
SESSION

CLOUD COMPUTING, ANALYSIS, AND
PERFORMANCE EVALUATION + BIG DATA

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 1

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

2 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Cyber Analysis Grids for Asynchronous

Distributed Cloud Services

R. William Maule, Ph.D.

Information Sciences Department, Naval Postgraduate School, Monterey, CA, USA

Abstract - Comprehensive application performance

assessment across geographically diverse private and

public clouds will require an integrated grid of analytics

services able to characterize services and processes in both

synchronous and asynchronous communication

environments. The analysis grid assumes continuous in-line

data collection of packets at cloud nodes and aggregates

services across the grid. Sampled data from service

performance measurement tools are integrated to assess

global enterprise performance and cyber operations across

distributed public and private clouds. This paper presents

analysis variables and data collection attributes important

for a comprehensive assessment of cyber operations within

a diverse and dynamic global cloud enterprise. Analysis

scenarios address asynchronous services, data

synchronization, and cyber security assessment. Scenarios

are abstracted from current test, measurement and analysis

issues ongoing in field experimentation. Variables,

attributes and tools to measure application and service

performance for implementations of distributed clouds are

advanced.

Keywords: Cloud, Analytics, Cyber, Grid, Enterprise

1 Introduction

Application performance monitors with robust metrics
and fine-grained measurement capabilities are critical for
comprehensive assessment of global hybrid cloud networks.
Real-time and continuous assessment from an out-of-band
analytics grid can help secure enterprise systems and ensure
adequate performance of mission critical applications. Cyber
analysis tools have evolved from a focus on Open Systems
Interconnection (OSI) Layers 2-4 for Media Access Control
(MAC), Internet Protocol (IP), and Transport Layer analysis
(respectively) to the current focus on OSI Layer 7 for
application, service and process monitor and assessment.
Layer 7 analytics capabilities for diverse and geographically
distributed hybrid clouds are not yet sufficient for
comprehensive analytics, especially when the cloud network
is global, faces communication-challenged operating
environments, and must support cloud nodes and machine-
to-machine (M2M) synchronization across dynamic nodes.
This paper advances some consideration for measurement
and analytics—from traditional network packet capture to
application layer service and process assessment. The

concept of an out-of-band analytics grid is advanced as a
means to mitigate content synchronization problems in
asynchronous services, such as might be found in “Internet-
of-everything” and dynamic device scenarios.

Historically, sensor-based data sampling and capture
services have enabled network and application monitoring
sufficient to characterize sampled data for a comprehensive
enterprise view of networks, protocols, and overall
communications. Tools to additionally address applications
and services in a dynamic and diverse cloud-based
enterprise, and able to reach within cloud virtual machines to
assess processes, process security, and process dependencies,
are loosely available but not sufficiently integrated to
provide comprehensive real-time analytics. An out-of-band
analytics grid, similar to telecommunications out-of-band
signaling systems, might benefit those required to perform
cyber operational assessment of application content in
globally distributed networks, especially those composed of
clouds and virtual machines at one extreme, and Internet-of-
everything devices at the other extreme, and the collective
married with asynchronous communications and content
synchronization requirements.

In the above scenario the cloud network becomes the
backbone on a global information grid. The smaller cloud
nodes the intermediary devices, and the end-user devices the
service initiators in service-based publication and
subscription scenarios. In this context, cloud services can be
measured through traditional layer 2-4 network tools, layer 7
application tools, virtual machine (VM) analysis suites, and
specialized tools from cloud service providers. A first step
toward a systematic understanding of cloud network
analytics requirements is to address the variables required for
analysis of multi-layered architectures. This can begin with
categorization of key variables required for analysis and the
metrics necessary to effectively evaluate services and
processes. Once established, Quality of Service (QoS)
metrics can be established to help measure primary
components in real-time. Metrics therein provide a
foundation for assessment of future services including QoS
contracts and assessment of web services between
heterogeneous, distributed clouds. The context and
referenced scenarios assume a need for real-time or near-
real-time analytics vice post-capture analysis.

Toward this objective, this paper examines some of the
measurement variables available to those responsible for
network, application, process and security analysis—herein
collectively termed “cyber analysis”. The collective and
integrated use of the tools for distributed clouds is

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 3

considered a “cyber analysis grid” and herein is considered
out-of-band, separate network able to mitigate asynchronous
communications.

2 Cloud Analytics

Researchers have addressed cloud analytics from
multiple perspectives. Some have separated the physical
attributes of communication, computation, memory and
storage from capacity measures such as transaction speed,
availability, latency, reliability, and throughput [1]. Cloud
servers and databases have been given stress tests in various
configurations using both Web Services Description
Language (WSDL) and Representational State Transfer
(REST) queries to determine application availability and
responsiveness [2].

While the history of analysis for distributed systems is
well established, the defining characteristic of clouds as
distributed systems is virtualization – and researchers have
accordingly assessed attributes of cloud virtualization for
dependability and associated measures [3]. In a similar vein,
studies have examined more narrowly the performance and
scalability metrics in cloud Software as a Service (SaaS)
offerings to establish baselines [4] which can be applied to
cloud offerings from different vendors.

Tools have been developed to look specifically at Layer 7
applications, services and processes and some reach into
cloud virtual machines, although few reach to the other
extreme and into end-user devices. Application Performance
Monitoring (APM) tool suites can be applied within the
cloud and are available in SaaS offerings by cloud vendors.
When applied against cloud resources, APM tools can
provide insight into not only application and service
performance but to underlying network infrastructure.

Gartner defines APM as tracking, in real time, the
execution of the software algorithms that constitute an
application; measuring and reporting on finite hardware and
software resources that are allocated to be consumed as the
algorithms execute; determining whether the application
executes successfully according to the application owner’s
requirements; recording latencies associated with execution
step sequences; and determining why an application fails to
execute successfully, or why resource consumption and
latency levels depart from expectations [5].

To achieve the capabilities above, networks and
applications need to be mapped, transactions profiled, and
analytics applied to event processes to determine operational
patterns. Once the metrics for evaluation have been
established, and some operational baselines have been set,
researchers can evaluate the metrics against those baselines
to assess the viability of new applications or services.

An advantage of programming services for clouds is that
assessments against baselines can be incremental—with
small easily integrated web services cumulatively evolving
to provide intended services. Metrics and measurement in
this scenario can be more straightforward. However, this
environment of easy reuse and integration means that the
cloud software infrastructure is extremely flexible and
therein complex for analysis; hence, the need to evaluate

applications and services within the context of the particular
cloud instance under evaluation. The concept of an
integrated and comprehensive approach, and real-time end-
to-end analytics, is lost.

Additionally, de-composition of services can introduce
cloud-specific bias and therein prevent comprehensive
assessment. For example, a composite application may
subscribe to a data set from a remote web service, process
and otherwise manipulate that data, add new data, and then
publish the composite as a web service. A network outage
that impacts any dependent data stream may cause or errors
or incorrect data in the composite application, or for other
applications that subscribe to the composite, and so on. Fault
traces in highly integrated composite applications that use
widely dispersed or federated web services can be extremely
difficult to monitor and decompose. Interpreting composite
data delivered during a failure can lead to incorrect
decisions. To prevent this, some minimal set of performance
and QoS standards must be developed, agreed to within the
federation, adhered to, and modified when necessary [6].

3 Cloud Security

The debate continues on whether clouds increase or
decrease security; the underlying cyber issues are too often
ignored—cloud or not. Most of those that wear the “cyber”
or “security” cap in their organizations have a background in
the network area and the focus of security is on perimeter
defense. Yet, the perimeter was breached years ago and the
varmints are already in the enterprise—necessitating a very
different cyber strategy. In many aspects we are fighting
yesterday’s cyber wars.

Added to this is that the multi-tenancy aspect of clouds
may facilitate cyber-attacks on a massive scale. In addition to
traditional security measures for servers and computers each
virtual machine will need to be carefully monitored to ensure
the hypervisor is not compromised [7]. Complicating matters
is that today’s anti-virus, malware and firewall detection and
protection methods are proving to be ineffective in multi-
tenant cloud environments [8].

Since consumption of an input causes a change to system
memory and resultant processes—no matter how seemingly
benign—every input is essentially a program [9].
Exploitation can be a simple form-based data inject that
triggers existing bugs in software at one extreme—or a
persistent threat loaded years ago from a popular web site
and waiting all these years for activation. Various methods
have been advanced to attempt to mitigate such threats.

 A layer of middleware can derive context for role-based
access controls to assist with content authorization control
while simultaneously tracing user access to system resources
[10]. Advancing the “analytic grid” concept, in a related
context researchers have modeled frameworks that feature a
user data collector, cloud service component, and cloud
intrusion detection with encrypted communications between
each component [11]. Similarly, a distributed architecture
which collects data to provide intrusion detection in
hierarchical and multi-layer architectures has been advanced

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

4 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

which uses distributed security components to perform
complex event correlation analysis [12].

While all of the above are helpful they are steeped in
perimeter defense vice security at the process level. Agreed,
as a first step in security the perimeter defense is required.
The ability to aggregate data from security sensors and send
this data via an agent across an analytics grid for collective
processing helps build a more robust infrastructure—which
can be accomplished with the traditional layer 2-4 tools.
Next is to evaluate deep into the Layer 7 applications and
their services and processes.

4 Service And Process Evaluation

Taken for granted within the programming community,
but perhaps not apparent to users is that clouds provide
services and are therein a facet of a Service Oriented
Architecture. Platform as a Service (PaaS), Infrastructure as
a Service (IaaS), Software as a Service (SaaS) and so on are
all services of clouds. Clouds are therein both a component
of a Service Oriented Architecture (SOA) and can
themselves host or provide a SOA. As such, SOA
engineering tools, methodologies and algorithms offer an
additional means for cloud network analysis [13]. SOA
approaches tend toward fine-grain process analysis and may
provide useful perspectives to assess risk from component
interaction. In this context the focus would be on frameworks
for component assessment and methods for component
performance and security evaluation.

Monitoring, analyzing, and understanding component
interaction is difficult—yet essential to solving and
preventing performance and QoS failures [14]. Cumulative
or composite services multiply the number of component
interactions that must be monitored, controlled, and
debugged due to this increased number of components and
processes [15]. This is accentuated in widely distributed
hybrid clouds, with asynchronous communications and the
need for content synchronization, and with the ever-growing
plethora of end-user devices needing to subscribe to the
services. Measures of service and resource availability in
composite, cumulative services becomes a primary concern
as the paradigm shifts from single process to integrated
services [16, 17].

In addition to the complexity of composite services is the
cumulative impact of operations in each of the OSI layers,
e.g., process, service, routing, transformation, etc. [18]. The
loosely coupled and heterogeneous nature of cloud services
necessitates well-defined metrics to diagnose performance
[19]. One technique is to define desirable quality attributes
and then trace the metrics required to measure them, and at
different levels of abstraction [20]. Another is to assess
service granularity and service coupling between services
and clients [21]. Measures may include process speed,
system reliability, throughput, and availability [22].

Services are often re-used across multiple projects [23].
While there are solid heuristics for evaluation of specific
service projects [24], heuristics to address the impact of
component variations are generally absent. Yet, practical
limitations of federation performance risk in distributed,

asynchronous clouds requires such heuristics. A basis for
analysis may be adopted from research on architectural
frameworks [25]. Performance assessment might apply
frameworks for service interaction against user requirements
[26, 27] to formalize analysis of component relationships,
object interactions, and associated rules.

Finally, it must be borne in mind that service interactions
with clouds are rarely absolute and often constantly
changing. Analysis tools which assess patterns may be
difficult to scale to global cloud services. Analysis
frameworks must therein be at a rather high level of
abstraction, which further complicates analysis.

5 Cyber Analytics

As a preliminary assessment to help categorize network
and application analysis tools and variables several
laboratory and field tests were developed. Component
interaction for distributed cloud nodes was assessed that
included six (6) physical hosts supporting thirty (30) virtual
servers with representative enterprise SOA builds on
VMware, Hyper-V, and Xen virtual machines. The focus
was assessment of the tools and analysis approaches vice
specific component or application evaluation. Table 1
outlines the test components and defines the broad categories
for preliminary analysis of tools and analysis methods to
more fully understand component and process interaction in
a distributed cloud network.

TABLE I. TECHNICAL ANALYTICS FRAMEWORK.

Service Variables / Attributes

1 Storage Data retrieval:
1. Authoritative data sources
2. Content prioritization
3. Data synchronization

4. Conflict resolution
5. Archival operations

2 Repository Analytics metadata:
1. Hardware/software clusters
2. Database performance
3. VM performance and caching
4. Security authentication
5. Content authorization
6. Search and pattern recognition

3 Grid Information collection:
1. Database queries and latencies
2. Process and performance
3. Shared or dedicated resources

4. Packet and/or flow data
5. Physical or virtual collection
6. Agent processes

4 Virtualization Cloud management:
1. VM systems management
2. VM performance characteristics
3. IaaS, PaaS, SaaS attributes
4. Shared resource metrics
5. Security and systems messaging

5 Services Application capabilities:
1. User and machine interfaces
2. Individual/composite processes
3. Content discovery and delivery

4. Utilization statistics
6 Containers Processing services:

1. Component interoperability
2. Deployment compatibility
3. Processes reliability
4. Performance QoS

7 Registry Initiation / Acknowledgement:

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 5

1. Object permissions
2. Replication and synchronization
3. Lookup throughput, latency

8 Service Bus Federation Messaging:
1. Cache and queue
2. Interface / exchange
3. Message interoperability

4. M2M compatibility
5. Throughput, latency
6. Transmission errors

The intent is to not only develop a methodology for

understanding interaction but also a means to structure data
collection nodes in key locations. Again, the desired end
state is an analysis grid capable of fine-grained analysis and
sufficient for cyber operational assessment of distributed
cloud networks to include various communication scenarios
and end-user devices. Analysis methodology and supporting
tools will need to be sufficient to assess both synchronous
and asynchronous communications, and in the latter the
synchronization processes required for content management
in dynamic, complex, multi-layered composite transactions.

Performance variables in the storage tier will be assessed
based on the intended use of the services—in-lieu of tests on
hardware functions such as memory, processor speed or
caching services. The concern herein is with the location of
data in widely distributed clouds with 100+ nodes and the
analysis metrics required to address authoritative data
sources, and content prioritization, synchronization, and
conflict resolution. Example builds will range from small
and optimized for specific local functions at one extreme, to
large and capable of federation across a global cloud
backbone at the other extreme. Archival operations will be a
concern at all nodes. There are performance variables
associated with media selection and associated metrics for
throughput, latency and capacity.

The metadata repository will be considered a function of
an in-memory or persistent database, XML schema, or
similar. Performance characteristics, metrics and variables
will include those of a traditional database as used for
caching, security authentication or authorization, as well as
content-specific metadata for search and associated content
pattern recognition. Clustering and virtualization on overall
metadata repository operations can be addressed. Traditional
metrics for database analysis can be applied to the metadata
repository, plus, performance metrics specific to user
access—such as performance issues in virtualization and
distributed server clusters.

As an example in this area, Table II provides the results
of a test of basic repository functionality in the test
environment and exposes some basic metrics. Eighteen (18)
tests were run with only one (1) failure and no errors for an
overall success rate of 94.44%. Time required to run the
assessment tests was 0.437 seconds. Tests captured typical
user sessions in secured operations and then replayed those
interactions with increasing load and number of users. For
QoS capability validation, future tests might record Table II
metrics at periodic time intervals while increasing load on
the Repository, and compare recorded metrics with baseline
measures of Table II.

TABLE II. METADATA REPOSITORY TEST METRICS.

Metric Status Time

Test for Directory Structure Success 0.016
Test Properties File For False Positive Success 0.000
Test Properties File For CMEE Success 0.000
Test Properties File For Database Success 0.000
Test Event Setup Success 0.000
Test Encryption Password Success 0.000
Test SSL URL Success 0.281
Test Single Substitution Success 0.063
Test Single Match Success 0.000
Test Number Sub String Match Success 0.000
Test XQL Tool Loop Children Success 0.000
Test UTF8 Encoded XML Success 0.015
Test Reading Build Tag From Jar Success 0.000
Test Invalid XML String Success 0.016
Test Parse Roundtrip Success 0.000
Test XPath Query Success 0.000

Returning to Table I, the “grid” is herein considered

specific to analysis of independent cloud nodes and the

aggregate of that analysis. Specifically the analytics

available from layer 1-7 data capture and the processing

tools that render statistics on applications, services or

processes. Current commercial tool offerings in grid

computing tend to focus on either the storage or application

tier—we are concerned with latter. Grid performance

measurement in this context can be collected through raw

packet capture, header information from packets, flow data

from routers or other devices, or via agents added to hosts

on cloud nodes. Agents remain resident on the host and

gather information from specified applications, services and

processes and send that data to the central console, portal or

dashboard. To note in this example is that the use of an

agent can add to host latency, reduce the host’s working

memory, or otherwise detrimentally impact the processes on

which it is reporting. Multiple agents on a host may conflict

and further degrade performance. So, introduction of an

agent on a host can introduce performance risk—the

solution can become the problem. However, in some

contexts, the performance tradeoff is worth the risk. For

example, a grid agent may not only monitor a process but

intervene to control that process should a malfunction or

security breach necessitate intervention. A final variable is

whether the data collection grid is composed of physical,

dedicated devices, or embedded within virtual machines. If

the latter then the amount of physical assets assigned to the

analysis grid, such as memory, caching and processing, will

impact the analysis process as well as the hosts being

monitored. While the overall concept is an out-of-band

analytics grid, the precise monitoring of collective processes

will require some level of machine intervention—agent or

otherwise.

Virtualization is assumed throughout each cloud node.

Assessment addresses the various levels of resource sharing

between VMs as well as the degree and type of separation

between virtual machines and shared resources—such as

storage, network interfaces, and security mechanisms

including firewalls and network access controls. Messaging

buses and apparatus between VMs both internally and

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

6 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

between cloud nodes will address queues, caching, and

messaging buses. In addition is the environmental context of

the different virtualization approaches, including VMware,

Xen and Hyper-V. Virtualization operational metrics can

address performance measures in virtual machine creation,

cloning, failover, and deployment.

Services exist with the application server or middle tier.

Services process messages across servers and clouds on a

service bus, and coordinate this via a registry. So,

assessment of applications in a SOA cloud necessitates an

understanding of the physical and logical “plumbing” of the

architecture—which includes the services and their

operations. Without a complete understanding of the

“plumbing” the architecture will never really be understood

or secure. In this aspect the servers and their virtual machine

instances can be measured for physical properties of the

cloud node and the software processes of the services, bus,

and registry. Performance variables might include process

kills and restarts that impact services, latency within or

across services in composite applications, and interfaces

between services and to hardware or user interfaces.

Containers are the building blocks of service

deployment. Container metrics are generally for the

processes they support. The author’s laboratory and field

tests have evaluated containers supporting a range of

configurations, from a simple container in one hardware box

such as a JVM and application server, to a container that

spanned geographically distributed hosts at the other

extreme. There are related options for service deployment,

and there are different QoS metrics specific to each

configuration.

Registry metrics can help assess service invocation,

metadata management processes, transport, and QoS.

Enforcement mechanisms report whether component

registrations meet contractual obligations. Metrics can be

applied for each step of the registration process, including

the WSDL forms that have been published to a Universal

Description Discovery and Integration (UDDI) service,

reference information for service providers, the endpoint

interface specification to enable programs to connect M2M

to services with associated policies and transformations.

The service bus provides communications between

applications within a cloud node, and serves as the

communications conduit between nodes in a distributed

cloud architecture. As such, the service bus is the lifeline of

a distributed cloud architecture and of the analytics grid atop

that architecture. As such the service bus is a potential

choke point. Failure of service interoperability or message

throughput can cause a federation-wide system failure. At a

high level, metrics consider interoperability and logical

correctness, latency, transformations, and service interfaces.

Current analysis techniques in this area tend to focus on

operational variables, or on content performance variables

in content-based routing. Table III provides more detailed

metrics for service bus tests, to be gathered at each node. In

an analytics grid, baseline metrics would be established over

a range of loads at each node, then the metrics would be

synchronized at the central node.

TABLE III. SERVICE METRICS.

Metric Description

Execution Time Time between message reception at the transport
and exceptions or responses; if the transaction
aborts, and messages placed back in the queue,
each retry de-queue counts as a message.

Success /
Failure Ratio

The number of messages that result in an exit
with the system error handler or in an exit with a
reply failure action (Total Messages - Number of
Messages with Errors) / Messages with Errors

Messages with
Errors

Messages with WS-Security errors; validation
errors and the count of validation actions that
have failed—to include proxy services.

Status
Messages

Service mediation metrics on requests and
responses; routing status between service
endpoints; conditional status messages with
metrics on processing and transformation
between service endpoints.

Message
Routing

Metrics on message content, multicast or multi-
path messages; dynamic service provisioning,
versioning; data element values; transformations
applied to messages to multiple destinations,
SLA-based changes; conditional checks and
metrics on branch statements, values of data
elements that determine routing logic.

Service Level
Agreements

Contractual thresholds for availability,
performance, and queuing.

At a distinctly different level in our analytics grid are the

management components (Table IV). In some aspects these

components—often overlooked in cloud analytics or cyber

security because they are programming vice network

tools—become our core for cyber security in a distributed

cloud architecture. They are perhaps our best available

means for comprehensive enterprise analysis. However, in

order to fully realize the benefits of this approach, one must

be narrowly focused to Layer 7 issues—and within the OSI

application tier specifically on processes and services within

applications. For perspective, the issue stems from coding

issues vice overall technical operations. Do you view the

cloud as a physical data center to be programmed and

secured via physical processes? If so then you are concerned

with traditional programming and perimeter defense. Or, do

you see the cloud as a web of virtual services with content

discovered and processed as needed. In this instance your

concern is with the overall flow or orchestration of the

services and the governance processes to oversee the service

and process flows and resultant security. At this level, cyber

security exponentially deepens. Here we are far deeper than

traditional security measures, down to the code. Herein lies

modern cyber operations. While the management layer in

our analytics grid does not solve anything, it is a means to

understand what is really happening in our distributed cloud

network and therein a means to ensure performance of the

enterprise, to secure the services that transit our cloud

nodes, and to secure the processes that run our services.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 7

TABLE IV. CYBER MANAGEMENT.

Service Variables / Attributes

9 Orchestrate Software logic:
1. Process / procedure monitors
2. Route logic and class paths
3. Service workflows

10 Governance Service logic:
1. Agreements
2. Policy enforcement
3. Component management

11 Cyber Service security:
1. Authentication
2. Authorization
3. Encryption

Orchestration supports event coordination and therein

helps manage services, typically providing interfaces such

as Business Process Management (BPM) and tools to build

and control processes and web service interactions, often

through Business Process Execution Language (BPEL).

Metrics are needed for BPEL interface functions, web

service policy enforcement, and for BPEL throughput and

latency to include remote procedure calls.

Governance systems support SOA management in an

enterprise architecture. Applications and services collect

data and metrics over time intervals—although systems can

assist with real-time management. Agents can be deployed

to help provide service metrics and to support governance

actions such as policy enforcement, service agreements, and

runtime procedures. Metrics could include virtual machine

or container operations and messaging linkages.

Connections to Business Activity Monitoring (BAM)

systems can occur at the governance layer. Potentially,

output from Governance software can appear on BAM

dashboards, in which case dashboard variables would assess

compatibility with analytic and decision support software.

Cyber Security can be addressed at the service or

process level as a function of standards enforcement, such

as Web Services Policy (WS-Policy) to define conditions

under which a service is to be provided. Metrics based on

the performance of the service can be monitored for

deviations from expected patterns. WS-Policy metrics can

address data processes within composite services to

conceptually provide security assessment for distribution

publication/subscription services. SLAs can define what

service providers have agreed to publish and consumers

have agreed to accept. When integrated into governance

systems, we can generate profiles of who the users are and

what they are doing with the data. Agents can trigger alerts

when SLA QoS specifications are not achieved or are

altered. Metrics may include: success rate (success

ratio/failure ratio), message count, error count, failover/retry

count, validation error count, WSS error count, minimum

response time and maximum response time.

6 Application Analytics

Now that we have established a conceptual basis and

some physical possibilities for a cyber-analytics grid based

on practical experience, the next step is to look briefly at

tooling which might support the concept of an analytics grid

for distributed cloud service and security assessment. APM-

based solutions seem to hold the most promise; however,

there is variation in the capabilities and implementation.

Generally, network vendors are moving their products

“up the stack” to add application insight to current network

management suites [28]. APM big data analytics tools are

being advanced that can correlate thousands of metrics to

identify patterns from real-time monitoring to provide

topology impact assessment, application performance

testing, end-user experience monitoring, transaction and

SLA assessment, application dependency mapping,

automated network modeling, service modeling, root cause

problem analysis, cyber security alerts, and fine-grain event

monitoring with real-time predictive analytics [29].

Software-defined data centers [clouds] and networks

have changed requirements for end-to-end application

analysis, necessitating that monitors be non-invasive, able to

persist and characterize data as it traverse through real and

virtual servers and networks and into different types of end-

user device, and provide context correlation from real-time

packet analysis [30].

Purpose-built devices to support an analytics grid and

capable of evaluating not only traditional network

communications but also providing visibility into layer 7

traffic and cloud virtual machine services are steadily

evolving. The “fabric” contains tools able to provide

pervasive visibility across physical, virtual and software-

defined networks (SDN) with appliances at cloud nodes to

filter, replicate and aggregate flow data to a centralized

monitoring station [31].

A consideration in deep analytics is to address critical

variables within the code test and quality assurance process.

Approached from this angle and we have a basis for not

only understanding that something has occurred but a

potential means for a “deep dive” to examine the code [32].

Such an approach would integrate quality assurance within

the software development and deployment life cycle to

provide continuous analytics within an agile software

process. While this concept offers potential, technical and

bandwidth challenges for such a solution in a distributed,

operational cloud network are not fully available today.

The author believes the previously mentioned tools,

together with the out-of-band analytics grid concept, and

analysis of variables discussed throughout this paper, offers

a next-generation possibility for comprehensive, distributed

cloud service analytics.

7 Conclusion

An analytics grid for real-time assessment of a

heterogeneous, distributed cloud network will require a

number of tools and capabilities. Additionally the network

will need to support extremely fine-grain analysis, providing

not only visibility but code access. While not available

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

8 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

today in an integrated package the “building blocks” are

available and each addresses a required analytic task. This

paper has presented the some of the required capabilities for

a cloud analytics grid, some of the variables to be addressed,

and some of the tools that might evolve into a

comprehensive, integrated suite required for a cloud

analytics grid. Subsequent research can address additional

variables and evolve the concept as new tools increasingly

address these analytic requirements.

8 Acknowledgment

The author wishes to acknowledge OPNAV for support of

this research.

9 References

[1] Zheng L., O'Brien, L., Zhang, H., and Cai, R. “On a Catalogue of
Metrics for Evaluating Commercial Cloud Services”, Proceedings of
the 2012 ACM/IEEE International Conference on Grid Computing
(GRID), 2012, pp. 164-173.

[2] Zhao, L., Liu, A., and Keung, J. “Evaluating Cloud Platform
Architecture with the CARE Framework”, 2010 17th Asia Pacific
Software Engineering Conference (APSEC), 2010, pp. 60-69.

[3] Guan, Q., Chiu, C., and Fu, S. “CDA: A Cloud Dependability
Analysis Framework for Characterizing System Dependability in
Cloud Computing Infrastructures”, 2012 IEEE 18th Pacific Rim
International Symposium on Dependable Computing (PRDC), 2012,
pp. 11-20.

[4] Gao, J., Pattabhiraman, P., Bai, X., and Tsai, W. “SaaS Performance
and Scalability Evaluation in Clouds”, 2011 IEEE 6th International
Symposium on Service Oriented System Engineering (SOSE), 2011,
pp. 61-71.

[5] Kowall, J., Cappelli, W. “Magic Quadrant for Application
Performance Monitoring”. Stamford, CT: Gartner, 2013. Available:
http://www.gartner.com/technology/reprints.do?id=1-
1ODYDEA&ct=131219&st=sb

[6] Maule, R., and Lewis, W. “Performance and QoS in Service-Based
Systems”, Proceedings of the IEEE 2011 World Congress on Services
Computing (SERVICES 2011), 4-9 July, Washington, DC, 2011.

[7] Kalagiakos, P., and Bora, M. “Cloud Security Tactics: Virtualization
and the VMM”, 2012 6th International Conference on Application of
Information and Communication Technologies (AICT), 2012, pp. 1-
6.

[8] Flood, J., and Keane, A. “A Proposed Framework For The Active
Detection Of Security Vulnerabilities In Multi-Tenancy Cloud
Systems”, 2012 Third International Conference on Emerging
Intelligent Data and Web Technologies, 2012, pp. 231-235.

[9] Bratus, S., Darley, T., Locasto, M., Patterson, M., Shapiro, R., and
Shubina, A. “Beyond Planted Bugs in “Trusting Trust”: The Input-
Processing Frontier”. IEEE Security & Privacy, January/February
2014, pp. 83-87.

[10] Hiray, S., and Ingle, R. “Context-Aware Middleware in Cyber
Physical Cloud”, 2013 International Conference on Cloud &
Ubiquitous Computing & Emerging Technologies, 2013, pp. 42 – 47.

[11] Yassin, W., Udzir, N., Muda, Z., Abdullah, A., and Abdullah, M. “A
Cloud-Based Intrusion Detection Service Framework”, 2012
International Conference on Cyber Security, Cyber Warfare and
Digittal Forensic (CyberSec), 2012, pp. 213-218.

[12] Ficco, M., Tasquier, L., and Aversa, R. “Intrusion Detection in Cloud
Computing”, 2013 Eighth International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, 2013, pp. 276-283.

[13] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design, Prentice Hall, New York, 2005.

[14] Parsons, T., Mos, A., Trofin, M., Gschwind, T., and Murphy, J.
“Extracting Interactions in Component-Based Systems”, IEEE
Transactions on Software Engineering, Vol. 34, No. 6, 2008, pp. 783-
799.

[15] Liu, G., Zhu, Z., Li, Y., Li, D., and Cui, J. "A New Web Service
Model Based on QoS", International Symposium on Intelligent
Ubiquitous Computing and Education, 2009, pp. 395-399.

[16] Luo, J., Li, Y., Pershing, J.; Xie, L., and Chen, Y. “A Methodology
for Analyzing Availability Weak Points in SOA Deployment
Frameworks”, IEEE Transactions on Network and Service
Management, Vol. 6, No. 1, 2009, pp. 31-44.

[17] Rajan, H., and Hosamani, M. "Tisa: Toward Trustworthy Services in
a Service-Oriented Architecture", IEEE Transactions on Services
Computing, Vol. 1, No. 4, 2008, pp. 201-213.

[18] Lee, Y. “Event-driven SOA Test Framework Based on BPA-
Simulation,” First International Conference on Networked Digital
Technologies, 2009, pp. 189-194.

[19] Her, J., Choi, S., Oh, S., and Kim, S. "A Framework for Measuring
Performance in Service-Oriented Architecture", Third International
Conference on Next Generation Web Services Practices (NWeSP
2007), 2007, pp. 55-60.

[20] Shim, B., Choue, S., Kim, S., and Park, S. "A Design Quality Model
for Service-Oriented Architecture", 15th Asia-Pacific Software
Engineering Conference (APSEC 2008), 2008, pp. 403-410.

[21] Xiao-jun, W. "Metrics for Evaluating Coupling and Service
Granularity in Service Oriented Architecture", International
Conference on Information Engineering and Computer Science
(ICIECS 2009), 2009, pp. 1-4.

[22] Gao, J., Wu, Y., Chang, L., and Meldal, S. "Measuring Component-
Based Systems using a Systematic Approach and Environment",
Second IEEE International Workshop on Service-Oriented System
Engineering (SOSE 2006), 2006, pp. 121-129.

[23] Kumari, G., Kandan, B., and Mishra, A. “Experience Sharing on SOA
Based Heterogeneous Systems Integration”, 2008 IEEE Congress on
Services, Honolulu, HI, 7-11 July 2008.

[24] Hau, T., Ebert, N., Hochstein, A., and Brenner, W. “Where to Start
with SOA: Criteria for Selecting SOA Projects”, Proceedings of the
41st Hawaii International Conference on System Sciences, Waikoloa,
HI, 7-10 January 2008.

[25] Roach, T., Low, G., D’Ambra, J. “CAPSICUM–A Conceptual Model
for Service Oriented Architecture”, 2008 IEEE Congress on Services,
Honolulu, HI, 7-11 July 2008.

[26] Choi, S., Her, J., and Kim, S. “Modeling QoS Attributes and Metrics
for Evaluating Services in SOA Considering Consumers’ Perspective
as the First Class Requirement”, IEEE 2nd Asia-Pacific Services
Computing Conference, Tsubuka Science City, Japan, 11-14
December 2007.

[27] R. Maule, “Quality of Service Assessment in SOA Synchronous
Networked Communications”, Proceedings of the 2007 International
Conference on Computing, Communications and Control
Technologies (CCCT 2007), Orlando, FL, 12-15 July 2007.

[28] Craig, J. Application Performance Management (APM) in the Age of
Hybrid Cloud: Ten Key Findings. Boulder, CO: Enterprise
Management Associates, 2013.

[29] Azoff, M. Solution Guide: Application Performance Management
(IT017-003964), 25 May 2012. Available: http://ovum.com

[30] Supasatit, T. ExtraHop IT Operational Intelligence Platform. Seattle,
WA: ExtraHop Networks.Available: http://www.extrahop.com

[31] Gigamon. Pervasive Visibility for the Enterprise: Solutions Brief.
Milpitas, CA: Gigamon, 2013. Available: http://www.gigamon.com

[32] TechTarget. A Guide to Agile Testing for QA and Test Managers.
Available: http://www.techtarget.com

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 9

Analysis of ICmetrics features requirements in Cloud environment

Bin Ye

School of Engineering and Digital Arts

University of Kent

Canterbury, UK

by30@kent.ac.uk

M.Haciosman, Gareth Howells

School of Engineering and Digital Arts

University of Kent

Canterbury, UK

mh521@kent.ac.uk , W.G.J.Howells@kent.ac.uk

Abstract—As web-server spoofing is increasing, we

investigate a novel technology termed ICmetrics, used to

identify fraud for given web servers based on measurable

quantities/features. The novel concept ICmetrics is used to

detect spoof websites with the advantages of a higher level

of security with increased speed and template free

encryption. ICmetrics technology is based on extracting

features from digital systems’ operation that may be

integrated together to generate unique identifiers for each

of the systems or create unique profiles that describe the

systems’ actual behavior. Ideally, the nature of the

features should be identical for all of the systems

considered, while the values of these features should allow

for unique identification of each of the system servers. This

paper looks at the properties of the several behaviors as a

potential ICmetrics features, and explores properties

which affects the stability of the system’s performance. We

conclude three requirements for ICmetrics system.

Keywords—security, ICmetrics, encryption, Cloud

computing, biometrics

I. INTRODUCTION

In recent years, There are two problems arises due to internet

security issues which has caused as increasing number of spoof

websites, E-mail scams, fake application servers or some other

format of fraudulent information [1]. Firstly, they all exhibit

one thing in common that they guide you to a new link which

pretends as one of your familiar web servers. For instance, you

click a link on a page or in an email you have received. The

email is sent from the bank; it has banks’ logo and consists of

their usual style. The clickable link redirects you to a page

with the usual account login fields for you to enter your

username and password. You type in your username and

password but for some reason it doesn't log in. Everything is

as it should be. The problem is that are you certain that the site

you are looking at is what it appears to be? Unfortunately, it is

very possible that you have just become a victim of a crime

involving a "spoofed" website and the contents of all your bank

accounts are now at risk. Although current bank systems

already provided encryption systems, encryption cannot

necessarily protect against fraudulent data manipulation where

the security of encryption keys cannot be absolutely

guaranteed. This encounters a second problem that current

encryption techniques all expose a weakness that they all have

to store an encryption template [2]. If the template is stolen,

then, the entire system is under risk. Conventional encryption

systems such as biometrics pose a similar problem; they have

to store their template for key generation very carefully. Would

feel safe with this kind of system?

The system in this paper present a novel technology called

ICmetrics which would provide template free encryption, ease

of provision, free from any form of malware, authentic and to

allow use of service efficiently from diverse locations [3]. It is

necessary in some sensitive area’s such as the military and

banks. The ICmetrics technology is developed at the University

of Kent for deriving unique encryption keys based on the

characteristics of hardware or software systems (or a

combination of software and hardware configuration) [4].

Technically, it provides two advantages: (1). It removes the

need to store any data directly containing the value of the

encryption keys. (2). It requires all characteristics of features to

generate encryption keys. It is based on extracting features

from digital devices operations and software behaviors that

may be integrated together to generate unique identifiers for

each of the devices or software based services to create unique

profiles that describe the systems actual behavior [5]. Any

changes in these identifiers (profiles) during devices or systems

operation would signal about a possible safety or security

breaking within the system. ICmetrics is defined as a two-step

process[6]:

 Calibration phase:

1. For each sample device or system: measure the desired

feature values.

2. Generate feature distributions describing the frequency

of occurrence of discrete value for each sample

system.

3. Normalize the feature distributions and generate

normalization maps for each feature.

 Operation phase:

1. Measure desired systems’ features.

2. Apply the normalization maps to generate values

suitable for key generation.

3. Apply the key generation algorithm.

 However, in our previous work [1, 3], the target space
was linear in nature. We used enhanced Peak-Trough
detection[4, 5], and kernel estimation algorithms [10] to
determine the various modal clusters taking one feature at
a time. Our current research, however, is focused on

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

10 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

mailto:by30@kent.ac.uk
mailto:mh521@kent.ac.uk
mailto:W.G.J.Howells@kent.ac.uk

investigation of multi-dimensional spaces combining
various features where each system mode is equal-distant
from every other. This would allow the system to be
applied to Cloud servers which have not formed part of
the calibration sample within any enrolment of known
samples from the target servers. Such a generalization
provides an improved mapping onto the key generation
space and allows the multi-modal nature of the feature
distributions to be effectively integrated within the
overall system [11]. Considering multiple features that are
different in nature has also another advantage of designing
hybrid ICmetrics systems that can include features derived not
only from one system, but also from different systems from a
same Cloud server provider. Such an approach is particularly
useful for autonomous and intelligent Cloud computing
environments where Cloud server customers and Cloud server
companies frequently use and interact with Cloud
infrastructure. For example, data transmitting to and from a
web server which it hosts on Cloud infrastructure can be
encrypted using features extracted not only from servers’
characteristics but also from the signal generated by the users’
behaviors. We investigated several software behaviors as
potential ICmetrics features and evaluate if it could be used to
determine a device uniquely in a multi-dimensional feature
space.

II. FEATURE ACQUISITION

 Building an experimental platform for extracting ICmetrics

features involves several stages: (1) designing the hardware-

software test-bench; (2) programming simulations of systems’

operation; (3) developing tracing methods for data acquisition;

(4) recording feature values for their further analysis as

required by ICmetrics research. The following subsections

describe implementation of these stages in turn.

A. Software test-bench

The server consist 3 desktops and it is managed by

Eucalyptus. Three Xen virtual machines are running on top of

the cluster. For this research we use LTTng 2.x [12] as a

profiling tool to extract desired feature values. The list of

employed software is listed below:

 Dell optiplex 745 core2 E6600 2400(memory:

2.0G; CPU 2.4G 2) 3.

 Apache 2.2, Eucalyptus 3.4.0, Xen 3.3.

 Linux OS-Ubuntu 10.04LTS. Server

applications 3.

 LTTng 2.x (tracing tools for Linux, use to

profile server.)

B. Server operations

 Service operations in the real world can be very complex,

large and consume many resources, including other services. It

would not be practical to develop these types of services in the

provided time scale. Therefore, it was decided that some

simple, dummy services should be developed with

functionalities that could occur frequently in practice.

Functionalities such as interfacing with a database and data

processing are quite common for web services; so basic

examples have been implemented. Server 1 contains an ant

colony algorithm. It solves a shortest path problem. Server 2

employs three sorting algorithms (bubble, insertion, shell and

quick sort) to each sort a list of random numbers of a given

length. Whereas the other methods did not return a result, this

method returns the sorted lists. Each sorting algorithm runs in

its own thread. Three of the algorithms are highly iterative

with the quick sort being highly recursive, which will

significantly affect the feature vectors obtained. Server 3 runs

a map-reduce program based on Hadoop which include data

exchange between two databases.

C. Feature extracting

 The most important aspect of the system is the feature

selection and their subsequent extraction. It is important to

choose features that have minimal variation between

executions of the same service operation regardless of the

input arguments and, equally as important, the platform on

which the services are hosted (hence timings and memory

locations are not considered). This is termed intra-sample

variation. Furthermore, the features of one operation should

exhibit a significant degree of difference from features

extracted from that of another, which is called inter-sample

variation. These two characteristics will provide the best

separation between classes and result in optimal

performance[13]. Cloud computing is a kind of computing

architecture where it’s hardware is hidden under the operating

system and we cannot guarantee which machine the program

is executing. So, hardware features such as performance

counters and program counter [14] are not useful in this

research. The features such virtual heap space and method

invocations are under consideration. In this paper, we

investigated Linux kernel function invocation as a potential

ICmetrics features. The features were collected based on

accumulation of every 5 seconds. Each feature was collected

1000 times. Totally, there are 17 features were collected.

III. FEATURE REGUIREMENTS ANALYSIS

 The generation of encryption keys requires developing

suitable methods for combining selected features so as to

produce a unique basis number [15] – an initial number unique

to the Cloud server from which actual encryption keys may be

derived. The main requirement for such a method is that they

should allow for generating basis numbers with low intra-

sample variance (the values produced for the same device) but

high inter-sample variance (the values produced for different

devices) with the ideal case being no inter-sample overlap of

potential basis numbers [16]. In our earlier work [4, 16], we

have investigated two alternative techniques for combining

features, namely, feature addition and concatenation [18].

Due the nature of Cloud computing, our previous works are no

longer suitable. Because one Cloud computing cluster may

contain a number of similar servers. They are independent but

all explore similar servers’ behaviors, so we have to extract

more features. In this situation, we decide to use multi-

dimensional feature space contains all kind features together.

Following equation is used:

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 11

 ()

√() | |
 (

() ∑ ())

Each dimension contains one or more features and they are all

independent. Through the equation all we want is the vector

of the expectations and covariance matrix. The procedures of

the servers’ identification are: 1) A detector randomly

measures a number of features. 2) It then maps vlues to the

normalization map to generate a unique basis number (use to

generate key). To make such a system to be available, feature

data should satisfy following requirements:

A. Correlation of features

 To generate the normalization map, we need to map feature

values to a key generation vector, but actual feature values are

very complex and overlapped. Figure 1 is a sample feature

distribution. We use ‘S’ to represent server and ‘F’ to

represent feature. So, S1F1 means the feature 1 of Server1.

Through the Figure we can see that feature distribution is very

complex and overlap. So, it is very difficult to generate

normalization maps based on the raw data.

Figure 1-Feature 1’s distribution of three servers

Correlated features reduce the entropy of the system

because knowing the value of some lets you guess the values

of others. We therefore need to treat them as an integrated unit

to maximize the entropy of the system. Then, Pearson

correlation coefficients are used as a new feature. For instance,

table 1 shows coefficients of the same features combinations

from different servers. The coefficient of F1-F12 from server1

is 0.000789 and the coefficient of S2 is 0.01169. This shows a

great difference between S1 and S2. Although the coefficient

of S3 is 0.0219, which it shows a small difference compared to

S2, but it still distinguishable. For F10-F14, S1 and S2 show

similarity. S3 shows enormous disparity between S1 and S2.

In this case, S3 is distinguishable, but S1 and S2 are not

separable. In this situation, we can still distinguish them

according to the Pearson correlation distribution.

Table 1-correlation of feature combination of three servers

 F1-F12 F6-F14 F10-F14 F16-F17

S1 0.000789 -0.0611 0.974 0.735

S2 0.01169 0.01137 0.969 0.0809

S3 0.0219 0.6533 0.0759 0.1763

 For example, Figure 2 is a correlation distribution diagram

of feature 3 and feature 9. As we can see, the blue bubbles,

which represent server 3 and it has no overlap from server 1

and server 2. Server 2 and server 1 overlapped a little.

According this graph, server 3 is perfectly distinguishable as

server 3 has no overlap in the Pearson correlation distribution.

If features overlap, then, we can switch to another dimension.

As the nature of multi-dimension space, each dimension is

independent, which allows us to check every dimension

randomly. If they all overlapped, then, we import a Posterior

Probability system to make a decision based on the

statistically reliable function.

Figure 2-Pearson correlation distribution of three servers

B. intra and outra sample variance

It is important to choose features that have minimal

variation between executions of the same service operation

regardless of the input arguments and, equally as important,

the platform on which the services are hosted. This is termed

intra-sample variation. Furthermore, the features of one

operation should exhibit a significant degree of difference

from features extracted from that of another, which is called

inter-sample variation. These two characteristics will provide

the best separation between classes and result in optimal

performance.

C. Multi-level mapping

As some feature distributions (Figure 3) are showed unusual

and incorporating these features is difficult especially in a

multi-dimensional space. One of the overriding criteria

required from the system is to allow all features to be

combined together to form a single encryption key.

Encompassing all forms of feature distribution within a single

over-arching model thus becomes desirable. In order to solve

that, we introduced a multi-level mapping [7] system to

generate a single regular normal distribution. Basically, the

multi-level mapping system will map feature values into a new

regular coordinate to make a new regular distribution. For

some random distribution, we need to see real ones to decide

how to integrate them but the general idea is to have a multi-

level mapping, mapping them initially into a parameterized

distribution.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

12 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Figure 3-Feature S1F14 shows bimodal distribution

D. Space distance

Feature distance describes distribution of the features in a

multi-dimensional space. This concept is used to analyze how

the feature is located in the space. For instance, in Figure 2, if

we observer the graph from left, then, server 3 is

distinguishable. If we look from the bottom, then, server 2 is

distinguishable. If we put a new feature in a new dimension

and drag the server 3 to a different location, then, they are all

distinguishable. This method is used to find best feature

combinations of correlated data. To calculate the feature

distance, we start by selecting a random feature from the

group of correlate features. Then, we use Euclidean distance to

calculate the distance of each other. After that, we pick

another feature and calculate Euclidean distance with previous

one together. If the distance increased, then, we remove the

feature. After that, we iterate above procedures until we find a

best combination of features. To calculate the distance, we

previously find the center points of each group of features, but

due to the anomaly of data, the center points cannot represent

a real distance. So, we calculate the distance based on closest

points between each group of data. It is difficult select feature

when data overlapped in the multidimensional space.

Currently, we ignored the overlapped data but pick up the

closest one without the overlapped data. This method is used

to select best feature combinations that can show greatest

differences between each other.

E. Feature normalization and quantization

 The proposed system works in the phase process, firstly

analysing typical feature values for Cloud servers to produce a

normalization map for the feature and subsequently employing

the normalization maps to produce a code for a potentially

unknown Cloud server. A conventional simple strategy for

generating an encryption key from a given feature distribution

may involve quantising the distribution into fixed subsets with

each value within a given subset mapping to a single value. To

generate proper quantisation intervals we undertook the following

tests. The goal of quantisation is to normalise feature data, so the

best quantisation interval should exhibit the biggest inter sample

variance between cloud servers. Figure 4 represents the number

of bins versus variance of the features. Bins represent the number

of intervals employed. A high number means more segmentation

between feature value ranges. As can be seen from Figure 4,

when the number of bins reaches around 100, the variance stops

increasing. Each feature will potentially have a different number

of bins. In our multi-dimensional feature space, they are

independent, so, each feature could have different quantisation

strategy.

Figure 4-Number of bins versus variance of feature values

of feature 1 between servers1 and server2

IV. CONCLUSION

This paper provides a new technology that can be used to

encrypt components of services located within the Cloud using

properties or features derived from their own construction and

behavior to form a digital signature capable of assuring both

their authenticity and freedom from malware whilst

simultaneously allowing the flexibility for it to operate within

their designed specification and execute on an arbitrary

platform. The properties of ICmetrics features in Cloud

environment have been explored and we listed the following 3

requirements for ICmetrics to be available in a Cloud

environment. Firstly, the data should correlate to each other

because correlated features improve the robustness of the

system and raise the feasibility of raw feature data. Next, the

combination of the data need to present a certain amount of

discrimination in a multi-dimensional space, which means it

should as less overlap as much in the multi-dimensional space.

Then, the data should show high ultra-sample variance and

low intra-sample variance as high ultra-sample variance can

significantly improve the performance of the system. The

Euclidean distance is used to detect best feature combinations

that show greatest differences between each other. Finally, we

evaluated normalization and quantization of the feature values.

Overall, this paper outlines the methodologies of analysis and

mathematical implementation. At this step, we finished the

data analysis and future work will focus on solutions of

implementation.

V. ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the UK

Engineering and Physical Sciences Research Council under

grant EP/K004638/1 and the EU Interreg IV A 2 Mers Seas

Zeeën Cross-border Cooperation Programme – SYSIASS

project: Autonomous and Intelligent Healthcare System

(project’s website http://www.sysiass.eu/).

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 13

http://www.sysiass.eu/

REFERENCE

[1] D. N. Use, “Global Phishing Survey : Trends and

Domain Name Use in 2H2012 July-December 2012 G

l o b al R es p o n s e Industry Advisory,” no. April,

pp. 1–30, 2013.

[2] M. Fatindez-Zanuy, “On the vulnerability of biometric

security systems,” IEEE Aerosp. Electron. Syst. Mag.

(June 2004), pp. 3–8, 2004.

[3] R. Tahir and K. McDonald-Maier, “Improving

Resilience against Node Capture Attacks in Wireless

Sensor Networks using ICMetrics,” in Emerging

Security Technologies (EST), 2012 Third International

Conference on, 2012, pp. 127–130.

[4] E. Papoutsis, G. Howells, a. Hopkins, and K.

McDonald-Maier, “Key Generation for Secure Inter-

satellite Communication,” Second NASA/ESA Conf.

Adapt. Hardw. Syst. (AHS 2007), pp. 671–681, Aug.

2007.

[5] B. Ye, G. Howells, and M. Haciosman, “Investigation

of Properties of ICmetric in Cloud,” in Emerging

Security Technologies (EST), 2013 Fourth

International Conference on, 2013, pp. 107–108.

[6] R. Tahir, H. Hu, D. Gu, K. McDonald-Maier, and G.

Howells, “Resilience against brute force and rainbow

table attacks using strong ICMetrics session key

pairs,” in Communications, Signal Processing, and

their Applications (ICCSPA), 2013 1st International

Conference on, 2013, pp. 1–6.

[7] G. Howells, E. Papoutsis, A. Hopkins, and K.

McDonald-Maier, “Normalizing Discrete Circuit

Features with Statistically Independent values for

incorporation within a highly Secure Encryption

System,” in Adaptive Hardware and Systems, 2007.

AHS 2007. Second NASA/ESA Conference on, 2007,

pp. 97–102.

[8] X. Zhai, K. Appiah, S. Ehsan, W. M. Cheung, G.

Howells, H. Hu, D. Gu, and K. McDonald-Maier,

“Detecting Compromised Programs for Embedded

System Applications,” in Architecture of Computing

Systems--ARCS 2014, Springer, 2014, pp. 221–232.

[9] X. Zhai, K. Appiah, S. Ehsan, H. Hu, D. Gu, K.

McDonald-Maier, W. M. Cheung, and G. Howells,

“Application of ICmetrics for Embedded System

Security,” in Emerging Security Technologies (EST),

2013 Fourth International Conference on, 2013, pp.

89–92.

[10] Y. Kovalchuk, W. G. J. Howells, H. Hu, D. Gu, and

K. D. McDonald-Maier, “A practical proposal for

ensuring the provenance of hardware devices and their

safe operation,” 2012.

[11] R. Tahir and K. McDonald-Maier, “An ICMetrics

based Lightweight Security Architecture using Lattice

Signcryption,” in Emerging Security Technologies

(EST), 2012 Third International Conference on, 2012,

pp. 135–140.

[12] M. Desnoyers and M. R. Dagenais, “The LTTng

tracer: A low impact performance and behavior

monitor for GNU/Linux,” in OLS (Ottawa Linux

Symposium), 2006, vol. 2006, pp. 209–224.

[13] Y. Kovalchuk, H. Hu, D. Gu, K. McDonald-Maier, D.

Newman, S. Kelly, and G. Howells, “Investigation of

Properties of ICmetrics Features,” in Emerging

Security Technologies (EST), 2012 Third International

Conference on, 2012, pp. 115–120.

[14] K. Appiah, X. Zhai, S. Ehsan, W. M. Cheung, H. Hu,

D. Gu, K. McDonald-Maier, and G. Howells,

“Program Counter as an Integrated Circuit Metrics for

Secured Program Identification,” in Emerging Security

Technologies (EST), 2013 Fourth International

Conference on, 2013, pp. 98–101.

[15] A. Hopkins, K. Mcdonald-Maier, and G. Howells,

“Device to generate a machine specific identification

key.” Google Patents, 2013.

[16] Y. Kovalchuk, K. McDonald-Maier, and G. Howells,

“Overview of ICmetrics Technology-Security

Infrastructure for Autonomous and Intelligent

Healthcare System.,” Int. J. U-& E-Service, Sci.

Technol., vol. 4, no. 3, 2011.

[17] X. Zhai, K. Appiah, S. Ehsan, W. M. Cheung, H. Hu,

D. Gu, K. McDonald-Maier, and G. Howells, “A Self-

Organising Map Based Algorithm for Analysis of

ICmetrics Features,” in Emerging Security

Technologies (EST), 2013 Fourth International

Conference on, 2013, pp. 93–97.

[18] R. Tahir, H. Hu, D. Gu, K. McDonald-Maier, and G.

Howells, “A scheme for the generation of strong

cryptographic key pairs based on ICMetrics,” in

Internet Technology And Secured Transactions, 2012

International Conferece For, 2012, pp. 168–174.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

14 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Cloud Computing Benchmarking: A Survey

C.Vazquez, R. Krishnan, and E. John

Department of Electrical and Computer Engineering, The University of Texas at San Antonio,

San Antonio, Texas, U.S.A

Abstract – Cloud computing gives service-oriented access to

computing, storage and networking resource. Often, these

resources are virtualized. The prospect of being able to scale

computing resources to meet user demand has clearly caught

the attention of developers and organizational IT leaders over

the recent years. Considering the number of cloud computing

providers and the different services each provider offers,

cloud users need benchmark information that specifically

addresses the unique properties of the cloud computing

environment such as dynamic scaling. This paper compares

five prominent tools (CloudCmp, CloudStone, HiBench, YCSB,

and CloudSuite) that present workloads and/or methods for

quantitatively comparing cloud computing offerings.

Keywords: Cloud computing, Workload, Benchmarking,

Performance evaluation

1 Introduction

 The increase in popularity of cloud computing in recent

years is driven by the advantages offered by the dynamically

scalable, pay-as-you-go model. This enables organizations to

focus on providing services to their customers while

consuming the requisite computing resources as a utility. By

eliminating the need for on-premises equipment, organizations

avoid large capital expenses and instead focus resources

towards faster deployment. The pay-as-you-go model allows

an organization to grow naturally with customer demand.

Since cloud computing resources scale elastically, utilizing

cloud computing reduces the risk of over provisioning,

wasting resources during non-peak hours, and reduce the risk

of under provisioning, missing potential customers [32].

Success stories of start-ups like Instagram, which built-up a

user base of over 150 million users in less than four years

using only public cloud solutions [38], exemplify the potential

for fast growth that utilizing cloud computing can provide.

Considering the number of cloud computing providers and

the different services each provider offers, a customer

shopping for an appropriate solution for their organization

requires benchmark information that specifically addresses the

unique properties of the cloud computing environment. A

benchmark must provide an accurate representation of the

workload the consumer intends on running. A benchmark

targeting social networking sites should differ from a

benchmark targeting database systems. Different applications

running on the same computing platform can have different

requirements in terms of computing, storage, and networking,

and modern web applications can have wide disparities

between peek and average demand [32]. A developer must

ensure that the cloud provider’s services can scale to meet

their end-users’ demand. Long response times from a cloud

application can lead to limited adoption of an application

since there are often competitors offering similar products.

Although standard methods for reporting the performance

of cloud resources are still not available, tools have been

suggested to give the consumer the ability to quantitatively

compare the offerings of cloud providers. This paper identifies

five such tools: CloudCmp [1], CloudStone [2], HiBench [3],

YCSB [4], and CloudSuite [5].

2 Background

2.1 Cloud Computing

Cloud computing is a large-scale, distributed computing

paradigm which is driven by economies of scale. Providers of

cloud computing offer abstracted, virtualized, dynamically

scalable, and managed resources on demand to external

customers over the Internet [33]. These resources include

compute, storage and networking. Cloud computing providers

benefit from economies of scale in that they assemble massive

datacenters operating tens of thousands of servers which

service a wide customer base. Large-scale operation more

effectively absorbs operational costs through the benefits of

increasing the utilization of equipment, bulk discounts on

purchased equipment, and reducing the cost of cooling and

powering equipment [6]. The demand for large-scale

computing resources continues to grow as Internet users

generate larger sets of data to be processed.

The essential characteristics of cloud computing [7] are:

• On-demand self-service – The ability to provide computing

capabilities as needed automatically, when needed.

• Broad networks access – Cloud services are available over

the network and accessed through standard mechanisms.

• Resource pooling – Physical and virtual resources are

dynamically assigned to serve multiple consumers using a

multi-tenant model.

• Rapid elasticity – Capabilities are elastically provisioned

and released quickly without perceived bound.

• Measured service – Cloud services automatically control

resource use by leveraging appropriate metering capability

(pay-per-use).

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 15

2.2 Virtualization

Virtualization is a fundamental component of cloud

computing, allowing for pooling and dynamically allocating

hardware resources. A server in a datacenter acting as a host

machine is installed with a hypervisor which can

simultaneously run instances of virtual machines or guest

machines. These virtual machines are operating system

instances managed by a separate controlling computer which

loads them into respective host machines. With the controlling

computer managing the computing resources of many servers,

a cloud computing provider thus unifies the datacenter’s

resources into an encapsulated pool which can be allocated

and released according to user demand.

2.3 Services

The NIST definition of cloud computing [7] categorizes the

services that providers offer into three service models:

infrastructure-as-a-service (IaaS), platform-as-a-service

(PaaS), or a software-as-a-service (SaaS).

• An IaaS provides access to instances of unified resources

including computing, storage, and networking. Providers

offer flexible computing resources for a usage-based price.

These resources are distributed as instances on demand

which are treated like physical hardware. The user is left

with the responsibility for demanding and initializing new

instances when scaling is required.

• A PaaS provides many of the same resources as an IaaS but

through an integrated environment which reduces the

development burden of using the resources but also restricts

features. PaaS providers offer a variety of computing and

storage resources in a more constrained environment that

can be accessed through APIs. Many application specific

tools are pre-built and available to users such as web

hosting, data management, business analytics, etc.

• SaaS, such as e-mail and Google Docs, are special-purpose

software services which are used remotely by the end user.

They are often built using PaaS and IaaS tools, but their

implementation details are hidden from the end-user.

2.4 MapReduce

Since cloud computing now offers wide horizontal scaling,

end-users are taking the opportunity to process massive sets of

data, a service which was previously only available to users

with a dedicated datacenter. Apache Hadoop [8], an open-

source version of Google’s MapReduce [9] and GFS [10], is a

parallel processing framework used for many cloud-based

batch-processing projects. A data set in a file system or a

database is processed as follows:

1. Initialize - A list of key-value pairs is distributed over the

nodes in a cloud.

2. Map phase – Each node performs a specified operation on

the key-value pairs to produce new key-value pairs.

3. Shuffle phase – The new data is rearranged on the nodes

according to a partition function which groups data.

4. Sort phase – Each node assigns new key-value pairs.

5. Reduce phase – Key-value pairs are merged to a data-set.

3 Cloud Benchmarking Tools

3.1 CloudCmp

CloudCmp is a proposed framework designed to estimate

the performance and cost of a legacy application running on a

cloud without the expense or effort of porting and deploying

the application. To achieve this goal, CloudCmp uses an

approach composed of three phases: service benchmarking,

application workload collection, and performance prediction.

In the service benchmarking phase the services of six cloud

providers (including Google AppEngine [11], Amazon AWS

[12], Microsoft Azure [13], GoGrid [14], and Rackspace [15])

are selected based on their ability to provide cloud computing

services necessary for web application development on a

cloud. These cloud computing services include access to an

elastic compute cluster, persistent storage, intra-cloud

networking, and wide-area delivery networking. Each cloud

service’s performance and cost are estimated by running a

collection of benchmarking tasks designed to exercise each of

the characteristics of cloud computing services.

• Elastic compute cluster efficiency– Different compute

clusters were tested with SPECjvm2008 [16] Java tasks.

Java tasks were selected because of Java’s portability. The

performance of each cluster was measured by the finishing

time of each task while the cost effectiveness was measured

by the cost per task.

• Elastic compute cluster scaling – Scaling was measured by

the latency between the time an instance was requested and

when the instance was ready. The applicability of this metric

is limited by the fact that not all services allow for scaling

via instance request.

• Persistent storage services – To test the performance of a

persistent storage service the latency to insert or fetch a

random to and from a data table was measured. The test was

carried out with table sizes of 1000 entries and 100,000

entries. The results showed that the operation and table size

had a significant effect on the performance.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

16 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

TABLE I

COMPARISON OF CLOUD BENCHMARKING TOOLS

CloudCmp CloudStone HiBench YCSB CloudSuite

Target

Estimate the performance

and costs of running a

legacy application on a

cloud

Capture “typical”

Web 2.0

functionality in a

cloud computing

environment

Hadoop

(MapReduce)

programs including

real-world

applications

Performance

comparisons of the new

generation

of cloud data serving

systems

Characterize scale-

out workloads

Cost
• Cost per task per

instance type

• Cost per user per

• month

• Not covered • Not covered • Not covered

Scaling

• Latency to allocate new

instance

• Load balancer –

Apache default or

user defined

• None specific • Scaleup

• Elastic speedup

• None specific

Storage

• Latency to insert/fetch a

random entry from pre-

defined data table

• User’s choice of

relational database

• Aggregated

bandwidth

delivered by HDFS

• Adjust possible

operations, data size,

and distribution to

target specific

workloads

• Uses YCSB to

assess serving

systems

Networking

• Intra-cloud –TCP

throughput between

instances

• Wide-area delivery

network – send ping

packets from distributed

locations

• None specific • None specific • None specific • None specific

Computing

performance

• Latency of various

SPECjvm2008 tasks

• Response time of

request made by

load generator

• Speed – job

running time

• Throughput – tasks

completed per

minute

• System resources

utilization

• Read/Update Latency • Execution cycle

profile

• Instruction cache

miss rate

• IPC/MLP

• Memory

bandwidth

utilization

Test

environment

• Multiple instance types

• Amazon EC2

instances

• Hadoop cluster • Data serving system • Server

Service
• IaaS

• PaaS

• IaaS • PaaS • PaaS • IaaS

Workload

• User-defined

application’s request

traces and each

request’s execution path

• Olio driven by

Faban

• Sort

• WordCount

• TeraSort

• Web search

• Machine learning

• File system

• Random operations

on random data based

on selected

distributions

• Data serving

• MapReduce

• Media Streaming

• SAT Solver

• Web hosting

• Web search

• Intra-cloud network – The available bandwidth between two

instances in the cloud was tested by measuring the average

TCP throughput of instances in the cloud using the iperf

[17] tool for many pairs. This test is limited only to cloud

providers which allow explicit intra-cloud communication.

• Wide-area delivery network – The latency of a cloud

provider’s delivery network was measured by sending ping

packets from different geographic locations.

The goal of the application workload collection phase is to

obtain a workload representation of a user’s legacy

application. It is proposed that this can be achieved by

collecting the application’s request traces and deriving an

execution path for each request. In the performance prediction

phase, the profiles of each cloud service and the workload

representation of the legacy application would be used to

estimate the total running time and total cost of running the

application.

3.2 CloudStone

CloudStone is a toolkit for characterizing the workload of a

typical social networking website. The goal of CloudStone is

to give developers tools to investigate different

implementation decisions which affect the performance and

price of running a social networking website. These tools can

currently only be utilized on a cloud service which can use

Amazon EC2 instances. The three components of CloudStone

are: Olio, automation tools for running Olio experiments, and

a methodology for computing a suggested metric.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 17

Olio features two complete implementations of a social-

event calendar application and utilizes a time-varying

workload generator, Faban [18]. The two application

implementations, in both PHP and Ruby-on-Rails, provide an

identical user experience allowing for a direct comparison of

each development stack. Faban simulates multiple users

simultaneously by running parallel agents on different which

are controlled by one central coordinator. The central

coordinator can also change the number of active users during

a run. Faban also collects the latency of each request and

utilization data.

Performing an experiment with CloudStone involves

selecting a configuration for the Olio deployment, selecting a

workload profile to be generated by Faban, and deploying the

instances. The performance of the configuration of Olio will

differ depending on the different tuning mechanism each

implementation provides such as database caching, load

balancer, etc. The results of the experiment are suggested to

be expressed in terms of a metric of dollars per user per

month.

3.3 HiBench

HiBench is a benchmark suite targeting the components of

the Hadoop framework. The use of many realistic workloads

fully exercises Hadoop’s parallel computing component

(MapReduce) and database component (HDFS). The

benchmarking tasks selected can be categorized as micro-

benchmarks, web search tasks, machine learning tasks, and

HDFS benchmark.

• Micro-benchmarks include Sort [19], WordCount [20], and

TeraSort [21]. Sort, which simply sorts a large collection of

data, is intended to represent a class of MapReduce problem

which transforms a data set. Similarly, WordCount is

intended to represent a class which extracts a small amount

of data from a large data-set. TeraSort is another sorting

task but with a larger data-set. All of the micro benchmarks

use tools included in HiBench to generate their input data-

sets.

• Web search benchmarks, which include Nutch Indexing [22]

and PageRank [23], test the ability to handle search-

indexing systems. Nutch Indexing workload generates

inverted index files from an input of web page links.

PageRank calculates ranks of web pages according to the

number reference links.

• Machine learning tasks include two workloads, Bayesian

Classification and K-means clustering, from the Mahout

library [24] which are used to test Hadoop’s machine

learning processing capabilities. Bayesian classification, a

popular algorithm for data mining, is used on processed

portions of Wikipedia [25]. The K-means algorithm, also

popular for data-mining, is used to iteratively compute an

approximation of the centroid of a multi-dimensional array

which is randomly generated by HiBench.

• HDFS uses Extended DFSIO, an enhanced version of the

DFSIO [26] program which is part of Hadoop. Extended

DFSIO is file system benchmarks for finding the throughput

of simultaneous read and write operations.

3.4 Yahoo! Cloud Serving Benchmark

Yahoo! Cloud Serving Benchmark (YCSB) is a tool

developed by Yahoo! to benchmark their PNUTS [27] serving

system. This benchmark focuses on scalable serving systems

which provide read and write access to data. YCSB separates

the task of benchmarking serving systems into two different

tiers.

Tier 1 encompasses general performance as measured by the

latency of a request when the database is under load. To test

the balance of throughput and latency, the latency of a request

is monitored as the throughput is increased. Tier 2 examines

scaleup and elastic speedup, the serving system’s ability to

scale with increased load. This is achieved by observing the

impact that adding more machines to the system has on the

performance of the system. The ability of the system to

scaleup well is described by system’s latency remaining

constant across multiple tests where the workload and server

count are both increased. Elastic speedup measured test the

impact of additional servers while a fixed size workload is

running.

To test the performance and scalability of a serving system,

YCSB uses a randomly generated workload instead of

modelling a specific application. The YCSB client generates a

dataset and operations according to a workload profile. The

workload profiles contain user specifications for random

distributions which are used to generate which operations will

occur on which record.

3.5 CloudSuite

CloudSuite is a collection of benchmarking tasks which

were used to characterize the inefficiencies in the micro-

architecture of modern server CPUs used in a cloud

computing environment. The benchmarking tasks were

identified as some of the more common tasks which are

handled using cloud computing. These tasks included data

serving, MapReduce, media streaming, SAT solving, web

hosting, and web search.

• Data serving – Cassandra [28] database exercised with a

read-heavy YCSB workload.

• MapReduce - The Mahout library’s Bayesian classification

algorithm was run on a Hadoop cluster. The algorithm is

used to process a portion of Wikipedia to guess the country

tag for each article.

• Media streaming – The Darwin Streaming Server receiving

request from simulated users generated by Faban.

• SAT solving – Cloud9 [30] parallel symbolic execution

engine’s Klee SAT solver

• Web hosting – CloudStone including Olio and Faban.

• Web search – Nutch/Lucene [31] index serving node

receiving request from simulated users generated by Faban.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

18 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

TABLE II

CLOUD COMPUTING BENCHMARK WORKLOADS

Target Application Workload

Database YCSB

Legacy application CloudCmp

MapReduce HiBench

Mahout Bayesian classification

Media streaming Darwin Streaming Service

Web 2.0 CloudStone

4 Conclusion

Cloud computing offers organizations the ability to scale to the

size of their user base more efficiently and thus offers a competitive

advantage if the proper services are selected. In this paper, we

have presented available benchmarking tools for cloud

computing services. CloudCmp offers an approach to

benchmarking the individual cloud computing services offered

by a provider. CloudStone provides a social networking

application with simulated user interaction to test Web 2.0

applications. HiBench collects realistic workloads for the

MapReduce processing framework. YCSB tests the

performance and scalability serving systems with generated

workloads. Finally, CloudSuite suggests workloads to capture

the behaviour of the more common tasks in a cloud computing

environment.

5 References

[1] Li, Ang, et al. "CloudCmp: comparing public cloud

providers." Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement. ACM, 2010.

[2] Sobel, Will, et al. "Cloudstone: Multi-platform, multi-

language benchmark and measurement tools for web

2.0." Proc. of CCA. 2008.

[3] Huang, Shengsheng, et al. "The HiBench benchmark

suite: Characterization of the MapReduce-based data

analysis." Data Engineering Workshops (ICDEW), 2010

IEEE 26th International Conference on. IEEE, 2010.

[4] Cooper, Brian F., et al. "Benchmarking cloud serving

systems with YCSB."Proceedings of the 1st ACM

symposium on Cloud computing. ACM, 2010.

[5] Ferdman, Michael, et al. "Clearing the clouds: a study

of emerging scale-out workloads on modern

hardware." ACM SIGARCH Computer Architecture News.

Vol. 40. No. 1. ACM, 2012.

[6] Hennessy, John L., and David A.

Patterson. Computer architecture: a quantitative

approach. Elsevier, 2012.

[7] Mell, Peter, and Timothy Grance. "The NIST

definition of cloud computing (draft)." NIST special

publication 800.145 (2011): 7.

[8] Hadoop homepage. http://hadoop.apache.org/

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” USENIX OSDI,

December, 2004.

[10] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak

Leung. "The Google file system." ACM SIGOPS

Operating Systems Review. Vol. 37. No. 5. ACM, 2003.

[11] Google AppEngine.

http://code.google.com/appengine.

[12] Amazon Web Service. http://aws.amazon.com.

[13] MicrosoftWindows Azure.

http://www.microsoft.com/windowsazure.

[14] GoGrid Cloud Hosting. http://gogrid.com.

[15] Rackspace Cloud. http://www.rackspacecloud.com.

[16] SPEC Java Virtual Machine Benchmark 2008.

http://www.spec.org/jvm2008

[17] Iperf. http://iperf.sourceforge.net.

[18] Faban Documentation. Sun Microsystems. 2009.

http://faban.sunsource.net/0.9/docs/toc.html

[19] Sort program. Available in Hadoop source

distribution:

src/examples/org/apache/hadoop/examples/sort

[20] WordCount program. Available in Hadoop source

distribution:src/examples/org/apache/hadoop/

examples/WordCount

[21] Hadoop TeraSort program. Available in Hadoop

source distribution since 0.19 version:

src/examples/org/apache/hadoop/examples/terasort

[22] Nutch homepage. http://lucene.apache.org/nutch/

[23] P. Castagna, “Having fun with PageRank and

MapReduce,” Hadoop User Group UK talk. Available:

http://static.last.fm/johan/huguk-

20090414/paolo_castagna-pagerank.pdf

[24] Mahout homepage.

http://lucene.apache.org/mahout/

[25] Wikipedia Dump.

http://en.wikipedia.org/wiki/index.php?curid=68321

[26] DFSIO program. Available in Hadoop source

distribution: src/test/org/apache/hadoop/fs/TestDFSIO

[27] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data

serving platform. In VLDB, 2008.

[28] The Apache Cassandra Project.

http://cassandra.apache.org/.

[29] Darwin Streaming Server homepage.

http://dss.macosforge.org/

[30] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly

Chipounov, and George Candea. Cloud9: a software

testing service. ACM SIGOPSOperating Systems Review,

43:5–10, January 2010

[31] Lucene homepage. http://lucene.apache.org

[32] Armbrust, Michael, et al. "A view of cloud

computing." Communications of the ACM 53.4 (2010):

50-58.

[33] Foster, Ian, et al. "Cloud computing and grid

computing 360-degree compared."Grid Computing

Environments Workshop, 2008. GCE'08. Ieee, 2008.

[34] Grossman, Robert L. "The case for cloud

computing." IT professional 11.2 (2009): 23-27.

[35] Binnig, Carsten, et al. "How is the weather

tomorrow?: towards a benchmark for the

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 19

cloud." Proceedings of the Second International

Workshop on Testing Database Systems. ACM, 2009.

[36] Alexandrov, A., et al. "Benchmarking in the Cloud:

what it should, can, and cannot be." 4th TPC Technology

Conference on Performance Evaluation and

Benchmarking (TPCTC), VLDB. 2012.

[37] Huppler, Karl. "The Art of Building a Good

Benchmark." Performance Evaluation and

Benchmarking. Springer Berlin Heidelberg, 2009. 18-30.

[38] Kavis, Michael J. Architecting the Cloud: Design

Decisions for Cloud Computing Service Models (SaaS,

PaaS, and IaaS). John Wiley & Sons, 201

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

20 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Big Parameter Data Analysis for Semi-conductor
Manufacture

Jain-Shing Wu, Ming-Chun Tsai, Sheng-Wei Chu, and Chung-Nan Lee

Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan

Abstract - Statistics help the manufacturers to maintain the
quality in manufacturing process, especially in the mechanical
and engineering areas. Monitoring and analyzing the
manufacturing data in real time, the quality can be increased
almost instantly. However it is a hard task due to huge data or
records gathered from wafer manufacturing logs. Fortunately,
big data analytics can explore the granular details of the
enormous manufacturing data with a variety of parameter
values to uncover the abnormal parameters, unknown
correlations and other useful information. In this paper, the
Gaussian distribution method and cloud genetic algorithm are
used to analyze and find out products/machines with
significant defects from manufacturing logs. Experimental
results show that our method is efficient in figuring out the
abnormal machines and parameters, and comparing with
standalone machine, the proposed algorithm has 4.32 times
faster.

Keywords: Big data analytics; machine protection; cloud
Genetic algorithm

1 Introduction
 In the automation control era, increasing production
yield rate has become an important issue since the higher
production yields on behalf of the company's manufacturing
capacity is higher, and thus enhances the company
competitiveness and increases the potential customer base.
But human resource is often unaffordable for monitoring
more and more complex production processes of a factory.
Engineering Data Analysis (EDA) systems have been
therefore employed to collect, process, and monitor a large
number of parameters from production equipment and
diagnose tool health [1, 2].

 Traditionally, statistical tools for EDA are facilitate to
maintain the quality in manufacturing process, especially in
the mechanical and engineering areas [3]. By using the right
process for statistical tracking and real time feedback, the
quality can be increased almost instantly. Due to traditional
statistical data analysis has become inadequate at providing
equipment fault detection and diagnosis [4], however, many
high-tech manufacturers have had a hard time completing a
real time traditional statistics program due to huge data or
records gathered for tracking a product [5]. For example, the

health data of the semiconductor wafer machine often
involves highly correlated parameters and time-varying
behaviors [2].

 In addition, the investigation showed that a sudden
breakdown accounts for 60% of machine maintenance costs
[6]. There is therefore a significant requirement for the
development and application of efficient and effective
approaches to monitor the health state of equipment and
predict unscheduled failure, especially for semiconductor
industry [7]. In fact, many researchers from academia as well
as industries are getting involved into identifying the most
probable causative factors in manufacturing field [8].

 In brief, owing to advances of modern information
technologies and new applications, intelligent and statistical
techniques should be integrated to explore the granular details
of the enormous manufacturing data with a variety of
parameter values for fault detection to enhance the yield [5].
Especially, thousands of parameters of each product may
need to be stored properly and accessed in-time. This cannot
be easily accomplished by the traditional computing
architecture. Fortunately, big data analytics with Cloud
Computing (CC) can be employed as soon as possible to
uncover the abnormal parameters, unknown correlations and
other useful information for a factory automation
environment.

 To sum up, there are two main problems to be solved.
The first problem is how to access and storage huge data
quickly, even how to recover it, when the storage disk is
broken. The second one is how to figure out the impacting
factor for the yield rate of automation product in a short time.
In this study, we adopt MapReduce programming model [9]
proposed by Google on Hadoop distributed platform [10],
which is one of CC platforms, to automatically parallelize the
computation across large-scale clusters of machines that
makes efficient use of the network and disks. Base on the CC
platform, statistical indicators (such as mean, standard
deviation, maximum, minimum, and range) through control
charts and Artificial Intelligence (AI) technologies are
integrated to implement for early warning of key equipment
excursion.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 21

 In the Section 2, we will give some essential background
materials. The proposed algorithm is given in the proposed
method section. Experimental results are given in the
experiment section. And we give a conclusion in the last
section.

2 Background Materials
 The wafer fabrication process for producing integrated
circuit (IC) consists of a lengthy sequence of complex
physical and chemical processes. Nowadays, semiconductor
fabrication facilities have already collected the parameters of
the fabrication processes, materials, and equipment involved
in the product manufacturing [4]. The recorded parameters in
different fabrication processes may have implicit correlations.
For example, temperature and humidity are the main
parameters in the first and second processes, respectively.
Except previously known that high temperature with high
humidity makes product fail very easily, we can expose the
relationship by analyzing the large amount of log data on CC
platform.

 Motivated by real needs, Hadoop, a popular open-source
framework for CC, implements a MapReduce engine and a
distributed user-level file system named Hadoop Distributed
File System (HDFS). Written in Java for portability across a
variety of platforms, such as Linux, Mac OS/X, and Windows
etc. and only require commodity hardware, Hadoop benefits a
wide range of commercial and academic users for big data
processing. MapReduce is a parallel programming model for
processing and generating large datasets. Programmers
express the computation as two functions: map and reduce.
The former takes an input pair and produces a set of
intermediate key/value pairs, and then applying the latter to
all the values that shared the same key in order to combine
the derived data appropriately. Hadoop automatically
parallelizes the computation across large-scale clusters of
machines, schedules inter-machine communication, and
handles machine failures.

 For big data analysis of semiconductor manufacturing
data, it is a very appropriate way to specify the computation
in terms of a map and a reduce function owing to the
following characteristics of Hadoop:

 1. High reliability - Each computing slave node registers
its status to master node at designated times. For high
computing quality guarantee, if the slave node does not return
computing results in a pre-defined time, master node will re-
allocate the jobs and data fragments to other slave node.

 2. Fault tolerance - Master node automatically storages
regular progresses in order to prepare to response recovery
request. In addition, HDFS, the all input/output data handle
system of Hadoop, splits data into fixed fragment size
(default is 64MB) and keeps backup copies to different data
nodes (default is 3 copies). Based on the design of Hadoop,

the master-slave architecture provides very good fault
tolerance mechanism.

 3. Load balance - Master node dynamically allocates
computing jobs to slave nodes in order to trade off overall
execution time saving and efficient resource utilization.

 4. Virtualization and dynamic resource allocation - The
Cloud infrastructure offers virtual private links and allows for
the provision of resources on-demand, thus resources are
allocated in an elastic way, according to consumers' needs
[11].

3 Proposed Method
 In this section, the Hadoop MapReduce technique is
employed in order to provide a CC platform for
semiconductor manufacturing data analysis. Figure 1 shows
the flow diagram of proposed system architecture for the big
data analytics.

 First, we receive the data from machine log files which
are stored in HBase. And then, we correct the missing values
in data. And then, we send the data to the abnormal
parameters detection module. This module checks outliers in
the parameters by using Gaussian distribution method via
MapReduce technique. The key and value pair used in
mapper is <parameter #, parameter value>. And then, the
reducer collects key-value pairs and calculates the means and
deviations. The outliers are the data whose distance to the
means is more than 2 times deviations. The parameters that
contain lots of outliers are treated as abnormal parameters.

 Before performing the Cloud Genetic Algorithm (CGA)
[12, 13], the wafer logs are first fixed the missing values and
then normalized in order to eliminate the difference between
scales of different parameters. The normalizing function
Nor(𝑥𝑥𝑖𝑖

𝑗𝑗) is used to normalize all wafer data using the same
recipe, and it is defined as follows:

 𝑁𝑁𝑁𝑁𝑁𝑁�𝑥𝑥𝑖𝑖
𝑗𝑗� = 𝑥𝑥𝑖𝑖

𝑗𝑗−𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
,∀𝑖𝑖 = 1,2, … ,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 1,2, . . . ,𝑚𝑚 (1)

where 𝑥𝑥𝑖𝑖
𝑗𝑗 represents i-th parameter value of j-th wafer, and m

is the total number of wafers using the same recipe, and n is
the total number of parameters. 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚represent the
maximum and minimum parameter values of i-th parameter
for all wafers adopting the same recipe. After normalization,
the CGA performs. The individuals of CGA are set to a
binary string that shows the parameters are used to be further
classified by K-nearest neighbor (KNN) [14] or not. We use
the KNN to classify the data into normal and abnormal wafers
and calculate accuracy as fitness values in the evaluation
process. One-point crossover and mutation are adopted in
CGA. The crossover rate and mutation rate are 0.8 and 0.01.

 Also we used the MapReduce technique for calculating
the distance between different data when performed KNN.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

22 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Figure 1. The flow diagram of the proposed system architecture for the big data analytics.

4 Experimental Results
 The proposed system is developed by using Java
language and MapReduce technique on Hadoop. The
experimental environment adopts 2 clusters of computing
nodes, each clusters contains 1 master node and 2 slave nodes,
and 1 node for central receiver. Table 1 shows the
information of a single node.

Table 1 Specification of the computing nodes.
Parameter Specification

Number of nodes 6
OS Ubuntu 12.04 (32-bit)
Memory 4GB
CPU Virtual Pentium D (dual core)

2.8GHz*4

 The 6 computing nodes are partitioned into 2 different
Hadoop clusters as the environment of ICGA. In each
Hadoop cluster, there are 3 computing nodes that one is
master and the other two are slaves.

 In this experimental data, we use two different log files;
one is composed of 99 samples and the other is composed of
2488 samples. Each has 915 parameters selected for detection
tasks.

 First of all, we performed the outlier detection on one
Hadoop cluster. Our goal is to select the sensitive parameters
that are affected by more than 10% outlier tools whose

standard deviations are more than 2 standard deviations. As
listed in Table 2, we detect 592 parameters from 99 sample
log and 528 parameters from 2488 sample log.

Table 2 Number of the sensitive parameters in wafer logs.
 Number of sensitive parameters
No. of parameters from
99 samples 592

No. of parameters from
2488 samples 528

 In the anomalous detection, feature selection is carried
out before implementing ICGA. The S2N technique is
adopted to remove the unrelated parameters and select the top
25% parameters from 915 parameters as the preliminary
significant parameters. And then, these parameters are used in
ICGA for selecting the most critical parameters.

 In order to increase the exploration ability, we perform
different cloud GA on different Hadoop clusters (islands).
One cluster applies single-point crossover and single-point
mutation. The other one adopts two-point crossover and two-
point mutation. The best solutions on respective island are
exchanged through the central receiver. The best solution is
selected among the sent solutions and sent back to each island.
The stop criterion is the classification accuracy is 100% and
the number of parameters is less than or equal to 25% of the

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 23

number of the preliminary significant parameters. The
parameters for ICGA are listed in Table 3.

 We use the ten-fold cross-validation to verify our
mining methods combined with the outlier detection and
ICGA. In each fold, we performed the outlier detection and
ICGA, and then we averaged the convergence time and
accuracy. For the smaller data, which is composed of 99
samples, the experiment shows that ICGA obtain the critical
parameters in fewer generations than that in the standalone
GA. It takes more time to perform ICGA than to run the
standalone GA in small case, since MapReduce technique
requires more time to separate and distribute data. However,
it shows a great performance when handling with big volume
of data. Hence, for the 99 sample case, the data is not big
enough to show the true power of the proposed system. For
testing the accuracy for small volume of data, both ICGA and
the standalone GA have 100% accuracy rate. The comparison
is listed in Table 4.

 For 2488 sample case, the experimental result shows
ICGA obtains the critical parameters in fewer generations
than the standalone GA. Moreover, it shows a significant
improvement in efficiency that the convergence time in ICGA
is 4 times less than that in the standalone GA. For testing the
accuracy, both ICGA and the standalone GA have 100%
accuracy. The results are given in Table 5.

Table 3 Parameter values used for different islands.
 Island 1 Island 2
Population Size 100 100
Crossover Rate 0.8 0.8
Mutation Rate 0.1 0.1
Way of Crossover&
Mutation Single-point Two-point

Island Exchange Rate 50 generations 50 generations

Table 4 A comparison of efficiency with ICGA and
standalone GA in 99 samples.

 ICGA Standalone GA
Convergence
Time

154 generations
(81 seconds)

187 generations
(75 seconds)

Accuracy Rate 100% 100%

Table 5 A comparison of efficiency with ICGA and
standalone GA in 2488 samples.

 ICGA Standalone GA
Convergence
Time

160 enerations
(2.682 hours)

185 generations
(11.58 hours)

Accuracy Rate 100% 100%

5 Conclusions
 In this paper, we have proposed a novel ICGA that can
not only efficiently process big data but also have a high

accuracy in detecting the most discriminative parameters.
With the MapReduce technique, performance speeds up by
more than 4 times in big data. Furthermore, the proposed
ICGA based on the MapReduce technique has avoided the
unnecessary map-reduce procedure so that it can enhance the
efficiency.

6 Acknowledgements
 The research is based on work supported by the NSC
102-2410-H-110-083- project from National Science Council,
Taiwan.

7 References
[1] A. Chen and J. Blue, "Recipe-independent Indicator for
Tool Health Diagnosis and Predictive Maintenance," IEEE
Transactions on Semiconductor Manufacturing, vol. 22, pp.
522-535, 2009.

[2] A. Thieullen, M. Ouladsine, and J. Pinaton, "Application
of PCA for Efficient Multivariate FDC of Semiconductor
Manufacturing Equipment," in 24th Annual SEMI Advanced
Semiconductor Manufacturing Conference (ASMC), Saratoga
Springs, NY, 2013, pp. 332-337.

[3] I. Saleem, M. Aslam, and M. Azam, "The use of
Statistical Methods in Mechanical Engineering," Research
Journal of Applied Sciences, Engineering and Technology,
vol. 5, pp. 2327-2331, 2013.

[4] M. P.-L. Ooi, E. K. J. Sim, Y. C. Kuang, S. Demidenko,
L. Kleeman, and C. W. K. Chan, "Getting More From the
Semiconductor Test: Data Mining With Defect-Cluster
Extraction," IEEE Transactions on Instrumentation and
Measurement, vol. 60, pp. 3300-3317, 2011.

[5] C.-Y. Hsua, C.-F. Chienb, and P.-N. Chen,
"Manufacturing Intelligence for Early Warning of Key
Equipment Excursion for Advanced Equipment Control in
Semiconductor Manufacturing," Journal of the Chinese
Institute of Industrial Engineers, vol. 29, pp. 303-313, 2012.

[6] J. Lee. (2005). Intelligent Maintenance Systems (IMS)
Technologies. Available:
http://www.imscenter.net/Resources/IMS Chinese
Introduction.pdf

[7] L. Bechou, D. Dallet, Y. Danto, P. Daponte, Y. Ousten,
and S. Rapuano, "An Improved Method for Automatic
Detection and Location of Defects in Electronic Components
Using Scanning Ultrasonic Microscopy," IEEE Transactions
on Instrumentation and Measurement, vol. 52, pp. 135-142,
2003.

[8] B. Hu, C. K. Pang, M. Luo, X. Li, and H. L. Chan, "A
Two-Stage Equipment Predictive Maintenance Framework
for High-Performance Manufacturing Systems," in 7th IEEE

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

24 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

http://www.imscenter.net/Resources/IMS

Conference on Industrial Electronics and Applications
(ICIEA), Singapore, 2012, pp. 1343-1348.

[9] J. Dean and S. Ghemawat, "MapReduce: Simplified
Data Processing on Large Clusters," Communications of the
ACM, vol. 51, pp. 107-133, 2008.

[10] J. Shafer, S. Rixner, and A. L. Cox, "The Hadoop
Distributed Filesystem: Balancing Portability and
Performance," in 2010 IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS),
White Plains, NY, 2010, pp. 122-133.

[11] G. E. Gonçalves, P. T. Endo, T. D. Cordeiro, A. V. A.
Palhares, D. Sadok, J. Kelner, et al., "Resource Allocation in
Clouds: Concepts, Tools and Research Challenges," in XXIX
Brazilian Symposium on Computer Networks and Distributed
Systems, Brazil, 2011, pp. 197-240.

[12] M. Mitchell, An Introduction to Genetic Algorithms.
Cambridge, England: MA: MIT Press, 1996.

[13] F. Ferrucci, M.-T. Kechadi, P. Salza, and F. Sarro.
(2013). A Framework for Genetic Algorithms Based on
Hadoop. Available: http://arxiv.org/pdf/1312.0086.pdf

[14] N. S. Altman, "An Introduction to Kernel and Nearest-
neighbor Nonparametric Regression," The American
Statistician, vol. 46, pp. 175-185, 1992.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 25

http://arxiv.org/pdf/1312.0086.pdf

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

26 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

SESSION

CLOUD COMPUTING AND Grid - RELATED
ISSUES

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 27

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

28 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

A Highly Available Generic Billing Architecture for Heterogenous
Mobile Cloud Services

P. Harsh1, K. Benz1, I. Trajkovska2, A. Edmonds1, P. Comi3, and T. Bohnert1
1InIT Cloud Computing Lab, Zurich University of Applied Sciences, Winterthur, Kanton of Zurich, Switzerland

2Dpto. Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid, Madrid, Spain
3Innovation & Research, Italtel S.p.A., Castelletto, Milan, Italy

Abstract— Rating, Charging, Billing (RCB) is the funda-
mental activity that enables a business to generate revenue
stream depending on the resource consumption by their
consumers. Traditionally, telecom operators have used cus-
tom designed, vertically integrated solution for RCB which
often results in a complex system that is difficult to adapt
to new service offerings. With telecom operator’s desire to
capitalize on cloud computing by using their vast amount of
infrastructure, the need for a RCB solution that serves the
needs of cloudified telcos is needed.

In this paper we present an approach to implement a
generic rating, charging, and billing engine that serves the
business and technical needs of both cloudified telecom
services and those of cloud service providers. Key to this
is a generic accounting process to drive the design of the
generic RCB architecture. We show how RCB as a service
can be offered catering to not only traditional telco services,
the new cloud services they wish and will offer, but packaged
cloudified services to the consumers and application devel-
opers as well. Finally, we detail how our architecture can
be distributed and key services replicated to ensure high-
availability.

The end result of this paper is a solution that can enable
telecom service providers to leverage the rapidly growing
and accelerating cloud service market.

Keywords: economics, rating, charging, billing, high-availability,
cloud

1. Introduction
In the telecoms’ domain, the RCB process has been very

tightly-coupled and vertically-integrated with their services.
Therefore any new value addition (e.g. cloud services) on
top of the offered service necessitates a complete overhaul
of the RCB strategy, and many times technological ones,
by the businesses. In this era of mash-ups and composed
services, there is a real need of a completely generic RCB
platform that can potentially support any composed service
today and in the future.

We are conducting this research as part of Mobile Cloud
Networking (MCN) project. MobileCloud goal is the conver-
gence of the telecom and cloud worlds. Essentially it equates

to: Mobile Network + Decentralized Computing + Smart
Storage offered as one service based on cloud computing
principles [1] e.g. on-demand, elastic, pay-as-you-go model.

Telecom services are normally offered over vertically
integrated systems, comprising of Radio Access Network
(RAN), Enhanced Packet Core (EPC), and IP Multimedia
Subsystem (IMS). These services are supported by standards
such as Diameter [2] and Radius [3] that provides Au-
thentication, Authorization, and Accounting (AAA) support.
More details of the current state of the art can be found in
Section VI. With the emergence of smart-phones and always
connected mobile devices, more and more value is created by
mobile application developers on top of cloud services. Tra-
ditional telecom operators are being increasingly delegated
to simply provide a dumb data pipe for such rich-experience
mobile apps.

With a departure from traditional service models, the
tightly integrated RCB solutions used currently, are rendered
insufficient in dealing with the new models in MCN that will
support dynamic service compositions using elements from
both traditional telecom domain to be offered as a service
plus elements of clouds offered as a service. Each composed-
service being offered to the user (the application developer,
or a Mobile Virtual Network Operator), can be offered by
a single provider in its entirety, or individual services could
be offered by independent operators.

This work plans to address this issue by providing an
architecture that adapts to existing ones and models (Section
IV) which help telecom operators embrace cloud computing
principles and make an operator efficient through the use of
clouds. In addition, MCN also aims at enabling new business
models by extending the cloud, so that, an operator can
provide customized bundled platforms comprised of cloud
services and telecom features such as EPC to application de-
velopers. This would enable application developers to create
next generation of fully integrated, rich mobile applications
through custom provisioned app-development environments,
customizing not just the traditional data-center elements, but
also the elements of the telecom service stack.

And therein lies the motivation and need of a model for
developing a RCB solution which is generic in nature so as
to support requirements (Section III) of composed services

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 29

in a completely uniform manner. The proposed solution in
this paper aims to be fully extendible in order to support
new services that will be offered in the near-future.

Regardless of the nature of service offered, a business
must conduct an internal accounting process in order to bill
it’s customers, and this process should be general across
businesses and agnostic to the services offered. Hence in
this paper we investigate how we can exploit this financial
process for creating a completely generic rating-charging-
billing model, as detailed in Section II.

With the this approach, RCB as a service can be offered to
any generic service provider and support both the traditional
monolithic service models, as well as new cloud-based
atomic and composed service paradigm.

2. Accounting Process and Pricing Mod-
els

In order to comprehend the architectural design require-
ments on a generic RCB system, it is important to look into
the overall accounting process and different pricing models
that an organization could use in their billing process.

2.1 Accounting Process

Fig. 1: General Accounting Process

In [4], the authors have captured the financial process for
accounting cloud services. Figure 1 provides the overview of
such an accounting process. It explains the general workflow
and relations from the metering phase to the financial clear-
ing process where the customer settles the invoice after the
payment is processed. For our purpose, we slightly adapted
the concepts to support cloud bursting. In our slightly
adapted approach, various phases in the accounting process
are -

• Metering - the process of collecting the various re-
source usage metrics of the consumers. This process

is critical as without the raw metered data we can not
properly customize our billing strategy. Without meter-
ing, businesses could offer their services essentially at
a flat rate regardless of how high or low the customer’s
consumption is.

• Mediation - the process of assimilating and transform-
ing the usage records that comes from different meters
into a meter-agnostic format which could be processed
by other modules in the accounting process cycle.

• Accounting - this part of the overall process is normally
tasked with secured long term storage of accounting
records generated by the mediation module, until at
least the legally required timeframe. It also analyzes the
accounting records and generates the session records
for further processing. The stored accounting records
come in handy in case of any billing dispute from the
customers.

• Pricing - depending on the resource type, the pric-
ing strategy will vary, e.g. - a provider may offer a
flat rate for up-to 1 TB of storage, but the network
bandwidth pricing could be based on the units of data
sent/received. This function, depending on the resource
type, outputs the appropriate pricing function to be
applied to the accounting records.

• Charging - this is the process of applying the appro-
priate pricing functions to the accounting records to
generate the charge records. Charge records contains
the monetary value associated with the resource usage
by the customer.

• Roaming / Cloud Bursting - This component is
inspired by the roaming charges that one has to pay
in the telecom domain. Similarly, if there is a cloud
bursting scenario, then one has to consider that in
the overall accounting process. This aggregation of
billing information from external organization could be
governed by special arrangements between providers.
All these aspects can be handled at this phase in the
overall process.

• Billing - this is the process of consolidating all the
charge records since the last billing cycle. This stage
also takes into account any discounts that were appli-
cable in the cycle. Bills are generated for the customers
as an output of this phase.

• Financial Clearing - generating bills is one aspect,
sending the bills out to the customers and processing the
payments through financial clearing houses is the main
task supported in this phase of the financial process.

2.2 Pricing Models
In [4] [5], the authors also covered popular pricing mod-

els. In this section we summarize their findings. Pricing
models are key in realizing an optimal revenue stream
for the services being offered. The most common pricing

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

30 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

models are1 time-based, volume-based, QoS based, flat-
rate, Paris-metro model, priority-based, smart-market model,
edge, responsive, proportional-fairness, cumulus, session-
oriented, one-off and time-of-day based. The correct choice
of the pricing function for charging the resources could help
differentiate one’s service from the competition.

Depending on the business scenario, one may have to
adapt the generic pricing models. Some of the variations
commonly used today are free of charge, periodic-fees,
discounts, pre-paid, online-accounting, offline-accounting,
static-pricing, dynamic-pricing, etc.

The generic RCB implementation, if to be used as a
service by several customers, must be capable of supporting
most of the pricing models and common variations used
today. We will see later how our proposed architecture
addresses the challenge.

3. Design Requirements
RCB system requirements in MCN are influenced by the

general architectural requirements. The MCN architecture is
service centric. Core telecom functions such as EPC, RAN,
and BBU are offered as services. Some services have a built-
in legacy “rating-charging” component, in which scenario,
the proposed RCB architecture must utilize the charging
data. In other cases the data format and message flows are
to be designed in a completely service agnostic manner.
Furthermore, RCB is the key process that leads to revenue
generation, such a system should be highly available.

3.1 MCN Global Architecture
The MCN architecture follows a service oriented archi-

tecture. In the MCN architecture, all functional elements are
modelled as services. The key architectural entities of the
MCN architecture are:

• Service Manager (SM): It provides an external inter-
face to the user both programmatic and/or visual. It
offers multi-tenant capable services to that user. The
SM has two dimensions; the business which encodes
business agreements, and the technical that manages the
different Service Orchestrators of a particular tenant.

• Service Orchestrator (SO): It embodies how the
service is actually implemented. Generally, one SO
per SM domain is instantiated per tenant. It oversees
the complete (end-to-end) orchestration of a service
instance (SI). It is implemented as a domain specific
component and manages the service instance, which it
creates, including scaling of the instance. The SO is
managed by the SM and the SO monitors SI specific
metrics related to the service instance. Although SIs are
domain-specific, they are composed of service instance
components (SIC).

1for details please refer to the original study

• CloudController (CC): Supports the deployment, pro-
visioning, and disposal of SOs. To the SOs it also
provides both atomic and support services through a
Service Development Kit (SDK).

Below is a diagram of their relationships:

Fig. 2: Mobile Cloud Networking Architectural Entities and
Relationships

Each architectural entity and service within MCN shares a
common lifecycle model. The lifecycle model used in MCN
is divided into two complementing phases, the business and
the technical. For the business life cycle phase, the following
stages are defined:

• Design: the service that will be offered is formulated
and understood how it can be created from internal and
outsourced services.

• Agreement: with a set of services identified, agree-
ments related to service level agreements (SLA), pricing
and access (AAA) can be entered with those service
providers.

For the technical life cycle phase, the following stages are
defined:

• Design: at this stage the service’s technical design is
carried out.

• Implement: with a service design the service is imple-
mented. This entails the implementation of a SM and
SO.

• Deploy: In order for the SM to take requests to create
new service instances, the SO needs to be deployed
using the CC.

• Provision: this phase is where the SO is instantiated
and begins to create the services necessary to satisfy
the SO’s needs.

• Runtime and Operation: the SO has completed its
job of providing the tenants service instance and is
now monitoring and managing the service instance. It is
during this step where scaling in and out of components
is carried out.

• Disposal: the service instance’s sub-components are
destroyed and deleted.

To be integrated in MCN, the RCB architecture has to
implement the SM and SO MCN architectural entities. As
there is an existing CloudController within MCN, RCB as
presented here can simply reuse it through the SDK.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 31

4. RCB Architecture
A high level RCB architecture is shown in figure 3.

It showcases all the functional elements needed to handle
different stages of a complete financial process. However
it does not show in detail how the various elements of the
overall architecture can be distributed and does not describe
the communication interfaces between various modules.

Fig. 3: Generic Rating, Charging, Billing Architecture

The figure 3 shows OpenStack [6] and Ceilometer [7]
monitoring as an example environment over which RCB
could be deployed. The overall architecture is general
enough to handle any service type as long as it can send
necessary metrics data to the RCB service instance. The
metric records from various services could be represented in
any data representation format standard. A likely candidate
is IP Detail Records (IPDR) [8] standard.

In the overall architecture diagram, the various metrics
taken from numerous (internal and external) channels come
into the Mediation Module, whose task is to standardize the
data format - translate from various supported data formats
into a uniform format for other modules to consume.

The Mediation Module output i.e. the translated data
records are then processed by an analytics engine (not shown
in the overall architecture) to generate the usage records
which are stored in the usage database for future retrieval
and processing.

The Charging Module takes in a rating strategy and
pricing function and processes the usage records to generate
charge records. These charge records must be in a resource
neutral format at this stage. The charge records could be
generated periodically - as frequently as needed (configura-
tion dependent) and stored in a secure database for future
retrieval and processing by other modules.

The rest of the components’ functionality is self-
explanatory. The overall architecture shown is very easy
to distribute. With a cloud service provider with several
data-centers, the architecture can be split into two, collect
usage and generate charge data locally at each data-center;
collect the charge records from multiple locations, process
and generate the bills in one data-center.

Since in MCN, RCB is to be provided as a service, we
will present the design discussions from the implementation
and deployment perspective.

4.1 Key Architectural Components
In this section we will describe key architectural elements

that could be implemented as a standalone module which
would interact with rest of the RCB architectural elements
via secure message bus.

4.1.1 Mediation Submodule

Fig. 4: Mediation Submodule

Figure 4 describes in details the internal components of
the mediation module. This module can be implemented as
a highly available standalone service. The mediation module
would be composed of -

• S-Interfaces / API Drivers - The southbound interface
implements drivers for popular monitoring systems
(Nagios [9], Ganglia [10], Zabbix [11], etc.) through
which resource usage data can be filtered. It also
implements the message-bus endpoints management
for services that wish to send usage data directly to
RCBaaS. Ceilometer is another optional client that
could be supported.

• Data Transformation / Cleanup - The data coming
through the southbound interfaces could be in disparate
formats, they must be transformed in a common format
for other modules to process in a uniform manner. They
could be transformed into IPDR [8] records.

• Analytics - The monitored usage records in some
situation needs to be combined together as part of a
single user session. The analytics module analyzes the

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

32 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

individual data records and performs the classification
and statistical aggregation. The analytics engine can be
implemented as an extendible engine where the users
could supply their own analytics logic (ex. Datahero
[12], Quantopian [13]).

• DB-Interface - Several popular data-store interfaces
must be supported so as to provide flexibility with the
choice of target store where the processed usage records
could be kept for a configured time period.

4.1.2 Charging Module

The charging module uses the usage record from the
Usage Records DB and applies the pricing function to-
gether with the rating strategy depending on the resource
type to generate the charge records which is stored in
Charge Records DB for future retrieval and analysis by other
modules. Similar to usage records, the charge records are
represented in a neutral, standard format, agnostic to the
resource that resulted in such a record. This way the high-
level modules are shielded from the low-level resources (ex.
CPU, Disk, Network I/O, etc.).

Fig. 5: Charging Submodule

Figure 5 shows the charging-module components. The S
- Database Interface Layer connects to the Usage Records
DB to retrieve the data records for further processing. The
Rating Engine governed by the rating process parameters
/ configuration values, processes the usage data and sends
an intermediate data record to the pricing process for ap-
plication of appropriate pricing function from the Pricing
Function Store. The selection of the pricing function could
be governed in-part by the Rating Engine. The N - DB
Interface implements popular database drivers in order to
send the charge records which contains the monetary value
for the usage of a particular resource by the consumer, for
secure storage in Charge Records DB. These records could
be retrieved in future for further processing by other RCB
modules.

4.1.3 Billing Module
Figure 6 describes the billing module that can be imple-

mented as an independent package running on a separate
node while interacting with other nodes using standardized
interfaces.

Fig. 6: Billing Submodule

The S-Database Interface implements the popular API
drivers for connecting to the Charge Records DB and re-
trieving the data records from it. The charge records are
aggregated by the Billing Function module, which simply
generates the basic billed amount for various resources
consumed. Depending on the individual consumer profile,
the billed amount may need to be readjusted depending on
pending discounts, penalties due to SLA violations, etc. This
is taken care of by the Billing Adjustment process. The north-
bound database interface implements popular database API
drivers for storing the generated bills in a secure Bills DB.

4.1.4 User / Management Interface

Fig. 7: User-Interface Submodule

Figure 7 shows in detail the user-interface module of the
overall RCB architecture. It could provide multiple means
of access to the service user: a web based UI, command
line interface, and/or developers’ kit in the form of an API
- each built upon the underlying RESTful [14] interface. A
standardized OCCI [15] billing interface could also be imple-
mented to support interoperability. All user requests coming
through the REST interface must go through authentication
/ authorization checks. Normally this module would allow

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 33

service users to configure all aspects of the RCB process
including policies and settings of rating engine, charging
strategy, pricing model to be used for various resources
consumed. It also allows them to access the generated
bills to be forwarded to the collection centers or payment
gateways. The interface presented to the service user would
be governed by their profile settings.

4.1.5 Supporting Services
Authentication / Authorization service will be imple-

mented as a cross module facilitator since every module in
the RCB architecture needs proper authorization to talk to
other modules of the service. There are numerous authenti-
cation and authorization solutions that could be utilized [16].

Individual modules deployed in a distributed environment
needs a common messaging platform to synchronize the pro-
cesses. Several open source messaging solutions (RabbitMQ
[17], ZeroMQ [18], ActiveMQ [19]) could be utilized to
implement the RCB messaging service.

Fig. 8: RCB Overall Service Orchestration

Figure 8 shows the rating-charging-billing overall orga-
nization consisting of all supporting services and essential
modules that could be easily distributed and made highly
available if needed.

4.2 Strategies for RCB as a Service
Now that we have seen all the components of the generic

RCB software architecture, how can it be used to support
as a service concept? There are two possible strategies -
individual instances per tenant which would require bringing
up separate VM/OS-Container instances running all the
above mentioned modules along with completely separate
backend data-stores. In such a situation, the service user will

have an instance isolated from other instances. The other
solution would be to offer RCB instance by splicing the
overall service. Different user’s configurations and policies
would be stored in the overall configuration and policy stores
segregated using strict access control. The same would hold
true for data-stores too. They could be offered out of the
same database server or any data-store back-end to different
users.

Whenever a new tenant is created, a management end
point could be returned back to the user that would allow
them to configure all the stages of the full financial process
thus offering maximum level of tenant control. The service
users could be billed in a numerous manner, ex. number of
bills generated each month, metrics ingress rate, etc.

4.2.1 MCN Overall Architecture Alignment
The proposed RCBaaS fits nicely in the overall MCN

service architecture. One would have to implement a SM
representing the entry point of the RCB service. For each
new tenant, a SO instance will be provisioned. The SO will
then handle the deployment and run-time management of the
RCB instance for that tenant.

5. Ensuring High Availability
The RCB overall architecture separates data from program

logic. The data is stored in database files, stores and tables.
The program logic is provided by software submodules, a
web user interface and other control elements.

“High Availability” (HA) architectures exploit the fact that
data is separated from program logic in IT processes. They
make IT processes highly available by using a clustering
technology (for increasing availability of data) and a dis-
tributed program logic (for automated failover). RCB can
be turned into a HA system by clustering RCB data and
by using a distributed program logic to control the RCB
services.

HA clustering technology is based on replication and
distribution of data on several redundant machine nodes
(which form the cluster). In order to keep data consistent, it
must be synchronized between all cluster nodes.

The distributed program logic is achieved by running
distributed failover software over redundant computer nodes
and by allowing the software to control the processes that
run on each computer.

5.1 Degree of availability
Redundancy is the essence of High Availability. A non-

redundant RCB architecture can not ensure high availability
levels. If one of the RCB services fails, the whole RCB
platform fails too. Though the usage of data replication and
distributed failover software does enhance availability of the
RCB system (compared to usage of non-redundant data and
IT services), the actual degree of availability vastly depends

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

34 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

on the number of cluster nodes and the configuration of
the failover and data clustering technologies. At this point
we must restrict our analysis to the very generic RCB
High Availability architecture we see in figure 9. The archi-
tecture whose implementation produces a particularly high
availability level can only be evaluated by exploration and
tests of actual implementations. In the following subsections
we want to describe the details of the generic RCB HA
architecture.

Fig. 9: Generic HA architecture for Rating, Charging, Billing

As shown in figure 9, the first HA component is the
distributed failover software (top component) which uses
resource agents to monitor execution of the core RCB
services. The second HA component are a distributed storage
device and file system (bottom component) which redun-
dantly stores the different RCB stores.

5.2 Clustering Technology
HA clustering technologies typically use redundant stor-

age devices (e.g. disk partitions), federate them into a single
HA cluster and create some kind of distributed storage on
top of the cluster. The HA clustered devices are then threated
by each node as if they were one single storage device. In
order to access the clustered device through a single entry
point, usually the cluster gets labelled with a “virtual” IP
address. The virtual IP is a an IP address which is shared
between cluster nodes and assigned to the cluster node which
is currently actively managing the clustered device.

In order to make RCB data highly available, it must be
stored on a HA clustered storage. Therefore all database
files, stores and tables of the RCB must be transferred to the
clustered storage. Then configuration files must be changed
in order to locate the data in the clustered storage. In the

RCB HA architecture diagram (figure 9) the transfer of RCB
data to a clustered storage is depicted with blue arrows.

5.3 Distributed Program Logic
While data can be made highly available by replicating

it over several nodes, availability of a software program
depends not only on redundant data, but also on uninter-
rupted execution of services that operate with the data. This
can be achieved by executing the services that constitute
the RCB platform redundantly on several nodes and switch-
ing the control flow to those services which are currently
available in case of failure. These tasks must be performed
by a distributed application which monitors and controls
execution of RCB services. Such an application should track
the execution state of RCB services and direct the control
flow of the RCB platform only to available services.

Program logic of the RCB application can be made highly
available by installing identical RCB component services on
multiple nodes and deploying a distributed failover software
on all nodes. The redundant RCB services are then connected
via “proxy configurations” or “resource agents” to the dis-
tributed failover software. The resource agents and the proxy
configurations allow the distributed failover program to
control execution of RCB services. The distributed failover
application will check if an RCB service fails and process
failover actions to recover from service outages. In figure 9
the connections between RCB services and resource agents
or proxy configurations are depicted with dotted arrows.

Candidate technologies that allows us to create a HA RCB
platform is covered in section 6.

6. Technology Specifics, General Con-
cepts and Related Work
6.1 Telecom and 3GPP

For wireless telecommunication charging is mainly cov-
ered by 3GPP specifications of 32.x series. These are 3GPP
TS 32.240 “Charging architecture and principles” [20] and
3GPP TS 32.299 “Diameter charging application” [21].
The 3GPP standard supports both offline as well as online
charging models. In offline charging, the resource usage
is reported from the network to the Billing Domain (BD)
after the resource usage has occurred. In online charging,
a subscriber account, located in an online charging system,
is queried prior to granting permission to use the requested
network resource(s). 3GPP and Diameter approach to RCB
is not suitable for a mash-up, composed service as the usage
demands significant integration with the offered service
which is time consuming. A more loosely coupled approach
is needed which is offered by our model.

6.2 Research Trends in RCB
In this section we describe the existing approaches for

RCB in the context of telcos, cloud providers and service

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 35

providers. In the domain of the 3GPP telecommunication
networks, a study by Grgic et al. [22] offers an extensive
overview of the charging process. The authors propose: (a)
signaling aspect, (b) inter-domain aspect and (c) service- and
component-based aspect of online charging with respect to
information utilization. They diagnose a lack of information
specification and structuring, sharing issues and user privacy
issues as research challenges for online charging systems
with respect to the information access. A good report that
classifies the pricing schemes for IP and ATM networks is
presented in [23]. It analyses the current issues, advantages
and disadvantages in the both pricing models and compares
the pricing approaches. In his paper [24], Kelly describes
a system model of charging, routing and flow control for
broadband multiservice networks. The system assignees util-
ity functions to the users and capacity constraints to the
network. An example shows how the fairness criteria are
associated with a particular utility function. The authors
demonstrate that when users’ choices of charges per unit
time and the network’s choice of allocated rates are in
equilibrium, a system optimum is achieved. A new E-
Charging API was proposed to Parlay and 3GPP OSA
[25]. This API isolates the charging as a separate process
offered by the Payment Service Provider and it is addressed
for both the application service providers and the network
operators. It permits the application service providers reach
to the subscriber base of the payment service provider.
Koutsopoulou et al. [26], propose a platform addressed
for the next generation mobile network, for sophisticated
and reconfigurable support of charging, accounting and
billing process (CAB) as a discrete service. This platform
reuses the existing network components according to the
recommendations of the standardization groups. Apart from
one stop billing, it supports separation of charging events
based on transport, service and content usage. A set of
APIs is provisioned for pricing related reconfigurations and
deployment of charging services.

The emerging cloud computing market opens new possi-
bilities for the telecommunication companies to maximize
their revenue. In this context, Tselios et al. point out the
closed-garden mentality of the telecommunication compa-
nies, their slow business model adoption and the lack of
credibility to be a major handicap for cloud infrastructure
adoption. A charging and billing layer is required, according
to the authors, to capture the traffic records and provide
the necessary charges to both departmental and individual
levels. They conclude the urge for a new business model for
increased price competition and improved customer service
that will most likely enforce cloud adoption by the telcos
[27]. The CGI group [28], identifies flexibility in billing
as the missing link for cloud providers that would allow
them to aggregate data and to understand usage patterns for
better capacity planning and analysis of sales and marketing.
We identified in the literature, an example of a system

implementation of a model for deployment of different cloud
business models based on the Internet Economics process
[4]. The authors use jBiling as an accounting platform
and IPDR protocol to fit different pricing schemes and
tariffs, as well as better accounting on the usage of cloud
services. Deelman et al. [29], take an approach towards
using the cloud for science and analyze how a scientific
application, given the availability of the clouds, can make
the right cost-performance trade-off. In this context they
study the cost of various workflow execution models and
provisioning plans for cloud resources and prove the cloud
to be a cost-effective choice for data-intensive applications.
A monetary-based incentive for accounting and billing in
Grid networks is presented in [30]. The novelty in this
model is the support for multiple virtual organizations and
multiple network operators. In addition, the authors present
a Grid Economic architecture as a solution to the Large
File Transfer problem, that is essentially scalable, efficient
and feasible over the Internet. Besides the standard AAA
and Billing components, this architecture provides a Pricing,
Metering and Security elements based on a price-wise or
trust-wise service provisioned by the Grid node.

Two interesting applications of online charging are pre-
sented by Zuber [31] and Nagahara et al. [32]. The first one
is a patented method for automatic tagging of documents
and communications with filing and billing information for
online social networks. This information can be further
associated with each document and the communication can
be customized to include categories most applicable to
the business of the user. The second invention resolves
the conventional charging system’s limitation by facilitating
children to use imaginary accounts for accessing on-line
services such as: on-line shopping and video-on-demand.
Finally Bhushan et al. [33], present a standardization-based
work in B2B environment–a federated accounting manage-
ment architecture for charging and billing.

The described approaches address particular segment or
the entire RCB process, from individual provider’s point
of view. RCB paradigm is yet a novel service for cloud
providers and therefore migrating this service to a higher
level that will embrace heterogeneous providers and services
is currently a challenging process. We have not registered
so far a generic RCB solution aimed for composed services.
What also distinguishes our approach in the RCB domain, is
the consideration of high availability concept that is tightly
coupled and highly important aspect for services’ scalability.

6.3 Technologies for enabling HA
For highly available architectures, two type of enablers

exist: technology for HA of data and technology for HA
of software programs. A storage clustering technology is
needed in order to make RCB data highly available. Typical
examples of such HA clustering technologies are DRBD
[34], Ceph [35] and GlusterFS [36]. The difference between

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

36 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

these HA clustering technologies lies in synchronization of
the clustered devices.

DRBD is a replicated copy of disk contents: after an
initial synchronization of disk contents, disk writes can be
performed by “primary” nodes only, and are propagated
synchronously to all nodes [37]. DRBD is quite a simple
and reliable mechanism, but because storage is rather copied
than shared, DRBD storage does not scale very well.

Ceph is a more scalable solution, because (unlike in
DRBD) consistency conditions can be relaxed and file writes
need not be propagated synchronously to all nodes [35]. A
major drawback of such relaxed replication is that a lookup
service is needed in order to retrieve files and keep file data
consistent [35]. Therefore Ceph separates file metadata from
file contents.

An alternative to Ceph could be GlusterFS. Unlike Ceph,
GlusterFS uses completely synchronous replication of files.
Files are retrieved by a hash value which is assigned to
them when they are written [38]. GlusterFS does not scale as
good as Ceph, but it still scales better than DRBD, because
the GlusterFS storage is not merely a copy of disks, but an
abstraction of hardware devices [38].

The choice of the “right” clustering technology for RCB
data depends on the requirements of the concrete RCB
implementation: if a scalable solution is needed, Ceph is
the “best” choice. If reliability is important, DRBD should
be taken. If some compromise between scalability and relia-
bility is needed (which is often the case in mobile networks),
GlusterFS might be an adequate solution. RCB program
logic can be made highly available by using a distributed
failover software which manages the RCB services (e.g. the
Billing submodule). Typical technologies which are capable
of management of IT services are Pacemaker [39] and
HAProxy [40].

Pacemaker is a distributed application which monitors “re-
sources” (IT services) in a cluster and controls execution of
these resources [39]. In contrast to Pacemaker, HAProxy is a
HTTP/TCP load balancer which can detect service failures,
failover unavailable services, and redirect user requests to
currently available services [40]. HAProxy has the advantage
that it couples user interactions to availability of IT services
and transparently hides IT service outages to end users. A
drawback is that it is mainly designed for HTTP/TCP-based
applications. Pacemaker is more flexible than HAProxy: it
can manage almost all possible kind of IT services. The
major drawback of pacemaker is that it is not actively
managing user requests.

As a HA solution for the RCB program logic, Pacemaker
is suitable for management of core RCB services like
Mediation, Charging, Billing and RCBaaS Support services.
Pacemaker offers the flexibility which is required to manage
those component services. For the Web UI service, it is better
to use HAProxy because of its user request management
and load balancing capabilities. Pacemaker and HAProxy

have in common that they must be configured in order to
observe availability of IT services and perform the required
failover actions. In Pacemaker we need “resource agents”
which tell Pacemaker how it can monitor, start or stop a
particular service. In HAProxy a “proxy configuration” must
be defined for each service which is monitored. For the
connection of services with Pacemaker and HAProxy we
plan to use custom resource agents for the RCB services
(Mediation, Charging, Billing and RCBaaS Support) and a
proxy configuration for the Web UI.

7. Conclusion
In this paper we have provided a highly available, generic

RCB service architecture that supports a standard accounting
model. Every functional element of the proposed model
is configurable, thereby making our solution work in any
business environment. As a result, this solution is ideal to be
offered as a service to different service providers. In section
2, we provided an overview of accounting process to inspire
the design. We presented a detailed architecture in section
4 and analyzed and prepared a high-availability strategy in
section 5.

The next steps for us is to implement the architecture and
integrate the solution over our OpenStack testbed. We will
do more in depth study of different business models and
check if our solution satisfies the RCB need of the control
group.

Acknowledgment
The authors would like to thank the MCN consortium

for providing the draft of the overall architecture diagrams
which helped them a lot to understand the RCB interaction
with other components and in one way or other helped shape
the RCB generic architecture. The work is supported by the
European Community Seventh Framework Programme (FP7/
2001âĂŞ2013) under grant agreement no.318109.

References
[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”

NIST special publication, vol. 800, p. 145, 2011. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[2] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn,
“Diameter Base Protocol,” RFC 6733 (Standard Track),
Internet Engineering Task Force, Oct. 2012. [Online]. Available:
http://tools.ietf.org/html/rfc6733

[3] C. Rigney, “RADIUS Accounting,” RFC 2866 (Informational),
Internet Engineering Task Force, June 2000, updated by RFCs 2867,
5080. [Online]. Available: http://www.ietf.org/rfc/rfc2866.txt

[4] I. Ruiz-Agundez, Y. K. Penya, and P. G. Bringas, “Cloud computing
services accounting,” International Journal of Advanced Computer
Research (IJACR), pp. 7–17, 2012.

[5] ——, “A taxonomy of the future internet accounting process,”
in Proceedings of ADVCOMP 2010 : The Fourth International
Conference on Advanced Engineering Computing and Applications
in Sciences. Florence, Italy: IARIA, 25–30 October 2010, pp. 111–
117, iSBN: 978-1-61208-000-0.

[6] O. Community. (2013, July) Openstack open source cloud computing
software. [Online]. Available: http://www.openstack.org/

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 37

[7] O. Ceilometer Community. (2013, July) Ceilometer - openstack.
[Online]. Available: https://wiki.openstack.org/wiki/Ceilometer

[8] S. Cotton, B. Cockrell, P. Walls, and T. Givoly, “Network Data
Management - Usage (NDM-U) For IP-Based Services. Service
Specification - Cable Labs DOCSIS 2.0 SAMIS,” IPDR Service
Specifications NDM-U, Nov 2004.

[9] D. Josephsen, Building a Monitoring Infrastructure with Nagios.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2007.

[10] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: Design, implementation and experience,” Parallel
Computing, vol. 30, p. 2004, 2003.

[11] P. Tader, “Server monitoring with zabbix,” Linux J.,
vol. 2010, no. 195, July 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1883478.1883485

[12] DataHero. (2013, July) DataHero. [Online]. Available:
http://www.datahero.org/

[13] Quantopian. (2013, July) Quantopian Community. [Online]. Available:
https://quantopian.com

[14] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, 2000, aAI9980887.

[15] A. Edmonds, T. Metsch, A. Papaspyrou, and A. Richardson, “Toward
an open cloud standard,” Internet Computing, IEEE, vol. 16, no. 4,
pp. 15–25, 2012.

[16] O. Keystone Community. (2013, July) Keystone - openstack.
[Online]. Available: https://wiki.openstack.org/wiki/Keystone

[17] J. Russell and R. Cohn, Rabbitmq. Book on Demand, 2012. [Online].
Available: http://books.google.ch/books?id=uO7IMgEACAAJ

[18] P. Hintjens, ZeroMQ: Messaging for Many
Applications. O’Reilly Media, 2013. [Online]. Available:
http://books.google.ch/books?id=TxHgtl_sFmgC

[19] B. Snyder, D. Bosanac, and R. Davies, ActiveMQ in Action. Green-
wich, CT, USA: Manning Publications Co., 2011.

[20] “Telecommunication management; charging management; charging
architecture and principles,” 3rd Generation Partnership Project
(3GPP), 650, route des Lucioles, Sophia-Antipolis 06921, France,
Tech. Rep., 2013, TS 32.240, Rel-12. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/32240.htm

[21] “Telecommunication management; charging management; diameter
charging applications,” 3rd Generation Partnership Project (3GPP),
650, route des Lucioles, Sophia-Antipolis 06921, France,
Tech. Rep., 2013, TS 32.299, Rel-12. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/32299.htm

[22] T. Grgic and M. Matijasevic, “An overview of online charging
in 3gpp networks: new ways of utilizing user, network, and
service-related information,” International Journal of Network
Management, vol. 23, no. 2, pp. 81–100, 2013. [Online]. Available:
http://dx.doi.org/10.1002/nem.1816

[23] S. Bodamer, “Charging in multi-service networks,” http://www.ikr.uni-
stuttgart.de/Content/Publications/Archive/Bo_IB29_29702.pdf, 1998.

[24] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.
[Online]. Available: http://dx.doi.org/10.1002/ett.4460080106

[25] K. Luttge, “E-charging api: outsource charging to a payment service
provider,” in Intelligent Network Workshop, 2001 IEEE, 2001, pp.
216–222.

[26] M. Koutsopoulou, A. Kaloxylos, and A. Alonistioti, “Charging, ac-
counting and billing as a sophisticated and reconfigurable discrete
service for next generation mobile networks,” in Vehicular Technology
Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th,
vol. 4, 2002, pp. 2342–2345 vol.4.

[27] C. Tselios, I. Politis, V. Tselios, S. Kotsopoulos, and T. Dagiuklas,
“Cloud computing: A great revenue opportunity for telecommunica-
tion industry,” in FITCE Congress (FITCE), 51st, 6, Poznan, Poland,
2012.

[28] CGI, “Billing in the cloud: The missing link for cloud providers,”
http://www.cgi.com/files/white-papers/billing-in-the-cloud-e.pdf,
2010.

[29] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the cloud: The montage example,” in High
Performance Computing, Networking, Storage and Analysis, 2008.
SC 2008. International Conference for, 2008, pp. 1–12.

[30] S. Kotrotsos, P. Racz, C. Morariu, K. Iskioupi, D. Hausheer,
and B. Stiller, “Business models, accounting and billing concepts
in grid-aware networks,” in Networks for Grid Applications, ser.
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, A. Doulamis,
J. Mambretti, I. Tomkos, and T. Varvarigou, Eds. Springer
Berlin Heidelberg, 2010, vol. 25, pp. 27–34. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11733-6_4

[31] T. ZUBER, “Method for tagging documents and communications
with filing and billing information,” Patent Application,
05 2011, uS 2011/0106679 A1. [Online]. Available:
http://www.patentlens.net/patentlens/patent/US_2011_0106679_A1/en/

[32] J. Nagahara, T. Nashida, H. Nakano, M. Niijima, Y. Sonoda,
and Y. Kumagai, “Charging system in interactive on-line
service,” Patent, 04 2007, eP 0725376 B1. [Online]. Available:
http://www.patentlens.net/patentlens/patent/EP_0725376_B1/en/

[33] B. Bhushan, M. Tschichholz, E. Leray, and W. Donnelly, “Federated
accounting: service charging and billing in a business-to-business
environment,” in Integrated Network Management Proceedings, 2001
IEEE/IFIP International Symposium on, 2001, pp. 107–121.

[34] L. Ellenberg, “Drbd 9 and device-mapper: Linux block level storage
replication,” in Proceedings of the 15th International Linux System
Technology Conference, 2008.

[35] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: a scalable, high-performance distributed file
system,” in Proceedings of the 7th symposium on Operating systems
design and implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 307–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298485

[36] E. B. Boyer, M. C. Broomfield, and T. A. Perrotti, “Glusterfs one
storage server to rule them all,” Los Alamos National Laboratory
(LANL), Tech. Rep., 2012.

[37] F. Haas, P. Reisner, and L. Ellenberg, “The drbd user’s guide,” LINBIT
HA Solutions GmbH, 2011.

[38] R. Hat, “Glusterfs: Red hat storage software appliance,” 2011.
[39] M. Schwartzkopff, Clusterbau: Hochverfügbarkeit mit Pacemaker,

Openais, Heartbeat und LVS. O’Reilly, 2010.
[40] V. Kaushal and V. Kaushal, “Autonomic fault tolerance using haproxy

in cloud environment,” International Journal of Advanced Engeneering
Sciences and Technologies, vol. 7, 2010.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

38 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Exploring Security and Privacy Risks of SoA

Solutions Deployed on the Cloud

Abdullah Abuhussein, Harkeerat Bedi, Sajjan Shiva

Department of Computer Science

The University of Memphis

Memphis, USA

{bhussein, hsbedi, sshiva}@memphis.edu

Abstract— It has been widely accepted that service oriented

architecture (SoA), has been a promising approach for business

development and growth. SoA principles (also known as SoA

qualities) attempt to guide development, maintenance, and usage

of the SoA. These principles provide benefits like: ease of reuse,

service automation, and lowering integration costs. However,

they can also lead to security issues. These issues are augmented

especially when SoAs are deployed in multi-tenancy third party

clouds. SoA has benefited from the existence of cloud computing

(CC) as it provided SoA with a flexible deployment medium.

However, the advantageous collaboration of SoAs and CC has led

to a larger set of privacy and security issues (e.g. compliance

issues, QoS issues). Additionally, we observe newer kinds of

security and privacy risks that are now required to be monitored

and mitigated. In this paper we highlight the security and

privacy challenges associated with the utilization of the SoA

principles on cloud based solutions. We identify the origin and

severity of these issues followed by several recommendations to

guide the utilization of SoA principles in off-premise clouds.

Keywords— service oriented architecture, cloud computing,

security, privacy.

I. INTRODUCTION

Service oriented architecture (SoA) has provided the
software development industry with flexibility and capabilities
like bridging business and IT, lower cost by implanting
reusability and providing autonomy in software services. SoA
is defined as a set of architectural tenets for building
autonomous yet interoperable systems [1]. SoA defines eight
principles that guide its development, maintenance, and usage.
These principles are: abstraction, autonomy, composability,
discoverability, formal contract, loose coupling, reusability and
statelessness [2].

SoA principles offer a number of advantages (e.g.
reusability, reduce integration and maintenance costs) [3] and
therefore they can also be represented as qualities of SoA. SoA
principles played a significant role in the adoption of the SoA
paradigm in the last decade [4]. The tightly coupled nature
among services in systems preoccupied developers’ minds. The
SoA principles alleviated these issues and enabled the software
developers to produce software components that are reusable,
autonomous and customizable.

In some cases, SoA principles like abstraction and
independency of services help to reduce services exposure to

the outside world and therefore reduce security risks. However,
SoA security in general remains an issue due to the medium
they are deployed on and delivered through.

Deployment and delivery of SoA can be performed using
several methods. At present, cloud computing (CC) has
become the most prominent means of SoA deployment and
delivery. CC provides benefits like resiliency, elasticity and
reliability but also raises several security and privacy risks [5].
The combination of SoA and CC together produces a larger set
of security and privacy risks. CSA Notorious 9 of 2013 stated
that Clouds that share PaaS, SaaS, and IaaS are more
vulnerable [6]. This is generally the case when deploying SoA
solutions on public clouds. .

The future of SoA is tightly interlinked with CC due to the
use of Internet, changing nature of the customers, and the
impact of social networking (e.g. sudden high consumer
demand/traffic that was not an issue before). To handle such
situations that are very common now, SoA needs CC to cater
the needs of this newer generation of consumers. Therefore,
SoA benefits from CC features like agility, scalability, and
reliability to operate and conveniently perform upgrades to
meet the consumer’s needs.

The current research is primarily geared towards finding
the security and privacy issues of SoA [7]. Researchers in [8]
and [9] have shown some of the security challenges in
deploying SoA in the cloud. In this work we study the
relationship between the utilization of the SoA principles and
the emersion of security and privacy issues . We also show the
origin of these security and privacy issues then provide
recommendations on how to secure the deployment. SoA is
widely practiced today. Now, most companies are focusing on
building services that are independent, can be discovered and
requested automatically by consumers, and are able to monitor
and manage themselves. However, this requires an extensive
effort towards balancing the utilization level of SoA principles,
while minimizing exposure to security and privacy risks.

Section 2 explores SoA deployments over the past decade.
We will also go over current different form of delivering SoA.
In section 3 we illustrate how utilizing SoA principles in the
cloud may lead to potential security and privacy vulnerabilities.
We show the severity of such risks and describe how they are
originated. We also present various recommendations to

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 39

overcome these risks. Section 4 provides our observations on
the presented problem, proposed solution and future work.

II. SOA DEPLOYMENT AND DELIVERY

Traditionally, SoA solutions like Customer relationship
management (CRM) , Enterprise resource planning (ERP),
payroll, etc. were deployed on private machines that lie within
the premises of the end user’s organization (on-premises) or
deployed within the SoA provider’s organization (off-
premises) and accessed by end users through the Internet.
Emergence of CC served to meet developers’ increasing
demands of infrastructure for their SoA solutions. With the
advent of CC, the entities responsible for development of SoA
and those of infrastructure became separated. This leads to
change to the nature, severity and/or existence of SoA
vulnerabilities. It also leads newer kinds of issues and risks that
were not present earlier (e.g. governance and compliance
issues, etc.) [5].

Fig. 1. SoA deployed on off-premises versus on-premises cloud computing

Fig. 1 shows the two possible cases of deploying SoA on
the cloud. On the right, SoA is deployed on a cloud model that
is on-premise. Services are hosted by the organization’s
infrastructure and the infrastructure is provisioned and
managed by the organization itself. Since the entity responsible
for the development of SoA and the infrastructure are the same,
the risks are limited.

The case on the left shows off-premise cloud computing
infrastructure being used to host the SoA services.
Infrastructure is provisioned and managed by the CC service
provider. In this case, features like auto-scalability and multi-
tenancy are offered to provide SoA developers with as much
infrastructure as they need at low costs. However, SoA
developers share the infrastructure with other tenants. Also,
services might demand more resources and scale up on more
VMs on the same physical machine or distant machines on
different regions. Moreover, CC service brokers might

recommend a different service provider every time additional
infrastructure is requested. These scenarios lead to new kinds
of security issues and thus risks that were not present before.

CC providers do offer isolated hardware for interested
consumers. This in turn would overcome the multi-tenancy
drawbacks although at higher prices [9]. Nevertheless, denial
of service (DoS) attacks, which are the CC’s fifth top threat in
2013 [10], are a serious concern in isolated hardware [11].

III. RISKS OF CC ON SOA ORIENTED SOLUTIONS AND

RECOMMENDATIONS

Despite the benefits that SoA principles add to the
traditional software development life cycle, they bring new
challenges. Some of these challenges are security and privacy
issues that take place due to the technologies used in SoA
based service development and operation. XML is the core of
SoA and is not inherently secure. SOAP (Simple Object
Access Protocol), WSDL (Web Services Description
Language), and UDDI (Universal Description Discovery and
Integration) are all based on XML. A well-known XML
exploit is the XML rewriting attack. Although WS-Security
[12], WS-Policy [13] and other standards aim to secure the
XML based application and avoid these attacks, the national
vulnerability database [14] showed 14 SOAP vulnerabilities,
and 4 WSDL related ones in 2013.

Beside the security problems of SoA [15], the fact that CC
is becoming one of the most prominent means of SoA
deployment worsened matters. Table 1 shows the (8) SoA
principles in the first column, application area in column two,
alongside the technologies required to foster each one of
principles in column three. The forth column highlights how
the deployment of SoA in an off-Premise CC can change the
nature of the SoA vulnerabilities and the severity of security
issues and risks. In the same table, we map these risks to the
CSA notorious nine cloud attacks observed in 2013.

Technically, the application of the 8 service-oriented-
architecture principles can be segregated into two categories
based on the part of SoA that they are utilized in. The first
category is for the principles that can be utilized in service
contract and registry like: abstraction, discoverability, and
formal contract. Other SoA principles like: (composability,
Autonomy, loose coupling, reusability, and statelessness) can
be utilized in services themselves, which is the second
category. We need categorization to enable exploring technical
security and privacy issues. For instance, WSDL and UDDI
together with SOAP are standards in service registry [16].
Knowing these standards we can look for security breaches that
can be exploited using them. Matters can be even worse in an
exposed off-premise cloud computing infrastructure.

Below we explain the SoA principles in brief, discuss the
security and privacy issues related to the utilization of each
principle and suggest several security recommendations.

On-premise Cloud

Service owners/users
 Inside organization

Service users

Services Deployed on Single Tenant
Infrastructure

Services

Off-premise Cloud
Services Deployed on Multi-Tenant Auto

Scaling Infrastructure

Cloud
provider

A

Cloud
provider

B

Services Service
s

Other
Tenants on
Infrastructure

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

40 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

TABLE I. SECURITY ISSUES RELATED TO THE UTILIZATION OF EACH

SOA PRINCIPLE IN OFF-PREMISE CLOUD

SoA Applicable

to

Vulnera-

ble

Tech

Risks due to CC

[5]

CSA Notorious 9

Threats [6]

A
b

st
ra

ct
io

n

Service
Contract

SOAP
UDDI

WSDL

XML
HTTP

1. Exposure

2. Redundancy

and integrity
issues

3. Access control

4. Trust

1.0 Data Breaches

4.0 Insecure

Interfaces and APIs
3.0 Account or

Service Traffic

Hijacking

D
is

co
v
er

ab
il

it
y

Service
contract and

Service

Registry

SOAP

UDDI

WSDL
XML

HTTP

1. Exposure to

cloud risks
2. Authentication

and access

control

1.0 Data Breaches

4.0 Insecure
Interfaces and APIs

3.0 Account or

Service Traffic
Hijacking

C
o

m
p
o

sa
b

il
it

y

Services

TCP
communi-

cation

XML

1. Lack of
standards

2. QoS.

3. Availability
4.Trust

3. Compliance

4. Governance

1.0 Data Breaches

4.0 Insecure

Interfaces and APIs
3.0 Account or

Service Traffic

Hijacking
5.0 Denial of Service

6.0 Malicious Insiders

A
u

to
n
o

m
y

Services

TCP

communi-

cation
XML

1. Lack of

standards and
safe patterns

2. Exposure to

cloud risks

1.0 Data Breaches
4.0 Insecure

Interfaces and APIs

3.0 Account or
Service Traffic

Hijacking

9.0 Shared
Technology

Vulnerabilities

F
o

rm
al

co
n

tr
ac

t

Service

Contract

SOAP

UDDI

WSDL
XML

HTTP

1. Trust

2. QoS

3. Authentication
and access

control

6.0 Malicious Insiders

5.0 Denial of Service

L
o
o

se

co
u

p
li

n
g

Services

TCP

communi-

cation
XML

1.QoS

2.Exposure to
cloud risks

3. Data

Interception

5.0 Denial of Service

4.0 Insecure
Interfaces and APIs

1.0 Top Threat: Data

Breaches

R
eu

sa
b

il
it

y

Services

TCP

communi-

cation
XML

1. Compliance

2. QoS

3. Exposure to

cloud risks

4. Authencation

and access
control

6.0 Malicious Insiders

5.0 Denial of Service

S
ta

te
le

ss
n
es

s

Services

TCP

communi-
cation

XML

1.Exposure to

cloud risks
2.Compliance

3.Trust

1.0 Data Breaches

4.0 Insecure

Interfaces and APIs
3.0 Account or

Service Traffic

Hijacking

A. Abstraction

This principle of SoA aims to hide the logic behind services
from the outside world, while providing descriptions in the
service contract. To utilize service abstraction service
developers need to categorize service meta information into (1)
Functional (2) Technology (3) Programmatic and (4) Quality
of service categories. Service meta information is then used to

create service contracts and service registry. After that, an
access control procedure is applied to limit open access to
service owners only and give controlled access to others
including interested consumers.

Less abstraction indicates more information about the logic
of the service and therefore more exposure and more
vulnerability. However, over utilization of abstraction indicates
over-hiding service logic and technology information and
therefore, limits the reusability of the service which leads to
creating similar services and raises redundancy and integrity
issues.

Another possible problem is access control. Traditionally,
service owners have access to all parts of the service, like
design specifications, source code, etc. However, the off-
premise CC nature exposes the SoA and increases the
possibility of account hijacking. For example, an attacker who
is successfully able to hijack the account of a service owner
will have access to all the parts of a service.

Also as a result of abstraction, service consumers and
program designers will not be aware of composite services.
Due to this, service consumers won’t know what is wrong with
the service once a composing part of the whole service goes
down as we will see later in the composability principle.

Due to the exposed nature of cloud computing these issues
will have a bigger chance to occur. Thus it is recommend that
service developers and implementers balance the amount of
abstraction and monitor services for risks appropriately. One
should look for CC with good access management to mitigate
the risk of account hijacking.

B. Discoverability

Service registry is a central repository of service meta data
that is hosted on off-premise cloud. Service consumers access
service registry to find desired functionalities. That’s how a
consumer discovers a desired service and then retrieves the
service contract. Then the service will be ready for usage.

The discoverability principle enforces that services have
communicative meta-data so that they can be efficiently
discovered and interpreted. One of the ways this principle is
implemented is through using the Web Proxy Auto-Discovery
Protocol (WPAD). Browsers in an organization are required to
be supplied with the same proxy policies. These polices are
created and maintained by using a configuration file based on
the Proxy auto-config (PAC) standard. WPAD is used to
discover the URL of this configuration file so that proxy
policies on all browsers in an organization can be set
concurrently.

With SoA being implemented on the cloud, we are adding
more exposure to these vulnerable PAC files. Previously an
attacker had to be within a company’s network to attack these
PAC files. Now due to the ubiquitous nature of the cloud, this
is not the case. The above two problems become difficult when
the service broker comes into picture as this adds another layer
of communication exposed to cloud vulnerabilities. In 2012 a
summary by the national vulnerability database shows WPAD)
functionality in Microsoft .NET Framework 2.0 SP2. WPAD
was not validating configuration data that is returned during

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 41

acquisition of proxy settings. This vulnerability may allow
remote attackers to execute arbitrary JavaScript code.

In 2013, the same database reported a Cross-site scripting
vulnerability in the UDDI administrative console in IBM
WebSphere application server. UDDI is the core of the registry
along with WSDL and SOAP [14].

Thus it is recommended to use some form of authentication
among services, or between services and the service browser.
Also, balance the amount of discoverability, and monitor the
services. Another recommendation can be to enable automatic
updating for your services to benefit from security frequent
patches provided by SoA vendors.

C. Composability

This principle encourages that services become effective
participants for composition. It promotes composing new
solutions by reusing existing services. However, lack of
standards in how to securely and safely compose a service
from other services on a cloud is a possible security issue due
to the multi-tenancy nature of the cloud. As mentioned before,
service contracts hide service composability details so;
consumers can never tell whether the service is a standalone
service or composed of others.

Availability of the composing services will affect the
availability of the parent service. Moreover, quality of the
service (QoS) depends on the QoS of the CC infrastructure.

Also, QoS of a composed service depends on the QoS of
the sub-services and the infrastructure they are deployed on.
Because of the multi region infrastructure of the cloud,
compliance and distributed ownership security issues may also
apply if the regulations in the countries of the composing sub-
services do not match.

Moreover, too composability denotes more transit time due
to communication among composing services. Attackers can
steal or modify information if not protected while in transit.
Again, the exposed nature of the off-premise cloud computing
may worsen matters [17].

Therefore, it is recommended to follow safe service
composition patterns when composing solutions [8]. It is also
essential to review SLA of the underlying CC infrastructure
and make sure that hosting countries have no problem with the
content and the function of the service. Auditing the underlying
CC service for hypervisor security is another recommendation.
It helps to overcome multi-tenancy security issues. Encryption
and digital signature of data on transit must be considered too
in order to secure data in transit. Another recommendation is to
balance the amount of composability, and monitor composed
services and participant services.

D. Autonomy

This principle of SoA aims to build services with self-
control over the logic they contain. When services are made
autonomous, they become independent of the underlying
technologies, i.e., these services will be resilient to the issues in
these technologies. But at the same time, since they can be
implemented on more diverse platforms, we are also increasing
their exposure to security flaws of these platforms. This will

increase the possibility of compromising services due to
variations on the underlying technologies.

Service autonomy implies greater emphasis on explicit
management of trust between applications to avoid malicious
modification and avoid service integrity issues especially due
to the nature of public clouds [18].

The Autonomous nature of services implies that services
communicate to maintain control over the resources and to
coordinate with other components of the SoA. A significant
increase in the messaging must occur as service autonomy
increase which will also increase exposure to vulnerabilities on
off-premise CC. The greater the number of resources, that are
accessible for attack, the greater the attack surface and
therefore, the more insecure the software environment [19].

The recommendations to overcome these issues are to do a
thorough assessment of whether or not it is necessary to
increase autonomy at the expense of exposure. It is also
important to verify the security practices that can be applied to
the underlying technologies. A strong input validation is
required to verify input from other applications. Finally, apply
WS-Security to achieve trust among autonomous services and
applications.

E. Formal contract

When a service is implemented as a Web service, the
service contract is normally comprised of a WSDL definition,
multiple XML schema, policy definitions, as well as
supplementary documents, such as an SLA. This principle
enables a standard design of services in terms of policies,
WSDL, and XML Schema within the service inventory.

 As aforementioned, the formal contract principle is utilized
on service contracts. So, it is also subject to WSDL, XML, and
SOAP security issues.

In cases where SLA parameter deals with response time
and there is a delay, the service consumer would not know
whether the problem lies with the service or the CC
infrastructure. The service consumer will have to trust the SoA
provider for the promised QoS. Moreover, the QoS could get
worse if the service is a composed service [20].

Standardization of services within the inventory might give
a pattern of how these services are built. This might lead to
unveil information about the logic, and/or the technology used
to build other services if one service is attacked.

To safely and securely apply this principle we present the
following recommendations. The first one is to avoid
automated tools when creating contracts as it might lead to
inaccuracies. Verify the created contracts to make sure that the
underlying infrastructure provides the promised QoS by the
SLA. A good access control and authentication system is also
required here to avoid illegitimate communication.

F. Loose coupling

Loose coupling enforces that services are built in such a
manner that they are decoupled from their surrounding
environment. Services must be designed in such a way that it is
not tightly coupled to other services or resource. Decoupling a
service from its environment has several advantages (e.g.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

42 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Hiding service implementation from attackers) however; it
increases the message exchanges between the service and the
environment. Deploying services on CC makes it worse since
the messages are transmitted through the Internet which adds
latency to response time and reduces throughput. Also,
messages passing between two services or between a service
and the service container can be intercepted as mentioned
before [21].

Thus, it is recommended to use secure communication by
applying encryption on transmitted data. Another
recommendation is to use compression techniques to reduce
the bandwidth and latency overhead.

G. Reusability

Services need to be as generic as possible so that they are
of interest to multiple service consumers, however, larger
granularity may lead to larger incompatibilities that might in
turn lead to security issues. To utilize reusability, developers
need to produce solution in forms of services with the intention
of promoting reuse. Compliance issues can rise by producing
reusable SoA services [22]. For example, rules and regulations
in different countries can limit the extensibility of use of such
reusable services. Another issue in enforcing reusability on off-
premise deployed SoA is the difference in the CC
infrastructure configurations. Different CC providers have
difference configurations, thus QoS variance is expected. Also,
changes to standards or upgrades applied to infrastructure may
have a large impact on the security of services.

Therefore, it is recommended that SoA developers test
services on various infrastructure configurations before
releasing them to public. As suggested previously, a thorough
walkthrough over the rules and regulation of countries hosing
the CC infrastructure should be performed. It is also important
to verify that the service data is lawful in all stages (input,
process, output, and storage).

H. Statelessness

This principle of SoA promotes minimizing resource
consumption by services. This is achieved by deferring the
management of state information when necessary. In other
words developers should try to avoid service consumption of
resources so that services can handle more requests in a reliable
manner. Also saving state in an external component requires
additional infrastructure. On the cloud, since the external
component can be placed anywhere, it becomes necessary to
ensure that the latency limits are met. While communicating to
and from different clouds, we are exposing the state of the
service and increasing the message exchange between the
service and its infrastructure.

Thus, similar to the recommendations provided for loose
coupling, it is suggested to use secure communication by
applying encryption. Also it is recommended to use
compression techniques to reduce the bandwidth and latency
overhead and thus, increase service availability.

IV. CONCLUSION

Service oriented architectures (SoA) and cloud computing
(CC) are accelerating to provide consumers with reliable,
resilient, and efficient solutions. Increasing the utilization of
SoA principles indicates adding more qualities to applications
however, it also exposes developed services to newer
vulnerabilities. These vulnerabilities can occur due to the broad
attack surface of these SoA solutions. In this paper we showed
the importance of balancing and monitoring the services that
utilize the SoA principles in off-premise cloud computing. We
presented several security and privacy risks (challenges). We
also provided recommendations that developers of SoA in
public cloud computing need to consider to overcome these
risks.

In this work, we have demonstrated how enforcing the
eight principles of SoA can add risks when deployed on off-
premise CC environments. Porting SoA to the cloud will not
have only benefits, but it will also add some security risks that
developers need to consider. Further investigation is needed on
additional security risks and safe SoA patterns to strengthen the
SoA industry. A common issue when developing SoA is the
overhead of utilizing these principles. In addition, we have
seen other security and privacy issues like exposure, QoS,
trust, compliance, data interception, and availability. There are
general recommendations [23] when porting SoA to an off-
premise CC like (1) look for secure CC services which exhibit
adequate security attributes [24, 25] to overcome the most
possible security issues. (2) Test services on different
infrastructures and different scenarios before releasing them to
be used by public and (3) encourage SoA developers to find
and publish safe SoA development patterns so that others can
benefit from them.

We are now investigating the factors that affect the over-
utilization of the SoA principles. We also intend to identify
safe SoA utilization patterns that can help others in overcoming
the security risks presented in the paper.

REFERENCES

[1] Jammes, François, Antoine Mensch, and Harm Smit. "Service-oriented
device communications using the devices profile for web services." In
Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing, pp. 1-8. ACM, 2005.

[2] Thomas Erl: SOA Design Patterns, Prentice Hall PTR; 1 edition (2009)

[3] Bean, J. :SOA and web services interface design: principles, techniques,
and standards. Morgan Kaufmann. (2009)

[4] Inaganti, S., & Aravamudan, S. (2007). SOA maturity model. BPTrends,
April.

[5] NITS, "Guidelines on Security and Privacy in Public Cloud
Computing", http://csrc.nist.gov/publications/nistpubs/800-144/SP800-
144. pdf

[6] The Notorious Nine Cloud Computing Top Threats in 2013,
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_
Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdF

[7] F5, SOA: Challenges and Solutions- White paper,
http://www.f5.com/pdf/white-papers/soa-challenges-solutions-wp.pdf

[8] Wei, Y., & Blake, M.. : Service-oriented computing and cloud
computing: Challenges and opportunities. Internet Computing, IEEE,
14(6), 72-75. (2010)

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 43

[9] Pal, P., Atighetchi, M., Loyall, J., Gronosky, A., Payne, C., & Hillman,
R. : Advanced Protected Services-A Concept Paper on Survivable
Service-Oriented Systems. In Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW), 2010 13th IEEE
International Symposium on (pp. 158-165). IEEE. (2010, May)

[10] Ristenpart, Thomas, et al. "Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds." Proceedings of the
16th ACM conference on Computer and communications security.
ACM, 2009.

[11] Amazon Web Services, EC2: http://aws.amazon.com/ec2/faqs/

[12] WSS: http://www.oasis-open.org/wss/

[13] Web Services Policy Framework (WS-Policy):
http://www.ibm.com/developerworks/library/specification/ws-polfram

[14] National Vulnerability Database: http://nvd.nist.gov/

[15] Phan, C. (2007, October). Service oriented architecture (soa)-security
challenges and mitigation strategies. In Military Communications
Conference, 2007. MILCOM 2007. IEEE (pp. 1-7). IEEE.

[16] García-González, Juan Pablo, Verónica Gacitúa-Décar, and Claus Pahl.
"Service registry: A key piece for enhancing reuse in SOA." (2010).

[17] Venkatasubramanian, Nalini. "Safe'composability'of middleware
services." Communications of the ACM 45, no. 6 (2002): 49-52.

[18] Cabrera, Luis Felipe, Christopher Kurt, and Don Box. "An introduction
to the web services architecture and its specifications." Microsoft,
Microsoft Technical Article, Oct (2004).

[19] Manadhata, Pratyusa K., Kamie M. C. Tan, Roy A. Maxion, and
Jeannette M. Wing. “ An Approach to Measuring a System’s Attack
Surface.” CMU Technical Report CMU-CS-07-146, August 2007.

[20] Bianco, P., Lewis, G. A., & Merson, P.. Service Level Agreements In
Service-Oriented Architecture Environments (No. Cmu/Sei-2008-Tn-
021). Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.
(2008)

[21] Joshi, Rajive. “ Data-Oriented Architecture: A Loosely Coupled Real-
Time SOA.” Real-Time Innovations, Inc., August 2007.

[22] Is SOA Being Pushed Beyond Its Limits? , from:
http://msdn.microsoft.com/en-us/architecture/aa699422.aspx

[23] Microsoft: Security Fundamentals for Web Services,
http://msdn.microsoft.com/en-
us/library/ff648318.aspx#WebServicesSecurityPrinciples

[24] Abuhussein, Abdullah, Harkeerat Bedi, and Sajjan Shiva. "Evaluating
security and privacy in cloud computing services: A Stakeholder's
perspective." Internet Technology And Secured Transactions, 2012
International Conferece For. IEEE, (2012)

[25] Softwareag.com. “ Best Practices for SOA Governance User Survey.”
Software AG, Summer 2008.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

44 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Modeling Cloud/Grid Applications using Functional Representations

Noé Lopez-Benitez
Department of Computer Science, Texas Tech University, Lubbock, TX 79403, USA

Abstract— Without altering the functionality of the intended
flow of execution, a sequence of compositions can be derived
from a scientific workflow or directly from the functional
code; this sequence can then be used to manage the execu-
tion of the workflow in a grid/cloud oriented environment.
A cloud execution model is proposed that considers the
submission of composition patterns that can be expanded
to integrate interface functions involving orchestration steps
such as resource matching, location, and communication
information. Expanding the functionality of a given language
may potentially provide a holistic programmable approach to
develop, deploy, and execute complex applications efficiently
using grid/cloud resources.

Keywords: Scientific workflows, partitioning, orchestration,
grid/cloud applications, execution management

1. Introduction
Functional languages are characterized by the ability to

express sets of related serialized functions as well as inde-
pendent functions that can be executed in parallel. Large
workflows describe not only a collection of component
functions, but also their dependencies, which predefine a
constrained order of execution. Scientific workflows can
describe not only computational and service requirements
but also the location of such services or computational
units. Instruments in scientific laboratories, robots in remote
inaccessible areas, a satellite unit in outer space, a set of
databases, storage units as well as computational units, all
provide services that must be orchestrated to satisfy an
overall scientific objective. In this paper the feasibility of
a high-level composition and orchestration via functional
languages is explored. A functional description of workflows
is proposed as an alternative abstraction that can provide
the basis for a dynamic management of service requests as
well as a paradigm to organize and easily develop entire
applications via the use of functional languages to explore
not only fine-grained parallelisms, but also functional dy-
namic parallelisms suitable for grid and cloud execution
environments.

Functional languages such as Haskell [1], Parallel Haskell
[2], and SequenceL [3] have been proposed to specify
and/or generate possible parallel operations for fine-grained
computational platforms. Haskell has been extended to
Cloud Haskell to provide message passing support [4].
The translation of functional code may lead to fine-grain
parallelism; sequenceL, for example, generates n-tuples of

independent computations that can be mapped into multiple
independent threads of execution [5]; consequently, fine-
grain parallelisms can be mapped into high-level language
such as MCUDA constructs [6] suitable for multi-core
execution platforms.

Section II of the paper discusses functional descriptions as
alternate representations of workflows. Reduced functional
descriptions are addressed in section III. Section IV illus-
trates the use of alternate sequences of submissions that
have the potential to minimize data transfers. A cloud-based
execution model is described in section V. Work related is
discussed in section VI. The paper concludes in section VII.

2. Functional Description of Workflows
A workflow is described as a typical task graph (DAG)

by a tuple(V,E) whereV is a set of vertices representing
individual functional units with data dependencies described
by the set of edgesE [7]. As dependencies dictate the order
of execution it is possible to regard each task as a functional
unit depending on the execution of its predecessors. For
example, if a task C is preceded by independent tasks A and
B in the workflow, then a notationC[A,B] will model not
only such dependencies but also that tasks A and B can be
executed in parallel. For an effective execution management
of tasks in a grid environment, mapping a DAG model into a
functional description is reported in [8]. A workflowW can
be alternatively described using its functional description as
follows:

W = {TF1(), TF2(), . . . , TFn()} (1)

WhereTFi() represents a collection of nodes describing
a path of dependent functions. If we letTFi represent a
terminal node (function) in the workflow, then eachTFi in
(1) can be described as:

TFi[Tx[Ty[, . . . ,] . . .]], i = 1, . . . , n (2)

Where Tx and Ty are nodes in one of the execution
paths leading to terminal nodeTFi. Thus, each node in
the workflow is expressed as a function of all previous
nodes in its execution path. Furthermore, the collection of
functions in a single path corresponds to the set of dependent
functions that must be executed in sequence and are queued
accordingly. Each sequence of functions includes at least
one initial task. Examining all paths in equation (2) all
common tasks (queue heads) are identified as root tasks that

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 45

correspond to at least one initial task. Initial root tasks are
functions of the initial parameters of the workflow. A set of
root tasks corresponds to a set of independent tasks that can
be scheduled for execution in parallel.

b)

D E

F G

A

B C

A[...]

B[A[...]] C[A[...]]

D[B[A[...]]] E[B[A[...]]]

F[D[B[A[...]]]] G[D[B[A[...]]], E[B[A[...]]], C[A[...]]]

a)

Fig. 1: Mapping a workflow into a functional description

Consider for example a workflowW as shown in Fig.
1a. A functional representation can be derived from the
workflow shown in Fig. 1b, where each node is expressed
as a function of all previous computing nodes in its path.
Grouping the terminal nodes in Fig. 1b, the following
functional statement is generated:

W = { F [D[B[A]]], G[D[B[A]], E[B[A]], C[A]] } (3)

As this expression shows, W is now described in terms
of functions, eliminating the need for explicit representation
of data items, except for input and output data.

2.1 Dynamic Execution Support
Removing, for readability, the internal brackets from

equation (3) each path forms a queue in a set:
{FDBA, GDBA, GEBA, GCA}, where the right most
function in each queue corresponds to the Òhead of the
queueÓ or the ÒrootÓ function. These structures can be
easily obtained applying well-known depth-first search al-
gorithms. Systematically separating functions or tasks to the
right identifies those ÒrootÓ tasks that can be submitted for
execution as reported in [8]. The model proposed in this
paper relies on the generation of compositions, i.e., sets of
functions that can be executed in sequence or in parallel. To
describe the model, parallel functions are separated by com-
mas; otherwise, a sequential execution is indicated. Using
square brackets enforces serialization. Alternate partitions
of the workflow described in (3) are generated by extracting
to the right all sets of root functions leading to a set of
compositions that describe a specific order of submission.
The process generates possible representations (partitions)
of the original workflow. For example the workflow in (3)
can be represented in the following possible ways:

1) {FDB,GDB,GEB,GC}[A]
2) {FD,GD,GE}[B,C][A]
3) [F,G][D,E][B,C][A]

Note that partition 1) and 2) show the separation of
compositions to the right. The remaining tasks in the work-
flow show the status of the remaining queues. Note also,
that when a full sequence of sets of roots is reached, it
corresponds to a partition in which sets contain unique
components (not contained in any other set) as exemplified
by partition 3); this sequence can then be used to manage
the order of submissions for execution.

2.2 Functional Languages and Extensions
Functional languages can potentially be used to specify

complex applications that naturally lead to a functional
description of the corresponding workflow. Equation (3) is
isomorphic to the workflow represented in Fig. 1a. The
idea of generating functional descriptions from functional
language code, or even from the profiling of legacy code [9]
is still open to investigation. Functional descriptions such
as equation (3), expose possible parallel operations for fine-
grained computational platforms and can be used to manage
execution of functions, or a set of functions, in a service
provider execution environment. Consider for example Se-
quenceL, which relies on CSP (Consume-Simplify-Produce)
and NT (Normalize-Transpose) semantics to identify all
possible parallelisms. The CSP paradigm is based on the
generation of a series of tableaus each holding partial results
for each step in the evaluation process. The NT paradigm, on
the other hand, can lead to the identification of parallelisms
using two steps: the normalize step, which is used to
expand operands into consistent sizes, and the transpose
step which aligns pairs of operands to describe operations
that can be performed in parallel. The application of these
semantics to a factorial function leads to an optional parallel
implementation of a set of product functions:

fact(n) = fact(n− 1) ∗ n
when n > 1 else 1

= fact(n− 2) ∗ (n− 1) ∗ n
when n− 1 > 1 else (n− 1) ∗ n

= fact(n− 3) ∗ (n− 2) ∗ (n− 1) ∗ n
when n− 2 > 1 else (n− 2) ∗ (n− 1) ∗ n

= fact(n− 4) ∗ (n− 3) ∗ (n− 2) ∗ (n− 1) ∗ n
when n− 3 > 1

else (n− 3) ∗ (n− 2)(n− 1) ∗ n
= . . .
= 1 ∗ 2 ∗ 3 ∗ ∗ (n− 1) ∗ n = prod(1 . . . n)

To illustrate the NT semantic letn = 5, then pairing
operands with the∗ operator:

fact(5) = prod(1 . . . 5) = ∗(∗(2, 3), ∗(4, 5))
= ∗(6, 20) = 120

Furthermore, letP1 = ∗(2, 3), P2 = ∗(4, 5) andP3 =
∗(P1, P2). A functional description can be used to express
a fine-grain workflow where P3 is a product function that

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

46 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

depends on product functions P1 and P2. The same expres-
siveness, not yet exploited, can be used for higher levels of
granularity.

3. Reduced Functional Representions
In a grid, the scheduler forwards all incoming functions

(tasks) to different execution nodes. Condor’s Dagman pro-
vides such functionality. Using a functional description of an
application, execution can be controlled by the user directly,
or, take advantage of suitable middleware such as Condor,
or several other web-based tools to orchestrate the execution
of the work submitted.

In a cloud-based service environment, a request to a single
site could be issued for a pattern of several functions at a
time, which is also possible in a cluster/grid computational
environment. These patterns may correspond to a sequential
or a parallel order of execution. We surmise that a systematic
extraction and submission of these patterns may lead to a
significant reduction in communication delays. Therefore, a
set of rules are proposed to express a reduced functional
description in which a sequential or parallel pattern is
identified and the overall functionality of the workflow is
preserved.

For a general description of sequential and parallel pat-
terns, the notation used assumes thatxi, i = 1, . . . , n,
identifies the ith node in a pattern withn number of nodes
(functions). Again, the use of square brackets enforces a
dependency on the execution of whatever composition is
enclosed in brackets. The use of parenthesis will be used
to express dependencies on data items. Reduction rules SC1
and SC2 refer to embedded sequential patterns, and PC1 and
PC2 refer to embedded parallel patterns.

3.1 Sequential Composition
This composition describes a functional description of a

workflow in which all nodesx1 to xn must be executed in
a sequence identified as follows:

[xnxn−1 . . . x2 x1] (4)

In this patternxn is the terminal function in the workflow,
and it is dependent on the sequential execution of all the
functions in the set{xn−1, . . . , x2, x1}. As this pattern can
also be embedded in large workflows a rule can be applied
that leads to a potentially reduced representation:

3.1.1 Reduction Rule SC1

A sequential composition (SC) of functions in the set
{xn−1, . . . , x2, x1} can be embedded in a functional descrip-
tion such as:

xn[xn−1 . . . x2 x1], xn[y] (5)

wherey /∈ {xn−1, . . . , x2, x1}. Then the following com-
position is functionally equivalent to (5):

xn[x
′

1
, y]

where x′

1
denotes the sequential composition

[xn−1 . . . x2 x1]. This equivalence follows by observing
that (5) can be submitted in the following sequence:

xn[xn−1 . . . x2x1, y]

3.1.2 Reduction Rule SC2

This rule applies if the sequential composition of the set
{xn−1, . . . x2, x1} is embedded in a functional description
of the form:

xn[xn−1 . . . x2 x1], y[xn−1 . . . x2 x1] (6)

if x′

1
denotes the sequential composition[xn−1 . . . x2x1]

and y /∈ {x1, x2, . . . , xn−1} then the description in (6) is
functionally equivalent to the following sequence:

[xn, y][x
′

1]

This equivalence follows by observing that (6) can be
submitted in the following sequence:

[xn, y][xn−1 . . . x2x1]

3.2 Parallel Composition
The orchestration of an embedded parallel pattern within a

larger workflow will lead to a possible n-degree parallelism
just for this structure, provided that the remote site is able
to execute up ton − 1 functions in parallel. Submitting an
embedded parallel pattern seeks to reduce communication
delays, but will also reduce the potential dynamic parallelism
expressed by additional independent paths in the rest of the
workflow. A parallel pattern can appear in two forms: ajoin
or a fork structure.

A join structure in the workflow is identified with the
following structure:

y[xn, . . . , x2, x1]

In this compositiony is a terminal function that depends
on the possible parallel execution of all functions in the set
{xn, . . . , x2, x1}. An embedded join structure is generated
by separating to the left a commonn-degree node.

The following pattern identifies afork composition:

[xn, . . . , x2, x1]y

This composition shows that the set of functions
{xn, . . . , x2, x1} can be submitted to execute in parallel
but only aftery (which is not in the parallel set) reports a
successful completion. Note that the orchestration of a fork
corresponds to a master-slave configuration for a large class
of parallel applications and appropriate for execution in a
virtual cluster with several nodes.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 47

3.2.1 Reduction Rule PC1

A functional description of a workflow given as follows:

[xn, . . . , x2, x1]z, xky (7)

contains and embedded fork compositionz′ =
[xn, . . . , x2, x1]z. If xk ∈ {xn, . . . , x2, x1}, and y /∈
{xn, . . . , x2, x1} then the following sequential composition
is a reduction functionally equivalent to (7):

[z′][y] (8)

To show that this reduction is valid, notice that (7) can be
submitted in two parallel sequences as follows:

[xn, . . . , x2, x1][z, y]

Which indicates that the topology of the workflow al-
lows for the parallel execution ofz, and y before the set
{xn, . . . , x2, x1} is submitted for execution. Sincez, andy
are independent of each other then they can be executed in
sequence without affecting the computational flow and:

[xn, . . . , x2, x1][z, y] = [xn, . . . , x2, x1]zy = z′y

This equivalence is also true ify is connected to
more than one node, and even to the entire parallel set
{xn, . . . , x2, x1}.

3.2.2 Reduction Rule PC2

If a functional description of a workflow is given as
follows:

z[xn, . . . , x2, x1], yxk (9)

Then for any pairxk ∈ {xn, . . . , x2, x1} and y /∈
{xn, . . . , x2, x1}, the following sequential composition is
functionally equivalent to (9):

y[z′] (10)

Wherez′ = z[xn, . . . , x2, x1] x
′

i denotes the join com-
position shown in (9). Sincey /∈ {x1, x2, . . . , xn}, then a
parallel sequence is given as follows:

[y, z][xn, . . . , x2, x1]

If the join compositionz′ is used, the sequence becomes:

[y][z][xn, . . . , x2, x1] = [y][z′]

Which serializesz′, andy, but since they are independent,
the functionality does not change and the composition in (10)
holds.

4. Dynamic Data Alignment
Submitting composition sets implies that input data, if

needed, must also be attached; the output data returned is
likely to be used by the next composition to be submitted.
Consider, for instance, the workflow shown in Fig. 2.

x7

x1 x2 x3

x4 x5 x6

Fig. 2: An interactive workflow

The workflow in Fig. 2 exhibits the following set of paths:

{x4x1, x5x1, x5x2, x6x2, x6x3, x7x3} (11)

Aligning the first set of root functions for a parallel
execution leads to the following sequence of submissions:

[x4, x5, x6, x7][x1, x2, x3] (12)

These compositions show two groups of parallel tasks
which, as reported in [15], can be submitted to minimize
transfer delays. At this point, no information as to data
dependencies in the workflow is available. If the second
submission happens to be sent to the same remote site, data
dependency information needs to be forwarded to this site
to maintain computational integrity. If data is needed in a
different site, both data and dependency information need to
be forwarded to that remote site. I/O data dependencies can
be addressed by using the dependency information shown
by the queue structures in (11), and supplementing the
submission information in (12), with the input data and data
flow generated. Thus, the full description of (12) is given
as:

(o4, o5, o6, o7) ← [x4(d1), x5(d1, d2), x6(d2, d3), x7(d3)]

[x1(i1), x2(i2), x3(i3)] (13)

Where dj ← xj(ij) associates the input dataij to the
original root functionxj in the workflow, which in turn,
generates a data itemdj that will be needed by some function
in the next submission. The outputoj is generated by the
terminal nodexj . Note that the parenthesis used in (13)
indicates the dependencies on the data generated. In the case
of terminal functions this data is sent to the user.

Consider now an alternative functional description as
follows:

[x4, x5]x1, x5x2, x6x2, [x6, x7]x3 (14)

This description shows two fork structures from nodesx1

and x3. By applying rule PC1 the following compositions
are derived:

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

48 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

[x4, x5]x1x2, [x6, x7]x3x2 = [x′

1
, x′

3
]x2 (15)

Integrating data requirements as before results in the
following sequence:

(o4, o5, o6, o7)← [x′

1(d2), x
′

3(d2)]x2(i2)

Compared to the composition in (13) the only intermediate
data transfer requirements is the one generated byx2.

Consider once more the set of paths for the workflowW
shown in Fig. 1b.

{FDBA,GDBA,GEBA,GCA} (16)

As root functions are separated the right the following
partition (partition 2 shown in section 2.1) identiies a fork
compostion:

{FD,GD,GE}[B,C][A]

In this partition the fork composition consumes the data
generated byA, and produces the data generated byB and
C. I/O data can be integrated as follows:

{FD,GD,GE}(dB, dC)[B,C][A](iA)

The remaining queues show an embedded join composi-
tion:

{FD,GD,GE} = {FD,G[D,E]}

Applying rule PC2 results in the sequence of submissions:

FG[D,E][B,C][A] = FG′A′

whereG′ = G[D,E] andA′ = [B,C]][A]. Observe that
the joinG′ consumesdB anddC but must returndD which
is consumed byF . The overall submission sequence can be
described as follows:

(oF , oG)← F (dD)G′(dB, dC)A
′(iA)

Finally, a set of data outputs delivered to the user is given
by the set(oF , oG) which corresponds to the outputs, if
any, provided by the terminal nodesF andG. Submission
sequences are not unique as they depend on the topology of
the workflow and the applied reduction criteria.

5. A Cloud-based Execution Model
Using the functional description abstraction of an appli-

cation, a composition can be submitted one a time to a web
interface tool to generate a concrete model of execution for
that composition. If the tool requires the use of a specific
language then the functional description can be used to
generate the corresponding code.

Compositions can be extended and integrated into a sin-
gle model to include orchestration information and deliver

requests from the user machine directly to the cloud site.
Fig. 3 describes a preliminary model in which three possible
stages are involved in the cloud execution of a workflow:

1) A Functional Description Abstractionstage provides
a functional description of the entire workflow, gen-
erated from the workflow graph, or directly from a
functional code of the application.

2) A Web-based orchestrationstage is intended to work
with each submission (one composition at a time,
or the entire workflow description), to generate the
necessary requests to the already identified cloud sites.

3) A Cloud Servicestage will process requests to execute
the compositions received; individual tasks will be
scheduled using local criteria. Each server will return
the expected output for each composition executed.

Completion signal

Functional
Description
Abstraction

Stage

Functional Description integration

Web−based

Stage
Orchestration

Cloud
Ser vice
Stage

Compostiion
Submission

Composition
Execution request

I/O data file I/O data file
Set

Execution
Completion signal

Execution

Set

Fig. 3: Stages of a Cloud Execution Model

At the user site, one composition can be submitted at a
time; each composition set may contain a single function
(task), a sequential, or a parallel composition. The web-based
orchestration stage locates a cloud site, formulates and sends
the execution request along with any input data required.
At the cloud service stage, a composition is submitted to
the physical resources, an execution completion signal is
generated, which is sent back along with any output data
generated. The web-based stage relays a completion signal
and output data files to the submitting machine.

If one function at a time is submitted, full management of
the workflow remains at the user site; if the composition sub-
mitted contains a fork or a join set, workflow management
is shared with the cloud: global dependencies are managed
at the user site but management at the composition level is
migrated to the cloud site. If the entire workflow structure
is submitted to a single cloud site, then full execution
management is also transferred to the remote site.

By submitting one composition at a time, the premise
of dynamic management still holds. Once a composition is
executed, all its nodes are not part of the remaining workflow
from where a new composition can be formed for the next
submission.

6. Related Work
Mapping scientific workflows for grid execution has been

a topic of considerable attention that has resulted in useful
tools and management systems. One of these systems is

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 49

Pegasus [10] that maps into the grid abstract workflows
generated by Chimera [11]. Specifications of the application
are written using chimera’s SQL-based Virtual Description
Language; Chimera provides an XML description of a DAG
of the abstract workflow, which Pegasus transforms into a
concrete workflow for submission to CondorÕs DAGMan for
execution. Workflow design is based on abstract models that
represent applications using DAG structures [12]. Abstract-
to-concrete workflow is a transformation that prevails in
a cloud environment [13], where an orchestration process
completes the mapping into a concrete web-based executable
workflow.

In [14] a series of workflow transformations referred to
as sequence, and splitand and join patterns lead to a
single node reduction. These transformations provide the
basis for the reduction schemes described in this paper. The
grouping of tasks reported in GridSolve [15] are intended
to minimize transfer delays by either having a multiple-
resource site executing all tasks or supporting transfer of
data between different parallel tasks executing in different
servers. Furthermore, extensive work has been reported on
workflow optimization for grid environments, on scheduling
parallel clusters through Condor in [16], on schedule-based
workflow balancing [17], on performance and overhead of
high-performance applications [18], on task clustering for
balanced workflows in [19]; task clustering is of interest
because the functional description models described in this
paper are based on partitioning an entire workflow into sub-
workflows, similar to the heuristics reported in [20] and
complemented with the integration of resource provisioning
as reported in [21].

7. Conclusion and Future Work
The thrust of the work reported in this paper exploits

the intrinsic parallelisms existing in scientific workflows
by manipulating alternate structures amenable for execution
management at any level of granularity. With the latest
advances in technology, cloud-based computing is becoming
more accessible, and in addition, parallel processing is
expected not only at client nodes but also in grid/cloud-based
service platforms. The representation based on functional
descriptions addresses coarse levels of granularity present
in small (desktop) applications written using a functional
language to 1) enhance execution management such that
a maximum dynamic parallelism is possible, 2) explore
suitable partitioning schemes that generate a sequence of
submissions such that data communication delays could
potentially be reduced, and 3) generate for each submission
a reduced number of service requests, and consequently
engage and release less number of resources in a shorter
time. Current work involves coding applications using Scala
with a number of functions large enough to test parsing
and generation of submissions to a suitable grid site. Future

efforts include testing functional descriptions of large work-
flows exercising fully orchestrated submissions to several
cloud-based service sites using the cloud execution model
discussed.

References

[1] P. Hudak, J. Hughes, S. P. Jones, P. Wadler,A History of Haskell: Being
Lazy with Class, The Third ACM SIGPLAN History of Programming
Languages Conference (HOPL-III), San Diego, California, June 9-10,
2007.

[2] S. Marlow, Parallel and Concurrent Programming in Haskell, version
1.2, Mircrosoft Research Ltd., Cambridge, U.K., May 2012.

[3] D. E. Cooke, N. J. Rushton, B. Nemanich, R. G. Watson, P. Andersen,
Normalize, Transpose, and Distribute: An Automatic Approach for
Handling Nonscalars, ACM Transactions on Programming Language
Systems, 30, 2, Article 9, March 2008.

[4] J. Epstein, A. P. Black, S. Peyton-Jones,Towards Haskell in the Cloud,
ACM Haskell’11, Tokyo Japan, September 2011.

[5] Per Andersen, Daniel E. Cooke,Assessment of SequenceL as a High-
Level Parallel Programming Language, 15th Intern’l Conference on
Parallel and Distributed Computing, November 3-5, 2003, Marina del
Rey, CA.

[6] J. A. Stratton, S. S. Stone, W. W. Hwu,MCUDA: An Efficient
Implementation of CUDA Kernels on Multi-cores, IMPACT-08-01, A
Technical Report, Center for Reliable and High-Performance Comput-
ing, University of Illinois at Urbana-Champaign, 2008.

[7] N. Lopez-Benitez, J. Djomehri, R. Biswas,Task Assignment Heuristics
for Parallel and Distributed CFD Applications, International Journal
of Computational Science and Engineering, Vol 3, No. 2, 2007.

[8] N. Lopez-Benitez, P. Andersen,Dynamic Structures for the Manage-
ment of Complex Applications in Grid Environments, Proceedings of
the 2009 International Conference on Grid Computing and Applications
(GCA’09), pp. 80-85, Las Vegas, Nevada, July 2009.

[9] N. Lopez-Benitez, A. Rai, K. Kothari, S.E. Poduslo,Parallelization
and Analysis of the Linkmap Program, in Parallel and Distributed
Scientific and Engineering Computing, Nova Science Publishers, N.Y.,
Advances in Computation: Theory and Practice, V. 15, Editors: Yi Pan
and L.Tianruo Yang, 2004.

[10] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda
Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berri-
man, John Good, Anastasia Laity, Joseph C. Jacob, Daniel S. Katz,
Pegasus: A framework for Mapping Complex Scientific Workflows onto
Distributed Systems, Scientific Programming Journal, Vol 13(3), 2005,
Pages 219-237.

[11] I. Foster, J. Vockler, M. Wilde, Y. Zhao,Chimera: A Virtual Data
System?for Representing, Querying, and Automating Data Derivation,
Scientific and Statistical Database Management, 14th International
Conference 2002, pages 37-46.

[12] J. Yu, R. Buyya,A Taxonomy of Scientific Workflow Systems for Grid
Computing, SIGMOD Record, Vol. 34, No. 3, September 2005, pages
44-49.

[13] G. Juve, E. Deelman,Scientific Workflows in the Cloud, in Grids,
Clouds and Virtualization, M Cafaro, G. Alisio (editors), Compute
Communications and Networks, Springer-Verlag, 2011, pages 71-91.

[14] Jaeger, M.C. Rojec-Goldmann, G. Muhl, G.,QoS Aggregation in
Web Service Compositions, e-Technology, e-Commerce and e-Service,
2005. IEEE ’05. Proceedings. The 2005 IEEE International Conference,
pp.181,185, 29 March-1 April 2005.

[15] Li Yinan, YarKhan Asim, Dongarra Jack, Seymour Keith, and Hurault
AurŔlie, Enabling workflows in GridSolve: request sequencing and
service trading, the Journal of Supercomputing, Springer US, June
2013, Volume 64, 3:1133-1152.

[16] G. Singh, C. Kesselman, E. Deelman,Optimizing Grid-Based Work-
flow Execution, Journal of Grid Computing (2006) 3:201-219.

[17] S. Rajakumar, V. P. Arunachalam, V. Selladurai,Workflow Balancing
Strategies in Parallel Machine Scheduling, International Journal for
Advanced Manufacturing Technology, 23, 2004, 366-374.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

50 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

[18] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, R. Biswas,Performance Evaluation o Amazaon Elastic
Compute Cloud for NASA High-performance Computing Applications,
Concurrency and Computation Practice and Experience, (2013).

[19] W. Chen, R. Ferreira da Silva, E. Deelman, R. Sakellariou,Balanced
Task Clustering in Scientific Workflows, 9th International Conference
on eScience, Beijin, China, October 23-25, 2013.

[20] W. Chen, E. Delman,Partitioning and Scheduling Workflows across
Multiple Sites with Storage Constraints, Workshop on Scheduling for
Parallel Computing, 9th Intl. Conf. on Parallel Processing and Applied
Mathematics, Sept. 2011.

[21] W. Chen, E. Delman,Integration of Workflow Partitioning and Re-
source Provisioning, 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp 764-768.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 51

Host load Prediction-based GMDH-EA and MMTP for

Virtual Machines Load Balancing in Cloud Environment

Chenglei Peng, Qiangpeng Yang, Yao Yu, Yu Zhou, Ziqiang Wang, Sidan Du

School of Electronic Science and Engineering, Nanjing University, Nanjing, China

Abstract - Virtual machines (VMs) dynamic consolidation is

effective to improve the utilization of resources and energy

efficiency in cloud environment. However, the obligation of

providing high quality of service to customers leads to the

necessity in dealing with the energy performance trade-off,

as aggressive consolidation may lead to performance

degradation. Current solutions to the problem of host load

detection are generally heuristic based. We propose a novel

load balancing approach that combines the Group Method of

Data Handling (GMDH) based on Evolutionary algorithm

(EA) for host load prediction and the Minimum Migration

Time policy (MMTP) for VMs migration. The GMDH-EA

algorithm could predict the actual host load in each

consecutive future time interval. We evaluate our method

using the host load traces in the Google data centers with

thousands of machines. The proposed algorithms

significantly reduce energy consumption, while ensuring a

high level of adherence to the Service Level Agreements

(SLAs).

Keywords: Cloud Computing, Dynamic Consolidation,

Host Load Prediction, Group Method of Data Handling,

Minimum Migration Time

1 Introduction

 The proliferation of Cloud computing has resulted in

the consuming of enormous amounts of electrical energy.

One of the ways to address the energy inefficiency is to

leverage the capabilities of the virtualization technology [1].

The virtualization technology allows Cloud providers to

create multiple VMs instances on a single physical server.

And the reduction in energy consumption can also be

achieved by switching idle hosts to low-power modes (i.e.,

sleep, hibernation), thus eliminating the idle power

consumption.

 However, efficient resource management in Clouds is

not trivial, as modern service applications often experience

highly variable workloads causing dynamic resource usage

patterns. Therefore, aggressive consolidation of VMs can

lead to performance degradation when an application

encounters an increasing demand resulting in an unexpected

rise of the resource usage. Ensuring reliable Quality of

Service (QoS) defined via Service Level Agreements (SLAs)

established between Cloud providers and their customers is

essential for Cloud computing environments; therefore,

Cloud providers have to deal with the energy-performance

trade-off – the minimization of energy consumption, while

meeting the SLAs.

 The focus of this work is on energy and performance

efficient resource management strategies that can be applied

in a virtualized data center by a Cloud provider (e.g. Google

App Engine). We investigate performance characteristics for

the problem of energy and performance efficient dynamic

VM consolidation considering multiple hosts and multiple

VMs. Effective host load prediction is conducive to dynamic

resource provisioning [2], virtual machine migration [3],

server consolidation and energy management. Therefore,

accurate host load prediction is essential for load balancing.

 In this paper, we propose an effective host load

prediction method with comparatively less prediction errors

and acceptable prediction interval length. The main idea of

our approach is to use GMDH-EA method based on

evolutionary algorithm for host load prediction and apply

Minimum Migration Time policy (MMTP) to the VM

selection stage.

 The GMDH method is a self organizing method first

developed by Ivakhnenko [4] and it has been applied to solve

many prediction problems with success. Zadeh et al. [5]

proposed a new GMDH-type neural network where

evolutionary algorithm is deployed to design the whole

architecture of the network. We have combined the Phase

Space Reconstruction (PSR) and GMDH for host load

prediction in previous work [6]. The MMTP migrates a VM

that requires the minimum time to complete a migration,

firstly proposed by Beloglazov A. et al. [7].

 We evaluate the proposed algorithms by extensive

simulation using the Cloudsim toolkit and the cluster

workload traces from 29 days of the resource usage by about

11k machines in Google data centers.

 In this paper, we make the following contributions:

1. Our proposed method could predict the actual host

load rather than the mean load only, the

performance of our method has been investigated

by different time intervals, i.e. 0.5h to 3h.

2. To the best of our knowledge, this is one of the first

works to combine the GMDH-EA and MMTP

approaches for host load balancing in the context

of Cloud Computing.

3. An extensive simulation-based evaluation and

performance analysis of the proposed algorithms.

 The remainder of the paper is organized as follows. In

Section 2 we discuss the related work. We present a thorough

analysis of the VM consolidation problem in Sections 3. In

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

52 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Section 4 we introduce the system model used in the

development of heuristics for the dynamic VM consolidation

problem. We propose our algorithms in Section 5, continuing

with an evaluation and analysis of the obtained experiment

results in Section 6. We discuss future research directions and

conclude the paper in Section 7.

2 Related work

 Many efforts [8][9][10] have been made in host load

prediction in Grids or HPC systems. C. Dabrowski et al. [8]

perform the host load prediction by leveraging the Markov

model via a simulated environment. S. Akioka, et al. [9]

combine the Markov model and seasonal analysis to predict

the host load for one-step ahead in a computational Grid. Y.

Wu et al. [10] use hybrid model for multi-step ahead host

load prediction, which combines the Auto Regressive (AR)

model and Kalman filter. Although the previous methods

have achived high accuracy for host load prediction in Grids,

the Cloud host load holds a different scenarios. Google’s

traces show that the Cloud host load has more drastic

fluctuation and higher noise, which we can see in [11].

 B. Guenter [12] proposed a simple linear prediction

scheme which predicts the host load for the next time. Q.

Zhang [13] used the Auto-Regressive Integrated Moving

Average (ARIMA) model to predict the host load. In [12],

the ARIMA model could predict the load over a time window

H by iterated the one step prediction. In [14], D. Yang et al.

proposed a multi-step-ahead prediction method for CPU load.

Their method contains three consequent steps. The first step

is to find a fit function for the change range sequence of the

original sequence. The second step is to predict the multi-

step-ahead change pattern. However, the length of the

immediately preceding sequence that is used to find the same

sequence and derive the change patterns from the history data

is not discussed.

 S. Di et al. [15] firstly use the Bayesian model to predict

the host load in the Cloud. They proposed 9 novel features to

characterize the recent load fluctuation in the evidence

window, and could predict the mean load over consecutive

time intervals. However, their method has two limitations.

The first one is that the training period in evaluation type B

should contain the test period, which is not suitable for the

Cloud environment. The other is that they use exponentially

segmented pattern, which means the length of the segment

increases exponentially. With the growth of the segment

length, the mean load could not fully reflect the fluctuation of

the host.

 Srikantaiah et al. [16] have studied the problem of

request scheduling for multi-tier web applications in

virtualized heterogeneous systems to minimize energy

consumption, while meeting performance requirements. The

authors have found that the energy consumption per

transaction results in a “U”-shaped curve, and it is possible to

determine the optimal utilization point. To handle the

optimization over multiple resources, they proposed a

heuristic for the multidimensional bin packing problem as an

algorithm for the workload consolidation. However, the

proposed approach is workload type and application

dependent, whereas our algorithms are independent of the

workload type, and thus are suitable for a generic Cloud

environment.

 In contrast to the discussed studies, we combine the

GMDH-EA and MMTP algorithms for dynamic adaption of

VM allocation at run-time according to the current utilization

of resources applying live migration, switching idle hosts to

the sleep mode, and thus minimizing energy consumption.

The proposed approach can effectively handle strict QoS

requirements, multi-core CPU architectures, heterogeneous

infrastructure and heterogeneous VMs.

 According to the experiment results, our method

achieves higher accuracy than the previous methods in mean

load prediction. And what’s more, our method can predict the

actual load variation with a lower MSE over a long time

interval, which is very important to the VMs consolidation.

While combined with MMTP, our algorithms can adapt the

behavior according to the observed performance

characteristics of VMs.

3 The VM consolidation problem

 In this section we analyze the problem of dynamic VM

consolidation considering multiple hosts and multiple VMs.

VM consolidation is the key problem that IaaS provider or

data center operators often face. They need develop

appropriate resource management and scheduling strategies

to meet SLAs, improve load balancing capability and reduce

energy consumption. Before the VM selection stage, we need

know which host is overloaded. Then the next step is to select

particular VMs to migrate from this host.

 We define that there are n homogeneous hosts, and the

capacity of each host is . Although VMs experience

variable workloads, the maximum CPU capacity that can be

allocated to a VM is . Therefore, the maximum number of

VMs allocated to a host when they demand their maximum

CPU capacity is m =

 The total number of VMs is nm.

VMs can be migrated between hosts using live migration

with a migration time . Obviously, SLA violation occurs

when the total demand for the CPU performance exceeds the

available CPU capacity . The cost of power is , and the

cost of SLA violation per unit of time is . Without loss of

generality, we can define = 1 and = s, where s .

We assume that when a host is idle, i.e., there are no

allocated VMs, it is switched off and consumes no power, or

switched to the sleep mode with negligible power

consumption. We call non-idle hosts active. The total cost C

is defined as follows:

 (1)

Where is the initial time; T is the total time;
indicating whether the host i is active at the time t;

 indicating whether the host j is experiencing an SLA

violation at the time t. The problem is to determine when,

which VMs and where should be migrated to minimize the

total cost C.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 53

4 The system model

 In this paper, the targeted system is an IaaS

environment, represented by a large-scale data center

consisting of N heterogeneous physical hosts. Each host i is

characterized by the CPU performance defined in MIPS,

amount of RAM and network bandwidth. The storage is

provided as an NAS to enable live migration of VMs.

Multiple independent users submit requests for provisioning

of M heterogeneous VMs characterized by requirements to

processing power defined in MIPS, amount of RAM and

network bandwidth. The fact that the VMs are managed by

independent users implies that the resulting workload created

due to combining multiple VMs on a single physical host is

mixed. The mixed workload is formed by various types of

applications which utilize the resources simultaneously. The

users establish SLAs with the resource provider to formalize

the QoS delivered. The provider pays a penalty to the users in

cases of SLA violations.

 The software layer of the system is tiered comprising

local and global managers (Figure 1).

Fig. 1. The tiered system model

 The local managers reside on each host as a module of

the VM manager. Their objective is the continuous

monitoring of the host’s CPU utilization, resizing the VMs

according to their resource needs, and deciding when and

which VMs should to be migrated from the host (3). The

global manager resides on the master host and collects

information from the local managers to maintain the overall

view of the utilization of resources (1). The global manager

issues commands for the optimization of the VM placement

(2). VMMs perform actual resizing and migration of VMs as

well as changes in power modes of the hosts (4).

 Based upon the above model, we propose an new

hybrid control system (Figure 2) whose core components

include: host load analyzer, host load scheduler, and VM

monitor.

Fig. 2. The hybrid control system model

 The Analyzer analyzes the changes in the load, using

GMDH-EA algorithm to predict the future host loads; the

scheduler mainly focus on the integrated management and

scheduling, according to the actual load, predicted load , state

parameters and other information resources.

 The most important feature of this control system is

based on the hybrid control mechanisms by combination of

active control of prediction and passive control of feedback.

Through the hybrid control system, we can not only be

informed of the fluctuations of host load in advance by the

prediction technique so that can allows the scheduler to

implement more calmly the VMs migration policies.

Therefore, the system can target to advance to play a

preventive role. But we can also be informed of the actual

implementation of the scheduling policy through feedback

technique so that can play a role in real-time corrective

control action.

5 The algorithms for VM consolidation

 In this section, we propose several algorithms for

dynamic consolidation of VMs based on an analysis of

historical data of the resource usage by VMs. We split the

problem of dynamic VM consolidation into four parts: (1)

determining when a host is considered as being overloaded

to migrate of one or more VMs from this host; (2)

determining when a host is considered as being under-loaded

to migrate all VMs from this host and switch the host to the

sleep mode; (3) selection of VMs that should be migrated

from an overloaded host; and (4) finding a new placement of

the VMs selected for migration from either the overloaded or

under-loaded hosts.

5.1 Host load prediction

 Beloglazov A. et al. [17] apply an approach based on

the idea of setting fixed utilization thresholds. However,

fixed utilization thresholds are not efficient for IaaS

environments with mixed workloads that exhibit non-

stationary resource usage patterns. Also they use Local

regression algorithm first proposed by Cleveland [18]. The

main idea of the method of local regression is fitting simple

models to localized subsets of data to build up a curve that

approximates the original data.

 In this section, we propose the GMDH-EA method for

the host load prediction.

5.1.1 The overview of GMDH-EA

 The GMDH network is a feed-forward network that can

be represented as a set of neurons, of which different pairs in

each layer are connected through a quadratic polynomial and

thereby produce new neurons in the next layer. The

coefficients of the neuron are estimated using the Least

Squares Method. The most popular base function used in

GMDH is the gradually complicated Kolmogorov-Gabor

polynomial:

 

where n is the number of the data in the dataset; A = (; ;

 ; …) and X = (; ; ; …) are the vectors of the

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

54 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

coefficients and input variables of the multi-input single-

output system; and is the output of an individual host.

However, in the GMDH algorithm, the infinite Kolmogorov-

Gabor polynomial is estimated by a cascade of a second order

polynomials using only pairs of variables in the form of



 

 The basic form of the GMDH algorithm has several

limitations, e.g., each host can only have two input variables,

and the neurons in each layer are only connected to the host

in its adjacent layer. Therefore, we choose GMDH-EA to

remove these restrictions, as each neuron in GMDH-EA can

have a different number of input variables as well as a

different order of polynomial.

5.1.2 The presentation of GMDH-EA network

 The representation of the GMDH-EA network should

contain the number of input variables for each neuron, the

best type of polynomial for each neuron, and which input

variables should be chosen for each neuron. Therefore, the

chromosome for each individual should contain three

subchromosomes. Each subchromosome in our algorithm is

represented as a string of integer digits.

Fig. 3. The chromosome represents the GMDH-EA network

 Figure 3 shows an example of a chromosome which

represents an GMDH-EA network. This GMDH-EA network

consists of three layers, and the neurons number of each layer

are 3, 2 and 1. The number of input variables of each neuron

ranges from 2 to 4, and the type of polynomials ranges from

1 to 3.

5.1.3 Estimate the coefficients of each neuron

 In the GMDH-EA network, the coefficients of each

neuron are derived by minimizing the mean squared error

between y and .

e =

 (4)

Where Nt is the size of the training set, and and are the

vectors of the actual and predict values. Using the training set,

this gives rise to the set of linear equations

 XC = Y (5)

 The coefficients of each neuron are derived in the form

 (6)

Where Y =
 , and the values of X and C are

according to the number of input variables and the order of

the polynomial.

5.1.4 The fitness function

 The fitness function is very important to the GMDH-EA

network, as it determines the performance of the model. In

this paper, we use the locally weighted mean square error as

the fitness function.

 

  

Where Nv is the size of the validation set, W is the weighting

function. There are many weighting functions proposed by

the researchers [15]. In this paper, we use the tricube kernel

weighting function as follows:

 

Where is the Euclidean distance of the input variables

between the data in the validation set and the prediction set,

which is used to indicate the similarity between the load in

the validation set and the prediction set.

5.1.5 Crossover and mutation operations

 The crossover and mutation operation are used to

produce offsprings from two parents, which are chosen using

the roulette wheel selection method. The crossover operation

for the first and the second subchromosome is simply

accomplished by exchanging the tail of each two

subchromosomes from a random point. The change of the

third subchromosome follows the change in the first one. The

mutation operation is similar to the crossover operation.

5.2 VM selection

 Once the system get the predicted load, it has been

decided which host is overloaded or under-loaded. So the

next step is to select particular VMs to migrate from this host.

In this section we propose two policies for VM selection. The

described policies are applied iteratively. After a selection of

a VM to migrate, the host is checked again for being

overloaded. If it is still considered as being overloaded, the

VM selection policy is applied again to select another VM to

migrate from the host. This is repeated until the host load is

considered as being at the normal value.

5.2.1 The minimum migration time policy

 The Minimum Migration Time policy (MMTP)

migrates a VM v that requires the minimum time to complete

a migration relatively to the other VMs allocated to the host.

The migration time is estimated as the amount of RAM

utilized by the VM divided by the spare network bandwidth

available for the host j. Let be a set of VMs currently

allocated to the host j. The MMT policy finds a VM v that

satisfies conditions formalized in (9).

 v

 (9)

Where is the amount of RAM currently utilized by

the VM a; and is the spare network bandwidth available

for the host j.

5.2.2 The Random Selection Policy (RSP)

 The Random Selection Policy (RSP) selects a VM to be

migrated according to a uniformly distributed discrete

random variable X , whose values index a set of

VMs allocated to a host j.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 55

5.3 VM placement

 The VM placement can be seen as a bin packing

problem with variable bin sizes and prices, where bins

represent the physical hosts; items are the VMs that have to

be allocated; bin sizes are the available CPU capacities of the

hosts; and prices correspond to the power consumption by the

hosts. As the bin packing problem is NP-hard, to solve it we

choose a modification of the BFD algorithm denoted Power

Aware Best Fit Decreasing (PABFD) proposed by

Beloglazov A. et al. [6], we sort all the VMs in the

decreasing order of their current CPU utilizations and

allocate each VM to a host that provides the least increase of

the power consumption caused by the allocation. The pseudo

code for the algorithm is presented in Algorithm 1. The

complexity of the algorithm is nm, where n is the number of

hosts and m is the number of VMs that have to be allocated.

Power Aware Best Fit Decreasing (PABFD)

Input: hostLst, vmLst Output: allocation of VMs

vmLst.sortDecreasingUtilization()

vm in vmLst

minPower MAX

allocatedHost NULL

host in hostLst

host has enough resources for vm

power estimatePower(host, vm)

power minPower

allocatedHost host

minPower power

allocatedHost NULL

allocation.add(vm, allocatedHost)

allocation

6 Performance evaluation

6.1 Experiment setup

 The CloudSim toolkit [19] has been chosen as a

simulation platform, as it is a modern simulation framework

aimed at Cloud computing environments. It has been

extended to enable energyaware simulations, as the core

framework does not provide this capability. Apart from the

energy consumption modeling and accounting, the ability to

simulate service applications with dynamic workloads has

been incorporated.

 We have simulated a data center that comprises 1000

heterogeneous hosts. The number of VMs is 1600. All the

load traces are real data coming from the 29 days of the

resource usage by about 11k machines in Google datacenters

[20]. We have randomly choosen 10 times load traces to form

10 data centers. For host load prediction method, we

evaluated GMDH-EA and gave the actual prediction in

different time intervals, i.e. 0.5h to 3h. The GMDH-EA

parameters are shown in Table I, which are optimized to get

the best performance for the load prediction.

TABLE I. THE PARAMETERS OF GMDH-EA

Parameters value

Max generation 50

Population size 35

Crossover rate 0.9

Mutation rate 0.15

Number of layers 4

Number of neurons of each layer 9,6,3,1

Number of inputs to be selected 2-4

Polynomial type 1-3

6.2 Test metrics

 In order to compare the efficiency of the algorithms we

use several metrics to evaluate their performance. One of the

metrics is the total energy consumption (EC) by the physical

servers of a data center caused by the application workloads.

The second metric is the level of SLA violations (SLAV).

Another metric is the number of VM migrations initiated by

the VM manager during the adaptation of the VM placement.

All these three metrics results can be found in the CloudSim

output.

6.3 Host load prediction

 The accurate prediction of host load in a Cloud

computing data center is very important to improve resource

utilization, lower data center costs and ensure the job

performance. The previous methods [12][13] for multi-step

ahead prediction usually iterate the result of the one-step

ahead prediction, which will generate cumulative errors.

 However, the output of our proposed method is a vector

of the host load, which will not generate cumulative errors

regardless of the step length, as the current predict value has

nothing to do with the last predict value. We quantified the

performance of actual load prediction with mean squared

error (MSE).

 MSE =

 (10)

Where H is the step length, and are the actual value and

forecast value.

Fig. 4. MSE of actual load prediction

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

56 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

 In Figure 4, we compare our method with the AR

method and the Pattern Prediction (PP) method porposed by

Yang [14]. The average MSE of our method in 3h ahead

prediction is 0.0046, which is much lower than the other two

methods. What’s more, we can find that our proposed method

keeps a good performance with the prediction step increases,

while the performance of the other two methods has a large

degree of decline.

Fig. 5. Actual load prediction.

 Figure 5 shows the load prediction results of hosts in

the Google data center. As the interval in Google trace is 5

min, the step length of 0.5h to 3h is 6 to 36. And the y-label

in Figure represents the CPU utilization, which has been

normalized.

 Our prediction result shows that the proposed method

could achieve high accuracy although the host load fluctuates

more drastically. As we can see in Figure 6, 7 and 8, our

proposed method can still get a satisfactory performance.

6.4 Simulation results

 To make a simulation-based evaluation applicable, it is

important to conduct experiments using workload traces from

a real system. For our experiments we have used data coming

from the cluster workload traces of Google datacenters. The

interval of utilization measurements is 5 minutes. We have

randomly chosen record of 1600 tasks running on 1000 hosts

of 29 days from the workload traces collected from May

2011 [20]. During the simulations, each VM is randomly

assigned a workload trace from one of the VMs from the

corresponding day. In the simulations we do not limit the VM

consolidation by the memory bounds, as this would constrain

the consolidation, whereas the objective of the experiments is

to stress the consolidation algorithms.

TABLE II. AVERRAGE RESULTS

Algorithms
Energy

(KWH)

SLA Violation

(%)

VM migration

()

LR-RSP 84.94 4.38 17.98

LR-MMTP 83.82 4.32 17.33

GMDH-RSP 83.54 4.30 16.77

GMDH-MMTP 81.93 4.26 13.37

 The average results of 10 data centers of the

combinations of each host load detection algorithm and the

MMT policy are shown in Table II.

 We have simulated all combinations of the host load

detection algorithms (LR and GMDH) and VM selection

policies (MMTP and RSP).The results produced by the

selected algorithms are shown in Figure 6, 7 and 8.

Fig. 6. Energy consumtion

Fig. 7. SLA violations

Fig. 8. VM migrations

 From the observed simulation results, we can make

several conclusions: (1) the GMDH-EA algorithm

outperforms the local regression algorithm; (2) the MMTP

policy produced better results compared to the RSP policy,

meaning that the minimization of the VM migration time is

more important;(3) the combination of GMDH-EA with

MMTP algorithms outperform others.

7 Conclusion

 To maximize ROI, Cloud providers have to apply

energy-efficient resource management strategies, such as

dynamic VMs consolidation and switching idle servers to

power-saving modes. However, such load balancing is not

trivial, as it can result in the SLA violations. In this paper we

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 57

have conducted competitive analysis of the VM load

balancing problems.

 We proposed to combine GMDH-EA and MMTP

algorithms for optimal online deterministic algorithms for

these problems. According to the results of the analysis, we

have proposed novel adaptive heuristics that are based on an

analysis of historical data. We have also evaluated the

proposed algorithms through extensive simulations on a

large-scale experiment setup using workload traces from

more than 11k machines in Google data centers. The results

of the experiments have shown that the proposed GMDH-EA

prediction algorithm combined with the MMTP selection

policy significantly outperforms other VM consolidation

algorithms in regard to the MSE metric due to a lower value

in a long time interval and a substantially reduced level of

SLA violations and the number of VM migrations.

 In order to evaluate the proposed algorithm in a real

Cloud environment, we plan to implement it by extending a

real-world Cloud platform with commercial partner. Besides

the reduction in infrastructure and on-going operating costs,

this work also has social significance as it will decrease the

carbon dioxide footprints and energy consumption by modern

IT infrastructures.

8 Acknowledgment

 This work was supported by the scientific and technical

supporting programs of Jiangsu province, china,

No.BE2011169.

9 References

[1] Xen and the art of virtualization. Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP 2003), Bolton Landing, NY, USA.

[2] B. Urgaonkar, P. Shenoy, A. Chandra and P. Goyal,
Dynamic Provisioning of Multi-tier Internet
Applications, Proc of ICAC,2005.

[3] S. Osman, D. Subhraveti, G. su and J. Nieh, The Design
and Implementation of Zap: A System for Migrating
Computing Environments, Proc of OSDI, 2002.

[4] A. G. Ivakhnenko, Polynomial theory of complex
systems, IEEE Trans. Syst. Man Cyber., vol. SMC-1, no.
4, pp. 364-378, 1971.

[5] N. Zadeh, A. Darvizeh, A. Jamali and A. Moeini,
Evolutionary design of generalized polynomial neural
networks for modeling and prediction of explosive
forming process, J. Mater. Process. Tech., vol. 164-165,
pp. 1561-1571, 2005.

[6] Q. Yang, C. Peng, Y. Yu, H. Zhao,Y. Zhou, Z. Wang, S.
Du, Host Load Prediction Based on PSR and EA-
GMDH for Cloud Computing System, in roceedings of
the 2013 IEEE International Conference on Cloud and
Green Computing(CGC 2013), pp. 9–15, 2013

[7] Beloglazov A., Buyya R., Optimal Online Deterministic
Algorithms and Adaptive Heuristics for Energy and
Performance Efficient Dynamic Consolidation of Virtual
Machines in Cloud Data Centers, Concurrency
Computat.: Pract. Exper. 2012; 24:1397–1420

[8] C. Dabrowski and F.Hunt, Using markov chain analysis
to study dynamic behavior in large-scale grid systems,

Seventh Australasian Symposium on Grid Computing
and Research, ser. CRPT, vol. 99. Wellington, New
Zealand:ACS, pp. 29-40, 2009.

[9] S. Akioka and Y. Muraoka, Extended forecast of cpu
and network load on computational grid, in Proceedings
of the 2004 IEEE International Symposium on Cluster
Computering and Grid(CCGrid’ 2004), pp. 765-772,
2004.

[10] Y. Wu, Y. Yuan, G. Yang and W. Zheng, Load
Prediction Using Hybrid Model for Computational Grid,
Proceedings of 8th IEEE/ACM International Conference
on Grid Computing, 2007.

[11] S. DI, D. Kondo and W. Cirne, Host Load Prediction in
a Google Compute Cloud with a Bayesian Model,
Procceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, 2012

[12] B. Guenter, N. Jain, and C. Williams, Managing Cost,
Performance, and Reliability Tradeoffs for Energy-
Aware Server Provisioning, INFOCOM, pp. 1332-1340,
2011.

[13] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba,
and J. L. Hellerstein, Dynamic Energy-Aware Capacity
Provisioning for Cloud Computing Environments,
Proceedings of the 9

th
 international conference on

Autonomic computing, 2012.

[14] D. Yang, J. Cao, C. Yu, and J. Xiao, A Multi-step-ahead
CPU Load Prediction Approach in Distributed System,
Sencond International Conference on Cloud Computing
Green Computing, 2012

[15] S. DI, D. Kondo and W. Cirne, Host Load Prediction in
a Google Compute Cloud with a Bayesian
Model,Procceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis, 2012

[16] H. S. Kim, R. Eykholt, J.D. Salas, Nonlinear dynamics,
delay tiems and embedding windows, Physica D:
Nonlinear Phenomena, 1999.

[17] Beloglazov A, Buyya R. Adaptive threshold-based
approach for energy-efficient consolidation of virtual
machines in cloud data centers. Proceedings of the 8th
International Workshop on Middleware for Grids,
Clouds and e-Science, Bangalore, India, 2010; 4.

[18] Cleveland WS. Robust locally weighted regression and
smoothing scatterplots. Journal of the American
statistical association 1979; 74(368):829–836.

[19] Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD,
Buyya R. CloudSim: a toolkit for modeling and
simulation of Cloud computing environments and
evaluation of resource provisioning algorithms. Software:
Practice and Experience 2011; 41(1):23–50.

[20] https://code.google.com/p/googleclusterdata/wiki/Cluste
rData2011_1

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

58 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

for Cloud Computing Environments

Seunghwan Yoo1, and Sungchun Kim1
1 Computer Science & Engineering Department, Sogang University, Seoul, South Korea

Abstract — In cloud computing, cloud providers can offer

cloud consumers two provisioning plans for computing

resources, formal reservation and on-demand plans. Usually,

cost of utilizing computing resources provisioned by

reservation plan is cheaper than that provisioned by on-

demand plan, since cloud consumer has to pay to provider in

advance. With the reservation plan(Local Adjustment), the

consumer can reduce the total resource provisioning cost.

However, the optimal reservation of resources is difficult to be

achieved due to fluctuation of consumer’s future demand and

providers’ resource prices. So we propose a framework to

improve their profits by maximizing the resource utilization and

reducing the reconfiguration costs. Then a two-step runtime

reconfiguration strategy. The SLA algorithm can provide

computing resources for being used in multiple provisioning

stages as well as a long-term plan(Global Adjustment), The

Service Level Agreement (SLA) based scheduling approach

promotes cooperative resource sharing. In this paper,

minimizing both under provisioning and over provisioning

problems under the demand and price uncertainty in cloud

computing environments is our motivation to explore a

resource provisioning strategy for cloud consumers. the results

show that our framework is effective for maximizing the

resource utilization and reducing the costs of the runtime

reconfiguration.

Keywords: Provisioning, Service Level Agreement, Optimize,

Cloud Computing Platform

1 Introduction

Cloud computing[1] is basically an Internet-based network

made up of large numbers of servers - mostly based on open

standards, modular and inexpensive. Also, it is popular as a

rising application paradigm, where resources, including

software, platform and infrastructure, are provided and shared

as services. Cloud providers are responsible for various

resource demands by determining where to place VMs and

how to allocate the resources. The virtualization-based cloud

computing can improve resource utilizations, scalabilities,

flexibilities and availabilities of applications. Also it can

provide good application isolations in multiple levels. Due to

these advantages, large-scale distributed applications are

preferred to be hosted in a cloud platform.. A service-level

agreement (SLA) is a part of a service contract where a

service is formally defined. In practice, the term SLA is

sometimes used to refer to the contracted delivery time (of the

service or performance). As an example, internet service

providers will commonly include service level agreements

within the terms of their contracts with customers to define

the level(s) of service being sold in plain language terms. This

paper proposes a SLA-Based Optimal resource provisioning

method (SAA provisioning Method). SAA provisioning

method provides scalable processing power with dynamic

resource provisioning mechanisms, where the number of

virtual machine used is dynamically adapted to the time-

varying incoming request workload. We evaluate the

effectiveness of our initial VM deployment method used in

sandpiper[19] and through runtime VM reconfiguration, we

show the advantage in resource utilization.

 The remainder of the paper is organized as follows. Section

2 presents survey related to our work. Section 3 describes our

SAA provisioning method on the cloud computing platform.

Section 4 presents our adaptive resource provisioning

algorithm and its performance evaluation. Section 5

concludes the paper and points out some future research

directions.

2 Related Work

Dynamic resource provisioning [4], which has been

generally used in web hosting platforms, has proven to be

useful in handling multiple time-scale workloads(VMs).

However, dynamic provisioning in previous research has

been more focus on physical resource allocation, which is not

flexible enough for the effective delivering of services.

Unlike other computing resources, VMs are flexibly deployed

on physical machines, which can be automatically generated

for different virtualized applications. Though existing

physical capacity provisioning has long been used,

overprovisioning or under-provisioning has been a common

difficulty for most resource IT vendors. To solve this problem

it is necessary to make full use of advantages of adaptive

resource provisioning. We propose the design of a virtualized

resource allocation framework using the cloud platform,

which allocates VMs on demand in order to provide services,

SLA-Based Optimal Provisioning Method

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 59

http://en.wikipedia.org/wiki/Service_contract
http://en.wikipedia.org/wiki/Internet_service_provider
http://en.wikipedia.org/wiki/Internet_service_provider

as well as minimizing the cost of using those virtual resources.

Nowadays, some researches have focused on the issue of

resource management and performance control in cloud

computing platform[5,6]. However, new challenges are

introduced while service providers benefit from the planning

flexibility in technical and economic aspects. Some

challenges and opportunities of automated control in cloud

computing is discussed in [7]. And other researchers work

to improve the resource utilization, such as resource

virtualization [8,16], on-demand resource provisioning

management based on virtual machines [9, 10], and QoS

management of virtual machine [11].

Also, many researchers [12, 13] focus on improving

resource utilization as well as guaranteeing quality of the

hosted services via on-demand local resource scheduling

models or algorithms within a physical server. However, most

of them could not be good solutions to tradeoff between

resource utilization and SLA. For example, [12] present a

novel system-level application resource demand phase

analysis and prediction prototype to support on-demand

resource provisioning. The process takes into consideration

application’s resource consumption patterns, pricing

schedules defined by the resource provider, and penalties

associated with SLA violations. The authors in [13] improve

resource utilization and performance of some services by

hugely reducing performance of others. How to improve

resource utilization, as well as guarantee SLA, is a challenge

in a VM-based cloud data center

In the context of the dynamic resource provisioning, the

author in [16] introduce three mechanisms for web clusters.

The first mechanism, QuID [14], optimizes the performance

within a cluster by dynamically allocating servers on-demand.

The second, WARD [15], is a request redirection mechanism

across the clusters. The third one is a cluster decision

algorithm that selects QuID or WARD under different

workload conditions.

For multi-tier internet applications, the modeling is

proposed that a provisioning technique which employs two

methods that operate at two different time scales : predictive

provisioning at the time-scale of hours or days, and reactive

provisioning at time scales of minutes to respond to a peak

load[17].

In this section, we first discuss the service level agreements

(SLAs) that we use in the paper. Then we give a high-level

description of the test bed and three types of workload

generators for our experimental studies. Finally, we describe

the control system architecture that we use throughout the

paper.

2.1 Service Level Agreements

Service level agreements (SLAs) are firm contracts

between a service provider (IT Bender) and its clients

(Users). SLAs in general depend on certain chosen criteria,

such as latency, reliability, availability, throughput and

security, and so on. In this paper, we focus on end-to-end

latency, or maintain cost. Although SLA cost function may

have various forms, we believe that a staircase function is a

natural choice used in the real-world contracts as it is easy

to describe in natural language [18]. We use a single step

function for SLA in our paper as a reasonable

approximation. We assume that if response time is shorter

than arranged time, then the service provider will earn some

revenue. Otherwise, the service provider will pay a penalty

back to the client. As a result, in order to minimize the SLA

penalty cost, our method should keep the response time

right below arranged time

3 Proposed Scheme

3.1 SAA Framework

This section presents a scalable framework for virtualized

applications on the cloud computing platform. The

framework deals with the scenario that hosted on a cloud

computing platform, handle many virtual machines

simultaneously according to the incoming user requests.

Since the amount of incoming requests changes with time

and the cloud platform is a pay-per use service, the

application has to dynamically assign the resources it uses

to maintain guaranteed response time and reduce the total

owner cost under various workloads. In the framework,

server pool, combining a distinct computing server, is

capable of processing multiple hybrid workload requests.

To efficiently utilize resources, there are two main issues

considered in the cloud computing platforms. The first is

finding the least loaded resource for dispatching incoming

requests. The second issue deals with SAA provisioning for

adaptively handling dynamic user’s requests. With

resource state monitoring, each workflow enactment

request will be sent to the least loaded resource for service.

The effectiveness of least load dispatching largely depends

on how to accurately capture the computing load on each

resource.

Fig. 1 Proposed SAA-Provisioning Framework

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

60 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Fig. 1 shows an overview of the framework in handling user

requests for Cloud Computing Environments. The

architecture consists of four main components that Initial

Deployment, Runtime Monitor, Modeler & Predictor, and

Runtime VM Configurator which is a loops architecture. The

goal is to meet the user requirements while adapting cloud

architecture to workload variations. Usually, each request

requires the execution of virtualized application allocated on

the VM of each physical server. A cloud computing resource

amount enables multiple virtualized applications may be

increased when request increases and reduced when request

reduces. This dynamic resource provisioning allows flexible

response time in a cloud platform where peak workload is

much greater than the normal steady state.

Our Framework provides a high-level dynamic resource

provision architecture for cloud computing platform, which

shows relationships between heterogeneous server resources

pool and self-management function. Server pool contains

physical resources and virtualized resources. A lot of VMs

hold several Server Pool sharing the capacity of physical

resources and can isolate multiple applications from the

underlying hardware. VMs of a virtualized application may

correspond to a physical machine.

Self-management function means mechanisms to automate

the VMs of configuring and tuning the virtualized application

so as to maintain the guaranteed response time for

requirements of the diverse users. As previously stated, four

main components more detail explanation are as follows:

① Runtime Monitor: Collects the runtime information,

including resource usage, network load, and request

arrival rate, such as the response time, the request arrival

rate, the average service time, and the CPU utilization, etc..

All information is sampled periodically without affecting

application performance significantly

② Modeler & Predictor : Use data from Runtime Monitor to

calculate the objective values and predict the future state.

③ Runtime VM Configurator : decides when and how to

reconfigure the VMs. To reduce the runtime

reconfiguration costs

In conclusion, Fig. 1 is presented the dynamic resource

provisioning method. Our research is a great help of on the

improved design of resource scheduler for requested

workload. The goal is to minimize the using of resources

for request workload while satisfying different users for the

guaranteed response time.

3.2 Proposed SAA provisioning Algorithms

In this section, we propose an auto-control algorithm

denoted as SAA provisioning method (SLA Aware

Adaptive) to dynamically provide an adequate amount of

resources to virtualized application. To maintain

acceptable response time and cost efficiency, it would find

the configuration value which the Sum of cloud platform

profits is maximized. Considering all of virtual machine

system parameters observed by monitor, especially

response time and usage cost, we compute the profit value

of each VMs. Through equation (1), our method calculates

the optimized next step setting value. Resource scheduler

receives the modified configuration parameter. Then it

reflects the value next schedule period.

Table.1 List of Notations

Symbol Definition

r(RA) Rate of Arrival Request

r(SLAS) Rate of SLA Satisfied

r(VMF) Rate of VM Failed

c(VMA) Active VM maintain Cost

c(VMI) Idle VM maintain Cost

α Created Value (per Application)

β Weight Value (per Application)

Profit(𝑃𝑖) = 𝛼 × {𝑟(𝑅𝐴𝑖) × 𝑟(𝑆𝐿𝐴𝑆𝑖) − 𝑟(𝑉𝑀𝑓𝑖)} − 𝛽

× {𝑐(𝑉𝑀𝐴𝑖) + 𝑐(𝑉𝑀𝐼𝑖) } (1)

After each Server-Pool Profit(Pi) is calculated,

Periodically it is updated and check SLA-requirements.

After the specific point which variability is minimized, Our

Scheme elect optimized parameter for Global Profit.

max { 𝑃𝑟𝑜𝑓𝑖𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = ∑ 𝑝𝑖
𝑛
𝑖=1 } (2)

After all, our mechanism collect local profit and calculate

Global profit as shown in (2). It would find the optimal value

for certain period. Also it is adaptively perform in the course

of time. Since it has sufficient information about virtualized

application. For example, there are a little difference between

current parameter and next-step parameter. It check prefixed

threshold. If it is not exceed, retain the system current

parameter. Finally, Our SAA provisioning algorithms would

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 61

find SLA- guaranteed response time and low maintenance

cost.

Fig. 2 Flowchart Calculate Optimized Profit

4 Performance Analysis

4.1 Experiment

In the following experiments, we evaluate our dynamic

resource provisioning technique for virtualized

applications. We establish a prototype system of cloud

environment such that each of the server nodes was run on

Intel Xeon 3.2GHz processors with 24GB RAM.

Processing capacity of each VM server is equal in cloud

platform.

We evaluate the effectiveness of our initial VM

deployment method used in sandpiper[18]. The VM

template capacities and application demands are

distributed in the following sets: CPU-{0.25*2.4, 0.5*2.4,

1*2.4, 1.25*2.4, 1.5*2.4, 2.0*2.4, 3*2.4, 4*2.4}, memory-

{0.5, 1, 1.5, 2.0, 3.0, 4.0, 6.0}, network I/O-{4, 6, 10, 15,

20}. For example, Physical server’s total capacity is

{4*3.4GHZ, 24GB, 100M}.

Table.2 Use of Servers

ID Use

S1 File system for VM migration

S2 Client workload generator for applications

S3 Request router, distributing client requests

S4 ~ S7 Hosting applications packaged into VM

Table.3 VM Template

ID Name Configuration

V1 Common 0.5*2.4GHZ, 1GB RAM, 10M I/O

V2 High-CPU 2*2.4GHZ, 1.5GB RAM, 20M I/O

V3 High-Mem 1*2.4GHZ, 3GB RAM, 20M I/O

V4 High-I/O 1*2.4GHZ, 1GB RAM, 30M I/O

Table.4 Application Instances and Allocation

App

Type.
App. ID

VM

Template

Instance

Number

Server

ID

CPU-

Intensive

CI-1 V2 2 S4 ,S5

CI-2 V2 2 S4 ,S5

Mem-

Intensive
MI-1 V3 2 S4 ,S5

I/O-

Intensive
NI-1 V4 2 S4 ,S5

We employ three types of applications, CPU-intensive

(CI), Memory-intensive (MI) and Network I/O-intensive

(NI), with multiple instances. Multiple VM templates are

provided and allocated to these applications. TABLE 2, 3,

4 describe the servers’ uses, VM template configurations

and application instances respectively.

4.2 Experiment result

Existing method, focus on maximizing resource utilization

is approximately demonstrated 87% SLA-satisfied rate. We

give consideration to improve SLA-satisfied ratio. Our

mechanism indicate settlement for content better SLA-

satisfied rate and diminish maintain cost.

Fig. 3 is our deployed VM template simulation result. Each

type application requires unpredictable demand. So there are

variable response time. We should stable cloud platform

performance due to such fluctuation.

Fig. 3 Initial VM Deployment Result

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

62 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Our method conducts initiation and removal of VMs before

each interval while considering the utilization of the

previous interval. It is noticeably cost-aware. And the results

of response times and costs are shown in Fig. 4 and Fig. 5.

Fig. 4 Comparative results of Average response times between

our method and utilization-based method

The benefit of our proposed method is appeared in Fig 4

and 5. Response time is faster 6.53% than existing method.

And on average, maintain cost is reduced 6.92%. Through

comparative results, we can notice that utilization-based

methods can also handle the workload variations. However,

it is not rapid enough to supply the proper number of VMs

in order to meet the response based on time restricted. In

respect of cost, this method occasionally uses fewer

resources than our proposed method, sometimes at the cost

of violating the SLA. In conclusion, the minimized number

of VMs as well as the maximized CPU resource utilization

can be achieved with our method by dynamic resource

provisioning mechanism, and then we can keep the high

global utility.

Fig. 5 Comparative results of Average costs between

Our method and utilization based method

5 Conclusions

In this paper, it is argued that dynamic provisioning of

virtualized applications environment raises new challenges

not addressed by prior work on provisioning technique for

cloud computing platform. We presented an optimal

autonomic virtual machine provisioning architecture. We

proposed a novel dynamic provisioning technique, which

was algorithms for virtualized applications in cloud

computing platform. Hence the efficiency and flexibility for

resource provisioning were improved in cloud environment.

Currently many server applications adjust the amount of

resources at runtime manually. So we address the problem

of the VM deployment and reconfiguration The framework

in this paper allows applications to automatically manage the

amount of resources according to the system workload. It

offers application providers the benefits of maintaining

QoS-satisfied response time under time-varying workload at

the minimum cost of resource usage. Also, we adopt Service

Level Agreement (SLA) based negotiation of prioritized

applications to determine the costs and penalties by the

achieved performance level. If the entire request cannot be

satisfied, some virtualized applications will be affected by

their increased execution time, increased waiting time, or

increased rejection rate.

However, there are still some limitations in our work,

including: 1) the prediction techniques may have

observational error which affect the runtime VM

reconfiguration decisions; 2) the interferences between VMs

on a hybrid server type are ignored. In future work, we will

focus on these limitations by applying the much more

accurate prediction techniques and consider hybrid server

architecture.

ACKNOWLEDGMENTS

This work was all-supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea

government(MSIP) (No. 2012R1A1A2009558), and part -

supported by Technology Innovation Development Program

funded by Small & Medium Business Administration(No.

S2057016)

6 References

[1] M. Armbrust, et al. “Above the clouds: A Berkeley view

of cloud computing,” Tech. Rep. UCB/EECS-2009-28,

EECS Department, U.C. Berkeley, 2009

[2] M. Armbrust, A. Fox, and R. Griffith, et al, “Above the

clouds: A Berkeley view of cloud computing”, Technical

Report No. UCB/EECS-2009-28, University of California

Berkley, USA, Feb. 10, 2009.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 63

[3] R. Buyya, C.S. Yeo, and S. Venugopal, et al, “Cloud

computing and emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th utility”, Future

generation computer systems, Elsevier science,

Amsterdam, the Netherlands, 2009, 25(6), pp. 599- 616.

[4] S. Li, and D. Tirupati. Technology choice with stochastic

demands and dynamic capacity allocation: A two-product

analysis. Journal of Operations Management, Vol. 12, no

3-4, pp. 239-258, 1995.

[5] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-

adaptive and self-configured CPU resource provisioning

for virtualized servers using kalman filters”, Proceedings

of the 6th international conference on Autonomic

computing, Barcelona, Spain, June 15-19, 2009.

[6] W. E. Walsh, G. Tesauro, and J. O. Kephart, “Utility

functions in autonomic systems”, Proceedings of the First

IEEE International Conference on Autonomic Computing,

New York, NY, USA, May 17-18, 2004

[7] E. H. Miller Lim, H., Babu, S., Chase, J., Parekh, S.:

Automated Control in Cloud Computing: Challenges and

Opportunities. In: 1st Workshop on Automated Control for

Datacenters and Clouds, 2009.

[8] P. Barham, B. Dragovic, and K. Fraser, et al, “Xen and the

art of virtualization”, Proceedings of the 19th ACM

Symposium on Operating Systems Principles, Bolton

Landing, NY, USA, 2003, pp. 164-177.

[9] Y. Song, Y. Li, and H. Wang, et al, “A service-oriented

priority based resource scheduling scheme for virtualized

utility computing”, Proceedings of the 9th IEEE

International Symposium on Cluster Computing and the

Grid, 2009, pp. 148-155.

[10] J. Zhang, M. Yousif, and R. Carpenter, et al, “Application

resource demand phase analysis and prediction in support

of dynamic resource provisioning”, Proceedings of the 4th

International Conference on Autonomic Computing, 2007.

[11] X.Y. Wang, Z.H. Du, and Y.N. Chen, et al, “Virtualization

based autonomic resource management for multi-tier Web

applications in shared data center”, The Journal of Systems

and Software, 2008, 81(9), pp. 1591-1608

[12] J. Zhang, M. Yousif, and R. Carpenter, et al, “Application

resource demand phase analysis and prediction in support

of dynamic resource provisioning”, Proceedings of the 4th

International Conference on Autonomic Computing, 2007,

pp. 12-12.

[13] P. Padala, X. Y. Zhu, M. Uysal, et al, “Adaptive control of

virtualized resources in utility computing environments”,

EuroSys, 2007, pp. 289-302.

[14] Ranjan, S., Rolia, J., Fu, H., Knightly, R.: QoS-Driven

Server Migration for Internet Data Centers. In: The Tenth

International Workshop on Quality of Service, Miami, FL,

2002

[15] Ranjan, S., Karrer, R., Knightly, E.: Wide Area

Redirection of Dynamic Content in Internet Data Centers.

In: The IEEE INFOCOM, HongKong, 2004

[16] Ranjan, S., Knightly, E.: High-Performance Resource

Allocation and Request Redirection Algorithms for Web

Clusters. IEEE Transactions on Parallel And Distributed

Systems 19(9), 2008.

[17] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Agile,

T.W.: Dynamic Provisioning of Multi-Tier Internet

Applications. ACM Transactions on Autonomous and

Adaptive Systems 3(1), 2008.

[18] S. Malkowski, M. Hedwig, D. Jayasinghe, C. Pu, and D.

Neumann, “Cloudxplor: A tool for configuration planning

in clouds based on empirical data,” in Proc. of SAC, 2010.

[19] T. Wood, et al, “Black-Box and Gray-Box Strategies for

Virtual Machine Migration,” in Proceedings the 4th

USENIX Conference on Networked Systems Design and

Implementation, 2007.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

64 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

DiAF: A Dynamic virtual Appliance provision and

management Framework for cloud Computing

Rajendar Kandan
1
, Mohammad Zakaria Alli

2
 and Hong Ong

2

Advanced Computing Lab, MIMOS, Kuala Lumpur, Malaysia

Abstract - Cloud computing has driven the power of

aggregating computing resource across geographical

location, enabling enterprises an easier way of establishing

and managing resources virtually. Most of industries rely on

cloud computing for reducing the ownership cost and

maximizing the profit. However it requires an efficient

solution to build an infrastructure and offer software

deployment and maintenance in a much reduced time. Virtual

appliance addresses this solution and provides an easier way

of deploying software applications in shorter time, removing

the burden towards installation and configuration of

applications. It acts as a ready built solution to the cloud

consumers, eliminating the manual intervention in configuring

any software applications. Many open source cloud systems

offer this facility for users to build and deploy virtual

appliances. We have developed a provisional and

management framework (DiAF) which differs from the

traditional approach and provide much more efficient way of

managing the appliances. DiAF manages the conversion of

appliances over different formats and deploys them according

to the user requirement. In this paper, we also shared our

experience with multi-tier appliance deployment and its

results.

Keywords: Virtualization, Cloud computing and Virtual

appliance

1 Introduction

 Cloud technology has proven the concept of dynamic

resource management. It realizes on-demand resource

provisioning to users irrespective of the geographical

locations. Cloud Computing refers to both the applications

delivered as services over the Internet and the hardware and

systems software in the datacenters that provide those services

[1]. Many definitions about cloud computing have been put

forth by various organizations across world and one of the

recent definition include NIST [2], where it describes cloud

computing as a model for delivering various services. It also

describes five essential characteristics of cloud, service and

deployment models. Service model describes about the type

of services being offered to the user which includes

Infrastructure as Service, Platform as Service and Software as

Service. Deployment models states about the type of cloud

which includes public, private, hybrid and community.

In Cloud computing, user can request virtual machine

instances from an image which is preconfigured with a basic

operating system like Ubuntu, Centos, Fedora, etc. These

images are stored in a repository and user has option to choose

the virtual image according to their needs. However, if the

user wants to develop an application, their requires a long

process including selection of base operating system,

installation of software required for specific application and

finally setting up configuration. This process can be much

reduced by the process of employing virtual appliances, pre-

integrated, self-contained system which is a combination of

operating system with the adequate software application [3].

Virtual appliances [9] are software appliances prepared to run

on any virtualized environments and hence widely used in

most of the virtualization industries.

Virtual appliances are more specific to each

application eg. Database appliance [4] and are executed in the

form of virtual machines, removing the manual installation

and configuration of software application. The user can deploy

virtual appliance as virtual machines and can be ready to use

application with much reduced time.

Current cloud system provides users, a way to access

virtual appliances which is already published in a marketplace

[5, 6]. Each cloud providers manage different market place for

their user community. User can also build virtual appliances

and upload in marketplace for others to use. Various virtual

appliance building software were available on the market. Our

focus is not on the development of the virtual appliances but

rather on the deployment of virtual appliance from the

available marketplace and manages them more efficiently.

Wide range of image format is being followed by different

cloud providers and hence one of our main focuses is on

providing a unique architecture for dynamically managing the

appliances of varied formats. In this paper, we present

architecture for dynamic deployment of appliance integrated

with open source cloud software Mi-cloud, an initiative from

MIMOS.

 This paper is organized as follows: Section II

discusses on related papers. Then section III offers general

description of our proposed architecture and its components.

Section IV deals with the life cycle of virtual appliances and

detailed information about our use cases is made in Section V

followed by a conclusion in Section VI.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 65

2 Related Papers

 There were only a few initiatives towards the

deployment of multi-tier based applications using virtual

appliances. Amazon web service, CloudFormation [15] used

to create distributed applications. User can choose from the

list of template or can create an own template while launching

an instances. However, the limitation includes the usage

within the AWS environment and only AMI images are used

for deployment. Further, CloudFormation as of independent

product doesn’t describe more on the configuration

management of multi-tier based application and VM

contextualization. An Open source initiative, Context Broker

[24] from Nimbus project allows the creation of large virtual

cluster and introduced the concept of “one-click“ cluster. It

manages the configuration using context agent, a lightweight

agent on each VM for performing the required action.

However the hypervisor is limited to xen or kvm. Further, it is

more focused on science cloud and lacks a management

system for virtual appliances.

 VMware studio [16] from VMware is a free tool for

managing and updating virtual appliances. It provides the

functionality of application authoring, management,

compatibility and validation. The limitation of this product is

that it could be worked only with VMware product platforms.

Claudia [17] is another open source service management

toolkit which allows service provider to control resource

provisioning and scalability. As other software, it also lacks

the repository management system for virtual appliances. It

also lacks a graphical user interface for managing the admin

operations over virtual appliances.

 ViApps [18] is another initiative from opencloud

solutions. It is an open source tool managing the automation

of infrastructure services on cloud environment. It manages

the network infrastructure services like firewall, DNS servers,

HTTP proxy, SMTP gateways and IP Load balance. However

this product limits to the management of only network

appliances. Similar approach to our proposal is provided by

OpenNebula [19] an open source project for building and

managing the enterprise clouds. It offers OpenNebula

Marketplace [20] for users to deploy virtual appliance on

OpenNebula clouds. To deploy virtual appliances, the users

select virtual appliances from Marketplace and then download

to their local site, prepare the template and then instantiate the

virtual appliance. However, this implementation lacks the

feature of communicating with external marketplace and

dynamic deployment of virtual appliance.

 Hence, we propose architecture to resolve the problem

which failed to address by these softwares and provide a

unique feature of managing the complete lifecycle of

deploying virtual appliance. The complete detail of our

architecture is explained in the next section

3 Proposed Architecture

 DiAF manages the complete life cycle of virtual

appliance. This component interacts with Mi-Cloud

component in managing the deployment of multi-tier

applications. It has unique feature of communicating with

public marketplace, download, convert and deploy virtual

appliance. It also handles the image repository for managing

the deployment of virtual appliances.

 User interacts with Mi-cloud using Mi-cloud portal, a

graphical interface for requesting their service. The user can

view list of appliance available at local repository and also

has provision to choose appliance from public marketplace,

turnkey linux [10]. User first creates the template for

launching single/multi-tier applications and can set the order

by which virtual appliances can be booted. The user can also

add the contextualization parameters to the template if

required.

The detailed architecture of DiAF is described in fig 1.

Figure 1. DiAF - Architecture

Appliance Manager handles the complete life cycle of virtual

appliances. It interacts with Mi-cloud components and

updates status of the virtual appliance periodically. The major

components include Image Controller, Image Manager and

VA Deployer.

3.1 Image Controller

Image Controller manages the download of images requested

by the Appliance Manager. It periodically updates about the

status of image which is being downloaded. It has two sub

components namely Repository Handler and Image

Downloader. Repository Handler connects to the

external/local repository for handling requested image. It

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

66 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

initiates the downloading process of image from the desired

repository. Image Downloader verifies the image which is

being downloaded from the external/local repository. It also

updates the status of completion to the Image Controller.

3.2 Image Manager

Image Manager controls the image conversion process. It

ensures that the image downloaded from that repository is

converted to the desired format for the Virtual appliance

deployment. It has sub component Image converter which

converts the images according to the desired format.

3.3 VA Deployer

VA Deployer manages the virtual appliance deployment. It

ensures the requested virtual appliance is deployed as VM and

periodically updates the status to the Appliance Manager. It

has two sub components Template handler and VA

contextualizer. Template handler creates the image and virtual

machine template for the deployment of virtual appliances.

VA contextualizer configures the multi-tier based appliances

and updates information to VA deployer about the status of

configuration.

4 Life Cycle of Virtual appliance

The deployment of virtual appliances follows various

stages as shown in Fig.2

Analyze

Download

Convert

Register

Context

Deploy

Analyze the VA request parameters

Identify the repository for
downloading images

Convert the image to a desired format if
needed

Register image and VM templates
required for the processing of

instantiating virtual appliances

Contextualize the configuration
parameters specified by user

Deploy virtual Appliances

Figure 2. Lifecycle of Virtual Appliance

 First stage consists of analyzes, where the requested

parameters were verified. This stage also decides whether the

requested Virtual appliances can be processed by the cloud

infrastructure. The second stage is the download process of

the appropriate images. Next is the conversion phase where

the downloaded images are converted if necessary. Once the

images are converted and made ready, the next phase is to

register the image. Next stage is the contextualization phase;

here the configuration management takes place. Depending

upon the user specification virtual machine templates were

updated and finally boots virtual appliance in the last stage of

deployment.

5 Implementation

The complete detail about our test bed is shown in

Figure 3. Setup consists of Mi-Cloud frontend, managing the

complete user and admin operations with two clusters, each

consists of two Mi-Cloud nodes, which manages the life cycle

of virtual machines. We use Mysql as database and NFS for

sharing the file and directory across the nodes and Frontend.

Mi-Cloud FrontEnd

SSH NFS

Mi-Cloud Node

KVM

SSH
NFS

client

Mi-Cloud Node

KVM

SSH
NFS

client

Mi-Cloud Node

KVM

SSH
NFS

client

Mi-Cloud Node

KVM

SSH
NFS

client

Mysql

Cluster 1 Cluster 2

Figure 3. Cloud setup using Mi-cloud

Our experiments were carried out on a quad-core Intel Xeon

CPU 5140 machine with 2.33 GHz. The machine has 32GB

main memory and 250GB of local storage.

We describe our experiments using following scenarios

Scenario 1: Deploying an appliance from Marketplace

 We carried out the experiment by selecting “turnkey linux”

as external repository.

Table I : Single appliance deployment

 Table I describes our experiment results with different

appliances of varied sizes. In this scenario, we employed the

conversion of images from VMDK to qcow2 for managing

across Mi-Cloud environment. This conversion mechanism is

not limited only to these formats and can varied according to

the hypervisors including xen and vmware. As seen from table

I, booting time for all the VMs show an average of 60

seconds, and this refers to first time boot configuration

Appliance

Name

Image Size

[qcow2]

(MB)

Image Registration (Seconds)

Appliance

Deployment

(Seconds)

Converting from VMDK to

qcow2 format, Template

creation and Image

Registration

Boot time

Django

786

45

60

Joomla

887

56

61

OrangeHRM

908

46

61

Torrentserver

860

56

65

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 67

employed and this could be optimized for a faster launching of

appliances during the second time. We optimized the way in

which if the user launches the same appliance for second time,

the deployment time will be much reduced. We can see the

comparison graph in Fig 4.

Figure 4. Comparision of booting time

Scenario II: Deploying multi-tier appliance

In our second experiment, we launch a multi-tier

based appliances. We used “Nginx”, “MySyql” and

“OwnCloud” appliances for loadbalancer, database and

application respectively. Graphical user interface is designed

in such a way that user can easily choose multiple appliances

and specify the required parameters for setting up database

and application configuration.

We customized these appliances and associated

images were readily available in local site. We also employ

the optimized boot and context scripts for the deployment of

these appliances. The number of instances which we deployed

using these appliances is represented below

Figure 5. Instances of multi-tier appliances

Whenver the user launches multi-tier appliances, initialization

of image starts parallely to provide faster launching.

Contextualization script is managed to bind the relationship

among the application, database and loadbalancer. The

complete details about deployment time is represented in Fig

6.

Figure 6. Multi-tier appliance deployment

As shown in fig 6, we can see the deployment time of each

appliances. The total deployment time includes image

registration, instance boot up and configuration for setting up

application or database. We can see the total time for

launching the entire multi-tier appliances is around 140

seconds. This provide users a easier approach for deploying

any multi-tier appliances.

6 Conclusion

In this paper, we have presented architecture to

provide dynamic deployment of appliances, which enables

users, a simpler way to launch appliances across sites without

any manual intervention. Furthermore, it also provides a basic

approach over image management and fits for cloud

environment which focus over interoperability, allowing users

to launch different appliances of varied formats. For our future

work, we would like to investigate more on VM image

distribution, synchronizing and security aspects.

Acknowledgment

The authors sincerely thank MIMOS BERHAD, for

financially supporting the Advanced Computing Laboratory,

MIMOS BERHAD, Kuala Lumpur, Malaysia for carrying out

research.

References

[1] M. Armbrust, A. Fox, and R. Griffith, et al, “Above the

clouds: A Berkeley view of cloud computing”, Technical

Report No UCB/EECS-2009-28, University of California

Berkley, USA, Feb 10, 2009

[2] http://csrc.nist.gov/publications/PubsSPS.html

[3] http://www.turnkeylinux.org/virtual-appliance

[4] A. Aboulnaga, K.Salem, A.A.Soror, U.F.Minhas,

P.Kokosielis and S.Kamath, “Deploying database appliances

in the cloud’, IEEE Data Eng. Bull..Vol.32,no 1 , pp. 13-20,

2009

[5] Public EC2 Amazon machine images, 2010. URL:

http://developer.amazonwebservices.com/connect/kbcategory

.jspa?categoryID=171

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

68 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

http://csrc.nist.gov/publications/PubsSPS.html
http://www.turnkeylinux.org/virtual-appliance
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=171
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=171

[6] VMWare public virtual appliances, 2010. URL:

http://www.vmware.com/appliances/

[7] Eric Hammond, http://www.alestic.com

[8] Bitnami, http://www.bitnami.org

[9] rPath, http://www.rpath.com

[10] Turnkey Linux, http://www.turnkeylinux.org

[11] The Cloudmarket, http://www.thecloudmarket.com

[12] C. Sapuntzakis, D. Brumley, R.Chandra, N.Zeldovich,

J.Chow, M.S.Lam and M. Rosenbulm, “Virtual appliances for

deploying and maintaining software”, in Proceedings of

seventeenth large installation system administration

conference (LISA 2003), October 2003

[13] Gabor Kecskemeti, Gabor Terstyanszky, Peter Kacsuk

and Zsolt Nemeth, “An approach for virtual appliance

distribution for service deployment”, FGCS, 2011.

[14] Z. Cheng, Z. Du, Y. Chen, and X. Wang, “SOAVM: A

Service- Oriented Virtualization Management System with

Automated Configuration”, IEEE Int’l Workshop on Service-

Oriented System

[15] http://aws.amazon.com/cloudformation/

[16] http://www.vmware.com/products/studio

[17] http://stratuslab.eu/fp7/doku.php/claudia.html

[18] http://www.viapps.org/viapps/en/about.html

[19] OpenNebula Project, “OpenNebula: the open source

solution for data center virtualization”, http://opennebula.org

[20] http://marketplace.c12g.com/appliance

[21] Peter van Heusden, Long Yi and Alan Christoffels, “An

OpenNebula-based cloud computing environment for

bioinformatics”

[22] VMTorrent: Virtual Appliances On-Demand

[23] https://c370023.ssl.cf1.rackcdn.com/documents/Virtual_

Appliance_Whitepaper.pdf

[24] http://www.nimbusproject.org/docs/2.6/clouds/clusters2.

html

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 69

http://www.vmware.com/appliances/
http://www.alestic.com/
http://www.bitnami.org/
http://www.rpath.com/
http://www.turnkeylinux.org/
http://www.thecloudmarket.com/
http://aws.amazon.com/cloudformation/
http://www.vmware.com/products/studio
http://stratuslab.eu/fp7/doku.php/claudia.html
http://www.viapps.org/viapps/en/about.html
http://opennebula.org/
http://marketplace.c12g.com/appliance
https://c370023.ssl.cf1.rackcdn.com/documents/Virtual_Appliance_Whitepaper.pdf
https://c370023.ssl.cf1.rackcdn.com/documents/Virtual_Appliance_Whitepaper.pdf
http://www.nimbusproject.org/docs/2.6/clouds/clusters2.html
http://www.nimbusproject.org/docs/2.6/clouds/clusters2.html

A Framework for Selecting Cloud Service Providers

Based on Service Level Agreement Assurance

R.El-Awadi
1
, M. Esam

2
, M. Rizka

3
 and A.Hegazy

4

1
Information System, AAST, Cairo, Egypt

2
Storage Solution Architect, EMC

2
 ,Cairo, Egypt

3
Centre of Excellence, AAST, Cairo, Egypt

4
Information Technology, AAST, Cairo, Egypt

Abstract - Cloud Computing has become a promising

technology that offers a commoditized service to the software,

the platform and the infrastructure where they are delivered

as a service. It faces several challenges, one of which is

responding to customers’ requirements on-demand. This can

be achieved only through creating an agreement which is

referred to as the Service Level Agreement (SLA) that

guarantees the customers’ rights. In addition, more and more

providers are currently emerging, thus it is difficult for

customers to select the most reliable one. It is important to

have a methodology capable of mapping customers’

requirements, which are termed Service Level Objectives

(SLO) in SLA, so as to determine the different criteria for

selecting the best cloud providers. Thus in this work a

framework is presented that acts as an index of providers and

allows customers to evaluate Cloud service offerings and to

rank them based on their abilities. This study intends to

integrate the automated SLA negotiation among the four cloud

agents with the measurement of Quality of Service (QoS),

termed Service Measurement Index (SMI). Such an index

should be guaranteed by the provider through the SLA which

meets the specifications of the customers’ requirements.

Keywords: Cloud Computing, SLA, SLO, QoS, SMI

1 Introduction

 Cloud Computing is a new trend in the IT field where the

Computing resources are delivered as a service. These

computing resources are offered as pay-as-you-go plans and

hence have become attractive as they are more cost effective

than traditional infrastructures. As customers delegate their

tasks to more and more Cloud providers, it is important to

have the SLA between customers and providers, which makes

it a key performance indicator. Due to the dynamic nature of

the Cloud, continuous monitoring of QoS is necessary to

enforce SLAs.

There are various definitions of Cloud Computing proposed

in the literature. One of these definitions sees Cloud

Computing as a parallel and distributed system consisting of a

collection of interconnected and virtualized computers that are

dynamically managed to act as one or more unified computing

resource based on SLA [1].

Cloud Computing is based on grid computing, Virtualization

and service oriented computing paradigms in sharing common

features [2] [3] [4]. With the increase of public Cloud

providers, Cloud customers are facing various challenges

which are divided into different categories, such as

accountability, assurance, performance, agility, financial

factors, security, and privacy. One of the accountability

challenges is SLA creation and verification.

Because customers’ demands are always different, it is not

possible to fulfill all their expectations by the service provider;

hence a balance needs to be made via a negotiation process. At

the end of this negotiation process, both the provider and

the customer commit to create a Service Level Agreement.

The SLA automatically facilitates the process of contract

signing between the customer and the service provider that

guarantees a specified QoS and enforces penalties in case of

agreement violation. In addition, Service Level Management is

intended to ensure that the defined service meets certain

criteria that are established in the agreement. Failure to meet

the terms of the agreement may lead to service level

degradation [1].

The problem is concentrated in that Cloud service provider

infrastructure is capable of satisfying the required needs in the

customer’s specifications. The objective of this paper is

proposing a framework to evaluate Cloud providers through

their offerings and to rank them according to their level of

achieving customers’ SLOs.

The paper also discusses the nature of Cloud Computing

through its architecture and its distinctive characteristics in

section II. It also introduces the related work in section Ш,

which shows the previous frameworks that focus on the

evaluation of the Cloud vendors and on finding appropriate

solutions to establish confidence between the customers and

the Cloud vendors’ community; this is the dimension that this

study’s proposed framework attempts to improve by

integrating the role of third party in the negotiation scenario of

creating SLA, while monitoring its QoS parameters. In section

IV the proposed framework design is presented together with a

sequence diagram of its mechanism. Section V presents the

proposed experimental study through testing the benchmark

applications on platform as a service layer by using VMware

hypervisor on the Cloud. Finally, a summary of the current work

and the future recommended work is be discussed in section VI

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

70 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

2 Cloud Computing Characteristics and

Architecture

 Cloud Computing is “A model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., servers, storage,

networks, applications, and services) that can be rapidly

provisioned and released with minimal management effort or

service provider interaction” [4]. This definition includes the

Cloud characteristics, architecture, and deployment strategies

[5] [6]. The NIST definition of Cloud Computing states that

the Cloud infrastructure should possess five essential

characteristics [4]. They are stated as Rapid Elasticity, On-

Demand Self Service, Measured Service, Resource Pooling

and Broad Network Access. A layered model of Cloud

Computing describes the architectural, business and various

operational models of Cloud Computing [7].

Cloud service offerings as shown in Fig.1 are classified

primarily into three models: Infrastructure- as-a-Service

(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-

Service (SaaS). Accordingly, there are different types of Cloud

deployment models, each with its own benefits and

drawbacks: [5] [7].

Cloud deployment models will be classified as Private,

Public, Community, Hybrid and Virtual Clouds.

Fig. 1 Cloud Computing Architecture

2 Related Work

 There is a wide-range of research work around the SLA

for Cloud Computing. Some models of Cloud Computing are

introduced to maintain the reliability between Cloud providers

and consumers involved in the negotiation process. [8].

Other works focus on the revenue and Quality of Services

(QoS), and some mechanisms are introduced to maximize the

Cloud consumers or providers’ revenues [12]. Monitoring in

Cloud is also a hot topic in Cloud Computing research. Some

architecture is proposed to improve the capacity of the Cloud

monitor [11].

I.al, I.br, and E.sc present SLA Validation Models in layered

Cloud Infrastructures [13]

M. Radi represents the Parameters for Service Level

Agreements Generation in Cloud Computing [12]. Sh.

Mahbub, S. Ries and M. Muh provide an overview of the

important aspects that need to be considered when integrating

trust and reputation concepts in Cloud Computing [14].

According to SLA Architectures, M. Al. Hamad proposes a

Conceptual platform [8] which is considered the third party

between the Cloud providers and the consumers. Cloud

providers can advertise their services in the platform and

Cloud customers can search and select the services in the

service list. When the customers find the services which meet

their needs, they can negotiate with the providers through the

platform. From our point of view this platform does not

observe the role of the negotiation process by the third party

and neglects the role of SLA parameter measurement and the

calculation process before monitoring, where it stores any

violation found in the monitoring process.

A .Al Falasi and M. A. Serhani framework [15] enables

Cloud clients to easily search through a repository of Cloud

service providers, and to specify their required QoS measures.

It addresses the issue of SLAs reliability and the conformity of

web services. In addition, QoS measures through the use of a

dedicated third-party broker for real-time testing and

composition of web services on the Cloud. It is also based on

formally specifying the service level objectives (SLOs)

required by the client, as well as formally specifying the

services’ performance capabilities of the Cloud provider

SLAs. Unfortunately, this framework observes the role of

broker and creation of the SLA to the Web Services but it

misses the measuring and monitoring of the QoS parameters.

3 The Proposed Framework for Service Level

Agreement Selection

 With the expansion of Cloud Computing; there is a high

emergence of Cloud providers and Cloud resources, therefore it

is troublesome for Cloud customers to pick out the most reliable

providers and resources. It is vital to possess a technique that

maps the customer requirements and their SLOs outlined within

the SLA.

In this section, a proposed framework is presented that

indexes and ranks the Cloud providers according to their

offerings and integrates the automatic SLA negotiation with the

measure of service quality parameters to make sure that they are

secured by the Cloud service provider through the SLA that is

accountable for mapping the customers’ SLOs and their

specifications.

This framework handles and reflects the dynamic nature of

the Cloud and achieves the QoS assessment through the

automated negotiation scenario between the four agents

(Cloud Customer, Provider, Broker, and Carrier or SLA

Generator) as shown in Fig.2.

This Framework consists of four Cloud agents and shows

their roles in the negotiation process.

Resources

ExamplesLayers

SaaS

PaaS

IaaS

Hardware
CPU

Memory

Disk

Bandwith

Infrastructure
Computation (VM)

Storage (Block)

Platform
Software framework

Storage (DB-File)

Application
Web Services

Mutimedia

Google Apps
Youtube
Facebook

Microsoft Azure

Google App Engine

Amazon EC2

Data Centers

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 71

Fig. 2 Proposed Framework Components for selecting Cloud providers through SLA Assurance

It also observes the measurement of QoS parameters that

should be guaranteed by the Cloud service provider through

the SLA which meets the specifications from the customer-

centric view into one system.

After the measurement, the role of the monitoring layer

shows whether there are any violations. Such a layer is

managed by the actions agreed upon in the SLA document.

This framework provides a complete view regarding the

quality information of Cloud services for users and service

providers in real time.

4.1 Framework Components

The main components in the proposed negotiation

framework are; the Customer Agent (CA), the Broker

Coordinator Agent (BCA), the Provider Agent (PA), the

Service Provider Agent, the SLA Generator (Carrier Agent),

the Directory of Cloud services, the QoS Database, the

Knowledge Base (KB), the Plug in, the QoS Calculating layer,

the Monitoring System and the Service Management [17].

Customer Agent: Represents the customer, submits requests

for software services and registers their QoS requirements into

QoS Data.

Broker Agent: Represents the third party who receives

customers’ requests and negotiates with the providers to

achieve the required business objectives.
Negotiation Policy Translator: Maps customers’ QoS

requirements according to cloud provider service catalogs.

Negotiation Engine: Includes workflows which use

negotiation strategies during the negotiation process.

Decision Making System: Uses decision making heuristics to

update the negotiation status.

Provider Agent: Represents the provider and can include the

third party monitoring system used to update the providers’

dynamic information.

The SLA Generator (Carrier Agent): When the negotiation

has been successfully completed, the SLA Generator creates a

SLA between the customer and the provider using templates

retrieved from the KB. The template includes specified

Service Level Objectives (SLOs) according to the QoS.

The Cloud Directory: The repository stores the Cloud

Provider services’ catalogs and also the Customer QoS

requirements.

The Knowledge Base: It represents the repository that stores

negotiation strategies and SLA templates.

The plug-in: This is mainly used to collect service

measurement information. [16]

QoS Calculating Layer: It is responsible for assessing the

quality of service using is used to generate the QoS report.

Monitoring Layer It is used mainly for monitoring the

violations of service quality. Comparison Rules are the

conditions used to trigger an alarm. Rule Engine compares the

QoS data calculated by the QoS Calculating Layer with

appropriate SLA contract and Comparison Rules, to detect

whether the QoS is in conformity with that in the SLA. If there

is a service violation, the Alarm Notifier will alarm. The

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

72 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Alarm Notifier includes various types of alarm modules,

which are used for different purposes [16].

Service Management is a set of methods used to check

whether there are any violations in any parameter. If any

violation is detected, it will lead to some punitive action which

is agreed upon in the documented SLA and it will be stored in

the violation database.

4.2 Framework Mechanism.

First, the Cloud customers define their requirements to be

stored in the Cloud Directory (QoS Data) Repository and the

Providers provide their registered service information which is

stored in the Cloud Service Catalog repository of the same

QoS Data Repository.

Second, the Role Negotiation Policy Translator comes to

map the Customers’ QoS Parameters. The broker provides

comments about the users’ requirements and providers’

services that are mapped to the Reputation System then sends

the major parameters to both the customer and the provider

according to their SLOs accepted in the negotiation.

Third, thereafter, the Negotiation Strategies are extracted

from the Knowledge Base and provided to the Negotiation

Engine so as to help the Decision Support System to start its

role in mapping the Service Level Objectives (SLO), which

defines objectively the measurable conditions of the service.

Examples include the parameters of throughput, data

streaming frequency and timing, as well as availability

percentages for VMs through the Previous Service Level

Agreements that are stored in the Service level Agreement

Templates Pool which provide it to the measurement Data

Repository related to the Provider Cloud Service Catalog.

Fourth, the SLA Generator or Cloud Carrier comes to create

and send the agreement with defined SLOs and parameters to

both the customer and the provider, which in turn will be

monitored in the monitoring layer.

Fifth, the Plug In then collects service measurement

information to be calculated by the QoS Parameters Calculator

which extracts the QoS Parameters from the QoS Data Base.

The results are then provided to the Monitoring System which

checks whether the parameters are equal, under, or over the

threshold defined in the SLA and whether any violations exist.

If there are any violations from the providers’ side related to

performance in the transaction, it will be converted to the SLA

Violation Data then to the Reputation System, which will

finally evaluate the providers’ performance and send the

results to the Reputation System which will send a

recommendation to the customers about the ranked providers.

The following Fig.3 shows this mechanism as a Sequence

Diagram which includes both; the Cloud Customer and the

Cloud Provider as an actor and the various objects related to

its events.

Fig. 3 Sequence Diagram for the Proposed Framework

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 73

4 Experimental Study

This study is based on the proposed framework. Fig. 4

shows the testing environment that is implemented in

EMC
2
 Co.[18] through a testing lab which consists of

two physical Dell servers that are connected through a

Storage Area Network “SAN” with the Fibre Channel

Switch to EMC VNX Storage Array; additionally the

VSphere Clients work as windows programs that are

used to configure the host and to operate its virtual

machines. The VSphere Clients are connected via

Ethernet Switch to access the hosts.

Based on the study’s proposed framework and its

components, there is a Cloud Directory that contains the

Cloud Provider services which are mapped to Customer

requirements through the Negotiation Policy Translator.

In our test this Cloud Directory is represented by

“VCloud Director” which is a VMware Solution that

provides a self-service portal and catalog that enables

policy-based infrastructure, application provisioning and

automated operations management [9].

 VCloud Director improves catalog sharing, the ability to

publish catalogs externally, automated versioning of

catalog content, and support for storing additional file

types to the catalog. It has the ability to edit virtual

hardware and the ability to import VApps directly into

the virtual datacenter without having to first upload them

to the catalog.

 Because standard a benchmarking does not exist yet to

test this framework, SAP, SQL, and Oracle are

considered the benchmark for testing the quality of

service in EMC
2
 as a Cloud provider of IaaS and PaaS.

 It is considered that this benchmark represents the

customers’ applications they own and they request

infrastructure and platform as a service with the

specifications in table 1.

Fig. 4 Testing Lab Environment

OS CPU Memory Network

Windows 7
64 bit

1 VCPU=
3GHZ

2GB RAM 1 Ethernet
Adaptor with

1000 MB

Base T

Table1. Specifications of Customer’s Requirements

 The basic requirements of infrastructures are

represented in CPU, RAM, and Network. In addition, the

windows OS is required for the platform. The three

applications I/O Characteristics were tested by using I/O

meter App applied on the testing Cloud. The testing was

run for 6 hours and the following table.2 shows the input

I/O characteristics of the benchmark applications testing.

 SAP SQL Oracle

Max. IOPs 11200 11200 11200

Read Ratio % 88 88 88

IO Size (Byte) 20500 8192 16000

Testing Duration
(hours)

6 6 6

IO Alignment 1MB

Burst length 1 IO

Table2. Benchmark Testing Input Data

 SQL SAP Oracle

Memory
Active
Average (KB) 129060.1382 226166.9767 112972.4108

Memory
Consumed
Average(KB) 2497314.715 2986035.283 2602874.099

Memory
Active
Percentage 6.154066953 10.78448184 5.386944334

Memory
consumed
Percentage 119.0812452 142.3852579 124.1147089

Table 3. Average Percentage Result of Memory

Fig.5Memory Performance of SAP, SQL, and Oracle

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

74 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Fig.5 shows the performance result of memory testing

data as it is one of the user required specifications. The

result is represented in Consumed and Active. The

consumed parameter represents the number of RAMs

that the VM reserved to meet the user requirements. The

Active Parameter represents the number of RAMs that

have already been used by the user.

 Table 3 shows the average percentage results for all

active and consumed memory according to the requested

size from the user’s specifications.

It is concluded from the previous graph and table results

that users’ applications used memory less than they

requested according to the percentage of active memory,

which is proof that the provider reserves their request

according to the consumed percentage.

This Cloud provider thus satisfies the user requirements

represented in memory specifications in this case and the

service was available. So, this Cloud provider meets the

requested parameters defined in the SLA.

 The results show that all customers’ specifications of

virtual CPU, Memory, Network, and Disk that are

required to run their applications SAP, SQL, and Oracle

are met with the defined criteria in the SLA but in

different utilization performance averages according to

each application, as shown in Fig. 6

 The efficiency and performance monitoring of cloud

services are measured by Resource Utilization.

Utilization parameters of physical servers/infrastructure

are an important factor in cloud monitoring. We need to

collect the resource utilization data from the Virtual

machines.[10] This provides a picture of how much of

the VM is being utilized and the data helps in analyzing

the resource utilization by applications and to decide on

the scaling requirements. This can be computed as:

 (1)

Where the denominator is defined in the SLA. The

numerator is a literal amount of assigned resources from

the amount of pre-defined resources for invoking the web

service. The range is 0 ... 1 and higher value shows that

the Web service has higher resource shares. Fig. 6 shows

the peak and average utilization performance for the

different benchmark applications. According to Eq.1, the

amount of allocated resources is extracted from the

previous testing results shown in Fig. 6 and the pre-

defined resources defined Table.1, and by using the

resource utilization equation for the resources (CPU,

Memory and Network) the results are shown in Fig. 7

 The CPU resource utilization percentage number in the

different apps is measured in MHz, but in memory and

network it is measured in KBps. They show how the

benchmarks are utilized on the testing cloud.

Fig.6 Utilization performance of SAP, SQL, and Oracle

Fig.7 Resource Utilization Performance Results

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 75

5 Conclusion and Future Work

Cloud Computing has become a promising paradigm in the IT

industries where all technologies are offered as a commoditized

service. Currently, there are many Cloud providers who offer

different Cloud services. It is important to have a flexible

methodology that can handle and manage the SLAs in the context

of Cloud Computing.

As indicated, the study’s proposed framework focuses on

establishing confidence between customers and Cloud providers

through an evaluation of their service offerings. The study shows

the customers’ specifications through their required infrastructure,

and platform as a service is defined and mapped to the SLA by

using the VCloud director. Additionally, the experimental testing

of the customers’ applications on this cloud test assures having the

QoS parameters that are defined in the SLA.

Future studies will aim to extend the ranking methodology to

include more than one Cloud provider in order to select the best

one from the customers’ perspectives.

Acknowledgments

This work is achieved in cooperation with EMC Egypt COE.

Thanks for the support provided by the Academic Alliance Team.

6 References

[1] Hammadi, Adil M., and Omar Hussain. "A framework for

SLA assurance in cloud computing." Advanced Information

Networking and Applications Workshops (WAINA), 2012 26th

International Conference on. IEEE, 2012.

[2] Zhang, Shuai, et al. "The comparison between cloud

computing and grid computing." Computer Application and

System Modeling (ICCASM), 2010 International Conference on.

Vol. 11. IEEE, 2010.

[3] Wei, Yi, and M. Brian Blake. "Service-Oriented Computing

and Cloud Computing: Challenges and Opportunities." IEEE

Internet Computing 14.6 (2010).

[4] Mell, Peter, and Tim Grance. "The NIST definition of cloud

computing." National Institute of Standards and Technology 53.6

(2009): 50.

[5] Dillon, Tharam, Chen Wu, and Elizabeth Chang. "Cloud

computing: issues and challenges." Advanced Information

Networking and Applications (AINA), 2010 24th IEEE

International Conference on. Ieee, 2010.

[6] Zhang, Qi, Lu Cheng, and Raouf Boutaba. "Cloud computing:

state-of-the-art and research challenges." Journal of internet

services and applications 1.1 (2010): 7-18.

[7] Borges, Hélder Pereira, et al. "Automatic generation of

platforms in cloud computing." Network Operations and

Management Symposium (NOMS), 2012 IEEE. IEEE, 2012.

[8] Alhamad, Mohammed, Tharam Dillon, and Elizabeth

Chang. "Conceptual SLA framework for cloud computing."

Digital Ecosystems and Technologies (DEST), 2010 4th IEEE

International Conference on. IEEE, 2010.

[9] Krieger, Orran, Phil McGachey, and Arkady Kanevsky.

"Enabling a marketplace of clouds: VMware's vCloud

director." ACM SIGOPS Operating Systems Review 44.4

(2010): 103-114.

[10] Lee, Jae Yoo, Jung Woo Lee, and Soo Dong Kim. "A

quality model for evaluating software-as-a-service in cloud

computing." Software Engineering Research, Management and

Applications, 2009. SERA'09. 7th ACIS International

Conference on. IEEE, 2009.

[11] Comuzzi, Marco, et al. "Establishing and monitoring

SLAs in complex service based systems." Web Services, 2009.

ICWS 2009. IEEE International Conference on. IEEE, 2009.

[12] Vision, A. Client-Centric. "Parameters for Service Level

Agreements Generation in Cloud Computing." Advances in

Conceptual Modeling (2012): 13.

[13] Haq, Irfan Ul, Ivona Brandic, and Erich Schikuta. "Sla

validation in layered cloud infrastructures." Economics of

Grids, Clouds, Systems, and Services. Springer Berlin

Heidelberg, 2010. 153-164.

[14] Habib, Sheikh Mahbub, Sebastian Ries, and Max

Muhlhauser. "Cloud computing landscape and research

challenges regarding trust and reputation." Ubiquitous

Intelligence & Computing and 7th International Conference on

Autonomic & Trusted Computing (UIC/ATC), 2010 7th

International Conference on. IEEE, 2010.

[15] Al Falasi, Asma, and Mohamed Adel Serhani. "A

framework for sla-based cloud services verification and

composition." Innovations in Information Technology (IIT),

2011 International Conference on. IEEE, 2011.

[16] Bao, Dongmei, et al. "A method and framework for

quality of cloud services measurement." Advanced Computer

Theory and Engineering (ICACTE), 2010 3rd International

Conference on. Vol. 5. IEEE, 2010.

[17] Liu, Fang, et al. "NIST cloud computing reference

architecture." NIST Special Publication 500 (2011): 292.

[18] www.emc.com

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

76 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

SESSION

POSTERS

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 77

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

78 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Research and Implementation of a New Cloud Server

Hua Nie1, Xiaojun Yang2, Chaoqun Sha3, Yanping Gao4, and Keping Long5
1, 3, 5School of Computer and Communication Engineering, University of Science and Technology Beijing.

Beijing, China
2Dawning Information Industry Co., Ltd. Beijing, China

4Institute of Computing Technology, Chinese Academy of Sciences. Beijing, China
4Loongson Technology Co., Ltd. Beijing, China

Abstract - Instead of all using TOR schemes, an approach
building a cloud server on top of a high-performance fabric is
presented in this paper. The advantage is to provide both high
performance/cost and performance/Watt compared with the
existing method. A FPGA-based system controller integrated
with shared networking, shared storage, and interconnect
fabric controller is designed and implemented to interconnect
a set of lightweight server processors for building a high-
density server. All the processors can share the networking
and storage resources through an inter-system interconnect
fabric. For the 64-processor prototyping system, the
evaluating results show the cloud server not only keeps some
traditional cluster advantages such as OS compatibility, but
also achieves the better scalability, high performance/cost and
high performance/Watt for workloads.

Keywords: Cloud Computing; Cloud Sever; Shared Storage;
Shared Networking; Inter-System Interconnect Fabric

1 Introduction
 Cloud computing represents 11% of the market in 2013,
expected to grow to 17% by 2014. The growth in cloud leads
to growth in servers in data center and new requirements for
servers. Cloud is redefining traditional servers. We are paying
attention to the research and implementation of a new server
to be assembled in data center in future, which can better
meet the requirements coming from data center1. The targeted
server is named Sugon2 cloud server here to distinguish from
others. The remainder of the paper introduces the concept and
scheme of Sugon cloud server. A resulting prototyping
system is discussed together with the evaluation.

2 Concept of Sugon cloud server
 The traditional server system is a cluster of server nodes,
the dedicated local storage and connected over an Ethernet
network. These server nodes use their directed-attached-
storage as scratch/swap space and use a storage server on the
Ethernet network for primary storage. In the cloud era, on one

1 The work is supported in part by the National High-Tech Research and

Development Plan of China under grant numbered 2013AA01A209.
2 Sugon is a logo of Dawning Information Industry Co., Ltd.

hand, optimized TCO, compute efficiency, and fastest
growing server segment will grow to dominate the server
trends. On the other hand, cloud deployment models, big data
analytics, and data center virtualization are driving highly
evolving parallelized workloads. The servers in large-scale
data centers require high density, high performance/cost and
high performance/Watt [1]. Furthermore, the rapid growth in
dense compute shows dense compute clusters are the future of
volume servers for cloud computing [2]. According to the
above mentioned requirements for cloud server, the concept
of Sugon cloud server targeted to maximum efficiency in
Figure 1 can be concluded as the following aspects.

Fig. 1 Concept of Sugon Cloud Server

• Sharing System Resources: Processor, memory, storage,
network, power, cooling, infrastructure and management can
be shared by all the computing units.

• Very High Processor Densities: Compared with the
traditional server chassis, more processors can be integrated
into the chassis.

• Very Low Processor Power: The lightweight or single-
chip processors will be adopted to better meet the demands of
different workloads.

• Highly Configurable to Computing: The architecture
can be reconfiguration according to workloads flexibly.

3 Architecture of Sugon cloud server
 The goal of Sugon cloud server is maximum efficiency
under minimal standed capacity. So the traditional cloud

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 79

server architecture based on TOR is unsuitable. To achieve
the goal and keep to the above mentioned concept of Sugon
cloud server, a new cloud server architecture is innovated as
Figuire 2 shown.

Fig. 2 Architecture of Sugon Cloud Server

 Different from Seamicro microserver, Sugon cloud
server achieves a distributed architecture as follows. On one
hand, a high performance direct network is built to strongly
support the share mechanism of cloud servers, and to improve
the remote I/O access performance. On the other hand, the
share mechanism of Sugon cloud server consists of two levels.
Processors can share their local I/O symmetrically, and also
share the remote I/O through a 3D torus interconnect fabric.
A FPGA-based system controller integrated with shared
networking, shared storage, and interconnect fabric controller
is designed and implemented to interconnect a set of
lightweight server processors for building a high-density
server. All the processors can share their local and remote I/O.

4 Implementation and evaluation
 A 64-processor prototyping system is implemented to
evaluate the concept and architecture of Sugon cloud server,
and validate some key technologies such as the FPGA-based
system controller and the inter-system interconnect fabric.

 As Figure 3 shown, the inter-system interconnect fabric
is a 4x4 2D torus. Each point in the fabric is a compute
module, which consists of four processors, one HDD/SSD,
one Ethernet uplink, one BMC, and one FPGA used as the
system controller. For example, uplinks except that of P00 are
all disabled. All nodes can share the P00 uplink. For shared
storage, it is as the same as that of shared networking.

Fig. 3 Prototyping System Fabric

 The prototyping system has been implemented in
hardware as Figure 4 shown. It consists of SDCompute,
SDControl, and SDConnect modules.

• SDCompute: A compute blade integrates with 4 Intel
G2100T processors and 32GB ECC Reg memory. There are 4
SDComputes in the prototyping system. SDCompute can be
up to 16. Each SDCompute can be designed to support up to 1
to 8 X86 or ARM processors and various memory configs.

• SDControl: A system controller board integrates with a
FPGA-based system controller. The system controller
contains shared storage, shared networking, and interconnect
fabric controller. On one side, SDControl connects with
SDCompute through Ethernet links and SATA links. On the
other side, it interfaces local HDD/SSD and Ethernet uplinks.

• SDConnect: It is a baseboard used to connect with all
SDControls. SDControl connects with SDCompute directly
by the board-to-board way.

 SDCompute SDControl SDConnect

Fig. 4 A Photo of a 16-Processor Sugon Cloud Server

 The evaluating results show Sugon cloud server is a
dense, high-performance cluster with shared storage and
networking features. All processors can share a physical
HDD/SSD, and share one or more Ethernet uplinks through
the Ethernet over the direct interconnect fabric. The software
successfully installed and run includes CentOS 6.2, Linux-
2.6.32-220.e16.x86_64, Clusconf-1.5.4, Hadoop-1.2.1, JDK-
1.8.0, OpenMPI-1.6.5, Linpack HPL-2.0, Gridview2.65
cluster management tools, and Cloudview (one of cloud OS).

5 Conclusion and future work
 The 64 processors scalability for the first generation
Sugon cloud server has been implemented. It will be up to
320 processors scalability in a 44U rack during the next
generation in this year. Companioning the developing trends
of processors and workloads, we will scheme the cloud server
system on top of the validated architecture and key
technologies in this generation,

6 References
[1] M.A. Raza, S. Azeemuddin. “Multiprocessing on FPGA
using light weight processor”. CONECCT.2014, p:1-6, 2014.

[2] Rahul Kulkarni, “Microservers: Target Workloads and
Architecture Trends”. Technical Report, Intel, April 2013.
[Online]. Available: http://www.intel.com/go/idfsessionsBJ.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

80 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Comparison of system monitoring tools for large cluster
system

Sung-Jun Kim1, Joon Woo1

1Supercomputing Center, Korea Institute of Science and Technology Information

Abstract – For system management, System administrators
always check system log and service status. To reduce these
efforts, there is various open-source system monitoring tools.
As system sizes are getting larger, the performance of these
tools is getting important. In this paper, we compare open-
source monitoring tool’s performance that most popular in the
world – nagios and icinga .

Keywords: nagios, icinga, system monitoring, cluster

1 Introduction
 To stable manage large cluster systems; administrator
should be recognized service status and failure as soon as
possible. Normally, administrator are watching log
periodically or use various monitoring tools to detect failures.

 Nagios has been used at KISTI supercomputing center
during the last 7 years; it offers quite a lot of features. But,
new systems were installed in accordance with a steadily.
Recently, nagios master server that collects monitoring data
from remote hosts was not work properly. So, we need a more
reliable and scalable monitoring tools and open source.

 In this paper, we were evaluated performance of some
tools before change it. We were compare two open source
monitoring tools; Nagios and Icinga. Nagios is world famous
and Icinga is a fork of nagios and backward compatible.

2 Backgrounds
2.1 Nagios
 Nagios is an open source computer system monitoring,
network monitoring and infrastructure monitoring software
application. Nagios offers monitoring and alerting service for
severs, switches, applications and services. It alerts the users
when things go wrong and alerts them a second time when
problem has been resolved [1].

 Figure 1 shows Nagios architecture. Nagios core is the
monitoring and alerting engine that serves as the primary
application around which hundreds of Nagios projects are
built. It serves as the basic event scheduler, event processor
and alert manager for elements that are monitored.

Figure 1 Nagios architecture

 Plugins is used to verify services and devices. All
Nagios host and service checks are performed by external
plugins. A plugin command will be invoked by Nagios core
as required, with arguments as specified in the command
definition that was used.	
 	

2.2 Icinga
 Icinga is an enterprise grade open source monitoring
system which keeps watch over networks and any
conceivable network resource, notifies the user of errors and
recoveries and generates performance data for reporting [2].

 Icinga is a fork of Nagios and is backward compatible.
So, Nagios configuration, plugins and addons can all be used
with Icinga. Though Icinga retains all the existing features of
its predecessor, it builds on them to add many long awaited
patches and features request by the user community.

Figure 2 Icinga architecture

 Figure 2 shows Icinga architecture. Like Nagios core,
Icinga core does not check any services and hosts status. It is
scheduling and processing of events and handle with alerts.
Icinga used modern it techniques like Web 2.0 for web
interfaces, mobile UI and supports Oracle and PostgreSQL.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 81

3 Comparison
3.1 Test environments
 We were built test environments using KVM to increase
number of hosts dramatically. Our test servers are 17 nodes;
Intel Xeon Quad Core 2.66 GHz, 4 GB memory. Test servers
are consisting of three parts.

l Measure server: It is Ganglia server which
checking performance of master nodes cpu,
memory, I/O rate, etc.

l Master server: It is master server which collecting
client server’s status information.

l Client server: It is remote hosts that send their
service status data to monitoring master.

 Master and client servers have VMs using KVM. Master
server has five VMs for combination of Nagios, Icinga and
Mysql. Client servers have 9 VMs for NRPE (Nagios Remote
Plugin Executor) to check their service status and report to
master server. Finally, one physical node has 10 client nodes
(1 domain server + 9 guest server). As a result, we built 150
virtual client servers using 15 physical servers. Each client
server check 25 service status and master server is collecting
about 4,000 services status check result from clients. Figure
x. show architecture of testbed.

Figure 3 Architecture of Monitoring tools comaprison Testbed

3.2 Performance evaluations
 As mentioned pervious section, we were using Ganglia
to measure server side overload for each monitoring tools.
We were tested Nagios and Icinga, with/without using
database broker that stored status data to database.

 For each case, testing was progressed during the week.
During a test, the other monitoring servers were halt to avoid
effect between test servers. We only used default setting to
compare under same condition.

Table 1 Test server information
hostname contents hostname contents
sub01-01 Nagios only sub01-04 Nagios/DB
sub01-02 Icinga only sub01-05 Icinga/DB

 Table 1 is describing installed monitoring tools on each
test servers.

 Figure 4 shows cpu_user metric from Ganglia. It means
CPU utilization used by user processor.

Figure 4 cpu_user metrics in Ganglia

 Figure 5 shows cpu_wio metric from ganglia. It means
the time that processor wait for I/O.

Figure 5 CPU_WIO metrics in Ganglia

 Above Figures, Nagios has used fewer CPU resource
and shorter I/O wait than icinga generally. In case of using
database broker, usage of CPU resource was lower and I/O
wait time was longer.

4 Conclusions
 When we were deciding to compare to tools, we had
expected that performance of icinga is better than Nagios. We
have planned to migrate Nagios to icinga. However, the
results were entirely opposite.

 So, we are planning to change configuration Nagios for
large installation tweaks instead of migrate Nagios to icinga.
In the future, we will evaluate convenience of SQL queries
and response time to get some data on GUI interfaces. And
we are evaluating new version of these tools continually.

5 References
[1] Nagios Offical website, “http://www.nagios.org”

[2] Icinga Offical website, “http://www.icinga.org”

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

82 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

SESSION

LATE PAPER: CLOUD AND TRUST

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 83

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

84 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

Surveying Trust in the Cloud

R. Goel, PhD1, J. Nies2, and M. Garuba, PhD2

1Information Systems and Supply Chain Management, Howard University, Washington, DC USA
2Systems and Computer Science, Howard University, Washington, DC USA

Abstract - Cloud computing has become a force multiplier for
organizations who realize the benefits of shared computing
platforms and services because of their convenience,
dynamism, elasticity, and scalability to meet the growing
demands of organizations. Control and visibility are central
tenets to building trust in cloud computing. One critical factor
to cloud success is how the infrastructure and policies for
control and visibility are managed and presented to the
customer. A well-developed trust architecture based upon a
strong trust model establishes trust in the cloud. The intent of
this paper is to extensively review exiting literature in order to
conduct a holistic study of the challenges of establishing trust
in cloud computing. Additionally, analysis of the current trust
architectures and trust models will form the basis for a
comprehensive trust architecture that addresses the concerns
with control and visibility.

Keywords: Cloud, Trust model, control, Visibility

1 Introduction
 Over the last five years, cloud computing has went from
a niche idea to a mainstream force enabler for organizations at
all levels. It is doubtful that cloud computing may fully
replace the typical enterprise information network since it, in
itself, is a very attractive paradigm because of the associated
economic and operational benefits [18]. This growth and
continued interest in cloud computing warrants a greater
interest in defining and establishing trust within the cloud
between all the interacting entities.

 Cloud computing facilitates on-demand access to a
shared pool of computing resources that can be scaled to meet
the customers computing needs and requirements. This
scalable structure promotes greater collaboration and
communication within the organization due in part to the
richness of the offered web services and capabilities. It is not
uncommon for applications from different users to
simultaneously share cloud resources as a result of the
scalability and agility of the cloud computing architecture [1].
Moreover, we are seeing more and more organizations
literally moving large chunks of their business to an external
cloud provider. A great example of this trending towards the
cloud is illustrated by Washington, D.C.'s city government
moving “all 38,000 city government employees have
unlimited access to Google documents and services such as
Gmail.” [7] But, a paramount concern among cloud

computing users involves placing trust in the cloud
computing platform. In particular, [12] emphasizes that
enterprises consigning their data to cloud computing actually
creates two folds of a complex trust relationship.

 Control and visibility are central tenets to building trust
in cloud computing, especially how they are managed and
presented to the customer. The customer needs to be assured
that they have control and ownership over their data; no
matter where it is physically located. This assurance extends
to security and prevention measures that facilitate the
confidentiality, integrity and availability of the customer's
data. Building trust in the cloud requires measuring how to
achieve greater control over and visibility into the cloud's
infrastructure, identities, and information.” [6] Although a
well designed and developed trust architecture based upon a
strong trust model is the key to establishing trust in the cloud,
the obstacle is customer's buy-in. As such, the intent of this
paper is to analyze current trust architectures and models
noting their strengths and weaknesses that will in turn be used
to formulate a trust architecture that addresses concerns over
control and visibility within the cloud.

2 Background: Trust Relation
 Trust in the context of cloud computing is a complex
process which requires all participants to disclose volumes of
information about themselves. The authors of [13] indicate
how participation in cloud computing is “universally required
to accept the underlying premise of trust. Vast types of
entities interact and share with each other within the cloud,
yet forgo assurances that these entities can be trusted. The
collaborative nature in which these entities interact with each
other “is only productive if all participants operate in an
honest manner.” [1]

 Adding to this complexity is the association of attributes
to an entity that can quickly multiply also need to be taken
into account [8]. Moreover, the authors of [16] suggest
entities will transition through various states while interacting
with the cloud or vice versa. The combination of the entity
transitions with entity states to the trust negotiation process
present further challenges to the assurance of trust within the
cloud. These entities comprise virtualization instances, cloud
provider's infrastructure, and the various identities associated
with users, devices, applications, and systems.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 85

 Kramer in [13] note that there are three distinct aspects
that determine the concept of trust in a system:

ñ Trust relations: The interaction between two entities
in which they believe or know that the other entity
is operating in an honest manner.

ñ Trust domains: A community of mutually trusting
entities in which there is a universal belief and a
sharing of knowledge takes place among all entities
within the community.

ñ Trust management: The organization of trust
relations into trust domains and ensures the flow of
trust negotiation between all participating entities.

 Apparent from these three distinct aspects is that trust is
very much based on the establishment of building a reputation
amongst all participating entities. Trust relations can be
further broken down to incorporate potential trustees, since
each trust relation will begin with the two entities not
knowing each other.

 As such, reputation management has an important role
in establishing the cooperative trust relations between entities
[2]. Reputation schemes basically reach out to other peers of a
particular entity to infer trust towards this potential trustee.
More than likely what occurs is an aggregation of the
inferences, which are in turn used to build a trusted entity.
This newly trusted entity would then become part of a larger
community of trusted entities forming a trusted domain. As
these trusted domains interact with each other they effectively
build a web of trust. However, organizations are cognizant of
the fact that the ability to find trustworthy partners is critical
to an agent's success; untrustworthy agents may deliver an
inferior service [11]. Furthermore, [11] effectively
demonstrates attacks on vulnerabilities by successfully using
them against a number of existing Trust and Reputation
System (TRS) proposals. Thus we conclude that trust
relations, in effect, are fragile by nature. The next section
will briefly analyze several trust models that will be used to
develop a more sound trust architecture for the cloud
computing environment.

3 Trust Models for the Cloud
The previous section illustrated some of the challenges of

trying to implement trust architecture in the cloud computing
environment. What is important, however, a trust model must
take into account all entities that make up the cloud
computing environment to support the chain of trust which in
turn creates a web of trust. More importantly, because
establishing trust is reputation based there needs to be
processes that prevent tampering with the reputation
information that is shared between peers. Some experts
suggest the incorporation of policies and credentialing into the
trust model while others suggest adding time-stamp hashing
capabilities. The result, according to many of the experts, is a

tamper-proof trust negotiation environment that will lead to
greater assurances of the cloud computing environment. The
following section will briefly analyze several trust models that
will be used to formulate a trust architecture that addresses
concerns over control and visibility within the cloud.

3.1 HiTrust Trust Negotiation Service
 HiTrust is a trust negotiation model that is based upon a
hybrid tree model. Within this model policies and credentials
are embedded into the tree nodes that give greater assurance
on trusting a particular node. According to [14], the result
“can be a gradual evolution of trust relations through the
interactive disclosure of credentials and security policies.”
An entity would begin the trust negotiation process by
requesting a service from another entity, which in this case
would be a service within the cloud. This in turn would
launch a HiTrust agent that builds a Hybrid Tree and policy
stack that are essential to the negotiation process. It is
important to note that the HiTrust agent facilitates the
disclosure of entities credentials which are tied to policies and
are based on a minimum credential set. The minimum
credential set determines the success of a session request as
defined, “taking attribute value in credential and context
information of the negotiation session as an input and making
the security policy always true.” [14]

 The HiTrust model is comprised of five key modules:
Message agent, negotiation session manager, negotiation
strategy controller, credential/policy parser, and credential
chain constructor. The message agent implements message
encapsulation that contains session identification, credential,
policy, and meta-information that will be used by the other
modules to establish trust relations between two entities. The
negotiation session manager is “responsible for the
negotiation state maintaining,” because each session will have
different negotiation states controlled by the Hybrid Tree and
policy stack [14]. The negotiation strategy controller
maintains the control of credential and policy disclosure.
What is important to note is the disclosure of these attributes
is based on various negotiation strategies for a particular
session. HiTrust relies on the X.509 v3 credential and the
XACML format for security policies. Credentials and
policies are maintained and verified by the credential/policy
parser. Finally, the credential chain constructor serves two
purposes: verify the credential chain and construct credential
chains to satisfy specific security policies. [14]

 HiTrust's tying of credentials to security policies give
the assurance of a tamper-proof session. However, [14] also
shows the time to execute trust negotiation in the HiTrust
model “increases linearly with the number of concurrent
requests. This linear growth in time, is a bit troublesome, is
the result of the growth of the number request. This outcome
does not make for a very efficient trust model for cloud
computing even though the authors argue that HiTrust would
scale to meet the trust negotiation requirements of cloud
computing.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

86 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

3.2 Trust Model in Hybrid Computing
Environment

 Jemal Abawajy in [2] points to a common issue with
cloud computing, “users and computational agents and
services often interact with each other without having
sufficient assurances.” To counter this issue, Abawajy
believes a reputation system that can efficiently integrate
various attribute information about an entity can influence the
trust negotiation process. But as was the case with HiTrust,
the integrity of the trust negotiation process is important if not
vital because of the influence of “false recommendation can
result in committing a transaction with untrustworthy peers,”
and the incorporation of reputation feedback management
will mitigate the dishonesty of entities, while isolating
negative behaviors in the cloud computing environment [2].

 An integral process of Abewajy's trust model is the
reliance on peering arrangements that are established between
entities. Peering arrangements are defined in Service Level
Agreements (SLA) which describes security policy attributes
that must be met before an agreement is achieved. The cloud
resource manager and inter cloud broker establish and
manage these peering agreements, as well as provisioning of
resources for the requested session. The core of the model,
however, is the trust manager. This trust manager is entrusted
with the task of collecting and maintaining reputation rating,
honesty rating and personal experience rating about the
peering arrangement. The personal experience rating is
based upon first hand information and is shared among peers
within the peering arrangement.

 The reputation rating, however, is a confidence based
rating and affects the trust update process of the trust
manager. Unlike the personal experience rating, the
reputation rating remains private but is factored into the
negotiation process. Both ratings are used in the form of a
personal feedback rating that can be queried by all
participating entities. The feedback rating also includes
fading factor that decreases the trust confidence level over
time. A final element of the feedback management is the
incorporation of a filtering process that establishes a threshold
for separating trusted entities and untrusted entities.

 The important take away from Abewajy's trust model is
the use of a reputation-based system that incorporates a
feedback filtering process to mitigate the propagation of
dishonest ratings. More importantly, however, is users and
cloud providers can be assured of guaranteed trust as the
model defends against malicious information. Yet, the
sharing of the reputation information as a result of the peering
agreement lacks trusted communication path in the form of
certificates, which could lead to data being manipulated in
transit.

3.3 Trusted Platform-as-a-Service
 Brown and Chase in [4] note that users of cloud services
have no assurance of trust beyond the assurance of the service
provider. In their model the cloud provider is considered a
neutral Trusted Third Party (TTP). Trust in the provider is
established using a reputation scheme similar to that offered
by Abewajy. Each TTP would employ a combined trusted
platform with trust management that attests to the identity of
software being run by the cloud provider. The trusted
platform in effect issues a digitally singed assertion that the
software instance identity can be trusted. The authors add
another level of assurance through “the concept of of instance
'sealing',” which prevents the launched instance from being
modified by any user [4]. What the authors have done is to
mitigate a number of attack vectors that have been shown to
be exploited in Top Threats to Cloud Computing. Finally,
users can combine assertions from multiple sources to add
more control and visibility to assigning trust to a running
instance.

3.4 A Novel trust management system
architecture

 The trust management model proposed in [8] reflects the
multi-faceted nature of trust assessment by considering
multiple attributes, sources, and roots of trust. These multiple
attributes form the basis for making a reliable decision on
whether to trust an entity or not. But the authors contend that
the source of the attribute is an important factor to consider
because of the quantitative and qualitative information that
can be factored into the trust establishment process. [8] Thus,
their model bases trust on the subjective probability of
attributes in the form of a trust metric. This is accomplished
through an opinionated expression that an entity believes the
service delivered meets a certain quality. A TTP can be
included, whose opinion, to add validity to the trust
negotiation.

Habib et al. trust management model is comprised of five
components. The Registration Manager is a registry for
service level provisions promised by the provider. This
registry information is forwarded to the Consensus
Assessments Initiative Questionnaire Engine and is included
with the competencies of different attributes that is provided
by the cloud service provider. The Trust Manager formulates
a trust score based on input from the Trust Semantic Engine,
Trust Computation Engine, and user requirement and opinion
information. A strong point of the Trust Manager is its
support for trust customization and evolution empowering the
user to specify preferences as they relate to their business
model. The Trust Semantics Engine and Trust Computation
Engine work together with the Trust Manager to integrate the
formal framework of the Habib et al. model. Essentially,
these three components work through the logics of the trust
negotiation process. Finally, the Trust Engine Update filters
opinions to assist users in validating the trustworthiness of an
entity.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 87

The Habib et al. model does not ignore the fact that cloud
computing, in general, has multiple entities that interact with
one another. And as such, multiple attributes are associated
with these interactions. Empowering the user with the
capability to customize their trust assertions on the merits of
“subjective interests and requirements,” is an important step
[8]. However, as authors of [18] indicate, this model does not
consider the providers also need to have some level of trust on
the users to whom to release their services.

4 Comprehensive trust architecture
 The previous section illustrated important factors to
consider when dealing with trust management in the cloud.
The statement that trust in the cloud is a complex and difficult
process does not fall on deaf ears. The on-demand, elastic,
and scalable architecture requires a trust model that
incorporates every aspect of the cloud computing model and
the multiple interactions. These very interactions between the
entities can also be used to determine if the trust is direct or
indirect [19]. The trust architecture to be proposed will
incorporate many of the elements described in the models
covered in the previous section. The explanation, however,
will be a top-level explanation of the components of the trust
architecture.

4.1 Trust management framework

 Reputation Manager: The Reputation Manager will
manage the reputation metrics, which are based on the
opinions of an entity towards another entity.

 Policy Manager. The Policy Manager manages the
security policy established by the cloud provider.
Additionally, the policy manager manages each users SLA.

 Trust Engine: The Trust Engine compares the
reputation metric against minimum reputation metric that
determines if the reputation should be considered as weak or
strong. The Trust Engine also compares attributes from the
policy manager that determines if the trust negotiation
between two entities should proceed. Finally, it receives trust
session state information input from the Global Trust
Manager. These attributes will be used by the Local Trust
Manager to establish or kill a trusted session.

 Trusted platform module: A Trusted Platform
Module (TPM) will be used for remote attestation of all trust
negotiation sessions and signs the sessions with a unique
endorsement key. An additional use of the TPM is to attach a
hashed value to the attributes exchanged between the peering
entities. [15] points to a small issue with the use of a TPM,
“the latency,” to complete an attestation is “unacceptable
when attestation is performed regularly.”

 Trusted Third Party: The idea behind the use of a
Trusted Third Party is to mitigate the latency effect of remote

attestations. As such, the TTP will be used to add a
timestamp to the hashed value as demonstrated in Improving
the scalability of platform attestation. Yet, the real purpose
of using a TTP is to reduce the number high costing TPM
operations by relinquishing “the server from integrating every
nonce of each client into the costly TPM operations.” [17]
The timestamp can then be used for entity synchronization,
which gives the entities greater control and visibility into the
negotiated sessions.

 Local Trust Manager. The Local Trust Manager
manages all trust negotiations at the local level. It is
comprised of the Reputation Manager, Policy Manager and
the Trust Engine. Additionally it takes input from the TPM
and TTP to determine if the requesting entity is a trusted user
or a potential malicious user. The trusted session will be
granted if the user is trusted, whereas the session will be
halted if the user is determined to be malicious. A local trust
negotiation process would be a user requesting a service
hosted by a cloud provider.

 Global Trust Manager: The Global Trust Manager, in
a nutshell, manages all the Local Trust Managers and the
relevancy of their trusted sessions. Take for example a server
that can run hundreds of virtual machines which would
overwhelm the Local Trust Manager. As such, the Global
Trust Manager incorporates capabilities to aggregate the TPM
attestations of sessions. But it also incorporates capabilities
to monitor the local trust negotiations to identify changes in
the state of the negotiation disseminating this information to
trust engine.

5 Conclusions
In this paper we have presented a top-level trust architecture

that addresses the inherent complexities of placing trust in
cloud computing. Cloud computing users (organizations and
individuals) demand the assurance that they have control and
visibility over their data and interactions with the cloud
provider. To do so required the inclusion of a Trusted
Platform Module and Trusted Third Party. More importantly
was the need for a Trust Engine that verifies the
trustworthiness of the interacting entities. However with that
said, there is much room for improvement of this architecture.
For starters the logics behind the trust negotiation process
needs to be expanded and formally verified. This would
include the hashing of attestations and the addition of a
timestamp to the hashed attestations. Additionally, the
algorithms to be used to determine the trustworthiness of an
entity would need to be established. Finally, a small scale
implementation would establish if the presented model is a
workable solution.

6 References
[1] Abawajy, J. (2009). Determining service trustworthiness
in intercloud computing environments. 2009 10th
International Symposium on Pervasive Systems, Algorithms,

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

88 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

and Networks. doi:10.1109/I-SPAN.2009.155.

[2] Abawajy, J. (2011). Establishing trust in hybrid cloud
computing environments. 2011 International Joint
Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11.
doi: 10.1109/TrustCom.2011.18.

[3] Ahmed, M., Xiang, Y., & Ali, S. (2010). Above the trust
and security in cloud computing: a notion towards innovation.
2010 IEEE/IFIP International conference on embedded and
ubiquitous computing. doi:10.1109/EUC.2010.114.

[4] Brown, A. & Chase, J. S. (2011). Trusted platform-as-a-
service: A foundation for trustworthy cloud-hosted
applications. Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop.
doi:10.1145/2046660.2046665.

[5] Cloud Security Alliance. (2010). Top threats to cloud
computing v 1.0. Retrieved March 10, 2012, from
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
.
[6] C oviello, A. W., Elias, H. D., Gelsinger, P. & Mcaniff, R.
(2011). Proof, not promises: Creating the trusted cloud. EMC
Corporation. Retrieved March 10, 2012, from
http://www.emc.com/collateral/emc-perspective/11319-
tvision-wp-0211-ep.pdf.

[7] Craig, R., Frazier, J., Jacknis, N., Murphy, S., Purcell, C.,
Spencer, P., & Stanley, J. (2009). Cloud computing in the
public sector: Public manager’s guide to evaluating and
adopting cloud computing. Cisco Internet Business Solutions
Group (IBSG). Retrieved March 12, 2012, from
http://www.cisco.com/web/about/ac79/docs/sp/Cloud_Compu
ting.pdf.

[8] Habib, M. H., Reis, S., & Muhlhauser, M. (2011).
Towards a trust management system for cloud computing.
International joint conference of IEEE TrustCom-11/IEEE
ICESS-11/FCST-11. doi:10.1109/TrustCon.2011.129.

[9] Hazard, C. J. & Singh, M. P. (2010). An architectural
approach to combining trust and reputation. Retrieved from
http://www.csc.ncsu.edu/faculty/mpsingh/papers/mas/aamas-
trust-10-architecture.pdf.

[10] Hwang, K. & Li, D. (2010). Trusted cloud computing
with secure resources and data coloring. IEEE Internet
Computing, 14(5). doi:10.1109/MIC.2010.86.

[11] Kerr, R. & Cohen, R. (2008). Smart cheaters do prosper:
Defeating trust and reputation systems. Proceedings of the 8th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009). Retrieved March 10,
2012, from www.cs.uwaterloo.ca/~rckerr/KerrCohen-
aamas2009draft.pdf.

[12] Khan, K. M. & Malluhi, Q. (2010). Establishing trust in

cloud computing. IT Professional 12(5).
doi:10.1109/MITP.2010.128.

[13] Kramer, S., Gore, R., & Okamoto, E. (2010). Formal
definitions and complexity results for trust relations and trust
domains. Retrieved March 10, 2012, from
http://www1.spms.ntu.edu.sg/~ccrg/documents/trust.pdf.

[14] Li, J., Li, B., Meng, L., & Sun, D. (2010). HiTrust: A
hybrid tree based trust negotiation service. 2010 IEEE 24th
International Conference on Advanced Information
Networking and Application Workshops.
doi:10.1109/WAINA.2010.149.

[15] Ruan, A. & Martin, A. (2011). RepCloud: Achieving
fine-grained cloud TCD attestation with reputation systems.
Proceedings of the sixth ACM Workshop on Scalable Trusted
 Computing. doi:10.1145/2046582.2046586.

[16] Skogsrud, H. & Benatallah, B. (2003). Model-driven trust
negotiation for web services. IEEE Internet Computing,7(6).
doi:10.1109/MIC.2003.1250583.

[17] Stumpf, F., Fuchs, A., Katzenbeisser, S. & Eckert, C.
(2008). Improving the scalability of platform attestation.
Proceedings of the 3rd ACM workshop on scalable trusted
 computing. doi:10.1145/1456455.1456457.

[18] Takabi, H., Joshi, J. B. D., & Ahn, G. J. (2010).
SecureCloud: Towards a comprehensive security framework
for cloud computing environments. 2010 24th Annual IEEE
Computer Software and Applications Conference workshops.
doi:10.1109/COMPSACW.2010.74.

[19] Zhou, Z. X., X. H., & Wang, S. P. (2011). A novel
weighted trust model based on cloud. Advances in
Information Sciences and Service Sciences 3(3). Retrieved
March 10, 2012, from www.aicitglobal.org/aiss/ppl/Binder1-
15.pdf.

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 | 89

Copyright © 2014 CSREA Press, ISBN: 1-60132-272-0; Printed in the United States of America

90 Int'l Conf. Grid & Cloud Computing and Applications | GCA'14 |

