposed par-
allelized implementation and the parallelized implementation
proposed by Paula et al. [6]. As in the previous case, it is
possible to note the superiority of the parallelized BiCGStab(2)
using CUDA-Matlab integration in the solution of the treated
systems. It can be seen that the time for implementation in
CUDA-C also requires a computational effort approximately
exponentially in that the size of the system increases. In this
case, the speedup obtained was approximately 6.12x. There-
fore, compared to the parallelized implementation proposed by
in [6], the parallelized BiCGStab(2) in Matlab can be a more
appropriate choice of the computational point of view.
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Fig. 4. Comparison of calculation speed for systems with dimension between
1500 and 4000 between parallelized implementations of the BiCGStab(2) in
CUDA-Matlab and CUDA-C.
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VI. CONCLUSION

We have implemented and used in this work a computer
code in Matlab of the BiCGStab(2) iterative method for solu-
tion of large and sparse linear systems. The method was imple-
mented on a fully sequential version as well as in a parallelized
version using a GPU with CUDA-Matlab integration. The
purpose of this paper was to present a new implementation of
BiCGStab(2) to enable the rapid solution of linear systems and
compare the computational performance with the sequential
implementation. Additionally, a comparison was made with
the sequential and parallelized implementation proposed in [6].

For the systems evaluated here, it was found a superiority of
the parallelized implementation with CUDA-Matlab regarding
the computational time spent in the calculation of each system.
It was possible to obtain a speedup gain of around 76x and 6x
compared to the sequential and parallelized implementation
presented in [6], respectively. Compared to the sequential
implementation in Matlab, the parallelized BiCGstab(2) was
faster only for systems with dimension greater than 1500, and
the speedup was approximately 2.5x. Therefore, it was con-
cluded that the implementation of the method that performs in
the GPU, compared to implementations proposed by Paula et
al. [6], would be a more suitable and appropriate implemen-
tation to obtain a significant computational performance.

Future works in this same line of research may solve
linear systems with larger dimensions than this paper. The
systems generated in the simulations of fluid flow problems
studied in the Computational Fluid Dynamics may be solved.
Techniques for efficient exploitation of parallelism in scalar
product between vectors operations can also be applied in
an attempt to further increase the computational performance.
Furthermore, alternatives to CUDA-Matlab integration such as
OpenCL [19] may be investigated for comparative studies.

ACKNOWLEDGMENT

The authors thank the research agencies CAPES and
FAPEG for the support provided to this research.

REFERENCES

[1] Nesrin Aydin Atasoy, Baha Sen, and Burhan Selcuk, Using gauss-
jordan elimination method with cuda for linear circuit equation systems,
Procedia Technology 1 (2012), no. 0, 31–35.

[2] Elise Cormie Bowins, A comparison of sequential and gpu implementa-
tions of iterative methods to compute reachability probabilities, Proceed-
ings First Workshop on GRAPH Inspection and Traversal Engineering
(2012), 20–34.

[3] N. CUDATM , Nvidia cuda c programming best practices guide,
NVIDIA Corporation, 2701 San Tomas Expressway Santa Clara, CA
95050, 2009.

[4] NVIDIA CUDATM , Nvidia cuda c programming guide, 5.0 ed.,
NVIDIA Corporation, 2701 San Tomas Expressway Santa Clara, CA
95050, 2013.

[5] NVIDIA Corp. CUDATM , Accelerating matlab with cuda, vol. 1,
NVIDIA Corporation, 2007.
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Abstract— Drastic growth in the number of processor cores
in state-of-the-art supercomputers is increasing difficulties in
discussing and designing efficient architectures. One of the
toughest problems is interconnection network (ICN) archi-
tecture that is severely responsible to both performance and
costs. For the coming exa-scale supercomputers and beyond,
a significant breakthrough is expected in discussing ICN
methods. This paper presents a novel ICN simulation method
by introducing cellular automaton (CA) principle. Through a
three-step discussion in introducing CA, the proposed method
can offer a powerful simulation engine. Evaluation results
reveal the significant speedup of simulation time with precise
simulation results. Furthermore, our preliminary implemen-
tation in GPGPU shows about sixteen times acceleration
from commercial four-core processors.

Keywords: interconnection networks, simulation, large-scale par-
allel systems, cellular automata

1. Introduction
State-of-the-art supercomputers are employing a huge

number of processors. The Top-500 list of supercomputers[1]
indicates that the numbers of processor cores in top-five
supercomputers are drastically increasing as Fig. 1 depicts,
where the number of processor cores increases about 103

times in two decades.
Development of high-end supercomputers involves a wide

spectrum of technological challenges, and one of the most
important challenges is interconnection methodology. Inter-
connection network (ICN) is one of the most important key
issues. Thus, many research institutes discuss ICN technolo-
gies from various points of view; physical layer technologies,
e.g., optical interconnection, topologies, routing algorithms,
fault-tolerance, and so on.

This paper addresses simulation issues for large-scale
ICNs. So many researches have reported their ICN meth-
ods, e.g., topology and routing algorithm. In many cases,
effectiveness of their novel method is depicted as software
simulation results, where a reasonable system size is as-
sumed. Conversely speaking, although we expect a high-level
of effectiveness of the novel method by extrapolating the
scale of system, actual effectiveness is not proven.

Large-scale ICN simulations face serious difficulties. Most
of ICN simulators are not ready for extreme-scale simula-
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Fig. 1: The number of processor cores in top-five supercom-
puters. The linear line approximates the top-1 dots by the
least-square method.

tions. Although parallelizing ICN simulator is not a difficult
task, large-scale simulation requires a lot of resources and
long computing time. Some simulation infrastructures offer
large-scale simulations, although, actual simulation sizes are
limited as opposed to skyrocketing supercomputers.

An alternative approach is approximated method that es-
timates total communication flows by approximation. Al-
though the method is useful in offering a rough estimation,
we have to consider preciseness of the estimation results.
Thus, the approach is out of our scope.

According to the discussions above, this paper aims at
light-weight ICN simulation fundamentals so that we can
quickly estimate new ideas in large-scale situations. For
this purpose, we introduce a cellular automata principle in
modeling an ICN router. The major contribution of this
paper is to offer a new idea based on cellular automata for
accelerating simulation speed of large-scale interconnection
networks.

The rest of this paper is organized as follows. Section
2 overviews related work in ICN simulation methods from
large-scale simulation point of view and also from cellular
automaton application. Section 3 provides fundamentals of
ICN simulation and offers baseline assumptions in this paper.
Section 4 discusses modeling of router functions by means
of cellular automaton principle, followed by experimental
results in Section 5. Finally, Section 6 concludes this paper.
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2. Related Work
Many researches require their own simulators and some

of them are presented and discussed. Dally et al. present
BookSim[2] that was originally developed for writing their
textbook of interconnection networks[3]. Recent simulators
include OMNET++ [4] and TOPAZ [5]. They have remark-
able features in flexibility and ease of configuration. These
simulators are fully functional, but, they are not suitable for
extremely large-scale systems simulation.

As shown in Fig. 1, rapid growth in the scale of su-
percomputers attracts computer architects to serious fear in
designing extremely large-scale parallel systems. This crisis
motivates system architects to discuss appropriate methods
in estimating interconnection costs and performance. Thus,
several important simulation infrastructures are proposed:
SMART [6], Pose [7], [8], BigSim [9], and OpenNSIM [10].

Although large-scale simulators offer affordable environ-
ment, there still exist essential problems in extremely large-
scale simulations, i.e., they require a lot of resources and
computing times. From this point of view, approximate
methods are given as an alternative approach. Atzori and
Isola[11], Choudhury et al.[12], and Yazaki et al.[13] present
their specific characteristics. Yokota et al.[14] have also
investigated scaling issues by means of parallelized ICN
simulator.

Fired by Wolfram’s significant milestone[15], cellular au-
tomata have been discussed in wide variety of application
fields[16]. For example, lattice gas methods present quick,
accurate and powerful simulation methodologies[17]. Simply
speaking, a car is regarded as a particle in the conventional
CA model and this naturally extends traditional CA models to
car-traffic. For example, cars running on a road are modeled
by one-dimensional cellular automata. As CA models of car-
traffic are actively discussed, e.g. [18], analogies of car-traffic
and information network are recognized[19]. The essential
ideas of car-traffic model of CA is flow simulation, thus,
with regard to information network, message packets instead
of cars are modeled[20]. Lawniczak et al. [21] present
cellular automata model of OSI network layer and discuss
its preciseness. Brooks et al.[22] present a practical cellular
automata model of UDP and TCP traffics, which can quickly
approximates a well-known realistic simulator NS-2.

3. ICN Simulation
3.1 Router Organization

This subsection presents the baseline architecture on which
this paper discusses simulation issues.

This paper assumes two-dimensional torus networks for
simplification of discussions. While other topological op-
tions are also possible for discussion, two-dimensional torus
has general characteristics that are applicable to the other
topologies, i.e., not a small number of input/output ports and
multiple virtual channels.

FIFO
buffer

crossbar

router demux.

mux.

N(orth)

S(outh)

E
(a
s
t)

W
(e
s
t)

C(PU-in) C(PU-out)

Fig. 2: Router organization for two-dimensional torus.

A typical organization of router for two-dimensional torus
network is depicted in Fig. 2. A router has five sets of input
and output ports, as Fig. 2 illustrates N(orth), E(ast), S(outh),
W(est), and C(pu) ports. As this figure suggests, N, E, S, and
W ports are used to connect to the four neighboring routers,
and C port connects the corresponding processor core.

Each input port employs a necessary number of FIFO
buffers that correspond to virtual channels. Virtual channels
offer logical communication paths for enhancing performance
and preventing deadlocks. But, a physical connection be-
tween two neighboring routers, and also between router and
processor, is simply a wire. Thus, simultaneous transmissions
along multiple VCs are prohibited at any point of time. This
physical limitation implements a demultiplexor before the
VC buffers, and also implements a multiplexor at each output
port.

After being buffered by the VC buffer, each head packet
requests a connection circuit to an appropriate output port
and channel. A crossbar switch implements the connection
circuit as shown in Fig. 2. It is usually explained as collection
of cross-point switches. A crossbar never accepts conflicting
requests for an identical output. Thus, from a logic-functional
point of view, a crossbar is regarded as a set of selectors.

3.2 Synchronous Simulation
Many ICN simulators are designed under the cycle-

accurate principle, where all components operate clock by
clock. Usually, an ICN simulator assumes a global clock
signal and all components operate synchronously by means
of the global clock.

To ensure the completely-synchronous operations, an ICN
simulator follows two-phase update fashion at every clock
cycle. In the first phase, each router firstly checks incoming
packets in its five input ports. Since a packet belongs to one of
the virtual channels, the packet is stored in the corresponding
VC buffer.

After storing incoming packets, the router determines
output direction of each of FIFO-top packets. Based on the
output request information, the router resolves conflicting
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requests to properly control the crossbar switch that connects
input packets to output ports. Thus, when some of requests
conflict to an identical output port, only one of them is
selected to pass through the crossbar switch, and other ones
are kept in their input buffer. A virtual channel supports a
logical link and multiple (three in this paper) VCs share a
physical channel (link). Furthermore, this paper assumes that
each output port has no memory elements. Thus, at most one
virtual channel wins to transfer a packet and other channels
are suppressed.

By the end of the first phase, each router determines the
next states of its subordinate components. The next state is
a local variable that is invisible to neighboring routers and
processors. The router updates its (current) state with the next
one in the second phase.

As the ICN simulator should answer the cycle-accurate
results, it has to follow appropriate handling of packets from
generation to consumption. This means that the simulator
should follow processor behaviors to fulfill the necessary
communication situations to simulate. For example, in a sim-
ulation process of continuous communication, each processor
generates appropriate packets following a given traffic pattern
in given intervals.

Furthermore, statistics functions are required for ICN sim-
ulation, that is, the ICN simulator should measure the number
of received packets and average (and sometimes maximum)
latency of the received packets. In unsteady communication
situations, the simulator should measure duration time of
collective communication.

4. Cellular Automata Model
4.1 Cellular Automata for Flow Simulation

As we mentioned in Section 2, cellular automaton models
are widely used for flow simulation. The most typical exam-
ple is car-traffic simulation[18]. A simple example situation is
highway where a lane is represented as a string of cells. Each
cell represents discretized position of cars and a white/black
cell represents occupied/unoccupied by a car.

The primitive idea in car-traffic models is based on so-
called box-ball models. A car can move to the neighboring
cell if and only if the neighboring cell is not occupied by
another car. While the update rule of cell is quite simple,
the car-traffic system sometimes shows jamming phenomena
that we sometimes encounter in real life.

4.2 Naive Model
Our first idea is to apply a cellular automaton principle to

ICN simulation. Contrary to the car-traffic models, we have to
make further discussions for modeling router functions. After
being transmitted from an output port, a packet immediately
runs to the next router. An input port has multiple VC buffers,
and VCs share a physical link.

In our previous work in [23], [24], we have simplified the
cellular automata model of router at an essential level. The
center idea of the CA model is that a set of CA cells represent
router functions where the binary state of each cell represents
whether the cell is occupied by a message packet or not.
Only uni-directional traffics, i.e., rightward and downward,
are supported. Virtual channels are represented as parallel
lanes that do not share an identical physical link. The crossbar
switch is simply controlled by traffic signal where blue(red)
signal allows rightward(downward) traffic.

The essentially simplified model shows phase transition
phenomena at congested situation, and qualitative character-
istic that emerging speed of congestion is O(1) and the con-
gestion sustains O(N2) time. The results clarify qualitative
knowledge, but, the results are not sufficient for quantitative
discussions.

Thus, we extend the simplified model to match the re-
alistic router organization by means of cellular automata
principles[25]. The first point is bidirectional communication
in each direction and this extension is straightforward. The
second point is an appropriate model of a crossbar switch. As
we stated in Section 3.1, a crossbar switch is a collection of
selectors. We model the crossbar behavior with a single cell
that is connected from the FIFO top cells in input ports in a
many-to-one fashion. The update rule functions as a selector.
The third point is the multiplexing function that is required
for multiple virtual channels to share a physical link. Fig. 4
presents the organization of our CA model of a router.

We introduce following three components of cellular au-
tomata to properly model the router organization:

• buffering function that implements the first-in-first-out
buffer function (Fig. 5(a)),

• crossbar function that implements the crossbar switch
function (Fig. 5(b)), and

• channel selection function that implements channel-
sharing function of virtual channels (Fig. 5(c)).

In CA principle, the next state of each cell is determined by
its neighboring cell. Our three CA components also follow
the principle, although, update rules differ so that each rule
corresponds to a specific function.

In the buffering function, each cell updates its own state
simply according to the preceding cell. Other two functions
have slightly complicated rules. The center cell in Fig. 5(b)
is the crossbar cell, which represents an output request to
a specific direction (e.g., east) via the channel selection
function. Surrounding cells are the FIFO top cells in input
ports, and each cell requests the center cell iff its occupying
packet are going to the corresponding direction of the center
cell. The channel selection function allows at most one
message packet to traverse the corresponding physical link.

We further introduce a table-based update method to accel-
erate CA computation. For example in Fig. 5(a), since each
cell has binary state, i.e., 0/1, both current and next states of
the whole cells are summarized in a five-bit binary number.
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(a) Naive update. (b) Macro CA update.

Fig. 3: Update sequence in the naive and Macro CA models.

buffer

crossbar

router
N(orth)

E(ast)

W(est)

S(outh)C(PU-in)

C(PU-out)

Fig. 4: CA representation of a router.

We can prepare a state transition table based on the binary
representation, and this reduces computation significantly.

4.3 Macro CA Model
By introducing the CA principle and table-based update

method, we can expect drastic speedup in simulating ICNs
in which a vast number of routers are connected to route
packets. But, the naive model has a serious drawback: the
buffering function does not sufficiently reflect actual FIFO
behaviors. The naive CA behaves a shift-register function
and it consumes unnecessary clock cycles to pass through
the buffer even when the buffer contains no other packets.

Accurate simulation needs accurate FIFO behavior in the
buffering function. To satisfy the requirement, we extend the
CA principle by modifying the update table that is introduced
in the previous section. Fig. 3 shows an example. The Macro
CA update method reduces intermittent steps as depicted in
Fig. 3(b), whereas the naive method requires unnecessary
steps (Fig. 3(a)).

4.4 Asynchronous Model
The proposed Macro CA model follows the practical

behaviors of router functions, however, it does not yet earn
satisfactory preciseness in simulation results. The reason

(a) bufer (b) crossbar

VC 0

VC 1

VC 2

router i router i+1

(c) channel selection

Fig. 5: Three CA components of router model.

comes from (1) the simple box-ball system that restricts
the packet flow rate to 1/2 and (2) the three separate CA
components that correspond to the individual functions of
buffering, crossbar and channel selection.

To ensure consistent results, simulations are requested to
be operated fully synchronous. Since the Macro CA model
also consists of three CA components, a message packet
requires at least three steps in time to go through a router,
i.e., one step in buffer, one step in crossbar, and further
one step in channel selection. One straightforward solution is
representing all possible transitions in a single update table,
but, this method requires too large table in size since many
cells are used in each router.

The alternative solution is asynchronous update in the three
CA components with the router model, while synchronous
update principle is guaranteed at intra-router level. The CA-
based router organization (in Fig. 4) forms a uni-directional
graph from input ports to output. By starting from the
buffering function in input port, asynchronous update even
keeps consistency of cells states. Practically, the buffering
function is applied followed by the crossbar and channel-
selection functions in order. This improves packet transfer
latency, e.g., it requires only one step to traverse a router,
while the Macro CA requires three steps.

5. Evaluation
5.1 Space-Time Behaviors

Fig. 6(a) shows a simple merging flow followed by a
FIFO buffer. Packet sources S1 and S2 produce packets
continuously and the generated packets are injected into the
corresponding buffers buf1 and buf2. Output packets from the
two buffers are merged at the crossbar cb and the selected
packet is fed to the succeeding buffer bufn to a sink node
sk. To represent the cells states, cells are aligned in a row
as depicted in Fig. 6(b). Space-time chart of each CA model
described in the previous section is shown in Figs. 6(c) to
(e).

Fig. 6(e) shows preferable behaviors of the asynchronous
model. It is clear that the asynchronous update with a
router outperforms other CA models in the two aspects of
performance metrics. One is throughput and the other one is
latency. With respect to the former, we can see the string
of colored cells at the sk cell, the naive and Macro CA
models only feed one packet in every two cycles, while the
asynchronous model feeds consecutively. Latency issues are
not directly shown in the figure, however, we can discuss on
the figure. In Fig. 6, buffers are saturated at about 30th cycle
in either model. In the saturated situation, the source nodes
inject a packet in every four cycles in the naive and Macro
CA models, while the asynchronous model allows generating
a packet in every two cycles. This reflects drastic difference
in latency.
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(a) A merging flow followed by a buffer.
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(b) One-line representation of (a).
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Fig. 6: Space-time snapshots in ramp-way simulation. Time goes downward. Organization is depicted in Fig. 6(a) and all
of cell states are represented in a row as explained in Fig. 6(b).

5.2 Simulation Preciseness
The asynchronous update method significantly improves

packet-movement behaviors and we can expect precise simu-
lation results. We built three versions of CA-based ICN simu-
lator that are based on the naive model, macro CA model, and
asynchronous model, respectively. These simulators perform
both steady and unsteady communication situations.

Firstly, we compare steady communication results of the
CA-based simulator to those of our conventional (i.e., non-
CA based) simulator as a reference. Fig. 7 shows transpose
traffic pattern results. Horizontal axis shows traffic load given
in a relative representation to 8/N where N is the network
size[14]. Curves with X symbols show throughput that is
measured as the number of received packet and their values
are given as the left vertical axis. The right vertical axis shows
average latency of received packets whose curves are drawn
with box-shaped symbols.

When the traffic load is low, throughput is proportional
to the load and average latency is constantly low. After the
load exceeds a threshold, throughput is saturated and average
latency is drastically increased around the saturation point.
We can find the following points in Fig. 7. As discussed in the
previous section, difference in (average) latency is remark-
able, but, the asynchronous model follows the conventional
model that is represented as sim in the diagram. Saturation
points of the naive and macro CA models are low, whereas
the asynchronous model is well suited to sim.

The major reason of the significant gaps of the naive and
macro CA models is inter-router update rule. As shown in
the previous subsection, these two models cannot support
continuous packet sending without any gaps and this prevents
precise simulation. On the other hand, the asynchronous
model resolves the gap problem, thus supports precise sim-
ulation.

We further discuss preciseness of the asynchronous model
in other traffic patterns. Fig. 8 shows the results. Diagrams
in Fig. 8 show that the asynchronous model follows the
conventional simulator at high level in various traffic patterns.
Important issues in ICN performance are saturation point
in throughput and average latency level. The asynchronous
model matches the reference performance at the both points.
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Fig. 7: ICN performance simulation results of 128×128 torus
network by the presented CA models with the results of the
conventional simulator.

Table 1: Duration times measured in the CA models and
conventional simulator.

traffic naive macro async conv.
pattern model model model sim.
trns 779 455 195 260
shfl 779 515 303 401
bcmp 767 510 192 194
brev 773 577 318 328
brot 779 666 315 396
rand 776.8 443.7 176.8 187.1
torn 401 581 258 260

(unit: clock cycles)

Note that an intermittent congestion drastically degrades
performance at near- and after saturation point and the tur-
bulence appear as a peak in the performance diagram. Other
differences come from the crossbar and channel selection
functions that are not clearly separated in the conventional
simulator.

Another preciseness discussion is for unsteady communi-
cation. Table 1 summarizes duration times that are measured
in our various simulators. The asynchronous model performs
closely to the conventional simulator.

5.3 Simulation Speed
Fig. 9 compares elapsed time of simulation of each

simulator, i.e., the conventional simulator (sim), CA-based
simulators (naive, macro, and async).

Each simulator runs on Core i7 3770S 3.1GHz clock.
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(a) perfect shuffle (shfl)
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(b) bit-complement (bcmp)
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(c) bit-reversal (brev)
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(d) bit-rotation (brot)
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(e) uniform random (rand)
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Fig. 8: Simulation results of the asynchronous model compared to the conventional simulator results. 128×128 torus network
results.
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Fig. 9: Simulation speed comparison. 128 × 128 two-
dimensional torus network in uniform random traffic pattern
for 20,000 clock cycles.

The conventional simulator is parallelized by means of MPI
(message passing interface, [26]). The CA-based simulators
are also parallelized but by pthreads library. In both cases,
eight processes (threads) are used.

In Fig. 9, we can find remarkable speedup by means of the
CA model. Specifically, the asynchronous model accelerates
simulation speed from 3.5 to 5.0 times faster than the
conventional one.

Another remarkable feature is that simulation time is stable
for traffic loads. In Fig. 9, the conventional simulator requires
long simulation time as traffic load increases. But, the CA-
based ones are stable.

5.4 GPGPU Application
Since each router independently operates, ICN simulation

inherently involves large-scale parallelism. Furthermore, op-
erations in each router are not so complicated tasks. Thus,
this nature well matches many-core architectures and GPGPU
is a natural option.

We preliminarily port our CA-based ICN simulator onto

the CUDA environment that is supplied by NVIDIA. The
porting task is basically straightforward, but some modifica-
tions are necessary to extract the GPU’s full power. In our
implementation to GPGPU, memory access scheduling is the
most sensitive to performance.

As a preliminary evaluation, we use a unsteady com-
munication condition to compare simulation performance
of GPGPU and multicore processor. We use a consumer
electronics device GTX-780 from NVIDIA and Core i7
4770 processor from Intel. Our original CA simulator is
parallelized by means of pthread library and we can run the
simulator with a specified number of processors (threads).
In this performance evaluation, we use maximum of eight
threads for the 4770 processor.

The preliminary evaluation uses a simple situation of
unsteady communication of a perfect-shuffle traffic pattern
in which each node generates ten packets. The system size is
1024×1024 connected in the two-dimensional torus topology.
Performance is measured by CUDA-supplied functions cud-
aEventElapsedTime() in GPGPU, and gettimeofday() function
in the pthread execution. The former runs in 212.5 seconds
whereas the latter requires 3388.6 seconds, i.e., the commer-
cial GPU runs about 16 times faster than the commercial
multicore processor.

5.5 Discussion
Results shown in the previous subsections reveal preferable

features in the proposed CA-based model for ICN simulation.
The table-based update principle reduces complexity class

considerably. Process in the conventional simulator is com-
posed of buffering, routing, and selection functions. These
processes are not so complicated, although, net complexity
becomes large because of large number of packets. On
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the other hand, the CA-based model reduces intermittent
computation by means of table-lookup operations and thus
reduces redundant complexity.

Furthermore, the table-based method eliminates condi-
tional branches that prevent full power of GPU capability
since GPU runs in the SIMD (single-instruction, multiple
data stream) fashion.

6. Conclusions
Rapid growth in the scale of parallel supercomputers

drives computer architects to discuss extremely large-scale
simulation. Interconnection network (ICN) is one of the most
serious problems and it is clear that some breakthrough is
required for the future exa-scale systems.

This paper contributes the cellular automaton principle in
large-scale ICN simulation. The cellular automata approach
simplifies the router model, but a naive CA implementation
is too simplified to represent accurate simulation. Thus, we
extended the naive model to match realistic one to reach
the asynchronous model that well fits to the conventional
simulator.

This paper firstly showed the microscopic behaviors in
the proposed CA models. Then, we discussed preciseness of
simulation results and speed of simulation runs. Evaluation
results reveal that the proposed CA model well matches the
conventional simulator while the model runs 3.5 to 5.0 times
faster.

This paper further discussed GPGPU implementation of
the CA model. The table-based update method that is pro-
posed in this paper well matches GPU architectures, since
the method reduces redundant computation in router func-
tions and eliminates conditional branches. Our preliminary
evaluation results show about sixteen times acceleration by
a commercial GPU device.
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A Memory-Efficient Algorithm for Large-Scale Symmetric
Tridiagonal Eigenvalue Problem on Multi-GPU Systems

Hyunsu Cho and Peter A. Yoon
Department of Computer Science, Trinity College, Hartford, CT, USA

Abstract— Divide-and-conquer algorithm is a numerically
stable and efficient algorithm that computes the eigenvalues
and eigenvectors of a symmetric tridiagonal matrix. We often
face the situation where the input matrix fits into the main
memory but not into the on-chip memory of a GPU device. We
present an out-of-core implementation where only part of the
input matrix is resident in GPU memory at any point in time.
It works independently of the physical size of GPU memory,
handling any size of input as long as it fits into the main
memory. Work is dynamically allocated to multiple GPUs
and CPU cores, taking account of available workspaces
and progress of the algorithm. In addition, it delivers a
performance comparable to that of conventional multi-GPU
implementations for cases where workspaces fit into the GPU
memory.

Keywords: Symmetric eigenvalue problem, parallel computation,
general-purpose GPU computing, CUDA

1. Introduction
Divide-and-conquer algorithm is a widely used algorithm

that computes the eigenvalues and eigenvectors of a sym-
metric tridiagonal matrix. The algorithm is known to be
numerically stable and efficient when computing the full
spectrum of eigenvalues [1]. Furthermore, any general sym-
metric eigenvalue problem can be reduced to tridiagonal form
via a series of orthogonal similarity transformations. When
combined with a deflation step, the algorithm delivers a good
overall performance: it takes about O(n2.3) flops to compute
all the eigenvalues and eigenvectors of an n× n matrix [2].

The idea of using multiple GPUs to handle large matrices
is not new. In particular, MAGMA library [3], [4] features a
hybrid implementation of divide-and-conquer that uses both
multiple GPUs and multicore CPUs. It off-loads the most
costly portion of the algorithm, matrix multiplication, to the
GPUs. Each GPU memory stores a part of the workspace,
which is periodically synchronized with its counterpart in the
main memory. This approach works well most of the time on
multi-GPU systems, as intermediate workspaces do not grow
beyond the total memory of all the GPU devices installed.
Unfortunately, for very large input matrices, intermediate
matrices may fit into the main memory but still exceed the
total size of GPU memory. This situation may arise because
GPU memory is limited in size compared to main memory.
For instance, one NVIDIA® Tesla® K20c supports only about

5 GB of memory. Intermediate workspaces still have to be
loaded to GPU memory, so that GPU cores can make high-
bandwidth accesses.

We overcome this limitation by fixing the size of GPU
workspaces to be less than available GPU memory. De-
pending on the size of GPU memory and that of the main
memory, we dynamically compute the partition for block
matrix multiplication. With fixed GPU workspaces, we are
free to deal with any large input matrices, as long as the
input matrix fits into the main memory. We confirmed that
our implementation could handle input size as large as
50,000×50,000.

The overhead required by dynamic partition can be prob-
lematic for small subproblems. A general criterion is whether
a subproblem fits entirely into a single GPU’s memory. For
small problems, it is better to avoid block matrix multipli-
cation entirely. Instead, we let GPU devices solve multiple
subproblems in parallel. This has an additional benefit of
hiding latency in memory transfer, which is relatively costly
compared to the small computational work involved.

This paper is organized as follows: Section 2 presents a
brief overview of divide-and-conquer algorithm for symmet-
ric tridiagional eigenvalue problem.

Section 3 discusses how tasks should be organized in
modules. Section 4 discusses important details regarding our
out-of-core implementation on multi-GPU systems. Finally,
Section 5 presents performance results and analysis.

2. Divide-and-conquer algorithm
Let A be an n × n symmetric tridiagonal matrix where

the diagonal and subdiagonal entries are given by ai’s and
bi’s respectively. The idea is to transform A into a sum of
two smaller tridiagonal systems:

A =

[
Ã1

Ã2

]
+H = Ã+H (1)

where

Ã1 =


a1 b1

b1
. . . . . .
. . . am−1 bm−1

bm−1 am − bm
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Ã2 =


am+1 − bm bm+1

bm+1
. . . . . .
. . . an−1 bn−1

bn−1 an


and

H =

 bm bm
bm bm

 .
Now that we managed to divide the given eigenvalue

problem into two problems of smaller size, we can merge
the eigendecompositions of Ã1 and Ã2 to get the eigende-
composition of Ã.

Suppose we have obtained the eigendecomposition of Ã1

and Ã2, that is, we compute orthogonal matrices Q̃1, Q̃2 and
diagonal matrices D̃1, D̃2 such that

Ã1 = Q̃1D̃1Q̃
T
1 and Ã2 = Q̃2D̃2Q̃

T
2 .

Then the eigendecomposition of Ã is given by

Ã =

[
Ã1

Ã2

]
= Q̃D̃Q̃T

where

Q̃ =

[
Q̃1

Q̃2

]
and D̃ =

[
D̃1

D̃2

]
.

The remainder of the algorithm involves transforming the
eigenvalues and eigenvectors to take account of the matrix
H being added on the right-hand side. To compute the
eigendecomposition of A from that of Ã, we perform a
process known as rank-one update [1].

The matrix H , also known as the rank-one modifier, is a
product of form

H = ρwwT

where

ρ = bm and w =

[
em
e1

]
.

Here, ei is the ith elementary unit vector. It follows that

A = Q̃D̃Q̃T + ρwwT

= Q̃(D̃ + Q̃T ρwwT Q̃)Q̃T

= Q̃(D̃ + ρzzT )Q̃T (2)

where

z = Q̃Tw =

[
last column of Q̃T1
first column of Q̃T2

]
.

Thus, it suffices to compute the eigendecomposition of
the matrix D̃ + ρzzT . If D̃ + ρzzT = Q̂DQ̂T , then the
eigendecomposition of A is given by

A = Q̃(D̃ + ρzzT )Q̃T = Q̃Q̂DQ̂T Q̃T

= QDQT (3)

where Q = Q̃Q̂.
It only remains to find the eigenvalues and eigenvectors

of D̃ + ρzzT . This task consists of three distinct subtasks:

2.1 Perform deflations
Let di’s be the entries of the diagonal matrix D and the

zi’s be the entries of the vector z:

D̃ = diag (d1, d2, · · · , dn) , z = [z1 z2 · · · zn]
T
.

It turns out that, whenever di = di+1 or zi = 0 for some
i, we get an eigenvalue for free: di itself is an eigenvalue
of D̃+ ρzzT . Furthermore, the corresponding eigenvector is
either ei (if zi = 0) or some rotation of it (if di = di+1).
This phenomenon is called deflation. In practice, deflations
occur frequently, when |di − di+1| or |zi| is small enough.

The major saving occurs in the matrix multiplication step
in (3): we can leave out the i-th eigenvalue and eigenvector
from the computation of Q̂ [2]. Instead, we infer their values
directly from Q̃, which is already available. Hence, we skip
the corresponding rows and columns when we compute
Q = Q̃Q̂. In this way, matrix multiplication in (3) can be
accelerated so that the whole algorithm costs only O(n2.3)
in time instead of O(n3).

Let T+ρuuT be the submatrix that is the result of deflating
the matrix D̃ + ρzzT :

T = diag (δ1, δ2, · · · , δk) and u = [ζ1 ζ2 · · · ζk]
T

where δ1 < δ2 < · · · < δk and ζi 6= 0 for all i.

2.2 Computing the eigenvalues via the secular
equation

Let λ be an eigenvalue of T + ρuuT with an associated
eigenvector q. Then by definition,

(T + ρuuT )q = λq, (4)

so that
Tq + ρ(uTq)u = λq (5)

It turns out that uTq 6= 0; otherwise, λ = δi for some i
and ζi = 0, which contradicts the conditions of T + ρuuT .
Similarly, we conclude that λ 6= δi for all i = 1, · · · , k.

Since λ 6= δi for all i, the diagonal matrix T − λI has no
zero entry and its inverse is well defined. With some algebra,
it is possible to show that (5) is equivalent to

1 + ρuT (T − λI)−1u = 0 (6)

This equation is equivalent to a rational equation known as
the secular equation:

1 + ρ
n∑
i=1

ζ2i
δi − λ

= 0 (7)
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The k solutions of the secular equation give the eigenvalues
of T + ρuuT . The equation can be solved by a variant of
the Newton-Raphson method in which approximating lines
are replaced with approximating rational asymptotes. Li [5]
lays out the full details of a secular equation solver and
offer solutions to common issues in numerical stability of
the algorithm.

2.3 Computing the eigenvectors
Once we obtain the eigenvalues λi of T + ρuuT , we

compute the corresponding eigenvectors qi. In theory, (T −
λiI)−1u gives an eigenvector of λi:

(T + ρuuT )[(T − λI)−1u]

= ((T − λI) + λI + ρuuT )[(T − λI)−1u]

= λ[(T − λI)−1u] (8)

Unfortunately, two computed eigenvectors are not numeri-
cally orthogonal whenever their associated eigenvalues are
close to each other. Gu and Eisenstat [6] proposed a more
stable way to compute numerically orthogonal eigenvectors
of T+ρuuT . In a nutshell, their approach amounts to solving
an inverse eigenvalue problem: Let λ1, λ2, · · · , λk be the
roots of the secular equation (7). Let û be the vector whose
k entries are given by

ûi =

√√√√√√√√√√√

k∏
j=1

(λj − δi)

ρ
k∏
j=1
j 6=i

(δj − δi)

(9)

Also, let
Λ = diag (λ1, λ2, · · · , λk) .

Then the matrix Λ + ûûT has λ1, λ2, · · · , λk as its eigenval-
ues. Furthermore, (Λ− λiI)−1û gives a numerically stable
eigenvector of each eigenvalue λi.

3. Task organization
Using LAPACK routine dstedc as a guide [7], we orga-

nize divide-and-conquer algorithm in the following modules:
• dlaed0: Split the given problem into 128×128 sub-

problems, performing appropriate rank-one cuts. Then
compute the eigendecomposition of each 128×128
subproblem by calling the QR routine dsteqr. Finally,
let dlaed1 merge the eigendecompositions of adjacent
submatrices until we have the eigendecomposition of
the original matrix.

• dlaed1: Coordinate subtasks necessary to merge
the eigendecompositions of two adjacent submatrices.
Specifically,

– Produce D̃ + ρzzT from A via (2).
– Call dlaed2 to carry out Subtask 2.1

– Call dlaed3 to carry out Subtasks 2.2 and 2.3.
– Back-transform the eigenvector collection Q̂ of D̃+
ρzzT by multiplying with Q̃, as described in (3).

• dlaed2: Perform deflation as given by Subtask 2.1. To
differentiate between deflated eigenvalues and eigenvec-
tors from non-deflated ones, we maintain an ordered list
of eigenvalues [7]. Each time we deflate an eigenvalue,
we remove it from the ordered list and put it at the end
of the list; in other words, we permute the list. Let σ
be the permutation that results from deflation.

• dlaed3: Compute the eigendecomposition D̃ +
ρzzT = Q̂DQ̂T by carrying out Subtasks 2.2 and 2.3.
Now that all the deflated eigenvalues are at the end of
the list, we can focus on the non-deflated portion, i.e.
T + ρuuT . The u vector is given by z with σ applied.
More specifically, dlaed3 does the following steps:

– Call dlaed4 to compute each root λi of the secular
equation.

– Solve the inverse eigenvalue problem to com-
pute numerically orthogonal eigenvectors that cor-
respond to λi’s.

After dlaed3 returns, dlaed1 should re-merge the
deflated eigenvalues back into the middle of the list.

• dlaed4: Compute the i-th root λi of the secular
equation. We use an iteration scheme known as the
Middle Way, where we create a series of approximating
rational functions whose asymptotic poles match those
of the secular equation near λi [5].

Fig. 1: A call graph of dstedc.

4. Parallel Implementation on Multiple
GPUs

The key idea is to fix the size of GPU workspaces so
that we do not run out of GPU memory regardless of the
size of input matrices. Now the only limiting factor is the
main memory, which in many systems is in plentiful supply.
Since the input can be of any size but GPU workspaces are
not, it is crucial to build a dynamic partition of tasks. More
importantly, the nature of work changes as the algorithm
progresses.

Like other algorithms of its kind, divide-and-conquer
algorithm starts with many small base cases (cf. Fig. 2).
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As small systems are merged into larger ones, there would
be fewer and fewer subproblems left. In other words, the
work at hand gradually becomes more coarse-grained. Thus,
we need to adapt the way we allocate tasks depending on
the current size of subproblems.

Fig. 2: A schematic of divide-and-conquer algorithm

Before we discuss dynamic allocation of tasks, let us
briefly look at CUDA™, a general-purpose GPU computing
platform.

4.1 CUDA programming environment
Graphical processing units (GPUs) are commodity hard-

ware that were originally designed to accelerate graphics
applications. In recent years, a number of non-graphical, com-
putationally expensive algorithms have been implemented on
GPUs [8]. In particular, NVIDIA offers a general-purpose
API called CUDA™. All recent NVIDIA graphics cards
support this interface.

GPUs are massively parallel processors in which many
small worker threads execute in parallel. While each thread
may not be as powerful as a typical CPU core, the collabora-
tion of many threads helps achieve a high throughput. GPUs
follow a data parallelism paradigm in which each worker
thread executes a similar set of instructions but processes its
own portion of data.

In typical circumstances, a GPU does not launch its
own work. Instead, a CPU thread launches a kernel, or a
subroutine, to be executed on a selected GPU. The CUDA
runtime launches multiple instances of the kernel to be run by
the GPU threads. Kernel launch parameters determine how
many GPU threads are launched and how they are organized.

A defining characteristic of GPU programming is that
GPUs have memory spaces separate from the main memory.
GPUs cannot access the main memory directly; instead,
content has to be copied from the main memory to the GPU
memory first. This step is essential in supporting a large
degree of parallelism, as the GPU processing cores require
a dedicated memory designed for high bandwidth. The data
transfer passes through the PCI Express channel, making
the operation relatively costly. Furthermore, the size of GPU
memory is also a limit; even high-end models carry only a

few gigabytes of dedicated memory. To make matters worse,
on systems with multiple graphics cards installed, the GPUs
have memory spaces separate from one another. Thus, a
CPU thread that copies a buffer into a GPU memory needs
to designate a specific target GPU.

4.2 Dynamic block partition of back-transform
A computational bottleneck in divide-and-conquer algo-

rithm is the back-transformation step at the end of dlaed1.
When only a few eigenvalues deflate, its cost approaches
O(n3) flops, where n is the number of eigenvalues. Fortu-
nately, this step is a BLAS 3 operation and scales well on
GPUs. It is where MAGMA makes most use of GPUs [3],
and we intend to do so as well.

Given an n × k transformation matrix Q̃ and a k × k
collection Q̂ of eigenvectors, the transformed eigenvectors
are given by the product Q̃Q̂. Both n and k change over
time, n being the size of subproblems at the current level
and k being the number of non-deflated eigenvalues. Let G
be the greatest integer such that three G × G matrices fit
into a single GPU device’s memory. Let D be the number
of GPU devices installed. The idea is to pick a multiple of
D that is large enough so that

n

aD
≤ G.

Then a block matrix of dimension n/aD × k/aD will
certainly fit into a single GPU device. Let Aij and Bij be
block matrices of Q̃ and Q̂, respectively, where each Aij is
n/aD×k/aD and each Bij is k/aD×k/aD. We now have
a conformable partition of matrix multiplication.

Fig. 3: Out-of-core block multiplication using 4 GPUs

Since we partitioned the matrix product in multiples of
D, it is straightforward to assign block multiplications to the
D GPU devices (cf. Fig. 3). Notice that no more than one
A block and one B block need to be resident in each GPU
device at any moment. Once each partial product AipBpj
(1 ≤ i, j, p ≤ aD) is computed, the corresponding block
Cij can be incremented by that amount. Matrix multiplication
is supported by cuBLAS [9], a fast GPU implementation of
BLAS interface.
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4.3 Fine-grained parallelism
Out-of-core matrix multiplication is fairly inefficient when

the operands are small — there is a constant overhead of
moving block matrices back and forth between the GPU and
CPU memories. In addition, we have to compute the matrix
partition for each subproblem. If we could keep everything
in one place, we would be able to eliminate all the overhead.

To hide the overhead, we let the GPUs solve multiple
subproblems in parallel, each GPU solving one subproblem.
The benefit of such approach is two-fold. First, we avoid
performing out-of-core matrix multiplication when it is not
necessary. Second, we hide the latency of data transfer by
overlaying multiple subproblems on top of each other. For
instance, at the moment when GPU 1 is fetching a workspace
from the main memory, GPU 2 may be decomposing another
matrix. Fig. 4 shows a visual representation of overlapping
merge tasks. The CUDA toolkit incorporates a visual profiler
capable of drawing a timeline of kernel launches [10].

Fig. 4: Overlapping of multiple merge tasks

Unfortunately, certain parts of divide-and-conquer do not
scale well on GPUs. Especially, deflation process involves
construction of permutations and has to be done serially. We
solve this problem by paring each GPU device with a host
thread and forming a compute group. On the other hand,
both secular equations and inverse eigenvalue problems can
be solved efficiently in bulk parallel fashion by GPUs: each
λi can be computed independent of other λj’s, and similarly
with the eigenvectors.

4.4 Profiling
Extending the idea of simultaneous merging, we also make

use of idle CPU cores and form compute groups as well. An
added difficulty is that performance scales at different rates on
GPU-CPU groups and on CPU-only groups. We overcome
this difficulty by constructing linear regression models of
respective compute groups.

Consider GPU-CPU groups first. We define two inde-
pendent variables that affect performance: let X1 be the
subproblem size and X2 be the number of GPU-CPU groups.
The dependent variable is Y , the time it takes to solve a
subproblem of size X1 using X2 groups. We model their
relationship by a power function of form

Y = Xα1
1 Xα2

2 2α3 .

where α1, α2, α3 are parameters to be fitted. Similarly, let
X3 be the number of CPU-only groups and Z be the time it
takes for X3 CPU groups to solve subproblem of size X1:

Z = Xβ1

1 Xβ2

3 2β3 .

The models reflect our intuition to some degree: for instance,
if performance were to scale linearly with respect to the num-
ber of groups, Y would be proportional to X−12 , suggesting
α2 ≈ −1. In addition, the O(n2.3) work complexity of the
algorithm suggests that the scaling of Y is some multiple of
that of X1.

Each of the models is nonlinear on its own, but we can
easily transform it into a linear model. Taking the logarithm
of both sides gives

log Y = α1 logX1 + α2 logX2 + α3

logZ = β1 logX1 + β3 logX3 + β3.

Now the parameters can be fitted using the method of least
squares. Given the parameters, we estimate the ratio R
between performance of GPU-CPU groups and that of CPU-
only groups:

R =
Z

Y
= Xβ1−α1

1 Xβ2

3 X−α2
2 2β3−α3

The ratio enables our implementation to balance loads by
allocating the right number of subproblems to each kind of
compute groups. Our code package incorporates a separate
profiler that runs test matrices and computes the parameters.
It saves the parameters to a configuration file so that the
main subroutine could load them at startup.

5. Performance
Our machine comprises a dual 2.0 GHz Intel® Xeon® E5-

2620 CPU and four NVIDIA® Tesla® K20c graphics cards.
The machine was configured with 64 GB main memory and
5 GB memory for each GPU. Our experiments used double-
precision floating point arithmetic. A package containing the
full source code and the performance profiler is available at
https://github.com/hcho3/dstedc_mgpu.

Prior work such as [3] show that the empirical complexity
of divide-and-conquer algorithm depends on the character-
istics of the input matrix. If a significant portion of the
eigenvalues of a subsystem deflate out, the cost is closer
to O(n2) rather than O(n3). For the purpose of this experi-
ment, we choose a simple random sample λ1, · · · , λn from
the standard normal distribution and generate a symmetric
tridiagonal matrix whose eigenvalues are λi’s. For all the
test matrices we generated this way, 8-12% of eigenvalues
deflate.

Despite the limited amount of memory available on
GPU devices, our implementation was able to handle up
to 50,000×50,000 input matrices, for which outputs and
workspaces combined occupied 85% of the main memory. On
the GPU side, only 3.9 GB out of 5 GB was used. However,
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MAGMA’s implementation could not handle input matrices
larger than 36,000. Fig. 5 illustrates how our implementation
handles large matrices stably even in the face of limited GPU
memory.

Table 1: Performance for various test matrices

Performance (sec)

Matrix dimension Hybrid CPUs only Speedup

In-core

1024 0.98 0.34 0.35
2048 1.80 0.93 0.52
4096 3.84 3.83 1.00
8192 9.28 17.43 1.88

Out-of-core

16384 26.91 99.80 3.71
32768 103.00 681.56 6.62
36000 117.38 867.70 7.39
50000 239.36 2278.90 9.52

Fig. 5: Average GPU memory consumption for different input
sizes

To put our implementation’s performance in context, we
created a version that exclusively uses CPU cores (cf. Ta-
ble 1). For smallest input matrices, the CPU-only version
shows better performance. One significant factor is that,
unlike GPUs, CPU cores share the same memory space. So
when the algorithm progresses from one level to next, it is
possible to re-group the CPU cores to form fewer compute
groups. Also, the overhead of setting up multiple CUDA
contexts is absent.

On the other hand, the hybrid version does better
for 8192×8192 input matrices and larger, as the back-
transformation step takes a growing share of flops. At the
same time, matrix multiplication is a bulk parallel task and
scales well on GPUs. The performance profile is illuminating
in that regard: the values of αi’s and βi’s were respectively

α1 = 0.978, α2 = −0.916, α3 = −11.884

β1 = 2.401, β2 = −0.529, β3 = −26.788.

This means that each time the subproblem size was doubled,
GPU-CPU groups spent only twice as much time as it had,

whereas CPU-only groups had to spend 5.3 times as much.
The model produced a good fit for the data points of the
profile, giving R-squared coefficients of 0.984 and 0.996 for
GPU-CPU groups and CPU-only groups, respectively.

6. Conclusion
In this paper, we presented a memory-efficient implementa-

tion of divide-and-conquer algorithm on multi-GPU systems.
Our implementation made use of both multiple GPUs and
multicore CPUs. We overcame the limitations in GPU
memory by fixing GPU workspaces to a size independent of
subproblem size. This approach allowed our implementation
to handle input matrices as large as 50,000×50,000.

Furthermore, despite the added complexity caused by the
fixed size of GPU workspaces, our implementation exhibited
a significant speedup for large input matrices compared to a
version that used multicore CPUs exclusively. At the same
time, we allocated tasks for the fine-grained portion of the
algorithm. By solving multiple subproblems simultaneously,
some on GPUs and some on CPUs, our implementation solve
small problems at a rate comparable to the case where only
CPUs are used.
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Abstract - Earlier, Chao pioneered the very first closed-form 

solution of the number of reachable and other states for 

marked graphs (MG) and k-th order system which is the 

simplest class of S3PR (Systems of Simple  Sequential 

Processes with Resources). This paper progresses one step 

further on  enumerating reachable (forbidden, live and 

deadlock) states for top Left k-net systems (one non-sharing 

resource place in the top position of the left-side process, 

below denoted as Top-Left-k-net ) with a formula depending 

on parameter k for a subclass of nets with k sharing resources. 

Keywords: Control systems, discrete event systems, flexible 

manufacturing systems, Petri nets 

 

1 Introduction 

  PETRI nets (PN) have been used for modeling and 

analyzing concurrent systems, such as flexible manufacturing 

(or resource allocation) systems (FMS) (or RAS) [1-9]. 

Reachability [11-16] can be used to verify system properties 

of liveness, boundedness, reversibility, and so on. However, 

the persistent problem of using PN for modeling various 

systems is the large number of states generated (called the 

state explosion problem). It has been shown that the 

complexity of the reachability problem of a Petri net is 

EXPSPACE-hard in [12]. Lee et al. [12] show that the 

reachability problem (whether a marking is reachable) is NP-

complete for even a live and safe Free Choice net (LSFC). 

To efficiently break the ever exponential time plight of Petri 

nets, Chao [20, 21, 22] pioneered the very first solution for 

S3PR using closed-form methodology by applying simple 

graph theory and combinatorial mathematics. Here, we 

extend one step further by constructing a closed form formula 

of  Left k-net systems (Top-Left-k-net) with r* on the top 

position of the left-side process. 

The approach is explained as follows. The only one token at 

each ri initially can stay at ri, pi (left holder place), or p’i 

(right holder place); i.e., 3 possibilities. All together, there are 

3k possibilities or states. But some states are not reachable 

from initial marking via a certain firing sequence. It is easy to 

find and enumerate the patterns of token distribution for 

reachable (Ř) and live (L) states.  From that, one can infer the 

number F of forbidden states as their difference  (F=Ř – L). 

The number of nonreachable states is 3k – Ř. Reachability 

problem becomes trivial as one can check whether the 

marking fits the reachable pattern and hence whether it is 

reachable. 

The rest of the paper is organized as follows. We first list 

important contributions of our series papers in section II. 

Based on the results obtained and the methodology of [22], 

we will then enumerate reachable, forbidden, and live states 

of Top-Left-k-net system in section III. Finally, Section VI 

concludes the paper. 

2 Contributions of our series papers          

[20, 22, 24, 25] 

 Here we define the k-th order system with one non-

sharing resource place.  

Definition 1: A  k-th order system is a subclass of S3PR with k 

resource places r1 , r2 , …, rk shared between two processes N1 

and N2 and one non-sharing  resource place r’h
  (=r*) used 

by an operation place p* in P1 or P2 

1. M0(r
’
h) = 1 and rPR, M0(r) = 1.  

2. N1 (resp. N2) uses r1 , r2 ,  …, rk (resp. rk , rk-1 , …r2,  r1) 
in that order.  

3. M0(p0) = k+1, M0(p’0) = k , where p0 and p’0 are the 
idle places in processes N1 and N2, respectively.   

4. Holder places of rj in N1 and N2 are denoted as pj and 
p’j respectively. 

5. The compound circuit containing ri, ri+1, …, rj-1, rj is 
called (ri-rj)-region. 

6. If r’h
 does not exist, then it is called a k-th order system. 

7. There are 3 possibilities for the token initially at ri to 
sit at: pi (N1), p’i, (N2),and ri. The corresponding token 
or ri state is denoted by 1, -1 and 0, respectively. 

8.  xy   means  rh  is at x state (x=1,0,-1) and  r*  is at y 
state (y=1, 0,-1), where h is the location  of non-
sharing  resource being used by an operation place p*

. 

The system is denoted as Top-Left k-th order system 
when h=1 and  p* in P1 ;  Top-Right k-th order system 
when h=1 and  p* in P2; Bottom-Left k-th order system 
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Examples are shown in Figs. 1-5. 

2.1 K-th order system [20] 

 Let N be a Petri net;  Nr is the reverse net of N. By the 

concept of complete reachability graph (Fig. 6) that contains 

Fig. 4 4-th order system. 

Fig. 1. 1st-order system.   
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Fig. 5(b) Top-Left 3-th order top-system reverse Nr. 
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live, forbidden and nonreachable states, we have Lemma 1, 

Lemma 2 and  Theorem 1. 

Lemma 1: Any forbidden state in N is nonreachable in Nr. 

Lemma 2:  Any nonreachable state s in N is a forbidden one 

or a nonreachable one in Nr. 

Theorem 1:  (k)=¥(k) – B(k), where ( (k), ¥(k), and B(k) 

are the number of forbidden, nonreachable, and 

nonreachable +empty-siphon states in a k-th order system, 

respectively. 

In Fig. 5, Deadlock (resp. forbidden but not deadlock, live) 

states are the nodes that are pointed by a dashed line from 

D(k). Pointed from ¥(k) and B(k) are nonreachable states. 

States nonreachable in both N and Nr are (1,-1,1) and (-1 1 -1). 

Note that there are no directed paths 1) from a forbidden state 

to live states, and 2) from reachable states to nonreachable 

ones. 

For the 3rd order system, there are 3 kinds of unmarked (resp. 

nonreachable) siphon states: (1  -1   x),  (x  1  -1), and (1  0  -1) 

[resp. (-1  1   x),  (x  -1  1), and (-1  0  1)], where x=-1, 0, 1. 

Definition 2: s = (x1   x2  …  xk), xi=1, 0, -1, k≥i≥1 is a state 

for a k-th order system N. (xi  xi+1  …  xq  xq+1), k≥q≥i≥1 

(embedded in s) is a substate of s. 

By Definition 2, we have some characteristics of 

nonreachable and forbidden states of a k-th order system.  

 A substate of (-1 x  x ... x 1) (x=1 0 -1) corresponds to a 

nonreachable state. 

 A substate of (1  x  x  …  x  -1) (x=1 0 -1) corresponds to a 

forbidden or a nonreachable state.  

State s=(x  x … x  1  x  x ...  x  -1  x  x …x  1  x  x ...  x  -1  x  x … x) 

cannot be a reachable state. It means  that a reachable state 

cannot have two substates of  (1  x  x ...  x  -1).  

 If s = ( x1  x2 …xi-1  1i  xi+1  xi+2  … xk), does not carry a 

substate of (1g  xg+1  xg+2  … xk), g>i, then s with xm=0 or 1, 

m=1 to i-1 and xj=0 or -1, j=i+1 to k are the only reachable 

states.  

A deadlock state has the pattern: (11  12  …   1m  -1m+1  -1m+2  …  

-1k), 1≤m<k. 

Finally , shown below is the total number of each type of 

states in a k-th order system that we proved in [20]. 

The total number of states is 3k. 

 The total number of live states L(k) =  2k+1-1. 

 The total number of reachable states  R(k) = (k+2)2(k-1). 

 The number of forbidden states  (k) =(k-2)2(k-1)+1.  

The number of nonreachable states ¥(k) = 3k – (k+2)2(k-1).  

 The number of nonreachable +empty-siphon states B(k) = 

3k – k2k – 1. 

Fig. 5 Complete reachability graph of a 3rd-order system (Fig. 1). 
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The total number of  deadlock states D(k)=k-1. 

2.2 Top-Left, Bottom-Left, and Middle-Left  system [22, 24, 

25] 

 Definition3: The equivalent 

),,(= ee
R

eee FTPPN   of a net 

),,(= FTPPN R  (
NRP  is the set of non-sharing places) 

is defined as   

1. NRRR
e PPP \=

;  

2. )(\= rHPP
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Definition  4: The reverse net of Ne is denoted as Ner.  

 We say the net in Fig. 3 (k-th order system) is the equivalent 

of the net in Fig. 5(a), since the Fig. 3 net is exactly the same 

as the net in Fig. 5(a), except that the nets has one non-

sharing resource place r*. 

Let N be a net that contains a nonsharing resource in the left 

process side (for example Top-Left, Bottom-Left, and Middle-

Left). Since there are forbidden states in Ne (due to empty-

siphon), but live (due to marked siphon) or reachable in N  

since an empty siphon in Ne may become marked in N. We 

have shown that in N the number of reachable  states (R’) is  

>2R and the  number of live states (L’) >2L. To compute R’ 

and L’ we need to know how many forbidden and 

nonreachable states in Ne, become reachable or live in N. 

Because of a nonsharing resource, we have shown that: 1) 

markings nonreachable in Ne, may become reachable in 

N(denoted the number of which as (k)); 2) forbidden 

markings in Ne may be live in N (denoted the number of 

which as C(k)); 3) nonreachable markings in Ne may be live 

in N (denoted the number of which as A(k)). We have  

 R’=2R +(k).                (1) 

 L’=2L+A(k)+C(k).                  (2)  

The phenomenon is explained as follows:  

C(k): In Top-Left structure, by holding at p1 left-side process 

can wait for right-side process to go through their own work 

flow. The set of current states belongs to the set of forbidden 

states in Ne . While after firing t2 in Top-Left, it may be live in 

N [22]. 

A(k): In Bottom-Left structure, by holding at p* left-side  

process can wait for right-side process to go through their 

own work flow. While after firing t*
k-1 in Bottom-Left, set of 

succeeding states belongs to set of unreachable states in Ne 

[24].  

Shown below is methodology of Top-Left [22]. 

We will derive R’(’, L’, …etc) in terms of R(, L, …etc) 

based on the concept of equivalent  k-th order system of a 

Top-Left  k-th order system. 

For the 3rd order system, there are 3 kinds of unmarked (resp. 

nonreachable) siphon states: (1  -1
1
   x),  (x  1  -1), and (1  0

1
  -

1) [resp. (-1  1
1
   x),  (x  -1  1), and (-1  0

1
  1)], where x=-1, 0, 1. 

 A substate of (-1 x
1  x ... x 1) (x=1,0,-1) corresponds to a 

nonreachable state. 

 A substate of (1 x
1  x ... x -1) (x=1,0,-1) corresponds to a 

forbidden or a nonreachable state. 

Let M be a reachable marking in Ne, then both M*=M+r* 

and M’= M+p* are reachable in N. 

Both s=(1  -1
0  -x3  -x4  … x j-1  xj) and s’=(-1  0

1   -13  x4  … x j-1  

xj) where xi = 0, or  -1, correspond to two legal markings M. 

Let M be such that only the top r1-r2 region in Ner is unmarked.  

1) M is nonreachable in Ne. 

2) M*=M+r* is reachable in N. 

 

Let s=(-1 00  03  04 …0 j-1  1j  xj+1  xj+2 …xk) be such that only 

the top r1-rj siphon in Ner is unmarked.  

1) M is nonreachable in Ne. 

2) M*=M+r* is reachable in N. 

3) The total number of such M* is 2(k-j). 

 

The total number of reachable states in N is R’=2R+ 2(k-1)-1 

=(2k+5)2(k-1)-1. 

Let s=(1  0
0   03  04  … 0 j-1  -1j  xj+1  xj+2  … xk)  correspond to 

Marking M such that there are unmarked siphons in only the 

top r1-r2 region in Ner. The total number of possible live 

markings under M is 2k-j. 

The total number of forbidden markings in Ne that may be 

live in N is C(k)= 2(k-1)-1. 

Let s=(-1  1
0
  x3  x4  … xk) correspond to Marking M such that 

there are unmarked siphons in only the top r1-r2 siphon in Ner. 

The total number of possible live markings under M is 1k-j. 

 The total number of nonreachable markings in Ne that may 

be live in is N A(k)= k-1. 

L’(k) =2L+A(k)+C(k)=182k-2+k-4. 
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 ’(k)= R’- L’(k) =(k-2) 2k-(k-3). 

 ¥’ (n)= 23k- R’ =23k -(2k+5) 2(k-1 )+1 

 

3 Computation of Top-Left-k-net                   

system reachable forbidden and                

non-reachable states 

 Definition 7: A k-net system (Top-Left-k-net) is a 

subclass of S3PR with k resource places r1 , r2 , …, rk shared 

between two processes N1 , N2 ...and Nu and one non-sharing  

resource place r’gen
  (=r*) used by an operation place p* in P1  

1. M0(r
’
gen) = 1 and rPR, M0(r) = 1.  

2. N1 (resp. N2...and Nu) uses r1 , r2 , …, rk (resp. rk , rk-

1 , …r2,  r1) in that order. 

3. M0(p
0
1)=k+1, M0(p

0
i)=k, i > 1, where p0

1 and p0
i are 

the idle places in processes N1 and Ni, respectively. 

4. Holder places of rj in N1 and Ni are denoted as pj and 
p’j respectively. 

5. The compound circuit containing ri, ri+1, …, rj-1, rj is 
called (ri-rj)-region.  

6. If r’gen
 does not exist, then it is called a k-net system.  

7. xy   means  rgen+1  is at x state (x=1,0,-1) and  r*  is at y 
state (y= 0,-1), where gen is the location  of non-
sharing  resource being used by an operation place p*

. 

The system is denoted as Top-Left-k-net system when 
gen=1 and  p* in P1 . 

In k-net and Top Top-Left-k-net, let yi
j deote the i-th token 

state at Process j (>1). yi
j=-1 means the i-th token is at 

operation place  pi of  Process j, and not at operation place  pi 

of  other processes. Hence, yi
2+ yi

3+…+ yi 
µ= yi =-1 and there 

are (µ-1) possibilities; i.e., exactly one of yi
2, yi

3,… , yi 
µ 

equals -1; the rest are 0. yi
j=0 means the i-th token is at 

resource place ri.  Thus, yi ≤0. 

Chao [20] has constructed the formula of Lk  and Ŗk, for k-net 

in theorem 2, and 3, as extracted respectively blow:  

Theorem 2 [20]: For a k-net with µ processes, the total 

number of live states is Lk=2k +(µ) k-1 [20].  

Theorem 3 [20]: For a k-net with µ processes, the total 

number of reachable states is R(k) =2k+(µ-1)y(1-xk)/(1-x), 

where x= µ/2 and y=2(k-1) [20].  

Here we extend to construct the formula of  Ł’k, and Ŗ’k for 

top k-net based on above results. The presence of the non-

sharing resource place increases the number of states by a 

factor of 2. By formula (1) and (2), we can extend to 

Ł’k=2Lk+A’(k)+C’(k). where A’(k) and C’(k) are defined 

below:  

Theorem 4]: For a k-net with µ processes,  

1. The total number of forbidden markings that may be 
live, C’(k)= (µ) k-1-1. 

2. The total number of nonreachable markings that may 
be live, A’(k)= (µ-1)(k-1) . 

Theorem 5: For a k-net with µ processes the total number of 

live markings Ł’k=2 Lk +(µ-1)(k-1)+(µ) k-1-1. 

Theorem 6: For a k-net with µ processes the total number of 

reachable markings Ŗ’k=2Ŗk + ((µ) k-1-1). 

Examples: Table 3 lists results when k=4 , µ=3 and k=4,  

µ=4 .These results have been validated experimentally. 

Table 3. 

k 4 4 

µ 3 4 

k –net 

R 146 376 

L 96 271 

F 50 105 

D 14 30 

Total states 256 625 

Top-Left-k-net 

C’ 6 9 

A’ 26 64 

R’ 318 815 

Ł’ 224 614 

F’ 94 201 

Total states 512 1250 

 

4 Conclusions 

 We report the very first method to compute in closed 

form the number of reachable states of Top-Left-k-net system  

without constructing a reachability graph. This helps to 

estimate the percentage of deadlocks and legal-state losses 

due to the addition of a monitor, and avoid the dire situation 

of mid-run abortion of reachability analysis due to exhausted 

memory. The formal result is important even if specific since 

manufacturing systems correspond generally to higher order 

(k much larger than 3) S3PR systems, which can model 

concurrent programs where a locked data item can be 

represented by a single resource place with one token [27].  

Current tools may not be able to handle such high order S3PR 

systems due to the state explosion problem.   
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Abstract— In this paper, we propose an anonymized object
search scheme for the SocioNet which is an unstructured
P2P based on the notion of the similarity of interests. The
proposed scheme is an application of a randomized object
search scheme proposed by Liu et al. called Rumor Riding
(RR, for short). We propose two techniques to overcome the
inefficiency of a simple application of the RR to the SocioNet.
The performance of the proposed scheme is evaluated by
simulation. The simulation result indicates that the proposed
scheme reduces the number of messages to a half of a simple
combination, and additionally, shows that the number of
delegates selected in the RR severely affects the success rate
of the overall scheme particularly when the TTL is not large.

Keywords: Peer-to-Peer content sharing, anonymity of users,
object search, Rumor Riding, SocioNet.

1. Introduction
Recent advancement of network technologies enables us

to easily share various contents over the Internet. For exam-
ple, YouTube attracts more than 1 billion unique user visits
per month and the upload of 100 hours of video every minute
in 2014. A key issue to realize such a content sharing over
a large network is how to find the location of a requested
object. In particular, the support of an efficient object search
is a crucial issue for Peer-to-Peer (P2P) applications since
in those systems, objects are generally stored in the local
storage of each peer without being collected to a specific
server as in classical content sharing services.

Flooding of queries with a designated TTL (time to live) is
a simple but commonly used technique to realize an efficient
object search in P2P networks. There are many proposals
concerned with the variations of the query flooding, which
includes LightFlood [3], Diff-Flooding [2] and UMPS [10].
Among them, we are interested in the object search based
on an unstructured overlay reflecting the interest of the
users. SocioNet [4] and UIM [1] are representatives of such
approaches. The key idea of such similarity-based overlays
is to connect peers to have similar interests by a link so
that the peer which issues a query, called questioner, can
be connected with a peer which has an object matching the
query, called respondent, through a path consisting of a
small number of links. By adopting such an overlay, the

efficiency of query flooding can be significantly improved
compared with random overlays [4]. However, although it
certainly improves the efficiency, it causes a serious risk for
each user so that the fact of issuing a query, the fact of
responding to the query and the content of the query and
the reply are disclosed to all peers to have similar interests.
In other words, such a simple flooding could not preserve
the privacy of users which is a crucial drawback of the most
of existing flooding-based object search schemes.

In this paper, we focus on the SocioNet as the underlying
similarity-based P2P, and propose a scheme to preserve the
anonymity of users in the network. The proposed scheme
is an application of a randomized method proposed by
Liu et al. called Rumor Riding (RR, for short) [5]. The
key idea of the RR is to select delegates through random
walk and to make those delegates to conduct actual query
flooding and the response to the query (see Section 3 for the
details). It is evaluated by simulation that such a randomized
approach could certainly preserve the anonymity of users
while keeping the cost reasonably low. However, a direct
application of the RR to the SocioNet is not efficient since
the RR was originally proposed for random overlays and the
application of the RR loses the benefit of the SocioNet so
that the distance between the questioner and the respondent
is short. To overcome such an issue, this paper proposes two
techniques to improve the efficiency of the object search in
the SocioNet in terms of the number of messages which is
necessary to keep a high success rate.

The performance of the proposed scheme is evaluated by
simulation. The result of simulation indicates that it reduces
the number of messages to a half of a simple combination of
the RR and the SocioNet, and additionally, it shows that the
number of delegates severely affects the success rate when
the given TTL is not large. More precisely, we found that
the number of delegates, which can be controlled by tuning
parameters used in the RR, should be at least three to attain
a high success rate while keeping the number of messages
sufficiently low.

The remainder of this paper is organized as follows.
Sections 2 and 3 describe an overview of the SocioNet and
the basic flow of the RR, respectively. Section 4 describes the
proposed scheme. Section 5 describes the simulation result.
Finally, Section 6 concludes the paper with future work.
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2. SocioNet
2.1 Overview

The SocioNet is an unstructured P2P based on the notion
of similarity of interests. Each link in the SocioNet is either
a similarity link or a random link. The former is intended to
connect peers to have similar interests so that a query issued
by a peer easily hits a target object with high probability
which is expected to be held by a peer to have similar interest
to the questioner, and the latter is intended to connect a
pair of remote peers so that the resulting network has a
short diameter. Random links are established by rewiring
similarity links with a certain probability β through random
walk, as in the Watts and Strogatz’s scheme to construct
small-world networks [9] (the value of parameter β is set to
around 0.2 to 0.3 in the SocioNet).

The search of a target object is done through the flooding
of a query as in conventional P2Ps, while the existence
of similarity links could significantly reduce the number of
message transmissions required for attaining a given hit rate
compared with random overlays such as Gnutella [8].

2.2 Similarity of Peers
The similarity of peers is defined as follows. Let Oi be

the set of objects held by peer i. Assume that each object
is attached tags representing the attributes of the object,
e.g., a music file of the performance of Benny Goodman
will be attached tags Jazz, Clarinet and Swing. Let T =
{t1, t2, . . . , tj , . . .} denote the (universal) set of tags. For
each peer i and tag tj ∈ T , let Oi,tj denote the set of
objects attached tag tj in set Oi. Then, the relevance of tag
tj with peer i is defined as

wi,tj
def
=

|Oi,tj |
|Oi|

.

For example, if peer i has 100 objects and 50 of them are
attached tag Jazz, then wi,Jazz =

50
100 = 0.5. The profile of

peer i, denoted by w⃗i, is a vector of relevances, i.e.,

w⃗i
def
= (wi,t1 , wi,t2 , . . . , wi,tj , . . .).

With the above notions, the similarity of peer j for peer i is
defined as follows

sim(i, j)
def
=

|Oi|
|Oj |

× 1

cos(w⃗i, w⃗j)
, (1)

where peer j with a smaller sim(i, j) is more favorable for
peer i as an adjacent peer connected by a similarity link.
The reader should note that the above notion of similarity is
not symmetrical. If fact, even if two peers a and b have the
same profile w⃗ = w⃗a = w⃗b, when |Oa| < |Ob|, we have

sim(a, b) < 1 < sim(b, a),

that is, b would be favorable for a but the reserve is not true.

Questioner�

Sower�

Flooding of 
decrypted query�

Random walk of query rumors�

rC�

rK�

Fig. 1: Steps 1 and 2 in the Rumor Riding.

2.3 Update Procedure
With the above notions, the SocioNet establishes similar-

ity links in two different ways. The first way is to use a server
which keeps the similarity for all pairs of peers to select pairs
to have high similarity in a centralized manner. The second
way, which will be adopted in the proposed scheme, is to
use random walk. More concretely, each peer i which wishes
to update its similarity links first conducts x independent
random walks, where x is the (maximum) degree of the
peer in the overlay. At any peer in the random walk, it stops
with probability c/ logN for some constant c so that the
expected length becomes O(logN), where N is the number
of peers in the network, and the peer at the stopped point is
regarded as the candidate for new neighbors. Among those x
candidates and the currently adjacent x peers, peer i selects
x peers to have highest similarity to peer i, and updates
neighbors so that it is connected to the selected x peers.

3. Rumor Riding
Rumor Riding (RR) is a scheme to realize an anonymous

object search in unstructured P2Ps. The basic idea of the
RR is to delegate the roles of the flooding of a query and
the reply to the query to randomly selected peers called
sowers. With such a randomized mechanism, we can keep
the anonymity of the questioner and the respondent. In
addition, to keep the security of message transmissions, each
message is encrypted by the sender of the message using the
public key of the receiver.

The protocol for the object search in RR consists of five
steps. In the following, we explain each step in detail.

Step 1: Generation of Query Rumors
Let i be the questioner. At first, peer i generates a public

key K+
i and inserts it to the content of the query, where

K+
i will be used to encrypt the reply to the query by the

respondent. Let q be the plain text of the resulting message
including K+

i . Peer i then encrypts q with a symmetric key
K into a cipher text C, then organizes two query rumors rK
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Fig. 2: Step 3 in the Rumor Riding.

and rC , where rK and rC are messages containing K and C,
respectively. Those rumors are sent out to different neighbors
of peer i and start an (independent) random walk with an
appropriate TTL (more precisely, peer i generates k such
pairs of rumors to increase the probability of those rumors
“meeting” at a peer, where k is an appropriate parameter;
it is experimentally verified that k and the TTL should be
determined so that their product is from 100 to 200, i.e., if
k is four then the TTL should be from 25 to 50 [5]). See
Figure 1 for illustration.

Step 2: Sowers Concerned with the Questioner
In the RR, a peer which receives both rK and rC serves as

a delegate of the questioner called sower. More concretely,
after decrypting message q from K and C, each sower starts
the flooding of q to its neighbors and waits for the reply to
the query from an appropriate respondent. After receiving a
reply message from the respondent, which is encrypted with
the public key K+

i of the questioner i and is separated into
two rumors similar to the separation of q into rK and rC ,
it sends back those rumors to the questioner along the paths
traveled by rK and rC , respectively, in the reverse direction.
The reader should note that to enable such a behavior of the
sower and the other intermediate peers, the RR should force
every peer to cache all rumors passing through the peer for
a certain time so that it is expired after the reply message is
successively received by the questioner.

Step 3: Reply from the Respondent
Suppose that query q transmitted by a sower s is received

by a peer j holding an object matching the query. After
receiving q, peer j generates a reply message and encrypts
it with the public key K+

i of the questioner i. Let R be
the resulting cipher text. Peer j then encrypts R and the IP
address of s with a symmetry key K ′ into a cipher text C ′,
then organizes two reply rumors rK′ and rC′ similar to Step
1. Those rumors are sent out to different neighbors and start
an (independent) random walk, as before. If a peer receives
both rK′ and rC′ from its neighbors, then the peer serves

Questioner�

Sower�

Direct forwarding of 
decrypted ACK�

Random walk 
of rumors�

Sower�

Respondent�

Fig. 3: Step 4 in the Rumor Riding.

as the sower concerned with the respondent as follows: 1) it
decrypts R and the IP address of s from reply rumors, and
2) it directly forwards reply rumors to sower s. See Figure
2 for illustration.

Step 4: ACK Message
After receiving reply rumors rK′ and rC′ , the questioner i

decrypts R from C ′ with symmetry key K ′ and then decrypts
the reply message from R with the secret key of peer i.
Then peer i sends an ACK message to the respondent j
in the following manner: 1) it encrypts the ACK message
into a cipher text with the public key of j (which should
be contained in the reply message); 2) it organizes two
rumors from the cipher text as in previous steps; and 3) it
sends out those rumors to different neighbors, as before. The
sower conceded with the ACK message directly forwards
the received rumors to the sower concerned with the reply
message described in Step 3, which will be delivered to the
respondent j by traveling the path used in the random walk
in the reverse direction. See Figure 3 for illustration.

Step 5: Transmission of Object
After receiving the (encrypted) ACK message, the respon-

dent j decrypts it into plain text with the symmetry key
contained in a rumor and the secret key of j. After that,
it moves to the actual transmission of the requested object
using digital envelope. More concretely, after encrypting
the object into a cipher text F , peer j transfers it to
the questioner through random walk of two rumors, direct
forwarding of the rumors to the sower concerned with the
ACK message, and the delivery of rumors by traveling the
path used in the random walk of Step 4 in the reverse
direction.

4. Proposed Method
4.1 Design Issues

This section describes the details of the proposed scheme.
The goal of the scheme is to realize an anonymous object
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Fig. 4: Dynamic switch of the mode of flooding during the
query propagation.

search in the SocioNet using the notion of the RR described
in Section 3. However, if we directly apply the techniques
used in the RR to the SocioNet, we will face to the following
issues: 1) As was described in Section 2, the SocioNet is
designed in such a way that the questioner is located in
the neighborhood of the respondent. However, the direct
application of the RR to the SocioNet loses such a benefit
of the SocioNet, since in the RR, the actual flooding is
conducted by a sower which is randomly selected from all
peers in the network, i.e., we cannot guarantee that the sower
is in the neighborhood of the respondent. 2) The search in
the RR is based on a simple flooding, i.e., it repeats the
forwarding of a received query to all neighbors until the
TTL given to the query exhausts. However, such a simple
scheme does not fully utilize the structure of the SocioNet
so that two types of links play different roles in the overlay,
i.e., random link connects remote peers and similarity link
connects peers to have similar interests. This means that to
improve the efficiency of the object search, the propagation
of a query from the selected sower should be conducted by
carefully considering the difference of the role of links.

In the following subsections, we propose two techniques
to overcome those issues.

4.2 Dynamic Switch of the Mode of Flooding
The first technique is to take into account the difference of

the role of links during the propagation of query messages.
More concretely, we devolve the role of diversification to
random links in an early phase of the query propagation and
the role of intensification to similarity links in the remaining
steps of the query propagation.

The concrete operation proceeds as follows. Let s be a
sower concerned with the questioner which received two
query rumors rK and rC from its different neighbors. After
decrypting message q from C with K, s starts the flooding
of q to its neighbors by setting TTL to a small value, e.g.,

two to five, using both of random and similarity links. Each
copy of the query stops the propagation when: 1) the TTL
exhausts or 2) it arrives at a peer holding an object matching
the query. In addition, if it arrives at a peer which has a
similar interest to the query, then it switches the mode of
flooding so that it merely uses similarity links to realize an
efficient intensification of the exploration.

The similarity of a peer j with a query q is calculated as
follows. Recall that in the SocioNet, each peer is associated
with a profile representing its interests in the form of a vector
of relevances to the tags in T . The idea is to associate
a set of tags to each query issued by the questioners1. If
query q is associated with a single tag t drawn from set T ,
the similarity of the query with a peer j is calculated in
the following three steps: 1) extract the relevance wj,t of j
with tag t from the profile w⃗j ; 2) extract top α elements
from the profile with the maximum relevance; and 3) if wj,t

is contained in the extracted α elements, then we judge
that the similarity between peer j and query q is high.
If q is associated with two or more tags, we extend the
above scheme so as to check whether the majority of tags
associated with the query are contained in the top α elements
in the profile vector.

Figure 4 illustrates a running example of the scheme. In
this figure, the peer holding an object matching the query
issued by the questioner is painted red, and peers which
has a similar interest with the query is painted orange.
After decrypting the query from two query rumors received
from different neighbors, the sower, which is painted green,
initiates a flooding of the query by setting the TTL to a small
value. The flooded message uses all links within the TTL,
and after arriving at an orange peer, which has a similar
interest to the query, it switches the mode to the flooding
without random links.

4.3 Similarity-Based Filtering
The second technique is to filter queries at each similarity

link by the similarity of the receiver to the query. Suppose
that peer j receives a query q associated with a set of
tags. In the first technique, all similarity edges outgoing
from j are used for the propagation of the query unless the
TTL is exhausted. However, since the similarity of peers is
defined by the cosign similarity of profiles and the number of
objects held by each peer (see Equation (1) for the details),
a neighbor ℓ of j connected by a similarity edge (j, ℓ) might
not be relevant to q even if peer j is relevant to q and the
value of sim(j, ℓ) is small. For example, consider the case
in which peers j and ℓ have 200 objects attached tag Jazz,
peer j has 20 objects attached tag Clarinet and peer ℓ has

1The simplest way to realize such a situation is to ask questioners to
designate tags associated with the query. Another possible way is to adopt
the technique of automatic tag attachment which has been proposed in the
literature [7]. In the evaluation described in Section 5, we assume that each
query is attached a single tag by the questioner.



Table 1: Parameters used in the simulation.
The number of peers 10000

The number of objects 1000
The number of peers holding matching object 100

Average degree of peers 6
Rewiring probability 0.3

TTL of the first phase 2
Threshold θ 0.8

no object attached tag Clarinet. In such a case, a query q
with tag Clarinet received by peer j should not be forwarded
to peer ℓ, since ℓ has no object attached tag Clarinet and
such a fact can be detected by analyzing the relevance of
the receiver ℓ to the query.

The filtering of queries is conducted by using the cosign
similarity. More concretely, each query q is associated with
a binary vector q⃗ so that the ith element in the vector takes
value 1 if and only if the ith tag (in set T ) is associated with
q. Then, the similarity σ(q, ℓ) between peer ℓ and query q
is calculated as σ(q, j) = cos(q⃗, w⃗ℓ), and the similarity link
connecting to ℓ stops the forwarding of q if the value of
σ(q, j) is smaller than a predetermined threshold θ.

5. Evaluation
5.1 Setup

We evaluate the performance of the proposed scheme by
simulation. The simulation is conducted by using PeerSim
simulator [6], and as the competitor, we use a simple
combination of the RR and the SocioNet in which each
sower concerned with the questioner initiates a flooding of
the decrypted query with a designated TTL. In the following,
we denote the above combined scheme as COMB and the
proposed scheme with two techniques PROP, where for the
reader’s reference, we also show the result for the scheme
merely with the first technique denoted as TECH1 and that
with the second technique denoted as TECH2. The metric
for the evaluation is the number of messages and the success
rate, which are averaged over 30 runs.

Parameters used in the simulation are given as follows.
The number of peers and the number of objects are fixed to
10000 and 1000, respectively, where each object can have
several copies in the overlay. The number of copies held by
each peer follows a Poisson distribution with mean λ = 6.
The popularity of the object matching a query is set to 1%,
i.e., we consider a situation in which among 10000 peers,
only 100 peers hold the object matching the query. The
overlay network consisting of similarity links is generated by
the Barbási-Albert (BA) model so that the average degree of
each peer is six and the probability of rewiring a similarity
link into a random link is set to 0.3. TTL of the first phase
of the query forwarding used in the first technique is set to
two. Finally, we fix threshold θ used in the second technique
to 0.8. Those parameters as summarized in Table 1.
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Fig. 6: The success rate of two schemes obtained by dividing
the number of successful runs by the total number of runs.

5.2 Number of Messages
Figure 5 illustrates the result on the number of messages.

The horizontal axis is the TTL of the flooding and four
curves correspond to the result for COMB, PROP, TECH1
and TECH2, respectively. Although there is no big differ-
ence among four schemes when TTL is two, we could find a
significant reduction of the number of messages as the TTL
becomes large. In particular, the amount of improvement of
COMB by PROP is about 50% when TTL is five.

5.3 Success Rate
Figure 6 compares the success rate of COMB and PROP,

which is calculated by dividing the number of successful
runs by the total number of runs in the simulation, where
the horizontal axis is the TTL of query flooding, as before.
The success rate of COMB monotonically grows as the TTL
increases, which reaches 100% when TTL is four. However,
the success rate of PROP is not stable with respect to the
monotonic change of the TTL; e.g., the success rate when

584 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

2 3 4 5 

S
uc

ce
ss

 ra
te

 [%
]�

TTL�

COMB 
PROP 
TECH1 
TECH2 

Fig. 7: Comparison of the success rate of four schemes which
is calculated by excluding runs with two or less sowers.

TTL is three seems to be too small compared with the
success rate for other TTLs.

A reason of such an instability of the success rate is due
to the small number of sowers generated by the RR. See
Figure 7 for illustration. This figure redraws the curves of
the success rate after excluding simulation runs in which
the number of sowers generated by the random walks is two
or less. As shown in the figure, by excluding such runs,
we have a reasonable grow of the success rate, and can
make the following observations: 1) the use of the second
technique reduces the success rate (recall that the second
technique stops the forwarding of the query to a peer to have
a profile which is not similar to the query); and 2) COMB
is better than TECH2, i.e., the simultaneous use of the first
technique with the second technique relaxes the badness of
the second scheme. The conjecture such that the number of
sowers affects the success rate is confirmed by Figure 8,
which illustrates the impact of the number of sowers to the
success rate by fixing the TTL to three.

6. Concluding Remarks
This paper proposes an anonymized object search scheme

for the SocioNet. More precisely, we propose two techniques
to overcome the inefficiency of a simple application of the
Rumor Riding to the SocioNet, where the first technique
is to dynamically switch the kind of links used for the
query propagation and the second technique is to filter
queries at each similarity link by the similarity of the
receiver to the query. The performance of the scheme is
evaluated by simulation. The simulation result indicates that
the proposed scheme reduces the number of messages of a
simple combination of the SocioNet and the Rumor Riding
to a half without significantly reducing the success rate.

A future work is to verify the effect of the popularity of
the searched object to the performance, which was fixed to
1% in the current simulation. Another key issue is to conduct
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Fig. 8: Impact of the number of sowers to the success rate
(TTL is fixed to three).

a detailed analysis of the behavior of the proposed scheme,
since in the current work, we merely evaluate the average
number of messages and the success rate.
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Abstract -  In this paper, parallel processing was applied to  
the parallelization of an analytical method for estimation of  
voltage sags in electric power systems. The parallelization of  
this  analytical  method  is  made  by  using  multi-thread 
programming (POSIX  threads).  POSIX  is  a  standard  for  
UNIX-like operating systems which specifies an application  
programming interface for multithreaded programming. The  
algorithm was written in C programming language. All tests  
were performed using the GNU/Linux operating system. The  
proposed parallelized analytical  method was applied to  the 
57-bus  and  118-bus  IEEE  test  systems,  in  order  to  
demonstrate its proper operation. A comparative analysis of  
the parallelized method with respect to the traditional method  
is  presented,  and  the  reduction  in  computational  time  is  
shown.

Keywords: voltage  sags;  analytical  method;  parallel 
processing; multi-threading.

1  INTRODUCTION

In the first years of the 1980s, the term power quality started 
to  gain  importance  when  analyzing  the  performance  of  an 
electric  system,  due  to  the  faults  that  occurred  in  electric 
equipment  associated  with  voltage  disturbances.  This 
demonstrated that power systems weren’t as reliable as they 
were thought to be, giving an even bigger relevance to aspects 
of power quality,  in an electric industry where fulfilling the 
quality demands of clients has become a priority [1].
Voltage sags which are defined as a reduction in RMS voltage 
with durations of half a cycle to one minute, caused by short-
circuits, overloads or starting of large motors are one of the 
power quality disturbances which affect clients most quickly 
[2]. During a voltage sag, the voltage magnitude is not equal 
to  zero,  however,  it  is  significantly  lower  than  the  voltage 
level under normal operation conditions, which makes voltage 
sags one of the main causes of undesired equipment trip [3]
[4].
Some methods for  the stochastic  estimation of voltage sags 
systems have been proposed, such as the presented in [3]-[6]. 
Voltage sags in a specific location of the system are calculated 
by means of sag probability density functions on transmission 

lines, or using elements of the bus impedance matrix and their 
relation with a fictitious bus, whose position changes along the 
transmission lines.
The analytical method proposed by E. Espinosa-Juárez and A. 
Hernández  [7]  (henceforth  abbreviated  as  AMEH)  has 
significant  advantages  with  respect  to  some  of  the  referred 
methods in [3]-[6]; one of these advantages,  for example, is 
the possibility of application in case of unbalanced faults, as 
well as the traditional case of balanced faults [6], and also the 
accuracy achieved with these method.
The AMEH requires analyzing all the system lines in order to 
calculate  the  voltage  sags  for  each  bus  of  the  electrical 
network;  this  means  that  applying  this  method  to  large 
networks  significantly  increases  the  number  of  required 
calculations.
On the other hand, in modern electrical system analysis, it has 
become necessary to use efficient computing techniques, such 
as  parallel  processing,  amongst  others  [8][9].  Parallel 
processing is defined as a type of data processing in which 
two or more processing elements perform calculations in order 
to solve a problem simultaneously [10][11]. 
In  the  area  of  the  electrical  system  parallel  processing  has 
been applied to analyze and solve several problems, as well as 
in  the  solution  of  several  industrial  applications  [12]-[16]. 
Parallel processing has produced a significant reduction in the 
time necessary to perform studies and consequently, makes it 
possible to carry out a power system analysis in less time
By  using  computational  techniques,  such  as  parallel 
programming,  a  much more efficient  implementation of  the 
AMEH method can be achieved.
In  this  paper,  the  AMEH  analytical  method  for  stochastic 
voltage  sag  estimation  in  electric  power  systems  is 
implemented  using  parallel  processing  techniques  based  on 
multi-thread schemes. The implemented method is applied to 
analyze  two  IEEE  test  systems  in  order  to  show  its 
functionality.

2  PARALLELIZED AMEH  ANALYTICAL 
METHOD

In order to clearly illustrate the parallelization of the AMEH 
method, a brief description of the method in [7] is presented, 
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followed by a detailed explanation of how the parallelization 
is achieved.

2.1  Fundaments  of  the  AMEH  Analytical 
Method

Consider  an  electrical  system  represented  by  the  following 
nodal formulation [7]:

(1)

where    is the bus voltage vector
 is the bus impedance matrix
 is the bus current vector

When a fault occurs at bus  i, the fault current at said bus is 
calculated as:

(2)

where:    is the fault current at bus i
is the pre-fault voltage at bus i
is the ii element of the bus impedance matrix 

The voltage at a specific bus of the system, for example, bus 
m,  when  a  fault  at  bus  i occurs,  is  calculated  using  the 
following expression:

    (3)

where:  is the voltage at bus m when a fault occurs at bus i
 is the pre-fault voltage at bus m
is the mi element of the bus impedance matrix 

Assuming a pre-fault voltage of 1 pu,

(4)

This means that a residual voltage magnitude Vm is present at 
bus m when a fault occurs at bus i.
On the other hand, voltage at bus m is affected by faults that 
can occur at any point of the system, faults can appear at buses 
and any position along the transmission lines. Each bus and 
each line have an associated value of faults per year (λ), which 
is obtained from statistics.
Taking this into account, equation (4) is generalized in order 
to being able to determine the voltage at bus m when the fault 
occurs  at  any  part  of  a  transmission  line  [7].  Consider  a 
transmission  line  of  the  analyzed  system,  which  connects 
buses k and j, as shown in Fig. 1.

POWER SYSTEM

p
bus k bus j

Lkp

Lkj

bus m bus i

Fig.1. Transmission line connecting buses k and j.

Then,  when  a  fault  occurs  at  p,  the  voltage  at  bus  m will 
be [7]:

(5)
where:
 , , , ,  are  elements  of  the  bus  impedance 
matrix

 is the transmission line impedance
In (5)  is the variable that defines the fault position:

(6)

where:
 is the distance between buses k and p
 is the distance between buses k and j

The value of ψ varies from 0 to 1. 
The probability of fault occurrence in the specified position ψ 
between  ψlow and  ψup corresponding to the remaining voltage 
between Vlow and Vup varies a value of ψ varies is given by [7]:

(7)

where:
 is  the  probability  of   

and g(ψ) is the probability distribution function of faults along 
the considered line.
The number of voltage sags at bus m caused by faults at line 
k-j can be calculated as [7]:

       (8)

Therefore,  if  uniform distribution of faults  along the line is 
considered,  the  total  number  of  voltage  sags  at  bus  m is 
obtained by considering the voltage  sags  calculated in each 
line of the system [7]:

(9)



2.2  Parallelization of AMEH method

The  AMEH  analytical  method  has  a  very  good  level  of 
precision in voltage  sag estimation.  However,  it  requires  to 
analyze all the system lines in order to calculate the voltage 
sags  for  each bus of the electrical  network,  this means that 
applying this method to large networks significantly increases 
the  complexity  of  the  problem  and  performing  the 
corresponding calculations.
For example, for  the IEEE 118-bus test system [17], which 
has  177  transmission  lines,  fault  calculations  must  be 
performed for each line in order to evaluate the voltage sags at 
each bus in the system, which translate into a total of 20,886 
calculations  of  voltage  remaining  curves,  each  with  its 
respective operations.
In the designed algorithm for the parallelization of the AMEH 
method, a fault distribution function associated to transmission 
lines is defined. Then, the impedance matrix is calculated and 
equation  (7)  is  evaluated  considering  values  in  the  range 

, in order to obtain the curve of remaining voltage 
corresponding  to  the  specified  node.  This  result  helps 
determine whether the voltage has a monotonically increasing 
or decreasing behavior (or neither), which, in turn, allows to 
define the integration limits for equation (8), according to the 
desired  voltage  ranges.  Afterwards,  the  number  of  voltage 
sages  is  calculated  with  equation  (8),  and  finally,  using 
equation  (9),  the  total  number  of  voltage  sags  at  bus  m, 
originated by faults at every line of the system, is obtained.
There are different  programming environments which allow 
implementing parallel processing schemes. A computer with a 
multicore CPU is capable of performing operations in parallel, 
dividing  the  total  amount  of  work  among all  the  available 
cores.  However,  a  control  scheme  is  necessary  in  order  to 
avoid  overlapping  between  the  cores.  If  all  the  memory 
locations  of  the  system  can  be  accessed  by  all  cores,  it  is 
possible for a specific variable, which has been modified by 
several cores, to contain an incorrect or unpredictable value, 
producing unexpected results in a program. A simple solution 
to  this  problem  is  specifying  which  memory  locations  are 
shared between the cores, that is, which parts of the memory 
can  be  accessed  by  all  cores.  A  program  which  uses  this 
particular type of memory allocation is generally known as a 
shared-memory program.
In this work, the analytical method previously described will 
be optimized using POSIX threads. POSIX is a standard for 
UNIX-like operating systems which specifies an application 
programming interface for multithreaded programming. [18]
POSIX  threads  or,  more  commonly,  Pthreads,  is  not  a 
programming  language,  but  rather  a  library  which  can  be 
linked  to  programs  written  in  C  language  in  order  to 
implement shared-memory schemes.
As the name indicates, Pthreads is based on the use of threads, 
which can be considered  as individual  processes  capable of 
running simultaneously.  Each  thread  has  private  stacks  and 
program counters, but access to determined variables may be 
common to certain threads.

The  main  purpose  of  applying  parallel  computing  to  the 
analytic method is to significantly reduce the time required to 
analyze large electric networks.
When using traditional  or  sequential  programming to  apply 
the analytical method, the calculation of voltage sags must be 
performed  one  transmission  line  at  a  time.  This  process 
becomes especially long if a large network is to be analyzed.
On  the  contrary,  when  applying  parallel  computing  the 
problem can be divided into smaller parts, that is, each line is 
analyzed  by  an  individual  processing  element,  running  in 
parallel.  Considering this, the ideal case would be when the 
number of lines in the system equals the number of available 
threads. Under these conditions, the execution time reduction 
would be maximal.
However, an electrical system is usually formed by far more 
lines than the total number of threads that can be launched in 
parallel in current multicore computers. In this case, a certain 
number of lines are assigned to each thread, in such a way that 
the  total  amount  of  calculations  is  divided  as  evenly  as 
possible. If, for example, a small system consists of 10 lines, 
and the computer used to perform the analysis has 4 threads 
available, two threads would be used to calculate voltage sags 
along 3 lines each, and the remaining two would be used to 
calculate voltage sags along 2 lines each, covering the totality 
of  calculations  required  with  a  load  division  as  even  as 
possible.

The  efficiency  of  the  parallel  algorithm  is  measured  in 
terms of the time it takes to complete the calculations with one 
processing  element  in  comparison  to  the  time  it  takes  to 
complete  the  calculations  with  p  processing  elements;  this 
relation is known as Speed-Up (S) [19].

1

p

T
S

T
= (12)

where:

1T  is the execution time with one processing element;

pT is the execution time with p processing elements.

Using this metric of performance ensures that the reduction 
of  execution  time  is  independent  of  the  computer 
characteristics.

3  Case studies
Two case studies are presented. The results obtained verify the 
correct  performance  and  improved  efficiency  of  the 
implemented method using multi-thread programming.

3.1  Studies in the IEEE 57-bus test system
The IEEE 57-bus test system (Fig. 2) consists of 63 lines, 15 
transformers  and  7  generators  [20].  Three-phase  balanced 
faults with unitary fault ranges are considered, and bus fault 
ranges are neglected.

588 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



Fig. 2. IEEE 57-bus test system.

Fig. 3, Fig. 4 and Fig. 5 show the results of sags per year 
considering ranges from 0.6 to 0.7 p.u., 0.7 to 0.8 p.u. and 0.8 
to 0.9 pu, respectively,  for  faults  at  lines,  using λ=1.  Fig.  6 
shows  the  difference  between  the  sags  per  year  values  of 
ranges from 0 to 0.7 p.u., 0 to 0.8 p.u. and 0 to 0.9 p.u. In Fig. 7 
the total sags per year are shown, that is, the sum of sags per 
year at lines and the sags per year at nodes, along with the sags 
per year with a range from 0 to 0.9 pu.

In  Table  1  the  computing  times  for  the  57-bus  system  are 
shown, and it can be observed that as the number of threads 
increases,  the  execution  time  decreases  proportionally. 
However, when using more than 3 threads the results do not 
show  any  further  improvement.  This  is  due  to  the  small 
dimensions of the system. A larger system would have to be 
analyzed in order to perceive a significant time reduction.

Fig.3.  Voltage sags/year considering a voltage sags range from 0.6 to 0.7 p.u.

 
Fig. 4.  Voltage sags/year considering a voltage sags range from 0.7 to 0.8 p.u.

Fig. 5.  Voltage sags/year considering a voltage range from 0.8 to 0.9 p.u.

Fig. 6.  Voltage sags/year considering voltage ranges from 0 to 0.7, 0 to 0.8 
and 0 to 0.9  p.u.

Fig. 7.  Voltage sags/year at lines plus voltage sags/year at nodes, considering 
a voltage range from 0 to 0.9 p.u.

TABLE I. RESULTS OF THE IEEE 57-BUS TEST SYSTEM, SHOWING THE SPEED UP 
OBTAINED USING DIFFERENT NUMBER OF THREADS

Threads Time (s) Speed Up
1 0.024 1.00
2 0.019 1.26
3 0.017 1.41
4 0.017 1.41

3.2  Studies in the IEEE-118 bus test system
The IEEE 118-bus test system (Fig. 8) consists of 177 lines, 9 
transformers  and  33  generators  [17].  Three-phase  balanced 
faults with unitary fault ranges are considered, and bus fault 
ranges are neglected.



Fig. 8. IEEE 118-bus test system.

Fig. 9.  Voltage sags/year considering a voltage sags range from 0.6 to 0.7 p.u.

Fig.  10.   Voltage  sags/year  considering  a  voltage  sags  range  from 0.7  to 
0.8 p.u.

Fig. 11.  Voltage sags/year considering a voltage range from 0.8 to 0.9 p.u.

Fig. 12.  Voltage sags/year considering voltage ranges from 0 to 0.7, 0 to 0.8 
and 0 to 0.9  p.u.

Fig.  13.   Voltage  sags/year  at  lines  plus  voltage  sags/year  at  nodes, 
considering a voltage range from 0 to 0.9 p.u.

Fig. 9, Fig. 10 and Fig. 11 show the results of sags per year 
considering ranges from 0.6 to 0.7 p.u., 0.7 to 0.8 p.u and 0.8 
to 0.9 p.u., respectively, for faults at lines, using λ=1. Fig. 12 
shows  the  difference  between  the  sags  per  year  values  of 
ranges from 0 to 0.7 p.u., 0 to 0.8 p.u. and 0 to 0.9 p.u. In Fig. 
13 the total sags per year are shown, that is, the sum of sags 
per year at lines and the sags per year at nodes, along with the 
sags per year with a range from 0 to 0.9 pu.

In  Table  II  the  computing times for  the  IEEE 118-bus test 
system are shown, and it can be observed that the execution 
time decreases as the number of processing elements (threads) 
used increases.

TABLE II. RESULTS OF THE IEEE 118-BUS TEST SYSTEM, SHOWING THE SPEED UP 
OBTAINED USING DIFFERENT NUMBER OF THREADS

Threads Time (s) Speed Up
1 0.171 1.00
2 0.136 1.26
3 0.125 1.37
4 0.12 1.43
5 0.118 1.45

4  Conclusions
In  this  paper,  parallel  processing  was  applied  to  the 
parallelization of the AMEH analytical method for estimation 
of voltage sags in electric power systems. The parallelization 
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was done using a multi-thread scheme, which allows to divide 
the work of performing all the required calculations for faults 
at lines and buses of the analyzed system.
The proposed parallelized analytical  method was applied to 
the IEEE 57-bus and IEEE 118-bus test systems. Based on the 
results obtained, it has been demonstrated that the parallelized 
method  represents  a  highly  useful  tool  in  the  analysis  of 
voltage  sags,  which  greatly  improves  the  efficiency  of  the 
sequential AMEH analytical method.
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Abstract - The recent technological computer advances have 

allowed the use of the Finite Element Method (FEM), to 

calculate the solution of the Maxwell field equations of 

electrical machines or devices. In some cases, an 

axisymmetric or a plane symmetry can be assumed to reduce 

the complexity of the finite element analysis to be performed. 

Nevertheless, the large size of the matrix equations derived, 

could imply a significant computing effort. In this paper, a 

parallel method of solution in frequency domain of a FEM 

equation with currents known is proposed. It consists on 

implementing the LU method using a parallel computing with 

CUBLAS. A normal and a reduced type of FEM equation 

proposed by the authors have been solved in the frequency 

domain using this parallel computing platform. It is shown 

that a significant reduction in the computing time to solve 

these FEM equations in the frequency domain is achieved. 

Keywords: Finite element method, frequency domain 

analysis, parallel processing 

 

1 Introduction 

 The Finite Element Method (FEM) is a very powerful 

tool to solve the electric and magnetic equations of electrical 

machines or devices. The method has been widely used, 

since the computational technological advances have 

allowed the application of the method on the modeling and 

simulation of electrical machines or devices with complex 

geometries of configurations [1]-[3]. 

 Nevertheless, the method can be difficult to use in 

devices with 3D geometries or in those which need a detailed 

geometry model; the reason is the large matrix equations 

derived by the finite element analysis, which in turn can be 

difficult to solve in the frequency domain or in the time 

domain. However, the finite element analysis can be 

simplified if a planar or axisymmetric assumption is taking 

into account [2], [3]. 

 In an earlier paper, the authors proposed a new form to 

solve a FEM equation with currents or voltages known [4]. 

The method consists on deriving a lesser order equation from 

a normal FEM equation. The reduced equivalent equation 

obtained is expressed in terms of the time varying variables, 

and it can be easily solved in time domain or in the frequency 

domain [3]. The reduced equation can be calculated from a 

normal FEM equation derived from of a finite element 

analysis performed on a device with a planar or an 

axisymmetric symmetry [4]. The reduced equation is easy to 

derive and solve, since it implies the use of simple matrix 

operations [4]. These matrix operations can be derived by a 

parallel computing. Moreover, the normal and the reduced 

FEM equations can be solved in the frequency domain by a 

parallel solution. Thus, it is possible to obtain a significant 

computation time reduction. The FEM equations to be 

solved correspond to equations that model a device with a 

planar or axisymmetric symmetry, and whose conductor 

currents are known. 

 In this paper, the LU method has been implemented in 

the CUBLAS parallel platform, in order to solve normal and 

reduced FEM equations in the frequency domain. 

Specifically, an LU decomposition process was implemented 

using parallel processing using routines of the CUBLAS 

library. The proposed parallel solution has been tested in two 

devices: a planar conductor and a series reactor with an 

axisymmetric symmetry assumption. 

 The rest of the paper is organized as follows: Section 2 

explains the features of the partial differential equations of 

devices modelled by planar or the axisymmetric symmetries. 

Section 3 explains the features of the FEM matrix equations, 

derived from a finite element analysis performed with the 

partial differential equations shown in Section 2. Section 4 

explains how the normal and the reduced FEM matrix are 

solved in the frequency domain; Section 5 describes how 

these equations are solved using the CUBLAS computing 

platform; Section 6 describes a case study which consists of 

two devices in which the parallel solution has been tested: 

the first device is a “T” conductor modelled by a planar 

symmetry and the second device is an air series reactor 

modelled by an axisymmetric symmetry. Finally, Section 7 

contains the main conclusion drawn from this investigation. 

2 Partial Differential Equations of a 

Device with Planar or Axisymmetric 

Symmetries 

 This investigation is based on the following 

assumptions: the frequency of the voltage source of the 

device to be modelled is low enough to neglect the 
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displacement current in the Maxwell field equations [2], [3], 

[5]. The permeability and the conductivity of the device are 

assumed to be constant. Finally, there are no voltage 

difference at different conductor points [5]. 

 In some cases, the modelling of a device can be 

simplified by a planar or axisymmetric symmetries [2], [3]. 

If it is considered that a skin effect exists on the conductors 

of the devices, and that these conductors are excited by 

voltage sources, then the partial differential equations for a 

device with a planar or an axisymmetric symmetries are 

given by [5]. [6], 
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 Where Az and Aϕ are the magnetic vector potential of a 

device with a planar or an axisymmetric symmetry 

assumption, respectively; σ and v are the conductivity and 

reluctivity of the materials, respectively. {Uc} is a vector 

which contains the voltages applied at the conductors of the 

device. If it is considered that the voltages along the z-axis 

are constant for a planar symmetry; and that the voltages 

along the ϕ-axis are constant for an axisymmetric symmetry; 

then it is possible to derive an equation to relate the voltage, 

current and the magnetic vector potentials at the conductors 

of the device [5], [6]. The equation is given by [5], [6], 

 

[!�]#${%&} − ∬  ��
�� ()*� = {+}          (3) 

 

Where {I} is a vector that contains the conductors’ 

current. The matrix [Δx] for the planar and the axisymmetric 

symmetry is defined by the equations (4) and (5), 

respectively. 

 

[!�]  = -��
� �∬ .*

�*� �#$/.012            (4) 

s 

[!�]  = [3&] = - �
� �∬ ()*� �#$/.012            (5) 

  

 Where [Rc] is the conductor matrix resistance if the 

device has a planar symmetry assumption. The surface area 

Sc of the equations (4) and (5) varies if the device is modeled 

by a planar or an axisymmetric symmetry. For the case of the 

planar symmetry, the surface area Sc involves the plane x-y 

[5]. For an axisymmetric symmetry, the surface area 

involves the plane r-z [6]. 

 

3 Finite Element Analysis of the Device 

 It is possible to perform a finite element analysis on the 

partial differential equations defined on (1) and (2). At the 

same time, a Newton Cotes analysis can be performed on the 

expression defined in (3). It yields [5], [6], 

 

[)]{��} + [4] .{�5}
.� = {6}{%&}       (6) 

 

[!�]#${%&} − [7&] .{�5}
.� = {+}        (7) 

 

 Where the matrices [S], [T], [Mc] and the vector {f} are 

obtained from the finite element analysis performed for a 

planar or axisymmetric symmetry [5], [6]. The vector {I} 

contains the currents in the conductors of the device, Ax is 

defined in the z-axis and the ϕ-axis for the planar and the 

axisymmetric symmetry, respectively. 

 If the conductor currents in {I} are known, it is possible 

to calculate the magnetic vector potentials {Ax} and the 

conductor voltages {Uc}. This can be achieved by coupling 

the equations (6) and (7) in a unique equation that can be 

easily solved in the frequency domain [3], [7]. It gives, 
 

8-[)] −{6}
0 [!�]#$/ + :(2=6) - [4] 0−[7&] 0/? @A�B�C

A%D&CE = F 0{+B}G  (8) 

 

 Where the vector of magnetic potentials {�B�}, the 

conductor voltages {%D&} and the conductor currents {+B} are 

all harmonic variables defined for frequency f. The equation 

(8) can be represented as, 
 ([H] + :(2=6)[I]){JK} = A6BC        (9) 

 

 Moreover, (9) can be represented in a simpler way, i.e. 
 [�]{JK} = {LK}             (10) 

 

 The equation (10) is a normal FEM matrix expression. 

It is possible to derive a simpler equation from (10) [4]. This 

reduced equation allows to express (10) in terms of its time 

varying variables, e.g. the vector of magnetic potentials of 

the conductors [4]. The equation is of lesser order than (9) 

and can be also solved in the frequency domain.  The 

reduced equation can be represented by, 

 

[�M]{JKM} = {LKM}             (11) 

 

 The equations shown in (10) and (11) have a 

preprocessing step, where their matrices are formed by a 

finite element analysis, and by a calculating step in which 

their solution in the frequency domain is derived. These 

stages will be discussed next. 

4 Solution of the Normal and the 

Reduced FEM Equations in the 

Frequency Domain 

 The FEM matrix equation to be solved are the normal 

(10) and the reduced types (11). For both equations can be 

recognize two specific steps in the process of calculating 



their solution in the frequency domain, i.e. a preprocessing 

and a calculating steps, respectively. These stages will be 

explained next. 

4.1 Preprocessing Step of the FEM Equations 

 The preprocessing step of the normal FEM method 

consists on deriving the final matrices [K] and [G] and the 

vector {f} of the (10). The process consists on first 

calculating the FEM matrices and vectors of one finite 

element,  integrate them into the global matrices and vectors 

that model the device [2], [3] and apply the required 

boundary conditions. 

 The preprocessing step of the reduced FEM method 

consists on deriving sub-matrices and sub-vectors from the 

final matrices and vectors obtained from the preprocessing 

step of the normal FEM equation, in order to calculate 

matrices of lesser order [4]. These FEM matrices permit to 

formulate a FEM equation of lesser order, which allows to 

directly solve the time varying variables of the device. The 

preprocessing step of a normal and a reduced FEM 

equations can be seen in Fig. 1. 

 

Fig. 1 Preprocessing steps of the FEM equations 
 

 
a) Preprocessing step of the normal FEM equation 
 

                                 
b) Preprocessing step of the reduced FEM equation 

4.2 Calculating Step of the FEM Equations  

 Once the matrices and vector of the normal and the 

reduced FEM equations are calculated, it is possible to 

derive their solution in the frequency domain. The normal 

and the reduced equations have the form of the expressions 

previously defined in (10) and (11), respectively.   

It can be seen that these FEM equations have the form of the 

expression N�2OAPQ2C = ALK2C. This matrix equation can be 

solved by using the LU method. 

 The calculating process of the normal and the reduced 

FEM equations is performed using the LU method. Thus, the 

first step consists on performing a decomposition of the 

matrix [Ag] into two matrices [Lg] and [Ug], respectively. It 

yields, 

 

N�2O = NR2ON%2O             (12) 

 

 After having the matrices [Lg] and [Ug], the solution of 

[Ag]{xg}={bg} can be achieved by triangular decomposition 

LU; and the normal and reduced FEM equations can be 

solved. The difference between these equations is the 

preprocessing step and the order of the FEM matrix equation 

to be solved by the calculating step. 

5 Calculating Process implemented by 

a Parallel Computing in CUBLAS 

 The calculating process for the normal and the reduced 

FEM matrix equations are implemented in the CUBLAS 

computing platform. Some steps of the preprocessing 

process of the reduced FEM equation can also be 

implemented by parallel computing. This will be explained 

next. 

5.1 Decomposition LU implemented in 

CUBLAS 

 Once the complex matrix equation [�]{PQ} = {LK}, that 

corresponds to the normal or the reduced FEM equation, has 

been formulated, the matrix [A] will be decomposed into the 

product of matrices [L] and [U]. This can be achieved by 

using the standard LU decomposition process. This process 

implies to calculate a pivot located in the main diagonal of 

[A], performing a modification of the next rows and, finally, 

eliminating the rows using the Gauss eliminating process. 

The decomposition process was implemented by a parallel 

computing in CUBLAS. This process is shown in Fig. 2. 
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Fig. 2 Decomposition process implemented in CUBLAS 

       

 

 The CUBLAS routines used for the parallel 

computation ot the LU decomposition, correspond to 

matrices and vectors composed of single precission complex 

numbers [8]. Once the matrix [Ag] is decomposed int the 

product of [Lg] and [Ug], the equation N�2OAPQ2C = ALK2C  can be 

easily solved. This will be explained next. 

5.2 Final Solution achieved by CUBLAS 

 After having the matrixes [Lg] and [Ug], the solution 

APQ2C can be calculated by solving the next equations in the 

CUBLAS computing platform, 

NR2OASQ2C = ALK2C           (13) 

 

N%2OAPQ2C = ASQ2C           (14) 

 

 Equation (13) is solved by using the routine 

cublasCstrv, and specifying that the equation to be solved 

corresponds to a triangular matrix stored in lower mode [8]; 

while (14) is also solved using the routine, but specifying 

that the equation to be solved corresponds to a triangular 

matrix stored in upper mode [8]. It can be seen that the 

solution of the complex equation N�2OAPQ2C = ALK2C can be 

easily derived by implementing the LU method by a parallel 

computing in CUBLAS. The results and the performance of 

this method of solution were tested for the case study 

described next. 

6 Case Study 

 It consists on analyzing in the frequency domain two 

devices modelled by a planar and the axisymmetric 

symmetry assumption. The first device to be analyzed is a 

“T” planar conductor. The second device is an air series 

reactor that can be modelled by an axisymmetric symmetry 

assumption. The finite element analysis to be performed on 

these devices involves the solution of the normal and the 

reduced FEM equations, which have the form of the 

expressions shown in (10) and (11), respectively.  These 

equations will be solved in a sequential and a parallel 

computing platform. 

6.1 Device modelled by a Planar Symmetry 

Assumption 

 It consists on analyzing a “T” slot-embedded conductor 

with a copper conductor and an air region in a frequency 

range of 5Hz to 60Hz with a frequency step of 5Hz. The 

objective of the example is to analyze how the total source 

current density Jct of the conductor varies in this frequency 

range [5]. The source density Jct will be obtained via the 

calculating process shown in Fig. 3 (b). The FEM model and 

the geometry of the “T” conductor is shown in Fig. 3(a). 

Fig. 3 Device with a planar symmetry assumption 
 

 
a) Geometry and FEM model 

 

 
b) Calculating process of the device 

 

6.2 Device modelled by an Axisymmetric 

Symmetry Assumption 

 It consists on analyzing in the frequency domain, a 

small air-cored reactor [6]. The example consists on finding 

how the reactor inductance ratio (RL=Lca/Lcd) varies within a 



frequency range [6], defined from 20Hz to 1000Hz with a 

frequency step of 20Hz. Lca is defined as the inductance 

obtained at a specific frequency; and Lcd is the inductance in 

a near to zero frequency. Here, the inductance ratio will be 

obtained via the calculating process shown in Fig. 4(b). The 

FEM model and the geometry of the series reactor is shown 

in Fig. 4(a). 

Fig. 4 Device with an axisymmetric symmetry assumption 

    
a) Geometry and FEM model 

 

 
b) Calculating process of the device 

  

6.3 Methods of Solution of the FEM equations 

 The two devices will be solved by the normal and the 

reduced FEM equations, which have the form of the 

expressions defined in (10) and (11), respectively. The 

dimensions and features of both, normal and reduced FEM 

equations, are listed in Table I. Please notice that the FEM 

equations of each device are required to be solved several 

times for the respective frequency range. 

Table I. FEM equations to be solved in a frequency range 

Device 

analyzed 

No. 

FEM 

Eqs 

Normal  

FEM equation 

Reduced  

FEM equation 

Planar 

symmetry 
14 

[��TT]{PQ�TT} 

= ALK�TTC 

N�M,�VWOAPQM,�VWC 

= ALKM,�VWC 

Axisym. 

symmetry 
51 

[�XW�V]{PQXW�V} 

= ALKXW�VC 

N�M,$�YVOAPQM,$�YVC 

= ALKM,$�YVC 

  

 In order to measure the performance of the method 

implemented in CUBLAS, the normal and the reduced FEM 

equations were also solved in a sequential computing 

platform. Specifically, the LU routines included in the GSL 

computing platform [9]. In the sequential form of the 

solution, the preprocessing and the calculating steps were 

entirely implemented in the GSL platform [9]. For the 

parallel solution, some stages of the preprocessing step were 

calculated by a sequential computing in GSL [9], while the 

calculating steps were completely implemented in the 

CUBLAS computing platform [8]. Thus, the calculating step 

of the normal and the reduced FEM equation will be solved 

for each frequency by the LU method implemented in the 

CUBLAS. 

 Table II and III describe the specific routines that are 

used for the sequential and the parallel solutions of the 

normal and the reduced FEM equations, respectively. 

 

Table II. Routines used in the sequential form of solution 

of the FEM Equations 

Stage 
Normal FEM 

Equation 

Reduced FEM 

Equation 

Preprocessing Step 

Normal 

preprocessing step 
C routines, GSL matrix routines 

Deriving 

Submatrixes for the 

reduced equation 

Not applied 
GSL matrix 

routines 

Calculating final 

matrixes for the 

reduced equation 

Not applied 
gsl_blas_dgemm 

gsl_blas_dgmev 

Calculating Step 

Forming equation [�]{PQ} = {LK} 
GSL matrix routines 

LU 

Decomposition [�] = [R][%] gsl_linalg_complex_LU_decomp  

Solving equation   [�]{PQ} = {LK} 
gsl_linalg_complex_LU_solve 

 

596 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



Table III. Routines used in the parallel form of solution of 

the FEM equations 

Stage 
Normal FEM 

Equation 

Reduced FEM 

Equation 

Preprocessing Step 

Normal 

preprocessing step 
C routines, GSL matrix routines 

Deriving 

Submatrixes for the 

reduced equation 

Not applied 
GSL matrix 

routines 

Calculating final 

matrixes for the 

reduced equation 

Not applied 

 (Matrix inverse 

calculated using 

routine defined 

in [10]) 

cublasSgemm 

cublasSgemv 

Calculating Step 

Forming equation [�]{PQ} = {LK} 
CUBLAS matrix routines 

LU 

Decomposition [�] = [R][%]  See Fig. 2 

Solving equation   [�]{PQ} = {LK} 

cublasCtsv:  

([R]{SQ} = {LK}) 

([%]{PQ} = {SQ}) 

  

 The computing times obtained from solving the normal 

and the reduced FEM equations in the sequential and the 

parallel form of solution, it will be shown in the next section. 

6.4 Results and Performance Comparison 

 It is important to mention that the results obtained from 

the solution of the planar and axisymmetric problems, were 

validated and compared against simulations performed with 

ANSYS in the frequency domain. The results derived by the 

normal and the reduced FEM equations are accurate and 

validate the proposed parallel form of solution of both 

equations.   

The normal and the reduced FEM equations were solved 

in the computing platforms GSL and CUBLAS. The programs 

were implemented in the same computer and operative 

system. A Dell Precision R5500 Rack Workstation, GPU 

NVIDIA® Quadro® 600, 1 GB RAM and an Ubuntu 

Operative System were used.  

 The total computation time (CPU time) required to 

solve the devices with planar and axisymmetric symmetries 

in the correspondent frequency range was measured. Fig. 5 

illustrates the CPU times needed to solve these equations 

using the sequential and the parallel computing platforms. 

 

 

 

Fig. 5. CPU times derived for the FEM equations solutions 

 

 
a) CPU time derived for the planar device 

 

 
b) CPU time derived for the axysimmetric device 

 

 For the case of the device with a planar symmetry, it 

can be observed that the reduced FEM equation allows to 

derive a faster solution compared to the normal FEM 

equation solution. Specifically, when the sequential 

computing was used, the CPU time of the normal and the 

reduced equation are 1.92sec and 0.89sec, respectively. 

Moreover, when the parallel computing was used, the CPU 

time of the normal and the reduced equation are 6.36sec and 

0.90sec, respectively. Although the reduced FEM equation 

allows a faster solution with both computing platforms to be 

achieved, a reduction of CPU time was not obtained when 

parallel computing with CUBLAS was used. The reason 

being is that the reduced and the normal equations of the 

planar device are of low order, i.e. 205 and 266, respectively. 

A CPU time reduction cannot be achieved, since the 

advantage of using the parallel platform is only evident when 

the size of the equations to be solved is really huge.  

 For the specific case of the device with an 

axisymmetric symmetry, it can be observed that the reduced 

FEM equation also permits to derive a faster solution 

compared to the normal FEM equation solution. For 

example, for sequential processing, the CPU time of the 

normal and the reduced equation are 15298.31sec and 



763.89sec, respectively. Moreover, when parallel 

computation was used, the CPU time of the normal and the 

reduced equation were 4365.99sec and 226.48sec, 

respectively. It can be seen that the parallel processing of the 

reduced FEM equation requires of only 226.48sec. The 

sequential computation of a normal FEM equation requires 

a CPU time of 15298.3sec. The difference between these 

CPU times is really significant, nearly 6760%. The reason is 

that the reduced and the normal equations of the planar 

device are of higher order, i.e. 3520 and 1270, respectively. 

7 Conclusions 

 A method of solution of a FEM equation, using the LU 

method implemented in the CUBLAS computing platform 

has been proposed. It has the following advantages: 

1) It can be used to solve a normal and a reduced FEM 

equation that models devices that can be simplified by a 

planar or an axisymmetric symmetry assumption. 

2) Its solution has been compared against a sequential 

computing platform. It has allowed a significant 

reduction of computer effort, as compared to the 

sequential solution, which was implemented by using 

the LU routines included in the GSL platform.  

3) It allows a significant time reduction when the reduced 

FEM equation is solved. A significant reduction of CPU 

time to solve larger order FEM equations sets in the 

frequency domain has been obtained. The CPU time for 

solving this equation using CUBLAS is 67.54 times 

lesser, than the time required for solving the normal 

FEM equation with GSL. 

 The parallel solutions of the normal and the reduced 

FEM equations have been successfully tested for a case 

study where a finite element analysis has been used to 

analyze planar and axisymmetric devices. The results 

derived by the parallel and the sequential solutions of these 

FEM equations have been against those obtained by finite 

element simulations performed in ANSYS in the frequency 

domain. An excellent agreement between the results 

obtained with both approaches has been achieved.  

 A significant time reduction has been achieved with the 

application of CUBLAS platform for solving the FEM 

equations in the frequency domain. For the specific case of 

the device modelled by an axisymmetric symmetry 

assumption, it has been obtained a CPU time of 226.48s 

which is a significant small time, compared with the CPU 

time of 15298.31s, which was derived by the sequential 

solution with GSL. 
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Abstract - Cache contention is annoying issue of the multi-

core processors with private L1 cache and inclusive shared L2 

cache. If core P1 runs with small working set which fits in its 

L1 cache while core P2 runs cache consuming process, 

loaded blocks in the shared L2 cache by P1 are extinguished 

by frequent access from P2. Furthermore, it incurs an 

inevitable invalidate to the L1 cache of the core P1 by the 

multi-level cache inclusion property. This study focused on 

this problem, and solves by access grouping with extension of 

cache status. Simulation results show the proposed method 

minimizes the side effects by the cache contention on the 

inclusive shared cache. 

Keywords: cache contention, multi-level cache, inclusion 

property, multi-core, shared cache  

 

1 Introduction 

  Shared memory multiprocessor systems with multi-core 

processors are widely used from the mid-sized to the high 

performance computer systems. Generally, multi-core 

processors have higher level private cache for each core, and 

lower level cache shared by some cores. Fig. 1 shows typical 

memory hierarchy of a quad-core processor. 

 

Figure 1. Memory hierarchy of a quad-core processor 

In case of the hierarchical cache structure, there are two issues 

which this study addressed; cache coherency and inclusion 

property [1]. The cache coherency protocol guarantees that 

the validity of the cache block with latest updated content, and 

the inclusion property enforces the lower level cache to 

maintain a superset of its higher level caches such as Intel 

Core i7. The benefit of this inclusion is coherency exclusion 

of higher level caches from other cores’ memory accesses. 

The multi-level cache inclusion property has precious benefits 

of transaction complexity, latency, and bandwidth saving, but 

the inclusion wastes valuable cache blocks by duplication 

between L1 and L2 caches. Furthermore, if unbalanced 

workloads are dispatched on the each core with shared L2 

cache, lightweight core is disturbed by invalidation requests to 

maintain the inclusion property between caches. Fig. 2 shows 

the cache contention [2] and invalidation by inclusion which 

this study addressed to resolve. 

 

Figure 2. Side effects of the cache contention 

2 Limited Inclusion by the Property 

 To remove the side effects by the inclusion property, 

first step is finding cache blocks which can be writeable 

among cores. Executable program contains several types of 

binary data. Writeable shared data are keys of the coherency 

transactions because the other data do not incur major 

coherency problems. Thus the inclusion property can be 

limited to the writeable shared data only. Tab. 1 shows type 

classifications by the data, and propose of the inclusion 

control methods. 

Table 1. Data type and inclusion control 

Data types Inclusion property control 

executable codes Minor control by OS 

(invalidate when 

page replacements, etc.) 

read only data 

writeable private data 

writeable shared data 
Controlled by H/W 

run-time allocated data 

According to the data types, every memory block can be 

grouped as described types when the program loaded into 

main memory. The type distinction can be process by the 

compiler except some run-time allocated data. For simplified 

processing, the run-time data can be handled same as the 

writeable shared data. 

3 Page Table and Shared Cache 

 To minimize of the inclusion property overhead, every 

memory access need to check whether it keeps the inclusion 



or not. To accomplish of this, I propose the inclusion bit 

which has the information related to the address range of 

memory. Thus the inclusion bits can be attached to the page 

table/TLB, and it is controlled by the OS. Every virtual 

address access from the core has to be translated to the 

physical address with the inclusion attribute. If a translated 

address need not maintain the coherency, it can be placed in 

the shared L2 cache with additional status bit that can be 

removable. Fig. 3 shows the shared L2 cache blocks with the 

removable bit. 

 
Figure 3. Shared cache with removable bit (32KB, 8-way) 

Every memory access from the core may invoke a block 

replacement in the shared L2 cache according to the LRU-like 

algorithm. If the most aged block is removable, it can be 

removed without invalidation of the higher level L1 cache. 

Fig. 4 exhibits this scenario which does not keep the inclusion 

property. 

 
Figure 4. Shared cache replacement without inclusion 

4 Simulation Results 

 For the evaluation of the proposed method, The 

DineroIV [3] cache simulator was used to test the impact of 

the L1 and shared L2 caches. The DineroIV is memory trace 

driven simulator, but does not support the hierarchical shared 

cache structure of multi-core processor. Thus the simulator 

was modified through trace control program which handles 

two memory traces, two L1 caches, and shared L2 cache. 

For the memory access traces, CEXP was selected as a small 

workload. Other 8 programs and 507 writes (writeable shared 

data) from CEXP are mixed into another trace which as a 

memory consuming workload. Tab. 2 shows the property of 

detailed workloads from the SPEC’92 benchmark [4]. 

Table 2. Property of the simulated traces 

Program 
Instruction 

Fetch 

Data 

Read 

Data 

Write 
Sum 

CEXP 18041 1452 507 20000 

Mixed trace* 42240 4722 7469 54431 
*
Mixed trace: COMP, EAR, HYDRO, MDLJD, NASA7, SWM, UCOMP, WAVE, 

507 writes from CEXP (writeable shared data) 

Generally, size of the shared L2 cache must be bigger than the 

sum of its higher level L1 caches for efficiency, thus the 

simulated sizes of the shared L2 caches are tuned to quadruple 

and octuple of sum of its L1 caches sizes. Figure 5 shows 

simulation results of conflict miss ratios originated from the 

non-inclusive types of data that according to the proposed 

method and the traditional method. 

 
Figure 5. L1 cache conflict miss ratios by the non-inclusion 

types of data, with the CEXP trace 

The simulation results show the inclusion property incurs 

most of the conflict misses in the L1 cache, and the proposed 

method removes these unnecessary cache misses to almost 

zero percent. 

5 Conclusion 

 Generally, the inclusion property alleviates the 

complexity of the cache coherence, bus congestion, and 

memory access latency. But if unbalanced workloads 

dispatched into the cores with shared cache, it incurs the 

cache contention in the shared cache, and generates 

unintended invalidation to the higher level cache. The 

proposed method solved this issue by limiting the inclusion 

property to the writeable shared data, adding the inclusion bit 

in the page table/TLB and removable bit in the shared L2 

cache. 

By the simulation results, proposed method can remove most 

of the conflict misses of the higher level cache despite the 

cache contention occurred in the lower level shared cache. 
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Abstract - We propose a new neuromorphic single-

electron circuit that can improve speed of signal 

propagation by harnessing thermal noise energy. In recent 

years, the single-electron circuit has attracted attention in 

the field of nanotechnology. However, it is known that the 

circuit is sensitive to noise. In addition, it takes time to 

signal propagation. In contrast, recently, very unique 

neuronal behavior that an axon in a neuron improves the 

speed of signal propagation by harnessing noise energy 

has been reported. It is considered that the application of 

this behavior to the circuit is expected to provide a new 

high-speed single-electron circuit. In this study, we aim to 

design such the circuit to improve the signal propagation 

speed by harnessing the thermal noise by using a Monte 

Carlo simulation. As results of the simulations, it has been 

clarified that the signal propagation time was shortened 

with the increase of the thermal noise energy. 

Keywords: Single-electron circuit; Neurons; Signal 

propagation; Thermal noise  

1 BACKGROUND 

                     AND MOTIVATION 

  In recent years, with the development of 

nanotechnology, nano-scaled elements or devices have 

been able to be fabricated. A single-electron device that is 

one of nano-scaled devices has attracted attention because 

it can control an individual electron by using a quantum 

effect [1]. It has tunneling junctions and quantum dots as 

main components. Since it can control a few electrons in 

operation, the single-electron circuit should show 

extremely low power consumption. However, there are 

some problems in the use of the single-electron circuit. 

Especially, the circuit is very sensitive to noise such as heat 

or light. These noises cause the circuit malfunction. In 

addition, with the increase scale of the circuit, the signal 

propagation will take a long time. 

To solve the problems, we focus on neurons in this study. 

It has been already reported that a structure of an axon (an 

output wire) in neuron can improve the signal propagation 

speed of the system by harnessing noise energy efficiently 

[2]. Here, we imitate a behavior of a special neuron called 

myelinated neuron to solve the problems as mentioned 

above. The myelinated neuron has a special axon that is 

covered with an insulated layer. This insulating layer is 

called the myelin. In the myelin, there are some gaps called 

nodes of Ranvier. In the myelinated neuron, it is known 

that the gaps and their intervals make the signal 

propagation be faster. This phenomenon of the myelinated 

neuron characteristic is called saltatory conduction. 

An operation of a single-electron oscillator that is one of 

the single-electron circuits we use, and that consists of a 

resistance, a quantum dot, a tunneling junction and a power 

supply [3] is similar to neurons [4]. A cell membrane 

structure of the axons can be represented by an equivalent 

circuit using single-electron oscillators. Thus, the structure 

of the neuron can be imitated by the single-electron circuit. 

Here, we aim to design a neuromorphic single-electron 

circuit based on the myelinated neuron to improve the 

signal propagation speed by harnessing thermal noise. 

2 SIMULATION 

 Firstly, we designed a neuromorphic single-electron 

circuit we proposed, and evaluated its operation by using 

Monte Carlo simulation. As a test circuit, we prepared one-



 

dimensional single-electron oscillators (Fig. 1) that was the 

equivalent circuit of a part of the axon in the neuron in the 

simulator. Then, we measured the required time for the 

signal propagation under a thermal noise environment. As 

results of the simulations, we found interesting operation of 

the proposed circuit. For example, when four tunneling 

junctions were connected in parallel and used as the 

coupling element of the one-dimensional single-electron 

oscillators, a signal propagation time was shortened with an 

increase of thermal noise (Fig. 2). Therefore, it can be said 

that it was possible to improve the signal propagation 

speed by harnessing a thermal noise. The reason we 

considered is that the improvement of the speed was 

caused by an electron tunneling at the coupling element 

under the thermal noise environment.  The parallel 

structure of tunneling junctions in the coupling element 

area in Fig. 1 provided the some paths for tunneling 

electrons. Thus, we considered the tunneling rate could be 

improved by the proposed circuit. 
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Fig. 1 one-dimensional single-electron oscillators 

 
Fig. 2 simulation result 
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Efficient Classification of Hyperspectral Images on Commodity
GPUs using ELM-based Techniques
Javier López-Fandiño, Dora B. Heras, Francisco Argüello

Abstract— Hyperspectral image processing algorithms are
computationally very costly, which makes them good candi-
dates for parallel and, specifically, GPU processing. Extreme
Learning Machine (ELM) is a recently proposed classification
algorithm very suitable for its implementation on GPU plat-
forms. In this paper we propose an efficient GPU implementa-
tion of an ELM-based classification strategy for hyperspectral
images. ELM can be expressed in terms of matrix operations
that can take maximum advantage of the GPU architecture.
Regarding the classification accuracy, the proposed algorithm
achieves competitive results as compared to a traditional SVM
strategy with significantly lower running times. Additionally,
the use of a voting mechanism to improve the accuracy results
is also considered.

Index Terms— Hyperspectral images, ELM, SVM, GPU,
CUDA.

1. Introduction
Nowadays, hyperspectral datasets are readily available

thanks to the recent advances in sensor technology. These
images provide information on hundreds of spectral bands at
different wavelengths for each pixel, allowing to discriminate
between different physical materials and objects. Different
kind of problems can be addressed when dealing with the pro-
cessing of hyperspectral datasets: classification, segmentation,
and target detection, among others.

Traditional methods like RBF (radial basis function) neural
networks or KNN (K-nearest neighbour) have been used for
classification of hyperspectral images. However, other algo-
rithms like SVM [1] are more suitable to process all the
information stored in the spectral channels of this kind of
images.

Nevertheless, to achieve real-time processing, faster meth-
ods than SVM are needed, even if high-performance comput-
ing systems are used. Extreme Learning Machines (ELM) are
a brand new method that slightly improves SVM running times
and that has been previously used in remote sensing [2], [3].
Additionally, ELM is a suitable algorithm to be implemented
on commodity GPUs because the required operations are
mostly matrix operations that can be computed in blocks
without data dependencies among them.

Different ELM-based techniques have been proposed [4]:
online sequential ELM, which is adequate when data is
received in chunks; incremental ELM, where hidden nodes

Centro Singular de Investigación en Tecnoloxı́as da Información (CITIUS),
Universidade de Santiago de Compostela. Rúa de Jenaro de laFuente
Domı́nguez, 15782 - Santiago de Compostela. (E-mail:{javier.lopez.fandino,
dora.blanco, francisco.arguello}@usc.es)

are added one by one; or pruned ELM, that starts with a
large network and then eliminates the hidden nodes that have
low relevance to the class labels. A well-known technique to
easily improve the results of a classification method consists
in the use of ensembles, namely, the combination of the
results obtained through different classification techniques or
the same technique with different training datasets [5]. A
simple mechanism in order to combine the results of the
ensemble is majority vote, that assigns the most repeated value
on the ensemble to the final value of a sample. Examples of
this technique applied to ELM are Ensemble Based Extreme
Learning Machine (EN-ELM) [6], and Voting-based Extreme
Learning Machine (V-ELM) [7].

In this paper we present an optimized CUDA (Compute Uni-
fied Device Architecture) GPU implementation of an ELM-
based algorithm to classify hyperspectral datasets in realtime.
We also discuss different approaches in order to combine the
classifiers through a majority vote mechanism, in order to
improve accuracy results. The implementation keys are the
exploitation of the thousands of threads available in the GPU
architecture and the adequate use of the memory hierarchy.
The GPU algorithm is formulated in terms of matrix operations
that are efficiently executed in blocks by an optimized linear
algebra library.

The next sections of this paper are organized as follows:
Sect. 2.1 explains the ELM mechanism to classify hyperspec-
tral images, while the majority vote mechanism is presentedin
Sect. 2.2. We introduce some GPU and CUDA fundamentals
in Sect. 3. The GPU implementations are described in Sect. 4.
Sect. 5 is devoted to the discussion of the experimental results.
Finally, Sect. 6 summarizes the conclusions of this work.

2. Hyperspectral Image Classification Us-
ing ELM-based Techniques

In this section, we present the ELM and V-ELM algorithms,
whose GPU implementation will be studied in Sect. 4.

2.1 ELM-based Classification
The raw pixel-wise ELM algorithm was proposed as an ef-

ficient learning algorithm for single-hidden layer feedforward
neural networks (SLFNs) [8].

The output function of a SLFN withL hidden nodes and
m output nodes, and beingx the input vector (see Fig.1) can
be written as

fL(x) =

L∑

i=1

βiG(ai, bi,x), x ∈ R
d, βi ∈ R

m, (1)
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Fig. 1

SLFN AS USED BY ELM.

where G(ai, bi,x) denotes the output function of theith
hidden node, beingai, bi the hidden node parameters and
βi the weight vector connecting theith hidden node to the
output nodes. For the case of additive nodes with activation
function g, it can be expressed as

G(ai, bi,x) = g(ai · x+ bi), ai ∈ R
d, bi ∈ R, (2)

A SLFN with L hidden nodes can approximateN arbitrary
distinct samples and targets(xi, ti) ∈ R

d × R
m, if the

following equation system can be solved:

Hβ = T (3)

where
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N×m

. (5)

H is called the hidden layer output matrix of the neural
network. Huang et al. [9], [4] have proven that a SLFN with
randomly generated additive or RBF nodes in the hidden layer
can universally approximate any continuous target function
over any compact subsetχ ⊂ R

d. For the case of additive
nodes, the activation functiong can be any infinitely dif-
ferentiable function, including sigmoidal functions, and also
the radial basis, sine, cosine and exponential functions among
others.

Once they are randomly generated, hidden node parameters
(ai, bi) remain fixed and training a SLFN is equivalent to
finding a least-squares solution̂β of the linear systemHβ =
T, i.e.:

β̂ = H
†
T, (6)

whereH† is theMoore-Penrose generalized inverseof matrix
H [10].

So, ELM can be summarized as follows [9], [4]:

Algorithm ELM: Given a training set{(xi, ti)|xi ∈
R

d, ti ∈ R
m, i = 1, . . . , N}, hidden node output function

G(ai, bi,x), and hidden node numberL,

1) Randomly generate hidden node parameters
(ai, bi), i = 1, . . . , L where ai and bi are the
input weight and bias values.

2) Calculate the hidden layer output matrixH.
3) Calculate the output weight vector,β = H

†
T.

As it was stated in [11], ELM requires less human inter-
vention than SVM because a single parameter, the number of
neurons in the hidden layer, needs to be optimized, since all
the other parameters are randomly initialized. It also achieves
similar or better generalization performance for binary and
multiclass classification cases. In addition, ELM has better
scalability and it runs at much faster learning speed than SVM.

In our hyperspectral image case, each training sample
represents a random selected pixel on the image and each
component of the sample a spectral band of the pixel. The
output that we obtain after the classification phase is the
predicted class for each pixel of the image.

2.2 Voting-based ELM
In this work we follow an approach based on ensembles [7],

[12], i.e., computing a number of independent ELMs with the
same number of hidden nodes and the same activation function
in each hidden node and combining the results obtained by the
different classifiers. The individual ELMs are trained with the
same dataset and the learning parameters of each ELM are
randomly initialized independently.

Majority vote is the simplest method to implement among
all the combination methods because it does not assume prior
knowledge of the behaviour of the individual classifiers and it
does not require training [13]. We use a democratic majority
vote method where each classifier vote counts equal to the
others and the final decision for each sample is the most
repeated vote for the sample.

3. CUDA GPU Programming Model
Nowadays, commodity GPUs provide massively parallel

processing capabilities based on their data parallel architecture.
CUDA is a hardware/software platform that enables NVIDIA
GPUs to execute programs invoking parallel functions called
kernels that execute across many parallel threads [14]. These
threads are organized into blocks so that each thread executes
an instance of the kernel following a SIMD programming
model. The blocks are arranged in a grid that is mapped to a
hierarchy of CUDA cores in the GPU.

A streaming multiprocessor (called SM) contains plenty of
CUDA cores and executes one or more thread blocks. The
threads are executed in groups of 32 threads called warps.
If all the threads in a warp execute the same code and access
memory with nearby addresses the performance will be greatly
improved.
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Threads can access data from multiple memory spaces.
First, each thread has a private local memory and registers.
Each block of threads has a shared memory visible exclusively
to the threads within the block with a lifetime that is equal to
the block lifetime. Finally, all threads access the same global
memory space (DRAM) which is persistent across kernel
launches by the same application. The lower the memory level,
the faster the read/write access to the data. Shared memory
lifetime makes it difficult to share data among thread blocks
because it implies the use of global memory whose access is
slower than shared memory access.

The GPU architecture named Kepler includes a two level
cache hierarchy. There are 64 KB of on-chip memory for
each SM, which can be configured as half each for the shared
memory and the L1 cache, 48 KB of shared memory and 16
KB of L1 cache or viceversa. There is also a unified L2 cache
of 1536 KB that is shared among all the SM units. In the most
recent Maxwell architecture [14] there are 64 KB of dedicated
shared memory since the L1 cache is placed together with the
texture memory.

Different performance optimization strategies have been
applied in this work in order to optimize the computational
performance:

• Maximize the parallel execution.It is important to or-
ganize the algorithm in computational blocks that can
be independently executed minimizing communications
among them.

• Improve the efficiency in the use of the memory hierarchy.
Trying to maximize both the spatial and temporal locality
in the data access, thus reducing data movement among
different memory levels. It is essential to perform the
maximum number of computations on data already stored
in shared memory, therefore minimizing the data transfer
between global and shared memory.

• Exploit the available optimized CUDA libraries.There
are different efficient CUDA libraries for FFT, image
processing, or linear algebra, among others, that can
improve the performance of the code.

4. ELM GPU Implementation
In this section we present the CUDA implementation of

the ELM algorithm used for the classification of hyperspectral
datasets. We use the MAGMA library [15] to achieve optimal
GPU linear algebra operations. This library has proven to be
more efficient than others like CUBLAS [16] [15].

4.1 ELM-based Classification
In this section we briefly describe the GPU implementation

of the V-ELM algorithm introduced in Sect. 2 forK inde-
pendent ELMs. The algorithm consists of three main phases:
preprocessing, training and test. The pseudocode in Fig. 2
shows the algorithm that has been implemented, including
host and device codes. The kernels executed in GPU are
placed between<> symbols. The pseudocode also includes
the GM and SM acronyms to indicate kernels executed only
in global memory and kernels that only use shared memory,
respectively.

First, all the data are scaled in the range [0:1] (line 1 in
the pseudocode). Given that ELM is a supervised learning
algorithm and ground truths of the datasets are available, the
pixels (pixel vectors) of each dataset are randomly distributed
between two non overlapping sets: training and test. These two
sets are stored in the matricesXtrain andXtest, respectively,
where each row represents a sample and each column a
spectral band (lines 3 and 4 in the pseudocode). Data matrices
are converted to column major format in order to be used
by the MAGMA library (line 5 in the pseudocode). The
ground truth labels are also split into two target matrices,
Ttrain, which is used during the learning phase, andTtest,
which will be used to check the accuracy results. Finally, the
training and test target matrices are processed so that eachrow
represents a sample and each column a class, where a value of
1 indicates membership to a class and a value of -1 is assigned
otherwise (line 6 in the pseudocode). The preprocessing phase
is computed in CPU and the results are stored in the global
memory of the GPU. All the remaining steps will be computed
in GPU.

The training phase starts by generating random weights and
biases (line 7 in the pseudocode). The weights matrix has a
number of rows equal to the number of neurons in the hidden
layer. The number of columns is the same as the number of
neurons in the input layer (equal to the spectral band number).
This matrix takes values in the range [-1:1]. The biases vector
takes values in the range [0:1] and its size is equal to the
number of neurons in the hidden layer. These two matrices are
then stored in the global memory of the GPU. Then, we have to
calculate the hidden layer output matrixH. To do this, we first
multiply the transpose of the weights matrix by the training
matrix, then we add the biases vector to the result and, finally,
we apply an activation function to each element of the matrix
(lines 8, 9 and 10 in the pseudocode corresponding to (2)). In
our case, a sigmoid function (f(x) = 1/(1+ e−x)) is applied
through a CUDA kernel with each thread operating over a
single element of the matrix. The final training step consists
in calculating the output weights multiplying the transpose of
the pseudoinverse of matrixH by the training targets matrix
(line 12 in the pseudocode corresponding to (6)). In the next
section we will detail how to calculate the pseudoinverse ofa
matrix.

The test phase (lines 13 to 17 in the pseudocode) starts by
multiplying the transpose of the previous generated weights
matrix by the data matrixXtest. Then, the biases vector
is added and the activation function is applied just like in
the training phase to obtain the test hidden layer matrixH.
These operations are analogous to those of lines 8 to 10 in
the training phase. Then, the output matrixY is calculated
multiplying H

T by the output weights matrixβ obtained in
the training phase. Finally, the estimated output labelTi is
calculated as the argument that maximizesYi for each sample,

T̂i = argmax
c=1,...,C

Yi,c (7)



Require: hyperspectral datasetX, label setT, K: number of ELMs,L: number of neurons in the hidden layer,C: number of classes,N: number
of samples

1: Scale hyperspectral dataset in [0:1] ⊲ Preprocessing phase
2: for each ELM k in V-ELM (k = 1, . . . ,K) do
3: Randomly choose the training points
4: Take the remaining points for test
5: Store data in column major order matricesXtrain andXtest

6: Process target matricesTtrain andTtest

⊲ Training phase
7: <Generate random weights (ai) and biases (bi), i=1,...,L> ⊲ GM
8: <Transpose the weight matrix and multiply byXtrain > ⊲ SM
9: <Add the biases> ⊲ SM

10: <Apply activation (sigmoid) function to obtainH > ⊲ GM
11: <CalculateH† as he Moore-Penrose pseudoinverse ofH > ⊲ GM-SM
12: <Calculate output asβ = H

†

× Ttrain > ⊲ SM
⊲ Test phase

13: <Transpose weight matrix and multiply byXtest > ⊲ SM
14: <Add the biases> ⊲ SM
15: <Apply activation (sigmoid) function to obtainH > ⊲ GM
16: <Calculate output asY = (H)T × β > ⊲ SM
17: <Calculate the estimated output label> ⊲ GM
18: end for

⊲ Majority vote phase
19: <Calculate the output as the majority vote of theK estimated labels for each sample> ⊲ GM

⊲ GM: Global Memory, SM: Shared Memory

Fig. 2

PSEUDOCODE FOR THEV-ELM ALGORITHM IN GPU.

4.2 Moore-Penrose Inverse of a Matrix
In this section we explain how to efficiently calculate the

pseudoinverse of a matrix with CUDA using the MAGMA
library. It is the most computationally costly operation in the
training phase and the one that involves more steps (line 11
in the pseudocode). We implement it as described in [10].

We first check the dimensions of the inputH matrix in
order to know if the number of rows is lower than the number
of columns. If this is the case, we use MAGMA to compute
a matrixA like the multiplication of the original matrix by
its transpose, otherwise we computeA as the multiplication
of the transpose matrix by the original matrix. This operation
ensures thatA is a symmetric positive definite matrix.

The next step consists in calculating the Cholesky factoriza-
tion ofA with the MAGMA dpotrf function and then applying
a kernel to nullify the upper triangle of the factorized matrix
obtaining theL matrix. Unlike the other steps, this last kernel
is launched in global memory.

Afterwards, anM matrix is calculated multiplyingLT by
L and then we compute the inverse of this matrix with the
MAGMA dgetrf anddgetri functions.

Finally, once all of these matrices have been calculated,
we obtain the inverse of the originalH matrix with a set
of consecutive multiplications computed using the MAGMA
dgemmfunction. If the dimension check of theH matrix at
start resulted in that the row number is lower than the column
number, we computeH† as,

H
† = H

T × L×M ×M× L
T ,

otherwise we compute
H

† = L×M×M× L
T ×H

T .

4.3 Voting-based ELM
The voting algorithm used in this work, as it was explained

in Sect. 2.2, comprises a set of independent ELMs whose

1: for each samplei (i = 1, . . . , N ) do
2: for each ELM k (k = 1, . . . ,K) do
3: Si(T̂

k
i ) = Si(T̂

k
i ) + 1

4: end for
5: mvTi = argmax

c=1,...,C

Si,c

6: end for

Fig. 3

VOTING PHASE OF THEV-ELM ALGORITHM .

outputs are stored in a matrix. After all the computations we
will obtain an N by C matrix (beingN the number of pixels
andC the number of classes in the dataset) containing the vote
of each ELM for every pixel of the image. This phase of the
algorithm is not needed if a single ELM is launched.

The majority vote phase is shown in Fig. 3. For each sample,
a vector Si is used to store the vote of theK ELMs and
then, the final label (mvTi) is calculated as the most repeated
output value produced by the different ELMs for the sample.
A CUDA kernel is launched and computed in global memory
where each thread computes the majority vote for one pixel
of the image.

5. Results
We have evaluated the proposed algorithm on a PC with a

quad-core Intel Core i5-3470 at 3.20 GHz and 8 GB of RAM.
The code has been compiled using the gcc 4.6.3 version with
OpenMP 3.0 support under Linux using 4 threads. Regarding
the GPU implementation, CUDA codes run on an NVIDIA
GeForce GTX Titan with 14 SMXs and 192 CUDA cores
each. The CUDA code has been compiled using nvcc with
version 5.5 of the toolkit under Linux.

The accuracy results are expressed in terms of overall
accuracy (OA) average accuracy (AA) and kappa coefficient
[17]. The performance results are expressed in terms of
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running times and speedups compared to an OpenMP CPU
optimized version of the ELM parallelized using 4 threads and
whose algebra operations are accelerated with the LAPACK
library [18] together with GoToBLAS2 [19] . For comparison
purposes, speedups of the ELM implementations are also
calculated comparing to an optimized SVM implementation
with the parameter values and number of training samples
taken from [20]. The running times include the training and
test phases, completely executed in GPU, therefore they do
not include CPU-GPU data transfers.

The test were run on two hyperspectral airborne datasets
[21]: A 103-band ROSIS image of the University of Pavia
(Pavia Univ.) with a spatial dimension of 610 x 340 pixels
and a 220-band AVIRIS image of 145 x 145 pixels taken over
Northwest Indiana (Indian Pines).

We compare three different configurations using ELM:
1) A single ELM trained with 200 samples for each class

(ELM).
2) A V-ELM comprising 8 ELMs trained with a total of 200

samples for each class equally spread (with bootstrap)
among the ELMs. This way the number of training
points used by the 8 ELMs is the same as those used by
the single ELM of the previous configuration (V-ELM-
1).

3) A V-ELM comprising 8 ELMs trained with 200 samples
for each class for each one of the ELMs, so that each
ELM is the same as in the first configuration (V-ELM-2).

The number of training samples employed are 200 per class,
or half the number of samples in the class if there are not
enough samples. These samples are randomly chosen and all
the remaining samples are used for test. The number of hidden
layer neurons employed are 500 for Pavia Univ. and 950 for
Indian Pines in all the cases [2]. These configurations were
chosen in order to achieve the best accuracy [3].

Table 1 shows accuracy results for the Pavia Univ. and
Indian Pines images in terms of OA, AA, and kappa.

The first thing to highlight in the results is that both the
ELM and V-ELM-2 configurations obtain acceptable accuracy
results, being best result slightly better than the SVM for
both images. Regarding the V-ELM-1 configuration, as was
expected, it offers in all the cases a lower accuracy than a
single ELM. This is due to the very low number of samples
to train each class in each ELM, so an overfitting is produced
resulting in poor generalization capabilities. This is supported
by the fact that every ELM in this configuration obtains 100%
accuracy in the training phase but much lower accuracy in the
later test phase.

For the Pavia Univ. image, the V-ELM-2 configuration
clearly improves the ELM configuration while for the Indian
Pines image both configurations obtain similar results, being
the ELM configuration only slightly better. Figures 4 and 5
help in understanding the results. They represent the ground
truth and false color classification maps for both datasets.
The class specific accuracies for the SVM and the best ELM
classification method applied to each image are shown in
Tables 2 and 3. It can be observed that ELM clearly improves
SVM in certain classes. In the case of Pavia Univ., the
best improvements are achieved for the biggest class called

Table 2

CLASSIFICATION ACCURACIES PER CLASS AS PERCENTAGES FOR THE

SVM (DATA TAKEN FROM [20]) AND THE BEST ELM IN TERMS OF

ACCURACY (V-ELM-2) FOR THEPAVIA UNIV. IMAGE .

No. of available
pixels SVM V-ELM-2

Asphalt 6631 84.93 80.86
Meadows 18649 70.79 92.78

Gravel 2099 67.16 84.57
Trees 3064 97.77 96.07

Metal sheets 1345 99.46 99.60
Bare soil 5029 92.83 92.98
Bitumen 1330 90.42 94.32

Bricks 3682 92.78 84.93
Shadows 947 98.11 99.59

Table 3

CLASSIFICATION ACCURACIES PER CLASS AS PERCENTAGES FOR THE

SVM (DATA TAKEN FROM [20]) AND THE BEST ELM IN TERMS OF

ACCURACY (ELM) FOR THE INDIAN PINES IMAGE.

No. of
available

pixels
SVM ELM

Alfalfa 54 74.36 78.89
Corn-notill 1434 78.18 81.48

Corn-mintill 834 69.64 76.72
Corn 234 91.85 91.47

Grass-pasture 497 92.17 95.99
Grass-trees 747 91.68 96.93

Grass-pasture-mowed 26 100 77.69
Hay-windrowed 489 97.72 99.34

Oats 20 100 78.00
Soybean-notill 968 82.03 83.15

Soybean-mintill 2468 58.95 64.47
Soybean-clean 614 87.94 90.99

Wheat 212 98.77 99.17
Woods 1294 93.01 90.56

Bldg-grass-trees-drives 380 61.52 89.00
Stone-steel-towers 95 97.78 69.38

meadowswith an accuracy of 92.78% obtained by ELM while
SVM obtains 70.79%. For the case of the Indian Pines dataset,
the best ELM improvements are achieved for the classescorn-
mintill (76.72% obtained by ELM and 69.64% by SVM) and
bldg-grass-tree-drives(89.00% obtained by ELM and 61.52%
by SVM). For these classes, more homogeneous areas are
observed in the ELM classification maps of the Figures 4 and
5.

Table 4 shows performance results in terms of running
times and speedups calculated over the OpenMP multicore
implementations for the Pavia Univ. and Indian Pines datasets.
It can be observed that the CUDA GPU implementation is
faster than the OpenMP CPU one for all the configurations in
both datasets (up to 10.1× for SVM and 8.6× for V-ELM-1
for the Pavia Univ. image). It also can be checked that the
single ELM configuration is the fastest one for both datasets.
Regarding the comparison to the SVM implementation, Table
5 shows that, for both images, the single ELM configuration
is faster than SVM, 8.6 times faster for the Pavia Univ. image
in CPU and 6.5 times for the same image in GPU.

Running times also indicate that V-ELM-2 is better than V-
ELM-1 because V-ELM-1 only saves time against V-ELM-2
in the training phase. This represents a small part of the total



Table 1

CLASSIFICATION ACCURACY AS PERCENTAGES FOR THEPAVIA UNIV. AND INDIAN PINES IMAGES. THE ELMS CONTAINED500AND 950NODES IN THE

HIDDEN LAYER , RESPECTIVELY.

Pavia Univ. Indian Pines
OA AA kappa OA AA kappa

SVM 81.01 88.25 75.86 78.17 85.97 75.33
ELM 86.68 89.46 82.52 80.81 86.20 77.81

V-ELM-1 79.20 77.29 72.62 63.14 75.66 58.67
V-ELM-2 90.31 91.78 85.78 79.59 80.42 72.13

Fig. 4

FROM LEFT TO RIGHT, PAVIA UNIV. GROUND TRUTH, SVM CLASSIFICATION MAP, AND BEST ELM CLASSIFICATION MAP IN TERMS OF ACCURACY

(V-ELM-2).

Fig. 5

FROM LEFT TO RIGHT, INDIAN PINES GROUND TRUTH, SVM CLASSIFICATION MAP, AND BEST ELM CLASSIFICATION MAP IN TERMS OF ACCURACY

(ELM).

Table 4

PERFORMANCE RESULTS FOR THEPAVIA UNIV. AND INDIAN PINES IMAGES.

Pavia Univ. SVM ELM V-ELM-1 V-ELM-2
OpenMP CPU 19.9844s 2.3304s 17.2394s 18.9022s

CUDA GPU 1.9802s 0.3063s 1.9960s 2.4501s
speedup CPU-GPU 10.1× 7.6× 8.6× 7.7×

Indian Pines SVM ELM V-ELM-1 V-ELM-2
OpenMP CPU 2.6980s 1.1653s 4.5749s 9.6903s

CUDA GPU 0.4548s 0.3096s 0.8032s 2.6058s
speedup CPU-GPU 5.9× 3.8× 5.7× 3.7×
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Table 5

SPEEDUPS AGAINSTSVM FOR PAVIA UNIV. AND INDIAN PINES IMAGES.

Pavia Univ. Indian Pines
ELM V-ELM-1 V-ELM-2 ELM V-ELM-1 V-ELM-2

OpenMP CPU 8.6× 1.2× 1.1× 2.3× 0.6× 0.3×
CUDA GPU 6.5× 1.0× 0.8× 1.5× 0.6× 0.2×

time, resulting in a final time slightly higher for V-ELM-2
while its accuracy is better as we explained before.

The V-ELM-2 configuration provides more stable results
than a single ELM in exchange for a higher execution time.
The V-ELM-2 configuration is more interesting when the
dataset size is large because if the dataset is too small (as
in the case of Indian Pines) there are not enough samples
to take advantage of the voting. Besides, in big datasets, the
ELM algorithm has larger speedups against SVM allowing the
voting configurations to be executed in almost the same time
as a single SVM, as shown in Table 5.

Summarizing, on the one hand, the raw ELM algorithm
described in this paper is significantly faster than SVM and,
on the other hand, the V-ELM-2 algorithm always approaches
or improves the raw ELM accuracy.

6. Conclusions
In this paper we have presented an ELM-based GPU

implementation to efficiently classify hyperspectral datasets
exploiting efficiently the hundreds of threads available, using
shared memory to make an effective use of the memory
hierarchy, and exploiting a linear algebra library. Different
ensemble configurations were also considered to achieve better
classification accuracies.

Results have shown that commodity GPUs like the GTX
Titan used in this work are good candidates to reduce com-
putation times in order to achieve real-time hyperspectral
processing. For the raw ELM and the Pavia Univ. and Indian
Pines datasets, speedups of 7.6× and 3.8× are achieved,
respectively, compared to the ELM CPU classification. Results
also show that the hyperspectral dataset classification using
ELM is faster than the SVM one, up to 8.6× faster in CPU
and 6.5× in GPU.
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Abstract - DEFG is our declarative language and framework for the efficient generation of OpenCL GPU applications.  Using 

our new DEFG implementation, run-time and lines-of-code comparisons are provided for three well-known algorithms: Sobel 

image filtering, breadth-first search and all-pairs shortest path.  The DEFG declarative language and corresponding OpenCL 

kernels provide complete OpenCL applications. The lines-of-code comparison demonstrates that the C/C++ DEFG applications 

require significantly less coding than hand-written CPU-side OpenCL applications. The run-time results demonstrate 

equivalent, or better, performance characteristics compared to the hand-written applications.   
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1 Introduction 
 This paper is a continuation of our previous work [1], 

where  a description of the DEFG prototype and its associated 

performance results were introduced.  This paper describes 

our completed DEFG Version 2 and reports on the early 

promising tests results showing significant improvement in  

performance and functionality. 

Producing high performance computing (HPC) software 

for use on graphical processing units (GPUs) is often a 

difficult and daunting task.  This type of software tends to 

require the use of specialized, parallel algorithms and requires 

the use of low-level application programming interfaces 

(APIs), in the context of a thorough understanding of the GPU 

architecture.  The Declarative Framework for GPUs (DEFG) 

provides a domain-specific computer language (DSL) 

designed to assist the software developer.  It mitigates the 

need for a deep understanding of the full CPU-side OpenCL 

API, therefore allowing the developer to focus on the 

algorithms being used and on the most efficient usage of the 

overall GPU architecture. 

Our research in processing large, sparse graphs on GPUs 

has, out of necessity, led to the direct development of DEFG.  

As these large graphs tend to lack locality of reference, the 

parallel algorithms needed to process them efficiently tend to 

be complex.  Sample problem domains range from graph 

problems such as the Breadth-First Search (BFS), Single-

Source Shortest Path (SSSP), and All-Points Shortest Path 

(APSP) to iterative matrix inversion, parallel prefix 

computation, image processing, and parallel sorting.  Using 

DEFG permits us to focus on the algorithms, which are coded 

mainly in the GPU kernels, and to spend less time focusing on 

the CPU-side code.  In this full implementation of DEFG, we 

have implemented and measured, in terms of lines-of-code 

and run-time performance, three well-known algorithms: 

Sobel image filtering for edge detection [2] and from the 

graph theory: BFS and APSP [3].    

Common GPU environments in use today, such as 

OpenCL [4] and NVIDIA’s proprietary CUDA [5], tend to 

provide low-level, very specialized APIs. Their usage requires 

an understanding of complex, CPU-side APIs [6].  DEFG 

provides several higher-level design patterns that abstract the 

CPU-side coding to a declarative level.  Much as the now-

ubiquitous relational databases accept database requests as 

declarative SQL statements and quickly return the requested 

data, DEFG uses design patterns and declarative statements to 

produce high performance CPU-side code, which performs 

the desired computations.  Once the developer has produced 

the kernel code to be executed on the GPU, DEFG simplifies 

the task of executing this kernel code.  Complex CPU-side 

operations outside the context of the DEFG design patterns 

can be utilized within DEFG as callable functions.   

This DEFG implementation consists of a parser written 

in Java, using ANTLR 3 [7], a Java-based optimizer, and a 

code generator, which is written in C++.   The parser handles 

syntax checking and results in an abstract syntax tree, 

expressed as an XML document.  This tree is then optimized 

for run-time performance and decorated with cross-reference 

information needed for code generation.  The tree is then 

processed by a code generator, which uses the TinyXML2 

library [8] to accept the XML-based tree.  For example, the 

twelve lines of DEFG code expressed in Figure 1 result in 

approximately 460 lines of C/C++ code, a snippet of which is 

shown in Figure 2.  All sample code is shown in Section 6, at 

the end of this paper.  The OpenCL kernel executed by this 

code is shown in Figure 3.  Note that this generated OpenCL 

code is designed to execute on any OpenCL-supported device, 

including the CPU. 

OpenCL is an open and cross-platform standard for 

developing high performance applications on parallel 
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hardware.  This standard is supported by major vendors 

including NVIDIA, AMD, and Intel.  There are two major 

components defined by the standard: the OpenCL C 

programming language used on the parallel device and the 

CPU-side APIs for C/C++ that provide access to the device’s 

OpenCL kernels.  The CPU manages the execution of the 

kernels on the OpenCL parallel device. 

The CPU-side code obtains the kernel source code and 

then calls the appropriate OpenCL APIs to compile this kernel 

source code.  In addition, the OpenCL CPU-side code 

acquires and manages the low-level buffers accessed by the 

device kernel.  These required actions tend to make the CPU-

side code quite verbose and often complex; additional API 

complexity is added by the OpenCL requirement to support 

many different types of parallel platforms and devices, 

examples being CPUs, GPUs, and even specialized FPGA [9] 

and DSP [10] hardware.  This flexibility unfortunately adds 

numerous specialized API parameters to the OpenCL API.  It 

can be argued that the OpenCL API is unnecessarily complex, 

not easily learned, and somewhat hard to use and debug.  

DEFG takes over much of the burden of writing the OpenCL 

CPU-side code, thus permitting the developer to focus on the 

device kernels and the actual parallel algorithms. 

We approached our work as follows: using three existing 

OpenCL applications and using their existing OpenCL kernels 

without any changes, we replaced the existing CPU-side code 

with the DEFG-generated code.  The DEFG source modules 

needed approximately 90% fewer lines of code.  We then 

compared the computational performance of the three 

applications over two different OpenCL platforms.  

Performance variations between the DEFG results and the 

reference results were identified and analyzed.  

Section 2 describes related work and includes a 

description of the three existing OpenCL applications, which 

we used as reference/benchmark applications and converted to 

DEFG.  The DEFG language is briefly described in Section 3. 

We then present our experimental results in terms of lines-of-

code counts and run times in Section 4.  A summary of 

ongoing and future work is presented in the last section.   

 

2 Related Work 
Numerous attempts have been made to construct 

languages, compilers, and tools to make the production of 

high performance parallel solutions easier.  In 2005, Shen et 

al. [11] talked about the “holy grail” of parallelization, which 

is the automated parallelization of serial programs, being out 

of reach.  However, progress is being made. One approach 

towards the efficient production of GPU-based parallel 

solutions is the use  of   domain-specific  languages (DSL).  

DEFG is a DSL, a language and associated tools that facilitate 

the production of OpenCL applications.   Martin Fowler 

defines a DSL as a “computer programming language of 

limited expressiveness focused on a particular domain,” and 

suggests that DSLs can be broken into two categories: 

internal DSLs and external DSLs [12].  DSLs of both 

varieties have been produced for GPU-based HPC. 

Internal DSLs for GPU-based HPC include extensions to 

Python such as: PyGPU [13], PyCUDA [14], and PyOpenCL 

[15]. These DSLs tend to consist of Python wrappers placed 

around a particular GPU API.  There are also C/C++ 

extensions, such as Bacon [16]. Aside from DEFG, other 

GPU external DSLs include the SPL digital signal processing 

language [17] and the MATLAB Parallel Computing Toolbox 

(which supports CUDA and permits passing some MATLAB 

functions to the GPU and permits GPU kernel execution 

[18]).   Both MATLAB and DEFG require that the GPU 

kernel be provided.    

The BFS and APSP implementations we chose for our 

DEFG testing are existing implementations, easily obtained 

from software development kits (SDKs) and benchmarks [19-

20].  Obviously, there exist other published algorithms and 

implementations that may provide better overall run-time 

performance but that is not the primary goal of this research.  

We have implemented a subset of these algorithms in DEFG 

and will present our results in a future paper.  For example, 

Merrill, et al. suggest a much faster BFS solution which uses 

prefix sum to help distribute the work among GPU threads 

without locking [21].  For APSP, Katz and Kider provide a 

method for using tiling with the Floyd-Warshall APSP 

algorithm to minimize GPU global memory access times [22]. 

 

3 DEFG Framework Language 
The DEFG declarative language consists of a number of 

declare, execute and call statements, and some optional 

statements such as sequence/times and loop/while. An 

example DEFG source file is shown in Figure 1.  The declare 

statement is used to name the DEFG application, to define and 

name the GPU kernels to be executed, to define any required 

scalar variables, such as a graph’s node count, and to define 

the buffers to be given to the GPU. Lines 1 to 8, in the DEFG 

sample, express declare statements.  The syntax on line 6, 

enclosed in “[[“and”]]” symbols, is our method for setting the 

global grid size.  The call statement is used to invoke C/C++ 

functions, e.g., to obtain the input data; the sample has call 

statements on lines 9 and 11. The execute statement on line 

10 is used to execute the kernel.  The flow of control is a 

design pattern built into DEFG.   

The optional DEFG statements can be used to provide 

support for more complex design patterns where the kernels 

may have to be executed a variable number of times. Figure 4 

contains a DEFG example which executes the kernel once for 

each graph node.  Figure 4, line 9, shows the sequence 

statement application.  DEFG contains statements to process 

scalar values returned by kernels. This capability was used in 

the DEFG BFS solution to conditionally stop the parallel 

device execution.  DEFG Version 2 generates OpenCL 1.1 

code in keeping within the limits of NVIDIA’s current 

OpenCL support [23].  



 

 

Table 1:  Test Configurations 

Name Configuration Data 

CPU Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM, using AMD OpenCL SDK 2.8 (no GPU) 

GPU-Tesla 
T20 

Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron 2427 Processor, 2.2 GHz, 24 GB RAM, 
using NVIDIA OpenCL SDK 4.0,  NVIDIA Tesla T20 with 14 Compute Units, 1147 MHz and 2687M 
RAM 

  

 

Table 2: Lines of Code Table 3: Run-time Performance, in milliseconds 
 

 

 DEFG DEFG  

 Declarative Generated Reference 

BFS 42 620 364 

FW 12 481 478 

SOBEL 12 467 442 

 CPU GPU-Tesla T20 

 DEFG Reference DEFG Reference 

BFS-
4096 

1.5 2.6 4.3 5.8 

BFS-
65536 

12.3 14.2 8.0 11.3 

FW 111.8 152.0 6.0 51.2 

SOBEL 23.0 24.8 3.7 4.1 

    

  

4 Discussion of Results 
To test the viability of DEFG, we selected three existing 

OpenCL solutions based on well-known algorithms: Sobel 

image filtering and Floyd-Warshall APSP, both from the 

AMD APP SDK [17], and breadth-first search from the 

OpenDwarfs benchmark [18].  We will refer to these solutions 

as SOBEL, FW, and BFS, respectively. SOBEL was chosen 

because it represents the class of simpler GPU problems, 

where a single kernel is called once and because it has 

significant RAM locality of reference.  DEFG can support 

several concurrent GPU devices, in a declarative manner, and 

SOBEL provides a good test case for this added capability.  

This capability will be more fully covered in a future paper. 
FW and BFS were selected because they represent two 

different classes of graph-oriented GPU problems, with the 

BFS solution requiring multiple GPU kernels.  The FW 

algorithm simply requires that a common operation be 

repeated for each graph node. In this FW implementation, the 

OpenCL kernel is called once for each node.  This call-for-

each-node behavior must be managed from the CPU-side.  

The OpenDwarfs BFS implementation is based on the work by 

Harish [24] and uses a version of Dijkstra’s algorithm [3].  

The actual OpenDwarfs code is an OpenCL port of the BFS 

CUDA code from the Rodinia benchmark [25].  This BFS 

implementation requires that a pair of kernels be repeated until 

success is indicated by the second kernel.  This repetition is 

managed by the CPU-side code. 

All three of these were converted to DEFG, keeping the 

unmodified OpenCL kernels.  The conversions to DEFG 

produce exactly the same results as the corresponding 

reference version.  Before discussing the performance results, 

we summarize the hardware and software used. The tests were 

run on two configurations, which we call CPU and GPU-Tesla 

T20, which are listed in Table 1.   

In terms of developer-written module line count results, 

the three DEFG versions were much smaller than their 

reference counterparts.  Table 2 shows the line counts for 

SOBEL, BFS, and FW. Shown are the number of lines of 

DEFG declarative code, the number of lines of generated 

code, and the estimated number of non-comment lines in the 

reference version. This data is shown graphically in Plot 1.  

On average, the DEFG code is 4.2 percent of the generated 

code, and 5.1 percent of the reference code.  It should be 

noted that the reference code tended to include additional 

functionality and that the DEFG generated-code counts 

include an additional 150 lines of template code used to 

identify and select the requested GPU devices. 

The run-time performance comparison turned out to be 

very interesting.  The raw run times, in milliseconds, are 

presented in Table 3.  Plot 2 shows this data presented in 3D 

form. The results shown are the average of ten runs done for 

each case.  Where we encountered unexpected results, we 

often reran the tests with manual code changes to isolate the 

underlying technical causes.  We made these code changes to 

both the DEFG and reference OpenCL code.  However, the 

numbers shown here are only the original times, i.e., those 

prior to any manual code modifications. 

SOBEL is the simplest application and the run-time 

performance results obtained are comparable, as expected.  

The SOBEL results are shown on the graph in purple.  The 

DEFG performance was slightly faster on the CPU and GPU-

Tesla T20.  DEFG needed 23.0 ms and 3.7 ms, respectively, 

while the reference case needed 24.8 ms and 4.1 ms. 
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Plot 1: Size Comparison of Module Sizes Plot 2: Performance Comparison of Run Times 

 

        The run-time results of the FW tests, which are shown in 

green, surprised us.  We saw no obvious explanation for why 

DEFG should be substantially faster.   We reviewed the 

OpenCL code for both DEFG and the AMD SDK-supplied 

reference case, and did not find any significant differences in 

buffer usage or the OpenCL API functions used.  We did 

notice that the reference case was using asynchronous events 

(when not required) and we temporarily disabled them and 

reran the reference case.   The FW T20 reference case run 

times dropped three-fold from an average 51.2 ms to 17 ms.   

This difference was later traced to what we identified as an 

error in the reference case’s OpenCL event handling.  

The BFS run-time comparisons used two different 

graphs.  The first graph has 4,096 nodes, shown in blue on the 

graph, and the second has 65,536 nodes, shown in red.  Our 

earlier prototype version of DEFG was substantially slower 

than the reference BFS; prototype DEFG needed 59.4 ms to 

perform what the reference case BFS did in 11.3 ms.  The 

DEFG Version 2 buffer-use optimization reduced the average 

BFS T20 run time from 59.4 ms to 8 ms!  This drastic 

improvement in performance is due to the optimizer’s removal 

of unneeded buffer transfer operations between the CPU and 

GPU. 

We cannot leave the BFS performance topic without 

noting that the OpenCL CPU configuration’s performance was 

better than the GPU performance for the Tesla 4,096 node 

case.  We postulate that this is explained by the BFS 

implementation being used.  This graph algorithm 

implementation is based on the work by Harish [24], which 

does not compensate for the lack of RAM cache found in 

many GPU designs.  The CPU version most likely fared so 

well due to the multiple levels of memory caching provided by 

the Intel I3; it is likely that the 4,096 node test case fit entirely 

into the Intel I3’s cache.   

In summary, these four comparison tests have shown 

that, at least in these cases, the declarative approach used in 

DEFG can be used to produce OpenCL applications with 

fewer lines of code and comparable, or better, performance 

levels. 

 

5 Ongoing and Future Work 
This full DEFG implementation has shown that our 

declarative approach is able to produce good results with less 

code written while maintaining similar run-time performance, 

at least for this family of test cases.  The addition of buffer 

optimization has greatly benefited the DEFG buffer 

management performance and, hence, the overall run times.  

DEFG also will significantly benefit from the addition of 

high-performance data loaders and result displays, as well as 

simple debugging aids such as logging and formatted buffer 

dumps.  We have already enhanced the DEFG toolkit to 

support the use of multiple GPUs and to generate callable 

C/C++ modules.  We have implemented the generation of 

human-readable OpenCL C/C++ code, which is a starting 

point for the creation of customized GPU applications. 

DEFG was developed as a result of a specific need; that 

need being the rapid and efficient production of CPU-side 

code for use in GPU-based parallel algorithms research.  Our 

DEFG results continue to be very promising.  DEFG provides 

a tool to achieve the quick utilization of new OpenCL kernels 

and algorithms.  Given this success, we anticipate enhancing 

DEFG further and eventually making it publicly available.  

The DEFG toolkit should be a useful asset in future GPU 

high-performance algorithms research. 

 

 

 



 

 

6 Sample Code Figures 

 

01. declare application  sobel 
02.  declare integer Xdim (0) 
03.               integer Ydim (0)  
04.               integer BUF_SIZE (0) 
05.  declare gpu gpuone ( * ) 
06.  declare kernel  sobel_filter SobelFilter_Kernels  ([[2D,Xdim,Ydim ]] ) 
07.  declare integer buffer image1 ( Xdim Ydim ) halo (1) 
08.               integer buffer image2 ( Xdim Ydim ) halo (1)  
09.  call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))  
10.  execute run1 sobel_filter ( image1(in) image2(out) ) 
11.  call disp_output (image2(in) Xdim (in) Ydim (in) ) 
12. end 

Figure 1:  Sample DEFG Code 
 
// *** buffers in 
cl_mem buffer_image1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (BUF_SIZE * 
sizeof(int)),(void *) image1, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 0, sizeof(cl_mem), (void *)&buffer_image1); 
if (status != CL_SUCCESS) { handle error } 
cl_mem buffer_image2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (BUF_SIZE * sizeof(int)),(void *) NULL, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2); 
if (status != CL_SUCCESS) { handle error } 
// *** execution 
size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ; 
status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size, NULL, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 
// *** result buffers 
status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0, BUF_SIZE * sizeof(int), image2, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 

Figure 2:  Snippet of Generated OpenCL Code 

 
__kernel void sobel_filter(__global uchar4* inputImage, __global uchar4* outputImage) { 
              uint x = get_global_id(0);  uint y = get_global_id(1); 
              uint width = get_global_size(0);  uint height = get_global_size(1);  
              float4 Gx = (float4)(0);  float4 Gy = Gx; 
              int c = x + y * width; 
              /* Read each texel component and calculate ..*/ 
              if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1) 
              { 
                            float4 i00 = convert_float4(inputImage[c - 1 - width]); 
                            // similar lines omitted 
                            float4 i22 = convert_float4(inputImage[c + 1 + width]); 
                            Gx =   i00 + (float4)(2) * i10 + i20 - i02  - (float4)(2) * i12 - i22; 
                            Gy =   i00 - i20  + (float4)(2)*i01 - (float4)(2)*i21 + i02  -  i22; 
                            /* taking root of sums of squares of Gx and Gy */ 
                            outputImage[c] = convert_uchar4(hypot(Gx, Gy)/(float4)(2)); 
              } 
} 

Figure 3:  Snippet of Sobel OpenCL Kernel Code (from AMD APP SDK 2.8) [19] 
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01. declare application  floydwarshall 
02.   declare integer NODE_CNT (0) 
03.                 integer BUF_SIZE (0) 
04.   declare gpu gpuone ( any ) 
05.   declare kernel  floydWarshallPass FloydWarshall_Kernels  ( [[ 2D,NODE_CNT ]] ) 
06.   declare integer buffer buffer1 ( BUF_SIZE ) 
07.                 integer buffer buffer2 ( BUF_SIZE ) 
08.   call init_input (buffer1(in) buffer2(in) NODE_CNT(out) $BUF_SIZE(out))  
09.   sequence NODE_CNT times 
10.     execute run1 floydWarshallPass ( buffer1(inout) buffer2(inout) NODE_CNT(in) DEFG_CNT(in) ) 
11.   call disp_output (buffer1(in) buffer2(in) NODE_CNT(in)) 
12. end 

Figure 4:  Sample DEFG Code Showing a Sequence 
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Abstract –  This paper describes comparative analysis results 

of system performance by network-on-chip topologies on 

system level. Network-on-chip systems are implemented by 

typical topologies, mesh topology, crossbar topology, folded 

torus topology and point-to-point topology on system level. 

Running the x264/AVC encoding application on each system 

and analyze performance from simulation results. We can find 

the fact that performance differences exist when running the 

benchmark application, by network-on-chip topologies in 

advance. On each implemented system, there are performance 

differences ranged from -5.45% to +4.75% based on mesh 

topology. For analyzing the effect of topologies, we use the 

CPUs total cycles, which reflect communication latency. 

Types of topologies affect the number of routers on the paths 

related to latency and performance. More components of on-

chip network reinforce such trends. We analyze the reason 

why each topology has different result. Used approach helps 

to find optimal topology by changing various on-chip-network 

topologies on system level 

Keywords: H.264 encoder, Network-on-chip (NoCs), 

Performance analysis, System level, Topology 

 

1 Introduction 

  The interests of traditional system-on-chip (SoC) design 

space exploration focuses on improvement of processing 

element’s (PE’s) computational ability. However, recently, as 

the performance of each single on-chip processing element is 

improved and the number of components increases, 

communication architecture between PEs become more 

important on design area, performance, and energy 

consumption of overall system. As a result, the on-chip 

communication architecture becomes one of the major SoC 

design factor to be considered. As scale grows, the global 

interconnection brings many problems such as critical on-chip 

synchronization errors, unforeseeable delays, and high power 

consumption. In order to alleviate these problems, network-

on-chip (NoC) approach has been suggested as the alternative 

to traditional bus-based communication architecture [1], [4], 

[5]. 

 On classical bus architecture, multiple on-chip 

components cannot communicate with each other 

simultaneously than only one entity can transmit the signal at 

a time. This characteristic brings the limitation on utilizing the 

communication channel. However, on NoC architecture, 

impose the notion of network communication upon 

interconnection of components inside the chip. Therefore, 

NoCs improve the utilization of communication. Such 

efficiency of communication of NoCs can be different from 

on-chip-network architectures. Interconnection architecture of 

on-chip components is network topology. Typical network 

topologies are mesh, crossbar, torus, and point-to-point 

approach (see Fig. 1). 

 

  

(a) (b) 

 

 

(c) (d) 

Fig. 1 Types of network-on-chip topologies.  

(a) Mesh, (b) Folded torus, (c) Crossbar, (d) Point-to-point. 

 In this paper, we simulate the same application on NoC 

systems implemented by different typical network topologies 
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(mesh, crossbar, torus, and point-to-point). Furthermore, we 

analyze and compare the results from different conditions. 

Section 2 introduces implemented NoC systems and used 

target application. Simulation results are analyzed and 

compared in section 3. Finally, summary will be discussed in 

section 4.  

2 Implemented Systems and Target 

Applications 

 In this study, we follow the system-level NoC design 

flow shown Fig.2. We set the system specification, only 

changing number of CPUs for confirming the impact of 

topology in our research. With same spec (same number of 

CPUs), we implement the system, changing the NoC topology 

then check the performance. Through that design flow, we can 

find that which topology shows the best performance. 

 

NoC Architecture Design Flow

System Specification

NoC Architecture Design
(Topology)

Performance Analysis
(Best Performance?)

NoC Design

No

Yes

 

Fig. 2 System-level NoC design flow 

2.1 Implemented System 

 In this paper, we use the gem5 simulator, full-system 

simulation framework, to implement NoC systems. The gem5 

simulator helps users to simulate on environment as same as 

real system, compose and arrange inside of chip what they 

want and also run operating system (OS) on implemented 

system [2]. This simulator makes users can conduct correct 

simulations on system level without any low level 

consideration. We utilize basic topologies that the gem5 

simulator offers; mesh, crossbar, torus, and point-to-point to 

build the 12 types of systems by each case using 4 CPUs, 8 

CPUs and 16 CPUs. 

 Firstly, mesh topology is the most simple and 

rudimentary NoC topology. This topology requires the 

number of processing elements (CPUs) to be equal to the 

number of routers. In this network architecture, the routers, 

which are connected to the corresponding components, are 

interconnected literally “mesh” form. Secondly, crossbar 

topology is network architecture that each on-chip component 

is connected to every other component through crossbar 

switch. Multiple components can transmit the packets 

simultaneously to any of the components as long as the 

multiple packets do not compete for the same source or same 

destination. Thirdly, torus topology is similar to mesh 

topology, but it includes wrap-around links that connects two 

end nodes on the same row or column. In this paper, our 

implementation uses folded torus architecture, whose lengths 

of the links are the same, as the basic torus structure. Lastly, 

point-to-point topology is the network architecture that every 

component has dedicated links connecting to every other 

component [7]. 

2.2 Target Application 

 Target application, which is used in our implementation, 

is x264 offered from a representative shared memory chip-

multiprocessors (CMPs) benchmark suite Princeton 

Application Repository for Shared-Memory Computers 

(PARSEC). x264 is H.264/AVC (Advanced Video Coding) 

encoding application which are well used for compressing of 

high-definition (HD) videos. Pipeline approach is used in 

parallel algorithm of x264. There are virtual pipeline stages as 

many as the number of parallelized encoding threads. There 

are three methods for encoding the compressed frames, I-

Frame, P-Frame and B-Frame. Among these, P-Frame has 

only information about changed parts compared with previous 

I-Frame or P-Frame. B-Frame is compressed with previous 

and next frame information using inter prediction. Both P-

Frame and B-Frame encoding require that the encoder needs 

data of images and motion vectors, which come from 

reference frames. For obtaining and calculating this 

information, each pipeline stage processes the required tasks. 

Especially, fast-upward movements encoding process is one 

of the typical reasons, which brings about performance 

degradation in practical use. To mitigate these problems, x264 

uses parallelization model that has more number of threads 

than the number of cores to improve its performance [3]. 



3 Simulation Results and Analysis  

 With uncompressed 640×360 pixels and 32 frames video 

from short film “Elephants Dream” [6] as input sets, we 

perform the encoding process through x264 on implemented 

twelve systems, which have different topology and number of 

components. We measured the encoding frame rate and 

execution time on the basis of frame per second and second 

respectively through experiments. Simulation results are 

shown in Table Ⅰ. 

TABLE I 

AVERAGE FRAME RATE ON DIFFERENT TOPOLOGIES 

Num.  

of  

CPUs 

Threads 
Mesh 

(fps) 

P2P 

(fps) 

Crossbar 

(fps) 

Torus 

(fps) 

4 

32 29.057 28.677 28.103 28.717 

40 30.930 30.537 29.963 30.653 

64 31.343 30.225 29.883 30.335 

8 

32 35.453 37.097 35.610 34.097 

40 38.910 40.760 40.470 36.753 

64 39.703 41.453 40.203 37.850 

16 

32 35.297 36.370 36.200 33.810 

40 38.897 39.823 39.730 37.687 

64 39.800 40.820 40.405 36.620 

 

 On systems, which have four CPUs, based on 40 threads, 

average encoding frame rate of mesh topology is 30.93 frames 

per seconds (fps), point-to-point topology system can process 

30.537 fps, 29.963 fps on crossbar topology, and torus 

architecture has 30.653 fps. Mesh topology shows the best 

performance, followed by torus, point-to-point and crossbar 

on 4-CPUs systems.  

 Mesh topology system with 8 CPUs shows 39.703 fps 

based on 64 threads. In same condition, point-to-point 

topology process with 41.453 fps, crossbar topology has 

40.203 fps, torus topology records 37.85 fps. Point-to-point, 

crossbar, mesh and torus are listed in the order of better 

performance. With 16 CPUs, point-to-point topology has 

39.823 fps to process 40 parallelized threads. Crossbar 

topology shows 39.730 fps, mesh topology records 38.897, 

torus has 37.687 fps frame rate. 

 In Fig.3, crossbar topology shows maximum 

performance degradation of 4.658% based on mesh topology 

with 4-CPU, 64 threads. Torus topology shows 3.214%, 

point-to-point displays 3.565% less performance than mesh 

topology with same condition. 

 Fig.4 shows frame rate growth 4.755% on point-to-point 

topology and 5.543% decrease on torus topology compare 

with 8-CPUs mesh topology system. Based on 16-CPUs mesh 

topology system, crossbar topology shows 2.916% 

performance improvements with 64 threads. On the other 

hands, 5.213% degradation exists on torus topology (see Fig. 

5). 
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 Even though we perform simulation with same 

application x264 and identical components, we can confirm 

the fact that results present a great contrast from topology to 

topology. It is due to application mapping can be carried out 

by on-chip-network topology differently. 

 This result also shows a tendency that 8-CPUs and 16-

CPUs systems have the same performance order, point-to-

point, crossbar, mesh and torus. Differently, at 4-CPUs system, 

mesh, torus, point-to-point and crossbar topology records 

better performance in the order named, compare to 8-CPUs 

and 16-CPUs systems.  

 The number of CPUs growing means the components of 

topology are increasing. More number of topology 

components causes that packet data path have more junctions, 

routers or switches, to get to the destination nodes. The 

number of routers that a packet has to pass to reach its 

destination is different from topology to topology. As for 

topology, it affects communication delays first, and 

consequently that effect has influence on performance of 

application. 

  At 4-CPUs system, there are four CPUs, which are 

composed of network and generate small path diversity. 

However, 8-CPUs system or 16-CPUs system generate many 

path diversities, many intermediate routers and are influenced 

by topologies. Point-to-point topology is connecting all the 

nodes by dedicated communication paths. Therefore, if one 

node wants to send data packet to another node, there is no 

intermediate router. Because of that reason, point-to-point 

topology records the fastest performance on systems with 8 

CPUs and 16 CPUs. Crossbar switch sets path up between any 

two processing elements, and it allows another concurrent 

connection among other arbitrary input and output nodes 

except using same source node or same destination node. This 

characteristic of crossbar topology makes the system performs 

secondly. Mesh and torus topology have more intermediate 

routers than above topologies when they connect nodes and 

all the links have same length. Both of them have similar 

network structure and only difference is that torus has wrap-

around path. This difference makes performance difference. 

In addition, folded torus network has twice-longer links than 

mesh topology. Because of that, torus topology system shows 

lower performance than system, which has mesh topology. 

 For analyzing the effect of topologies, we use the CPUs 

total cycles. CPUs total cycles reflect communication latency 

in a roundabout way, which are caused by intermediate 

switches of topologies. Total busy cycles, total idle cycles and 

total cycles of all the CPUs on the system are shown in Table 

Ⅱ. On 8-CPUs system with 40 threads, point-to-point 

topology shows the lowest total cycles, in other words, it has 

low communication latency. Compare to the point-to-point 

topology system, crossbar system has 4.945% more cycles, 

7.441% more for mesh topology and 12.617% more for torus 

system. In addition, crossbar topology system with 64 threads 

on 16 CPUs runs 3.097% more than point-to-point system. 

Mesh and torus system operates 5.766% and 6.322% more 

respectively.  

 To see the effects of topology better, we use average 

deviation rate (ADR). ADR factor shows the average amount 

of communication latency deviation of each topology compare 

to the topology that has the best performance and the lowest 

latency, in this study, point-to-point topology. The formula for 

ADR calculation is shown in formula (1). 

TABLE Ⅱ 

TOTAL CPUS CYCLES ON DIFFERENT TOPOLOGIES 

Num. of CPUs Threads Topology Num. of Total Busy Cycles Num. of Total Idle Cycles Num. of Total Cycles 

8 

40 

Mesh 7.5884E+09 5.4543E+09 1.3043E+10 

Torus 7.9932E+09 5.6779E+09 1.3671E+10 

P2P 8.3664E+09 3.7730E+09 1.2139E+10 

Crossbar 7.6613E+09 5.0784E+09 1.2740E+10 

64 

Mesh 7.5382E+09 5.3359E+09 1.2874E+10 

Torus 7.8214E+09 5.4792E+09 1.3301E+10 

P2P 7.3946E+09 4.9550E+09 1.2350E+10 

Crossbar 7.6133E+09 5.0534E+09 1.2667E+10 

16 

40 

Mesh 7.8071E+09 1.8700E+10 2.6507E+10 

Torus 8.2336E+09 1.9415E+10 2.7649E+10 

P2P 7.5563E+09 1.8570E+10 2.6126E+10 

Crossbar 7.6908E+09 1.8632E+10 2.6323E+10 

64 

Mesh 7.7949E+09 1.8720E+10 2.6514E+10 

Torus 8.2964E+09 1.8357E+10 2.6654E+10 

P2P 7.5258E+09 1.7543E+10 2.5069E+10 

Crossbar 7.6649E+09 1.8181E+10 2.5845E+10 

 



 

  On average, crossbar topology shows 2.8405%, Mesh 

shows 4.7276%, Torus shows 8.1168% more latency than 

point-to-point(see Table Ⅲ).  

TABLE Ⅲ 

TOTAL CPUS CYCLES AND AVERAGE DEVIATION RATE ON 

DIFFERENT TOPOLOGIES 

Num. 

of 

CPUs 

Threads 
P2P 

(cycles) 

Crossbar 

(cycles) 

Mesh 

(cycles) 

Torus 

(cycles) 

8 
40 1.21E+10 1.27E+10 1.30E+10 1.37E+10 

64 1.24E+10 1.27E+10 1.29E+10 1.33E+10 

16 
40 2.61E+10 2.63E+10 2.65E+10 2.76E+10 

64 2.51E+10 2.58E+10 2.65E+10 2.67E+10 

ADR 0% 2.84% 4.73% 8.12% 

 

 These results support our trends analysis that on more 

number of CPUs, point-to-point has the lowest 

communication latency because of dedicated communication 

links. Crossbar switch makes the system has lower latency 

than mesh, torus topology system. Mesh and torus have more 

intermediate routers on data paths than point-to-point and 

crossbar topologies. Especially, torus network is connected 

with longer link distance, so it has the highest communication 

latency, which causes degradation performance. 

 Additionally, from the CPUs cycles simulation result, we 

can also find tendency related to the number of CPUs. When 

the number of CPUs increases two times from eight to sixteen, 

total idle cycles also increase irrespective of topologies, while 

total busy cycles does not shows much change. Total busy 

cycles changes in the range of 0.903~1.061 times. The 

number of total idle cycles of torus system with 40 threads 

records the least increase by 3.419 times. Increasing by 4.922 

times on point-to-point topology system with 40 threads is the 

highest growth in total idle cycles. As the number of CPUs is 

growing, total length of the systems’ links that connect 

components and the degree of distribution of application’s 

task on to multiple CPUs also increase. These reasons makes 

more idle cycles. 

4 Conclusions 

 This paper describes comparative analysis results of 

system performance by network-on-chip topologies on system 

level. When design the system, we conduct simulation with 

the gem5 full-system simulator to build a system, which has 

same condition like actual system. Before constructing real 

system, using our approach, we can find the fact that 

performance differences exist when running the x264, 

H.264/AVC encoding application, by network-on-chip 

topologies in advance. A tendency can be found from our 

simulation result that 8-CPUs and 16-CPUs system have the 

best performance on point-to-point topology followed by 

crossbar, mesh and torus topologies. We use the CPUs total 

cycles that reflect the communication latency indirectly for 

analyzing the effect of topologies. We can see the same trend 

for latency that came from topology. This result can be 

obtained because of topologies’ characteristics. Especially, 

more CPUs stands for more components of on-chip network 

topology that is routers. Types of topologies affect the number 

of routers on the paths related to latency and performance. 

Therefore, point-to-point topology, which has dedicated path 

among all CPUs without intermediate routers, has low 

communication latency and best performance. Crossbar, mesh 

and torus have more intermediate routers than point-to-point. 

Our study finds the effect of topology on performance and 

analyzes the reason why each topology has a different result 

by using total CPU cycles. Topologies affect on decision 

process which part of application mapped into which 

processing elements. Moreover, the used approach in this 

study helps to find optimal topology by changing various on-

chip-network topologies on system level. 
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Abstract – Combinatorial optimization problems are 

interesting due to their complexity and applications, 

particularly in robotics. 

This paper deals with a parallel algorithm suitable for shared 

memory architectures, based on the HDA* algorithm (Hash 

Distributed A*), which allows finding solutions to 

combinatorial optimization problems. The implementation 

was carried out using the shared memory programming tools 

provided by the Pthreads library, the Jemalloc memory 

allocator and taking the N
2
-1 Puzzle as study case. 

The experimental work focuses on analyzing the speedup and 

efficiency achieved by the parallel algorithm when running on 

a computer with multi-core processors, for different instances 

of the problem and varying the amount of threads/cores used. 

Finally, the scalability obtained with increasing workload and 

number of threads/cores used is analyzed. 

Keywords: Parallel Heuristic Search; HDA*; Multicore; 

Combinatorial Problems; Scalability. 

1  Introduction 

In the area of Artificial Intelligence, heuristic search 
algorithms are used as the basis to solve combinatorial 
optimization problems that require a sequence of actions that 
minimize a goal function and allow transforming an initial 
configuration (which represents the problem to be solved) into 
a final configuration (which represents the solution). 

One of the most used search algorithms for that purpose is 
known as Best First Search (BFS) [1], which browses the 
graph that represents the state space of the problem using a 

cost function    to value the nodes, which is in part composed 
of some heuristic information, that will guide the search faster 
to the solution and will reduce the nodes to be considered. The 
algorithm is different from the conventional methods because 
the graph is implicit and generated dynamically, i.e. nodes are 
created as the search progresses. During the process, it keeps 
two data structures: one for the unexplored nodes ordered by 

the function    (open list), and the other for the already 
explored nodes (closed list) used to avoid processing the same 
state repeatedly. In each iteration, the most promising node 

available on the open list is removed (according to function   ), 
it is included on the closed list and legal actions are applied to 
it to generate successor nodes which will be added to the open 
list under certain conditions. The search continues until a node 
that represents the solution is removed from the open list. 

The A* algorithm [2] is one of the most commonly used 
BFS variants because it guarantees finding optimal cost 

solutions. To that end, the cost function    contains known cost 
information of the path from the initial node to the current 
node and heuristic information to estimate the unknown cost 
of the path from the current node to the solution node, which 
can never overestimate the actual cost; in this way, the search 
is guided to firstly process the most promising paths. 

On the other hand, over the last years the development of 
parallel heuristic search algorithms has been promoted 
because the high requirement of computing power and 
memory, as a consequence of the exponential or factorial 
graph growth, makes its resolution on a single-core processor 
difficult. Moreover, it is common to find multi-core machines 
today, so the sequential applications should be adapted to take 
advantage of the computing power that this architecture 
provides. 

So far, different authors have presented several techniques 
to parallelize BFS algorithms, which vary according to how 
they manipulate the open and closed list and in the load 
balancing strategy used among processors during the 
execution. The chosen technique will depend on the 
architecture and the problem to solve [3]. 

On a shared memory architecture, the simplest strategy is 
to keep only one open list and only one closed list shared by 
all the threads (centralized strategy). This implies a thread 
synchronization process to ensure data structure consistency, 
which will limit performance [3][4]. Although the open and 
closed lists can be implemented through data structures that 
allow concurrent access to different portions in order to 
reduce resource contention, several authors have shown that 
this technique will only bring improvements for problems 
with high heuristic computation time [3], and especially 
current studies have shown that it does not get a competitive 
performance on multi-core machines [5]. 

In order to solve the previous problem, each 
process/thread is equipped with its own local open and closed 
lists (decentralized strategy) and performs a quasi-
independent search. This strategy is suitable either for shared 
memory or distributed memory architectures. However, 
communication among the processes/threads is needed due to 
the following reasons: 

 As only one process/thread has the initial node on its open 
list at the beginning and the graph is generated at run time, 
the workload should be distributed dynamically.  

 The nodes located on the processor’s open list might not 
be the global best ones, so it will be necessary to equalize 
the nodes quality between processors.  

 Duplicate nodes (nodes representing the same state) can be 
generated by different processes/threads. If the duplicate 
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detection procedure is only performed by the 
process/thread which has generated the node and/or by 
that which has received the node owing to load balancing, 
the detection and pruning of duplicate nodes will be 
partial because another process/thread may have a node 
representing the same state on its open or closed list. 
However, if absolute detection and pruning is required, 
strategies that assign each state to a particular processor 
will be needed.  

 The termination criterion should be modified, as there are 
multiple inconsistent open lists and, as a consequence of 
dynamic load balancing, there may be some graph nodes 
that are being communicated between processes/threads.  

 The costs of the partial solutions found should be 
communicated in order to use them to prune the paths that 
lead to suboptimal cost solutions.   

In this sense, the HDA* algorithm (Hash Distributed A*) 
[6] parallelizes A* using the decentralized strategy and it 
applies Zobrist´s hash function to assign each state to a unique 
process; in this way, when a process generates a node, the 
owner process can be identified and the node is transferred to 
it. This mechanism allows balancing the workload, leveling 
node quality, and pruning duplicates in an absolute way, as 
the nodes representing a same state are always sent to the 
same process. The algorithm was implemented using the MPI 
message passing library and asynchronous communication, so 
the algorithm can be executed either on distributed or shared 
memory architectures.  

On the other hand, the research carried out by [5] presents 
an adaptation of the HDA* algorithm developed using the 
shared memory programming tools provided by the Pthreads 
library; in this way, it is possible to eliminate some 
inefficiencies that arise when the original HDA* algorithm is 
run on a shared memory machine. The Jemalloc library [7] is 
used to avoid performance degradation due to contention in 
the access to the data structures managed by the dynamic 
memory allocator, caused by the frequent alloc/free 
operations. Algorithm performance is analyzed on a multicore 
machine. Moreover, a technique to create a state space 
abstraction that allows assigning state blocks to the threads, 
instead of individual states as it occurs with Zobrist´s hash 
function, is included in the algorithm. Then, the PBNF 
algorithm that allows threads to work during synchronization 
free periods is presented. The experimental work is done in 
part considering 250 easy instances of the 15-Puzzle, using 
the Sum of the Manhattan Distances heuristic, and an analysis 
of the speedup obtained as the architecture scales is carried 
out. Although a better performance is obtained with the PBNF 
algorithm, the algorithm is complex and does not use the same 
approach as the serial A*, so a superlinear speedup is 
obtained in some cases.  

A common problem that causes performance degradation 
in multi-threaded applications, which frequently perform 
allocation and deallocation operations, is the producer-
consumer relation that arises due to alloc-free operations 
carried out by different threads, which creates a need for 
synchronization to keep the consistency of the structures 
assigned to each thread by the memory allocator. In order to 

improve this, it is suggested to incorporate a pool of pointers 
to node in every thread (Memory Pool) to prevent thread A 
from freeing memory that is allocated by thread B; instead, 
thread A will store those pointers for future reuse.   

Based on the above, the HDA* algorithm is still 
interesting due to its simplicity. The focus of this paper is the 
incorporation of techniques to optimize the HDA* algorithm 
for its execution on multicore, which may lead to a better 
performance, and to carry out a scalability analysis when the 
workload and the amount of processors are increased.  

2 Contribution 

This paper presents a parallel algorithm suitable for shared 
memory architectures, based on the HDA* algorithm, which 
allows finding optimal solutions to combinatorial optimization 
problems, in this case to the N

2
-1 Puzzle. In this sense, the 

algorithm is similar to the one proposed in [5] but with the 
following differences: it incorporates an algorithm to detect 
termination in a decentralized way, which is an adaptation of 
the algorithm proposed by Dijkstra and Safra [8] [9]; threads 
accumulate a customizable quantity of nodes addressed to 
another thread before attempting their transfer, i.e. there are 
no transfers after each node generation; and a technique called 
Memory Pool is used to avoid performance degradation 
caused by alloc-free operations in a producer-consumer 
relation among different threads.  

The contributions are: 

 Carrying out experimental work running the HDA* 
parallel algorithm proposed, suitable for shared memory, 
on a multicore processor machine, using different initial 
configurations of the problem and varying the amount of 
threads/cores used, analyzing the performance obtained 
(speedup, efficiency) in each case.  

 Carrying out a comparison between the performance 
obtained by the parallel algorithm when active waiting or 
passive waiting is used while the thread is idle. 

 Documenting the benefits obtained when using the 
Memory Pool technique. 

 Carrying out a scalability analysis of the algorithm when 
the workload and amount of threads/cores used are 
increased. 

3 Characterization of the N
2
-1 Puzzle 

The N
2
-1 Puzzle problem consists in N

2
-1 pieces numbered 

from 1 to N
2
-1 placed on an N

2 
sized board [10]. Each square 

of the board contains one piece, so there is only one empty 
square.  

 A legal movement implies moving the empty square to an 
adjacent position, either horizontally or vertically, by 
moving the piece that was in the newly emptied square to 
the previous position of the empty square.  

 The objective of the puzzle is applying legal movements 
until the initial board becomes the selected final board. 
The solution to the problem should be the one that 
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minimizes the number of movements required to achieve 
the final configuration from the initial given configuration.  

1.1. Heuristics 

Heuristic search algorithms use information about the 
problem to guide the search process, so they value the nodes 
based on the application of a heuristic function. Thus, they 
process first the node that looks more promising. The heuristic 
value of a node is an estimate and indicates how close it is to 
the solution node.   

A more polished heuristic will carry out estimates that are 
closer to the real cost; therefore, the algorithms that use it will 
need to process less nodes [1].  

The heuristic used by the algorithms presented for the 
resolution of the Puzzle problem is a variation of the sum of 
the Manhattan distance of the pieces with the addition of 
linear conflict detection among pieces, the detection of the last 
movements applied, and an analysis of corner pieces. The 
definition can be found in [11]. 

4  Sequential A* algorithm 

The A* algorithm [2] is a variation of the Best First 
Search technique where each node n is valuated in accordance 
to the cost of reaching it from the root of the search tree       
and a heuristic that estimates the cost to go from n to a 

solution node      . Thus, the cost function will be       
           . If the heuristic is admissible (i.e., it never 
overestimates the real cost), the algorithm will always find an 
optimal solution. 

The algorithm keeps a list of unexplored nodes (open list) 

ordered by the value of function   , and another list of already 
explored nodes (closed list) used to avoid loops in the search 
graph. Initially, the open list contains only one element, the 
initial node, and the closed list is empty. 

In each step, the node with the lowest    value (the most 
promising node) is removed from the open list and examined. 
If the node is the solution, the algorithm ends. Otherwise, the 
node is expanded (generating the children nodes by applying 
legal movements) and added to the closed list. Each successor 
node is added to the open list if it does not appear on either 
list, or if it does but its cost value improves that of the 
previous node (this verification is known as duplicate 
detection). 

Once the node that represents the final state has been 
found, the sequence of actions taken on the optimal path can 
be obtained by following the sequence of pointers to each 
parent node. 

5 HDA* algorithm for shared memory 

architectures 

The HDA* algorithm suitable for shared memory 
architectures proposed in [5] is based on the following: 

 Each thread has its own open and closed lists. 

 Each thread has an input queue known globally where the 
rest of the threads will deposit nodes that must be 

processed by this thread. The input queue must be 
protected by a lock to keep its consistency. 

 Each thread has a local output queue for each peer thread, 
which does not need to be protected since it will be for 
thread’s own use to avoid obstructions. 

 When a thread ti generates a node that belongs to another 
thread tj, it must be communicated by adding it to tj’s input 
queue at some point. In order to do this, the thread tries to 
take the lock associated to tj’s input queue. When the lock 
is obtained immediately, node transfer is done by copying 
the pointer, and then the lock is released (this enables 
subsequent access to the queue by another thread). 
Otherwise, the pointer is added to the local output queue 
for tj (there is no waiting time associated with this 
operation). 

 After thread ti carries out a certain number of node 
expansions from its open list: 

- For each non-empty local output queue, the thread tries to 
communicate the stored nodes on it to its owner thread. In 
order to do this, the thread tries to take the lock associated 
to the input queue of the corresponding thread. If the lock 
is obtained, all the pointers to node are transferred, 
leaving the local output queue empty. Otherwise, it is not 
forced to wait. 

- The thread tries to consume the nodes left by other 
threads on its own input queue. To do this, the thread 
must take the lock but it is only forced to wait if its open 
list is empty (in this case, it does not have any nodes to 
keep on working). 

Fig. 1 shows the communication scheme of HDA* 
algorithm for shared memory. Here the thread’s main local 
structures can be seen (open list, closed list, output queues) 
and also the global input queues. We can observe that thread 0 
and thread 3 have generated a node that corresponds to thread 
2; both of them attempt to take the lock associated to target 
thread’s input queue. On the one hand, thread 3 gets the lock 
immediately, copies the pointer and releases the lock. On the 
other hand, thread 2 does not get the lock immediately, so it 
adds the pointer to its local output queue for the target thread. 

The implementation was carried out with the tools 
provided by the Pthreads Library and Jemalloc, the dynamic 
memory allocator. The allocation of states to threads was done 
through the Zobrist Function. The input and output queues 
were implemented as a dynamic array that contain pointers to 
node. 

6 Implementations 

The implementations of the following algorithms were 
carried out in C Language. The compilation was done through 
Gcc, phase in which the memory allocator that is going to be 
used can be selected (in this case, it was ptmalloc [12] or 
Jemalloc [7]). 

6.1 Sequential A* 

The selected structure to implement the open list is a 
MinHeap [13] whose content is indexed by an Extensible 



 

Hash Table [14]. This structure allows nodes to be ordered 

according to the    function, so the operations of inserting a 

node, removing the node with the lowest    value and 
decreasing the priority of a node can be carried out in 
logarithmic order; at the same time, it enables carrying out 
searches to determine the existence of a node that represents a 
particular state in constant order. Additionally, an Extensible 
Hash Table[14] was used to implement the closed list, which 
allows the operations of insertion/ removal of a node and 
searching to determine the existence of a node that represents 
a particular state occur in constant order. 

The keys associated to the elements (nodes) stored in the 
Hash Tables are obtained by calculating the Zobrist Function 
[15] over the representation of the state. The Zobrist Table 
that was used is loaded from file and it will be the same for all 
the runs and instances of the problem selected as a case of 
study. The key will be represented with a 64-bit integer, 
which leads the function to assign the same key to different 
states of the search space (this happens because the number of 
possible problem states can be much higher than 2

64
). This 

case is not frequent during the run of the search algorithm. 

The kind of heuristic functions used is that which 
calculates the estimation of the cost directly, taking as input 
the representation of the state. Consequently, the heuristic is 
problem-dependent and can be selected before the compilation 
phase; this enables experimenting with different heuristic 
functions and analyzing the performance obtained. 

6.2 HDA* for shared memory 

A version of the HDA* algorithm suitable for shared 
memory similar to the one studied in Section V was 
implemented. Threads and synchronization mechanisms 
provided by the Pthread library were used. The assignment of 
states to threads was carried out through the Zobrist Function. 

Each thread will perform an A* search locally, keeping its 
local open and closed lists. The node communication strategy 
is based on the use of input and output queues. 

To avoid making an only thread detect the termination 
state by checking the state of the other threads and the state of 
their input queues, an adaptation of the Dijkstra and Safra’s 
termination detection algorithm was carried out, allowing all 
the threads to cooperate with such purpose. Each thread keeps 
a state (or color) and a counter of sent and received nodes - 
instead of the number of “communications” that were done

1
. 

The termination token will be represented with a shared 
variable with the following information: a counter of nodes in 
transit, a state (or color), and the identifier of the thread that 
owns the token at the moment; the data that corresponds to the 
token are not protected since only one thread will be able to 
modify them at a given point in time. The end of the 
computation will be communicated through a shared variable 
end. 

                                                           
1 The input queues do not count how many times a deposit was done over 

them, but the total amount of nodes that they store (logical dimension). 

Because of that, the amount of nodes in transit is calculated instead of the 

amount of “communications” or “deposits” that have not been received yet. 

This is a modification of the Safra and Dijskstra algorithm. 
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Fig. 1. Communication scheme of HDA* algorithm suitable for shared 

memory 

With the aim of making possible the pruning of nodes that 
will lead to suboptimal solutions, the threads share a pointer to 
the best solution found so far by all the threads (best_solution) 
and its cost (best_solution_cost). Both variables must be 
protected, since two threads can find two different solutions 
and try to update these values at the same time. 

The code that all the threads will run is identical, only 
thread 0 will be in charge of the additional tasks of generating 
the initial node and adding it to the input queue of its owner 
thread, initializing the common structures, detecting the 
termination state, and recovering from the shared memory the 
steps sequence that represents the solution to the problem 
once computation is finished. 

Each thread will carry out a series of iterations until it 
detects the end of the computation (through a change in the 
value of the variable end). In each iteration, the following 
phases are performed: 

 Phase of node consumption from input queue: the thread 
checks whether its own input queue is not empty. In that 
case, it tries to take the lock associated to the queue. When 
it obtains the access immediately, it takes all the pointers 
to nodes that were deposited on the queue, releases the 
lock, and then for each node whose cost is lower than 
best_solution_cost the thread performs the duplicate 
detection process adding them to the open list as 
appropriate.   

 Processing phase: the thread processes at least LNPI 
(Limit of Nodes per Iteration) nodes from its open list. 
When the thread removes a node, it verifies if its cost is at 
least best_solution_cost. If it is so, the thread empties the 
open list since the nodes on it will lead to suboptimal 
solutions. Otherwise, it checks if the node represents the 
solution and in that case it updates best_solution and 
best_solution_cost, after having taken the lock that 
protects them and having consulted again if the node cost 
is less than

 
best_solution_cost

2
. When the removed node is 

                                                           
2 This is necessary because two threads can find two solutions with different 

cost at the same time. If a solution had not been found yet or if the two 

solutions that have just been found improve the current partial solution, when 

the threads try to obtain the lock to update the shared data, the thread with the 

best solution could update the data first, and then the second thread could 
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not the solution, it is inserted into the closed list, it is 
expanded (in this way successors are generated), and then 
for each successor the Zobrist Function is calculated so as 
to know which thread has to process it. When the node 
belongs to the thread that generated it, the thread carries 
out the duplicate detection and adds it on the open list as 
appropriate. Otherwise, the thread places the node in the 
local output queue for the target thread; when the amount 
of stored nodes on the output queue is higher than the limit 
LNPT (Limit of Nodes per Transference), the thread tries 
to take the lock of the target thread’s input queue and, if it 
obtains the lock immediately, it transfers the stored nodes 
leaving the output queue empty

3
. A node transfer simply 

means a pointer copy. When a thread is the first one that 
deposits nodes on the input queue of another thread (i.e., at 
that moment the input queue was empty) it must inform 
the action, just in case the other thread was idle waiting for 
work. 

 Idle phase: after the processing phase, if the thread stands 
idle because its open list is empty, it will send nodes 
stored on each non-empty output queue, and it will wait 
for any of the following events: 

- End of calculation: thread 0 detected the termination state 
and it changed the value of the end variable, so that this 
state can be known. 

- Termination token arrival: the thread must update the 
shared variables that correspond to the token, based on 
the termination algorithm, and pass it to the following 
thread, which means that the thread must change the 
value of the token owner field (informing the successor 
thread that it is the new owner). On the other hand, thread 
0 verifies if the termination conditions are given. If this is 
so, the value of the end variable changes. Otherwise, it 
starts a new round to detect termination. 

- Work deposit on its own input queue: the thread must 
obtain the lock associated to its input queue, it must take 
all the pointers to nodes that were deposited on the queue 
(leaving the input queue empty), and release the lock. For 
each node whose cost is lower than best_solution_cost the 
duplicate detection is carried out, adding the node to the 
open list as appropriate.   

The termination detection algorithm involves updating the 
variable state (or color) and the counter of the thread every 
time it adds nodes to the input queue of another thread or 
every time it removes nodes from its own input queue, either 
increasing or decreasing the local counter of nodes that were 
deposited and received respectively. 

To resolve performance degradation when an alloc-free 
relation between threads happens, a pool of pointers to node 
(Memory Pool) was incorporated to each thread, where the 

                                                                                                     
obtain the lock to carry out its update. If the condition about the cost is not 

verified again, the second thread could make effective the update and a 

suboptimal solution would be stored. 
3 This is different to the version proposed by Burns in which after each node 

generation that belongs to another thread tj, the thread tries to take the lock 

associated to tj’s input queue. Moreover, here when the lock is obtained all the 

nodes stored on the output queue for the target thread are communicated, this 

is another difference with Burns’ version. 

pointers to node that the thread wishes to “set free” for a 
further use are stored. This technique prevents access by 
thread A to the structures assigned to another thread B by the 
dynamic memory allocator, when the former wants to “free” a 
pointer allocated by the latter, situation that would produce 
contention. 

Finally, the possibility to compile the algorithm to carry 
out a wait in a passive or active way when the thread stands 
idle was incorporated. 

7 Experimental results 

For the experimental work, a machine with two Intel ® 
Xeon ® E5620 [16] processors was used. Each processor has 
four 2.4 Ghz physical cores. Each core has two L1 caches of 
64 KB for data and instructions respectively and one L2 cache 
of 256 KB. At the same time, all processor cores share a L3 
cache of 12 MB. Each processor has a memory controller, 
therefore, the machine’s memory design is NUMA and it uses 
a QuickPath Interconnect (QPI) interconnection of 5.86 GT/s. 
The machine has 32 GB of RAM, DDR3 1066 Mhz. 

The tests were carried out taking into account the 100 
initial configurations of 15-Puzzle used by [17], numbered 
from 1 to 100. Ten of the configurations with more steps for 
their solution [18] were also taken into account in the parallel 
algorithm scalability analysis, since for some of them 
resolution time is considerable. These were numbered from 
101 to 110. 

7.1 Sequential A* 

7.1.1 Effect in the use of Jemalloc 

The sequential algorithm was run with the 100 initial 
configurations and the final configuration suggested by [17] 
using the heuristic function presented in Section II.A and 
varying the dynamic memory allocator between ptmalloc and 
Jemalloc. Jemalloc was configured to work with 256 arenas, 
as this configuration will be used during the parallel algorithm 
tests.  

For each initial configuration, 10 runs were performed and 
the runtime in seconds for each test was calculated. From the 
results, it can be observed that the average runtime of each 
configuration obtained from the samples that use Jemalloc 
presents a reduction ranging between 0.9% and 15.8% with 
respect to the average runtime for the same configurations 
using ptmalloc.  

As it has been proved that when Jemalloc (configured to 
work with 256 arenas) is used with sequential A*, algorithm 
performance improves, the above mentioned allocator will be 
used in the tests from now on. 

7.1.2 Effects in the use of Memory Pool technique 

The sequential algorithm was run with the 100 initial 
configurations and the final configuration proposed by [17], 
using the heuristic function presented in Section II.A, 
Jemalloc (configured to use 256 arenas) and the pool of 
pointers to node “Memory Pool”. For each initial 
configuration, 10 tests were run. Then, the average runtime in 
seconds obtained for each configuration was compared with 



 

the results presented in the previous section that do not use the 
“Memory Pool” technique. 

From the comparison, it can be observed that the “Memory 
Pool” technique does not bring any advantage for the 
sequential application: 17 configurations suffered an 
increment of their average runtime of about 2% and 9%; 15 
configurations increased their average runtime between 1% 
and 2%; 43 configurations achieved a modest increase in its 
average runtime which goes between 0% and 1%; finally, 25 
configurations reduced their average runtime between 0% and 
6.45%. 

Generally, relevant variations in performance achieved by 
instances with a significant runtime are not observed. Thus, 
the sequential results obtained without using the “Memory 
Pool” technique will be used for the performance analysis of 
the parallel algorithm. 

7.2 HDA* for shared memory  

The HDA* parallel algorithm is nondeterministic, i.e. 
when different experimental samples are taken for the same 
initial/ final configuration and the same parameters, the results 
obtained by the algorithm may be different. That is possible 
because an initial configuration can have multiple optimal 
solutions and, as threads distribute the space of states 
dynamically among themselves, the nodes processed by a 
thread will vary depending on how asynchronous events occur 
in the system. 

In the tests, affinity was used to allocate each thread to an 
exclusive core using the function sched_setaffinity() [19]. In 
those tests with 4 threads 1 pair of threads was allocated to 
each machine processor, and in those tests with 8 threads 1 
thread was allocated to each physical core of the machine. 

The selected initial configurations are those used in 
Section VII.A whose sequential runtime is of at least 5 
seconds

4
. For performance analysis, the configurations 

numbered from 101 to 106 were also taken into consideration; 
sequential and parallel tests for configurations 107, 108, 109 
and 110 exhausted available RAM memory and were 
therefore aborted. 

The Jemalloc memory allocator, configured to work with 
256 arenas, and the heuristic function presented in Section 
II.A were used. For each initial configuration and each 
parameter group, 100 samples were obtained. The parameters 
are: the amount of cores/threads, whose values vary between 4 
and 8; LNPI between 1, 5, 50 and 500; LNPT was set in 26 
nodes. Then, the average runtimes resulting from the 100 runs 
for the same configuration and set of parameters, which will 
be called average sample, were obtained. 

7.2.1 Passive waiting vs. active waiting  

Two test sets were run using active waiting and passive 
waiting respectively, LNPT was limited to 26 and the Memory 
Pool technique was used.  

Average runtimes brought by the test sets do not show an 
apparent benefit for any particular waiting technique. This 

                                                           
4 Configurations are as follows: 3, 15, 17, 21, 26, 32, 33, 49, 53, 56, 59, 60, 
66, 82, 88, 100 

may be due to algorithm asynchronism, as most times threads 
perform attempts to take locks and in case they do not get it 
they keep on working. Additionally, each thread is run on an 
exclusive core. Therefore, either waiting actively or resorting 
to the Operating System to perform a passive wait does not 
cause drastic changes in performance. 

7.2.2 Effects in the use of Memory Pool technique 

Two test sets were run including the Memory Pool 
technique or not; LNPT was limited to 26, and active waiting 
was used. 

Average runtimes of the test set that uses Memory Pool 
reduced the average runtimes of the test set that does not use 
that technique between 4.5% and 12.82%. Generally, the 
reduction in the average runtime for the samples with 4 
threads is between 4.5% and 8.64%, while the reduction in 
tests with 8 threads is between 6.43% and 12.82%. 

Therefore, the advantage of this technique for reducing 
contention in the access to structures assigned to each thread 
by the dynamic memory allocator, in cases with an existing 
producer-consumer relation between threads by alloc-free 
operations, is shown. 

7.2.3 Performance Analysis 

The experimental tests discussed in the previous section, 
which optimized the results, were considered to assess parallel 
algorithm performance

5
. Moreover, tests were carried out for 

configurations 101 to 106 following the same strategy. Then, 
for each configuration and number of threads, the average 
sample that minimizes average runtime, i.e. the sample whose 
LNPI parameter value optimizes performance, was selected. 

To assess algorithm scalability, the average samples 
selected for each configuration were organized according to 
their sequential workload (sequential time). In this sense, 
escalating the problem means increasing the number of 
processed or generated nodes. On the other hand, the 
architecture is escalated by increasing the number of cores 
used to solve the problem. 

Fig. 2 shows the Speedup obtained by the average sample 
selected for each configuration using 4 cores and 8 cores, 
while Fig. 3 shows the Efficiency obtained. For tests with 4 
cores, the Speedup obtained varies from 2.95 to 4.01, while 
Efficiency ranges from 0.73 to 1.0034. Tests with 8 cores 
show a Speedup between 5.14 and 8.15, and Efficiency 
between 0.64 and 1.018.  

Both average samples that obtained a superlinear Speedup 
present a negative Search Overhead

6
 (-2.92 for the average 

sample with higher Speedup with 4 cores and -9.86 for the 
average sample with higher Speedup with 8 cores). Therefore, 
the parallel algorithm processes fewer nodes than the 
sequential algorithm. This situation is possible for this class of 
algorithms due to the causes explained in [20]. 

                                                           
5 The tests of interest are those that use active waiting, limiting LNPT in 26 

and using the Memory Pool technique. 
6 The Search Overhead represents the percentage of increment in the number 

of nodes expanded by the parallel algorithm against the sequential algorithm 

and it is calculated with the formula 100x(NP/NS -1), where NP= number of 

nodes processed by the parallel algorithm and NS = number of nodes 

processed by the sequential algorithm. 
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Fig. 2. Speedup achieved by the HDA* algorithm for shared memory, by 

configuration 

 

 
Fig. 3. Efficiency achieved by the HDA* algorithm for shared memory, by 

configuration 

After analyzing the results shown in Fig. 2 and 3, it can be 
concluded that, for the same workload (initial configuration), 
if the number of cores is increased, the Speedup obtained is 
better. This proves that the problem is solved faster as more 
cores are used. However, efficiency does not normally remain 
constant. This decrease in efficiency is due to different 
factors, such as sequential parts especially at the beginning 
and at the end of computation, synchronization, idle time, load 
unbalance, search overhead increase, among other factors. 

It is observed that when the problem is escalated 
maintaining the same number of processors, efficiency 
generally improves or remains constant as overhead is less 
significant on total processing time. 

8 Conclusions and future lines of work 

A version of the HDA* algorithm that is suitable for 
shared memory architectures and incorporates an effective 
technique to avoid performance degradation when there is a 
producer-consumer relation between various threads due to 
alloc-free operations was presented. The algorithm was run 
taking the Puzzle problem as study case and a more polished 
heuristic with respect to the classical one. On the other hand, 
it was proved that using active or passive waiting when the 
thread becomes idle is irrelevant, as there are no significant 
variations in performance. 

This paper shows a scalability analysis of the parallel 
algorithm on a machine with multicore processors. From the 
results obtained, it can be concluded that the behavior 
exhibited is typical of a scalable parallel system, where 

efficiency can be kept constant when workload and 
architecture are escalated. 

Future lines of work focus on contrasting the algorithm 
presented in this paper against HDA* for distributed memory 
(implemented exclusively with MPI), comparing the 
performance achieved and the amount of memory used. 
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Abstract— GPU is widely used for high-performance com-
puting. However, standard programming framework such as
CUDA and OpenCL requires low-level specifications, thus
programming is difficult and the performance is not portable.
Therefore, we are developing a new framework named MESI-
CUDA. Providing virtual shared variables accessible from
both CPU and GPU, MESI-CUDA hides complex memory
architecture and eliminates low-level API function calls.
However, the performance of current implementation is not
sufficient because of the large memory access latency. There-
fore, we propose a code-optimization scheme that utilizes
fast on-chip shared memories as a compiler-level explicit
cache of the off-chip device memory. The compiler estimates
access count/range of arrays using static analysis. For
mostly reused variables, code is modified to make copy on
the shared memory and access the copy, using small shared
memories efficiently. As the result of evaluation, our scheme
achieved 13%–192% speedup in two of three programs.

Keywords: GPGPU, CUDA, parallel programming, compiler,
optimization

1. Introduction
The performance of Graphics Processing Unit (GPU)

has been improved rapidly [1]. Therefore, recent GPUs
are used as generic high-performance computing resources.
Such GPU usage is called General Purpose computation on
Graphics Processing Unit (GPGPU) [2]. However, current de
facto GPGPU programming frameworks such as CUDA [3]
and OpenCL [4] are still difficult to use. They provide APIs
for low-level specifications such as memory allocation and
data transfer. Although they enable the user to hand-optimize
the performance of the program, it requires deep knowledge
of GPU architecture. Furthermore, such optimization may
not be portable to the different GPU models.

Therefore, we are developing a new framework named
MESI-CUDA [5], [6] for easier GPGPU programming.
MESI-CUDA is a CUDA variation which hides low-level
GPU features. It provides virtual shared variables which can
be accessed from both CPU and GPU. Explicit memory
management or data transfer are not needed. The user can
write MESI-CUDA program without low-level specifications
expecting automatic optimization by the compiler.

However, current optimization is not sufficient. One rea-
son is that current implementation uses only off-chip de-
vice memory. Fast on-chip GPU memories called shared
memories are not used. Thus we propose an optimization
scheme that automatically utilize the shared memories as
compiler-managed caches of the device memory. Based on
the result of static analysis, our scheme determines variables
to cache so that device memory accesses are minimized.
Then copying/writing back code is inserted and the code
accessing the variables is modified. Thus the target program
is optimized to use shared memories as explicit caches.

This paper is organized as follows: Section 2 gives a brief
introduction of GPU/CUDA/MESI-CUDA and points out the
current issue. In Section 3 we discuss the related works.
Section 4 details the proposed scheme and Section 5 shows
the evaluation results. In Section 6, we state the conclusion.

2. Background
2.1 GPU Architecture

GPU is a collection of streaming multiprocessors (SM),
which have certain number of CUDA cores. Although
CUDA cores are simpler than typical CPU cores, a GPU has
hundreds or thousands of CUDA cores. Thus the potential
performance of a GPU is much higher than a CPU.

Fig. 1 shows a typical architecture of a GPU card installed
on a PC. Similarly as the CPU cores share the main memory
(called host memoryin CUDA programming), all CUDA
cores share a large off-chipdevice memory. Furthermore,
each SM has a small on-chip memory calledshared memory,
which is shared by all CUDA cores in the SM. We do
not discuss other memories, such as constant and texture
memories, because the proposed scheme does not use them.

NVIDIA GPU architecture have been evolved in each
generations Tesla/Fermi/Kepler changing specifications and
introducing new features. Different models often have differ-
ent specifications even if they belong to the same generation.

2.2 CUDA
CUDA (Compute Unified Device Architecture) [3], [7],

[8] is a GPGPU programming framework using extended
C/C++ or Fortran. Fig. 2 shows a (non-optimized) matrix
multiplication program using CUDA. The additional code
required for parallel programming is shown in bold font.
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Figure 1: GPU Architecture

1 #define N 1024
2 #define BX 128
3 #define S (N*N*sizeof(int))
4 int ha[N][N], hb[N][N], hc[N][N];
5 __global__

void transpose(int a[][N], int b[][N], int c[][N]){
6 int k;
7 int row = blockDim.y*blockIdx.y+threadIdx.y;
8 int col = blockDim.x*blockIdx.x+threadIdx.x;
9 c[row][col] = 0;

10 for(k = 0 ; k < N ; k++){
11 c[row][col] += a[row][k] * b[k][col];
12 }
13 }
14 void init_array(int d[N][N]){. . .}
15 void output_array(int d[N][N]){. . .}
16 int main(int argc, char *argv[]){
17 int *da, *db, *dc;
18 dim3 dimGrid(N/BX, N);
19 cudaMalloc(&da, S);
20 cudaMalloc(&db, S);
21 cudaMalloc(&dc, S);
22 init_array(ha);
23 init_array(hb);
24 cudaMemcpy(da, (int*)ha, S, cudaMemcpyHostToDevice);
25 cudaMemcpy(db, (int*)hb, S, cudaMemcpyHostToDevice);
26 transpose<<<dimGrid, BX>>>

((int(*)[N]))da,(int(*)[N]))db,(int(*)[N]))dc);
27 cudaMemcpy((int*)hc, dc, S, cudaMemcpyDeviceToHost);
28 output_array(hc);
29 cudaFree(da);
30 cudaFree(db);
31 cudaFree(dc);
32 }

Figure 2: CUDA Matrix Multiplication

In CUDA, CPU and GPU are calledhost and device,
respectively. Functions, declared with the__device__
or __global__ qualifier, are calledkernel functionsand
executed on the device (Fig. 2l. 5–13). The other functions
(called host functionsin this paper) are executed on the
host (l. 14–32). To start computation on the GPU, any host
function invokes a__global__ kernel function (called
kernel invocation) specifying the number of threads (l. 26).
Then, the created GPU threads execute the kernel function.
In this paper, we simply call GPU threads asthreads.

CUDA usesgrids andblocksfor controlling thread map-
ping to data and physical resources. A block is a group of
threads executed on the same SM, and a grid is a group of
blocks of the same size. A kernel invocation creates a grid
with the specified grid/block sizes, which are the numbers
of total blocks and threads per block, respectively.

Table 1: CUDA Built-in variables
gridDim.x, gridDim.y, gridDim.z grid size (# of blocks)
blockIdx.x, blockIdx.y, blockIdx.z block index (in the grid)
blockDim.x, blockDim.y, blockDim.z block size (# of threads)
threadIdx.x, threadIdx.y, threadIdx.z thread index (in the block)

The grid/block sizes can be specified as integer values
or 3D vectors using a built-in typedim3. Fig. 2 program
creates a grid ofN/BX×N blocks and each block consists
of BX threads (Fig. 2l. 18, 26). The grid/block sizes are not
limited by the numbers of SMs and CUDA cores; blocks and
threads are automatically mapped to the physical resources.

Grid/block sizes and block/thread indices can be obtained
using built-in variables shown in Table 1. Using the variables
in the index expressions of arrays, each thread can make
the same computation on the different array element. In the
kernel functiontranspose() of Fig. 2 program,row and
col are computed using block/thread indices so each thread
computes different element of the arrayc (l. 7–12).

The host/device memories are only accessible from
CPU/CUDA cores, respectively. To share data between CPU
and GPU, memory allocations on both memories and data
transfers between them are required. In CUDA program-
ming, the user must explicitly describe such low-level behav-
iors calling API functions: memory allocation/deallocation
calling cudaMalloc()/cudaFree() (l. 19–21, 29–31)
and data transfer callingcudaMemcpy() (l. 24–25, 27).

2.3 CUDA Optimization Techniques
In CUDA programming, hand-optimization considering

the architecture-level features of the target GPU often largely
contributes achieving high-performance.

2.3.1 Controlling Concurrency/Parallelism

Because each SM executes awarp of 32 threads in a
SIMD manner, the thread block size should be an integral
multiple of the warp size 32. It is better to have multiple
warps in a block because the execution can be switched to
hide the latency when the active warp is stalled on memory
accesses. The number of blocks also should be large enough
so that concurrent blocks run on each SM.

2.3.2 Optimizing Memory Usage

The parallel device memory accesses in a warp are coa-
lesced if the requested data are in the same L2 cache line
of 128 bytes, but otherwise they are serialized. Thus, the
threads in a warp are better to access the neighboring data
on the memory at the same time. [8].

Another memory-usage optimization is allocating fre-
quently used data on the shared memories. Because their
access latency is much smaller, they can be used as caches
of the device memory. Although CUDA enables shared
memories to be configured as L1 caches, the performance is



often not sufficient. Their size of 48KB1 is too small and
cached data tend to be not reused when threads are scanning
large arrays. Thus explicit caching on the application layer
is used as an optimization.

A local variable of a kernel function can be allocated on
the shared memory using__shared__ qualifier. However,
explicit copy from/to the device memory is needed in the
function because direct copying between the host and shared
memories is not possible. Such variable is shared among all
threads in the block, thus explicit synchronization calling
__syncthreads() may be needed.

2.3.3 Reducing Data Transfer Overhead

The data transfer between host/device memories can be
another bottleneck of performance. Avoiding fine-grained
transfers or overlapping transfers/kernel executions using
asynchronous transfer functions improves the performance.

2.4 MESI-CUDA
CUDA programming API is based on the complex GPU

architecture. Although such low-level API enables hand-
tuning considering hardware specifications, it is difficult and
may not be efficient on other GPU models. Therefore we
are developing an easier GPGPU programming framework
MESI-CUDA[5], [6], hiding low-level features from the user.

In MESI-CUDA, basic parallelization scheme is same as
CUDA: writing host/kernel functions for CPU/CUDA cores
and invoking the latter from the former. We do not hide
this explicit parallelization because the characteristics of
CUDA cores are quite different from the CPU cores. For
example, CUDA cores can run fine-grained threads with
small overhead, but branch divergent code is inefficient. It
would be unpractical to ignore such differences in high-
performance computing using GPU.

On the other hand, we adopted a virtual shared memory
model that all CPU/CUDA core share a single global mem-
ory (Fig. 3). Actually, only global variables defined with
__global__ qualifier are shared. To avoid confusing with
the CUDA variables defined with__shared__ qualifier,
we call our shared variables asvirtual shared variablesor
VS variables. This design is due to the following reasons:

1) GPU has no hardware/OS support to implement
generic virtual shared memory. Virtual-sharing of the
specified variables can be implemented at compiler-
level, using static analysis and inserting appropriate
data transfer code between host/device memories.

2) Because the cores are heterogeneous, the roles of
host/device are clear. Many working variables are ac-
cessed only on either of the host/device. Thus explicit
sharing of minimum variables is safe and also efficient.

Generally, shared memory based parallel programming
requires synchronization and mutual exclusion. However,

1User-available size is currently 48KB of physical 64KB memory.

...

virtual&global shared memory
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cores

GPU
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cores

CPU

Figure 3: MESI-CUDA Programming Model

1 #define N 1024
2 #define BX 128
3 __global__int ga[N][N], gb[N][N], gc[N][N];
4 __global__
void transpose(int a[][N], int b[][N], int c[][N]){

5 int k;
6 int row = blockDim.y*blockIdx.y+threadIdx.y;
7 int col = blockDim.x*blockIdx.x+threadIdx.x;
8 c[row][col] = 0;
9 for(k = 0 ; k < N ; k++){

10 c[row][col] += a[row][k] * b[k][col];
11 }
12 }
13 void init_array(int d[N][N]){. . .}
14 void output_array(int d[N][N]){. . .}
15 int main(){
16 init_array(ga);
17 init_array(gb);
18 transpose<<<dimGrid, BX>>>

((int(*)[N]))ga,(int(*)[N]))gb,(int(*)[N]))gc);
19 output_array(gc);
20 }

Figure 4: MESI-CUDA Matrix Multiplication

data access races are usually avoided in GPU programming
because of the poor synchronization mechanism. Thus we
adopt implicit synchronization that the shared values are
made logically consistent on each kernel invocation.

Without low-level description of memory management
and data transfer2, the user can concentrate on device-
independent parallel algorithm. For example, the matrix
multiplication program in Fig. 2 can be simplified using
MESI-CUDA as shown in Fig. 4. The additional code
required for parallel programming in MESI-CUDA is shown
in bold font. The arrays for 2D matrices are defined as
VS variables and can be accessed from both host/kernel
functions (Fig. 4l. 3) 3. We support variable-length array
and dynamic allocation of VS variables [6], but in this paper
we only discuss VS variables of static sizes.

The MESI-CUDA compiler is a translator to CUDA and
generates low-level code for memory management and data
transfer. Our research goal is to automatically apply the

2To make MESI-CUDA upper-compatible to CUDA, we did not remove
low-level API functions. If the optimization of MESI-CUDA compiler is
not sufficient, the user can hand-optimize like CUDA.

3If the input/output variables of multiplication is fixed toga, gb, andgc,
they can be directly accessed in kernel functions and passing as function
arguments is not needed.
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optimizations described in Section 2.3 and achieve high
performance like hand-optimized CUDA programs.

3. Related Works
The latest CUDA 6 [7] and Kepler GPUs implemented

Unified Memory, which enables to allocatemanaged memory
by either statically defining a variable with__managed__
qualifier or dynamically callingcudaMallocManaged().
Such memory can be accessed from both CPU and GPU.

The features are almost same with MESI-CUDA’s VS
variables; only user-specified data is logically shared and
they are automatically copied between host/device mem-
ories. The large difference is that VS variables are im-
plemented in compiler-level, while the managed memory
is implemented in hardware/driver-level. Our advantage is
that compile-time optimization is possible using static anal-
ysis. For example, asynchronous data copying code can
be inserted where the data transfer and kernel executions
are overlapped. Another example is the synchronizations
between host and device. MESI-CUDA automatically inserts
synchronization code to maximize their parallel execution,
while CUDA 6 requires explicit synchronization calling
cudaDeviceSynchronize() or setting a environment
variableCUDA_LAUNCH_BLOCKING as 1 to automatically
synchronize for every kernel invocation.

The main purpose of Unified Memory is easier GPGPU
programming and hand-optimization using conventional
low-level API is encouraged for high-performance. The goal
of MESI-CUDA is to hide optimization under the compiler.
However, generating code using new CUDA features may
help to utilize hardware/driver supports for such features.

OpenACC [9] or OpenMP-to-CUDA translation [10], [11]
are another GPGPU approach without low-level specifi-
cations. In these programming frameworks, a sequential
program with some parallelizing directives is compiled into a
parallel program executable on GPU. They have advantages
on usability; abstract directives are easier than low-level API
functions, sequential programs can be parallelized easily, and
the program is portable to different GPU models or other
heterogeneous multi-cores. However, their performance de-
pends to the compiler optimization, which is usually worse
compared with hand-optimized CUDA code [12]. As men-
tioned in Section 2.4, we consider explicit and heterogeneous
parallel programming is necessary for high-performance.

For various input languages, schemes for automatic gen-
eration and optimization of CUDA low-level code are de-
veloped. CUDA-Lite [13] automatically generates memory
access code from user specified annotations, optimizing
accesses using shared memories. Yang, et al. [14] optimize
memory accesses in CUDA kernel functions using shared
memories for coalescing accesses to the device memory.
Although our scheme is similar to these approaches, we
do not assume additional annotations by the user and it

is supposed to be a part of global optimization including
mapping and scheduling in future.

4. Proposed Scheme
Current implementation of MESI-CUDA allocates area

for virtual shared (VS) variables on host/device memories.
Therefore, every access to the VS variables on GPU is
a access to the device memory. By caching VS variables
on shared memories, the memory access latency is largely
reduced and the performance will be improved. Therefore,
we propose a new scheme that the compiler automatically
makes the optimization of explicit caching mentioned in
Section 2.3.2.

For simplicity, we discuss the case that a kernel function
f is invoked by the following statement, whereSg, Sb are
integer values:

f<<<Sg, Sb>>>(. . .);

The values ofGridDim.x andBlockDim.x will be Sg,
Sb, respectively. Iff calls other device functions, the anal-
ysis and code generation are extent to cover such functions.
We also denote the size of available shared memory per
block asC. On current GPU models,C=48KB but it may be
changed in the future models. Furthermore, using a smaller
value asC suppresses the shared memory usage per block,
which can increase concurrent blocks per SM.

4.1 Caching Strategy
The scope of variables defined with__shared__ qual-

ifier is within the defined kernel functionf . Thus the
caching candidates are the variables which are on the device
memory and accessed inf . Assuming that enough registers
are available for local variables inf , VS variables and
dereferences of pointer arguments will be the device memory
accesses. We denote the list of caching candidate asV and
include all such variables inV as the initial value.

Because each access latency is reduced for the cached
variables, caching is more effective if the number of ac-
cessing the variable is larger. However, copying from/to the
device memory causes another overhead which increases
according to the variable size.

If the variable is an array, not all elements may be
accessed in a block. So caching the set of accessed array
elements is enough. However, static analysis may not obtain
strict set of accessed elements. Furthermore, generating
efficient access code is difficult for irregular access patterns.
Therefore, we make static analysis to obtain the range of
accesses on each dimension of the array. Instead of caching
the whole array, the subarray of the obtained range is cached.
For multi-dimensional arrays, the obtained range may not
be a single continuous area on the device memory. In such
cases, the required areas are packed into a continuous area
on the shared memory, forming the subarray.



Our scheme gives higher priority of caching if a candidate
variable has higher access count per byte. We first make
static analysis to obtain the access counts, select variables to
be cached, and finally generate code to cache the variables.

4.2 Static Analysis
We make static analysis on each kernel function and

obtain access count of each variable inV . We also obtain
required bytes for caching each variable. Here we expect
that kernel functions satisfy the following assumptions:

1) All loop iteration numbers are fixed and known at
compile time.

2) All array index expressions are first degree poly-
nomials on all loop and built-in index variables
(threadIdx.x, blockIdx.x, etc.). For example,
a[i*N+j] or a[threadIdx.x/N+i] are accept-
able buta[i*j] or a[threadIdx.x/i] are not.

3) Kernel functions may have conditional statements, but
the branch probability is regard as 1/2; the access
counts ofif/else blocks are averaged and the access
ranges are merged.

While most practical sequential programs will not sat-
isfy these assumptions, many CUDA programs will satisfy.
To prevent inefficient branch divergence, usingif/while
statements is tend to be avoided. Index expressions are
commonly simple and linear because data elements should
be divided equally to the threads preventing access races
and balancing the load statically. Even if the assumptions
are not satisfied for some candidate variables, we can just
remove such variables from the candidate listV and apply
our scheme to other variables.

Considering the assumption 1, 3, the access count of a
candidate variablev, denoted asaccess(v), is obtained as
the sum of each access count of the variable occurrences.
An access count of a variable occurrence is a product of
loop iterations which include the occurrence. Considering
the assumption 2, the access range of array elements is
obtained by computing the index expression value with the
minimum/maximum values of loop variables.

Suppose that a candidate variablev is a m-dimensional
array and accessed in a kernel functionf . The access range
of v in the threadtp,q (q = 0, . . . , Sb − 1) belonging to a
block bp (p = 0, . . . , Sg − 1) is obtained as follows.

We denote occurrences ofv in f as v1, . . . , vk and s-th
index expression ofvr as es(v

r). We compute the values
of es(v

r) on every combination of minimum/maximum
values of loop variables. Considering the assumption 2,
minimum/maximum of the computed values are the min-
imum/maximum values ofes(v

r), denoted asmin(es(v
r))

and max(es(v
r)) 4. We denote the range of an index ex-

pression value asRs(es(v
r)) = [min(es(v

r)), max(es(v
r))].

4It may not be true if the modulo operator% is used because the operation
is not monotonic. We simply regard the minimum/maximum value of the
term e%M in the expressions as 0 andM − 1, respectively.

Set target variable setVc empty
Sort candidate listV in the descending order ofaccess(v)
while (V is not empty){

Select first variablevt in V and removevt from V

if (byte(R(vt, bp) ≤ C){
Vc ← Vc ∪ {vt}
C ← C − byte(R(vt, bp))

}
}

Figure 5: Algorithm Obtaining Variables to Cache

The access range ofvr is a m-dimensional range denoted
as follows5:

R(vr) = R1(e1(v
r)) × . . . Rm(em(vr))

The access range ofv in the threadtp,q and in the block
bp is obtained as follows:

R(v, tp,q) =

k⋃

r=1

R(vr, tp,q)

R(v, bp) =

Sb−1⋃

q=0

R(v, tp,q)

We define the union of two rangesR′ ∪ R′′ as a minimum
range includingR′ andR′′.

The required size (number of array elements) and memory
bytes for cachingv are computed as follows:

size(Rs(v, bp)) = emax(v, bp, s) − emin(v, bp, s) + 1

size(R(v, bp)) = size(R1(v, bp)) × . . . size(Rm(v, bp))

byte(R(v, bp)) = size(R(v, bp)) × sizeof(type of v)

where

R(v, bp) = R1(v, bp) × . . . Rm(v, bp)

Rs(v, bp) = [emin(v, bp, s),emax(v, bp, s)]

and emin(v, bp, s), emax(v, bp, s) are respectively mini-
mum/maximum value ofes(v

r) for all q, r.

4.3 Optimization
Fig. 5 shows the algorithm of obtaining a set of variables

to cache:Vc. The average access count per byte of a variable
vt is denoted asaccess(vt), which is computed as follows:

access(vt) = access(vt)/byte(R(vt, bp))

4.4 Code Generation
For each caching targetvt ∈ Vc, we apply the following

code generation/modification in the kernel functionf .

5This definition of range assumes that possible values of each index
expression is continuous and the expressions are independent each other.
The range is redundant in the cases of non-unit stride access patterns or
dependent expressions likea[i][i]. Introducing more accurate range is
the future work.
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__shared__ type _s_vt[Sm(vt)]. . .[S1(vt)];
int _ix1, . . ., _ixm;
for (_ixm = 0 ; _ixm < Sm(vt) ; _ixm++){

.

.

.
for (_ix2 = 0 ; _ix2 < S2(vt) ; _ix2++){
for (_ix1 = 0 ; _ix1 < S1(vt) ; _ix1 += T ){

_s_vt[_ixm]. . .[_ix1]
= vt[_ixm+Om(vt)]. . .[_ix1+O1(vt)];

}}. . .}
__syncthreads();

Figure 6: Caching code for a variablevt

4.4.1 Caching Variables

First, we insert the definition of a variable_s_vt with
__shared__ qualifier. if vt is an array, the size of thes-
th dimension issize(Rs(v, bp)). Next, we insert code for
copying the initial values from the device memory and
writing back the final values to the device memory to the
head and tail off , respectively.

The pseudo code defining_s_vt and copying the initial
values is shown in Fig. 6. For simplicity, we assume that
the size of the first dimensionS1(vt) is an integral multiple
of the number of copying threadsT = blockDim.x. We
also use the following notations in Fig. 6.

Ss(vt) = size(Rs(vt, bp))

S(vt) = size(R(vt, bp))

Os(vt) = emin(v, bp, s)

Note that Ss(vt) and S(vt) are constant butOs(vt) will
be not. In most cases, it includes block indices such as
blockIdx.x thus different on each block.

To copy the initial cache values, each array element ofvt

within the caching range is assigned to the corresponding
element of_s_vt. Because the elements consecutive on
the first dimension are consecutive in the device memory,
coalesced accesses are expected on the parallel assignment
of such elements. If later accesses in the block are not
consecutive, they will cause non-coalesced device accesses
without our cache. Using our scheme, the array is cached
using coalesced accesses then shared memories are accessed
later. Therefore, the access latency will be largely reduced.
After copying, __syncthreads() must be called to
ensure copying is completed before starting computations
on them. If vt is write-only in f , code for copying and
synchronization is omitted.

The write-back code will be reverse copy of Fig. 6. The
code can be omitted ifvt is read-only inf . Synchronization
is not needed after the write-back, because the threads end
immediately after that.

4.4.2 Accessing Cache

Each occurrence ofvt in f is replaced with_s_vt. If vt is
an array and only its subset is cached, the index expressions

4 __global__
void transpose(int a[][N], int b[][N], int c[][N]){

5 int k, _ix1;
6 int row = blockDim.y*blockIdx.y+threadIdx.y;
7 int col = blockDim.x*blockIdx.x+threadIdx.x;

* __shared__int _s_a[1][N];

* __shared__int _s_c[BX];

* for (_ix1 = threadIdx.x ; _ix1 < N ; _ix1 += BX){

* _s_a[0][_ix1] = a[row][_ix1];

* }

* __syncthreads();
8 _s_c[threadIdx.x] = 0;
9 for(k = 0 ; k < N ; k++){
10 _s_c[threadIdx.x] += _s_a[0][k] * b[k][col];
11 }
* c[row][col] = _s_c[threadIdx.x];
12 }

Figure 7: Optimized Kernel Function of Fig. 4 Program

Table 2: Evaluated Programs
name description
matmul matrix multiplication shown in Fig. 4
dif single dimension diffusion equation solver using difference method
ep EP (Embarrassingly Parallel) in NAS Parallel Benchmarks [15]

must be modified as follows:

vt[em] . . .[e1] → _s_vt[em-Om(vt)] . . .[e1-O1(vt)]

Fig. 7 is the result of applying our scheme to kernel
functiontranspose() in Fig. 4. Modifications are shown
in bold font.

5. Evaluation
To evaluate our scheme, we compared the execution time

of MESI-CUDA programs shown in Table 2, applying/not
applying the proposed optimization. The result is shown in
Table 3. The columns ‘normal’ and ‘opt’ are the execution
time of programs applying and not applying our optimiza-
tion, respectively. The column ‘speedup’ is the inverse of
the execution time ratio of ‘opt’ to ‘normal’.

Our optimization achieved speedup on all GPU models for
matmul anddif. As shown in Fig. 7, matricesA and C
of C = A×B are cached inmatmul and achieved 13% to
192% speedup whenSb is optimized to be the best. Indif,
the required size for caching is onlySb × 4 bytes and each
array elements are shared between adjacent threads. Large
block size is possible without reducing concurrent blocks.

As for the result ofep, our optimization achieved 23% to
98% speedup on C2050. WhenSb = 32, it also slightly
improved performance on other GPU models. However,
the optimization caused slowdown for Kepler GPUs for
larger Sb. Applied to ep, our optimization caches small
arrays for random-accessed histogram but the main array for
storing random numbers is too large to be cached. Therefore
the contribution of reducing access latency is limited. In
addition, largeSb reduces concurrent blocks because the
required size of the histogram isSb × 80 bytes.



Table 3: Execution Time and Speedup using Proposed Scheme
Data Size Block Size Tesla C2050 (Fermi) GeForce GTX 680 (Kepler) GeForce Titan (Kepler) Tesla K20 (Kepler)

Sb normal(s) opt(s) speedup normal(s) opt(s) speedup normal(s) opt(s) speedup normal(s) opt(s) speedup
matmul

32 0.162 0.046 3.56 0.091 0.049 1.86 0.065 0.032 2.04 0.082 0.040 2.03
64 0.089 0.026 3.47 0.051 0.026 1.95 0.036 0.018 2.00 0.046 0.022 2.12

10242 128 0.055 0.029 1.93 0.034 0.029 1.16 0.024 0.015 1.58 0.033 0.019 1.80
256 0.045 0.038 1.18 0.034 0.030 1.13 0.024 0.015 1.62 0.033 0.018 1.89
512 0.045 0.036 1.26 0.034 0.024 1.42 0.024 0.015 1.62 0.034 0.011 3.18

dif
32 6.12 4.13 1.48 4.03 2.47 1.63 2.85 1.66 1.72 4.15 2.39 1.73
64 3.37 2.20 1.53 2.25 1.35 1.66 1.64 0.97 1.69 2.34 1.35 1.73

256K 128 2.17 1.35 1.60 1.71 0.91 1.88 1.26 0.75 1.68 1.72 1.00 1.73
256 1.90 1.26 1.50 1.75 0.96 1.82 1.34 0.78 1.73 1.81 1.04 1.75
512 2.06 1.43 1.45 1.88 1.09 1.73 1.45 0.87 1.66 1.96 1.14 1.71
32 12.21 8.20 1.49 7.97 4.86 1.64 5.60 3.24 1.73 8.23 4.70 1.75
64 6.70 4.37 1.53 4.41 2.63 1.68 3.17 1.84 1.72 4.62 2.64 1.75

512K 128 4.27 2.66 1.61 3.35 1.75 1.92 2.38 1.38 1.72 3.42 1.95 1.75
256 3.74 2.48 1.50 3.42 1.86 1.84 2.51 1.44 1.74 3.60 2.04 1.77
512 4.05 2.81 1.44 3.70 2.10 1.76 2.72 1.61 1.69 3.90 2.27 1.71

ep
32 1.60 1.25 1.29 2.04 1.88 1.09 1.36 1.30 1.05 1.17 0.99 1.18
64 1.05 0.83 1.27 1.84 1.84 1.00 1.29 1.27 1.02 0.74 0.90 0.82

class B 128 1.65 0.83 1.98 1.81 1.92 0.94 1.30 1.30 1.00 0.94 0.99 0.95
256 1.30 0.84 1.55 1.80 1.95 0.92 1.29 1.30 1.00 0.92 0.99 0.93
512 1.03 0.83 1.23 1.79 1.90 0.95 1.33 1.32 1.01 0.93 1.01 0.92

6. Conclusion

Although GPGPU is widely used for high-performance
computing, major programming frameworks like CUDA are
difficult and the performance is not portable. Therefore, we
are developing an easier programming framework MESI-
CUDA. However, access latency of virtual shared variables
is large, thus we proposed an automatic optimization scheme
using on-chip shared memories as explicit cache.

To select variables of higher reused rate as the caching
targets, we make static analysis to obtain the average access
counts and accessed range in a block for each variable. The
target variables are determined at compile time and code for
explicit caching is automatically generated. Therefore, no
support in hardware/driver-level is required and the dynamic
overhead of cache management does not occur.

As the result of evaluations, our scheme achieved 13% to
192% speedup formatmul/dif programs but slowdown
for ep program running on Kepler GPUs. Using shared
memories reduces concurrent blocks on a SM thus the trade-
off should be considered for applying our optimization.

As a future work, the result of current range analysis may
be redundant and should be improved. Recognizing non-
unit stride access patterns and packing required elements
on caching will save the capacity of shared memories.
Another issue is that our scheme tries to utilize the shared
memories under the restriction of user-specified grids and
blocks. The optimization may be far from the best. For
example, specifying large block size may increase the access
range of arrays and prevent their caching due to the lack of
capacity. Another example is that the threads of common
accessing range are distributed into different blocks, which
prevents to share the cache value. Our next challenge is to
develop optimization scheme of threads/data mapping which

automatically controls block size and improve efficiency of
data accesses and caching.
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Abstract - Most measurements and protective algorithms for 
power systems have been implemented by embedded software 
in more than a single digital signal processor (DSP). As more 
complex functions required for intelligent electronic devices, 
we need to improve the existing software solutions for DSPs in 
terms of execution time, cost and reliability. This paper 
suggests a fixed-point design technique for several 
mathematical functions in relay algorithms. By porting it to a 
real target system, we also evaluated that the proposed design 
can give higher speed of operations, higher sample rate and 
more increasing concurrent channel support capability than 
the existing solution. 

Keywords: protective relay, digital signal processor, fixed-
point design 

 

1 Introduction 
  Protective relays have been used for preventing and 
minimizing damage by detecting electric power system faults 
such as short circuit and ground fault in a timely manner. In 
today, key features of protective relay are supporting multi-
channel sources and high precision protection control. 
Furthermore, there is a trend that equipment monitoring and 
control, communication and prevention diagnosis are required. 
Requests of operation performance have been extremely 
enlarged in order to implement these demands [1,2]. 
Therefore, more than two processors have been used to 
implement the protective relay in the existing design [3,4,5]. 

 In this paper, we proposed embedded software 
optimized fixed point design for digital filter and protective 
algorithms. We presented expected processing speed of 
processor which has floating-point operations contrast with 
processer which doesn’t have. And we verified that low-cost 
single DSP is possible to provide high-quality protective 
relaying by optimizing operations. 

Our design provide following advantages. 
 

- Single DSP can provide high sample rate which is 128 
samples/period or more in real-time by improving processing 
speed so that we get more information from the electric power 
system. 
 
- High sample rate improves noise cancellation performance 
of digital filter, as the result high quality protective relay is 
possible. 

 
- The number of channels are increased with single DSP, since 
processing speed is improved. 
 
- Coordination accuracy is always guaranteed within the 
designated fixed-point range, since simplification is not 
applied. It is easy to change parameters to handle various 
requirements. 
 
 By the result of this paper, the fixed-point 
implementation in TMS320C 6416 requires additional 128 
bytes non-volatile memory compared to the software of 
floating-point version. However, the operation speed is 
improved by 53 times and the entire code memory usage is 
reduced by 25%. Furthermore, our code is running 27 times 
faster than the DSP embedding the floating point unit. 

2 Fixed-point design of relay algorithm 
 In this section, the optimization of protective relay 
algorithm, hardware specifications and each details of the 
fixed-point design will be covered. 
 

2.1 Software of protective relay 
 The main difference between the digital and traditional 
analog protective relay is that the digital protective relay is 
implemented by software which is executed by the instruction 
set architecture. Most of digital protective relay features such 
as protection, auto-monitoring, and man machine interface 
(MMI) are implemented by software. 

 The digital protective relay provides a number of 
features. As shown in Fig. 1, the embedded software divided 
into three categories such as protective relay software, 
interface and diagnosis software. Protective relay software 
include digital filter, protective algorithm, control sequence. 
Diagnosis software perform regular monitoring, auto- and 
self-diagnosis and MMI software which processes correction 
value and display. Protective relay software is being 
processed as a top priority, normal human machine interface 
software and diagnosis software will perform in the free time. 

Fig 2 illustrates basic structure of protective relay software 
which is main subject of this paper. Voltage and current 
signals are came from external Potential Transformer (PT), 
Current Transformer (CT) and then these signals pass low-
pass analog filter. After converting these signals by analog-to- 



 

Fig. 1 Embedded S/W for Protective Relay 

 digital converter (ADC), timer interrupt service routines store 
data in the internal memory buffer at specified period. 
Unnecessary harmonic components are removed by digital 
filter at each reading voltage and current samples. Essential 
information to monitor and relay are extracted by measuring 
root-mean-square (RMS) value, phase and frequency. 
Instantaneous and inverse time protective algorithms are 
executed to detect variety faults through relay co-ordination 
property. 

2.2 Target hardware specification  
 In this paper, we employed TMS320C6416 processor 
based on Von Neumann architecture and only supporting 
fixed-point operations by the hardware components. Fig 3 
presents the detailed internal memory structure of the 
processor. TMS320C6416 processor is a VLIW architecture. 
Internal memory of processor consists of two-level cache 
hierarchical structures (Level 1 program cache memory 4KB 
(L1P), level 1 data cache memory 4KB (L1D) and 64KB 
RAM (L2)). Level 2 64KB RAM can be used in various ways 
such as program cache memory or data memory or mixture. 
As shown in Fig. 3, DSP Core load 256 bits program code at 
a clock from L1P, and 32 bits data from L1D. In case that  

 

Fig. 2 Block Diagram for Digital Protective Relay S/W 

 

Fig. 3 Memory Structure for Target Signal Processor 

64KB RAM is used for level 2 program cache (L2P), 32 bits 
data are transferred from L2P to L1P in a clock. In case that 
64KB RAM is used for data memory, 32 bits data are 
transferred to L1D in a clock. 

2.3 Fixed-point design of digital filter 
 High harmonic components of voltage and current 
signals which come from external analog circuit are 
eliminated by the digital filter. And then, the protective 
algorithm can be applied. In general, speed and reliability of 
digital protective relay are primarily determined by designing 
digital filter. We used DFT (Discrete Fourier Transform) 
filter for the relay. As shown in Fig. 4, Xre(k) and Xim(k) 
which are real number and imaginary number of X(n) 
respectively are calculated to obtain k harmonic component 
by convolution in fixed-point. N and r represent the number 
of samples and filter tap respectively.  A fixed-point format 
(type, W, F) in Fig.4 is composed of the data type, the 
number of total bits and the number of bits for fractional part, 
respectively. For example, (short, 12, 0) represents the 
corresponding data is a short integer type with 12-bit length 
and has no fractional bits. 12-bit ADC samples and 
previously stored DFT filter coefficients are calculated by 
convolution. Final outputs come out into 32 bits fixed-point. 

2.4 CORDIC operations  
 Embedded software of the relay was implemented by 
applying COordinate Rotation DIgital Computing (CORDIC) 
algorithm [6] to compute main operations of RMS, phase   
and protective algorithm based on [3]. Including the 
trigonometric functions and various arithmetic operations can 
be calculated by CORDIC. It is not an approximated method 
to reduce amount of computation. CORDIC algorithm has 
advantages in terms of efficiency and accuracy. Table 1 
shows the CORDIC operations for required arithmetic 
operations in this study. Each arithmetic operation can be 
calculated by using specific CORDIC operational modes and 
it might need additional constant multiplication or division 
based on fixed-point depending on the type of operation. In 
addition, normalization and correction operations are required 
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Fig. 4 Fixed-point design for convolution in DFT filter 
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to guarantee the convergence of CORDIC iteration depending 
on the type of operation [3]. Fig. 5 illustrates the schematic of 
fixed-point design for main CORDIC operations. Normalized 
x, y, z for the convergence, are the inputs of the CORDIC 
algorithm. Its precision ranges up to 2-25 and the number of 
the maximum iterations is 32. 

2.5 Measurement for RMS value and phase 
 Fig. 6 shows the RMS value and phase measurement 
process. Circular-vectoring mode of CORDIC operation is 
used for the measurement of RMS value as listed in Table 1. 
L-bit shift operation will be added to imply proper correction 
after output z has been obtained from normalized input x and 
y. The phase measurement gets the output after the similar 
process of RMS measurement. However, the phase 
measurement does not need normalization and correction of 
the inputs and outputs. As a result, RMS value and phas can 
be obtained after executing CORDIC algorithm only once. 

2.6 Fixed-point design for protective algorithm  

 We adopted general inverse-time over current protection 
algorithm. Eq. (1) is a characteristic equation of the time-
current curve. T =              (1) 

K and p are the constant representing the cut-off 
characteristics of the relay, Ir is the ratio of reference current 
to the fault current. Since p is a real number including 
fractional number, the key point of the optimization is 
reduction in calculation time for exponentiation. There have 
been an approximated method to estimate quickly by 
referencing lookup table (LUT) which implies the 
characteristic equation. However, it causes a trade-off relation 
between the errors of operation result and the degree of 
flexibility in selecting curves [3,7,8]. In this paper, the 
calculation of the exponentiation are implemented by using 
CORDIC algorithm based on the result of the study [3].  =   = ∙          (2) 

Eq. (2) can be calculated by Hyperbolic-Vector and 
Hyperbolic-Rotation mode. Fig. 7 depicts the fixed-point 
design for protective algorithm including exponentiation. 
After the calculating ratio of reference current (Iref) to RMS 
value (IRMS), algorithm mainly consists of logarithm and 
exponential function. Exponentiation requires the pre-
processing and the post-processing of CORDIC operation to 
guarantee the convergence in similar way as mentioned in 
section 2.5. Pre-process executes the normalization including 
L-bit shifts and extracting fractional part, and the post-
processing provides applying correction. As shown in Fig. 7, 
two CORDIC operations, five fixed-point multiplication, a 
division and three addition/subtraction are executed during 
exponentiation. Since the exponentiation is calculated in run-
time without using previously stored information for time-
current curve of Eq. (1), curve selection can be easily 

Fig. 6 Fixed-point design for measuring RMS and Phase 
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Fig. 5 Fixed-point design for CORDIC operations 
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Table 1 CORDIC operational modes for protective relay 

Arithmetic 
Operation 

Block CORDIC operation[3,6] cos() Filter Circular-Rotation sin() Filter Circular-Rotation (x + y) RMS meter Circular-Vector tan()  Phase meter Circular-Vector  protective algorithm Hyperbolic-Rotation ln(w) protective algorithm Hyperbolic-Vector 

 



configured by only setting the parameters K and p within the 
designated precision. 

3 Experimental results 
 In this section, we discuss the complexity of operations. 
The proposed fixed-point software design in section 2 was 
ported into TMS320C6416 DSP. We also compared the both 
implementation results for fixed-point and floating-point 
DSPs. We will discuss the multi-channel supporting 
capability for the proposed design method. 

3.1 Comparison of execution time and area 
complexity 

 Table 2 shows summarized results of relay software that 
have been implemented by the fixed-point and floating-point 
codes, running on two different DSPs with or without 
floating-point hardware support. Case 1 represents our work 
proposed in this paper. Case 2 implements the floating-point 
operation by using standard libraries provided in the vendor 
provided cross-compiler where the target processor is 

TMS320C6416. Case 3 implements floating-point operation 
by using TMS320C6727 which supports floating-point 
hardware unit. Consequently, case 1 is 53 times faster than 
case2 in terms of total execution time and four times better 
than case 2 in the code memory size. Specifically the 
execution time of measurement and protective algorithms is 
decreased by 97% due to the use of CORDIC algorithm. In 
addition, Case 1 is faster than case 3 about 20 times in 
execution time and saving 50% code size. CORDIC algorithm 
requires two LUTs which have 32 entries based on 16 bits, 
but it requires only 128 bytes in addition. It can be neglected 
for the overall code size. 

3.2 Expandability of sample rate and channels 
 In Table 2, the input data rate is 128 samples/period. Fig. 
8 illustrates the maximum samples per period without loss of 
data in real-time when the number of simultaneous input 
channel is increased as 4, 8, 12 and 16. FXP_6416, FLP_6416 
and FLP_6727 are case 1, case 2 and case 3 respectively. We 
assumed that the digital filter of FLP_6416 and FLP_6727 
use the same structure as in FXP_6416. 

Fig. 9 illustrates the maximum samples per period with same 
conditions of Fig. 8 when the number of simultaneous input 
channel increases as 24, 32, 64 and 128. From the results of 
Fig. 8 and Fig. 9, we can see the proposed software in fixed-
point design enlarges the number of multi-channel source and 
samples per period drastically. It also leads more cost 
reduction in the system integration.  

 
Fig. 7 Fixed-point design for exponentiation in inverse-time 
protection 
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Table 2 Execution time result of protective relay 

case 1 2 3 4 

Protective relay 
Software Fixed-point Floating-

point 
Floating-

point [5] 

DSP TMS320C 
6416 

TMS320C 
6416 

TMS320C 
6727 

TMS320C
32 

Floating-point 
support X X O O 

frequency 
[MHz] 500 500 300 50 

Samples per period 128 128 128 24 

Digital filter [us] 0.7 140.0 54.3 
10.3 

Measurement [us] 2.0 200.6 69.1 

Protective relay 
Operation [us] 4.1 22.8 7.0 5.6 

Total execution 
[us] 6.9 363.1 130.6 - 

Code size [KB] 4.1 16.0 9.4 - 
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Fig. 8 Max. number of samples per period according to 
concurrent input channels numbers 

 

 

Fig. 9 Max. number of input channels according to the given 
samples per period 

 

4 Conclusions 
 We reduced the amount of computation and memory 
usage by implementing fixed-point design for the protective 
relay in commercial DSP against conventional floating-point 
software. In particular, we optimized the measurement and 
protective algorithms which have high complexity by 
applying CORDIC algorithm. As a consequence, the 
execution time of software was improved significantly. 
Accuracy of the proposed software is guaranteed in designed 
precision, without using approximated curve models and 
extrapolation. The proposed software can provide more stable 
protective relaying by enhancing pre-processing operations 
such as digital filter. Further, our work is possible to reduce 
the number of processors. It is very advantageous in terms of 
cost, since it requires small amount of computation. 
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Abstract - Graphics Processing Units have been created with 

the objective of accelerating the construction and processing 

of graphic images. In its historical evolution line, concerned 

with the large computational capacity inherent, these devices 

started to be used for general purposes. However, the design 

of the GPUs don´t work well with divergent algorithms, 

mainly conditionals and repetitions. In this work we present a 

strategy for finding the divergence root of the kernels and try 

to deduce alternative solutions, decomposing them into 

concurrent kernels. We developed mechanisms for the user in 

order to easily readapt his code and take advantages of 

architectures that support concurrent kernels. 

Keywords: Divergence; Concurrents Kernels; Warps; 

GPGPU. 

 

1 Introduction 

GPUs (Graphics Processing Units) were designed to 

make to process polygons, and they have a peculiar feature: 

the same sequence of operations to different data. Following 

its historical evolution, current GPUs keep following this 

paradigm in its architectural models. In this style of execution, 

all the hardware involved executes the same instruction, 

before moving on to the next one. In fact the model brings 

benefits by reducing the cost of production and offering an 

optimized memory access. The new architecture Kepler 

GK110, is called by the NVidia “The next generation of 

GPUs” and still uses the same concepts of multiprocessor 

streams [1]. We believe that this architecture remains in 

awhile because, in practice, this restriction is what makes 

technologically feasible to massively parallel architecture. 

Diverging code is defined as the fact that a stream of 

code executed in a parallel environment can take different 

directions in each of its instances. In Single Instruction 

Multiple Thread (SIMT) architecture, occurring divergence, 

all statements that do not follow the same path are forced to 

wait at the point of divergence. It is noteworthy that this is not 

a limitation of the solution, but the hardware architecture. 

In this work we identify strategies that can minimize the 

effects of divergence in execution time of parallel 

applications. The optimization algorithm is currently the main 

and most efficient way to reduce the impact of divergence, 

forcing the implementation to follow a single path. A 

commonly adopted technique consists in separating the code 

into two parts, running a first leg and then the other. This was 

the only way to deal with this problem on GPUs until a little 

time ago. Although it is shown effective, in many cases the 

time dependence of data makes this solution inappropriate. 

With the Fermi GPUs series, Nvidia started implementing 

concurrent kernels. We present a new technique to divide a 

code divergence by using this technology. Preliminary tests 

showed that we can reduce the divergence by creating 

concurrent kernels. 

In this paper we identify the mechanisms used to reduce 

the impact of the difference in execution time of parallel 

algorithms. Furthermore, we propose the use of concurrent 

kernels based on new generations of GPUs, such as Kepler, as 

an alternative in treating the problem. 

The remainder of the paper is organized as follows. 

Section 2 provides background on GPU’s evolution and 

Unified Architecture. Section 3 describes the divergence 

problem. Section 4 presents the optimizations of divergence, 

evaluation methodology and results. Section 5 discusses 

related work, and gives directions for future work. 

2 Unified architecture 

The first video cards created were simple and the severe 

hardware limitations made unimaginable graphics processing 

by them. Following the chronological evolution emerged 

raster, fixed function and programmable devices. These last 

one brought pixels and vertex processors, able to treat, only 

and respectively, pixels and vertices. At that time, there were 

not multi-core CPUs so the GPU was seen as an alternative to 

increase the processing power in specific tasks. Thus, 

researchers from different areas began to "consider" data input 

of mathematical calculations as vertices and pixels, making the 

use of these processors in solving mathematical equations 

possible. For the first time a GPU was used with general-

purpose, giving rise to GPGPU (General Purpose GPU) 
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Processors of vertices and pixels did nothing beyond 

their specific tasks, increasing the interest in the computational 

power of devices, as well as the inconvenience of having to 

map all that was wanted in vertices and pixels. In addition, the 

processors were built only to the treat their structures, and an 

application that performed more vertices or pixel would leave 

the other processors idle. 

Nvidia proposed a unified architecture in their cores [2], 

creating a new architecture called CUDA (Compute Unified 

Device Architecture). Some advantages over previous 

architectures CUDA GPUs are: 

• Memory random access: access to any region of memory 

to read and write; 

• Manageable user- Cache: threads can cooperate reading 

and writing data in shared memory and any thread can 

access the shared memory of its block ; 

• Low learning curve: simple extensions of C language, 

without requiring knowledge of graphics or graphics 

APIs. 

Programming models for GPU (as CUDA and OpenCL) 

are designed to allow legacy programs to take advantage of 

new features in a transparent way. In other words, programs 

originally written for a particular architecture are scalable to 

the following architecture. Also, allow the use of 

heterogeneous systems, thus CPUs and GPUs are distinct and 

separate memory devices. Each of them performs the function 

for which they are best prepared. 

CUDA facilitates programming since it allows 

developers to focus on developing their algorithms without the 

need to learn language specific mechanisms. Instead, it 

provides a minimum length of the C / C + + to construct 

parallel applications. 

3 Divergence problem 

During the execution of the code by the GPU, each 

decoded instruction is sent to the scheduler. They remain 

queued until despatch in execution units, often called warps. 

This approach reduces the time for loading and decoding of 

instructions by N execution units, however, it does not require 

instructions to follow the same path. If there would be a piece 

of code in which some instruction keep on processing, they 

execute while the others wait for a different point of 

divergence [3][4]. Thus, a conditional statement can result in 

divergence when it is based on values that are particular to the 

specific thread [5]. 

For example, one if instruction may cause the thread to 

follow different paths, or, similarly, a loop may cause 

divergence whether the conditions are based on the thread's 

own values. 

To demonstrate the impact of the divergence, we must 

consider the following code, similar to what occurs in 

problems of reducing vectors: 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

if (threadIdx.x < 32) 

{ 

    if (threadIdx.x < 16) 

    { 

        if (threadIdx.x < 8) 

            func_a1(); 

        else 

            funca2; 

    } 

    else 

    { 

        func_b(); 

    } 

} 

Listing 1: Divergence problem demonstration. 

We will use the code in Listing 1 to illustrate how the 

divergence can affect the efficiency. Its execution results in 

data that are displayed in Figure 1. 

Figure 1: Sample of how the divergence may have strong 

impact on performance 

The first line of code in Listing 1 eliminates all threads 

of the block except the first 32 threads (first warp), the one we 

will use for our analysis. This does not result in any difference 

within a specific warp. The other warps of the block simply do 

not scale to this session and wait. 

Analyzing only the first warp, we observed that in line 3 

the test threadIdx.x < 16 is done, what breaks the warp 

is carried out exactly in half. In the graph first transition is 

noticed, this operation does not result in actual divergence 

since the CUDA kernels are organized in banks of 16 cores, 

not 32. Thus, the scheduler cyclely sends instructions to two 

or more sets of 16 cores and the paths of true and false 

conditional statement run on cores from different banks. 

In the subsequent step, the threads 16 to 31 call func_b 

function (line 12), however, threads 0 to 15 have another 

condition associated (line 05). Therefore, this time is not 

based on half of the warp, but in a quarter of it. So, we need a 

minimum of 16 threads for scheduling. Thus, the first eight 



threads will proceed to the function func_a1 while the 

remaining eight (8.. 15) await. 

The functions func_b and func_a1 will continue 

their instructions independently and shoot the second half of 

the warps. This is less efficient than the search for a single 

statement, but nevertheless, better than a sequential execution. 

Eventually func_a1 will finish and func_a2 will start the 

threads 0-7. Meanwhile, func_b might also have been 

completed. 

Analyzing the best result different levels of divergence 

are perceived. The first one is great, without divergence. The 

second one differs based on half of the warp but does not 

result in real divergence, since they run in parallel. Dividing 

the first half of warps into two groups, these should run in 

series, as they will expect a stretch to be finished and only 

then the next starts. Once again, dividing the first group in a 

total of four paths they will also result in a serial execution 

case. 

4 Optimization of divergence 

4.1 Naïve Test 

An example of simple demonstration was created in 

order to highlight the importance of separating different 

kernels and create separate concurrent Kernels. Considering 

that the program will receive, as input, a vector of k positions 

filled with N numbers, which alternate between large and 

small values, as shown in Figure 2 below: 

 

i = 0 1 2 3 4 5 ... k-4 k-3 k-2 k-1 k 

N = 5 5000 5 5000 5 5000 5 5000 5 5000 5 5000 

Figure 2: Input of the First Demonstration Kernel. 

 

In the next step, our test program will run on a kernel, 

shown in Listing 2, a repetition by N times (with N being the 

value of the position i of the input vector) and the input vector 

is stored in global memory. 

In our first test, we have a Naïve approach, which reads 

data sequentially. We will have half the cores using a small 

value and the other half using a large value (in the same block) 

and it is hoped that the cores running the repetition with the 

highest number of iterations dictate the overall runtime. 

Next, we used an index thread strategy, forcing a block 

to take the odd and another the even numbers. Our objective is 

to allow two kernels to perform the same function 

concurrently. Thus, we come to the result shown in Listing 3. 

The kernels shown in listing 2 and 3 are equal in 

function, however, we put some "intelligence" in the while 

loop within lines 5 and 15 in Listing 3 in order to force these 

kernels specifically deal with values from the same class (all 

small or all large). Thus, the kernel02a will only treat 

small values of Figure 2 while the kernel02b treats the 

others. 

01 

02 

03 

04 

05 

06 

07 

08 

09 

__global__ void kernel01(int *a) 

{ 

    int i = a[threadIdx.x]; 

    __shared__ int k; 

    while (i > 0){ 

        i--; 

        k+=i; 

    } 

} 

Listing 2: Initial kernel. 

01 

02 

03 

04 

05 

06 

07 

08 

09 
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13 

14 
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16 

17 

18 

19 

__global__ void kernel02a(int *a) 

{ 

    int i = a[threadIdx.x]; 

    __shared__ int k; 

    while (((i % 2 == 0) && i > 0)){ 

        i--; 

        k+=i; 

    } 

} 

 

__global__ void kernel02b(int *a) 

{ 

    int i = a[threadIdx.x]; 

    __shared__ int k; 

    while ((i % 2 != 0) && (i > 0)){ 

        i--; 

        k+=i; 

    } 

} 

Listing 3: Concurrents Kernels. 

The Table 1 summarizes the execution times, and Figure 

3 shows these results graphically comparing them: 

Figura 3: Initial x Concurrents Kernels 

 

  Normal time 

  Concurrent time 
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Host Device 
Normal 

Time 
Concurrent 

Time 

K10 Motorhead GeForce GTX 680 0,31466 0,01200 

K10 Motorhead Tesla K10.G1.8GB 0,45114 0,01722 

K10 Motorhead Tesla K10.G1.8GB 0,45142 0,01702 

K20 - Clash Tesla K20c 0,49501 0,01869 

K20 - Clash GeForce GTX 680 0,29312 0,06470 

Orange Lab Pos GeForce GTX 480 0,57942 0,01533 

Orange Lab Pos GeForce GTX 480 0,55824 0,01523 

Table 1: Comparison of execution times in the first kernel 

demonstration 

 

4.2 Sum Reduction 

A reduction algorithm extracts a single value from a 

matrix, calculated by comparing every element of it. The 

reduction may be to sum, to the maximum or minimum values, 

of the components. These algorithms share the same structure. 

A reduction may be performed sequentially stepping through 

each element of the array. When an element is visited, the 

action to be taken depends on the desired reduction. To sum 

reduction, the current value is accumulated [1]. 

Listing 4 shows a CUDA kernel for reduction of sum. 

The input matrix data were placed in main memory, the array 

was divided so that each block CUDA reduce a portion of the 

original matrix. The reduction will be made in device, using 

the shared memory, in other words, there will be a shared 

variant where the partial sums will be saved. Each iteration of 

the line 6 loop is a round of reduction. The syncthreads () 

statement in the for loop ensures the necessary timing for the 

performace of the previous iteration and to prepare the threads 

for the next iteration. Each round of implementation of even 

elements will contain the partial sums of each pair after 

iteration until all sums are performed. 

The kernel of Listing 4 has caused divergence of the 

iteration loop of line 6. In this place only threads with even 

threadIdx.x values perform the sum due to the condition 

imposed on line 9. Such divergence can be reduced with a 

change in the algorithm. 

 
01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

17 

18 

19 

__global__ void sumReduceD(const Utype *a, Utype *sum) 

{ 

    __shared__ int partialSum[arraySize]; 

    unsigned int t = threadIdx.x; 

    partialSum[t] = a[t]; 

    for(int stride = 1; stride < blockDim.x; stride *= 2) 

    { 

        __syncthreads(); 

        if(t % (2*stride) == 0) 

        { 

            partialSum[t] += partialSum[t+stride]; 

            sum[0] = partialSum[t]; 

        } 

    } 

} 

Listing 4: Divergent Reduction Sum 
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__global__ void sumReduceN(const Utype *a, Utype *sum) 

{ 

 __shared__ int partialSum[arraySize]; 

 unsigned int t = threadIdx.x; 

 partialSum[t] = a[t]; 

 for(int stride = blockDim.x >> 1; stride > 0; stride >>= 1) 

 { 

  __syncthreads(); 

  if(t < stride) 

  { 

   partialSum[t] += partialSum[t+stride]; 

   sum[0] = partialSum[t]; 

  } 

 } 

} 

Listing 5: Optimized Sum Reduction. 

 



The modified kernel in Listing 5 adds elements that are 

in the middle of a section, rather than adding neighboring 

elements. At the end of the first iteration, the sum is stored in 

the first half of the array. At each iteration of the loop the 

overall operation is divided by 2 by shifting step by one bit to 

the right, an economical way to perform division by 2. Note 

that the kernel in Listing 5 also has an IF (line 9) which 

means that it will still have divergence, however, the amount 

of threads that execute this instruction is minimal compared to 

the previous case. 

To verify the efficiency of concurrence we have unbundled the 

kernel of Listing 5 in two others, each of them responsible for 

performing half the reduction of sum. 
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21 
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__global__ void sumReduceC1(const Utype *a, Utype *sum, long offset) 

{ 

    if (threadIdx.x < offset) 

    { 

        __shared__ int partialSum[arraySize]; 

        unsigned int t = threadIdx.x; 

        partialSum[t] = a[t]; 

        for(int stride = blockDim.x>>1; stride > 0; stride >>= 1) 

        { 

            __syncthreads(); 

            if(t < stride) 

            { 

                partialSum[t] += partialSum[t+stride]; 

                sum[0] = partialSum[t]; 

            } 

        } 

    } 

} 

 

__global__ void sumReduceC2(const Utype *a, Utype *sum, long offset) 

{ 

    if (threadIdx.x >= offset) 

    { 

        __shared__ int partialSum[arraySize]; 

        unsigned int t = threadIdx.x; 

        partialSum[t] = a[t]; 

        for(int stride = blockDim.x>>1; stride > 0; stride >>= 1) 

        { 

            __syncthreads(); 

            if(t < stride) 

            { 

                partialSum[t] += partialSum[t+stride]; 

                sum[0] = partialSum[t]; 

            } 

        } 

    } 

} 

Listing 6: Concurrent Sum Reduction 

 

 

Host Device Normal Time Divergent Time Concurrent Time 

K10 Motorhead ID - 0; GeForce GTX 680 0,01210 0,01523 0,01411 

K10 Motorhead ID - 1; Tesla K10.G1.8GB 0,01834 0,02387 0,02256 

K10 Motorhead ID - 2; Tesla K10.G1.8GB 0,01846 0,02390 0,02214 

K20 - Clash ID - 0; Tesla K20c 0,02458 0,04464 0,03117 

K20 - Clash ID - 1; GeForce GTX 680 0,01168 0,01533 0,01440 

Table 2: Comparison of execution times on Sum Reduction Algorithm 
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Figure 4: Graph of execution times on Sum Reduction Algorithm  

 

The sumReduceC1 and sumReduceC2 kernels in 

Listing 6 run concurrently, each being responsible for 

elements of the two halves of the array, delimited by the offset 

variant. The Table 2 below shows the times taken in the 

implementation to reduce the sum of an array with 1024 

elements. 

5 Conclusions and Futurework 

Here we present the problem of disparity in kernels, ie, 

the divergence that is the result of the emergence of distinct 

branches of implementation due to conditional or repetitions 

present in algorithms. 

In this paper we propose a new approach to minimize the 

effects of them through the use of concurrent kernels and 

found satisfactory results that justify further study on the topic. 

As future work, we propose algorithms to analyze 

patterns in two suites used for investigation of parallel 

applications. The Rodinia [6] suite is often used to measure 

multi / many core and parallel data applications, covering a 

wide range of parallel communication patterns, among them 

applications of medical imaging, bioinformatics, physical 

simulation, image processing, etc.. The Parboil [7] suite brings 

a suite of applications useful to study the performance of the 

architecture and compilers. 

It is also intended to analyze the Cetus [8] which is a 

source code translator for multicolored infrastructure that 

fosters research in architecture for compiler optimizations with 

automatic parallelization. 

Thus, we seek to list a series of strategies to map 

different types of problems, enabling transform a single kernel 

into n concurrent kernels. We hope to contribute to a set of 

heuristics that migth assist in mapping, preferably in an 

automatic way and with less divergence as possible. 
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Abstract - This paper presents the position that a formula 

can be used to assess the risks of a distributed datacenter.  

This formula may be compared against benchmarks to assist 

an administrator in making decisions concerning server 

upgrades, datacenter placement, etc.  It can also be used to 

help the administrator decide what data to replicate and 

where to place the copies. 
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1.  Introduction 
 

In the globalized world, companies, based on the 

proximity to the resources, markets and transportation 

hubs, consider opening branches and data centers in 

different locations over the world. These datacenters 

usually house large databases with data needed by 

their other branch locations. Hence, establishing the 

optimal distributed database system and the optimal 

configuration of redundancy and replication presents 

significant challenges.  

  

Today, datacenters and computer systems are expected 

to be available all the time. The potential loss of 

revenue, customers and reputation is more and more 

dependent of the reliability of your datacenters. For 

some businesses, even small amounts of downtime 

may cost millions of dollars. As we now have global 

enterprises which support users, clients or customers 

in multiple time zones, it is no longer possible to bring 

systems down at night for extended periods of time to 

do maintenance and upgrades.  Likewise we need to 

plan for ways to compensate for unplanned outages.  

In distributed database systems, when one site 

experiences an unplanned outage, there will be no way 

to access the data from that site, unless we have made 

previsions ahead of time for data replication.   When 

one site or server is down, the replica of the data is 

used in another server or location, so that the system 

continues to function and respond in such a way that 

the users do not notice any problems.  

 

In this paper we are proposing a formula that analyzes 

the risk to the servers. This analysis is calculated based 

on a variety of weighted factors such as an analysis of 

error logs for the servers, assessing reliability of the 

hardware components based on age and environmental 

factors, the size of the data, the frequently of data 

usage, and the data distribution model employed in the 

system.  This formula may then be used to determine 

the risk of the system and to aid in the decision as to 

whether or not to replicate data, and if so, what to 

replicate and where.  
 

2.  Risks 
 

The goal of any server or datacenter is to have high 

availability.  The common measurement of “nines” has 

been debated over the years.  Nonetheless, the closer 

to 100% availability that a server or datacenters 

obtains, the more satisfied the users become.   The 

risks of server or datacenter outages come from a 

broad range of possibilities.  The following graph 

shows the breakdown of the cause of outages [1]: 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



  

3.  Costs of Not Achieving High 

Availability 

 
The cost and impact of not achieving an acceptably 

high amount of availability varies greatly depending 

on the type of business or entity involved.  While 

unavailability of data may cost millions of dollars for 

some businesses, other outages may have zero cost to 

the entity – it all depends on the type of entity 

impacted.  For example, if the entity impacted is a firm 

that trades stocks or a large retailer during heavy 

holiday shopping times, the measurable monetary loss 

would be great.  However, if the entity is a repository 

for information and the availability was lost during a 

non-peak time, then the loss was negligible.  There 

have been a variety of surveys and studies done that 

study this type of impact, such as those done by the 

Ponemon Institute [2].  However, even in the case 

where there was no monetary loss due to data not 

being available, there are unmeasureable 

consequences, such as reputation, that are still at stake.  

 

4. Minimization of Risks and Costs 

through Database Replication 

 
Distributed databases, where all or portions of the data 

are replicated on other servers or locations, have long 

been viewed essential in achieving an acceptable level 

of data availability.  The costs associated with 

managing the entire system are often outweighed by 

the potential loss associated by unavailability.  

Synchronous replication and asynchronous replication 

are options that exist and are considered in the overall 

calculation of risk. 

 
4.1 Synchronous Replication 
 

This replication enables zero data loss disaster 

recovery by ensuring that the data stored at the 

secondary storage site is the exact mirror image of the 

data at the primary data site. In this method of 

replication, each update must be recognized and 

confirmed at both the primary site and secondary site 

before the application can continue production.  Thus, 

the system ensures that the secondary site is always in 

sync with primary data center. This enables the 

secondary site to take over production immediately in 

case there is any disruption at the primary site. 

However this method of replication is very expensive 

in terms of time.  Distance is also a major drawback of 

synchronous replication. The distance between 

primary centers and backup centers is restricted due to 

use of fiber channels which can only extend to 200km 

[4]. 

 

4.2 Asynchronous Replication 

 
With asynchronous replication, updates are propagated 

to the copies periodically, not as they are made.  One 

major advantage of this is that it is much more 

efficient in terms of transmission time – periodic 

updates mean less network overhead.  In addition to 

this, asynchronous copies can extend to any distance 

without affecting the propagation. This means 

secondary sites can be located thousands of miles 

away from the primary site, ensuring that secondary 

data is away from any likely disaster region.  

 

The greatest disadvantage of asynchronous replication 

is the time lag between data being stored at the 

primary site and the remote site. This may mean that 

transactions and data not replicated at the time of 

disaster will be lost. In the event of any unplanned 

outage, data on the secondary storage may not be 

current. [3] 

 

The next subsections detail two approaches to 

permitting asynchronous replication.  Which is best 

would be somewhat system dependent; the choice 

would be left to the individual systems administrator. 

 

4.2.1  Primary Copy Asynchronous Replication 

 

In this approach, one copy of the data is deemed the 

“primary copy” and always must be current.  The other 

copies will not be updated immediately; the primary 

copy server will push out the updates to the remote 

copies periodically.  This has the advantage of using a 

simple communication model.  In a case when a server 

(either a server holding a primary copy or one holding 

a secondary copy) has a failure, the updates needed 

may be held in stable queues at the other sites until this 

server comes back up.  This allows an element of fault 

tolerance to be built into the basic idea of replication 

[3]. 
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4.2.2 Update everywhere 

 

In the Update everywhere technique, any copy may be 

updated at any time.  Periodically, the servers will 

exchange their updates with each other.  This has the 

advantage of lower communication cost during 

updates (as compared with primary copy replication).  

However, it requires a much more complicated 

synchronizing algorithm, since different copies may 

have updated the same data. 

 

5.  How to Determine Where to 

Replicate Data 
 

Determining where to replicate all, or a portion, of a 

distributed database can be based on a variety of 

factors.  Depending on the entity, the factors will 

include such items as:  the proximity to primary/heavy 

users, the reliability/capacity of communication 

networks between sites, environmental factors such a 

typical seasonal weather related concerns, 

age/reliability of equipment at replicated site, comfort 

level of potential success of disaster recovery efforts, 

etc.   

 

5.1 Hardware Risk Assessment 

 
The follow are the factors that will help determine the 

hardware risk level of the server or data center in the 

distributed environment.  These factors also help in 

determine the site for data replication. 

 

a) Determine the access/query and update frequency 

for each table in the database.   Likewise the 

number of applications that access each table, and 

the frequency with which those applications runs.   

 

Analyzing this data will give an indication of 

which portions of the database have the highest 

need to be replicated. 

 

b) Determine the amount of time, and the number of 

times, a server or datacenter had an unplanned 

outage within a given interval.  

 

c) Determine the age and usage of the most vital 

hardware like CPUs, hard drives, fans, memory, 

etc. 

 

 

5.2 Environmental Risk Assessment 
 

Environmental risks should also be considered when 

placing datacenters and/or replicated parts of 

databases.  Areas that are prone to hurricanes, 

earthquakes, floods, extreme hot or cold temperatures, 

etc. are less desirable locations for the placement of 

servers or data centers that need to have high 

availability. 

 

While some of the above-mentioned environmental 

risks are hard to predict, and therefore assess, there are 

some environmental risks that we can assess.   For 

example, we know that there is a high probability that 

at some point there will be an interruption to the power 

supply to a particular server or an entire data center.  

The cause of the interruption could be the result of a 

weather related event, or it could be accidental (for 

example a miscalculation of where a backhoe should 

dig during a construction project), or the interruption 

could be part of scheduled maintenance or upgrade to 

the electrical system.   Hence, we also need to take 

into consideration other factors such as: 

 

a) The presence and reliability of backup systems 

such as Uninterrupted Power Supply (UPS) 

devices.   Likewise a determination on how 

frequently UPS devices are tested for functionality 

should be considered.  For example, a datacenter 

has no protection against data loss nor the 

opportunity for graceful shutdown if the UPS 

devices also fails due to dead batteries or faulty 

failover to a fuel powered generator. 

 

b) The presence of appropriate fire protection 

systems, water protection systems, cooling 

systems, alert notification systems, etc.  The 

frequency of testing to make sure that these 

systems are fully functional also needs to be 

considered.   

 

As an example, while we may not be able to assess the 

frequency with which ice sheets, created by an 

unusually bad winter storm, will fall from the roof of 

building and damage air conditioning units on the 

ground, we can minimize the likelihood that UPS unit 

will also fail due do a short in the failover system.  

Likewise, we can minimize the likelihood that the alert 

system will also fail due to an error in the script that 

indicates who should receive a text message or a pager 

alert. 



  

5.3 Formula to Calculate Risk Level 
 

A weighted formula is being developed to help 

determine the risk level for either an individual server 

or an entire datacenter.  The formula takes to account 

the following: 

 

1. Availability/Response time of the server/ 

datacenter.  This would include the percent of time 

the server/datacenter has been available in the last 

twelve months.   Also, this would need to factor in 

size and frequency of data access as well as the 

replication scheme used. 

 

2. Age of equipment.  The value used in the 

calculation is the following on a sliding scale: 

a. Less than 1 year old:  100 pts 

b. Less than 2 years old:  80 pts 

c. Less than 4 years old: 60 pts 

d. Older than 4 years:  0 pts 

 

3. Assessment of adequate cooling facilities, water 

protection systems and fire protection systems.  

The maximum points are 100 when everything is 

found to be adequate. 

 

4. Assessment of reliability adequacy of UPS 

systems.   The maximum points are 100 when it is 

found the UPS is completely adequate. 

 

5. Assessment of other environmental risks as 

discussed in section 5.2.  The maximums points 

are 100 when it is found that there are virtually no 

other environmental risks. 

 

The weights of these four variables are: 

1. Availability:  25% 

2. Age of Equipment:  10% 

3. Assessment of cooling, water and fire systems: 

20% 

4. Assessment of UPS:  40% 

5. Assessment of other Environmental Risks: 5% 

 

 

 

 

 

 

Example: 

 

 

 

 

 

 

 

 

 
As an example as to how this data may be used, 

suppose it has been determined that the minimum 

acceptable risk value is 93.  The administrator may 

then recalculate with a replication schema deployed 

for the most vulnerable data.  Suppose this increases 

the first metric to 95%; if so, the overall score would 

be increased to 93.25, which exceeds the minimum 

value.  Thus, the administrator would be advised to 

replicate the most vulnerable data to achieve the 

desired score. 

 

6. Conclusion 

 
This paper has presented a position that the risk of 

which server/datacenter to replicate data to can be 

calculated by using a formula.  Additional testing and 

simulation will allow the authors to continue to 

develop and fine tune the formula and the weights 

associated with each risk factor. 
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Availability/Response time in the last year: 90 * 25% =  22.50 

Age of Equipment: 15 month old server:  80 pts * 10% = 8  

Assessment of Cooling/Fire/Water protection:  95 pts * 20% = 19  

Assessment Electrical/UPS protection:  95 pts * 40% = 38  

Assessment of other Environmental Risks:  90 pts * 5% = 4.5  

Total = 92.00  
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Abstract— In this paper, we compare two different methods
for parallelizing the Needleman–Wunsch dynamic program-
ming algorithm for finding the optimal alignment of two
sequences: (1) computing the elements of each diagonal
of the table in parallel and (2) computing the elements of
each row in parallel using the parallel prefix algorithm. In
2003, the latter algorithm was shown to decrease communi-
cation between processors and provide a more uniform work
distribution [1]. With the increasing prevalence of general
purpose programming on graphics processing units (GPUs),
there is a need to reassess the viability of the parallel prefix-
based algorithm. We discuss our implementation of both
algorithms on a massively parallel GPU and compare the
runtimes by thread count as well as by sequence size. We
find that the parallel diagonal algorithm runs faster for large
sequence lengths.

Keywords: Bioinformatics, GPU, CUDA

1. Background
1.1 The Needleman–Wunsch Algorithm

The Needleman–Wunsch algorithm uses a dynamic pro-
gramming table to find an optimal alignment of two se-
quences (which might represent DNA sequences, English
words, etc.), where an alignment is found by inserting any
number of gaps into either sequence so that the lengths
end up the same. The score of an alignment is found by
considering the pair of symbols in each column. If the
symbols match (and are not both gaps), that column receives
a score of c1; if they don’t match (and neither is a gap), it
receives a score of c2; and if either of the symbols is a gap,
the column receives a score of c3. The score of the alignment
is the sum of the scores of all of the columns. The optimal
alignment is the one with the highest score [3]. Following
related work, we use c1 = 1, c2 = 0, and c3 = −1 in our
examples and experiments.

If the sequences are a1a2 . . . an and b1b2 . . . bm, and our
table is T , then T [i][j] (for i = 0, 1, . . . , n and j =
0, 1, . . . ,m) is the score of an optimal alignment of the
substrings a1a2 . . . ai and b1b2 . . . bj . (If i = 0 or j = 0,
then the corresponding string is the empty string.) Using this
scheme, T [i][j] is the maximum of T [i−1][j], T [i−1][j−1],
and T [i][j − 1], each plus the cost of moving to the current

cell. That is,

T [i][j] = max


T [i− 1][j]− 1

T [i− 1][j − 1] + f(ai, bj)

T [i][j − 1]− 1,

where

f(a, b) =

{
1 if a = b

0 if a 6= b.

1.2 The Parallel Diagonal Algorithm
Notice that each entry in T depends only on entries in the

previous two diagonals of the table—and not on any of the
entries in the same diagonal. Therefore all of the entries in
a diagonal can be computed in parallel.

This observation naturally leads to the parallel-diagonal
method of parallelizing the Needleman–Wunsch algorithm,
where the diagonals of T are computed in sequence, with
each element potentially computed by a different processor
[2].

1.3 The Parallel Prefix-Based Algorithm
Given an sequence C of n values and a binary associative

operation ⊕, the prefixes S of C are given by

S[i] = C[1]⊕ C[2]⊕ · · · ⊕ C[i],

for 1 ≤ i ≤ n. In the case of the Needleman–Wunsch
algorithm, we use as our binary operation the maximum
function, so that the ith prefix maximum is the maximum of
the first i elements of the original sequence.

The sequence of prefixes S can be computed in logarith-
mic time with multiple processors.

This algorithm was used as the basis of a different method
of parallelizing the Needleman–Wunsch algorithm by Aluru
et al. [1] In this method, the table is computed row-by-
row. Since the entries in each row depend on entries in the
previous row and the same row, it is done in multiple steps.

First, a partial solution is obtained by assigning to each
entry in the row the maximum of the north and northwest
entries, each plus the cost of moving to the current cell.
Second, the column number is added to each entry to facil-
itate the computation of the parallel prefix maxima. Finally,
the parallel prefix maxima are computed, and the column
numbers are subtracted again from each entry, yielding the
final values. More detail is given in [1].



The authors showed that this algorithm was time-optimal
like the parallel diagonal algorithm while decreasing the
amount of communication required between processors.

The parallel prefix algorithm allows p processors to find
the prefixes of an array of n numbers in O(np + log p) time,
while also distributing work among the processors uniformly.
[1] Therefore the time of filling out the entire table isO(n

2

p +
n log p).

1.4 Graphics Processing Units
Graphics processing units (GPUs) are accelerators that

use data parallel computation to perform hundreds or thou-
sands of operations in parallel. Due to their low power
consumption and relatively low cost, they are increasing in
prevalence, including being an integral part of many of the
fastest supercomputers in the world.

It is for this reason that it is important to re-examine
parallel algorithms invented without GPUs in mind within
this new paradigm. CUDA (Compute Unified Device Archi-
tecture) is a language developed by NVIDIA that allows
programmers to use NVIDIA GPUs for general purpose
programming. Below we describe our attempt to re-evaluate
the benefits of the parallel-prefix algorithm on an NVIDIA
GPU.

2. Implementation on GPU
We implemented the two algorithms for an NVIDIA GPU

in order to compare their runtimes. We will give pseudocode
for each implementation below.

We looked at two implementations of each algorithm:
using a single block and multiple blocks. On a single block,
we only have access to a single streaming multiprocessor
which contains 48 CUDA cores. When we utilize all blocks,
we have access to the full 336 CUDA cores on our NVIDIA
GTX 460. However, there is some added overhead due
to the fact that we have to leave a kernel to synchronize
between blocks. Forty-eight CUDA cores already surpasses
the maximum number of cores on which Aluru was able to
test the parallel prefix algorithm [1].

2.1 Parallel Diagonal
Here we start off with A = [0] and B = [−1,−1], the

first two diagonals of T . These are copied to the GPU, along
with the two sequences we are comparing (S1 and S2),
and then the following is executed on the GPU in many
different threads, each with a unique thread index (t in the
code below).

Note that by using global memory on CUDA, we can
execute threads in several blocks, which enables us to use
more parallelism.

Algorithm 1 Pseudocode for parallel diagonal GPU kernel
Require: n, the length of the sequences
Require: t, the thread index numbered from 0 to n
Require: diag#, the diagonal number from 0 to the length

of the diagonal
Require: C, the diagonal to be computed
Require: B, the previous diagonal
Require: A, the diagonal prior to B Every diagonal D ∈
{A,B,C} is constructed so that it contains every element
of the table for which row+ column = diag# and with
the element in column column accessible at D[column].
if column = 0 or row = 0 then

C[t]← −diag#
else if i < diaglen then

C[t]← max


B[t]− 1

B[t− 1]− 1

A[t− 1] + f(S1[column− 1], S2[row − 1])
end if
A← B
B ← C

2.2 Parallel Prefix
We begin with the first row being filled with values 0 to

−n where n is the length of the sequence. This row is copied
to the GPU, along with the two sequences we are comparing
(S1 and S2), and then the following is executed on the GPU
in many different threads, each with a unique thread index
(t in the code below).

3. Experiments
We conducted two main experiments on our NVIDIA

GTX 460. The first one compares the diagonal and parallel
prefix algorithms on one block with threads equal to 2i

where 0 ≤ i ≤ 10 and sequence sizes of 2j where 8 ≤
j ≤ 16. The second experiment uses multiple blocks. For
testing the diagonal, we ensure that there is a thread for every
element. For testing the parallel prefix, we test a number of
blocks equal to 2k where 0 ≤ k ≤ 12, threads per block
varying as before, and the sequence size varying as before.
The purpose of varying the number of blocks and threads
per block is to ensure that we are achieving the optimal
configuration so that we may, later, compare the algorithms
at their best.

4. Results
We compared the fastest time for each sequence size.

With one block, parallel prefix is faster for sequences up
to and including 4096 characters. For multiple blocks, the
diagonal algorithm is faster for all sequence lengths. Overall,
comparing one block to multiple blocks, the single block
parallel prefix is fastest for sequences up to and including
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4096 characters. From sequence sizes of 8192 and up, the
diagonal algorithm on multiple blocks is fastest.

In Figure 2, you can see the speedup of the parallel prefix
and parallel diagonal algorithms for one block. You will no-
tice that the speedup does not always increase as the number
of threads increases. We tested multiple configurations to
find the ideal number of threads. Since the runtime increases
with the number of processors, this is not necessarily equal
to the largest number of simultaneously running threads on
the GPU.

5. Discussion
According to our results, computing elements of a row

in parallel using the parallel prefix algorithm can be faster
than computing elements of a diagonal in parallel for small
enough sequences.

It may seem strange that the parallel prefix algorithm
would be faster on one block, when it uses fewer processors,
than it is on multiple blocks. This is due to added overhead
that occurs when synchronizing threads between multiple
blocks, which requires leaving the kernel completely. It
makes sense that for larger sequences, this added overhead
becomes negligible, and in fact, for sequences of 16384 and
larger, the algorithm that uses multiple blocks is faster.

It may also seem strange that the parallel prefix algorithm
on a single block is faster than the diagonal algorithm on
multiple blocks. This is, most likely, due to some inherent
overhead from the diagonal algorithm and once again, be-
comes negligible at longer sequence lengths. In this case, as
mentioned in our results, this sequence length is 8192.

6. Conclusions & Future Work
In this GPU age, we re-examined two different meth-

ods for parallelizing the Needleman–Wunsch algorithm for
finding the optimal alignment of two sequences: parallel
diagonal and parallel-prefix. Our main result is that the
parallel prefix-based algorithm on an NVIDIA GTX 460,
running on a single block is fastest for short sequences up
to and including 4096 characters. Beyond that, the diagonal
algorithm on multiple blocks is fastest.

For future work, we would like to rerun our experiments
on a better GPU. We have access to an NVIDIA Tesla
K20, that we hope to utilize. Also, all of our experiments
were done comparing two strings of the same length, which
in terms of work distribution, is the worst case for the
diagonal algorithm. Therefore, experiments should be done
with sequences of very different lengths.
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Algorithm 2 Pseudocode for parallel prefix GPU kernels
Require: S1, S2, the sequences we are comparing
Require: n, the length of the sequences
Require: p, the total number of threads (analogous to

processors)
Require: t, the thread index numbered from 0 to p− 1
Require: B, the row we are computing
Require: A, the previous row of the table
Require: r, the row number of B
Require: X , the array of partial solutions for B
Require: Y , the array that the parallel prefix max is being

computed on
Require: Maxima,

X[ntp ]← nt
p +max

{
A[ntp ]− 1

A[ntp − 1] + f(S1[
nt
p − 1], S2[r − 1])

for i← nt
p + 1, n(t+1)

p − 1 do

X[i]← i+max

{
A[i]− 1

A[i− 1] + f(S1[i− 1], S2[r − 1])
X[i]← max(X[i], X[i− 1])

end for
Y [t]← X[n(t+1)

p − 1]

Maxima[t]← X[n(t+1)
p − 1]

SYNCHRONIZE
for i← 0, dlog2 pe − 1 do

partner_index← (t− 1) XOR 2i

new_max[t]← max(Maxima[t],Maxima[partner_index]
if t > partner_index then

Y [t]← max(Y [t],Maxima[partner_index])
end if
SYNCHRONIZE
Maxima[t]← new_max[t]
SYNCHRONIZE

end for
tmp← Y [t]

for i← nt
p + 1, n(t+1)

p − 1 do
if X[i] < tmp then

X[i]← tmp
end if
B[col] = x[col]− col

end for

Fig. 1: Runtime for Different Algorithms

Fig. 2: Speedup for One Block
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Abstract - The subject of this publication focuses on the 

relational commitment problematic. The objective of the 

research is to identify the relational patterns of the elderly. 

The research method questions about relationship dynamics 

which include interactions with for example alliances and 

desalliances, common points and affinities, meeting places 

which include the use of social networks on the web.  We 

study the new relational technologies around the notion of 

situation, describe by Alex Mucchielli. The proposed work 

will mainly rely on qualitative methods: field observations, 

field interviews with stakeholders, mainly in situation. For 

complete organizational and technological approaches, with 

the biographical interview, we want to know how the person 

creates its social network. 

 

Keywords: ICT, social networks, elderly, relational 

technologies, social ties. 

 

1 Introduction 

         Like many countries worldwide, the French government 

is now facing a problem related to the increase in solitudes.  A 

study of the Foundation de France “[1]”, points out a decline 

in the integrative capacity of family, friends and neighborhood 

networks. It focuses on increasing situations of loneliness, 

which affect the entire population, especially the elderly. 

Between 2010 and 2013, the share of individual isolation 

increased from 20% to 23%.  5 million of persons, young and 

older people express a feeling of loneliness. 

In France, the term "elderly" concerns a population from 60 

years. It corresponds to the reference age at which health 

problems can appear and justify, according to the French labor 

law, the payment of an assisted living service. 

The situation of loneliness of the elderly is special. Its causes, 

its consequences and its forms are not the same as for young 

people. 

A reduced ability of mobility and the progressive loss of the 

emotional environment with the disappearance of its friends, 

its husband or its wife, not necessarily compensated by the 

presence of children, explain the loneliness of elderly. 

The loneliness for the elderly has consequences on the 

deterioration of their health status. Seniors who express a 

distress of the isolation mainly belong to two groups “[2]”. 

The first is composed of very old people. They feel isolated 

because of their physical abilities reduced or their disabilities. 

The second is composed of younger seniors who feel isolated 

for socio-economic reasons. Often, a residential isolation adds 

at the emotional and social isolation. Investigations assess 

loneliness objectively based on the number of daily contacts. 

For increase contacts, associations organize visits by 

volunteers or neighbors and can also integrate technologies 

that facilitate exchanges at home. These technical devices 

have the advantage of contributing to the security of the 

elderly living at home. They detect a lack of movement and 

can broadcast many messages. These messages generate 

appropriate behaviors such as taking drugs, the door opening, 

remembering a visit, etc... 

However, it lacks an element in this scheme. The loneliness is 

considered only by the number of contacts but social actors 

don’t take into account the subjective nature of loneliness.  

The study of the Foundation de France indicates that people 

surrounded (4.1%) may also feel isolated, even if that this 

feeling is felt mainly by people objectively alone (11.5%). 

The feeling of loneliness does not depend on the number of 

contacts, but of the value and quality of interpersonal 

relationships. The sociology of relational dynamics has 

highlighted the necessary distinction between weak ties and 

strong ties “[3]”. The feeling of loneliness questions about the 

relationship between several persons and the mutation of the 

social network depending life situations.   

We do not study the causes and consequences of isolation but 

the way the person establishes a relational process. 

 

2 Objective 

       The research objective is to formalize a model of 

intervention that allows the person to doing progress his 

network of relationships. The idea is to develop an 

individualized approach that allows the person a 

reappropriation of its relation to other. 

Currently, external actors (family, neighbors, professionals, 

medical community, etc.) communicate in the direction of the 

elderly. We wish to reformulate this model by giving the 

person the ability to boost the relationship on its own 

initiative.     

In this sense, we consider it necessary to rethink the use of 

communication technologies.  The telecare creates an 

exchange of standardized way. It can be only a simple 

reproduction, an artifact of intersubjective communication. It 

doesn’t take into account the socio-affective dimension of 

social connections so necessary to the elderly. We think that 

our research findings can provide useful information to 

improve communication platforms and their use. 



 

2.1 The old age, a phase of transformation 

     The situation of the elderly is particularly instructive. The 

transformations of the social network during its life can be 

studied. From the observation of the evolution of social ties, 

we will able to determine the socialization process and the 

value of links. We are going to identify the strong and friendly 

ties whose C. Bidart “[4]” highlights the “thickness”. 

We also believe that aging is accompanied by periods of 

transition destabilizing. By V. Caradec “[5]”, old age brings 

changes in physical capacities, social status, with many friend 

losses, difficult transitions, etc… The professionals identify 

that changes are more intense between 79 and 83 years than 

over the entire life. 

 

2.2 Socialization and feeling of security 

     We would like to highlight in particular the identity 

dimension of the relationship and the sense of security that 

generates the socialization that reduces the sense of 

vulnerability. 

For C. Deloro “[6]” the other, “Alter Ego”, is a “mirror” of 

myself. The other is seen through personal projections.  The 

other also allows me to know myself better. Merleau Ponty [7] 

writes : “ The world is not a subject, which I have the law of 

the constitution, it is the natural place and scope of all my 

thoughts and all my explicit perceptions (…) the man lives in 

the world it is in the world he knows himself ”.  The other 

becomes a « link” remarks C. Deloro, and its perception 

produces an « echo”.    

C. Audibert “[8]” highlights how emotional and elective 

relationship with a chosen person allows a “serene solitude” 

that is to say, freedom to “grow its own solitary garden” 

Friendship raises the relationship to oneself, through the other, 

as a participant in self-respect. The self-awareness with that 

part of intimacy, never revealed, is developed through the 

other one. It allows us to experience ourselves as existing in 

our uniqueness.  

Socialization allows people to survive through exchanges of 

gestures, activities and also conversations. S. Tisseron “[9]” 

in reference to the studies of the anthropologue Robin Dunbar 

notes that the civilization of the hunter-gatherers spends 

during its activities, 25% of the day to “chat”.  According to 

him, the chatter is not simply a way to transmit information 

but also a way to develop secure attachments 

2.3 Use social networks  

       We believe that social networks and relational 

technologies have a role to play in our thinking as they 

contribute to the highlighting of the report to another, even if 

they are not currently used by the elderly. B. Stiegler “[10]” 

with reference to philosopher G. Simondon “[11]” considers 

that through social networks, each individual part is connected 

to a "collective individuation," because” The unity of life is 

the whole group and not the isolated individual." He is 

agreeing with that Mr. McLuhan wrote “[12]”: "Any extension 

of human faculties is the reaction to irritation caused by the 

environment and comes in the form of requirements (...) the 

new medium is a drug for the save in the social balance.” J. 

Rifkin “[13]” writes: "The empathic approach is the existential 

awareness of the vulnerability we all share."  

 

3 Method and axis of research 

      The hypothesis of the research is to explore ways to 

reinstate the individual in the relational process.  The research 

could lead to the formalization of an intervention model. This 

model could guide the technological choices. 

The objective of this research is to analyze the ways of 

socialization used by the Elderly in terms of relational 

network. We consider like C. Bidart “[4]” that “relations 

always have a story.” We strive to highlight individual 

perceptions and the intersubjective nature of the relationship 

through the social network. This research must do appear 

expectations, needs and values of the person when it creates a 

relationship. 

 

3.1 Statistical selection 

       We selected a population corresponding to three groups. 

The first group is composed of sick elderly or disabled. They 

are for those reasons far from social life. The second group 

consists of people between 60 and 65 isolated for socio-

economic reasons. Older people without specific problems are 

the third group. We could identify 9 persons: 2 couples, 3 

single women and 2 single men. They mainly live in Paris. 

They are between 60 and 95 years old.   

We use an investigative work in two parts. Fist, we have 

collected biographical interviews on the affinities, stories of 

friendship. Then, we are going to study a communications 

device with elderly people and neighbors in a French 

Department. Our interviews last 45mns. Data have been 

analyzed according to specific criterias. 

 

3.2 Theoric reference 

       This work is in the field of Science of Information and 

Communication (SIC), as proposed by Françoise Bernard 

“[14]” which revolves around questions of meaning, 

relationships, knowledge and action. We have adopted a 

constructivist approach that considers social reality as 

constructed by the actors involved, with questions about social 

representations and interactions. 

3.2.1 Sociology of relational dynamics 

          We borrowed theories in sociology and education 

science. The work of collection of interviews and the analysis 

of materials (life stories) was mainly inspired by the sociology 

of relational dynamics and the approach of the biographical 

interviews. 

Indeed, these approaches seem most appropriate to account 

for the complex nature of the relationship to another.  The 

660 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'14  |



relationship to the other depends on a variety of cultural and 

social contexts and the life, emotions and motivations of each 

individual. 

The sociology of relational dynamics of C. Bidart “[4]” 

studies the nature and inherent relational systems to each 

individual with his/her environment. The reticular perception 

can reveal underlying sociological data: community process, 

identity projection and social recognition, etc.  

C. Bidart writes: “What is the relationship to another? (…), 

this expression means there is a link that goes beyond the 

simple interaction, which has been registered in time, and has 

been crystallized beyond occasional exchanges.” The study of 

networks can highlight individual perceptions, needs and 

elective choices. It can also highlight changes associated with 

the stages of life, particularly in the context of advancing age. 

The level and the process of socialization for each person 

could be formalised by graphs, with peer relationships, 

breakups, interconnections, weak or strong links, etc.  

3.2.2 Method of biographical interviews 

         To complement this approach, we use the method of 

biographical interviews defined by C. Delory-Momberger 

“[15]”. This approach gives the possibility to consider the 

action as well as the meaning given by the narrator. It reflects 

his/her interpretation of his/her experiences through social 

space. The narrative highlights events and breaks in time and 

space.  

C. Delory-Momberger explains: “The intended object of 

biographical research (…) would be the study of methods of 

constitution of the individual as a social being singular”. 

On the side of listening, we would study by categories such as 

forms of discourse, the action plan, the recurring patterns or 

“Topoi”, the biographical management. 

3.2.3 Situational semiotic  

          Finally, in the field of Computer Science and 

Communication, we rely on Situational semiotic as formulated 

by A. Mucchielli based on a constructivist approach which 

study communications in a specific situation. 

A. Mucchielli “[16]” raises the question of relation to each 

other about social identifications, he writes: “Identify the 

other, it is the judge to define, and this judgment comes from 

the contexts.  Identify the other, is giving meaning to his being 

and locate him in a set of contexts”. The orientation for the 

action of an individual is built around different settings and 

contexts. 

The establishment of the reading grid of the interviews owes 

much to the work of the researcher, which offers a panoramic 

formalization table for facilitate the analysis of the situation. 

The table is divided into “frames”. The frames are determined 

based on the representations of the actor with the 

identification of its standards, challenges and temporal, 

spatial, physical and sensory aspects, etc… 

The reducing side of the model does not escape at the author. 

He  notes : “The modeling, is not defined here as the operation 

of model building, but in a constructionist perspective, it is 

defined as the development of a schematic representation of 

the operation of the studied phenomena, a representation 

obtained from a theory and a model”.  

 

3.3 First results and table  

      Using this method we have established a first approach 

that has yet to be finalized. 

We notice that each person has his specific relational schema.  

We have classified interviews into several categories. Here is 

an extract of the first analysis from three biographical 

interviews: 

 

  Dorothée   Audrey  Sylviane  

Biographical 

frame 

events  

Pension 

Work 

Marriage  

Death  

Childhood 

Studies 

Work 

Travels 

Marriage 

Death 

War  

Marriage 

Accident (vision 

loss) 

characteriza

tion of the 

relationship 

with the 

other  

Compensatory 

mode  

selective  

 

Adaptive mode  

 

Selective mode  

Type of links  

Favors direct 

links  
Direct links 

and 

interconnection  

No 

interconnection  

Methods 

activation  

Favors the 

common 

activity  

Friendly and 

ritualized  

Search help, 

support, taking 

account of 

disability  

 

Some elements are convergent, others are specific. 

We see as similarities, weak interconnections between 

members, transformation of the relational network at every 

stage of rupture (events, changes …), consolidation of the 

relationship through mutual sharing of a situation, search 

moments of shared pleasures. 

The specific elements are level of involvement, exchange 

modes, regularity of meetings, expectations and needs 

satisfaction. 

We confirm that age changes the relational schema of the 

person. A reorganization of the network is necessary with loss 

of familiar.  Changes concern the link density, the 

strengthening the local network, an increasing of distance 

relationship management (letters, telephones, etc.), 

relationships having less impact on the intimate sphere. 

 

3.4 The use of  ICT to mitigate loneliness  

       The use of social digital networks allowed emergence of 

many research about social relations by sociologists and 

experts of information systems management. Studies show that 

users of social digital networks, especially young people and 



older people, referred to as “silver surfers" are at first 

interested by exchanges with their friends or members of their 

family. The daily conversations contribute at the socialization.   

Serge Proulx “[17]” emphasizes specific aspects of uses of 

social and digital networks like:  Complete its profile and 

increasing its visibility, use specific modalities of exchanges, 

alternate the private and public communications, participate to 

collective contributions, expand weak and strong ties. But, the 

biographical interviews collected from elderly people show 

that these modes of communication existed before the digital 

relations like the self control described by Norbert Elias 

“[18]” or the reference to a public event like pretext to 

conversation. 

Nevertheless, some needs are specific to the elderly and 

isolated people. They need to understand the structuration of 

their emotional relationships and we think the digital network 

can be use in this case. Also, the design of the social networks 

interfaces seems far of habits of elderly people. The 

presentation of information cannot be treated by some users 

such as the elderly. They have difficulties to integrate certain 

technical functions like: the mailing lists, communities of 

contacts or the scrolling of messages. 

 

4 Conclusion  

          In a context marked by a technological and sanitary 

dominant approach and "top down” exchange, it is necessary 

to consider the formulated needs of users and to bet on the 

human in its ability to give meaning to its action. 

The initial findings show the desire and ability of elderly 

people to create a network of relationships, based on a 

singular relational process and redundant. Age rather than the 

socio-professional category reveals common specificities in 

the way to live relations (density, modalities, temporal and 

spatial forms, etc.). 

The analyze of social digital networks or traditional 

relationships help to understand impact of daily exchanges in 

the process of socialization. To allow people to build their 

relational network it seems necessary to use an 

accompaniment model which promotes creation of situations 

of communications. These situations could integrate ICT and 

their value of “conversational media”. Serge Proulx “[17]” 

writes: “the interpretation of activities on-line and off-line is a 

subject of interrogations for researchers, a challenge, and 

requires news methods for reconciling the technical and social 

universe”. 
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