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Abstract— In the present paper, we consider fully asyn-
chronous parallelism in membrane computing, and propose
asynchronous P systems for three graph problems, which are
the graph partitioning, the maximum cut, and the dominating
set. We first propose an asynchronous P system that solves
uniform graph partitioning for a graph withn nodes, and
show that the proposed P system works inO(n2 · 2n)
sequential steps orO(n2) parallel steps usingO(n3) kinds
of objects. We also propose asynchronous P systems, which
works in a polynomial number of parallel steps, for the other
graph problems.
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1. Introduction
Membrane computing, which is a representative example

of natural computing, is a computational model inspired by
the structures and behaviors of living cells. In the initial
study on membrane computing, a basic feature of the mem-
brane computing was introduced by Păun[1] as a P system.

The P system and most variants are proved to be universal
[2]. In addition, the models deliver superior performance on
the problems that need exponential computation time such as
NP -complete orNP -hard problems, and various P systems
[3], [4], [5], [6], [7] have been proposed for solving NP
problems. However, synchronous application of evolution
rules is assumed on the above P systems with the maximal
parallelism, which is a main feature of the P systems. The
maximal parallelism means that all applicable rules in all
membranes are applied synchronously.

On the other hand, there is obvious asynchronous paral-
lelism in the cell biochemistry. The asynchronous parallelism
means that all objects may react on rules with different
speed, and evolution rules are applied to objects indepen-
dently. Since all objects in a living cell basically work in
asynchronous manner, the asynchronous parallelism must be
considered to make P system more realistic model.

For considering the asynchronous parallelism, a number
of P systems have been proposed [8], [9], [10], [11].
For example, two asynchronous P systems [9] have been
proposed for solving SAT and Hamiltonian cycle problem.
For another example, the asynchronous P systems [11] have
been proposed for solving four graph problems, which are

minimum coloring, maximum independent set, minimum
vertex cover, and maximum clique. The above P systems
solve the NP problems in polynomial number of parallel
steps.

In the present paper, we propose asynchronous P sys-
tems for five graph problems, which are the uniform graph
partitioning, the(k, v)-balanced partitioning problem, the
maximum cut, the dominating set problem and connected
dominating set problem. The five problems are well-known
NP hard graph problems.

We first propose an asynchronous P system for the uni-
form graph partitioning for a graph withn nodes. The pro-
posed P system solves the problem inO(n2 · 2n) sequential
steps orO(n2) parallel steps usingO(n3) kinds of objects
and evolution rules of sizeO(n5).

We next propose an asynchronous P system that solves
(k, v)-balanced partitioning problem for a graph withn
nodes, and show that the proposed P system works in
O(kn · n2) sequential steps orO(n2) parallel steps using
O(n3) kinds of objects.

We also propose asynchronous P systems that solves
the maximum cut, the dominating set, and the connected
domination set for a graph withn nodes, and show that all
of the three proposed P systems work inO(n2·2n) sequential
steps orO(n2) parallel steps usingO(n3) types of objects.

2. Preliminaries

2.1 Computational model

The P system [3] mainly consists of membranes and
objects. A membrane is a computing cell, in which indepen-
dent computations are executed in parallel, and may contain
objects and other membranes. In other words, the membranes
form nested structures. In the present paper, each membrane
is denoted using a pair of square brackets, and the number
on the right-hand side of each right-hand bracket denotes a
label of the corresponding membrane. An object in the P
system is a memory cell, in which each data is stored, and
can divide, dissolve, and pass through membranes. In the
present paper, each object is denoted by finite strings over a
given alphabet, and is contained in one of the membranes.

Now, we formally define a P systemΠ and the sets used
in the system as follows.
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Π = (O,µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm, iin, iout)

O: O is the set of all objects used in the system.
µ: µ is membrane structure that consists ofm mem-

branes. Each membrane in the structure is labeled
with an integeri (1 ≤ i ≤ m). In addition, a mem-
brane labeled 1, which is called the skin membrane,
is the outermost membrane, and the skin membrane
contains all of the other membranes.

ωj : ωj is a set of objects initially contained in the
membrane labeledj.

Rj : Rj is a set of evolution rules that are applicable to
objects in the membrane labeledj.

iin: iin is a label of the input membrane.
iout: iout is a label of the output membrane.

In the present paper, we assume that input objects are
given from the outside region into the skin membrane,
and computation is started by applying evolution rules. We
also assume that output objects are sent out from the skin
membrane to the outside region.

In membrane computing, several types of rules are pro-
posed. In the present paper, we consider five basic rules of
the following forms in [3].

(1) Object evolution rule:[α]h → [β]h
whereh is a label of the membrane, andα, β ∈ O.
Using the rule, an objectα evolves into another
objectβ. (We omit the brackets in each evolution
rule for cases that a corresponding membrane is
obvious.)

(2) Send-in communication rule:α[ ]h → [β]h
whereh is a label of the membrane, andα, β ∈
O. Using the rule, an objectα is sent into the
membrane, and can evolve into another objectβ.

(3) Send-out communication rule:[α]h → [ ]hβ
whereh is a label of the membrane, andα, β ∈
O. Using the rule, an objectα is sent out of the
membrane, and can evolve into another objectβ.

(4) Dissolution rule: [α]h → β
whereh is a label of the membrane, andα, β ∈
O. Using the rule, the membrane, which contains
object α, is dissolved, and the object can evolve
into another objectβ. (Note that the skin membrane
cannot be dissolved.)

(5) Division rule: [α]h → [β]h[γ]h
whereh is a label of the membrane, andα, β, γ ∈
O. Using the rule, the membrane, which contains
object α, is divided into two membranes that
contain objectsβ andγ.

In addition, membrane computing has two features, which
are maximal parallelism and non-determinism. Maximal
parallelism means that all applicable rules are applied in
parallel. (Membrane computing is considered as a kind

 

  

 

Fig. 1: An input graph

of parallel computing from the feature.) On the other
hand, non-determinism means that applicable rules are non-
deterministically chosen in case that there are several possi-
bilities of the applicable rules.

2.2 Asynchronous P systems
We describe differences between an asynchronous P sys-

tem, which is considered in the paper, and conventional P
system in this subsection. In the conventional P system,
evolution rules are applied with maximal parallel manner,
which we described in the above subsection. On the other
hand, evolution rules are applied with asynchronous parallel
manner, i.e., at least one of applicable evolution rules is
applied, in each step of the computation in the asynchronous
P system. The reason why we assume asynchronous par-
allelism in this paper is based on the fact that each of
living cells acts independently and asynchronously. Since
conventional P system ignores the asynchronous feature of
living cell, and asynchronous P system is more realistic
computation models for cell activities.

In the asynchronous P system, all evolution rules can
be applied completely in parallel, which is the same as
conventional P system, or all evolution rules can be applied
sequentially. We define the numbers of steps executed in
the asynchronous P system in maximal parallel manner as
the number of parallel steps. On the other hand, we also
define the numbers of steps in case that applicable evolution
rules are applied sequentially as the number of sequential
steps. The numbers of parallel and sequential steps means
the best and worst case complexities for the asynchronous P
system, respectively. In addition, the proposed asynchronous
P system must be guaranteed to output a correct solution in
any asynchronous executions.

3. Uniform graph partitioning

3.1 Input and output
Given a graph G = (V,E) such that V =

{v1, v2, · · · vn}(n is even), the uniform graph partitioning
is a partitioning of vertices into two subsetsV ′ and V ′′

such thatV ′ andV ′′ are equal size, and the sum of costs of
connecting edges between two subsets is the minimum.

For example, given a graph in Figure 1, partitioning ofV
into two sets of verticesV ′ = {v1, v4} andV ′′ = {v2, v3}
is an uniform graph partition of the graph.
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In the present paper, the input of the uniform graph
partitioning is a set of objectsOE , which is given below.

OE = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

Each object⟨ei,j ,W ⟩ denotes an edge(vi, vj). If there
exists an edge(vi, vj) in the input graph,W pis set toT ,
otherwise,W is set toF .

The output of the P system is denoted using a set ofn
objects given below.

OS = {⟨Vi, A⟩ | 1 ≤ i ≤ n,A ∈ {1, 2}}

Each object⟨Vi, A⟩ in OS denotes an output for vertex
vi, andA = 1 if vi is in setV ′, otherwiseA = 2.

We assume that a set of input objects is given from the
outside region into the skin membrane, and the output object
is sent out from the skin membrane to the outside region.

3.2 An overview of asynchronous P system

We now describe an overview of an asynchronous P sys-
tem for the uniform graph partitioning. The P system consists
of inner and outer membranes, i.e. membrane structure of the
P system is[ [ ]2 ]1. The computation in the asynchronous
P system mainly consists of the following 7 steps.

Step 1: Move all input objects in the outer membrane
into the inner membrane.

Step 2: Create all possible partitionings of the graph by
dividing the inner membranes repeatedly.

Step 3: Check if each divided two sets are equal size,
and compute a sum of the cost of edges whose
endpoints are in the same set.

Step 4: Send out the computed costs from the inner
membranes to the outer membrane, and compute
the maximum cost in the outer membrane.

Step 5: Create all possible partitionings of the graph again
by dividing the inner membranes repeatedly.

Step 6: In each divided membrane, check if each parti-
tioning of the graph is the uniform graph partition-
ing or not using the maximum cost, and dissolve all
inner membrane if the membrane contains a parti-
tioning that is not the uniform graph partitioning.

Step 7: Dissolve one of the inner membranes, which
includes the uniform graph partitioning, and send
out the result from the outer membrane.

3.3 Details of asynchronous P system

We now show details of each step of the asynchronous P
system for the uniform graph partitioning.

In Step 1, all input objects in the outer membrane are
moved into the inner membrane. Step 1 is executed applying
the following set of evolution rules.

(Evolution rules for the outer membrane)

R1,1 = {⟨e1,1, F ⟩[ ]2 → [⟨M2,1⟩⟨e1,1, F ⟩]2}
∪{⟨Mi,j⟩⟨ei,j ,W ⟩[ ]2 → [⟨Mi+1,j⟩⟨ei,j ,W ⟩]2
| 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

∪{⟨Mn+1,j⟩ → ⟨M1,j+1⟩ | 1 ≤ j ≤ n}
∪{⟨M1,n+1⟩[ ]2 → [⟨M1,n+2⟩]2}

(Evolution rules for the inner membrane)

R2,1 = {[⟨Mi,j⟩]2 → [ ]2⟨Mi,j⟩
| 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

∪{[⟨M1,n+2⟩]2 → [⟨S1⟩]2[⟨D⟩]2}

In the above evolution rules, object⟨e1,1, F ⟩ starts the
computation, and input objects,⟨ei,j ,W ⟩, are moved into the
inner membrane using object⟨Mi,j⟩. After all input objects,
⟨ei,j ,W ⟩, are moved into the inner membrane, object⟨Mi,j⟩
is changed into object⟨M1,n+1⟩. At the end of Step 1, object
⟨D⟩ and object⟨S1⟩ are created by division rules. The object
⟨D⟩ is used for the computation of Step 5, and object⟨S1⟩
triggers computation of Step 2.

In Step 2, all possible partitionings of vertices are created
by dividing the inner membranes repeatedly. Step 2 is
executed applying the following set of evolution rules. In
the evolution rules,⟨Vi, 1⟩ denotes thatvi is contained in
V ′, and⟨Vi, 2⟩ denotes thatvi is contained inV ′′.
(Evolution rules for inner membrane)

R2,2 = {[Si]2 → [⟨Si+1⟩⟨Vi, 1⟩]2[⟨Si+1⟩⟨Vi, 2⟩]2 | 1 ≤ i ≤ n}

At the end of Step 2,2n membranes are created. In
addition, object ⟨Sn+1⟩ is also created in each divided
membrane, and the object triggers computation of Step 3.

In Step 3, in each divided membrane, each partitioning
of graph is checked whether the divided two sets are equal
size or not, and compute a sum of the cost of edges whose
endpoints are in same set.

Step 3 is executed applying the following set of evolution
rules.
(Evolution rules for the inner membrane)

R2,3 = {⟨Sn+1⟩ → ⟨B1⟩⟨0⟩}
∪{⟨Bi⟩⟨Vi, 1⟩⟨a⟩ → ⟨Bi+1⟩⟨Vi, 1⟩⟨a+ 1⟩
| − n ≤ a ≤ n, 1 ≤ i ≤ n}

∪{⟨Bi⟩⟨Vi, 2⟩⟨a⟩ → ⟨Bi+1⟩⟨Vi, 2⟩⟨a− 1⟩
| − n ≤ a ≤ n, 1 ≤ i ≤ n}

∪{⟨Bn+1⟩⟨a⟩ → ⟨E1,1⟩⟨0, 1⟩ | a ≤ −1, 1 ≤ a}
∪{⟨Bn+1⟩⟨0⟩ → ⟨C1,1⟩⟨0⟩}
∪{⟨Ci,j⟩⟨ei,j , F ⟩ → ⟨Ci,j+1⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n}
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∪{⟨Ci,j⟩⟨ei,j , T ⟩⟨Vi, l⟩⟨Vj ,m⟩
→ ⟨Ci,j+1⟩⟨Vi, l⟩⟨Vj ,m⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ l ≤ 2,

1 ≤ m ≤ 2, l ̸= m}
∪{⟨Ci,j⟩⟨ei,j , T ⟩⟨Vi, l⟩⟨Vj , l⟩⟨a⟩
→ ⟨Ci,j+1⟩⟨Vi, l⟩⟨Vj , l⟩⟨a+ 1⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n, 0 ≤ a ≤ n2, 1 ≤ l ≤ 2}

∪{⟨Ci,n+1⟩ → ⟨Ci+1,1⟩ | 1 ≤ i ≤ n}
∪{⟨Cn+1,1⟩⟨a⟩ → ⟨En+1,1⟩⟨a, 1⟩ | 0 ≤ a ≤ n2}

In the above evolution rules for the inner membrane, each
partitioning of graph is checked whether the divided two sets
are equal size or not. At first of Step 3, an object⟨0⟩ and
⟨B1⟩ are created. Then, the sizes of divided two sets are
counted using object⟨k⟩ in the membrane. Ifvi is contained
in V ′, k is increased by 1, otherwisek is decreased by 1.
After all vertices are checked, object⟨C1,1⟩ is created ifk
is 0, otherwise, object⟨R1,1⟩ and object⟨0, 1⟩ are created.
(The object⟨0, 1⟩ denotes that the sum of the cost is set to 0
because the divided two sets are not equal size.) Next, cost
of edges whose endpoints are in the same set is computed
using object⟨Ci,j⟩ and object⟨k⟩. If a pair f two vertecsvi
andvj satisfies the following two conditions,k is increased
by 1.

• There exists⟨ei,j , T ⟩ in the membrane.
• There exists⟨Vi, 1⟩⟨Vj , 1⟩ or ⟨Vi, 2⟩⟨Vj , 2⟩ in the mem-

brane.
The above operation is executed for all pairs of two

verticesvi andvj .
Afer the above operation, object⟨R1,1⟩ and object⟨k, 1⟩

are created for each pair of two verticesvi and vj . The
⟨R1,1⟩ denotes that check for the membrane is finished, and
⟨k, 1⟩ denotes the size of the subset in the membrane. In
addition, object⟨R1,1⟩ triggers computation of Step 4.

In Step 4, the computed cost is sent out from the inner
membrane to the outer membrane, and the maximum cost
is computed in the outer membrane. Step 4 is executed
applying the following set of evolution rules.
(Evolution rules for the outer membrane)

R1,4 = {⟨l, 2k⟩⟨m, 2k⟩ → ⟨m, 2k+1⟩
| 0 ≤ l ≤ m ≤ n, 0 ≤ k ≤ n− 1}

∪{⟨k, 2n⟩ → ⟨k⟩⟨T ⟩
| 0 ≤ k ≤ n}

(Evolution rules for the inner membrane)

R2,4 = {⟨Ei,j⟩⟨ei,j , B⟩ → ⟨Ei,j+1⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n,B ∈ {T, F}}

∪{⟨Ei,n+1⟩ → ⟨Ei+1,1⟩ | 1 ≤ i ≤ n}
∪{⟨En+1,j⟩⟨Vi, A⟩ → ⟨En+1,j+1⟩
| 1 ≤ j ≤ n,A ∈ {1, 2}}

∪{[⟨En+1,n+1⟩⟨a, 1⟩]2 → ⟨a, 1⟩ | 1 ≤ a ≤ n2}
The ⟨E1,1⟩ denotes that check for the membrane is

finished, and⟨k, 1⟩ denotes the cost of partitioning in the
membrane. Then, object⟨R1,1⟩ starts deletion of all ob-
jects in the membrane except for object⟨k, 1⟩, and object
⟨En+2,1⟩ dissolves the inner membrane.

On the other hand, in the above evolution rules for the
outer membrane, the maximum cost is decided using2n

objects ⟨k, 1⟩, which denotes the costs sent out from the
inner membranes. In the evolution rules, pairs of objects,
⟨l, 2k⟩ and⟨m, 2k⟩, are compared, and an object⟨m, 2k+1⟩,
which denotesl ≥ m and the number of objects is2k+1,
is created. At the end of Step 4, objects⟨k, 1⟩ and ⟨T ⟩ are
created. The object⟨k, 1⟩ denotes that the maximum cost is
k, and object⟨T ⟩ triggers computation of Step 5.

In Step 5, all possible partitionings of the graph are created
again by dividing the inner membranes repeatedly. Step 5 is
executed applying the following set of evolution rules.
(Evolution rules for the outer membrane)

R1,5 = {⟨T ⟩⟨k⟩[ ]2 → [⟨k⟩⟨T ⟩]2 | 0 ≤ k ≤ n}
(Evolution rules for the inner membrane)

R2,5 = {⟨T ⟩⟨D⟩ → ⟨S′
1⟩}

∪{[S′
i]2 → [⟨S′

i+1⟩⟨Vi, 0⟩]2[⟨S′
i+1⟩⟨Vi, 1⟩]2

| 1 ≤ i ≤ n}
In the above evolution rules for the outer membrane,

objects⟨T ⟩ and⟨D⟩, which are created in Step 4, are moved
into the inner membrane.

In the above evolution rules for the inner membrane,
an object⟨S′

n+1⟩ is created, and then, the object triggers
division rules. Then,2n membranes are created as well as
Step 2, and object⟨S′

n+1⟩, which triggers computation of
Step 6, is created in each divided membrane.

In Step 6, each divided membrane is checked if each
partitioning of the graph is the uniform graph partition or
not using the maximum cost, and the membrane is dissolved
if the membrane contains a subset that is not the uniform
graph partition. Step 6 is executed applying the following
set of evolution rules.
(Evolution rules for the outer membrane)

R1,6 = {⟨D, 2k⟩⟨D, 2k⟩ → ⟨D, 2k+1⟩ | 0 ≤ k ≤ n− 1}
∪{⟨D, 2n⟩ → ⟨B⟩}

(Evolution rules for the inner membrane)

R2,6 = {⟨S′
n+1⟩ → ⟨B

′

1⟩⟨0, 1⟩}
∪{⟨B′

i⟩⟨Vi, 1⟩⟨a, 1⟩ → ⟨B′
i+1⟩⟨Vi, 1⟩⟨a+ 1, 1⟩

| − n ≤ a ≤ n, 1 ≤ i ≤ n}
∪{⟨B′

i⟩⟨Vi, 2⟩⟨a, 1⟩ → ⟨B′
i+1⟩⟨Vi, 2⟩⟨a− 1, 1⟩

| − n ≤ a ≤ n, 1 ≤ i ≤ n}
∪{⟨B′

n+1⟩⟨a, 1⟩ → ⟨E′
1,1⟩

| − n ≤ a ≤ −1, 1 ≤ a ≤ n}
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∪{⟨B′
n+1⟩⟨0⟩ → ⟨C ′

1,1⟩}
∪{⟨C ′

i,j⟩⟨ei,j , F ⟩ → ⟨C ′
i,j+1⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}

∪{⟨C ′
i,j⟩⟨ei,j , T ⟩⟨Vi, l⟩⟨Vj ,m⟩ → ⟨C ′

i,j+1⟩⟨Vi, l⟩⟨Vj ,m⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ l ≤ 2, 1 ≤ m ≤ 2, l ̸= m}

∪{⟨C ′
i,j⟩⟨ei,j , T ⟩⟨Vi, l⟩⟨Vj , l⟩⟨a⟩

→ ⟨C ′
i,j+1⟩⟨Vi, l⟩⟨Vj , l⟩⟨a− 1⟩

| 1 ≤ i ≤ n, 1 ≤ j ≤ n, 0 ≤ a ≤ n2, 1 ≤ l ≤ 2}
∪{⟨C ′

i,n+1⟩ → ⟨C ′
i+1,1⟩ | 1 ≤ i ≤ n}

∪{⟨C ′
n+1,1⟩⟨a⟩ → ⟨E′

n+1,1⟩ | 1 ≤ a ≤ n}
∪{[⟨C ′

n+1,1⟩⟨0⟩]2 → [ ]2⟨D, 1⟩}
∪{⟨E′

i,j⟩⟨ei,j , B⟩ → ⟨E′
i,j+1⟩

| 1 ≤ i ≤ n, 1 ≤ j ≤ n,B ∈ {T, F}}
∪{⟨E′

i,n+1⟩ → ⟨Ei+1,1⟩ | 1 ≤ i ≤ n}
∪{⟨E′

n+1,j⟩⟨Vi, A⟩ → ⟨E′
n+1,j+1⟩

| 1 ≤ j ≤ n,A ∈ {1, 2}}
∪{[⟨E′

n+1,n+1⟩]2 → ⟨D, 1⟩ | 1 ≤ a ≤ n2}

In the above evolution rules for the inner membrane, each
partitioning of the graph is checked whether the divided two
sets are equal size or not as well as Step 3 using object⟨B′

i⟩
and object⟨k, 1⟩. If the divided two sets are equal size,
object ⟨C ′

1,1⟩ is created, otherwise object⟨R′

1,1⟩ is created.
Next, cost of edges whose endpoints are in the same set is
computed using object⟨C ′

i,j⟩ and object⟨k⟩. If a pair of two
vertecsvi andvj satisfies the following two conditions,k is
decreased by 1. The operation is executed for each pair of
two verticesvi andvj .

• There exists⟨ei,j , T ⟩ in the membrane.
• There exists⟨Vi, 1⟩⟨Vj , 1⟩ or ⟨Vi, 2⟩⟨Vj , 2⟩ in the mem-

brane.

After each pair of two verticesvi andvj are checked, the
object ⟨D, 1⟩ is sent out to the outer membrane ifk is 0,
otherwise, object⟨E′

1,1⟩ is created.

The object⟨E′

1,1⟩ deletes all objects in the membrane as
well as the object⟨E1,1⟩ in Step 3. When the deletion is
finished, object⟨D, 1⟩ is created for each deleted membrane,
and the inner membrane is dissolved because the partitioning
of the graph is not the uniform graph partition.

Therefore, there are2n objects,⟨D, 1⟩, are created in the
outer membrane after checking for all inner membranes.
Since an object⟨D, ki+1⟩ is created with two⟨D, ki⟩s
according to the above evolution rules,⟨D, kn⟩ is evolved
into the object⟨B⟩, which triggers computation of Step 7.

In Step 7, one of the inner membranes, which includes the
uniform graph partition, is dissolved, and the result is sent
out from the outer membrane. Step 7 is executed applying
the following set of evolution rules.

(Evolution rules for the outer membrane)

R1,7 = {⟨B⟩[ ]2 → [⟨B⟩]2}
∪{⟨Oi⟩⟨Vi,W ⟩ → ⟨Oi+1⟩⟨Ai⟩⟨Vi,W ⟩
| 1 ≤ i ≤ n,W ∈ {1, 2}}

∪{[⟨Vi,W ⟩⟨Ai⟩]1 → [ ]1⟨Vi,W ⟩
| 1 ≤ i ≤ n,W ∈ {1, 2}}

(Evolution rules for the inner membrane)

R2,7 = {[⟨B⟩⟨e1,1, F ⟩]2 → ⟨O1⟩}

At the beginning of Step 7, object⟨B⟩ is moved
into one of the inner membranes, which is selected non-
deterministically. Then, the membrane is dissolved using the
object, and object⟨O1⟩ is created with other objects in the in-
ner membrane. Next, a set of output objects{⟨Vi,W ⟩ |W ∈
{1, 2}} is sent out from the outer membrane to the outside
region using auxiliary objects⟨Oi+1⟩ and ⟨Ai⟩.

We now summarize the asynchronous P systemΠUGP for
the uniform graph partitioning as follows.

ΠUGP = (O,µ, ω1, ω2, , R1, R2, iin, iout)

•O = OE ∪OS

∪{⟨Mi,j⟩⟨Oi⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
∪{⟨Si⟩, ⟨Ci,j⟩, ⟨Ei,j⟩, ⟨S′

i⟩, ⟨C ′
i,j⟩, ⟨E′

i,j⟩
| 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

∪{⟨Ai⟩ | 0 ≤ i ≤ n}
∪{⟨Bi⟩, ⟨B′

i⟩ | 0 ≤ i ≤ n+ 1}
∪{⟨a⟩, ⟨a, 2p⟩⟨D, 2p⟩ | − n ≤ a ≤ n2, 0 ≤ p ≤ n}
∪{⟨D⟩, ⟨T ⟩, ⟨O⟩}

• OE = {⟨ei,j ,W ⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

• OS = {⟨Vi, A⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}
• µ = [ [ ]2 ]1

′ • ω1 = ω2 = ϕ

• R1 = R1,1 ∪R1,4 ∪R1,5 ∪R1,6 ∪R1,7

• R2 = R2,1 ∪R2,2 ∪R2,3 ∪R2,4 ∪R2,5 ∪R2,6 ∪R2,7

3.4 An example of execution of the P system
Figures 2, 3 and 4 illustrate an example execution of the

proposed P systemΠUGP for a graph in Figure 1.
In Step 1, a set of objectsOE is given from the outside

region into the outer membrane. Then, two sets of evolution
rules,R1,1 ∪ R2,1, are applied, and all objects are moved
into the inner membrane. In Step 2, each inner membrane
is repeatedly divided so as to create objects denoting all
possible partitioning of graph applyingR2,2.

In Step 3, each inner membrane is checked if each divided
two sets are equal size. In case that sizes of the two sets are
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Fig. 2: An example of execution ofΠUGP (Steps 1,2)

not the same,⟨0, 1⟩ is created. Otherwise, object⟨k, 1⟩ is
is created. In this example, two kinds of objects which are
⟨2, 1⟩ and⟨1, 1⟩ are created applyingR1,3. In the Step 4, all
objects are deleted in the membrane, and an object⟨k, 1⟩ is
sent out from the membrane. The objects⟨k, 1⟩ are merged
into an object⟨2⟩ applyingR1,4.

In the Step 5, object⟨2⟩ is sent into the remained
membrane applyingR1.5. And then, each inner membrane
with ⟨2⟩ is repeatedly divided again so as to create objects
denoting all possible partitioning of the graph applyingR2,5.
In Step 6, each inner membrane is checked if the partitioning
of the graph is the uniform graph partition. If the partitioning
of the graph is not uniform graph partition, all objects are
deleted in the membrane applyingR2,6. In the final step, one
of the inner membranes is dissolved applyingR1,7. A set of
output objects{⟨V1, 1⟩, ⟨V2, 2⟩, ⟨V3, 2⟩, ⟨V4, 2⟩} is sent out
to the outside region applyingR1,7.

3.5 Complexity
We now consider complexity of the asynchronous P

systemΠUGP . SinceO(n2) objects are moved sequentially
in Step 1, both of the numbers of sequential and parallel
steps in Step 1 areO(n2). In Step 2,O(2n) membranes are
created, and the number of sequential and parallel steps of
Step 2 areO(2n) andO(n), respectively. In Step 3, both of
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Fig. 3: An example of execution ofΠUGP (Steps 3,4)

the numbers of sequential and parallel steps in Step 3 are
O(n2) since each edges is checked sequentially. In Step 4,
the numbers of sequential and parallel steps areO(n2 · 2n)
and O(n2) since each partitoning of the graph is checked
sequentially. In Step 5 and Step 6, the procedure is almost
same as the Step 2 and Step 4. Therefore, the numbers of
sequential and parallel steps of Step 5 and Step 6 are the
same as the numbers of sequential and parallel steps of Step
2 and Step 4, respectively. SinceO(n) objects are sent out
as the output sequentially in Step 7, both of the numbers of
sequential and parallel steps in Step 7 areO(n).

Since the number of types of objects in the P system
ΠUGP is O(n3), and O(n5) kinds of evolution rules are
used, we obtain the following theorem forΠUGP .

Theorem 1:The asynchronous P systemΠUGP , which
computes the uniform graph partitioning for a graph with
n vertices, works inO(n2 · 2n) sequential steps orO(n2)
parallel steps usingO(n3) types of objects and evolution
rules of sizeO(n5). □

4. Other graph problems
We also propose asynchronous P systems for the other

four graph problems, which are the(k, v)-balanced parti-
tioning, maximum cut, dominating set, and connected dom-
inating set, which are defined as follows.

• (k, v)-balanced partitioning is defined as partitioning of
vertices intok sets of size at mostv(nk ), while mini-
mizing the sum of the cost of edges whose endpoints
in different sets.

• Maximum cut is defined as partitioning of vertices into
two sets, while maximizing the sum of the cost of edges
whose endpoints in different sets.
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Fig. 4: An example of execution ofΠUGP (Steps 5,6,7)

• Dominating set for a graphG = (V,E) is a subset
V ′ ⊆ V such that every vertex not inV ′ is adjacent to
at least one member ofV ′. In addition, The dominating
set is called connected if the induced subgraph for
V ′ is a connected graph. The dominating set problem
and the connected dominating set problem for a graph
are problems that find the smallest dominating set and
the smallest connected dominating set for the graph,
respectively.

We propose four asynchronous P systemΠKV P , ΠMAC ,
ΠDSP and,ΠCDP , which solves the above four problems
by modification of the asynchronous P systemΠUGP for
the uniform graph partitioning. (We omit details of the P
systems due to space limitation.)

We obtain the following theorems for the above four P
systems.

Theorem 2:The asynchronous P systemΠKV P , which
computes(k, v)-balanced partitioning problem for a graph
with n vertices, works inO(kn · n2) sequential steps or
O(n2) parallel steps usingO(n3) types of objects and
evolution rules of sizeO(nk+1). □

Theorem 3:The asynchronous P systemΠMAC , which

computes Maximum cut for a graph withn vertices, works
in O(n2 · 2n) sequential steps orO(n2) parallel steps using
O(n3) types of objects and evolution rules of sizeO(n5).

□
Theorem 4:The asynchronous P systemΠDSP , which

computes the dominating set for a graph withn vertices,
works inO(n2 ·2n) sequential steps orO(n2) parallel steps
using O(n3) types of objects and evolution rules of size
O(n2). □

Theorem 5:The asynchronous P systemΠCDP , which
computes the connected dominating set for a graph with
n vertices, works inO(n2 · 2n) sequential steps orO(n2)
parallel steps usingO(n3) types of objects and evolution
rules of sizeO(n2). □

5. Conclusions
In the present paper, we proposed P systems that solve

five graph problems. The proposed P systems are fully
asynchronous, i.e. any number of applicable rules may be
applied in one step of the P system.

As future work, we are considering an asynchronous P
system using the fewer number of membranes and evolution
rules. In addition, we also consider reduction from a conven-
tional P system to an asynchronous P system for the same
problem.
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[1] G. Păun, “Computing with membranes,”Journal of Computer and

System Sciences, vol. 61, no. 1, 2000.
[2] ——, “Introduction to membrane computing,”Springer, 2006.
[3] A. Leporati and C. Zandron, “P systems with input in binary form,”

International Journal of Foundations of Computer Science, vol. 17,
pp. 127–146, 2006.

[4] L. Pan and A. Alhazov, “Solving HPP and SAT by P systems with
active membranes and separationrules,”Acta Informatica, vol. 43,
no. 2, pp. 131–145, 2006.
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Abstract  

This document present a hierarchical clustering algorithm based on graph theory, which, from generation 

of a path from a given vertex, builds a math word and calculates a cluster under an index. This is made 

possible due to modification of Tarry’s algorithm, by exchanging path elements. When the one 

dimensional clustering index is added to , it gives us, what I have called, Tarry’s hierarchy. From the 

definition of net word, cycle, tree, tree word and vertex, a theorem on the relationship between vertices, 

lines, and letters of a labyrinth is shown, which allows the generation of words and their Dendrograms 

with the application of Euclidian distance. The practical use of these concepts is then shown, namely, that 

they can provides possibilities of connections in arrangements for telephone centrals.  

 
Keyword: Dendrograms, Tarry, Math words, connected, labyrinth 

 

Introduction 

The first person who studied the combinatory properties of schemes was Leonard Euler in 1736; 

he studied the network of the seven bridges in Konigsberg, figure 1. He wrote, in Berlin in 1739, 

“in Königsberg Pomeranie, they have a little island named Kneiphof, the river is divided into two 

and around the island there are seven bridges. You can arrange a network where by you only 

walk over one at one time”. He continued, “Is possible for everyone, but that not everyone has the 

capacity to do it” Euler (1739). 

  

The modern theorem enunciated by Euler, demonstrated the necessity of the parity of the valence 

in each vertex: A connected graphic is eulerienne if all vertex have degree pair. Since then, graph 

theory has developed slow but steadily. Its principal contributors are G. Tarry, who wrote about 

labyrinths in 1886 and 1895 (see Tarry 1886 and 1895), D. Konig (1936), C. Berge (1957), with a 

book about graphs and hypergraphs, W. T. Tutte, with his studies about Hamiltonian networks 

(1976). S. Bollobas, who wrote about Hamiltonians cycles in regular graphs, and P. Rosenstielh, 

with Existence d’automates finis capables de s’accorder bien qu’arbitrairement connectés et 

nombreux (1966), and Labyrintologie mathématique (1971), (see Rosenstiehl, 1971), and Les 

graphes d’entrelacement d’un graphe (1976). Recently, works on graph theory, like A 

performance comparison between graph and hypergraph topologies for passive star WDM light 

wave networks, (1998) by H. Bourdin, A. Ferreira and K. Marcus; as well as the work by 

Gondran and M. Minoux, entitled Graphs et Algorithms (1979), have gained attention. More 

recently, the randomized Tarry algorithm has been discussed in the article named searching a 

graph by Shmuel Gal (2004), and by Urretabizkaya and Rodríguez (2004), who implement the 

Tarry algorithm for solving mazes of known structure (2004). Today, graph theory is used in 

branches of mathematics such like theory of groups, topology, and theory of numbers, data 

analysis and clusters. 

 

Among those who have contributed the most to the development of theory and models in 

telephone connections, are A. K. Erlang, who implemented the well-known Erlang Probability 
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Density Function, as well as works on Solutions of Some Problems in the Theory of Probabilities 

of Significance in Automatic Telephone Exchanges, (1917 and 1918); A. and Elldin, with his 

work Switch Calculations General Survey, published by LM Ericsson in (1955). More recent 

works on the subject include, Network Flows: Theory, Algorithms and Applications, by R. V. 

Ahuja, T. L. Magnanti, and J. B. Orlin, (1993), and An Algorithm for Hierarchical network 

design, by G. R. Mateurs, F. R. B. Cruz, and H.P. L. Luna (1994). 

 

Definitions and algorithms 

Definition. A graph is a pair G = (X, U) where X  is a finite set, of vertices of G, each element of 

which is incident to two elements of another finite set V named the set of vertices, see Berge 

(1970).  

 

Definition. A labyrinth, L, is a finite set A not empty and of even cardinality, named set of words 

of L or alphabet, supplied of one involution l without an indeterminate point (i.e: without a 

tendency change) called by the prime operator:  

 

l  A  then  l’  A ,  l’  l  and  (l’)’ = l 

 

and one relation of equivalence (called “with the same right as” where the classes are “the points” 

of labyrinth, the letters of same class has the same right as the point) indicated by the application 

of the letters which belong the letters in the set X of class:  

 

d: A    X    :   d(l) = d(k) 

 

by < the right of  l is equal to right of k >, where < l has the same right as k >, see Rosenstiehl 

(1971). 

 

It is possible to speak of the left of letter too, making: g: A   X  with g(l) = d(l’)    lA, as 

far as the labyrinth its expressed by triad (A, i, d). 

 

Definition. A labyrinth (A, i, d) is said to be orientated, when one part A+ of A such that:  

 

l  A+    l’ A+      l  A 

 

Definition. Based on this definition of a labyrinth (A+, i, d),  is called a word of this labyrinth if 

it belongs to some of following classes: 

 

■   X  is called empty words of  L   

■ l with lA  is called word-letter of the L, and 

■  = l 1 , .., l r, l r+1,…, lp  with  lrA  ()   X  we have d(lr) = g(lr+1)  r = 1, .., p-1 

 

Therefore, given X as the set of vertex, you can have left and right applications in all word of the 

labyrinth L, defined as:  d, g: A  (x)xX  X   or   d, g: L   X  with  g(x) = g(l1) and d(x) = 

d(lp), i.e., g(x) = d(x) = x. And remember,  is cyclical if g() = d(). For more elaborate 

definitions of tree, pure word and neutral word, see Golumbic (1980) and Bollobás (1978). 

 

Definition. One tree A is a graph G = (X, U) connected and non-cyclical.  
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Definition.  of  L = (A, i, d) it is a pure word if inside  there exists a occurrence of each letter 

of A.  

 

Definition. If   L and       X,   is a neutral word in , if the neutral element  is a 

neutral word in some -particular.  

 

Algorithm of Tarry 

Definition. If L labyrinth is connected, we say Tarry’s word of L all pure word  L such that 

the entry tree V of  and the out tree W of  are opposites, i. e., W = V ’. 

 

Let L be the lexical of connected labyrinth L = (A, i, g), with l1  A. Let V() be the entry tree of 

, with  a left factor of Tarry’s word  to apply the following algorithm, see Tarry (1895): 

 

T.0   To put      l1 

 

T.1    If    l  L  with  l  and l ‘ V() to put  l  

but 

T.2    If    l  L  with l    to put  l 

if 

but 

T.3    Stop.   Write   =  

         Where  =  is called Tarry’s word                                    occasionally 

 

Note: The inversion of all entry letter is an out letter in  = , where  is a cyclical word, and all letter of 

A haves the same right as the same left of , see Casanova (1982). 

 

Attachment index 

The index of aggregation or level of classification of ways connected to the orientated labyrinth 

L, begin with the first cycle or pleat of the Tarry’s word. In this case, the index level is unit. 

When Tarry’s word  is formed, you always have to replace  in the first place of the first 

obtained cycle.  

 

Definition. If we let l1 and l2  L stand for two paths and let  stand for all letters with the same 

left g(), and  stand for all letter with the same right d(); the minimal distance dM, the inferior  

ultrametric minimal distance over a point x0  l1 and x1  l2 is:  
 

dM(l1, l2) =  min d(x0, x1)  x0 l1 x1 l2 
 

Remember, the algorithm is applied after finding the Tarry’s word and his cluster by couples or 

pleats. To finish the last pleat, begin the letter’s arrangement in . You must begin with the first 

pleat.  

 

Conclusions 

Since every problem demands a full solution using links that indicate the way to construct the 

algorithm solution within in a formal language capable of analyzing a system by which you can 

recreate the transit in its construction in any direction, we have presented here a new and modern 

form of Tarry’s algorithm. This allows us to create a hierarchy based on a vertex, the levels of 

aggregation for the construction of the word of the circuit or labyrinth which applied to the 
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something of the telephones, and lets us know configurations of connections with optimal 

telephone line use, fluidity and economy. 

 

To date there has been no published algorithm of aggregation (hierarchical or otherwise), based 

on theory of graphs, that starting from the construction of a trajectory begun on a given vertex, 

which would construct a math word and calculate an aggregation under an index. The latter has 

been possible thanks to the modification made in Tarry’s algorithm, through the exchange of 

elements, which has allowed a better arrangement in the union of pairs of letters and the 

construction of the math words. The one dimensional aggregated index applied to  results in 

what I have called Tarry’s hierarchy. The next step is to apply weight to aggregation algorithms.    

       

There is no published clustering algorithm (whether hierarchical or not), based on graph theory 

which, from generation of a path starting on a given vertex, builds a math word and calculates 

clustering under an index. This has been possible by modification to Tarry’s algorithm, through 

exchange of elements, which has allowed a better arrangement of letters coupling and the 

construction of a math word. The one dimensional clustering index applied to  gives what I call 

Tarry’s hierarchy. 
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Abstract. The graph is a powerful mathematical tool 
applied in many fields such as transportation, 
communication, information technology, economy, … 
Up to now, in ordinary graphs the weights of edges 
and vertexes have only been considered independently 
where the length of a path is simply the sum of  
weights of the edges and the vertexes on this path. 
However, in many practical problems, weights at a 
vertex are not the same for all paths passing this 
vertex, but they depend on the coming and leaving 
edges. Algorithm finding the shortest path from a 
vertex to many vertices in the extended graph has also
been studied in the paper [1, 6]. In this paper, We
build parallel algorithm to find the shortest path from 
a vertex to many vertices in the extended graph to
reduce computation time [2, 3, 4, 5, 7, 8, 9].

Keyword: Parallel, graph, extended graph, algorithm, 
the shortest path.

I. INTRODUCTION

Up to now, in ordinary graphs the weights of 
edges and vertexes have only been considered 
independently where the length of a path is simply the 
sum of weights of the edges and the vertexes on this 
path. However, in many practical problems, weights 
at a vertex are not the same for all paths passing this 
vertex, but they depend on the coming and leaving 
edges [1, 6].

For example, the travel time through the 
intersection traffic on the network depends on the 
direction of the vehicles: turn right, go straight or turn 
left. Therefore, it is necessary to build extended graph 
models to apply in making models for real world 
situations more accurately and efficiently. Algorithm 

finding the shortest path is the basis one used in many 
optimization problems in graphs and networks.

Therefore, in this paper we define extended 
graph model and build sequential algorithm to find the 
shortest path in the extended graph. Furthermore, a 
problem araising in applying algorithm to find 
maximum concurrent multi-commodity linear flow 
with minimal cost in extended traffic network is that 
in extended traffic network there are a great number 
of roads and a growing number of the new routes built 
that leads to a huge number of variables (up to 
thousands of variables). So the problem of finding the 
shortest path in the extended graph to process faster as 
well as take advantage of multi-core architecture, data 
processing with large scale with good results require 
the construction of parallel algorithm [2, 3, 4, 5, 7, 8, 
9]. The results in this paper are basically systematized 
and proven..

II. THE EXTENDED GRAPH

Given extended graph G (V, E) with a set of
vertices V and a set of edges E, where edges can be
directed or undirected. Each edge e  E is weighted 
wE(e). With each vertex v  V, Ev is the set of edges
of vertex v. Each vertex v  V and each edge (e, e ') 
 Ev x Ev, e ≠ e' is weighted wV (v, e, e ').

The (V, E, wE, wV) is called extended graph.
Let p be the path from u to v through the edge

ei, i = 1, ..., h +1, and the vertices ui, i = 1, ..., h, as 
following:
P=[ u, e1, u1, e2, u2, …, eh, uh, eh+1, v]

Define the length of the path p, denoted l(p), as 
following:

(1)
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III. ALGORITHM FINDING THE SHORTEST PATH 

FROM A VERTEX TO MANY VERTICES IN 

EXTENDED GRAPH

- Input. Extended graph G(V, E, we, wv), vertex sV 
and set VU  .
- Output. l(v) is the length of the shortest path from s 
to v and the shortest path (if l(v) <+∞), Uu
- Methods.

The algorithm uses the following symbols:
S is a set of vertices that found the shortest path
starting from s;
T=V-S;
l(v) is the length of the shortest path from s to
v;
VE={(v,e)|vV\{s}& eEV} {(s, )} is the
set of vertices and edges;
SE is a set of vertex-edge excluded from VE;
TE=VE-SE;
L(v,e) is the vertex-edge pair label (v,e)  VE
P(v,e) is the vertex- front edge (v, e) VE
SU, the set in U found the shortest path starting
from s;
TU=U-SU;

Step 1. (Initialized) Let S = ; T=V; TU=U; SU= ; 

Let VE={(v,e)|vV\{s}& eEV}  {(s,  )} 

SE=  ; TE=VE; 

Set L(v,e)=∞,  (v,e) VE, L(s,  ):=0.

Set P(v,e)=   (v,e) VE
Step 2. Calculate m = min{L((v,e))| (v,e)  TE}.

If m=+∞, go to Step 5.
Else, if m<+∞, choose (vmin, emin) TE so that 
L(vmin, emin)=m, 
Set TE=TE-{(vmin, emin)}, SE=SE  {(vmin, 
emin)}, go to step 3.

Step 3. If vmin ,S then set le(vmin)=emin, S=S

 minv , l(vmin)=L(vmin , emin), T=T-{ vmin}, if 
vmin  TU then set SU= SU  vmin, and 
TU=TU-{vmin}.
-if TU= , go to step 5, else go to step 4.

Step 4. For any (v,e)  TE adjacent (post-adjacent) 
(vmin, emin), 
SetL’(v,e)=L(vmin,emin)+wE(vmin,v)+
wV(vmin,emin,e), if vmin  s and L’(v,e)=L(s, 
)+ wE(vmin,v) if vmin = s.

IF L(v,e)>L’(v,e), then set L(v,e)=L’(v,e) and 
P(v,e)= (vmin, emin) Back to step 2.

Step 5. (Finding the shortest path)
For any vertex t SU, set l(t)=L(t,le(t)) is the 
length of the shortest path from s to t. From t 
tracing back the front vertex-edge, we receive
the shortest path as following: let (v1, 
e1)=P(t,le(t)), (v2, e2)=P(v1, e1), …, (vk, ek) 
=P(vk-1, ek-1), (s,  )= P(vk, ek).
It is Inferred that the shortest path is:
svkvk-1…v1t End.

Theorem 1. The algorithm finding the shortest path 
from a vertex to many vertices in the extended graph
is true.
Proof: Symbolise in turn the vertex-edge pairs come 
into PE is
(v0,e0)= (s,  ), (v1,e1), …, (vm,em)= (t,le(t)).

We prove by induction that L(vi, ei) is the 
length of the shortest path from s to vi through edge ei, 
i=1, …, m.
Basic step: Obviously L(v1, e1) is the length of the 
shortest path from s to v1 through edge e1. This is the
length of the shortest path from s to v1, ie l(v1)= L(v1, 
e1), since v1 has just been put into P.
Induction step : Suppose L(vi, ei) is the length of the 
shortest path from s to vi through edge ei for any i<k. 
We prove L(vk, ek) is the length of the shortest path 
from s to vk through egde ek. 

Let p be the shortest path from s to vk through 
edge ek, symbol l(p) is the length of p. Vertex-edge 
pairs on p, excluded (vk,ek), must belong to SE’

SE’ = {(v1,e1), (v2,e2), …, (vk-1,ek-1)}
Indeed, assuming else let (v,e) be the first 

vertex-edge pair on p from s, that does not belong to 
SE’. Symbol (vi, ei)  SE’ is the vertex-edge on the 
path p standing in front of (v,e) we have
L(v,e)  L(vi, ei) +wE(vi,v)+wV(v,ei,e) < l(p)  L(vk, 
ek) then (v,e) must be put into SE and stand in front of
vk, i.e. (v, e) belongs to SE, and this conflicts.

Now, let (vh, eh) be the front vertex- edge (vk,ek) 
on p. According to the label calculation we have

L(vk,ek)  L(vh, eh) +wE(vh,vk)+wV(vh,eh,ek) = 
l(p).

inferred L(vk,ek) = l(p) is the length of the 
shortest path p from s to ek through edge ek.
Finally, since (t,l(e(t)) is the vertex - edge containing
the vertex t first coming to SE, so l(t)=L(t,le(t)) is the 
length of the shortest path from s to t      
Theorem 2 .  Let G be the extended graph having n 
vertices. The algorithm has complexity O(n3).
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Proof: Since the edges of each vertex is at most (n-1), 
so the set VE has more elements than n (n-1). Since 
each loop from step 2 to step 4 chooses a pair of
vertex – edge in set VE to put into SE, so the number 
of the loops does not exceed n(n-1), At each loop, 
algorithm surveys maximumly (n-1) vertex-edge pairs 
which are adjacent vertices - edges considered in step
4. It is Inferred that the complexity of the algorithm is
O(n3)  

IV. EXAMPLE
Let extended graph at fugire 1. The graph has 6 

vertices, 6 directed edges and 3 undirected ones. The 

weights of edges wE are represented in the graph at 
figure 1 and the weights of the vertices are showed in 
table 1

Applying the algorithm to find the shortest path
from one vertex to all vertices. The process of
implementation of the algorithm

It is inferred that the shortest paths from vertex 1 to 
all vertices as following:

From 1 to 2: 12, length 10. From 1 to 3: 13, 
length 9. From 1 to 4: 134, length 25. From 1 to 5: 
125 or 135, length 21. From 1 to 6: 1356, 
length 32

V. PARALLEL ALGORITHM FINDING THE SHORTEST PATH FROM A VERTEX TO MANY 

VERTICES IN EXTENDED GRAPH

Extended graph is shown in fugire 1

- The idea of the algorithm
We build parallel algorithms on k processors 

(P0, P1,…,Pk-1). In k processors, there is a main 
processor (P0) to manage data, divide data into k-1 
sub-processors (P1,…,Pk-1) Sub-processors receive the 
data from the main processor and find minximun 
L(v,e) on their vertices and send it to main processor. 
The main processor will find L(vmin, emin) 
=min(Li(v,e)), i=0,…,k-1) which sub-processors sent. 
Next, The main processor will send (vmin, emin ) to sub-
processors to calculate.

- Input: Extended graph G(V, E, wE, wV), vertex sV 
and set VU  k processors (P0, P1,…,Pk-1) 
- Output: l(v) is the length of the shortest path from s 
to v and the shortest path (if n l(v) <+∞), Uu
- Methods:
Step 1. The main processor P0 performs

- Divide the weights of the edges A(wE) ,the 
number of vertices T and the set of vertex- edge 
pairs of VE of graph for k processors
- Build Ti (i=0,…,k-1) be the set of vertices that 
processors Pi (i=0,…,k-1) receive

Fugire 1. Extended graph has the weights of vertices
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- Build VEi (i=0,…,k-1) be the set of vertex-
edge pairs that processors Pi (i=0,…,k-1) 
receive
- Build Ai (i=0,…,k-1) be matrix of edge 
weights that processors Pi (i=0,…,k-1) receive
- Initialize set T=V, S=  SU= , TU=U
- Send Ti, Ai, VEi (i=1,..,k-1) and weights wV to 
k-1 processors

Step 2. k processors perform. 
- Receive data from step 1
- The main processor P0 assigns L(s,  ):=0; 
- In k initialized processors. TEi=VEi (i=0,…,k-
1), SEi= ,(i=0,…,k-1)
-In k assigned processors, let L(v,e)=∞ and 
P(v,e)=   (v,e) VEi (i=0,…,k-1)

Step 3. k processors perform
- In k processors find mi = min{L((v,e)j)| (v,e)j

 TEj (j=0,…,k-1) }
- The sub-processors send mi (i=1,…,k-1) and 
(v,e) they have just found to the main processor

Step 4. The main processor P0 performs
- The main processor finds m=min{mi , 
i=0,…,k-1} =L(v,e)
- If m=+∞, go to step 7.
- Else, if m<+∞ send m to sub-processors.

Step 5. k sub-processors perform
- k sub-processors chooses (vmin, emin)  TEi

(i=0,…,k-1) | L(vmin, emin)=m, 
set TEi=TEi-{(vmin, emin)}
- The main processor P0 performs: If vmin ,S
then set le(vmin)=emin, S=S  minv , 
l(vmin)=L(vmin , emin), T=T-{ vmin}, if vmin  TU 
then set SU= SU vmin, and TU=TU-{vmin}

- The main processor P0 performs: If TU= , go 
to step 7, else go to step 6

Step 6. k processors perform
For any (v,e)  TEi adjacent (post-adjacent) 
(vmin, emin), set L’(v,e)=L(vmin, emin)+ wE(vmin,v) 
+wV(vmin,emin,e) if vmin  s. L’(v,e)=L(s,  )+ 
wE(vmin,v) if vmin = s.
If L(v,e)>L’(v,e), then assign L(v,e)=L’(v,e) and 
P(v,e)= (vmin, emin)
Back to step 3.

Step 7. 
k-1 sub-processors send results to main 
processor and finish, the main processor receive 
results from sub-processors and find the 
shortest path as following:

For any vertex t SU, set l(t)=L(t,le(t)) is the 
length of the shortest path from s to t. From t 
tracing back the front vertex-edge, we receive
the shortest path as following: Put
(v1,e1)=P(t,le(t)),  (v2,e2)=P(v1,e1), …, (vk,ek)
=P(vk-1,ek-1), (s,  )= P(vk,ek).
It is inferred that the shortest path is: svkvk-

1…v1t End.
Theorem 3. The parallel algorithm has complexity 

)log()(
3

knO
k

n
O 

Proof: In theorem 2, the complexity of the sequential 
algorithm is O(n3). 

Number of processor is n/k (n vertices, k 
processors)

Since the edges of each vertex is at most (n-1), 

so the set VEi has more elements than 
k

n
(n-1). Since 

each loop chooses a pair of vertex – edge in set VEi to 
put into SEi, so the number of the loops does not

exceed
k

n
(n-1).

So computation time for min value and update 

for min value is ).(
2

k

n
O

Test time for vmin in step 6 and put set S has 
more elements than n. So computation time is 

).(
3

k

n
O Communication time in processors k is 

O(logk). When the algorithm stop, we have n
communication steps.

So the complexity of the parallel algorithm in 
the general case is: 

                              
(2)

VI. AN EXAMPLE FOR APPLYING PARALLEL 
ALGORITHM

The extended graph is showed in figure 1. 
Applying the parallel algorithm for 2 processors (k=2) 
P0 and P1. In which P0 is main processor, P1 is sub-
processor. P0 performs calculation similar to P1. The 
process of implementing the parallel algorithm as 
following:
Step 1. P0 divides and sends data to P0, P1

Divide T0={1,2,3} for P0, T1={4,5,6} for P1 

)log()(
3

knO
k

n
O 
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VE0={ L(1,  );L(2,(1,2));L(2,(3,2)); L(3,(1,3); 
L(3,(2,3)); L(3,(5,3))}
VE1={ L(4,(3,4)); L(4,(5,4)); L(5,(2,3)); 
L(5,(3,5)); L(5,(4,5)); L(6,(5,6)); L(6,(4,6))}
Send wV to P0 and P1

Step 2. The processors P0 and P1 perform
- The main processor P0 receives T0, A0 (Figure
3), VE0 and wV . Sub-processor P1 receives T1, 
A1 (Figure 2), VE1 and wV

- P0 assigns TE0=VE0, SE0 =  . P1 assigns 

TE1=VE1, SE1=
- P0 assigns L(1,  )=0 ;L(2,(1,2))=;L(2,(3,2))=; 
L(3,(1,3)=; L(3,(2,3))=; L(3,(5,3))= 
- P1 assigns L(4,(3,4))=  ; L(4,(5,4)) =  ; 
L(5,(2,3))=  ; L(5,(3,5))=  ; L(5,(4,5))= 
; L(6,(5,6))=  ; L(6,(4,6))= 
Results are shown in Figure 3

Keep do in that we have result as fugire 4 From 1 to 
2: 12, length 10. From 1 to 3: 13, length 9. From

1 to 4: 134, length 25. From 1 to 5: 125 or 
135, length 21. From 1 to 6: 1356, length 
32.
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Fugire 2. Matrix of edge weighst on P0, and P1

Fugire 3. Extended graph initialized on 2 processors
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VII. THE EXPERIMENTAL RESULTS

Parallel algorithm finding the shortest path
from a vertice to many vertices in the extended graph
is built on k processors. The program written in Java 
with database administration system My SQL We
experimentally sampled nodes as follows: The 

extended graph corresponds to 1500 nodes. The 
simulation result is shown in figure 5. This result
demonstrates that the runtime of parallel algorithms is 
better than sequential algorithm. 

Fugire 4. Result graph P0 receives

Fugire 5. Chart performs the speedup of extended graph having 1500 nodes

Number of processors

S
pe

ed
up

(T
s/T

p)
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VIII. CONCLUSION

In this paper, not only extended graph model is 
defined but also sequential and parallel algorithms
finding the shortest path from a vertex to many 
vertices in extended transport network are presented 
in detail with particular experimental examples. In 
addition, the basic results are clearly systematized and 
proven.
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Abstract— Language for Redundant Test (LRT) is a pro-
gramming language for exact real number computation. The
operational semantics of the language has been implemented
in both, a functional language (Haskell) and in an Object
oriented language (FC++) which provide mechanisms for
lazy evaluation (also called call-by-need) and infinite lists
manipulation. However, in the former, the time consumption
of programs execution grows in such a way that even basic
chaotic functions like the logistic map takes a thousand more
time that a simple implementation in an imperative language
like C. On the other hand, in FC++, the time consumption is
improved considerably (equivalent to its C contrapart), at the
cost of increasing the memory usage. In this paper we present
a tail recursive scheme for basic operation in LRT that allows
a linear growth of both time and memory.

1. Introduction
There are several paradigms to compute with real num-

bers. Among them, we can cite floating point number arith-
metic [17], interval analysis [16], algebraic manipulation [21]
and exact real number computation [22].

The exact real number computation paradigm has several
advantages compared to the others, for example, it avoids the
rounding off errors that occurs in floating point arithmetic.
Like interval analysis, it bounds the result, however it guaran-
tees the computation of a smaller interval at each step of the
computation which do not occur in interval analysis. Algebraic
manipulations can be used in exact real number computation
however, when no further reduction can be done an exact
method is used to compute the solution compared to algebraic
manipulation which has to turn to floating point arithmetic or
interval analysis.

There have been several theoretical proposals to exact real
number computations [20], [5], [11]. Most of them have
succeeded to prove that the theory is sound and complete.
However, when they have been implemented, none of them
has achieved an efficient use of memory, polinomial execution
time and a smooth translation from the theory to the practice.

To improve memory usage and execution time some imple-
mentations such as IRRAM [17], MPFR [6] and RealLib [9]
have lost the elegancy of functional programming and espe-
cially, they have slightly deviated from the theory. Although
we consider that faster implementations is what is required in
practice, we believe that there is increased confidence in the

correctness of an implementation the closer it is to the original
theory. A pair of implementations which have not deviated
from the theory to practice are Era [2] and a corecursive
sign digit representation [3], implemented in Objective Caml
and Coq respectively. However, Era, as said by the authors,
is slower than IRRAM since C++ generally outputs when
compiling more efficient code than Objetive Caml. Respect to
the corecursive implementation, although an excellent theory
is presented, the efficiency is never mentioned.

A further well established theory for exact real number
computation is LRT (Language for Redundant Test) [11]. It
has been proved that any computable first order function can
be defined in LRT [14]. Moreover, an implementation of LRT
in Haskell has been presented by Marcial et. al. [12]. However,
its efficiency compared to even a sign digit representation [19]
is questionable. In Marcial et. al. [13] an implementation of a
basic calculator based on LRT and programmed using FC++
and GMP was presented. It was shown that the execution time
improved compared to the Haskell implementations however
compared to the fastest implementation now a days such as
iRRAM it was thousands of time slower. The main problems
have been: 1) the scheme used in recursive calls and 2) the
algorithms implemented. In this paper, we show that if a tail
recursive scheme is used, LRT can be as efficient as iRRAM
at least for basic operations which allow to compute some
chaotic functions such as the logistic map.

The paper is divided as follows, in Section 2 the language
LRT is defined. In Section 3 a brief explanation of the tail
recursive scheme is presented. In section 4 some results
are presented. Finally the conclusions and further work is
discussed.

2. The LRT Language

2.1 Syntax

The language LRT is a variant of Real PCF [5] and an
extension of PCF (Programming Computable Functions) [18]
with a ground type for real numbers and suitable primitive
functions for real-number computation. Its raw syntax is given
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by

x ∈ V ariable,

t ::= nat | bool | I | t→ t,

P ::= x | n | true | false | (+1)(P ) | (−1)(P ) |
(= 0)(P ) | ifP thenP elseP | cons[a,a](P ) |
tail[a,a](P ) | rtestl,r(P ) | λx : t.P | PP | YP,

where V ariable is a set of variables, t represents a set of types,
in this case the language has three ground types, the natural
numbers type (represented by nat), the booleans (represented
by bool) and the unit real number type (represented by
I which denotes the set of intervals in [−1, 1], as it was
shown in [10] the complete computable real line can be easily
represented in this language, even more the implementation
presented here considers the complete real line). The type t→
t denotes higher order types. The constructs of the language
(represented by P ) are the variables (represented by x), the
constants for natural numbers and booleans (represented by
n, true and false), the succesor, predecesor and equal test
for zero operations for naturals numbers ( (+1), (-1) and (=0) ),
the classical if operator; three operation for exact real number
computation (cons, tail and rtest ) where the subscripts of
the constructs cons and tail are rational intervals (sometime
written as a or [a, a]) and those of rtest are rational numbers.
The last three constructors of the languages are those of the
lambda calculus (λx : t.P, PP and YP ) where the first denotes
abstraction, the second application and the third recursion.

Because the intention of this paper is not to present the
denotational semantics of the language which is based on
powerdomains [11], we just present the mathematical objects
which describe the cons, tail and rtest constructors. The
others are the well known PCF constructors and can be
consulted at [7], [18] .

Let D ⊆ [−1, 1], the function consa : D → D is the unique
increasing affine map with image the interval a, i.e.,

cons[a,a]([x, x]) =

[
a− a
2

x+
a+ a

2
,
a− a
2

x+
a+ a

2

]
That is, rescale and translate the interval [−1, 1] so that it

becomes [a, a], and define cons[a,a]([x, x]) to be the interval
which results from applying the same rescaling and translation
to [x, x]. In order to keep the notation simple, when the context
permits we use x to represent [x, x], meaning that the same
operation is applied to both end points of the interval obtained,
for example the cons function can be written as:

cons[a,a](x) =
a− a
2

x+
a+ a

2
(1)

The function tail[a,a](x) : D → D is a left inverse, i.e.

taila(consa(x)) = x.

More precisely, the following left inverse is taken, where κa
is a− a and τa is a+ a:

tail[a,a](x) = max(−1,min((2x− τa)/κa, 1)).

This definition guarantees that the range of the tail func-
tion is in the interval [-1,1]. The details of why this is a
convenient definition can be consulted in [5]. It is worthy to
mention that an infinite shrinking sequence of cons intervals
represent a real number in the interval [−1, 1], the operational
semantics defined below gives a rule for constructing a real
number.

The definition of the function rtestl,r : D →
{true, false}, where l < r are rational numbers, can be
formulated as

rtestl,r(x) =


true, if x ⊆ (−∞, l],
true or false, if x ⊆ (l, r),
false, if x ⊆ [r,∞).

(2)

The function rtestl,r is operationally computable because,
for any argument x given intensionally as a shrinking sequence
of cons intervals, the computational rules systematically es-
tablish one of the semidecidable conditions l < x and x < r
where l, r are rational numbers.

2.2 Operational Semantics

We consider a small-step style operational semantics for our
language. We define the one-step reduction relation → to be
the least relation containing the one-step reduction rules for
evaluation of PCF [18] together with those given below.

We first need some preliminaries. For intervals a and b in
[−1, 1], we define

ab = consa(b),

where cons is the function defined previously. This operation
is associative, and has the interval [−1, 1] (denoted by ⊥) as
its neutral element [5]:

(ab)c = a(bc), a⊥ = ⊥a = a.

In the interval domain literature [1], a v b iff b ⊆ a.
Moreover,

a v b ⇐⇒ ∃c ∈ D. ac = b,

and this c is unique if a has non-zero length. In this case we
denote c by

b \ a.

For intervals a and b, we define

a ≤ b ⇐⇒ a ≤ b

and

a ↑ b ⇐⇒ ∃c. a ≤ c and b ≤ c.

With this notation, the rules for Real PCF as defined in [5]
are:
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(1) consa(consbM)→ consabM

(2) consaM → consaM
′

(3) taila(consbM)→ Ycons[−1,0] if b ≤ a
(4) taila(consbM)→ Ycons[0,1] if b ≥ a
(5) taila(consbM)→ consb\aM if a v b and a 6= b

(6) taila(M)→ taila(M
′)

(7) if trueM N →M

(8) if falseM N → N

(9) if M N1 N2 → if M ′ N1 N2

For our language LRT , we add:

(10) rtestl,r(consa M)→ true if a < r

(11) rtestl,r(consa M)→ false if l < a

(12) rtestl,r M → rtestl,r M
′

if M →M
′
.

Remarks:
1) Rule (1) plays a crucial role and amounts to the as-

sociativity law. The idea is that both a and b give
partial information about a real number, and ab is
the result of gluing the partial information together in
an incremental way. See [5] for a further discussion
including a geometrical interpretation.

2) Rules (2), (6), (9) and (12) are applied whenever any of
the other rules are matched.

3) Rule (3) represents the fact that we already know that
the rest of the real number we are looking for is an
infinite sequence of the interval [−1, 0], i.e.

Ycons[−1,0] = cons[−1,0](cons[−1,0](. . .))

4) Rule (4) is similar to rule (3).
5) Rule (5) is applied when the partial information accu-

mulated at some point contains the interval of the next
input.

6) Rules (7) and (8) are the classical conditional rules.
7) Notice that if the interval a is contained in the interval

[l, r], rules (10) and (11) can be applied.
8) Rules (10)-(12) cannot be made deterministic given the

particular computational adequacy formulation which is
proved in [11].

9) In practice, one would like to avoid divergent com-
putations by considering a strategy for application of
the rules. In [11] total correctness of basic algorithms
and in [15] total correctness of first order functions are
shown, hence any implementation of any strategy will
be correct.

For a deeper discussion of the relation between the opera-
tional and denotational semantics of LRT, the reader is referred
to [11], [15].

3. The Basic Calculator

The basic calculator consists of the operations: addition,
subtraction, multiplication and division. In order to describe
how an algorithm in LRT works we present a particular
example. The average function defined by:

x⊕ y =
x+ y

2

can be implemented in LRT as follows:

faverage(x, y) =
if rtestl,c (x)
then

if rtestl,c (y)
then ConsL(faverage(TailLx, TailLy))

else

if rtestc,r (y)
then ConsC1(faverage(TailLx, TailCy)

else ConsC(faverage(TailLx, TailRy))
else

if rtestc,r (x)
then

if rtestl,c (y)
then ConsC1(faverage(TailCx, TailCy))

else

if rtestc,r (y)
then ConsC(faverage(TailCx, TailCy))

else ConsC2(faverage(TailCx, TailRy))
else

if rtestl,c (y)
then ConsC(faverage(TailRx, TailLy))

else

if rtestc,r (y)
then ConsC2(faverage(TailRx, TailCy))

else ConsR(faverage(TailRx, TailRy))

where

l = −1/2, c = 0, r = 1/2,

L = [−1, 0], C = [−1/2, 1/2],
R = [0, 1], C1 = [−3/4, 1/4], C2 = [−1/4, 3/4].

The idea behind this program is as follows. If both x and
y are in the interval L, then we know that x ⊕ y is in the
interval L, if both x and y are in the interval R, then we
know that x⊕y is in the interval R, and so on. The boundary
cases are taken care of by the rtest conditional.

What is interesting is that, despite the use of the
multi-valued construction rtest, the overall result of the
computation is single valued. In other words, different
computation paths will give different shrinking sequences
of intervals, but all of them will shrink to the same
number. A proof of this fact and the correctness of the
program is provided in [10]. This can be seen as fol-
lows: an unfolding of 1/2 ⊕ 1/2 gives the expresion
ConsR(faverage(0⊕ 0)). This means that the result of the
operation is in the interval R = [0, 1]. A second unfolding
gives ConsRConsC(faverage(1⊕ 1)), due to it is a call by
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need language, the first two conses are reduced using Equa-
tion 1. This means that the result is in the interval [1/3, 2/3].
A repeated unfolding gives the required result 1/2.

A translation to the above program to the functional object
oriented language FC++ is hard but achievable, however the
use of memory and execution time is completely different.
It can be noticed that the above program does not have a
base case like most of the recursive programs have, so an
implementation in an eager evaluation will never stop. This
is overcome by the functionality provided to C++ in FC++
which has a mechanism to evaluate what is needed of the
infinite recursive calls. However, in each recursive call, FC++
follows what C++ does, creates a stack to store the parameters
of the recursive calls. So an excessive number of recursive
calls together with an increasing use of potentially infinite
lists make the computer memory (no matter its size) come to
an end.

Tail recursion allows to ”optimize” the number of recursive
calls getting rid of the constant number of calls. To implement
tail recursive functions in LRT it was necessary to use the
precision that a computation is required to be computed at.
For example (a ⊕ b, 0.0001) means that the average of the
number a and b is required with four digits of precision.

Considering the cases of faverage program, the size of
each interval in the cons function is one. The application of
equation 1 in rule (1) of the operational semantics gives a rate
of convergence of 1

2n in all possible execution branches of the
program.

To compute the number of reductions of cons in the average
program, we need to know n in the equation:

precision =
1

2n

given by

n = log2

(
1

precision

)
The equivalent program of the faverage function using tail

recursion in FC++ is presented below:

faverage(x, y, prec) =
i = ceil(1/log(prec));
for (j = 1; j < i; j++){
if rtestl,c (x)
then

if rtestl,c (y)
then resp = resp ::ConsL

x =TailLx
y =TailLy

else

if rtestc,r (y)
then resp = resp ::ConsC1

x =TailLx
y =TailCy

else resp = resp ::ConsC
x =TailLx
y =TailRy

else

if rtestc,r (x)
then

if rtestl,c (y)
then resp = resp ::ConsC1

x =TailCx
y =TailCy

else

if rtestc,r (y)
then resp = resp ::ConsC

x =TailCx
y =TailCy

else resp = resp ::ConsC2
x =TailCx
y =TailRy

else

if rtestl,c (y)
then resp = resp ::ConsC

x =TailRx
y =TailLy

else

if rtestc,r (y)
then resp = resp ::ConsC2

x =TailRx
y =TailCy

else resp = resp ::ConsR
x =TailRx
y =TailRy

}
return resp;

The tail recursive program establishes the number of
conses to be reduced in order to evaluate the expression to the
required precision. Instead of creating stacks in each call, we
create a variable of cons type an accumulate the reduction
on the variables. A similar analysis was made to the basic
operations (subtraction, multiplication and division) similar to
the one presented in this section. In the following section, we
present the execution results of the implementation.

4. Results
We do three different comparisons. The first one shows

an example of a chaotic function were this implementation
gives exact results compared to the standard simple and double
precision of the C programming language. The second com-
parison consider the time taken to compute the logistic map
against iRRAM. Finally, the memory usage is compared with
a previous implementation of LRT without tail recursion [8].
All the comparisons were performed on a MacBook with
processor of 2.4 GHz Intel Core 2 Duo and memory of 2
GB.

4.1 The logistic Map
The logistic map is a function f : [0, 1]→ [0, 1] defined by

f(x) = ax(1− x)
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for a given constant a. Devaney [4] stated that it was first con-
sidered as a model of population growth by Pierre Verhulstby
in 1845. For example, a value 0.5 may represent 50% of the
maximum population of cattle in a given farm. The problem
is, given x0, to compute the orbit

x0, f(x0), f(f(x0)) . . . f
n(x0), . . . ,

which collects the population value of succesive genera-
tions. The purpose is to compute an initial segment of the orbit
for a given initial population x0. It has been identified that
choosing a = 4 is a chaotic case. The main problem is that its
value is sensitive to small variations of its variables. The result
of computing orbits for the same initial value x0 = 0.671875 ,
in simple and double precision in the C programming language
is shown in Table 1. Also, Table 1 shows the exact result and
the value obtained using our calculator. As it can be noticed
the tables are equal up to n = 7. From row 8th up to 39th the
double, exact and LRT column report equal results. From row
40th the C double implementations show a small deviation
from the exact result and at the last 60th row this deviation
is more evident. It is worth to mention that every exact real
number computation implementation must produce the correct
result as is the case in our implementation. The main drawback
is the execution time that our implementation takes to compute
the orbits. However, in this first version of our implementation,
the goal is not to look for the most efficient algorithms for
exact real number computation. Instead, we wanted to show
that it is possible to transit from the basic LRT theory to actual
practice in a smooth way.

4.2 Comparing against iRRAM
Table 2 shows a comparison in terms of time with an

implementation of the logistic map in iRRAM. Due to both
of them iRRAM and LRT follows the exact real number
computation, the results output by iRRAM are also correct
(no rounding error is requiered). As it can be seen both
implementations give results in milliseconds a difference to
a non tail recursion implementation of LRT which for n = 60
takes at least 15 minutes in the computation.

4.3 Memory usage
The last comparison shows the memory usage between a

tail recursion and a non-tail recursion implementation of LRT.
Figure 1 shows a graph representation of the memory use in
the implementation of the logistic map. As it can be seen, the
tail recursion implementation uses less than 10% of memory
instead of the non-tail implementation which consumes 100%
of memory at f60.

5. Conclusions
We have presented a tail recursive implementation of LRT

in the FC++ programming language using the GMP library.
Although C++ is an imperative language, FC++ is a functional
C++ implementation, meaning that it allows a call by need
evaluation and the definition of infinite lists. The precision

n Simple
precision

Double
precision

LRT result Exact
result

0 0.671875 0.671875 0.671875 0.671875

1 0.881836 0.881836 0.881836 0.881836

2 0.416805 0.416805 0.416805 0.416805

3 0.972315 0.972315 0.972315 0.972315

4 0.107676 0.107676 0.107676 0.107676

5 0.384327 0.384327 0.384327 0.384327

6 0.946479 0.946479 0.946479 0.946479

7 0.202625 0.202625 0.202625 0.202625

8 0.646272 0.646273 0.646273 0.646273

9 0.914417 0.914416 0.914416 0.914416

10 0.313033 0.313037 0.313037 0.313037

11 0.860174 0.860179 0.860179 0.860179

12 0.481098 0.481084 0.481084 0.481084

13 0.998570 0.998569 0.998569 0.998569

14 0.005708 0.005716 0.005716 0.005716

15 0.022702 0.022735 0.022735 0.022735

16 0.088747 0.088875 0.088875 0.088875

17 0.323485 0.323907 0.323907 0.323907

18 0.875370 0.875965 0.875965 0.875965

19 0.436386 0.434601 0.434601 0.434601

20 0.983813 0.982892 0.982892 0.982892

25 0.652836 0.757549 0.757549 0.757549

30 0.934926 0.481445 0.481445 0.481445

35 0.848152 0.313159 0.313159 0.313159

39 0.014638 0.006038 0.006038 0.006038

40 0.057695 0.024007 0.024009 0.024009

45 0.991612 0.930952 0.930881 0.930881

50 0.042173 0.629401 0.625028 0.625028

55 0.108415 0.749775 0.615752 0.615752

60 0.934518 0.757153 0.315445 0.315445

Table 1
RESULTS OF COMPUTING THE LOGISTIC MAP FOR SIMPLE AND DOUBLE

PRECISION IN THE C PROGRAMMING LANGUAGE, AND OUR

IMPLEMENTATION AND THE EXACT RESULT. FROM VALUES n = 8 AND

n = 40 THE SIMPLE AND DOUBLE PRECISION RESPECTIVELY DEVIATE

FROM THE EXACT RESULT.
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Fig. 1
USE OF MEMORY OF THE IMPLEMENTATION OF THE LOGISTIC MAP WITH

AND WITHOUT TAIL RECURSION.



n LRT
with Tail
Recursion

iRRAM LRT with
our tail
recursion

0 0.2 msec 0.670 msec 2 msec.

1 4.7 msec 0.670 msec 3 msec.

2 10 msec 0.680 msec 5 msec

3 12 msec 0.690 msec 13 msec

4 13 msec 0.710 msec 22 msec

5 15 msec 0.710 msec 42 msec

6 18 msec 0.720 msec 61 msec

7 19 msec 0.720 msec 103 msec

8 20 msec 0.740 msec 128 msec

9 20 msec 0.750 msec 189 msec

10 25 msec 0.750 msec 222 msec

11 28 msec 0.760 msec 352 msec

12 31 msec 0.770 msec 607 msec

13 32 msec 0.800 msec 850 msec

14 34 msec 0.820 msec 854 msec

15 34 msec 0.900 msec 870 msec

20 51 msec 1.09 msec 3.53 sec

25 52 msec 1.16 msec 8.23 sec

30 67 msec 1.19 msec 39.49 sec

35 78 msec 1.2 msec 2.25 min

40 86 msec 1.37 msec 5.75 min

50 100 msec 1.38 msec 10.83 min

55 110 msec 1.39 msec 11.2 min

60 120 msec 1.64 msec 15.7 min

Table 2
RESULTS OF COMPUTING THE EXECUTION TIME OF LOGISTIC MAP

AGAINST IRRAM, AND AN LRT IMPLEMENTATION WITHOUT TAIL

RECURSION.

required to compute basic operations (addition, subtraction,
multiplication and division) were established. The precision
was used to implement the basic algorithms. It is well known
that the basic algorithms allows the implementation of polino-
mial functions, i.e. of the form anx

n+ an−ix
n−1+ · · · a1x+

a, hence the proposal was proved with a chaotic function
called the logistic map. The results shows an improvement
compared with previous implementations of LRT and also an
improvement compared with well established implementations
like iRRAM. A further work is to establish the precision
required to compute trigonometric functions possibly using
Taylor series, e.g. the limit function has to be defined. The
implementation of the limit function will allow to compute
any first order computable function.
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Abstract—A self-avoiding walk (SAW) is a sequence of moves
on a lattice not visiting the same point more than once. A SAW
on the square lattice is prudent if it never takes a step towards a
vertex it has already visited. Prudent walks differ from most sub-
classes of SAWs that have been counted so far in that they can
wind around their starting point. Some interesting problems and
sequences arising from prudent walks of one-sided and two-sided
are discussed in this paper. A few methods such as computational,
kernel, generating function, recurrence relation and constructive
method are applied to our study. Several open problems are
posted.

Keywords: Self-avoiding walk, prudent self-avoiding walk,
generating function, kernel method, integer sequence

I. INTRODUCTION

A well-known long standing problem in combinatorics
and statistical mechanics is to find the generating function
for self-avoiding walks (SAW) on a two-dimensional lattice,
enumerated by perimeter. A SAW is a sequence of moves
on a square lattice which does not visit the same point more
than once. It has been considered by more than one hundred
researchers in the pass one hundred years, including George
Polya, Tony Guttmann, Laszlo Lovasz, Donald Knuth, Richard
Stanley, Doron Zeilberger, Mireille Bousquet-Mélou, Thomas
Prellberg, Neal Madras, Gordon Slade, Agnes Dittel, E.J. Janse
van Rensburg, Harry Kesten, Stuart G. Whittington, Lincoln
Chayes, Iwan Jensen, Arthur T. Benjamin, and others. More
than three hundred papers and a few volumes of books were
published in this area. A SAW is interesting for simula-
tions because its properties cannot be calculated analytically.
Calculating the number of self-avoiding walks is a common
computational problem [1], [2], [3].

In order to present our problems and results clearly and
efficiently, we introduce some notations in the following.

East step: E or → or (1, 0), x-step
You can see more in the table below:

(0, 1) (1, 0) (1, 1) (0,−1)
↑ → ↗ ↓
N E NE S

(−1, 0) (−1,−1) (−1, 1) (1,−1)
← ↙ ↖ ↘
W SW NW SE

↑≥k: k or more than k consecutive ↑ steps
↑=k: k consecutive ↑ steps
avoiding ↑≥k: no k or more than k consecutive ↑ steps

avoiding ↑=k: no k consecutive ↑ steps, but can have more
than or less than k consecutive ↑ steps
bxc: the largest integer not greater than x, floor(x)
dxe: is the smallest integer not less than x, ceiling(x)
[xn]f(x) denotes the coefficient of xn in the power series

expansion of a function f(x).
[xmyn]f(x, y) denotes the coefficient of xmyn in the power

series expansion of a function f(x, y).(
n
r

)
the number of combinations of n things r at a time.

(
n

r

)
=

n!

(n− r)!r!

=

(
n

n− r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)
(
−n
r

)
= (−1)r

(
n+ r − 1

r

)
In the past few decades, many mathematicians have studied

the following two classical problems:
Classical Problem 1
What is the number of SAWs from (0, 0) to (n− 1, n− 1)

in an n× n grid, taking steps from {↑, ↓,←,→}?
Donald Knuth claimed that the number is between 1.3 ×

1024 and 1.6 × 1024 for n = 11 and he did not be-
lieve that he would ever in his lifetime know the exact
answer to this problem in 1975. However, after a few
years, Richard Schroeppel pointed out that the exact value
is 1, 568, 758, 030, 464, 750, 013, 214, 100 = 22325231 ×
115 422 379 × 487 148 912 401 [4], [5], [6]. It is still an
unsolved problem for n > 25.

Classical Problem 2
What is the number f(n) of n-step SAWs, on the square

lattice, taking steps from {↑, ↓,←,→}?
The number f(n) is known for n ≤ 71 [4], [5], [7], [8].
It is clear that

2n ≤ f(n) ≤ 4× 3n−1

f(m+ n) ≤ f(m)f(n)

There exists a constant C such that

lim
n→∞

f(n)1/n = inf
n
[f(n)]1/n = C.

C = 2.64 (up to 71 steps have been counted).
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C = 2.638 (up to 91 steps have been counted).

f(n) ≈ 2.638n

The number of SAWs/ the number of total walks:

1

1200
for n = 20

1

2.4× 108 for n = 50

A recently proposed model called prudent self-avoiding
walks (PSAW) was first introduced to the mathematics com-
munity in an unpublished manuscript of Préa, who called
them exterior walks. A prudent walk is a connected path on
square lattice such that, at each step, the extension of that step
along its current trajectory will never intersect any previously
occupied vertex. Such walks are clearly self-avoiding [9], [10],
[11], [12], [13]. We will talk about some sequences arising
from PSAWs in the following.

II. PRUDENT SELF-AVOIDING WALKS: DEFINITIONS AND
EXAMPLES

A PSAW is a proper subset of SAWs on the square lattice.
The walk starts at (0, 0), and the empty walk is a PSAW. A
PSAW grows by adding a step to the end point of a PSAW
such that the extension of this step - by any distance - never
intersects the walk. Hence the name prudent. The walk is so
careful to be self-avoiding that it refuses to take a single step
in any direction where it can see - no matter how far away -
an occupied vertex. The following walk is a PSAW.

A. Properties of a PSAW

Unlike SAW, PSAW are usually not reversible. There is such
an example in the following figure.

Each PSAW possesses a minimum bounding rectangle,
which we call box. Less obviously, the endpoint of a prudent
walk is always a point on the boundary of the box. Each
new step either inflates the box or walks (prudently) along
the border. After an inflating step, there are 3 possibilities for
a walk to go on. Otherwise, only 2.

In a one-sided PSAW, the endpoint lies always on the top
side of the box. The walk is partially directed.

A prudent walk is two-sided if its endpoint lies always on
the top side, or on the right side of the box. The walk in the
following figure is a two-sided PSAW.

III. SOME SEQUENCES ARISING FROM ONE-SIDED
PSAWS

Sequence 1
What is the number (say f(n) ) of one-sided n-

step prudent walks, taking steps from { ↑,←,→}?
The generating function equals∑
n≥0

f (n) tn =
1 + t

1− 2t− t2

= 1 + 3t+ 7t2 + 17t3 + 41t4 + 99t5 + ...

Also,

f(n) = 2f(n− 1) + f(n− 2)

=
(1−

√
2)n + (1 +

√
2)n

2

=
[
1 0

](n+1∑
k=0

(
n+ 1

k

)[
0 1
2 0

]k)[
1
0

]
.

We obtain sequence A001333 of the On-Line Encyclopedia
of Integer Sequences.[15, A001333]

Sequence 2
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The number of one-sided n-step prudent walks, starting
from (0, 0) and ending on y-axis, taking steps from {↑,←
,→} is

1+

b(n−1)/2c∑
k=1

min{n−2k,k}∑
i=1

(
n− 2k + 1

i

)(
k − 1
k − i

)(
n− k − i

k

)
.

We obtain sequence A136029.[15, A136029]
Sequence 3
Consider the number of one-sided prudent walks starting

from (0, 0) to (x, y), taking steps from {↑,←,→}. The
number of such walks with k + x right → steps, k left ←
steps and y up ↑ steps, is

min{y,k+x}∑
i=1

(
y + 1

i

)(
k + x− 1
k + x− i

)(
y + k − i

k

)
.

If k = 2 and x = y = n, we obtain sequence A119578.[15,
A119578]

Sequence 4
The number of one-sided n-step prudent walks, from (0, 0)

to (x, y), ( n− x− y is even) taking steps from {↑,←,→} is

min{y,n+x−y2 }∑
i=0

(
y + 1

i

)(n+x−y
2 − 1

n+x−y
2 − i

)(n−x+y
2 − i
n−x−y

2

)
.

If x = y = 3, we obtain sequence A163761.[15, A163761]
Sequence 5
What is the number of the one-sided n-step prudent walks,

avoiding k or more consecutive east steps, →≥k?
The generating function equals

1 + t− tk
1− 2t− t2 + tk+1

If k = 1,

1 + t− tk
1− 2t− t2 + tk+1

=
1

1− 2t
= 1 + 2t+ 4t2 + 8t3 + 16t4 + 32t5 + ...

If k = 2, we obtain sequence [15, A006356]:
1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, ...
It also counts the number of paths for a ray of light that

enters two layers of glass and then is reflected exactly n times
before leaving the layers of glass.

If k = 3, we obtain sequence [15, A052967]:

1, 3, 7, 16, 38, 89, 209, 491, 1153, 2708, 6360, ...

If k = 4, we obtain sequence [15, A190360]:

1, 3, 7, 17, 40, 96, 229, 547, 1306, 3119, 3119, 7448, ...

For the case k = 3 in the above theorem, there are 16 walks
as follows:

Sequence 6
The number of one-sided n-step prudent walks, taking

steps from {↑,←,→,↗} equals

5 +
√
17

2
√
17

(
3 +
√
17

2

)n
− 5−

√
17

2
√
17

(
3−
√
17

2

)n
.

We obtain sequence A055099.[15, A055099]
Sequence 7
What is the number of one-sided n-

step prudent walks, taking steps from
{→,←, ↑,↗,↘}?

The generating function is
1 + t

1− 4t− 3t2 .

We obtain sequence A126473.[15, A126473]
Sequence 8
What is the number of one-sided n-step prudent walks in the

first quadrant, starting from (0, 0) and ending on the y-axis,
taking steps from {↑,←,→}?

The generating function is
1

2t3
((1 + t) (1− t)2 −

√
(1− t4) (1− 2t− t2)).

Sequence 9
What is the number of one-sided n-step prudent walks

exactly avoiding ←=k, taking steps from {↑,←,→}?
The generating function equals

1 + t− tk + tk+1
1− 2t− t2 + tk+1 − tk+2 .

If k = 1, we obtain sequence A078061.[15, A078061]
Sequence 10
What is the number of one-sided n-step prudent walks

exactly avoiding ←=k and ↑=k (both at the same time)?
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The generating function is

1 + t− 2tk + 2tk+1
1− 2t− t2 + 2tk+1 − 2tk+2 .

For k = 1,

f(n) =
(
2n+2 − (−1)bn/2c + 2(−1)b(n+1)/2c

)
/5,

also,

f(n) = 2f(n− 1)− f(n− 2) + 2f(n− 3)
with f(1) = 1, f(2) = 3, f(3) = 7.

This is sequence A007909.[15, A007909]

IV. SOME SEQUENCES ARISING FROM TWO-SIDED
PSAWS

What is the number of two-sided, n-step prudent walks end-
ing on the top side of their box avoiding both patterns ←≥2,
↓≥2 (both at the same time), taking steps from {↑, ↓,←,→}?

Theorem 1. The generating function (say T (t, u) ) of the

above two-sided prudent walks ending on the top side of their

box satisfies(
1− t2u− tu

u− t

)
T (t, u) = 1 + tu+ T (t, t)t

u− 2t
u− t , (1)

where u counts the distance between the endpoint and the

north-east (NE) corner of the box.

For instance, in the following figure, a walk takes 5 steps,
and the distance between the endpoint and the north-east
corner is 3. So we can use t5u3 to count this walk.

Outline of the proof of the theorem:
Case 1: Neither the top nor the right side has ever moved;

the walk is only a west step. This case contributes 1 to the
generating function.

Case 2: The last inflating step goes east. This implies that
the endpoint of the walk was on the right side of the box before
that step. After that east step, the walk has made a sequence of
north steps to reach the top side of the box. Observe that, by
symmetry, the series T (t, u) also counts walks ending on the
right side of the box by the length and the distance between
the endpoint and the north-east corner. These two observations
give the generating function for this class as T (t, t).

Case 3: The last inflating step goes north. After this step,
there is either a west step or a bounded sequence of East steps.
This gives the generation function for this class as(

t2u+
tu

u− t

)
T (t, u)− t2

u− tT (t, t)

Putting the three cases together, we get the generating
function (1) for T (t, u).

Solve this generating function for T (t, u) using the Kernel
Method:

From(
1− t2u− tu

u− t

)
T (t, u) = 1 + tu+ T (t, t)

(
t− t2

u− t

)
,

we can get

(1− tu)
(
u− tu− t− t2u2 + t3u

)
T (t, u)

= (u− t)(1− tu)(1 + tu)− T (t, t) (1− tu) t (2t− u)

Set (1− tu)
(
u− tu− t− t2u2 + t3u

)
= 0, then there is

only one power series solution for u

u =
1

2t2

(
1− t+ t3 −

√
(1− t− t3)2 − 4t4

)
.

Let U be this solution,

U = U(t) =
1

2t2

(
1− t+ t3 −

√
(1− t− t3)2 − 4t4

)
.

(2)

Set

(1 + tu)(u− t)(1− tu) + T (t, t) (1− tu) t (u− 2t) = 0,

and replace u by U :

T (t, t) = (1 + tU)
t− U

t (U − 2t) . (3)

From

(1− tu)
(
u− t− tu− t2u2 + t3u

)
T (t, u)

= (u− t)(1− tu)(1 + tu)− T (t, t) (1− tu) t (2t− u)

get

T (t, u) =
(t− u)(1− tu)(1 + tu)

(1− tu) (u− t− tu− t2u2 + t3u)+

T (t, t) (1− tu) t (2t− u)
(1− tu) (u− t− tu− t2u2 + t3u)

Replace T (t, t) by (3). Now

T (t, u) =
(1 + tu)(u− t)

u− t− tu− t2u2 + t3u

− (1 + tU) (U − t) (1− tu) (u− 2t)
(U − 2t) (1− tu) (u− t− tu− t2u2 + t3u)

where U(t) has been defined in (2).
Sequence 11
Notice that T (t, 1) is the generating function of the number

of two-sided n-step prudent walks ending on the top side of
their box avoiding both patterns ←≥2, ↓≥2, taking steps from
{↑, ↓,←,→}, thus T (t, 1) =

1

2t (1− 2t− t2 + t3) (1− 2t− 2t3)×

((1− 2t) (1− t)
√
(1− t− t3)2 − 4t4−

(1 + t)
(
1− 7t+ 14t2 − 11t3 + 10t4 − 4t5

)
)

= 1 + 3t+ 6t2 + 15t3 + 35t4 + 83t5 + 195t6 + ...
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Sequence 12
Note that T (t, 0) is the generating function of the number

of two-sided n-step prudent walks ending at the north-east
corner of their box avoiding both patterns ←≥2, ↓≥2, taking
steps from {↑, ↓,←,→}, so T (t, 0) =

(1− t)
√
(1− t− t3)2 − 4t4 − 1 + 3t− t2 + t3 + t4

(1− 2t− 2t3) t
= 1 + 2t+ 4t2 + 10t3 + 24t4 + 56t5 + 130t6 + 304t7 + ...

Sequence 13
Furthermore, 2T (t, 1)−T (t, 0) is the generating function of

the number of two-sided n-step prudent walks ending on the
top side or right side of their box avoiding both patterns←≥2,
↓≥2, taking steps from {↑, ↓,←,→}, thus 2T (t, 1)−T (t, 0) =

1

(1− 2t− t2 + t3) (1− 2t− 2t3)×

(t (1− t)2
√
(1− t− t3)2 − 4t4+

1− t− 2t2 − 2t3 − 2t4 + 4t5 − t6)
= 1 + 4t+ 8t2 + 20t3 + 46t4 + 110t5 + 260t6 + 616t7 + ...

Open Problem 1
What is the number of two-sided n-step prudent walks,

ending on the top side of their box, avoiding both ←≥k, and
↓≥k (k > 2) taking steps from {↑, ↓,←,→}?

The generating function satisfies:

(
1− t2u1− t

kuk

1− tu −
tu

u− t

)
T (t, u)

= 1 + tu
1− tkuk
1− tu +

u− 2t
u− t tT (t, t),

where u counts the distance between the endpoint and the
north-east corner of the box. For k = 3,

u− t− t2u2 + t3u− t3u3 + t4u2 − t4u4 + t5u3 − tu
u− t

× T (t, u)

= 1 + tu+ t2u2 + t3u3 +
u− 2t
u− t tT (t, t)

i.e.,

(−t+
(
1 + t3 − t

)
u+

(
t4 − t2

)
u2 +

(
t5 − t3

)
u3 +−t4u4)

× T (t, u)
= (1 + tu+ t2u2 + t3u3)(u− t) + t (u− 2t)T (t, t).

Set −t+
(
1 + t3 − t

)
u+
(
t4 − t2

)
u2+

(
t5 − t3

)
u3− t4u4

= 0, and solve for u, as a power series of t. We obtained the
first one hundred terms for u, beginning with

u = t+t2+t3+t4+2t5+4t6+8t7+16t8+33t9+69t10+ ...

Using this u, we can get many examples for the sequence.
Open Problem 2

What is the number of two-sided n-step prudent walks,
ending on the top side of their box, exactly avoiding both
←=2, ↓=2, taking steps from {↑, ↓,←,→}?

The generating function is

(1− t2u

1− tu −
tu

u− t + u
2t3)T (t, u)

=
1

1− tu − u
2t2 +

u− 2t
u− t tT (t, t).

It seems to us it is not trivial to solve this generating
function.

V. SOME THEOREMS AND PROOFS

Theorem 2. The generating function of the number, say

f(n, k), of the one-sided n-step prudent walks, taking steps

from { ↑,←,→}, avoiding k or more consecutive east steps,

→≥ksatisfies

1 + t− tk
1− 2t− t2 + tk+1 ,

and for k ≥ 2,

f(n, k) =

n∑
i=0

i∑
j=0

(−1)
n−j−i
k−1 2i−j

(
i

j

)(
j

n−j−i
k−1

)

+
n−1∑
i=0

i∑
j=0

(−1)
n−j−i−1

k−1 2i−j
(
i

j

)(
j

n−i−j−1
k−1

)

−
n−k∑
i=0

i∑
j=0

(−1)
n−j−i−k

k−1 2i−j
(
i

j

)(
j

n−j−i−k
k−1

)
f(n, 1) = 2n.

Proof: Let F (t) denote the length generating function of
the number of one-sided prudent walks, avoiding k or more
consecutive east steps. We have the following three cases.

(1) For the walks which do not contain North steps, they
can be empty walk, walks with only west steps, walks with
only east steps with length at least one and at most k− 1, the
contributions are 1, t

1−t ,
t(1−tk−1)

1−t respectively.
(2) For the walks obtained by concatenating a one-sided

walk, a North step, and then a West walk, the contribution is

F (t)
t

1− t .

(3) For the walks obtained by concatenating a one-sided
walk, a North step, and then a East walk with at least 1 step
and at most k − 1 steps, the contribution is

F (t)
t2(1− tk−1)

1− t .

Adding these three contributions give the equation

F (t) = 1 +
t

1− t +
t(1− tk−1)
1− t

+ F (t)
t

1− t + F (t)
t2(1− tk−1)

1− t .
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Thus,

F (t) =
1 + t− tk

1− 2t− t2 + tk+1 .

Now, let [tn]F (t) denote the coefficient of tn in the power
series expansion of F (t).

[tn]
1 + t− tk

1− 2t− t2 + tk+1

= [tn](1 + t− tk)
∞∑
i=0

(2t+ t2 − tk+1)i

= [tn](1 + t− tk)
∞∑
i=0

i∑
j=0

(
i

j

)
(2t)i−j(t2 − tk+1)j

= [tn](1 + t− tk)

×
∞∑
i=0

i∑
j=0

(
i

j

)
(2t)i−j

j∑
l=0

(
j

l

)
(t2)j−l(−1)lt(k+1)l

= [tn](1 + t− tk)

×
∞∑
i=0

i∑
j=0

j∑
l=0

(
i

j

)(
j

l

)
(−1)−l ti+j−l+lk2i−j

=

n∑
i=0

i∑
j=0

(−1)
n−j−i
k−1 2i−j

(
i

j

)(
j

n−j−i
k−1

)

+

n−1∑
i=0

i∑
j=0

(−1)
n−j−i−1

k−1 2i−j
(
i

j

)(
j

n−i−j−1
k−1

)

−
n−k∑
i=0

i∑
j=0

(−1)
n−j−i−k

k−1 2i−j
(
i

j

)(
j

n−j−i−k
k−1

)
.

Theorem 3. The number of one-sided n-step prudent walks,

starting from (0, 0) and ending on the y-axis, taking steps from

{↑,←,→} is

1+

b(n−1)/2c∑
k=1

min{n−2k,k}∑
i=1

(
n− 2k + 1

i

)(
k − 1
k − i

)(
n− k − i

k

)
.

Proof: In our proof, we will use the following two results
which could be found in some mathematics books such as [16]:

The number of ways of putting n like objects into r different
cells is (

n+ r − 1
n

)
=

(
n+ r − 1
r − 1

)
.

It is also the number of nonnegative integer solutions to the
equation

r∑
i=1

xi = n.

The number of ways of putting n like objects into r different
cells with no empty cell is(

n− 1
r − 1

)
.

It is also the number of positive integer solutions to the
equation

r∑
i=1

xi = n.

Without loss of generality, we assume that there are k East
steps, k West steps and n − 2k North steps in a one-sided
n-step prudent walks, starting from (0, 0) and ending on the
y-axis. We also assume that k > 0 since there is only one
such walk for k = 0. It is easy to see that k ≤ b(n − 1)/2c.
The n− 2k North steps provide n− 2k+1 positions (we can
say n − 2k + 1 different cells) for k East steps and k West
steps to be inserted. Suppose that we put k East steps into
i (1 ≤ i ≤ min{n − 2k, k}) cells with no empty cell. Then
there are

(
k−1
k−1
)

ways of putting k East steps into i cells and(
n−2k+1

i

)
ways of choosing i cells. Now we distribute k West

steps into the remaining n − 2k + 1 − i cells, which give us(
n−k−i
k

)
.

Therefore, we get the number:

1+

b(n−1)/2c∑
k=1

min{n−2k,k}∑
i=1

(
n− 2k + 1

i

)(
k − 1
k − i

)(
n− k − i

k

)
.

Example: For n = 4 in the above theorem, we have 7 such
walks as follows:

Theorem 4. The number, say f(n), of generalized

one-sided n-step prudent walks, taking steps from {↑,←,→
,↗} equals

n∑
i=0

(
i

n− i

)
2n−i(3)2i−n +

n−1∑
i=0

(
i

n− i− 1

)
2n−i−1(3)2i−n+1

=
5 +
√
17

2
√
17

(
3 +
√
17

2

)n
− 5−

√
17

2
√
17

(
3−
√
17

2

)n
,

with generating function

1 + t

1− 3t− 2t2 .
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Proof: Let P (t) denote the length generating function of
generalized one-sided prudent walks.

The contribution in P (t) of walks that do not contain North
steps or Northeast steps (horizontal walks) is

1 + t

1− t .

The contribution of walks obtained by concatenating a
generalized one-sided walk, a North step or Northeast step,
then a horizontal walk is

2t(1 + t)

1− t P (t).

Adding these two contributions gives a linear equation for
P (t):

P (t) =
1 + t

1− t +
2t(1 + t)

1− t P (t).

Therefore,

P (t) =
1 + t

1− 3t− 2t2

= (1 + t)
+∞∑
i=0

(3t+ 2t2)i

= (1 + t)

+∞∑
i=0

(
i

j

)
(3t)i−j(2t2)j

= (1 + t)

+∞∑
i=0

i∑
j=0

(
i

j

)
2j(3)i−jti+j

f(n) = [tn]P (t)

=
n∑
i=0

(
i

n− i

)
2n−i(3)2i−n

+
n−1∑
i=0

(
i

n− i− 1

)
2n−i−1(3)2i−n+1.

The second formula of f(n) can be easily derived from the
length generating function.

Example: For n = 2 in the above theorem, we have 14 such
walks:
EN ,NE, WN ,NW ,N(NE),(NE)N ,E(NE),(NE)E,
(NE)W, W (NE), NN, WW , EE, (NE)(NE).

Theorem 5. The generating function of the number, say f(n),
of generalized one-sided n-step prudent walks, taking steps

from {→,←, ↑,↗,↖} is

1 + t

1− 4t− 3t2
= 1 + 5t+ 23t2 + 107t3 + 497t4 + 2309t5

+ 10 727t6 + 49 835t7 + ...

f(n) = [tn] (1 + t)
∑
k≥0

tk (4 + 3t)
k

= [tn] (1 + t)
∑
k≥0

k∑
m=0

(
k

m

)
4k−m3mtm+k

=
n∑
k=0

[(
k + 1

n− k

)
3 +

(
k

n− 1− k

)]
42k−n3n−1−k.

Proof: Let P (t) denote the length generating function of
generalized one-sided prudent walks.

The contribution in P (t) of walks that do not contain North
steps or Northeast steps, or Northwest step (horizontal walks)
is

1 + t

1− t .

The contribution of walks obtained by concatenating a
generalized one-sided walk, a North step or Northeast step
or a Northwest step, then a horizontal walk is

3t(1 + t)

1− t P (t).

Adding these two contributions gives a linear equation for
P (t), from which we can get P (t).
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Abstract – Automated testing is increasingly becoming an 

essential part of software development as it significantly 

reduces laborious and time-consuming manual efforts. By 

automatically constructing and executing test cases with 

minimal manual work, automated testing promises high 

productivity, better coverage, and reduced cost. However, 

there still exist many obstacles that must be addressed to 

successfully incorporate automated testing into a real 

software development process. In this paper, we present a 

novel approach to automated test case creation and execution, 

called MoReT (Model-based Replay Testing), for event-driven 

systems. MoReT accepts a finite state machine model for a 

target system under test and generates a series of test cases 

based on the notion of Chow’s n-switch coverage. Specifically, 

for a fixed n, MoReT finds an n-switch set cover that covers 

every sequence of consecutive transitions of length n+1 in a 

given state transition diagram. MoReT also allows us to 

automatically execute the generated test cases using a 

deterministic replay mechanism, called RT-Replayer, that can 

automatically generate and execute test cases, i.e., event 

sequences, during a test execution phase. 

Keywords: Model-based testing, automated testing, 

deterministic replay mechanism, event-driven systems, finite 

state machine. 

 

1 Introduction 

Automated testing is increasingly becoming an essential part 

of software development as it significantly reduces laborious 

and time-consuming manual efforts. By automatically 

constructing and executing test cases with minimal manual 

work, automated testing promises high productivity, better 

coverage, and reduced cost. However, there still exist many 

obstacles, such as lack of adequate tool support and 

underestimation of the automation cost, that must be 

addressed to successfully incorporate automated testing into 

a real software development process. 

   One of key problems is that it is hard to automatically 

construct effective test cases for event-driven systems. Event-

driven systems usually have various sources of external 

events including the user and a number of I/O devices such 

as sensors and network interface cards.  As a result, there 

would be a huge number of possible permutations of events 

that will lead to different system responses. This makes 

exhaustive testing infeasible, and thus requires us to 

determine effective test cases that can satisfy appropriate test 

coverage criteria. 

Another important problem is that it is hard to 

automatically execute test cases against an event-driven 

system. To test an event-driven system, we should be able to 

precisely generate desired I/O events such as sensor data 

acquisitions and network data arrivals during a test execution. 

This requires us to build a sophisticated test environment 

setting so that we can precisely control the generation of 

various I/O events. Unfortunately, this task could be overly 

difficult to manage because of the diversity and complexity 

of event sources and complicated interdependency between 

events. 

In this paper, we present a novel automated testing 

approach, called MoReT (Model-based Replay Testing), for 

event-driven systems. MoReT addresses the above problems 

by providing a model-based test case creation method and an 

automated test case execution technique based on 

deterministic execution replay. First, MoReT provides a 

simple, efficient model-based method for automatic test case 

generation. It assumes a finite state machine model for a 

target system under test and generates a series of test cases 

based on the notion of Chow’s n-switch coverage [1]. 

Specifically, for a fixed n, MoReT finds an n-switch set cover 

that covers every sequence of consecutive transitions of 

length n+1 in a given state transition diagram. Second, 

MoReT provides a deterministic replay mechanism for 

automated test case execution. Specifically, MoReT can 

precisely generate and execute test cases, i.e., event sequences, 

during a test execution phase. MoReT executes those events 

automatically in pure software, completely obviating the need 

for human intervention and any external environment 

arrangement. Therefore, MoReT allows us to achieve 

automated test case execution for event-driven systems.   
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2 Automated Test Case Creation  

For model-based test case creation, MoReT uses a FSM 

(finite state machine) model that can serve as a useful 

representation of an event-driven system where events govern 

the system’s operation and dynamic behavior. For example, a 

sequence of events that trigger a particular execution path in a 

FSM model can be viewed as a meaningful test case against 

the target event-driven system. 

Given a FSM model, MoReT automatically generates 

event sequences as test cases against the target system. Since 

the number of event sequences is often unbounded in many 

cases, MoReT uses the Chow’s n-switch coverage to guide 

the test case selection. For a fixed n, an n-switch cover set 

consists of every sequence of consecutive transitions of 

length n+1 in the FSM diagram. For example, a 0-switch 

cover set consists of every possible state transition and a 1-

switch cover set consists of every sequence of two 

consecutive transitions. Thus, we can easily control the test 

coverage by specifying the value of n.  

MoReT first generates the 0-switch cover set by 

transforming a given FSM model into thㅁ e 0-switch cover 

tree that contains every possible state transition of the FSM. 

Figure 1 shows an example FSM model and its 0-switch cover 

tree. In this example, the 0-switch cover set is the set of all the 

paths from the root node to leaf nodes. 

Based on the 0-switch cover tree, MoReT can generate the 

n-switch coverage set. As mentioned earlier, an “n-switch” is 

a sequence of consecutive branches of length n + 1. Thus, the 

n-switch cover set is the set of all the paths from the root node 

to leaf nodes in the n-switch cover tree. Fortunately, we can 

obtain an n-switch cover tree by adding one more possible 

transition to every leaf node of (n-1)-switch. Thus, starting 

from the 0-switch cover tree, we can find the n-switch cover 

tree via iterative tree expansion. 

 

 

 
 

Figure 1. FSM model and its 0-switch cover tree. 

 

 

3 Automated Test Case Execution 

Once test cases, i.e., event sequences, have been obtained, 

MoReT allows us to automatically execute the test cases 

using its replay mechanism, called RT-Replayer. RT-

Replayer is a software mechanism that provides two key 

functions, event logging and event replay. For event logging, 

RT-Replayer monitors every I/O event and records them in an 

event log. When the kernel terminates, RT-Replayer stores 

the event log in safe non-volatile storage. For event recording, 

RT-Replayer can precisely emulate the recorded events 

consulting the event log during a re-execution.  

 

 
Figure 2. Manual test recording with a 0-switch cover set. 

 

 
 

Figure 3. Automated test execution with an n-switch cover set. 

 

Note that since a FSM model describes the target system at 

a higher level of abstraction, the event sequences derived 

from the logical FSM model cannot be directly executed 

against the physical target system due to the difference of 

abstraction levels between the FSM model and the physical 

system.  

MoReT addresses this problem by introducing a two-step 

test execution process. The first step is manual test recording. 

In this step, we manually test the target system traversing 

every possible state transition, i.e., the 0-switch cover set, in 

the given FSM. In doing so, we use the event logging 

mechanism of RT-Replayer to record physical events and 

match them with the corresponding abstract events. The 
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second step is automated test execution. In this step, we can 

automatically execute the n-switch cover set using the event 

replay mechanism of RT-Replayer. RT-Replayer can 

automatically emulate all physical I/O events in pure software, 

completely obviating the need for human intervention and any 

external environment arrangement. 

 

 

4 Conclusion 

 We have presented a novel approach to automated test case 

creation and execution, called MoReT (Model-based Replay 

Testing), for event-driven systems. The contributions of this 

work are two-fold. First, MoReT allows us to automatically 

create test cases from a FSM model for a target event-driven 

system. Second, MoReT provides a deterministic replay 

mechanism for automated test case execution.  
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Abstract—Many famous researchers in computer science,
mathematics and other areas have studied enumerative problems
in lattice path and walks which could be applied to many fields.
We will discuss some new enumerative problems including some
pattern avoidance problems in lattice paths and walks with
several step vectors. Results on stretches and turns are presented
and several open problems are posted. A few approaches are
used in this paper such as computational, generating function,
closed formula and constructional method. You will observe many
interesting integer sequences as well.

Keywords: Lattice path, prudent self-avoiding walk, gener-
ating function, pattern avoidance, stretch

I. INTRODUCTION, NOTATIONS AND PRELIMINARIES

In order to present our problems and results clearly and
efficiently, we introduce some notations in the following.

East step: E or → or (1, 0), x-step
You can see more in the table below:

(0, 1) (1, 0) (1, 1) (0,−1)
↑ → ↗ ↓
N E NE S

(−1, 0) (−1,−1) (−1, 1) (1,−1)
← ↙ ↖ ↘
W SW NW SE

↑≥k: k or more than k consecutive ↑ steps
↑=k: k consecutive ↑ steps
avoiding ↑≥k: no k or more than k consecutive ↑ steps
avoiding ↑=k: no k consecutive ↑ steps, but can have more

than or less than k consecutive ↑ steps
bxc: the largest integer not greater than x, floor(x)
dxe: is the smallest integer not less than x, ceiling(x)
[xn]f(x) denotes the coefficient of xn in the power series

expansion of a function f(x).
[xmyn]f(x, y) denotes the coefficient of xmyn in the power

series expansion of a function f(x, y).(
n
r

)
, the number of combinations of n things r at a time.

(
n

r

)
=

n!

(n− r)!r! =
(

n

n− r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)
(
−n
r

)
= (−1)r

(
n+ r − 1

r

)
A lattice path is a path from the lattice point (x1, y1) to the

lattice point (x2, y2), x1 ≤ x2, y1 ≤ y2, we mean a directed
path from (x1, y1) to (x2, y2) which passes through lattice

points with movements parallel to the positive direction of
either axis. Here, we refer to two types steps, viz., x−steps
and y−steps, where an x ( y )−step is a directed line segment
parallel to the x ( y ) axis going right (up) joining two
neighboring points. For counting purposes we may, without
loss of generality, consider lattice paths from the origin to
(m,n) and observe that each such path is characterized by
having exactly m horizontal steps and n vertical steps. If we
denote by f(m,n) the number of paths from (0, 0) to (m,n),
elementary reasoning gives the results

f(m,n) =

(
m+ n

n

)
.

Lattice paths are encountered in a natural way in various
problems, e.g., ballot problems, compositions, random walks,
fluctuations, queues, and the tennis ball problem.

The number of lattice paths from the origin to (m,n), m >
n + t, not touching the line x = y + t, where t is a nonzero
integer satisfies [18](

m+ n

n

)
−
(
m+ n

m− t

)
.

When t = 0, the paths have to touch the line x = y at
the origin, and therefore the number paths from the origin to
(m,n) that do not touch the line x = y except at the origin
is given by

m− n
m+ n

(
m+ n

n

)
.

The number of lattice paths from (r, s) to (m,n) that never
rise above the line y = x is [1](

n+m− r − s
m− r

)
−
(
n+m− r − s
m− s+ 1

)
.

Then the number of lattice paths from (0, 0) to (m,n) that
never rise above the line y = x is(

n+m

m

)
−
(
n+m

m+ 1

)
.

The of n-step lattice paths starting from (0, 0) that never
rise above the line y = x is

n∑
i=dn/2e

n!(2i+ 1− n)
(i+ 1)!(n− i)! =

(
n

bn/2c

)
.

The number of paths from (0, 0) to (n, n) that never rise
above the line y = x is the nth Catalan number, denoted by
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Cn, and define C0 = 1.

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(
2n

n+ 1

)
=

n∑
i=0

(
n

i

)2
with generating function

1−
√
1− 4x
2x

.

Also,

Cn+1 =
n∑
i=0

CiCn−1 =
2(2n+ 1)

n+ 2
Cn.

The tennis ball problem was presented on pages 304− 305
of the book " Sweet Reason: A Field Guide to Modern Logic"
by Tom Tymoczko and Jim Henle in 1995. Their presentation
deals with adding numbered books to a stack on a table,
then removing some, infinitely many times. Motivated by that
presentation, Ralph P. Grimaldi and Joseph G. Moser deal with
performing the process a finite number of times. Since then
more mathematicians have studied the problem, such as C. L.
Mallows and L. Shapiro, R.J. Chapman, T.Y. Chow, A. Khetan,
D.P. Moulton, R.J. Waters, J. E. Bonin, Anna de Mier, M. Noy,
H. Niederhausen, J. Fallon, and S. Gao. [2], [4], [5], [6], [7],
[8], [9], [11], [13], [14], [16], [17] However, it is still wildly
open and might challenge more people in the future.

The number of ways of putting n like objects into r different
cells is

(
n+r−1
n

)
=
(
n+r−1
r−1

)
. [19] It is also the number of

nonnegative integer solutions to the equation
r∑
i=1

xi = n. The

number of ways of putting n like objects into r different cells
with no cell is empty is

(
n−1
r−1
)
. It is also the the number of

positive integer solutions to the equation
r∑
i=1

xi = n.

If p is a prime, then
(
p
i

)
is divisible by p for 1 ≤ i ≤ p−1.

[21]
Fibonacci number: Fn is defined as F0 = 0, F1 = 1, Fn =

Fn−2 + Fn−1 for n ≥ 2.

II. PATTERN AVOIDANCE IN LATTICE PATHS AND WALKS

The number of n-step walks with steps (0, 1), (1, 0) and
(−1,−1) is

(3n)!

(n!)3
.

Theorem 1. The number of 3n-step walks from (0, 0) to (0, 0),
taking steps from {E,N, SW}, and staying above the line y = x
(i.e., any point (x, y) along the path satisfies y ≥ x ) is given

by
(3n)!

(n!)2(n+ 1)!
.

Example: n = 1, three walks: NE(SW ), (SW )NE,
N(SW )E.

This is the sequence [22, A007004]:

1, 3, 30, 420, 6930, 126126, ...

Proof: It is clear that such a 3n-step walk contains n
copies of north, east and southwest step, respectively.
It is also true that the total number of north and east steps is
greater or equal to the number of southwest steps at any lattice
point on a walk. Now we arrange n north and east steps (total
is n ) with n southwest steps to get a 2n-step walk according
to: the total number of the chosen steps is greater or equal to
the number of southwest steps at any lattice point on a walk,
which gives Cn (We do not consider the difference of north
steps and east steps at this moment). Next, we have 2n + 1
positions to insert the remaining n steps of the north steps
and east steps into the 2n-step walk, giving

(
3n
n

)
ways. Now

combine them:

Cn

(
3n

n

)
=

(3n)!

(n!)2(n+ 1)!
.

This theorem also could be proved by using André’s Reflec-

tion Method:(
3n

n, n, n

)
−
(

3n

n+ 1, n− 1, n

)
=

(3n)!

(n!)2(n+ 1)!
.

Theorem 2. The number of 3n-step walks from (0, 0) to

(0, 0), taking steps from {W,S,NE}, and staying within the

first quadrant (i.e., any point (x, y) along the walk satisfies

x, y ≥ 0 ) is given by [12]

4n(3n)!

(n+ 1)!(2n+ 1)!
.

Example: n = 1, two walks: (NE)SW , (NE)WS.
This is the sequence [22, A006335]:

1, 2, 16, 192, 2816, 46592, 835584, ...

Theorem 3. The number of lattice paths avoiding ↑≥2, from

(0, 0) to (m,n) is (
m+ 1

n

)
.

Proof: The m East steps provide m+1 positions (we can
say m+1 different cells) for n North steps to be inserted with
each cell containing at most one element (North step). Then
there are

(
m+1
n

)
ways to choose n cells.

Corollary 4. The number of lattice paths from (0, 0) to (ns+
1, nt− 1), avoiding ↑≥2is(

ns+ 2

nt− 1

)
.

Corollary 5. The number of n-step paths with east and north

steps and with two consecutive north steps forbidden is equal

to [3]
dn/2e∑
i=0

(
n+ 1− i

i

)
= Fn+2.
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Theorem 6. The number of walks from (0, 0) to (m,n) (

m ≥ n) take steps from {E,N,NE} is

n∑
k=0

(
m+ n− 2k
n− k

)(
m+ n− k

k

)
.

Proof: Without loss of generality, we assume that there
are k Northwest steps, m−k East steps and n−k North steps
in a walk from (0, 0) to (m,n). It is clear that 0 ≤ k ≤ n.

Firstly, we only consider the number of arrangements ofm−
k East steps and n− k North steps, which give us

(
m+n−2k
n−k

)
ways.

Secondly, m− k East steps and n− k North steps provide
m + n − 2k + 1 positions (we can say m + n − 2k + 1
different cells) for k Northwest steps to be inserted, which
give

(
m+n−k

k

)
.

Therefore, we get the number:
n∑
k=0

(
m+ n− 2k
n− k

)(
m+ n− k

k

)
.

We obtain sequence [22, A001850] for m = n:

1, 3, 13, 63, 321, 1683, 8989, 48639, ...

Sequence [22, A002002] for m = n+ 1:

1, 5, 25, 129, 681, 3653, 19825, ...

The number of walks from (0, 0) to (n, n − 1) ( m ≥ n)
take steps from {E,N,NE}.

Sequence [22, A026002] for m = n+ 2:

1, 7, 41, 231, 1289, 7183, 40081, ...

Sequence [22, A190666] for m = n+ 3:

9, 61, 377, 2241, 13073, 75517, 433905, ...

Example 7. There are 13 walks in the above theorem for

m = n = 2: 6 walks with 2 East steps and 2 North steps,

1 walk with two Northeast steps, 6 walks with 1 Northeast

step, 1 East step and 1 North step: (NE)NE, (NE)EN, NE(NE),

EN(NE),E(NE)N, N(NE)E.

Corollary 8. The number of walks from (0, 0) to (n, n) take

steps from {E,N,NE} is

n∑
k=0

(n+ k)!

(n− k)!(k!)2 .

Theorem 9. The number of lattice paths from (0, 0) to (m,n)
avoiding ↑≥3is

bn/2c∑
i=0

(
m+ 1

n− i

)(
n− i
i

)
.

Proof: Without loss of generality, we assume that there
are i copies of double North Steps, n − 2i copies of single
North step in a lattice path from (0, 0) to (m,n) and avoiding

↑≥3. It is clear that 0 ≤ i ≤ bn/2c. The m East steps provide
m+1 positions (we can say m+1 different cells) for n North
steps to be inserted with each cell containing at most one
element (↑ or ↑2). There are

(
m+1
n−i
)

ways to choose n cells
for the i copies ↑2 and n − 2i copies of ↑. We have

(
n−i
i

)
ways to distribute the i copies ↑2. Therefore, we can get the
number.

Corollary 10. The number of lattice paths from (0, 0) to (ns+
1, nt− 1) avoiding ↑≥3is

b(nt−1)/2c∑
i=0

(
ns+ 2

nt− 1− i

)(
nt− 1− i

i

)
.

Theorem 11. The number of lattice paths from (0, 0) to

(m,n) avoiding ↑≥2 and →≥3is(
n+ 1

m− n− 1

)
+ 2

(
n

m− n

)
+

(
n− 1

m− n+ 1

)
.

Theorem 12. The number of lattice paths from (0, 0) to

(m,n) avoiding ↑≥3and →≥3is

2

bm/2c∑
i=m−n

(
m− i
i

)(
m− i

n−m+ i

)

+

bm/2c∑
i=m−n−1

(
m− i
i

)(
m− i− 1

n−m+ i+ 1

)

+

bm/2c∑
i=m−n+1

(
m− i
i

)(
m− i+ 1

n−m+ i− 1

)
.

The generating function of the above numbers is

[xmyn](
(
1 + x+ x2 + x3

)
(1 + y + y2 + y3)

(1− xy − xy2 − xy3 − x2y − x2y2

− x2y3 − x3y − x3y2 − x3y3)−1).

Corollary 13. The number of lattice paths from (0, 0) to

(n, n) avoiding ↑≥3and →≥3is

2

bn/2c∑
i=0

(
n− i
i

)(
n− i
i

)
+ 2

bn2 c∑
j=1

(
n− j
j

)(
n− j + 1
j − 1

)
.

Theorem 14. The generating function for the number of lattice

paths from (0, 0) to (n, n) avoiding ↑≥3and →≥3, is

(1− t)2
√
(1 + t+ t2) (1− 3t+ t2)− (1− 3t+ t2)(1 + t2)

t2(1− 3t+ t2)
= 2t+ 6t2 + 14t3 + 34t4 + 84t5 + 208t6 + 518t7 + ... .

A proof of this theorem involved finite operator calculus is
in [10].

Example 15. For m ≤ 7 and n ≤ 8, the number of

lattice paths from (0, 0) to (m,n) avoiding ↑≥3and →≥3is
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as follows:

n=8 1 15 87

n=7 4 30 114

n=6 1 10 43 113

n=5 3 16 45 84

n=4 1 6 18 34 45

n=3 2 7 14 18 16

n=2 1 3 6 7 6 2

n=1 1 2 3 2 1

n=0 1 1

m=0 m=1 m=2 m=3 m=4 m=5

from (0, 0) to (m,n) avoiding ↑≥3 and −→≥3

Theorem 16. Let f(m,n) be the number of lattice paths from

(0, 0) to (n, n) avoiding ↑k and −→k,taking steps from {↑
,−→}. Then

f(m,n) = f(m− 1, n) + f(m,n− 1)− f(m− k, n− 1)
− f(m− 1, n− k) + f(m− k, n− k).

Corollary 17. The number of lattice paths from (0, 0) to

((ns+ 1), nt− 1) avoiding ↑≥3and →≥3is

2

b(ns+1)/2c∑
i=(ns+1)−n

(
m− i
i

)(
m− i

n−m+ i

)

+

bm/2c∑
i=m−n−1

(
m− i
i

)(
m− i− 1

n−m+ i+ 1

)

+

bm/2c∑
i=m−n+1

(
m− i
i

)(
m− i+ 1

n−m+ i− 1

)
.

Theorem 18. The number of lattice path from (0, 0) to (n, n)
avoiding ↑≥4,→≥4is

2

bn/3c∑
i=0

b(n−3i)/2c∑
j=0

(
n− 2i− j

i

)(
n− 3i− j

j

)
min{bn/3c,b 2i+j2 c}∑

s=0

(
n− 2i− j

s

)(
n− 2i− j − s
2i+ j − 2s

)

+2

bn/3c∑
i=0

b(n−3i)/2c∑
j=0

(
n− 2i− j

i

)(
n− 3i− j

j

)
min{bn/3c,b 2i+j+12 c}∑

s=0

(
n− 2i− j − 1

s

)(
n− 2i− j − s− 1
2i+ j + 1− 2s

)
.

The above numbers equal

[xnyn](

(
1 + x+ x2 + x3

)
(1 + y + y2 + y3)

1− xy (1 + y + y2) (1 + x2 + x) ).

Theorem 19. The generating function of the number of lattice

paths from (0, 0) to (n, n) avoiding ↑≥i,→≥jsatisfies

(
i∑

k=1

xk−1)(

j∑
k=1

yk−1)

1− (
i∑

k=2

xk−1)(

j∑
k=2

yk−1)

.

Problem 20. How to find the number of lattice paths from

(0, 0) to (n, n) avoiding ↑≥i,→≥j , and weakly above the the

diagonal y = x . And how to find a good generating function

for this problem?

III. STRETCHES AND TURNS [15]

A. Lattice Path with East, North Steps:

Consider the paths from (0, 0) to (m,n) with s level-
stretches (a stretch is one or some unextendable continues level
steps),k right turns and h up-stretches.

Let f1(m,n, k) denote number of walks from (0, 0) to
(m,n) with k right turns, then

f1(m,n, k) =

(
m

k

)(
n

k

)
.

Example: f1(1, 1, 1) = 1, f1(1, 1, 0) = 1, f1(2, 2, 1) = 4.
Let f2(m,n, s) denote the number of walks from (0, 0) to

(m,n) with s level-stretches, then

f2(m,n, s) =

(
m− 1
s− 1

)(
n+ 1

s

)
.

Example: f2(1, 1, 1) = 2, f2(1, 2, 1) = 3, f2(3, 2, 2)=6.
Let f3(m,n, h) denote the number of walks from (0, 0) to

(m,n) with h up-stretches, then

f3(m,n, h) =

(
m+ 1

h

)(
n+ 1

h− 1

)
.

Example: f3(1, 1, 1) = 2, f3(1, 2, 2) = 3, f3(3, 3, 2) = 24.
Let f4(m,n, t) denote the number of walks from (0, 0) to

(m,n) with t stretches, then f4(m,n, t) =

2

(
m− 1
t/2− 1

)(
n− 1
t/2− 1

)
when t is even,

(
m− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
+

(
m− 1

(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
when t is odd.

Example:f4(1, 1, 2) = 2, f4(3, 3, 4) = 8, f4(2, 1, 3) =
1, f4(3, 4, 5) = 9.

Let f5(m,n) denote the number of walks from (0, 0) to
(m,n). It is well known that

f5(m,n) =

(
m+ n

n

)
=

(
m+ n

m

)
.
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We also have

f5(m,n) =
∑
i≥1

(
m+ 1

i

)(
n− 1
i− 1

)
.

Example: f5(1, 1) = 2, f5(1, 2) = 3, f5(2, 2) = 6.

B. ENW Walks

Counting walks which start at the origin (0, 0) and take
unit steps (1, 0), (0, 1), and (−1, 0) with the restriction that
no E step immediately follows a W step and vice verse. The
restriction has the effect of making the walks self-avoiding.
It is a major unsolved problem to enumerate all self-avoiding
walks. We start by counting walks which start at the origin
(0, 0) and take unit steps (1, 0),and (0, 1). Let p(m,n) denote
the number of ENW walks from (0, 0) the (m,n). We have

p(m,n) = p(m,n− 1) + 2
∑
i>0

p(m− j, n− 1)

p(m+ n) =
∑
i=0

p(m+ i, n− i).

Let p1(m,n, h) denote the number of walks from (0, 0) to
(m,n) with h up-stretches, then

p1(m,n, h) = 2
h+1

(
m

h

)(
n− 1
h− 1

)
+2h−1

(
m− 1
h− 2

)(
n− 1
h− 1

)
.

Example:p1(1, 1, 1) = 4, p1(3, 4, 2) = 78.
Let p2(m,n, t) denote the number of walks from (0, 0) to

(m,n) with t stretches, then

p2(m,n, t) =

2(t/2+1)
(
m− 1
t/2− 1

)(
n− 1
t/2− 1

)
when t is even;

2(t+1)/2
(
m− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
+

2(t−1)/2
(

m− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
when t is odd.

Example:p2(1, 1, 2) = 4, p2(4, 3, 4) = 48, p2(1, 2, 3) =
2,p2(3, 4, 5) = 48.

Let p2(N, t) denote the number of walks with length N and
t stretches, then p2(N, t) =

N−t/2∑
n=t/2

2t/2+1
(
N − n+ 1
t/2− 1

)(
n

t/2− 1

)
for even t

N−(t+1)/2∑
n=(t−1)/2

2(t+1)/2
(
N − n− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)

+

N−(t−1)/2∑
n=(t+1)/2

2(t−1)/2
(
N − n− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
for odd t.

Example: p2(2, 2) = 4, p2(3, 2) = 8, p2(1, 1) = 3, p2(3, 3) =
6.

Let p(N) be the number of walks of length N , then

p(N) = 3 +
N∑
t=1

p2(N, t).

C. ENW Walks without Ending With a W Step

We now consider ENW walks from (0, 0) to (m,n) with
the additional restriction no walk ends with a W step. Let
q1(m,n, h) denote the number of walks from (0, 0) to (m,n)
with h up-stretches, then

q1(m,n, h) = 2
h−1
(
n− 1
h− 1

)
(

(
m

h− 1

)
+ 2

(
m

h

)
).

Example:q1(1, 1, 1) = 3, q1(2, 2, 1) = 5,q1(3, 4, 2) = 54.
Let q2(m,n, t) denote the number of walks from (0, 0) to

(m,n) with t stretches, then q2(m,n, t) =

3× 2t/2−1
(
m− 1
t/2− 1

)(
n− 1
t/2− 1

)
for even t

2(t−1)/2
(

m− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
+ 2(t−1)/2

(
m− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
for odd t.

Example:q2(1, 1, 2) = 3, q2(4, 3, 4) = 36, q2(1, 2, 3) = 2

,q2(3, 4, 5) = 36.
Let q2(N, t) denote the number of walks with length N and

t stretches, then q2(N, t) =

N−t/2∑
n=t/2

3× 2t/2−1
(
N −m− 1
t/2− 1

)(
n− 1
t/2− 1

)
for even t

N−(t−1)/2∑
n=(t−1)/2

(2(t−1)/2
(
N − n− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)

+ 2(t−1)/2
(
N − n− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
)

for odd t.

Example: q2(2, 2) = 3,q2(3, 2) = 6, q2(3, 3) = 4, q2(5, 3) =
24.

Let q(N) be the number of walks of length N , then

q(N) =
N∑
t=1

p2(N, t).

Let q(m,n) denote the number of walks from (0, 0) to
(m,n), then

q(m,n) =
n∑
h=1

2h−1
(
n− 1
h− 1

)
(

(
m

h− 1

)
+ 2

(
m

h

)
).

Example:q(1, 1) = 3, q(1, 2) = 5, q(3, 4) = 129.
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q(N) =
N∑
n=1

(
n∑
h=1

2h−1
(
n− 1
h− 1

)
(

(
N − n
h− 1

)
+2

(
N − n
h

)
))+1.

Example: q(0) = 1, q(1) = 2, q(2) = 5, q(3) = 12,q(4) =
29, q(5) = 70, q(6) = 169.

D. END Walks

We now consider walks from (0, 0) to (m,n) and taking
unit steps (1, 0) = E(east) and (0, 1) = N (north) and double
east steps of length 2 denoted by D.

Let c(m,n, h, d) denote the number of walks from (0, 0) to
(m,n) with h up-stretches and d copies of D, then

c(m,n, h, d) =

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)
.

Example: c(1, 1, 1, 0) = 2, c(2, 1, 1, 1) = 2 ,c(6, 6, 4, 2) =
300, c(6, 6, 4, 3) = 10.

Let c(m,n, h) denote the number of walks from (0, 0) to
(m,n) with h up-stretches, then

c(m,n, h) =

m∑
d=0

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)
.

Example: c(1, 1, 1) = 2, c(2, 1, 1) = 5, c(4, 3, 2) = 62.
Let c(m,n) denote the number of walks from (0, 0) to

(m,n),then

c(m,n) =
n∑
h=0

m∑
d=0

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)
.

Example: c(1, 1) = 2, c(1, 2) = 3, c(3, 3) = 40.
Also,

c(m,n) =
n∑
h=0

m∑
d=0

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)

=
m∑
d=0

(
m− d
d

) n∑
h=0

(
n− 1
h− 1

)(
m− d+ 1

h

)

=
m∑
d=0

(
m− d
d

)(
n+m− d
m− d

)
.

Let c(N) denote the number of walks of length N, then

c(N) =
N∑
n=0

N−n∑
d=0

(
N − n− d

d

)(
N − d

N − n− d

)

=
N∑
n=0

N−n∑
d=0

(
N − n− d

d

)(
N − d
n

)
.

Example:c(1) = 2, c(2) = 5, c(3) = 12, c(4) = 29.

IV. OPEN PROBLEMS IN PRUDENT SELF-AVOIDING WALKS

We will talk about two-sided prudent self-avoiding walks
(PSAWs) in the following:

A well-known long standing problem in combinatorics
and statistical mechanics is to find the generating function
for self-avoiding walks (SAW) on a two-dimensional lattice,
enumerated by perimeter. A SAW is a sequence of moves
on a square lattice which does not visit the same point more
than once. It has been considered by more than one hundred
researchers in the pass one hundred years, including George
Polya, Tony Guttmann, Laszlo Lovasz, Donald Knuth, Richard
Stanley, Doron Zeilberger, Mireille Bousquet-Mélou, Thomas
Prellberg, Neal Madras, Gordon Slade, Agnes Dittel, E.J. Janse
van Rensburg, Harry Kesten, Stuart G. Whittington, Lincoln
Chayes, Iwan Jensen, Arthur T. Benjamin, and others. More
than three hundred papers and a few volumes of books were
published in this area. A SAW is interesting for simula-
tions because its properties cannot be calculated analytically.
Calculating the number of self-avoiding walks is a common
computational problem. A PSAW is a proper subset of SAWs
on the square lattice. The walk starts at (0, 0), and the empty
walk is a PSAW. A PSAW grows by adding a step to the end
point of a PSAW such that the extension of this step - by any
distance - never intersects the walk. Hence the name prudent.
The walk is so careful to be self-avoiding that it refuses to
take a single step in any direction where it can see - no matter
how far away - an occupied vertex. The following walk is a
PSAW.

In a one-sided PSAW, the endpoint lies always on the top
side of the box. The walk is partially directed. A prudent walk
is two-sided if its endpoint lies always on the top side, or on
the right side of the box. The walk in the following figure is
a two-sided PSAW.

We studied the pattern avoidance problems on one-sided and
two-sided PSAWs and obtained:

(1) The generating function of the number, say f(n, k), of
one-sided n-step prudent walks exactly avoiding←=k and ↑=k
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(both at the same time) satisfies

1 + t− 2tk + 2tk+1
1− 2t− t2 + 2tk+1 − 2tk+2 , and

f(n, k) = g(n, k) + g(n− 1, k)− 2g(n− k, k)
+ 2g(n− k − 1, k), where

g(n, k) =
n∑
i=0

i∑
j=0

j∑
l=0

(
i

j

)
×(

j

l

)(
l

−i− j + l − kl + n

)
(−1)i+j+kl−n 2i−j+l.

(2) The generating function of the number of two-sided
n-step prudent walks, ending on the top side of their box,
avoiding both ←≥k, and ↓≥k (k > 2) taking steps from
{↑, ↓,←,→}satisfies:(

1− t2u1− t
kuk

1− tu −
tu

u− t

)
T (t, u)

= 1 + tu
1− tkuk
1− tu +

u− 2t
u− t tT (t, t)

where u counts the distance between the endpoint and the
north-east corner of the box.

For instance, in the following figure, a walk takes 5 steps,
and the distance between the endpoint and the north-east
corner is 3. So we can use t5u3 to count this walk.

(3) The generating function of the number of two-sided n-
step prudent walks, ending on the top side of their box, exactly
avoiding both ←=2, ↓=2, taking steps from {↑, ↓,←,→},
equals

(1− t2u

1− tu −
tu

u− t + u
2t3)T (t, u)

=
1

1− tu − u
2t2 +

u− 2t
u− t tT (t, t).

Then we come to two open problems and two new results
here:

Problem 21. How to enumerate the number of two-sided

n-step prudent walks, ending on the top side of their box,

avoiding both ←≥i, and ↓≥j (i > j > 2) taking steps from

{↑, ↓,←,→}?
Problem 22. How to enumerate the number of two-sided n-

step prudent walks, ending on the top side of their box, exactly

avoiding both ←=i, ↓=j(i > j > 2) taking steps from {↑, ↓
,←,→}?
Theorem 23. The number of one-sided n-step prudent walks

in the first quadrant, starting from (0, 0) and ending on the y-

axis, taking steps from {↑,←,→}, avoiding ←≥2 and →≥2is

bn+14 c∑
j=0

1

j + 1

(
2j

j

)(
n− 2j + 1

2j

)
.

Proof: We suppose that there are j copies of East steps,
j copies of West steps and n− 2j copies of North steps.

Now we arrange j copies of East steps and j copies of
West steps according to: the total number of the East steps is
greater or equal to the total number of West steps from (0, 0)
to any lattice point on a walk, which gives Cj , the jth Catalan
number.

The n−2j North steps in a walk provide n−2j+1 positions
(i.e., cells) for j East steps and j West steps to be distributed,
with each cell containing at most 1 East step or 1 West step.
Then 0 ≤ j ≤ bn+14 c. There are

(
n−2j+1

2j

)
way to choose 2j

cells for the j East steps and j West steps.
Therefore,

bn+14 c∑
j=0

1

j + 1

(
2j

j

)(
n− 2j + 1

2j

)
.
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Abstract - There exist many compute-intensive soft real-time 

applications, such as video encoding/decoding and data 

encryption/decryption, that require a fixed percentage of CPU 

cycles to maintain an acceptable QoS (Quality of Service). 

Unfortunately, major operating systems do not support well 

such compute-intensive soft real-time applications, since they 

commonly rely on a proportional share policy. In this paper, 

we present a novel scheduling policy, called FSS (fixed share 

scheduling), to enable a proportional share scheduler to 

support compute-intensive soft real-time applications as well 

as non-real-time applications. The goal of FSS is to guarantee 

an absolute, constant share of CPU cycles for soft real-time 

tasks regardless of workload conditions, whereas traditional 

proportional share schedulers focus on relative proportional 

guarantees. To do so, working on top of a proportional share 

scheduler, FSS dynamically changes the weight value of each 

soft real-time task to match the demanded amount of CPU 

share under varying workload conditions. The weighted 

fairness mechanism of the underlying proportional share 

scheduler will then provide the demanded amount of CPU 

share for each soft real-time task. To demonstrate the efficacy 

of FSS, we have implemented a fixed shared scheduling 

prototype in the Linux CFS (completely fair scheduler) and 

conducted experiments to show the correctness and efficiency 

of the FSS scheme.  

 

Keywords: Fixed Share Scheduling, Proportional Share 

Scheduler, QoS, soft real-time. 
 

 

1 Introduction 

There exist many compute-intensive soft real-time 

applications, such as video encoding/decoding and data 

encryption/decryption, that require a fixed percentage of CPU 

cycles to maintain an acceptable QoS (Quality of Service). 

For example, a HVEC (High Efficiency Video Coding) 

decoder demands around 60% of CPU utilization on ARM 

Cortex A9 processor at 1.5 GHz. When the CPU cycle 

demand cannot be met, the provided QoS will be 

significantly degraded. 

Unfortunately, such compute-intensive soft real-time 

applications are not well supported by major operating 

systems. Most operating systems use a proportional share 

scheduling policy, often combined with a priority-based 

scheduling policy. The common goal of these schedulers is to 

achieve fairness and responsiveness as a general purpose 

operating system scheduler, rather than providing any 

resource guarantees for real-time applications.  

In this paper, we present a novel scheduling policy, called 

FSS (fixed share scheduling), to enable a proportional share 

scheduler to support compute-intensive soft real-time 

applications as well as non-real-time applications. The goal 

of FSS is to guarantee an absolute, constant share of CPU 

cycles for soft real-time tasks regardless of workload 

conditions, whereas traditional proportional share schedulers 

focus on relative proportional guarantees. To do so, working 

on top of a proportional share scheduler, FSS dynamically 

changes the weight value of each soft real-time task to match 

the demanded amount of CPU share under varying workload 

conditions. The weighted fairness mechanism of the 

underlying proportional share scheduler will then provide the 

demanded amount of CPU share for each soft real-time task. 

To demonstrate the efficacy of FSS, we have implemented 

a fixed shared scheduling prototype in the Linux CFS 

(completely fair scheduler). We have also conducted 

experiments to show the correctness and efficiency of the 

FSS scheme.  

 

 

2 Fixed Share Guarantees with 

Proportional Share Schedulers 

Proportional share scheduling provides a useful abstraction 

for multiplexing resources among different tasks [10]. The 

key idea of proportional share scheduling is to allocate 

resources to tasks proportional to their weights. The ideal 

model of proportional share resource allocation is the 

Generalized Processor Sharing (GPS) scheme. GPS assumes 

a fluid-style resource model and guarantees perfect fairness 

based on an infinitesimal fluid resource model. For real 

systems where resources cannot be provided infinitesimally, 

approximate scheduling schemes like WFQ (Weighted Fair 

Queuing) and PGPS (Packet by Packet GPS) have been 

proposed. Figure 1 shows the ideal proportional share 

scheduling and approximate proportional scheduling. 
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Let         be the weight of task     and let   be the set 

of all active tasks at time  . The share       of a task     at 

time   is defined as below. 

      
       

∑           

                                       

As the number of tasks can change at runtime, the resource 

share       also changes. For example, when a new task 

arrives, the total weight ∑            of tasks will increase, 

decreasing the share       of task   . Therefore, a 

proportional share scheduler only guarantees a relative share 

of CPU cycles depending on the workload condition, rather 

than an absolute, fixed share of CPU time. 

The goal of FSS is to guarantee a constant amount of CPU 

utilization for soft real-time tasks regardless of dynamic 

changes in workload. This idea can be easily implemented in a 

proportional share scheduling system by simply changing the 

weight values of soft real-time tasks during runtime. Let    be 

the CPU utilization demanded by a soft real-time task    . The 

actual CPU utilization allocated to task     is determined by 

weight values of other non-real-time tasks as follows. 

 

                          
       

∑                       

                      

 

A simple arithmetic manipulation gives the following 

equation.  

                        
  

      

   ∑        
       

                 

Therefore, we can determine the new weight value of task 

    using Eq. (3) for a given value of fixed share demand   .  

 

 

3 Incorporating Fixed Share 

Scheduling into Linux CFS 

In this section, we demonstrate that the proposed idea can be 

incorporated into the Linux completely fair scheduler (CFS). 

CFS has been introduced since Linux 2.6.23 to provide 

weighted fairness. CFS uses virtual runtime for each task to 

keep track of the actual CPU time the task has received and 

the ideal CPU time the task should have received. Let 

          be the virtual runtime of task     at time   and 

        be the CPU time consumed by the task    by time  . 

Let         be the weight for nice value 0. 

          
       
       

                               

static cons int prio_to_weight[40] = { 

/* -20 */ 88761, 71755, 56483, 46273, 36291, 

/* -15 */ 29154, 23254, 18705, 14949, 11916, 

/* -10 */ 9548, 7620, 6100, 4904, 3906, 

/* 0-5 */ 3121, 2501, 1991, 1586, 1277, 

/* 000 */ 1024, 820, 655, 526, 423, 

/* 005 */ 335, 272, 215, 172, 137, 

/* 010 */ 110, 87, 70, 56, 45, 

/* 015 */ 36, 29, 23, 18, 15, 

};      

 
Note that         is determined by the nice value of task 

   . The weight value has a range from 88761 (nice level -20) 

to 15 (nice level 19) where small nice values have large 

weights. The nice values are stored in the prio_to_weight[] 

array in "sched.h" of the Linux kernel source code as 

shown in Figure 2. 

Note that CFS guarantees weighted fairness by allocating 

different time slices to tasks of different weights. Specifically, 

the length of the time slice     of     is proportional to its 

weight as below. 

    
       

∑           

                                    

where   is the length of round in which the scheduler 

executes every task only once scanning the run queue. It is 

defined by the following. 

  {
                                           
                                        

     

where   is the total number of tasks in the run queue, 

                     and                              

are constants specified as 6ms and 0.75ms, respectively, in 

our Linux setting, and                  is defined by Eq. 

(7). 

                 
                    

                            
      

which becomes 8 as                      is 6ms and 

                             is 0.75ms. 

A fixed share scheduling scheme can be easily 

implemented in Linux by slightly modifying the scheduler to 

perform weight recalculation. Since CFS can also be viewed 

as an approximate implementation of GPS, the 

implementation of fixed share scheduling in CFS is not much 

Figure 2. Mapping between nice and weight values. 

Figure 1. Proportional share scheduling. 
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different from implementing it in other proportional share 

schedulers. A major difference is that CFS uses discrete 

weight values ranging from 15 to 88761, which requires us to 

find the nearest weight value that is greater than the 

recalculated weight value. For example, when a new weight 

value should be 8100, we need to choose 9548 and assign -10 

as a new nice value.  

 

 

Hardware 

CPU 
Samsung Exynos5 Octa 

big.LITTLE processor 

RAM 2 GByte LPDDR3 RAM 

Software 

Operating 

System 

Android 4.2.2 Jelly Bean, 

Kernel Version : 3.4.5 

GNU gcc 
arm-eabi-gcc (GCC)  

4.6.x-google 20120106 

 
 

4 Experimental Evaluation 

We have implemented and incorporated FSS into Linux CFS. 

Figure 3 summarizes the development environment. We then 

conducted a set of simple experiment to validate the correct 

behavior of our fixed share scheduling scheme. 

 

 

 

 
 

In the first set of experiments, we observed the utilization 

of a target task with nice value of 0 under the original CFS 

scheme. Figure 4 shows that the utilization of target task 

decreases as the number of tasks, nr_running, increases.  

In the second set of experiments, we observed the 

utilization of a target task under the proposed fixed share 

scheduling scheme. The fixed share demand of target task was 

set to be 50% of CPU utilization. Figure 5 shows that the 

actual utilization of target task is maintained around 50% even 

though the number of tasks varies dynamically. 

 

 

 

 

 
 

 

5 Conclusion 

In this paper, we have presented a FSS (fixed share 

scheduling) that can guarantee an absolute, constant share of 

CPU cycles for soft real-time tasks. FSS works on top of a 

traditional proportional share scheduler and dynamically 

changes the weight value of each soft real-time task to 

guarantee the demanded amount of CPU share under varying 

workload conditions. To demonstrate the efficacy of FSS, we 

have also implemented a fixed shared scheduling prototype in 

the Linux CFS (completely fair scheduler). Our evaluation 

shows that FSS provides accurate fixed share guarantees 

under varying workload conditions. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  three quantum-intersection-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed intersection 

   int1(x,y) = c(i1(x,c(y)))      

   int2(x,y) = c(i2(x,c(y))) 

   int3(x,y) = c(i3(x,c(y)))      

   int4(x,y) = c(i4(x,c(y)))      

   int5(x,y) = c(i5(x,c(y)))      

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    x  y 
 

where  
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 x i y means  c(x i c(y)) 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.12  of [5] 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive OMA from Proposition 2.12 of 

[5], for each of  i = 1,2,3  together with ortholattice theory (orthomodular lattice theory, without 

the OMA), then executed in that framework  on a  Dell Inspiron 545 with an  Intel Core2 Quad 

CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under the Windows Vista Home 

Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

Proposition 2.12 (for each of  i = 1,2,3), together with ortholattice theory, imply the OMA.  

 

 
============================== PROOF ================================= 

 

% Proof 1 at 88.30 (+ 2.62) seconds: "OMA". 

% Length of proof is 42. 

% Level of proof is 11. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int1(x,y) = 0 <-> perp(x,y) # label("Hypothesis for Proposition 2.10int1") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

7 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

8 int1(x,y) != 0 | perp(x,y) # label("Hypothesis for Proposition 2.10int1").  

[clausify(4)]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

24 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

25 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(24),rewrite([22(3)])]. 

44 int1(x,y) = c(i1(x,c(y))) # label("Df: int1").  [assumption]. 

45 int1(x,y) = c(c(x) v c(c(x) v y)).  [copy(44),rewrite([25(3),13(5)])]. 

54 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

55 -le(x,y) | c(c(x) v c(y)) = x.  [copy(54),rewrite([22(2)])]. 

58 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

59 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(58),rewrite([14(6),22(7),13(4),14(12)])]. 

60 int1(x,y) != 0 | le(x,c(y)).  [resolve(8,b,7,a)]. 

61 c(c(x) v c(c(x) v y)) != 0 | le(x,c(y)).  [copy(60),rewrite([45(1)])]. 

64 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 
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66 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

68 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

75 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

80 c(x v c(x v y)) != 0 | le(c(x),c(y)).  [para(13(a,1),61(a,1,1,1)),rewrite([13(2)])]. 

103 x v c(c(x) v y) = x.  [para(13(a,1),66(a,1,2,1,2))]. 

143 x v c(y v c(x)) = x.  [para(14(a,1),103(a,1,2,1))]. 

145 x v (y v c(c(x v y) v z)) = x v y.  [para(103(a,1),15(a,1)),flip(a)]. 

154 x v (y v c(y v x)) = 1.  [para(14(a,1),75(a,1,2,2,1))]. 

207 x v (y v c(z v c(x v y))) = x v y.  [para(143(a,1),15(a,1)),flip(a)]. 

214 c(x v c(y v x)) != 0 | le(c(x),c(y)).  [para(14(a,1),80(a,1,1,2,1))]. 

1657 c(x v (c(y v x) v c(c(y v x) v z))) != 0 | le(c(x v c(c(y v x) v z)),c(y)).  

[para(145(a,1),214(a,1,1,2,1)),rewrite([14(8),68(8)])]. 

24240 le(c(x v c(x v c(y v x))),c(y)).  

[para(154(a,1),1657(a,1,1)),rewrite([64(2),14(6)]),xx(a)]. 

24245 c(x v c(x v c(y v x))) = c(y v x).  

[hyper(55,a,24240,a),rewrite([13(7),13(7),14(6),207(6)]),flip(a)]. 

24252 x v c(x v c(y v x)) = y v x.  

[para(24245(a,1),13(a,1,1)),rewrite([13(3)]),flip(a)]. 

24330 x v c(x v c(x v y)) = y v x.  [para(14(a,1),24252(a,1,2,1,2,1))]. 

24348 $F # answer("OMA").  [back_rewrite(59),rewrite([24330(9),14(3)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 33.74 (+ 0.87) seconds: "OMA". 

% Length of proof is 50. 

% Level of proof is 12. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int2(x,y) = 0 <-> perp(x,y) # label("Hypothesis for Proposition 2.10int2") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

7 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

8 int2(x,y) != 0 | perp(x,y) # label("Hypothesis for Proposition 2.10int2").  

[clausify(4)]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

26 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

27 i2(x,y) = y v c(y v x).  [copy(26),rewrite([13(3),22(4),13(3),13(3)])]. 

46 int2(x,y) = c(i2(x,c(y))) # label("Df: int2").  [assumption]. 

47 int2(x,y) = c(c(y) v c(c(y) v x)).  [copy(46),rewrite([27(3)])]. 

54 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

55 -le(x,y) | c(c(x) v c(y)) = x.  [copy(54),rewrite([22(2)])]. 

58 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

59 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(58),rewrite([14(6),22(7),13(4),14(12)])]. 

60 int2(x,y) != 0 | le(x,c(y)).  [resolve(8,b,7,a)]. 

61 c(c(x) v c(c(x) v y)) != 0 | le(y,c(x)).  [copy(60),rewrite([47(1)])]. 

64 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

65 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

66 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

68 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

75 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

80 c(x v c(x v y)) != 0 | le(y,x).  [para(13(a,1),61(a,1,1,1)),rewrite([13(2),13(8)])]. 

93 c(0 v c(x)) = x.  [para(21(a,1),65(a,1,1,2,1)),rewrite([64(3),14(3)])]. 

99 x v c(c(x) v y) = x.  [para(13(a,1),66(a,1,2,1,2))]. 

104 x v x = x.  [para(64(a,1),66(a,1,2,1,2)),rewrite([14(3),93(4)])]. 

116 x v (x v y) = x v y.  [para(104(a,1),15(a,1,1)),flip(a)]. 

135 x v c(y v c(x)) = x.  [para(14(a,1),99(a,1,2,1))]. 
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137 x v (y v c(c(x v y) v z)) = x v y.  [para(99(a,1),15(a,1)),flip(a)]. 

150 x v (y v c(y v x)) = 1.  [para(14(a,1),75(a,1,2,2,1))]. 

196 c(x) v c(y v x) = c(x).  [para(13(a,1),135(a,1,2,1,2))]. 

198 x v (y v c(z v c(x v y))) = x v y.  [para(135(a,1),15(a,1)),flip(a)]. 

217 c(x v c(y v x)) != 0 | le(y,x).  [para(14(a,1),80(a,1,1,2,1))]. 

322 c(x v y) v c(x v (z v y)) = c(x v y).  [para(68(a,1),196(a,1,2,1))]. 

1123 c(x v (c(y v x) v c(c(y v x) v z))) != 0 | le(y,x v c(c(y v x) v z)).  

[para(137(a,1),217(a,1,1,2,1)),rewrite([14(8),68(8)])]. 

3899 c(x v y) v c(x v c(z v c(x v y))) = c(x v c(z v c(x v y))).  

[para(198(a,1),322(a,1,2,1)),rewrite([14(9)])]. 

23785 le(x,y v c(y v c(x v y))).  

[para(150(a,1),1123(a,1,1)),rewrite([64(2),14(6)]),xx(a)]. 

23791 le(x,y v c(y v c(y v x))).  [para(14(a,1),23785(a,2,2,1,2,1))]. 

23802 le(x v y,x v c(x v c(x v y))).  [para(116(a,1),23791(a,2,2,1,2,1))]. 

23810 x v c(x v c(x v y)) = x v y.  [hyper(55,a,23802,a),rewrite([3899(9),13(7)])]. 

23811 $F # answer("OMA").  [resolve(23810,a,59,a)]. 

 

============================== end of proof ========================== 

 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 25.24 (+ 0.73) seconds: "OMA". 

% Length of proof is 55. 

% Level of proof is 14. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int3(x,y) = 0 <-> perp(x,y) # label("Hypothesis for Proposition 2.10int3") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

7 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

8 int3(x,y) != 0 | perp(x,y) # label("Hypothesis for Proposition 2.10int3").  

[clausify(4)]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

28 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

29 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(28),rewrite([22(3),13(3),22(7),13(6),13(6),14(7),22(9),15(14)])]. 

48 int3(x,y) = c(i3(x,c(y))) # label("Df: int3").  [assumption]. 

49 int3(x,y) = c(c(x v c(y)) v (c(x v y) v (c(x) v c(c(x) v y)))).  

[copy(48),rewrite([29(3),13(6),13(10)])]. 

54 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

55 -le(x,y) | c(c(x) v c(y)) = x.  [copy(54),rewrite([22(2)])]. 

58 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

59 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(58),rewrite([14(6),22(7),13(4),14(12)])]. 

60 int3(x,y) != 0 | le(x,c(y)).  [resolve(8,b,7,a)]. 

61 c(c(x v c(y)) v (c(x v y) v (c(x) v c(c(x) v y)))) != 0 | le(x,c(y)).  

[copy(60),rewrite([49(1)])]. 

64 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

65 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

66 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

68 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

70 c(c(x) v (c(x v y) v (c(x v c(y)) v c(c(x) v y)))) != 0 | le(x,c(y)).  

[back_rewrite(61),rewrite([68(11),68(12),68(11)])]. 

77 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

89 c(c(x) v c(y v x)) = x.  [para(14(a,1),65(a,1,1,2,1))]. 

91 c(0 v c(x)) = x.  [para(21(a,1),65(a,1,1,2,1)),rewrite([64(3),14(3)])]. 

92 1 v x = 1.  [para(64(a,1),65(a,1,1,1)),rewrite([91(6)])]. 
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97 x v c(c(x) v y) = x.  [para(13(a,1),66(a,1,2,1,2))]. 

101 x v 0 = x.  [para(21(a,1),66(a,1,2,1)),rewrite([64(2)])]. 

102 x v x = x.  [para(64(a,1),66(a,1,2,1,2)),rewrite([14(3),91(4)])]. 

103 x v (y v c(x)) = y v 1.  [para(21(a,1),68(a,1,2)),flip(a)]. 

112 x v 1 = 1.  [para(92(a,1),14(a,1)),flip(a)]. 

113 x v (y v c(x)) = 1.  [back_rewrite(103),rewrite([112(5)])]. 

114 0 v x = x.  [para(101(a,1),14(a,1)),flip(a)]. 

126 x v (x v y) = x v y.  [para(102(a,1),15(a,1,1)),flip(a)]. 

128 x v (y v x) = y v x.  [para(102(a,1),15(a,2,2)),rewrite([14(2)])]. 

141 c(x) v (y v x) = 1.  [para(13(a,1),113(a,1,2,2))]. 

149 c(x v c(y v x)) != 0 | le(c(x),c(y v x)).  

[para(141(a,1),70(a,1,1,2,1,1)),rewrite([13(2),64(2),89(6),13(3),128(3),114(5),126(4)])]. 

150 x v c(y v c(x)) = x.  [para(14(a,1),97(a,1,2,1))]. 

152 x v (y v c(c(x v y) v z)) = x v y.  [para(97(a,1),15(a,1)),flip(a)]. 

174 x v (y v c(y v x)) = 1.  [para(14(a,1),77(a,1,2,2,1))]. 

735 c(x v (c(y v x) v c(c(y v x) v z))) != 0 | le(c(x v c(c(y v x) v z)),c(y v x)).  

[para(152(a,1),149(a,1,1,2,1)),rewrite([14(8),68(8),152(23)])]. 

20284 le(c(x v c(x v c(y v x))),c(y v x)).  

[para(174(a,1),735(a,1,1)),rewrite([64(2),14(6)]),xx(a)]. 

25500 c(x v c(x v c(y v x))) = c(y v x).  

[hyper(55,a,20284,a),rewrite([13(7),13(8),14(7),68(7),150(6),128(2)]),flip(a)]. 

25619 x v c(x v c(y v x)) = y v x.  

[para(25500(a,1),13(a,1,1)),rewrite([13(3)]),flip(a)]. 

25715 x v c(x v c(x v y)) = y v x.  [para(14(a,1),25619(a,1,2,1,2,1))]. 

25754 $F # answer("OMA").  [back_rewrite(59),rewrite([25715(9),14(3)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.11, for each of i = 1,2,3.  The proofs 

assume the default  inference rules of prover9. The detailed syntax and semantics of these notations 

can be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 150 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  With the exception of 

Proposition 2.12, the proofs in Figure 3 for 

i=2 and i=3 both use L1, L2, L3, L5. L6, 

OL1, OL2, and OL3.  The proof for i=1, in 

contrast, uses L1, L2, L3, L5, OL1, OL2, 

and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 4,5, and for orthomodular 

lattice theory implies Propositions 2.12i, i = 

1,2,3,4,5, and for the converse propositions. 

 

 4.  Proposition 2.12 can be regarded 

as a definition of quantum intersection; thus, 

this paper together with the papers 

mentioned in (3), constitutes a proof that  

the definition of quantum intersection is 

equivalent to the OMA in orthomodular 

quantum logic.  Companion papers derive 

equivalences for the OMA with definitions 

of quantum-identity and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum-intersection-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed intersection 

   int1(x,y) = c(i1(x,c(y)))      

   int2(x,y) = c(i2(x,c(y))) 

   int3(x,y) = c(i3(x,c(y)))      

   int4(x,y) = c(i4(x,c(y)))      

   int5(x,y) = c(i5(x,c(y)))      

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    x  y 
 

where  
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 x i y means  c(x i c(y)) 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.12 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive the OMA from Proposition 2.12 

of [5], for each of  i = 4,5  together with ortholattice theory (orthomodular lattice theory, without 

the OMA), then executed in that framework  on a  Dell Inspiron 545 with an  Intel Core2 Quad 

CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under the Windows Vista Home 

Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

Proposition 2.12  of [5] (for each of  i = 4,5), is implied by orthomodular lattice theory.  

 

 
============================== PROOF ================================= 

 

% Proof 1 at 11.87 (+ 0.34) seconds: "OMA". 

% Length of proof is 57. 

% Level of proof is 13. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int4(x,y) = 0 <-> perp(x,y) # label("Hypothesis for Proposition 2.10int4") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

7 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

8 int4(x,y) != 0 | perp(x,y) # label("Hypothesis for Proposition 2.10int4").  

[clausify(4)]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

30 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ c(x))) # 

label("Df: i4").  [assumption]. 

31 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(30),rewrite([13(3),22(3),13(4),13(6),13(6),22(5),13(11),22(12),13(11),13(11),14(13)

,15(13)])]. 

50 int4(x,y) = c(i4(x,c(y))) # label("Df: int4").  [assumption]. 

51 int4(x,y) = c(c(y) v (c(c(y) v x) v (c(y v x) v c(y v c(x))))).  

[copy(50),rewrite([31(3),13(7),13(9)])]. 
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54 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

55 -le(x,y) | c(c(x) v c(y)) = x.  [copy(54),rewrite([22(2)])]. 

58 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

59 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(58),rewrite([14(6),22(7),13(4),14(12)])]. 

60 int4(x,y) != 0 | le(x,c(y)).  [resolve(8,b,7,a)]. 

61 c(c(x) v (c(c(x) v y) v (c(x v y) v c(x v c(y))))) != 0 | le(y,c(x)).  

[copy(60),rewrite([51(1)])]. 

64 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

65 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

66 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

68 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

70 c(c(x) v (c(x v y) v (c(c(x) v y) v c(x v c(y))))) != 0 | le(y,c(x)).  

[back_rewrite(61),rewrite([68(11)])]. 

77 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

89 c(c(x) v c(y v x)) = x.  [para(14(a,1),65(a,1,1,2,1))]. 

91 c(0 v c(x)) = x.  [para(21(a,1),65(a,1,1,2,1)),rewrite([64(3),14(3)])]. 

92 1 v x = 1.  [para(64(a,1),65(a,1,1,1)),rewrite([91(6)])]. 

97 x v c(c(x) v y) = x.  [para(13(a,1),66(a,1,2,1,2))]. 

101 x v 0 = x.  [para(21(a,1),66(a,1,2,1)),rewrite([64(2)])]. 

102 x v x = x.  [para(64(a,1),66(a,1,2,1,2)),rewrite([14(3),91(4)])]. 

103 x v (y v c(x)) = y v 1.  [para(21(a,1),68(a,1,2)),flip(a)]. 

112 x v 1 = 1.  [para(92(a,1),14(a,1)),flip(a)]. 

113 x v (y v c(x)) = 1.  [back_rewrite(103),rewrite([112(5)])]. 

114 0 v x = x.  [para(101(a,1),14(a,1)),flip(a)]. 

127 x v (x v y) = x v y.  [para(102(a,1),15(a,1,1)),flip(a)]. 

129 x v (y v x) = y v x.  [para(102(a,1),15(a,2,2)),rewrite([14(2)])]. 

142 c(x) v (y v x) = 1.  [para(13(a,1),113(a,1,2,2))]. 

150 c(x v c(y v x)) != 0 | le(y v x,x).  

[para(142(a,1),70(a,1,1,2,1,1)),rewrite([13(2),64(2),13(3),129(3),89(8),14(4),114(5),127(

4),13(9)])]. 

151 x v c(y v c(x)) = x.  [para(14(a,1),97(a,1,2,1))]. 

153 x v (y v c(c(x v y) v z)) = x v y.  [para(97(a,1),15(a,1)),flip(a)]. 

174 x v (y v c(y v x)) = 1.  [para(14(a,1),77(a,1,2,2,1))]. 

215 c(x) v c(y v x) = c(x).  [para(13(a,1),151(a,1,2,1,2))]. 

217 x v (y v c(z v c(x v y))) = x v y.  [para(151(a,1),15(a,1)),flip(a)]. 

724 c(x v (c(y v x) v c(c(y v x) v z))) != 0 | le(y v x,x v c(c(y v x) v z)).  

[para(153(a,1),150(a,1,1,2,1)),rewrite([14(8),68(8),153(17)])]. 

1721 c(x v y) v c(y v c(z v c(x v y))) = c(y v c(z v c(x v y))).  

[para(217(a,1),215(a,1,2,1)),rewrite([14(9)])]. 

19730 le(x v y,y v c(y v c(x v y))).  

[para(174(a,1),724(a,1,1)),rewrite([64(2),14(7)]),xx(a)]. 

19735 x v c(x v c(y v x)) = y v x.  [hyper(55,a,19730,a),rewrite([1721(9),13(7)])]. 

19744 x v c(x v c(x v y)) = y v x.  [para(14(a,1),19735(a,1,2,1,2,1))]. 

19808 $F # answer("OMA").  [back_rewrite(59),rewrite([19744(9),14(3)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 46.16 (+ 0.94) seconds: "OMA". 

% Length of proof is 54. 

% Level of proof is 14. 

 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int5(x,y) = 0 <-> perp(x,y) # label("Hypothesis for Proposition 2.10int5") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

7 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

8 int5(x,y) != 0 | perp(x,y) # label("Hypothesis for Proposition 2.10int5").  

[clausify(4)]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 
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18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

32 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

33 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(32),rewrite([22(2),22(7),13(7),14(9),22(12),13(11),13(11),14(12)])]. 

52 int5(x,y) = c(i5(x,c(y))) # label("Df: int5").  [assumption]. 

53 int5(x,y) = c(c(x v c(y)) v (c(x v y) v c(c(x) v y))).  

[copy(52),rewrite([33(3),13(6),13(9)])]. 

54 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

55 -le(x,y) | c(c(x) v c(y)) = x.  [copy(54),rewrite([22(2)])]. 

58 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

59 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(58),rewrite([14(6),22(7),13(4),14(12)])]. 

60 int5(x,y) != 0 | le(x,c(y)).  [resolve(8,b,7,a)]. 

61 c(c(x v c(y)) v (c(x v y) v c(c(x) v y))) != 0 | le(x,c(y)).  

[copy(60),rewrite([53(1)])]. 

64 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

65 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

66 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

68 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

70 c(c(x v y) v (c(x v c(y)) v c(c(x) v y))) != 0 | le(x,c(y)).  

[back_rewrite(61),rewrite([68(10)])]. 

77 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

89 c(c(x) v c(y v x)) = x.  [para(14(a,1),65(a,1,1,2,1))]. 

91 c(0 v c(x)) = x.  [para(21(a,1),65(a,1,1,2,1)),rewrite([64(3),14(3)])]. 

92 1 v x = 1.  [para(64(a,1),65(a,1,1,1)),rewrite([91(6)])]. 

97 x v c(c(x) v y) = x.  [para(13(a,1),66(a,1,2,1,2))]. 

101 x v 0 = x.  [para(21(a,1),66(a,1,2,1)),rewrite([64(2)])]. 

102 x v x = x.  [para(64(a,1),66(a,1,2,1,2)),rewrite([14(3),91(4)])]. 

103 x v (y v c(x)) = y v 1.  [para(21(a,1),68(a,1,2)),flip(a)]. 

113 x v 1 = 1.  [para(92(a,1),14(a,1)),flip(a)]. 

114 x v (y v c(x)) = 1.  [back_rewrite(103),rewrite([113(5)])]. 

115 0 v x = x.  [para(101(a,1),14(a,1)),flip(a)]. 

129 x v (y v x) = y v x.  [para(102(a,1),15(a,2,2)),rewrite([14(2)])]. 

142 c(x) v (y v x) = 1.  [para(13(a,1),114(a,1,2,2))]. 

150 c(x v c(y v x)) != 0 | le(c(x),c(y v x)).  

[para(142(a,1),70(a,1,1,1,1)),rewrite([64(2),89(6),13(3),129(3),115(5)])]. 

151 x v c(y v c(x)) = x.  [para(14(a,1),97(a,1,2,1))]. 

153 x v (y v c(c(x v y) v z)) = x v y.  [para(97(a,1),15(a,1)),flip(a)]. 

175 x v (y v c(y v x)) = 1.  [para(14(a,1),77(a,1,2,2,1))]. 

1036 c(x v (c(y v x) v c(c(y v x) v z))) != 0 | le(c(x v c(c(y v x) v z)),c(y v x)).  

[para(153(a,1),150(a,1,1,2,1)),rewrite([14(8),68(8),153(23)])]. 

27473 le(c(x v c(x v c(y v x))),c(y v x)).  

[para(175(a,1),1036(a,1,1)),rewrite([64(2),14(6)]),xx(a)]. 

27476 c(x v c(x v c(y v x))) = c(y v x).  

[hyper(55,a,27473,a),rewrite([13(7),13(8),14(7),68(7),151(6),129(2)]),flip(a)]. 

27770 x v c(x v c(y v x)) = y v x.  

[para(27476(a,1),13(a,1,1)),rewrite([13(3)]),flip(a)]. 

27822 x v c(x v c(x v y)) = y v x.  [para(14(a,1),27770(a,1,2,1,2,1))]. 

27860 $F # answer("OMA").  [back_rewrite(59),rewrite([27822(9),14(3)]),xx(a)]. 

 

============================== end of proof ========================= 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.11, for each of i = 4,5.  The proofs 

assume the default  inference rules of prover9. The general form of a line in this proof is 

“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, 

and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, 

and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.   
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The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 60 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  With the exception of 

Proposition 2.12, the proofs in Figure 3 use 

L1, L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2,3, and for orthomodular 

lattice theory implies Propositions 2.12i, i = 

1,2,3,4,5, and for the converse propositons. 

 

  4.  Proposition 2.12 can be 

regarded as a definition of quantum 

intersection; thus, this paper together with 

the papers mentioned in (3), constitute a 

proof that  the definition of quantum 

intersection is equivalent to the OMA in 

orthomodular quantum logic.  .  Companion 

papers derive equivalences for the OMA 

with definitions of quantum-identity and 

quantum-union.  Collectively, these papers 

provide a  theory of equivalence of the 

OMA with the quantum connectives.  In 

light of these equivalences, QL without the 

OMA would hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum-intersection-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed intersection 

   int1(x,y) = c(i1(x,c(y)))      

   int2(x,y) = c(i2(x,c(y))) 

   int3(x,y) = c(i3(x,c(y)))      

   int4(x,y) = c(i4(x,c(y)))      

   int5(x,y) = c(i5(x,c(y)))      

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    x  y 
 

where  
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 x i y means  c(x i c(y)) 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.12 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.12 of [5]from 

orthomodular lattice theory, for each of  i = 1,2, then executed in that framework  on a  Dell 

Inspiron 545 with an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, 

running under the Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

orthomodular lattice theory implies Proposition 2.12 (for each of  i = 1,2.  

 
============================== PROOF ================================= 

 

% Proof 1 at 7.46 (+ 0.14) seconds. 

% Length of proof is 55. 

% Level of proof is 10. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int1(x,y) = 0 <-> perp(x,y) # label("Proposition 2.10int1") # label(non_clause) # 

label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

21 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

22 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(21),rewrite([17(3)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

30 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(29),rewrite([17(2),17(7),8(7),9(9),17(12),8(11),8(11),9(12)])]. 

41 int1(x,y) = c(i1(x,c(y))) # label("Df: int1").  [assumption]. 

42 int1(x,y) = c(c(x) v c(c(x) v y)).  [copy(41),rewrite([22(3),8(5)])]. 

51 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

52 -le(x,y) | c(c(x) v c(y)) = x.  [copy(51),rewrite([17(2)])]. 

53 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

54 le(x,y) | c(c(x) v c(y)) != x.  [copy(53),rewrite([17(2)])]. 

55 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

56 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 
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57 int1(c1,c2) = 0 | perp(c1,c2) # label("Proposition 2.10int1").  [deny(4)]. 

58 c(c(c1) v c(c2 v c(c1))) = 0 | perp(c1,c2).  [copy(57),rewrite([42(3),9(6)])]. 

59 int1(c1,c2) != 0 | -perp(c1,c2) # label("Proposition 2.10int1").  [deny(4)]. 

60 c(c(c1) v c(c2 v c(c1))) != 0 | -perp(c1,c2).  [copy(59),rewrite([42(3),9(6)])]. 

61 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

62 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

63 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

65 x v (y v z) = y v (x v z).  [para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

80 le(x,c(y)) | c(c(x) v y) != x.  [para(8(a,1),54(b,1,1,2))]. 

85 c(c(c1) v c(c2 v c(c1))) = 0 | le(c1,c(c2)).  [resolve(58,b,55,a)]. 

92 c(x) v c(x v y) = c(x).  [para(62(a,1),8(a,1,1)),flip(a)]. 

96 c(0 v c(x)) = x.  [para(16(a,1),62(a,1,1,2,1)),rewrite([61(3),9(3)])]. 

97 c(x v y) v c(x v c(x v y)) = c(x).  

[para(62(a,1),19(a,1,2,1,2)),rewrite([9(5),92(11)])]. 

98 1 v x = 1.  [para(61(a,1),62(a,1,1,1)),rewrite([96(6)])]. 

107 x v 0 = x.  [para(16(a,1),63(a,1,2,1)),rewrite([61(2)])]. 

109 x v x = x.  [para(61(a,1),63(a,1,2,1,2)),rewrite([9(3),96(4)])]. 

110 x v (y v c(x)) = y v 1.  [para(16(a,1),65(a,1,2)),flip(a)]. 

121 x v 1 = 1.  [para(98(a,1),9(a,1)),flip(a)]. 

122 x v (y v c(x)) = 1.  [back_rewrite(110),rewrite([121(5)])]. 

123 0 v x = x.  [para(107(a,1),9(a,1)),flip(a)]. 

129 x v (y v x) = y v x.  [para(109(a,1),10(a,2,2)),rewrite([9(2)])]. 

315 le(x,c(y)) | c(y v c(x)) != x.  [para(9(a,1),80(b,1,1))]. 

407 c(c(c1) v c(c2 v c(c1))) = 0 | c(c2 v c(c1)) = c1.  

[resolve(85,b,52,a),rewrite([8(16),9(15)])]. 

454 c(x v y) v c(y v c(x v y)) = c(y).  [para(19(a,1),97(a,1,1,1)),rewrite([19(7)])]. 

19987 c(c2 v c(c1)) = c1.  

[para(407(a,1),30(a,2,1)),rewrite([30(15),8(24),129(23),8(24),8(28),122(27),61(23),9(23),

123(23),9(22),454(22),8(10),8(17),129(16),8(17),8(21),122(20),61(16),9(16),123(16),123(15

)]),flip(b),merge(b)]. 

19988 -perp(c1,c2).  [back_rewrite(60),rewrite([19987(7),9(4),16(4),61(2)]),xx(a)]. 

19989 -le(c1,c(c2)).  [ur(56,a,19988,a)]. 

19990 $F.  [ur(315,a,19989,a),rewrite([19987(5)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 33.74 (+ 0.87) seconds: "OMA". 

% Length of proof is 50. 

% Level of proof is 12. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int2(x,y) = 0 <-> perp(x,y) # label("Hypothesis for Proposition 2.10int2") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

7 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

8 int2(x,y) != 0 | perp(x,y) # label("Hypothesis for Proposition 2.10int2").  

[clausify(4)]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

26 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

27 i2(x,y) = y v c(y v x).  [copy(26),rewrite([13(3),22(4),13(3),13(3)])]. 

46 int2(x,y) = c(i2(x,c(y))) # label("Df: int2").  [assumption]. 

47 int2(x,y) = c(c(y) v c(c(y) v x)).  [copy(46),rewrite([27(3)])]. 

54 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

55 -le(x,y) | c(c(x) v c(y)) = x.  [copy(54),rewrite([22(2)])]. 

58 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 
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59 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(58),rewrite([14(6),22(7),13(4),14(12)])]. 

60 int2(x,y) != 0 | le(x,c(y)).  [resolve(8,b,7,a)]. 

61 c(c(x) v c(c(x) v y)) != 0 | le(y,c(x)).  [copy(60),rewrite([47(1)])]. 

64 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

65 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

66 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

68 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

75 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

80 c(x v c(x v y)) != 0 | le(y,x).  [para(13(a,1),61(a,1,1,1)),rewrite([13(2),13(8)])]. 

93 c(0 v c(x)) = x.  [para(21(a,1),65(a,1,1,2,1)),rewrite([64(3),14(3)])]. 

99 x v c(c(x) v y) = x.  [para(13(a,1),66(a,1,2,1,2))]. 

104 x v x = x.  [para(64(a,1),66(a,1,2,1,2)),rewrite([14(3),93(4)])]. 

116 x v (x v y) = x v y.  [para(104(a,1),15(a,1,1)),flip(a)]. 

135 x v c(y v c(x)) = x.  [para(14(a,1),99(a,1,2,1))]. 

137 x v (y v c(c(x v y) v z)) = x v y.  [para(99(a,1),15(a,1)),flip(a)]. 

150 x v (y v c(y v x)) = 1.  [para(14(a,1),75(a,1,2,2,1))]. 

196 c(x) v c(y v x) = c(x).  [para(13(a,1),135(a,1,2,1,2))]. 

198 x v (y v c(z v c(x v y))) = x v y.  [para(135(a,1),15(a,1)),flip(a)]. 

217 c(x v c(y v x)) != 0 | le(y,x).  [para(14(a,1),80(a,1,1,2,1))]. 

322 c(x v y) v c(x v (z v y)) = c(x v y).  [para(68(a,1),196(a,1,2,1))]. 

1123 c(x v (c(y v x) v c(c(y v x) v z))) != 0 | le(y,x v c(c(y v x) v z)).  

[para(137(a,1),217(a,1,1,2,1)),rewrite([14(8),68(8)])]. 

3899 c(x v y) v c(x v c(z v c(x v y))) = c(x v c(z v c(x v y))).  

[para(198(a,1),322(a,1,2,1)),rewrite([14(9)])]. 

23785 le(x,y v c(y v c(x v y))).  

[para(150(a,1),1123(a,1,1)),rewrite([64(2),14(6)]),xx(a)]. 

23791 le(x,y v c(y v c(y v x))).  [para(14(a,1),23785(a,2,2,1,2,1))]. 

23802 le(x v y,x v c(x v c(x v y))).  [para(116(a,1),23791(a,2,2,1,2,1))]. 

23810 x v c(x v c(x v y)) = x v y.  [hyper(55,a,23802,a),rewrite([3899(9),13(7)])]. 

23811 $F # answer("OMA").  [resolve(23810,a,59,a)]. 

 

============================== end of proof ========================== 

 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.12, for each of i = 1,2 from 

orthomodular lattice theory.  The proofs assume the default  inference rules of prover9. The general 

form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique 

identifier of a line in the proof, and conclusion is the result of applying the prover9 inference rules 

(such as paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), 

to the lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 40 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  Both proofs in Figure 3 use L1, 

L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 3,4,5, and for the converse 

propositions. 

 

 4.  Proposition 2.12 can be regarded 

as a definition of quantum intersection; thus, 

this paper together with the papers 

mentioned in (3), constitute a proof that  the 

definition of quantum intersection is 

equivalent to the OMA in orthomodular 
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quantum logic.  .  Companion papers derive 

equivalences for the OMA with definitions 

of quantum-identity and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum-intersection-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).   

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed intersection 

   int1(x,y) = c(i1(x,c(y)))      

   int2(x,y) = c(i2(x,c(y))) 

   int3(x,y) = c(i3(x,c(y)))      

   int4(x,y) = c(i4(x,c(y)))      

   int5(x,y) = c(i5(x,c(y)))      

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    x  y 
 

where  
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 x i y means  c(x i c(y)) 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.12 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.12 of [5] from 

orthomoldular lattice theory, for each of  i = 3,4, then executed in that framework  on a  Dell 

Inspiron 545 with an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, 

running under the Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

orthomodular lattice theory implies Proposition 2.12 (for each of  i = 3,4.  

 
============================== PROOF ================================= 

 

% Proof 1 at 1037.25 (+ 19.27) seconds. 

% Length of proof is 61. 

% Level of proof is 12. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int3(x,y) = 0 <-> perp(x,y) # label("Proposition 2.10int3") # label(non_clause) # 

label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

25 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

26 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(25),rewrite([17(3),8(3),17(7),8(6),8(6),9(7),17(9),10(14)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

30 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(29),rewrite([17(2),17(7),8(7),9(9),17(12),8(11),8(11),9(12)])]. 

45 int3(x,y) = c(i3(x,c(y))) # label("Df: int3").  [assumption]. 

46 int3(x,y) = c(c(x v c(y)) v (c(x v y) v (c(x) v c(c(x) v y)))).  

[copy(45),rewrite([26(3),8(6),8(10)])]. 

51 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

52 -le(x,y) | c(c(x) v c(y)) = x.  [copy(51),rewrite([17(2)])]. 

53 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 
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54 le(x,y) | c(c(x) v c(y)) != x.  [copy(53),rewrite([17(2)])]. 

55 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

56 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

57 int3(c1,c2) = 0 | perp(c1,c2) # label("Proposition 2.10int3").  [deny(4)]. 

58 c(c(c1 v c2) v (c(c1) v (c(c2 v c(c1)) v c(c1 v c(c2))))) = 0 | perp(c1,c2).  

[copy(57),rewrite([46(3),9(15),9(19),10(19),10(18)])]. 

59 int3(c1,c2) != 0 | -perp(c1,c2) # label("Proposition 2.10int3").  [deny(4)]. 

60 c(c(c1 v c2) v (c(c1) v (c(c2 v c(c1)) v c(c1 v c(c2))))) != 0 | -perp(c1,c2).  

[copy(59),rewrite([46(3),9(15),9(19),10(19),10(18)])]. 

61 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

62 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

63 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

65 x v (y v z) = y v (x v z).  [para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

66 c(c(c1) v (c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2))))) != 0 | -perp(c1,c2).  

[back_rewrite(60),rewrite([65(19)])]. 

67 c(c(c1) v (c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2))))) = 0 | perp(c1,c2).  

[back_rewrite(58),rewrite([65(19)])]. 

82 le(x,c(y)) | c(c(x) v y) != x.  [para(8(a,1),54(b,1,1,2))]. 

93 c(x) v c(x v y) = c(x).  [para(62(a,1),8(a,1,1)),flip(a)]. 

97 c(0 v c(x)) = x.  [para(16(a,1),62(a,1,1,2,1)),rewrite([61(3),9(3)])]. 

98 c(x v y) v c(x v c(x v y)) = c(x).  

[para(62(a,1),19(a,1,2,1,2)),rewrite([9(5),93(11)])]. 

99 1 v x = 1.  [para(61(a,1),62(a,1,1,1)),rewrite([97(6)])]. 

108 x v 0 = x.  [para(16(a,1),63(a,1,2,1)),rewrite([61(2)])]. 

110 x v x = x.  [para(61(a,1),63(a,1,2,1,2)),rewrite([9(3),97(4)])]. 

111 x v (y v c(x)) = y v 1.  [para(16(a,1),65(a,1,2)),flip(a)]. 

118 c(c(c1) v (c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2))))) = 0 | le(c1,c(c2)).  

[resolve(67,b,55,a)]. 

123 x v 1 = 1.  [para(99(a,1),9(a,1)),flip(a)]. 

124 x v (y v c(x)) = 1.  [back_rewrite(111),rewrite([123(5)])]. 

125 0 v x = x.  [para(108(a,1),9(a,1)),flip(a)]. 

131 x v (y v x) = y v x.  [para(110(a,1),10(a,2,2)),rewrite([9(2)])]. 

344 le(x,c(y)) | c(y v c(x)) != x.  [para(9(a,1),82(b,1,1))]. 

422 c(x) v (c(x v y) v z) = c(x) v z.  [para(93(a,1),10(a,1,1)),flip(a)]. 

424 c(x) v (y v c(x v z)) = y v c(x).  [para(93(a,1),65(a,1,2)),flip(a)]. 

434 c(c(c1) v c(c2 v c(c1))) = 0 | le(c1,c(c2)).  

[back_rewrite(118),rewrite([422(19),424(14),9(8)])]. 

439 c(c(c1) v c(c2 v c(c1))) != 0 | -perp(c1,c2).  

[back_rewrite(66),rewrite([422(19),424(14),9(8)])]. 

459 c(x v y) v c(y v c(x v y)) = c(y).  [para(19(a,1),98(a,1,1,1)),rewrite([19(7)])]. 

21423 c(c(c1) v c(c2 v c(c1))) = 0 | c(c2 v c(c1)) = c1.  

[resolve(434,b,52,a),rewrite([8(16),9(15)])]. 

59740 c(c2 v c(c1)) = c1.  

[para(21423(a,1),30(a,2,1)),rewrite([30(15),8(24),131(23),8(24),8(28),124(27),61(23),9(23

),125(23),9(22),459(22),8(10),8(17),131(16),8(17),8(21),124(20),61(16),9(16),125(16),125(

15)]),flip(b),merge(b)]. 

59741 -perp(c1,c2).  [back_rewrite(439),rewrite([59740(7),9(4),16(4),61(2)]),xx(a)]. 

59742 -le(c1,c(c2)).  [ur(56,a,59741,a)]. 

59743 $F.  [ur(344,a,59742,a),rewrite([59740(5)]),xx(a)]. 

 

============================== end of proof ========================== 

 
 

 
============================== PROOF ================================= 

 

% Proof 1 at 30.14 (+ 0.72) seconds. 

% Length of proof is 50. 

% Level of proof is 11. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 int4(x,y) = 0 <-> perp(x,y) # label("Proposition 2.10int4") # label(non_clause) # 

label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

Copyright © 2014 CSREA Press, ISBN: 1-60132-270-4; Printed in the United States of America

Int'l Conf. Foundations of Computer Science |  FCS'14  | 77



14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

27 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ c(x))) # 

label("Df: i4").  [assumption]. 

28 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(27),rewrite([8(3),17(3),8(4),8(6),8(6),17(5),8(11),17(12),8(11),8(11),9(13),10(13)]

)]. 

47 int4(x,y) = c(i4(x,c(y))) # label("Df: int4").  [assumption]. 

48 int4(x,y) = c(c(y) v (c(c(y) v x) v (c(y v x) v c(y v c(x))))).  

[copy(47),rewrite([28(3),8(7),8(9)])]. 

51 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

52 -le(x,y) | c(c(x) v c(y)) = x.  [copy(51),rewrite([17(2)])]. 

53 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

54 le(x,y) | c(c(x) v c(y)) != x.  [copy(53),rewrite([17(2)])]. 

55 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

56 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

57 int4(c1,c2) = 0 | perp(c1,c2) # label("Proposition 2.10int4").  [deny(4)]. 

58 c(c(c2) v (c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2))))) = 0 | perp(c1,c2).  

[copy(57),rewrite([48(3),9(6),9(10),9(18),10(18)])]. 

59 int4(c1,c2) != 0 | -perp(c1,c2) # label("Proposition 2.10int4").  [deny(4)]. 

60 c(c(c2) v (c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2))))) != 0 | -perp(c1,c2).  

[copy(59),rewrite([48(3),9(6),9(10),9(18),10(18)])]. 

61 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

62 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

63 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

84 perp(x,c(y)) | -le(x,y).  [para(8(a,1),56(b,2))]. 

85 c(c(c2) v (c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2))))) = 0 | le(c1,c(c2)).  

[resolve(58,b,55,a)]. 

91 le(x,x v y).  [resolve(62,a,54,b)]. 

92 c(x) v c(x v y) = c(x).  [para(62(a,1),8(a,1,1)),flip(a)]. 

107 x v 0 = x.  [para(16(a,1),63(a,1,2,1)),rewrite([61(2)])]. 

108 x v c(y v c(x)) = x.  [para(19(a,1),63(a,1,2,1))]. 

123 0 v x = x.  [para(107(a,1),9(a,1)),flip(a)]. 

134 perp(x,c(x v y)).  [resolve(84,b,91,a)]. 

252 c(x) v c(y v x) = c(x).  [para(8(a,1),108(a,1,2,1,2))]. 

407 c(c(c2) v (c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2))))) = 0 | c(c2 v c(c1)) = c1.  

[resolve(85,b,52,a),rewrite([8(27),9(26)])]. 

420 c(x) v (c(x v y) v z) = c(x) v z.  [para(92(a,1),10(a,1,1)),flip(a)]. 

676 c(x) v (c(y v x) v z) = c(x) v z.  [para(252(a,1),10(a,1,1)),flip(a)]. 

693 c(c(c2) v c(c1 v c(c2))) = 0 | c(c2 v c(c1)) = c1.  

[back_rewrite(407),rewrite([676(19),420(14)])]. 

695 c(c(c2) v c(c1 v c(c2))) != 0 | -perp(c1,c2).  

[back_rewrite(60),rewrite([676(19),420(14)])]. 

37940 c(c2 v c(c1)) = c1 | c1 v c(c2) = c(c2).  

[para(693(a,1),19(a,1,2)),rewrite([9(11),123(11)]),flip(b)]. 

38009 c1 v c(c2) = c(c2).  [para(37940(a,1),92(a,1,2)),rewrite([9(11)]),merge(b)]. 

38010 -perp(c1,c2).  [back_rewrite(695),rewrite([38009(6),8(5),9(4),16(4),61(2)]),xx(a)]. 

38014 $F.  [para(38009(a,1),134(a,2,1)),rewrite([8(4)]),unit_del(a,38010)]. 

 

============================== end of proof ========================== 

 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.12, for each of i = 3,4 from 

orthomodular lattice theory.  The proofs assume the default  inference rules of prover9. The general 

form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique 

identifier of a line in the proof, and conclusion is the result of applying the prover9 inference rules 

(such as paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), 

to the lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   
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The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 1070 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  Both proofs in Figure 3 use L1, 

L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 5 and for the converse 

proposition. 

 

 4.  Proposition 2.12 can be regarded 

as a definition of quantum intersection; thus, 

this paper together with the papers 

mentioned in (3), constitute a proof that  the 

definition of quantum intersection is 

equivalent to the OMA in orthomodular 

quantum logic.    Companion papers derive 

equivalences for the OMA with definitions 

of quantum-identity and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of a  quantum-intersection-based equivalent of the OMA.  The proof  may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).   

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed intersection 

   int1(x,y) = c(i1(x,c(y)))      

   int2(x,y) = c(i2(x,c(y))) 

   int3(x,y) = c(i3(x,c(y)))      

   int4(x,y) = c(i4(x,c(y)))      

   int5(x,y) = c(i5(x,c(y)))      

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    x  y 
 

where  
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 x i y means  c(x i c(y)) 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.12 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.12 of [5] from 

orthomoldular lattice theory, for i = 5 then executed in that framework  on a  Dell Inspiron 545 

with an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under 

the Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

orthomodular lattice theory implies Proposition 2.12 of [5] (i = 5).  

 
============== PROOF ================================= 

 

% Proof 1 at 520.22 (+ 10.59) seconds. 

% Length of proof is 66. 

% Level of proof is 12. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # 

label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # 

label(non_clause).  [assumption]. 

4 int5(x,y) = 0 <-> perp(x,y) # label("Proposition 2.10int5") # 

label(non_clause) # label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: 

i5").  [assumption]. 
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30 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(29),rewrite([17(2),17(7),8(7),9(9),17(12),8(11),8(11),9(12)])]

. 

49 int5(x,y) = c(i5(x,c(y))) # label("Df: int5").  [assumption]. 

50 int5(x,y) = c(c(x v c(y)) v (c(x v y) v c(c(x) v y))).  

[copy(49),rewrite([30(3),8(6),8(9)])]. 

51 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

52 -le(x,y) | c(c(x) v c(y)) = x.  [copy(51),rewrite([17(2)])]. 

53 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

54 le(x,y) | c(c(x) v c(y)) != x.  [copy(53),rewrite([17(2)])]. 

55 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  

[clausify(2)]. 

56 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  

[clausify(2)]. 

57 int5(c1,c2) = 0 | perp(c1,c2) # label("Proposition 2.10int5").  

[deny(4)]. 

58 c(c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2)))) = 0 | 

perp(c1,c2).  [copy(57),rewrite([50(3),9(13),9(16),10(16)])]. 

59 int5(c1,c2) != 0 | -perp(c1,c2) # label("Proposition 2.10int5").  

[deny(4)]. 

60 c(c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2)))) != 0 | -

perp(c1,c2).  [copy(59),rewrite([50(3),9(13),9(16),10(16)])]. 

61 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

62 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

63 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

65 x v (y v z) = y v (x v z).  

[para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

72 x v (y v c(x v y)) = 1.  [para(16(a,1),10(a,1)),flip(a)]. 

73 x v c(x v c(x v y)) = y v x.  [para(9(a,1),19(a,1,2,1,2,1))]. 

85 c(c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2)))) = 0 | 

le(c1,c(c2)).  [resolve(58,b,55,a)]. 

91 le(x,x v y).  [resolve(62,a,54,b)]. 

92 c(x) v c(x v y) = c(x).  [para(62(a,1),8(a,1,1)),flip(a)]. 

96 c(0 v c(x)) = x.  

[para(16(a,1),62(a,1,1,2,1)),rewrite([61(3),9(3)])]. 

97 c(x v y) v c(x v c(x v y)) = c(x).  

[para(62(a,1),19(a,1,2,1,2)),rewrite([9(5),92(11)])]. 

98 1 v x = 1.  [para(61(a,1),62(a,1,1,1)),rewrite([96(6)])]. 

103 x v c(c(x) v y) = x.  [para(8(a,1),63(a,1,2,1,2))]. 

107 x v 0 = x.  [para(16(a,1),63(a,1,2,1)),rewrite([61(2)])]. 

109 x v x = x.  [para(61(a,1),63(a,1,2,1,2)),rewrite([9(3),96(4)])]. 

110 x v (y v c(x)) = y v 1.  [para(16(a,1),65(a,1,2)),flip(a)]. 

118 le(x,y v x).  [para(9(a,1),91(a,2))]. 

121 x v 1 = 1.  [para(98(a,1),9(a,1)),flip(a)]. 

122 x v (y v c(x)) = 1.  [back_rewrite(110),rewrite([121(5)])]. 

123 0 v x = x.  [para(107(a,1),9(a,1)),flip(a)]. 

129 x v (y v x) = y v x.  

[para(109(a,1),10(a,2,2)),rewrite([9(2)])]. 

160 x v (y v c(x v (y v c(x v (y v z))))) = z v (x v y).  

[para(73(a,1),10(a,1)),rewrite([10(5),10(7)]),flip(a)]. 

178 le(c(c(x) v y),x).  [para(103(a,1),118(a,2))]. 

183 perp(c(x v y),x).  [resolve(178,a,56,b),rewrite([8(2)])]. 

407 c(c(c1 v c2) v (c(c2 v c(c1)) v c(c1 v c(c2)))) = 0 | c(c2 v 

c(c1)) = c1.  [resolve(85,b,52,a),rewrite([8(24),9(23)])]. 
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422 c(x) v (y v c(x v z)) = y v c(x).  

[para(92(a,1),65(a,1,2)),flip(a)]. 

454 c(x v y) v c(y v c(x v y)) = c(y).  

[para(19(a,1),97(a,1,1,1)),rewrite([19(7)])]. 

1122 x v (c(y v x) v (z v y)) = 1.  

[para(72(a,1),160(a,1,2,2,1,2,2,1,2)),rewrite([121(2),61(2),107(2),7

2(4),10(6)]),flip(a)]. 

7094 x v (c(y) v c(c(y v z) v x)) = 1.  

[para(92(a,1),1122(a,1,2,2)),rewrite([9(6)])]. 

31295 c(c2 v c(c1)) = c1 | c(c1) v c(c2 v c(c1)) = 1.  

[para(407(a,1),7094(a,1,2,2)),rewrite([9(22),123(22),9(21),422(21),9

(15)])]. 

91125 c(c2 v c(c1)) = c1.  

[para(31295(b,1),30(a,2,1,1)),rewrite([30(15),8(24),129(23),8(24),8(

28),122(27),61(23),9(23),123(23),9(22),454(22),8(10),61(10),8(17),12

9(16),8(17),8(21),122(20),61(16),9(16),123(16),123(15)]),flip(b),mer

ge(b)]. 

91126 c(c1 v (c(c1 v c2) v c(c1 v c(c2)))) != 0 | -perp(c1,c2).  

[back_rewrite(60),rewrite([91125(9),65(12)])]. 

91131 c2 v c(c1) = c(c1).  [para(91125(a,1),8(a,1,1)),flip(a)]. 

91133 c2 v c(c1 v c2) = c(c1).  

[para(91125(a,1),73(a,1,2,1,2)),rewrite([9(4),9(10),91131(10)])]. 

91135 perp(c1,c2).  [para(91125(a,1),183(a,1))]. 

91141 c1 v c(c2) = c(c2).  

[para(91125(a,1),92(a,1,2)),rewrite([9(4)])]. 

91935 $F.  

[back_unit_del(91126),rewrite([91141(9),8(8),9(7),91133(7),16(4),61(

2)]),xx(a),unit_del(a,91135)]. 

 

=============== end of proof ========================== 

 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.12, for i = 5 from orthomodular lattice 

theory.  The proofs assume the default  inference rules of prover9. The general form of a line in this 

proof is “line_number conclusion [derivation]”, where line_number is a unique identifier of a line in 

the proof, and conclusion is the result of applying the prover9 inference rules (such as 

paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), to the 

lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 1070 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  The proof in Figure 3 uses  L1, 

L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 
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 3.  Companion papers provide 

proofs for i = 1,2,3,4, and for the converse. 

 

 4.  Proposition 2.12 can be regarded 

as a definition of quantum intersection; thus, 

this paper together with the papers 

mentioned in (3), constitute a proof that  the 

definition of quantum intersection is 

equivalent to the OMA in orthomodular 

quantum logic.  Companion papers derive 

equivalences for the OMA with definitions 

of quantum-identity and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  the OMA from three quantum-identity-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed identities 

    id1(x,y) = i1(x,y) ^ i0(y, x)   

    id2(x,y) = i2(x,y) ^ i0(y, x)   

    id3(x,y) = i3(x,y) ^ i0(y, x)   

    id4(x,y) = i4(x,y) ^ i0(y, x)   

    id5(x,y) = i5(x,y) ^ i0(y, x)   

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 
 x ≡i y    <->    x = y 

 

where  

 

 x ≡i y means (x i y) ^ (x 0 y) 
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 x 0 y means c(x) v y 

 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.13 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, 

Pavičić, and Horner ([5], [14], [15], [16], 

[21], [22]) were implemented in a prover9 

([2]) script ([3]) configured to derive the 

OMA from Proposition 2.13 of [5], for each 

of  i = 1,2,3  together with ortholattice 

theory (orthomodular lattice theory, without 

the OMA), then executed in that framework  

on a  Dell Inspiron 545 with an  Intel Core2 

Quad CPU Q8200 (clocked @ 2.33 GHz) 

and 8.00 GB RAM, running under the 

Windows Vista Home Premium /Cygwin 

operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] 

on the platform described in Section 2.0, 

that Proposition 2.13 (for each of  i = 1,2,3), 

together with ortholattice theory, imply the 

OMA.  

 
============================== PROOF ================================= 

 

% Proof 1 at 1.70 (+ 0.09) seconds: "OMA". 

% Length of proof is 49. 

% Level of proof is 12. 

 

4 id1(x,y) = 1 <-> x = y # label("Hypothesis for Proposition 2.10id1") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

24 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

25 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(24),rewrite([22(3)])]. 

54 id1(x,y) = i1(x,y) ^ i0(y,x) # label("Df: id1").  [assumption]. 

55 id1(x,y) = c(c(c(y) v x) v c(c(x) v c(c(x) v c(y)))).  

[copy(54),rewrite([25(2),23(8),22(10),14(12)])]. 

64 id1(x,y) != 1 | y = x # label("Hypothesis for Proposition 2.10id1").  [clausify(4)]. 

65 c(c(c(x) v y) v c(c(y) v c(c(y) v c(x)))) != 1 | x = y.  [copy(64),rewrite([55(1)])]. 

68 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

69 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(68),rewrite([14(6),22(7),13(4),14(12)])]. 

70 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

71 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

72 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

74 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

82 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

105 c(c(c1 v (c2 v c(c1 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c(c1 v c2) v c(c1 v 

c(c1 v c(c1 v c2)))))) != 1 # answer("OMA").  [ur(65,b,69,a),rewrite([14(14),15(14)])]. 

114 c(x) v c(x v y) = c(x).  [para(71(a,1),13(a,1,1)),flip(a)]. 
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118 c(0 v c(x)) = x.  [para(21(a,1),71(a,1,1,2,1)),rewrite([70(3),14(3)])]. 

121 1 v x = 1.  [para(70(a,1),71(a,1,1,1)),rewrite([118(6)])]. 

133 x v c(c(x) v y) = x.  [para(13(a,1),72(a,1,2,1,2))]. 

137 x v 0 = x.  [para(21(a,1),72(a,1,2,1)),rewrite([70(2)])]. 

145 x v (y v c(x)) = y v 1.  [para(21(a,1),74(a,1,2)),flip(a)]. 

154 x v 1 = 1.  [para(121(a,1),14(a,1)),flip(a)]. 

156 x v (y v c(x)) = 1.  [back_rewrite(145),rewrite([154(5)])]. 

157 0 v x = x.  [para(137(a,1),14(a,1)),flip(a)]. 

164 c(x) v (y v x) = 1.  [para(13(a,1),156(a,1,2,2))]. 

171 x v c(y v c(x)) = x.  [para(14(a,1),133(a,1,2,1))]. 

183 c(x) v c(y v x) = c(x).  [para(13(a,1),171(a,1,2,1,2))]. 

184 x v (c(y v c(x)) v z) = x v z.  [para(171(a,1),15(a,1,1)),flip(a)]. 

185 x v (y v c(z v c(x v y))) = x v y.  [para(171(a,1),15(a,1)),flip(a)]. 

229 c(x) v (c(y v x) v z) = c(x) v z.  [para(183(a,1),15(a,1,1)),flip(a)]. 

232 c(x v y) v c(x v (z v y)) = c(x v y).  [para(74(a,1),183(a,1,2,1))]. 

499 x v (y v c(c(z v c(x)) v y)) = 1.  

[para(184(a,1),164(a,1,2)),rewrite([14(7),15(7)])]. 

1916 c(x) v c(c(y v x) v c(z v x)) = 1.  

[para(499(a,1),229(a,1)),rewrite([13(4)]),flip(a)]. 

3074 x v (y v c(x v c(z v c(x v y)))) = 1.  

[para(114(a,1),1916(a,1,2,1,1,1)),rewrite([13(3),13(3),15(8)])]. 

3115 c(c1 v c2) v c(c(c1 v c2) v c(c1 v c(c1 v c(c1 v c2)))) != 1 # answer("OMA").  

[back_rewrite(105),rewrite([3074(14),70(2),157(24),13(23)])]. 

3142 c(x v y) v c(x v c(z v c(x v y))) = c(x v c(z v c(x v y))).  

[para(185(a,1),232(a,1,2,1)),rewrite([14(9)])]. 

3180 $F # answer("OMA").  

[back_rewrite(3115),rewrite([3142(19),13(15),74(14),82(14)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 0.11 (+ 0.01) seconds: "OMA". 

% Length of proof is 36. 

% Level of proof is 8. 

 

4 id2(x,y) = 1 <-> x = y # label("Hypothesis for Proposition 2.10id2") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

26 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

27 i2(x,y) = y v c(y v x).  [copy(26),rewrite([13(3),22(4),13(3),13(3)])]. 

56 id2(x,y) = i2(x,y) ^ i0(y,x) # label("Df: id2").  [assumption]. 

57 id2(x,y) = c(c(c(y) v x) v c(y v c(y v x))).  

[copy(56),rewrite([27(2),23(5),22(7),14(9)])]. 

64 id2(x,y) != 1 | y = x # label("Hypothesis for Proposition 2.10id2").  [clausify(4)]. 

65 c(c(c(x) v y) v c(x v c(x v y))) != 1 | x = y.  [copy(64),rewrite([57(1)])]. 

68 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

69 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(68),rewrite([14(6),22(7),13(4),14(12)])]. 

70 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

71 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

72 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

74 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

82 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

106 c(0 v c(c1 v (c2 v c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2)))))))) != 1 # answer("OMA").  

[ur(65,b,69,a(flip)),rewrite([74(14),82(14),70(2),74(17),15(16),15(19)])]. 

114 c(0 v c(x)) = x.  [para(21(a,1),71(a,1,1,2,1)),rewrite([70(3),14(3)])]. 

119 c1 v (c2 v c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2)))))) != 1 # answer("OMA").  

[back_rewrite(106),rewrite([114(22)])]. 
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130 x v c(c(x) v y) = x.  [para(13(a,1),72(a,1,2,1,2))]. 

136 x v x = x.  [para(70(a,1),72(a,1,2,1,2)),rewrite([14(3),114(4)])]. 

156 x v (x v y) = x v y.  [para(136(a,1),15(a,1,1)),flip(a)]. 

164 c1 v (c2 v c(c1 v (c2 v c(c1 v c(c1 v c2))))) != 1 # answer("OMA").  

[back_rewrite(119),rewrite([156(15)])]. 

181 x v c(y v c(x)) = x.  [para(14(a,1),130(a,1,2,1))]. 

197 x v (y v c(z v c(x v y))) = x v y.  [para(181(a,1),15(a,1)),flip(a)]. 

203 $F # answer("OMA").  [back_rewrite(164),rewrite([197(13),82(8)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 0.08 (+ 0.03) seconds: "OMA". 

% Length of proof is 37. 

% Level of proof is 7. 

 

4 id3(x,y) = 1 <-> x = y # label("Hypothesis for Proposition 2.10id3") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

28 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

29 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(28),rewrite([22(3),13(3),22(7),13(6),13(6),14(7),22(9),15(14)])]. 

58 id3(x,y) = i3(x,y) ^ i0(y,x) # label("Df: id3").  [assumption]. 

59 id3(x,y) = c(c(c(y) v x) v c(c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))))).  

[copy(58),rewrite([29(2),23(15),22(17),14(19)])]. 

64 id3(x,y) != 1 | y = x # label("Hypothesis for Proposition 2.10id3").  [clausify(4)]. 

65 c(c(c(x) v y) v c(c(y v x) v (c(y v c(x)) v (c(y) v c(c(y) v c(x)))))) != 1 | x = y.  

[copy(64),rewrite([59(1)])]. 

68 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

69 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(68),rewrite([14(6),22(7),13(4),14(12)])]. 

70 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

71 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

72 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

74 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

76 c(c(c(x) v y) v c(c(y) v (c(y v x) v (c(y v c(x)) v c(c(y) v c(x)))))) != 1 | x = y.  

[back_rewrite(65),rewrite([74(15),74(16)])]. 

84 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

91 c(0 v c(x)) = x.  [para(21(a,1),71(a,1,1,2,1)),rewrite([70(3),14(3)])]. 

95 x v c(c(x) v y) = x.  [para(13(a,1),72(a,1,2,1,2))]. 

99 x v 0 = x.  [para(21(a,1),72(a,1,2,1)),rewrite([70(2)])]. 

100 x v x = x.  [para(70(a,1),72(a,1,2,1,2)),rewrite([14(3),91(4)])]. 

104 0 v x = x.  [para(99(a,1),14(a,1)),flip(a)]. 

105 x v (x v y) = x v y.  [para(100(a,1),15(a,1,1)),flip(a)]. 

116 c(c1 v c(c1 v c(c1 v c2))) v (c(c1 v (c2 v c(c1 v c(c1 v c2)))) v c(c(c1 v c2) v c(c1 

v c(c1 v c(c1 v c2))))) != 1 # answer("OMA").  

[ur(76,b,69,a(flip)),rewrite([74(14),84(14),70(2),14(24),74(24),15(23),105(24),14(37),74(

37),84(37),70(25),14(39),104(41),104(43),13(42)])]. 

137 x v c(y v c(x)) = x.  [para(14(a,1),95(a,1,2,1))]. 

156 x v (y v c(z v c(x v y))) = x v y.  [para(137(a,1),15(a,1)),flip(a)]. 

161 $F # answer("OMA").  [back_rewrite(116),rewrite([156(21),74(32),84(32)]),xx(a)]. 

 

============================== end of proof ========================== 
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Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.11, for each of i = 1,2,3.  The proofs 

assume the default  inference rules of prover9. The general form of a line in this proof is 

“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, 

and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, 

and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 2 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  The proofs in Figure 3 use L1, 

L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 4,5, and show that 

orthomodular lattice theory implies 

Propositions 2.13i,  i = 1,2,3,4,5. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum identity; thus, this 

paper together papers mentioned in (3), 

constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  the OMA from two quantum-identity-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic

.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed identities 

    id1(x,y) = i1(x,y) ^ i0(y, x)   

    id2(x,y) = i2(x,y) ^ i0(y, x)   

    id3(x,y) = i3(x,y) ^ i0(y, x)   

    id4(x,y) = i4(x,y) ^ i0(y, x)   

    id5(x,y) = i5(x,y) ^ i0(y, x)   

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 
 x ≡i y    <->    x = y 

 

where  
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 x ≡i y means (x i y) ^ (x 0 y) 

 x 0 y means c(x) v y 

 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.13 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, 

Pavičić, and Horner ([5], [14], [15], [16], 

[21], [22]) were implemented in a prover9 

([2]) script ([3]) configured to derive OMA 

from Proposition 2.13 of [5], for each of  i = 

4,5  together with ortholattice theory 

(orthomodular lattice theory, without the 

OMA), then executed in that framework  on 

a  Dell Inspiron 545 with an  Intel Core2 

Quad CPU Q8200 (clocked @ 2.33 GHz) 

and 8.00 GB RAM, running under the 

Windows Vista Home Premium /Cygwin 

operating environment. 
 

 

 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

Proposition 2.13 (for each of  i = 4,5), together with ortholattice theory, imply the OMA.  

 
============================== PROOF ================================= 

 

% Proof 1 at 0.09 (+ 0.05) seconds: "OMA". 

% Length of proof is 46. 

% Level of proof is 12. 

 

4 id4(x,y) = 1 <-> x = y # label("Hypothesis for Proposition 2.10id4") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

30 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ c(x))) # 

label("Df: i4").  [assumption]. 

31 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(30),rewrite([13(3),22(3),13(4),13(6),13(6),22(5),13(11),22(12),13(11),13(11),14(13)

,15(13)])]. 

60 id4(x,y) = i4(x,y) ^ i0(y,x) # label("Df: id4").  [assumption]. 

61 id4(x,y) = c(c(c(y) v x) v c(y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))))).  

[copy(60),rewrite([31(2),23(14),22(16),14(18)])]. 

64 id4(x,y) != 1 | y = x # label("Hypothesis for Proposition 2.10id4").  [clausify(4)]. 

65 c(c(c(x) v y) v c(x v (c(x v y) v (c(c(x) v y) v c(c(x) v c(y)))))) != 1 | x = y.  

[copy(64),rewrite([61(1)])]. 
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68 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

69 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(68),rewrite([14(6),22(7),13(4),14(12)])]. 

70 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

71 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

72 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

74 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

81 x v (c(x) v y) = 1 v y.  [para(21(a,1),15(a,1,1)),flip(a)]. 

82 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

103 c(0 v c(0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v 

c(c1 v c(c1 v c(c1 v c2))))))))) != 1 # answer("OMA").  

[ur(65,b,69,a(flip)),rewrite([74(14),82(14),70(2),74(17),15(16),74(32),82(32),70(20),74(3

7),74(38),15(37)])]. 

114 c(0 v c(x)) = x.  [para(21(a,1),71(a,1,1,2,1)),rewrite([70(3),14(3)])]. 

118 1 v x = 1.  [para(70(a,1),71(a,1,1,1)),rewrite([114(6)])]. 

122 0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 v 

c(c1 v c(c1 v c2))))))) != 1 # answer("OMA").  [back_rewrite(103),rewrite([114(41)])]. 

134 x v (c(x) v y) = 1.  [back_rewrite(81),rewrite([118(5)])]. 

137 x v c(c(x) v y) = x.  [para(13(a,1),72(a,1,2,1,2))]. 

141 x v 0 = x.  [para(21(a,1),72(a,1,2,1)),rewrite([70(2)])]. 

144 x v x = x.  [para(70(a,1),72(a,1,2,1,2)),rewrite([14(3),114(4)])]. 

156 0 v (0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 

v c(c1 v c(c1 v c2)))))))) != 1 # answer("OMA").  

[ur(65,b,122,a(flip)),rewrite([70(2),118(80),70(43),70(44),70(84),114(123),14(120),15(120

),15(119),15(118),15(117),118(122),70(42),14(42),114(43)])]. 

157 0 v (0 v (0 v (0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v 

c2) v c(c1 v c(c1 v c(c1 v c2)))))))))) != 1 # answer("OMA").  

[ur(65,b,156,a),rewrite([14(42),118(42),70(2),14(81),118(81),70(42),14(83),118(83),70(43)

,70(84),14(84),114(85),74(84),74(83),144(82),114(47)])]. 

159 0 v (0 v (0 v (0 v (0 v (0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v 

c(c(c1 v c2) v c(c1 v c(c1 v c(c1 v c2)))))))))))) != 1 # answer("OMA").  

[ur(65,b,157,a),rewrite([14(46),118(46),70(2),14(89),118(89),70(46),14(91),118(91),70(47)

,70(92),14(92),114(93),74(92),74(91),144(90),114(51)])]. 

163 0 v x = x.  [para(141(a,1),14(a,1)),flip(a)]. 

164 c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 v c(c1 v 

c(c1 v c2)))))) != 1 # answer("OMA").  

[back_rewrite(159),rewrite([163(42),163(41),163(40),163(39),163(38),163(37)])]. 

175 x v (x v y) = x v y.  [para(144(a,1),15(a,1,1)),flip(a)]. 

180 c1 v (c2 v (c(c1 v (c2 v c(c1 v c(c1 v c2)))) v c(c(c1 v c2) v c(c1 v c(c1 v c(c1 v 

c2)))))) != 1 # answer("OMA").  [back_rewrite(164),rewrite([175(15)])]. 

185 x v (y v (c(x v y) v z)) = 1.  [para(134(a,1),15(a,1)),flip(a)]. 

198 x v c(y v c(x)) = x.  [para(14(a,1),137(a,1,2,1))]. 

215 x v (y v c(z v c(x v y))) = x v y.  [para(198(a,1),15(a,1)),flip(a)]. 

221 $F # answer("OMA").  [back_rewrite(180),rewrite([215(13),185(25)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 1.33 (+ 0.03) seconds: "OMA". 

% Length of proof is 50. 

% Level of proof is 9. 

 

4 id5(x,y) = 1 <-> x = y # label("Hypothesis for Proposition 2.10id5") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

32 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

33 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(32),rewrite([22(2),22(7),13(7),14(9),22(12),13(11),13(11),14(12)])]. 
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62 id5(x,y) = i5(x,y) ^ i0(y,x) # label("Df: id5").  [assumption]. 

63 id5(x,y) = c(c(c(y) v x) v c(c(x v y) v (c(x v c(y)) v c(c(x) v c(y))))).  

[copy(62),rewrite([33(2),23(13),22(15),14(17)])]. 

64 id5(x,y) != 1 | y = x # label("Hypothesis for Proposition 2.10id5").  [clausify(4)]. 

65 c(c(c(x) v y) v c(c(y v x) v (c(y v c(x)) v c(c(y) v c(x))))) != 1 | x = y.  

[copy(64),rewrite([63(1)])]. 

68 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

69 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(68),rewrite([14(6),22(7),13(4),14(12)])]. 

70 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

71 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

72 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

74 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

82 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

105 c(c(c1 v (c2 v c(c1 v c(c1 v c(c1 v c2))))) v c(c(c1 v (c1 v (c2 v c(c1 v c(c1 v 

c2))))) v (c(c1 v (c2 v c(c1 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 v c(c1 v c(c1 

v c2))))))) != 1 # answer("OMA").  

[ur(65,b,69,a),rewrite([14(14),15(14),74(28),15(27),15(43)])]. 

108 c(0) = 1.  [para(70(a,1),13(a,1,1))]. 

113 c(x) v c(x v y) = c(x).  [para(71(a,1),13(a,1,1)),flip(a)]. 

117 c(0 v c(x)) = x.  [para(21(a,1),71(a,1,1,2,1)),rewrite([70(3),14(3)])]. 

140 x v c(c(x) v y) = x.  [para(13(a,1),72(a,1,2,1,2))]. 

144 x v 0 = x.  [para(21(a,1),72(a,1,2,1)),rewrite([70(2)])]. 

147 x v x = x.  [para(70(a,1),72(a,1,2,1,2)),rewrite([14(3),117(4)])]. 

172 0 v x = x.  [para(144(a,1),14(a,1)),flip(a)]. 

190 x v (x v y) = x v y.  [para(147(a,1),15(a,1,1)),flip(a)]. 

192 x v (y v x) = y v x.  [para(147(a,1),15(a,2,2)),rewrite([14(2)])]. 

202 c(c(c1 v (c2 v c(c1 v c(c1 v c(c1 v c2))))) v c(c(c1 v (c2 v c(c1 v c(c1 v c2)))) v 

(c(c1 v (c2 v c(c1 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 v c(c1 v c(c1 v 

c2))))))) != 1 # answer("OMA").  [back_rewrite(105),rewrite([190(28)])]. 

217 x v c(y v c(x)) = x.  [para(14(a,1),140(a,1,2,1))]. 

221 x v (y v c(c(x) v z)) = y v x.  [para(140(a,1),74(a,1,2)),flip(a)]. 

233 c(x) v c(y v x) = c(x).  [para(13(a,1),217(a,1,2,1,2))]. 

235 x v (y v c(z v c(x v y))) = x v y.  [para(217(a,1),15(a,1)),flip(a)]. 

240 c(c(c1 v (c2 v c(c1 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v (c(c1 v (c2 v c(c1 v 

c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 v c(c1 v c(c1 v c2))))))) != 1 # 

answer("OMA").  [back_rewrite(202),rewrite([235(26)])]. 

243 c(x v y) v c(c(y) v c(x v c(c(y) v x))) != 1 | x v c(c(y) v x) = y.  

[para(82(a,1),65(a,1,1,1,1)),rewrite([70(2),14(6),221(6),14(9),82(9),70(5),14(11),172(13)

,172(14),13(13)]),flip(b)]. 

249 c(x) v (c(x v y) v z) = c(x) v z.  [para(113(a,1),15(a,1,1)),flip(a)]. 

990 c(x v y) v (c(x v (y v z)) v u) = c(x v y) v u.  [para(15(a,1),249(a,1,2,1,1))]. 

1023 c(c(c1 v (c2 v c(c1 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c(c1 v c2) v c(c1 v 

c(c1 v c(c1 v c2)))))) != 1 # answer("OMA").  [back_rewrite(240),rewrite([990(52)])]. 

1824 c(x v y) v c(y v c(z v c(x v y))) = c(y v c(z v c(x v y))).  

[para(235(a,1),233(a,1,2,1)),rewrite([14(9)])]. 

2221 x v c(x v c(y v x)) = y v x.  

[para(192(a,1),243(a,1,1,1)),rewrite([14(7),1824(11),13(9),74(8),82(8),14(6)]),xx(a)]. 

2315 x v c(x v c(x v y)) = y v x.  [para(14(a,1),2221(a,1,2,1,2,1))]. 

2375 $F # answer("OMA").  

[back_rewrite(1023),rewrite([2315(11),14(5),82(8),70(2),2315(18),14(12),147(14),13(10),14

(9),21(9),70(3),147(3),108(2)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.11, for each of i = 4,5.  The proofs 

assume the default  inference rules of prover9. The general form of a line in this proof is 

“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, 

and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, 

and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.   
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The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 

1.5seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  Each of the  proofs in Figure 3 

use L1, L2, L3, OL1, OL2, L3, L5, L6, and 

OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2,3, and show that  

orthomodular lattice theory implies 

Propositions 2.13i,  i = 1,2,3,4,5. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum identity; thus, this 

paper together with papers mentioned in (3), 

constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum-identity-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed identities 

    id1(x,y) = i1(x,y) ^ i0(y, x)   

    id2(x,y) = i2(x,y) ^ i0(y, x)   

    id3(x,y) = i3(x,y) ^ i0(y, x)   

    id4(x,y) = i4(x,y) ^ i0(y, x)   

    id5(x,y) = i5(x,y) ^ i0(y, x)   

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 
 x ≡i y    <->    x = y 

 

where  
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 x ≡i y means (x i y) ^ (x 0 y) 

 x 0 y means c(x) v y 

 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.13 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.13 of [5], for each 

of  i = 1,2, from orthomodular lattice theory, then executed in that framework  on a  Dell Inspiron 

545 with an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running 

under the Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

orthomodular lattice theory implies Proposition 2.13 of [5] (for each of  i = 1,2).  

 
============================== PROOF ================================= 

 

% Proof 1 at 10.62 (+ 0.06) seconds. 

% Length of proof is 45. 

% Level of proof is 10. 

 

4 id1(x,y) = 1 <-> x = y # label("Proposition 2.10id1") # label(non_clause) # 

label(goal).  [goal]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

17 x ^ (x v y) = x # label("AxL6").  [assumption]. 

18 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

22 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

23 x v c(x v c(y v x)) = y v x.  [copy(22),rewrite([21(3),12(2)])]. 

24 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

25 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

26 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(25),rewrite([21(3)])]. 

55 id1(x,y) = i1(x,y) ^ i0(y,x) # label("Df: id1").  [assumption]. 

56 id1(x,y) = c(c(c(y) v x) v c(c(x) v c(c(x) v c(y)))).  

[copy(55),rewrite([26(2),24(8),21(10),13(12)])]. 

65 id1(c1,c2) = 1 | c2 = c1 # label("Proposition 2.10id1").  [deny(4)]. 

66 c(c(c1 v c(c2)) v c(c(c1) v c(c(c1) v c(c2)))) = 1 | c2 = c1.  

[copy(65),rewrite([56(3),13(4)])]. 

67 id1(c1,c2) != 1 | c2 != c1 # label("Proposition 2.10id1").  [deny(4)]. 

68 c(c(c1 v c(c2)) v c(c(c1) v c(c(c1) v c(c2)))) != 1 | c2 != c1.  

[copy(67),rewrite([56(3),13(4)])]. 

69 c(1) = 0.  [back_rewrite(18),rewrite([21(2),12(2),20(2)])]. 

70 c(c(x) v c(x v y)) = x.  [back_rewrite(17),rewrite([21(2)])]. 

71 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

82 x v c(x v c(x v y)) = y v x.  [para(13(a,1),23(a,1,2,1,2,1))]. 
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88 c2 = c1 | c(c1 v c(c2)) v c(c(c1) v c(c(c1) v c(c2))) = 0.  

[para(66(a,1),12(a,1,1)),rewrite([69(5)]),flip(b)]. 

108 c(0) = 1.  [para(69(a,1),12(a,1,1))]. 

110 c(x) v c(x v y) = c(x).  [para(70(a,1),12(a,1,1)),flip(a)]. 

114 c(0 v c(x)) = x.  [para(20(a,1),70(a,1,1,2,1)),rewrite([69(3),13(3)])]. 

115 c(x v y) v c(x v c(x v y)) = c(x).  

[para(70(a,1),23(a,1,2,1,2)),rewrite([13(5),110(11)])]. 

118 1 v x = 1.  [para(69(a,1),70(a,1,1,1)),rewrite([114(6)])]. 

143 x v 0 = x.  [para(20(a,1),71(a,1,2,1)),rewrite([69(2)])]. 

144 x v c(y v c(x)) = x.  [para(23(a,1),71(a,1,2,1))]. 

146 c2 = c1 | c1 v c(c2) = 1.  [para(66(a,1),71(a,1,2)),rewrite([13(9),118(9)]),flip(b)]. 

147 x v x = x.  [para(69(a,1),71(a,1,2,1,2)),rewrite([13(3),114(4)])]. 

154 0 v x = x.  [para(143(a,1),13(a,1)),flip(a)]. 

185 x v (c(y v c(x)) v z) = x v z.  [para(144(a,1),14(a,1,1)),flip(a)]. 

807 c2 = c1 | c2 v c(c(c1) v c(c(c1) v c(c2))) = c2.  

[para(88(b,1),185(a,1,2)),rewrite([13(6),154(6)]),flip(b)]. 

811 x v c(y v c(y v c(x))) = x v c(y).  [para(115(a,1),185(a,1,2)),flip(a)]. 

822 c2 = c1 | c1 v c2 = c2.  [back_rewrite(807),rewrite([811(15),12(7),13(6)])]. 

833 c2 = c1 | c1 v c(c1 v c(c2)) = c1 v c2.  

[para(822(b,1),82(a,1,2,1,2,1)),rewrite([13(13)])]. 

6066 c2 = c1 | c1 v c2 = c1.  

[para(146(b,1),833(b,1,2,1)),rewrite([69(9),13(9),154(9)]),flip(c),merge(b)]. 

6286 c2 = c1.  [para(6066(b,1),822(b,1)),flip(c),merge(b),merge(c)]. 

6287 $F.  

[back_rewrite(68),rewrite([6286(2),20(4),69(2),6286(6),147(8),12(6),13(5),20(5),69(3),147

(3),108(2),6286(4)]),xx(a),xx(b)]. 

 

============================== end of proof ========================== 

 
 

 
============================== PROOF ================================= 

 

% Proof 1 at 0.11 (+ 0.01) seconds: "OMA". 

% Length of proof is 36. 

% Level of proof is 8. 

 

4 id2(x,y) = 1 <-> x = y # label("Hypothesis for Proposition 2.10id2") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

26 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

27 i2(x,y) = y v c(y v x).  [copy(26),rewrite([13(3),22(4),13(3),13(3)])]. 

56 id2(x,y) = i2(x,y) ^ i0(y,x) # label("Df: id2").  [assumption]. 

57 id2(x,y) = c(c(c(y) v x) v c(y v c(y v x))).  

[copy(56),rewrite([27(2),23(5),22(7),14(9)])]. 

64 id2(x,y) != 1 | y = x # label("Hypothesis for Proposition 2.10id2").  [clausify(4)]. 

65 c(c(c(x) v y) v c(x v c(x v y))) != 1 | x = y.  [copy(64),rewrite([57(1)])]. 

68 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

69 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(68),rewrite([14(6),22(7),13(4),14(12)])]. 

70 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

71 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

72 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

74 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

82 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

106 c(0 v c(c1 v (c2 v c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2)))))))) != 1 # answer("OMA").  

[ur(65,b,69,a(flip)),rewrite([74(14),82(14),70(2),74(17),15(16),15(19)])]. 

114 c(0 v c(x)) = x.  [para(21(a,1),71(a,1,1,2,1)),rewrite([70(3),14(3)])]. 

119 c1 v (c2 v c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2)))))) != 1 # answer("OMA").  

[back_rewrite(106),rewrite([114(22)])]. 
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130 x v c(c(x) v y) = x.  [para(13(a,1),72(a,1,2,1,2))]. 

136 x v x = x.  [para(70(a,1),72(a,1,2,1,2)),rewrite([14(3),114(4)])]. 

156 x v (x v y) = x v y.  [para(136(a,1),15(a,1,1)),flip(a)]. 

164 c1 v (c2 v c(c1 v (c2 v c(c1 v c(c1 v c2))))) != 1 # answer("OMA").  

[back_rewrite(119),rewrite([156(15)])]. 

181 x v c(y v c(x)) = x.  [para(14(a,1),130(a,1,2,1))]. 

197 x v (y v c(z v c(x v y))) = x v y.  [para(181(a,1),15(a,1)),flip(a)]. 

203 $F # answer("OMA").  [back_rewrite(164),rewrite([197(13),82(8)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.13 from orthomodular lattice theory, for 

each of i = 1,2.  The proofs assume the default  inference rules of prover9. The general form of a line 

in this proof is “line_number conclusion [derivation]”, where line_number is a unique identifier of a 

line in the proof, and conclusion is the result of applying the prover9 inference rules (such as 

paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), to the 

lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 2 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  The proofs in Figure 3 use L1, 

L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 4,5, and for orthomodular 

lattice theory implies Propositions 2.13i,  i = 

1,2,3,4,5. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum identities; thus, 

this paper together with papers mentioned in 

(3), constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum- identity-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed identities 

    id1(x,y) = i1(x,y) ^ i0(y, x)   

    id2(x,y) = i2(x,y) ^ i0(y, x)   

    id3(x,y) = i3(x,y) ^ i0(y, x)   

    id4(x,y) = i4(x,y) ^ i0(y, x)   

    id5(x,y) = i5(x,y) ^ i0(y, x)   

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 
 x ≡i y    <->    x = y 

 

where  

Copyright © 2014 CSREA Press, ISBN: 1-60132-270-4; Printed in the United States of America

Int'l Conf. Foundations of Computer Science |  FCS'14  | 109



 

 x ≡i y means (x i y) ^ (x 0 y) 

 x 0 y means c(x) v y 

 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.13 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.13 of [5], for each 

of  i = 3,4, from orthomodular lattice theory, then executed in that framework  on a  Dell Inspiron 

545 with an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running 

under the Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

orthomodular lattice theory implies Proposition 2.13 of [5] (for each of  i = 3,4).  

 
============================== PROOF ================================= 

 

% Proof 1 at 9.98 (+ 0.05) seconds. 

% Length of proof is 51. 

% Level of proof is 13. 

 

4 id3(x,y) = 1 <-> x = y # label("Proposition 2.10id3") # label(non_clause) # 

label(goal).  [goal]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

17 x ^ (x v y) = x # label("AxL6").  [assumption]. 

18 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

22 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

23 x v c(x v c(y v x)) = y v x.  [copy(22),rewrite([21(3),12(2)])]. 

24 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

25 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

26 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(25),rewrite([21(3)])]. 

29 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

30 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(29),rewrite([21(3),12(3),21(7),12(6),12(6),13(7),21(9),14(14)])]. 

59 id3(x,y) = i3(x,y) ^ i0(y,x) # label("Df: id3").  [assumption]. 

60 id3(x,y) = c(c(c(y) v x) v c(c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))))).  

[copy(59),rewrite([30(2),24(15),21(17),13(19)])]. 

65 id3(c1,c2) = 1 | c2 = c1 # label("Proposition 2.10id3").  [deny(4)]. 

66 c(c(c1 v c(c2)) v c(c(c1 v c2) v (c(c1 v c(c2)) v (c(c1) v c(c(c1) v c(c2)))))) = 1 | 

c2 = c1.  [copy(65),rewrite([60(3),13(4)])]. 

67 id3(c1,c2) != 1 | c2 != c1 # label("Proposition 2.10id3").  [deny(4)]. 
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68 c(c(c1 v c(c2)) v c(c(c1 v c2) v (c(c1 v c(c2)) v (c(c1) v c(c(c1) v c(c2)))))) != 1 | 

c2 != c1.  [copy(67),rewrite([60(3),13(4)])]. 

69 c(1) = 0.  [back_rewrite(18),rewrite([21(2),12(2),20(2)])]. 

70 c(c(x) v c(x v y)) = x.  [back_rewrite(17),rewrite([21(2)])]. 

71 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

73 x v (y v z) = y v (x v z).  [para(13(a,1),14(a,1,1)),rewrite([14(2)])]. 

74 c(c(c1 v c(c2)) v c(c(c1) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))))) != 1 | 

c2 != c1.  [back_rewrite(68),rewrite([73(24),73(25)])]. 

75 c(c(c1 v c(c2)) v c(c(c1) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))))) = 1 | 

c2 = c1.  [back_rewrite(66),rewrite([73(24),73(25)])]. 

84 x v c(x v c(x v y)) = y v x.  [para(13(a,1),23(a,1,2,1,2,1))]. 

90 c(0) = 1.  [para(69(a,1),12(a,1,1))]. 

92 c(x) v c(x v y) = c(x).  [para(70(a,1),12(a,1,1)),flip(a)]. 

96 c(0 v c(x)) = x.  [para(20(a,1),70(a,1,1,2,1)),rewrite([69(3),13(3)])]. 

98 1 v x = 1.  [para(69(a,1),70(a,1,1,1)),rewrite([96(6)])]. 

101 x v c(c(x) v y) = x.  [para(12(a,1),71(a,1,2,1,2))]. 

105 x v 0 = x.  [para(20(a,1),71(a,1,2,1)),rewrite([69(2)])]. 

106 x v c(y v c(x)) = x.  [para(23(a,1),71(a,1,2,1))]. 

107 x v x = x.  [para(69(a,1),71(a,1,2,1,2)),rewrite([13(3),96(4)])]. 

113 0 v x = x.  [para(105(a,1),13(a,1)),flip(a)]. 

147 c2 = c1 | c1 v c(c2) = 1.  [para(75(a,1),101(a,1,2)),rewrite([13(9),98(9)]),flip(b)]. 

156 c2 = c1 | c(c1) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1.  

[para(75(a,1),106(a,1,2)),rewrite([13(25),98(25)]),flip(b)]. 

180 c(x) v (c(x v y) v z) = c(x) v z.  [para(92(a,1),14(a,1,1)),flip(a)]. 

185 c2 = c1 | c(c1) v c(c(c1) v c(c2)) = 1.  

[back_rewrite(156),rewrite([180(23),180(18)])]. 

202 c(c(c1 v c(c2)) v c(c(c1) v c(c(c1) v c(c2)))) != 1 | c2 != c1.  

[back_rewrite(74),rewrite([180(25),180(20)])]. 

1260 c2 = c1 | c(c1) v c(c2) = c(c1).  

[para(185(b,1),26(a,2,2,1)),rewrite([26(10),84(16),13(8),69(12),13(12),113(12)])]. 

1331 c2 = c1 | c1 v c2 = c2.  [para(1260(b,1),106(a,1,2,1)),rewrite([12(7),13(6)])]. 

1359 c2 = c1 | c1 v c(c1 v c(c2)) = c1 v c2.  

[para(1331(b,1),84(a,1,2,1,2,1)),rewrite([13(13)])]. 

8163 c2 = c1 | c1 v c2 = c1.  

[para(147(b,1),1359(b,1,2,1)),rewrite([69(9),13(9),113(9)]),flip(c),merge(b)]. 

8252 c2 = c1.  [para(8163(b,1),1331(b,1)),flip(c),merge(b),merge(c)]. 

8253 $F.  

[back_rewrite(202),rewrite([8252(2),20(4),69(2),8252(6),107(8),12(6),13(5),20(5),69(3),10

7(3),90(2),8252(4)]),xx(a),xx(b)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 0.09 (+ 0.05) seconds: "OMA". 

% Length of proof is 46. 

% Level of proof is 12. 

 

4 id4(x,y) = 1 <-> x = y # label("Hypothesis for Proposition 2.10id4") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

12 x = c(c(x)) # label("AxL1").  [assumption]. 

13 c(c(x)) = x.  [copy(12),flip(a)]. 

14 x v y = y v x # label("AxL2").  [assumption]. 

15 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

17 x v (x ^ y) = x # label("AxL5").  [assumption]. 

18 x ^ (x v y) = x # label("AxL6").  [assumption]. 

19 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

20 c(x) v x = 1 # label("AxOL2").  [assumption]. 

21 x v c(x) = 1.  [copy(20),rewrite([14(2)])]. 

22 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

30 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ c(x))) # 

label("Df: i4").  [assumption]. 

31 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(30),rewrite([13(3),22(3),13(4),13(6),13(6),22(5),13(11),22(12),13(11),13(11),14(13)

,15(13)])]. 

60 id4(x,y) = i4(x,y) ^ i0(y,x) # label("Df: id4").  [assumption]. 

61 id4(x,y) = c(c(c(y) v x) v c(y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))))).  

[copy(60),rewrite([31(2),23(14),22(16),14(18)])]. 
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64 id4(x,y) != 1 | y = x # label("Hypothesis for Proposition 2.10id4").  [clausify(4)]. 

65 c(c(c(x) v y) v c(x v (c(x v y) v (c(c(x) v y) v c(c(x) v c(y)))))) != 1 | x = y.  

[copy(64),rewrite([61(1)])]. 

68 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

69 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(68),rewrite([14(6),22(7),13(4),14(12)])]. 

70 c(1) = 0.  [back_rewrite(19),rewrite([22(2),13(2),21(2)])]. 

71 c(c(x) v c(x v y)) = x.  [back_rewrite(18),rewrite([22(2)])]. 

72 x v c(c(x) v c(y)) = x.  [back_rewrite(17),rewrite([22(1)])]. 

74 x v (y v z) = y v (x v z).  [para(14(a,1),15(a,1,1)),rewrite([15(2)])]. 

81 x v (c(x) v y) = 1 v y.  [para(21(a,1),15(a,1,1)),flip(a)]. 

82 x v (y v c(x v y)) = 1.  [para(21(a,1),15(a,1)),flip(a)]. 

103 c(0 v c(0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v 

c(c1 v c(c1 v c(c1 v c2))))))))) != 1 # answer("OMA").  

[ur(65,b,69,a(flip)),rewrite([74(14),82(14),70(2),74(17),15(16),74(32),82(32),70(20),74(3

7),74(38),15(37)])]. 

114 c(0 v c(x)) = x.  [para(21(a,1),71(a,1,1,2,1)),rewrite([70(3),14(3)])]. 

118 1 v x = 1.  [para(70(a,1),71(a,1,1,1)),rewrite([114(6)])]. 

122 0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 v 

c(c1 v c(c1 v c2))))))) != 1 # answer("OMA").  [back_rewrite(103),rewrite([114(41)])]. 

134 x v (c(x) v y) = 1.  [back_rewrite(81),rewrite([118(5)])]. 

137 x v c(c(x) v y) = x.  [para(13(a,1),72(a,1,2,1,2))]. 

141 x v 0 = x.  [para(21(a,1),72(a,1,2,1)),rewrite([70(2)])]. 

144 x v x = x.  [para(70(a,1),72(a,1,2,1,2)),rewrite([14(3),114(4)])]. 

156 0 v (0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 

v c(c1 v c(c1 v c2)))))))) != 1 # answer("OMA").  

[ur(65,b,122,a(flip)),rewrite([70(2),118(80),70(43),70(44),70(84),114(123),14(120),15(120

),15(119),15(118),15(117),118(122),70(42),14(42),114(43)])]. 

157 0 v (0 v (0 v (0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v 

c2) v c(c1 v c(c1 v c(c1 v c2)))))))))) != 1 # answer("OMA").  

[ur(65,b,156,a),rewrite([14(42),118(42),70(2),14(81),118(81),70(42),14(83),118(83),70(43)

,70(84),14(84),114(85),74(84),74(83),144(82),114(47)])]. 

159 0 v (0 v (0 v (0 v (0 v (0 v (c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v 

c(c(c1 v c2) v c(c1 v c(c1 v c(c1 v c2)))))))))))) != 1 # answer("OMA").  

[ur(65,b,157,a),rewrite([14(46),118(46),70(2),14(89),118(89),70(46),14(91),118(91),70(47)

,70(92),14(92),114(93),74(92),74(91),144(90),114(51)])]. 

163 0 v x = x.  [para(141(a,1),14(a,1)),flip(a)]. 

164 c1 v (c2 v (c(c1 v (c1 v (c2 v c(c1 v c(c1 v c2))))) v c(c(c1 v c2) v c(c1 v c(c1 v 

c(c1 v c2)))))) != 1 # answer("OMA").  

[back_rewrite(159),rewrite([163(42),163(41),163(40),163(39),163(38),163(37)])]. 

175 x v (x v y) = x v y.  [para(144(a,1),15(a,1,1)),flip(a)]. 

180 c1 v (c2 v (c(c1 v (c2 v c(c1 v c(c1 v c2)))) v c(c(c1 v c2) v c(c1 v c(c1 v c(c1 v 

c2)))))) != 1 # answer("OMA").  [back_rewrite(164),rewrite([175(15)])]. 

185 x v (y v (c(x v y) v z)) = 1.  [para(134(a,1),15(a,1)),flip(a)]. 

198 x v c(y v c(x)) = x.  [para(14(a,1),137(a,1,2,1))]. 

215 x v (y v c(z v c(x v y))) = x v y.  [para(198(a,1),15(a,1)),flip(a)]. 

221 $F # answer("OMA").  [back_rewrite(180),rewrite([215(13),185(25)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.13 from orthomodular lattice theory, for 

each of i = 3,4.  The proofs assume the default  inference rules of prover9. The general form of a line 

in this proof is “line_number conclusion [derivation]”, where line_number is a unique identifier of a 

line in the proof, and conclusion is the result of applying the prover9 inference rules (such as 

paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), to the 

lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 2 

seconds. 
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4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  The proofs in Figure 3 use L1, 

L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2, and 5, and the converse 

propositions. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum identity; thus, this 

paper together with the papers mentioned in 

(3), constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-union.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  a quantum-identity-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed identities 

    id1(x,y) = i1(x,y) ^ i0(y, x)   

    id2(x,y) = i2(x,y) ^ i0(y, x)   

    id3(x,y) = i3(x,y) ^ i0(y, x)   

    id4(x,y) = i4(x,y) ^ i0(y, x)   

    id5(x,y) = i5(x,y) ^ i0(y, x)   

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 
 x ≡i y    <->    x = y 

 

where  

 

Copyright © 2014 CSREA Press, ISBN: 1-60132-270-4; Printed in the United States of America

116 Int'l Conf. Foundations of Computer Science |  FCS'14  |



 x ≡i y means (x i y) ^ (x 0 y) 

 x 0 y means c(x) v y 

 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.13 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.13 of [5], for i = 5, 

from orthomodular lattice theory, then executed in that framework  on a  Dell Inspiron 545 with 

an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under the 

Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

orthomodular lattice theory implies Proposition 2.13 of [5] (for i = 5).  

 
=========== PROOF ================================= 

 

% Proof 1 at 4.48 (+ 0.06) seconds. 

% Length of proof is 53. 

% Level of proof is 11. 

. 

 

4 id5(x,y) = 1 <-> x = y # label("Proposition 2.10id5") # 

label(non_clause) # label(goal).  [goal]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

17 x ^ (x v y) = x # label("AxL6").  [assumption]. 

18 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

22 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

23 x v c(x v c(y v x)) = y v x.  [copy(22),rewrite([21(3),12(2)])]. 

24 i0(x,y) = c(x) v y # label("Df: i0").  [assumption]. 

25 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

26 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(25),rewrite([21(3)])]. 

27 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  

[assumption]. 
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28 i2(x,y) = y v c(y v x).  

[copy(27),rewrite([12(3),21(4),12(3),12(3)])]. 

33 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: 

i5").  [assumption]. 

34 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(33),rewrite([21(2),21(7),12(7),13(9),21(12),12(11),12(11),13(1

2)])]. 

63 id5(x,y) = i5(x,y) ^ i0(y,x) # label("Df: id5").  [assumption]. 

64 id5(x,y) = c(c(c(y) v x) v c(c(x v y) v (c(x v c(y)) v c(c(x) v 

c(y))))).  [copy(63),rewrite([34(2),24(13),21(15),13(17)])]. 

65 id5(c1,c2) = 1 | c2 = c1 # label("Proposition 2.10id5").  

[deny(4)]. 

66 c(c(c1 v c(c2)) v c(c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v 

c(c2))))) = 1 | c2 = c1.  [copy(65),rewrite([64(3),13(4)])]. 

67 id5(c1,c2) != 1 | c2 != c1 # label("Proposition 2.10id5").  

[deny(4)]. 

68 c(c(c1 v c(c2)) v c(c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v 

c(c2))))) != 1 | c2 != c1.  [copy(67),rewrite([64(3),13(4)])]. 

69 c(1) = 0.  [back_rewrite(18),rewrite([21(2),12(2),20(2)])]. 

70 c(c(x) v c(x v y)) = x.  [back_rewrite(17),rewrite([21(2)])]. 

71 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

73 x v (y v z) = y v (x v z).  

[para(13(a,1),14(a,1,1)),rewrite([14(2)])]. 

82 x v c(x v c(x v y)) = y v x.  [para(13(a,1),23(a,1,2,1,2,1))]. 

100 c(0) = 1.  [para(69(a,1),12(a,1,1))]. 

102 c(x) v c(x v y) = c(x).  [para(70(a,1),12(a,1,1)),flip(a)]. 

106 c(0 v c(x)) = x.  

[para(20(a,1),70(a,1,1,2,1)),rewrite([69(3),13(3)])]. 

110 1 v x = 1.  [para(69(a,1),70(a,1,1,1)),rewrite([106(6)])]. 

127 x v 0 = x.  [para(20(a,1),71(a,1,2,1)),rewrite([69(2)])]. 

128 x v c(y v c(x)) = x.  [para(23(a,1),71(a,1,2,1))]. 

130 c2 = c1 | c1 v c(c2) = 1.  

[para(66(a,1),71(a,1,2)),rewrite([13(9),110(9)]),flip(b)]. 

131 x v x = x.  

[para(69(a,1),71(a,1,2,1,2)),rewrite([13(3),106(4)])]. 

138 0 v x = x.  [para(127(a,1),13(a,1)),flip(a)]. 

158 c(x) v c(y v x) = c(x).  [para(12(a,1),128(a,1,2,1,2))]. 

163 c2 = c1 | c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) = 1.  

[para(66(a,1),128(a,1,2)),rewrite([13(22),110(22)]),flip(b)]. 

174 c2 = c1 | c(c(c1 v c(c2)) v c(c(c1 v c2) v c(c(c1) v c(c2)))) = 

1.  

[para(130(b,1),66(a,1,1,2,1,2,1,1)),rewrite([69(14),138(20)]),merge(

c)]. 

190 c(x) v (c(x v y) v z) = c(x) v z.  

[para(102(a,1),14(a,1,1)),flip(a)]. 

281 c(x) v (y v c(z v x)) = y v c(x).  

[para(158(a,1),73(a,1,2)),flip(a)]. 

1164 c2 = c1 | c(c1) v c(c(c1) v c(c2)) = 1.  

[para(163(b,1),190(a,1,2)),rewrite([13(7),110(7),190(19)]),flip(b)]. 

1531 c(x v c(y)) v c(x v c(z v y)) = c(x v c(z v y)).  

[para(281(a,1),158(a,1,2,1)),rewrite([13(8)])]. 

3557 c2 = c1 | c(c1) v c(c2) = c(c1).  

[para(1164(b,1),26(a,2,2,1)),rewrite([26(10),82(16),13(8),69(12),13(

12),138(12)])]. 

Copyright © 2014 CSREA Press, ISBN: 1-60132-270-4; Printed in the United States of America

118 Int'l Conf. Foundations of Computer Science |  FCS'14  |



3673 c2 = c1 | c1 v c2 = c2.  

[para(3557(b,1),128(a,1,2,1)),rewrite([12(7),13(6)])]. 

3695 c2 = c1 | c1 v c(c1 v c2) = 1.  

[para(3557(b,1),174(b,1,1,2,1,2,1)),rewrite([12(18),13(17),1531(19),

12(14)]),merge(b)]. 

4060 c2 = c1 | c1 v c2 = c1.  

[para(3695(b,1),28(a,2,2,1)),rewrite([28(9),82(12),13(6),69(9),13(9)

,138(9)])]. 

4115 c2 = c1.  

[para(4060(b,1),3673(b,1)),flip(c),merge(b),merge(c)]. 

4116 $F.  

[back_rewrite(68),rewrite([4115(2),20(4),69(2),4115(3),131(4),4115(5

),20(7),69(5),4115(7),131(9),12(7),138(6),13(5),20(5),69(3),131(3),1

00(2),4115(4)]),xx(a),xx(b)]. 

 

=============== end of proof ========================== 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.13 from orthomodular lattice theory, for 

i = 5.  The proofs assume the default  inference rules of prover9. The general form of a line in this 

proof is “line_number conclusion [derivation]”, where line_number is a unique identifier of a line in 

the proof, and conclusion is the result of applying the prover9 inference rules (such as 

paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), to the 

lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 2 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  The proof in Figure 3 uses L1, 

L2, L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2,3,4, and the converse 

propositions. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum identity; thus, this 

paper together with the papers mentioned in 

(3), constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-union.  

Collectively, these papers provide a  theory 

of equivelance of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.    Here I provide an automated deduction 

of  the OMA from three quantum- union-based equivalents.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed unions 

   u1(x,y) =  i1(c(x),y)          

   u2(x,y) =  i2(c(x),y)          

   u3(x,y) =  i3(c(x),y)          

   u4(x,y) =  i4(c(x),y)          

   u5(x,y) =  i5(c(x),y)          

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit or compiler design.  

Among these is the Proposition shown in Figure 2: 

 

 x i y    <->    c(x)  c(y) 
 

where  
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 x i y means c(x) i y 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.11 of [5] 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive the OMA from Proposition 2.11 

of [5], for each of  i = 1,2,3  together with ortholattice theory (orthomodular lattice theory, 

without the OMA), then executed in that framework  on a  Dell Inspiron 545 with an  Intel Core2 

Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under the Windows Vista 

Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

Proposition 2.11 (for each of  i = 1,2,3), together with ortholattice theory, imply the OMA.  

 
============================== PROOF ================================= 

 

% Proof 1 at 26.43 (+ 0.86) seconds: "OMA". 

% Length of proof is 40. 

% Level of proof is 12. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u1(x,y) = 1 <-> perp(c(x),c(y)) # label("Hypothesis for Proposition 2.11u1") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

8 x = c(c(x)) # label("AxL1").  [assumption]. 

9 c(c(x)) = x.  [copy(8),flip(a)]. 

10 x v y = y v x # label("AxL2").  [assumption]. 

11 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

13 x v (x ^ y) = x # label("AxL5").  [assumption]. 

16 c(x) v x = 1 # label("AxOL2").  [assumption]. 

17 x v c(x) = 1.  [copy(16),rewrite([10(2)])]. 

18 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

20 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

21 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(20),rewrite([18(3)])]. 

30 u1(x,y) = i1(c(x),y) # label("Df: u1").  [assumption]. 

31 u1(x,y) = x v c(x v c(y)).  [copy(30),rewrite([21(3),9(3),9(3)])]. 

40 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

41 -le(x,y) | c(c(x) v c(y)) = x.  [copy(40),rewrite([18(2)])]. 

44 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 u1(x,y) != 1 | perp(c(x),c(y)) # label("Hypothesis for Proposition 2.11u1").  

[clausify(4)]. 

47 x v c(x v c(y)) != 1 | perp(c(x),c(y)).  [copy(46),rewrite([31(1)])]. 

50 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

51 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(50),rewrite([10(6),18(7),9(4),10(12)])]. 

54 x v c(c(x) v c(y)) = x.  [back_rewrite(13),rewrite([18(1)])]. 

56 x v (y v z) = y v (x v z).  [para(10(a,1),11(a,1,1)),rewrite([11(2)])]. 

60 x v (y v c(x v y)) = 1.  [para(17(a,1),11(a,1)),flip(a)]. 

66 x v c(x v y) != 1 | perp(c(x),y).  [para(9(a,1),47(a,1,2,1,2)),rewrite([9(8)])]. 

88 x v c(c(x) v y) = x.  [para(9(a,1),54(a,1,2,1,2))]. 

113 x v (y v c(y v x)) = 1.  [para(10(a,1),60(a,1,2,2,1))]. 

144 x v c(y v x) != 1 | perp(c(x),y).  [para(10(a,1),66(a,1,2,1))]. 
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191 x v c(y v c(x)) = x.  [para(10(a,1),88(a,1,2,1))]. 

193 x v (y v c(c(x v y) v z)) = x v y.  [para(88(a,1),11(a,1)),flip(a)]. 

280 x v (y v c(z v c(x v y))) = x v y.  [para(191(a,1),11(a,1)),flip(a)]. 

1222 x v (c(y v x) v c(c(y v x) v z)) != 1 | perp(c(x v c(c(y v x) v z)),y).  

[para(193(a,1),144(a,1,2,1)),rewrite([10(8),56(8)])]. 

22614 perp(c(x v c(x v c(y v x))),y).  [hyper(1222,a,113,a),rewrite([10(3)])]. 

22615 le(c(x v c(x v c(y v x))),c(y)).  [hyper(44,a,22614,a)]. 

22635 c(x v c(x v c(y v x))) = c(y v x).  

[hyper(41,a,22615,a),rewrite([9(7),9(7),10(6),280(6)]),flip(a)]. 

22644 x v c(x v c(y v x)) = y v x.  [para(22635(a,1),9(a,1,1)),rewrite([9(3)]),flip(a)]. 

22655 x v c(x v c(x v y)) = y v x.  [para(10(a,1),22644(a,1,2,1,2,1))]. 

22695 $F # answer("OMA").  [back_rewrite(51),rewrite([22655(9),10(3)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 24.51 (+ 0.89) seconds: "OMA". 

% Length of proof is 51. 

% Level of proof is 13. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u2(x,y) = 1 <-> perp(c(x),c(y)) # label("Hypothesis for Proposition 2.11u2") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

8 x = c(c(x)) # label("AxL1").  [assumption]. 

9 c(c(x)) = x.  [copy(8),flip(a)]. 

10 x v y = y v x # label("AxL2").  [assumption]. 

11 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

13 x v (x ^ y) = x # label("AxL5").  [assumption]. 

14 x ^ (x v y) = x # label("AxL6").  [assumption]. 

15 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

16 c(x) v x = 1 # label("AxOL2").  [assumption]. 

17 x v c(x) = 1.  [copy(16),rewrite([10(2)])]. 

18 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

22 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

23 i2(x,y) = y v c(y v x).  [copy(22),rewrite([9(3),18(4),9(3),9(3)])]. 

32 u2(x,y) = i2(c(x),y) # label("Df: u2").  [assumption]. 

33 u2(x,y) = y v c(y v c(x)).  [copy(32),rewrite([23(3)])]. 

40 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

41 -le(x,y) | c(c(x) v c(y)) = x.  [copy(40),rewrite([18(2)])]. 

44 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 u2(x,y) != 1 | perp(c(x),c(y)) # label("Hypothesis for Proposition 2.11u2").  

[clausify(4)]. 

47 x v c(x v c(y)) != 1 | perp(c(y),c(x)).  [copy(46),rewrite([33(1)])]. 

50 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

51 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(50),rewrite([10(6),18(7),9(4),10(12)])]. 

52 c(1) = 0.  [back_rewrite(15),rewrite([18(2),9(2),17(2)])]. 

53 c(c(x) v c(x v y)) = x.  [back_rewrite(14),rewrite([18(2)])]. 

54 x v c(c(x) v c(y)) = x.  [back_rewrite(13),rewrite([18(1)])]. 

56 x v (y v z) = y v (x v z).  [para(10(a,1),11(a,1,1)),rewrite([11(2)])]. 

60 x v (y v c(x v y)) = 1.  [para(17(a,1),11(a,1)),flip(a)]. 

66 x v c(x v y) != 1 | perp(y,c(x)).  [para(9(a,1),47(a,1,2,1,2)),rewrite([9(7)])]. 

78 c(x) v c(x v y) = c(x).  [para(53(a,1),9(a,1,1)),flip(a)]. 

82 c(0 v c(x)) = x.  [para(17(a,1),53(a,1,1,2,1)),rewrite([52(3),10(3)])]. 

88 x v c(c(x) v y) = x.  [para(9(a,1),54(a,1,2,1,2))]. 

93 x v x = x.  [para(52(a,1),54(a,1,2,1,2)),rewrite([10(3),82(4)])]. 

110 x v (x v y) = x v y.  [para(93(a,1),11(a,1,1)),flip(a)]. 

113 x v (y v c(y v x)) = 1.  [para(10(a,1),60(a,1,2,2,1))]. 

144 x v c(y v x) != 1 | perp(y,c(x)).  [para(10(a,1),66(a,1,2,1))]. 

160 c(x) v c(y v x) = c(x).  [para(10(a,1),78(a,1,2,1))]. 

183 x v c(y v c(x)) = x.  [para(10(a,1),88(a,1,2,1))]. 

185 x v (y v c(c(x v y) v z)) = x v y.  [para(88(a,1),11(a,1)),flip(a)]. 

273 x v (y v c(z v c(x v y))) = x v y.  [para(183(a,1),11(a,1)),flip(a)]. 

397 c(x v y) v c(x v (z v y)) = c(x v y).  [para(56(a,1),160(a,1,2,1))]. 
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1173 x v (c(y v x) v c(c(y v x) v z)) != 1 | perp(y,c(x v c(c(y v x) v z))).  

[para(185(a,1),144(a,1,2,1)),rewrite([10(8),56(8)])]. 

7388 c(x v y) v c(x v c(z v c(x v y))) = c(x v c(z v c(x v y))).  

[para(273(a,1),397(a,1,2,1)),rewrite([10(9)])]. 

22475 perp(x,c(y v c(y v c(x v y)))).  [hyper(1173,a,113,a),rewrite([10(3)])]. 

22476 le(x,y v c(y v c(x v y))).  [hyper(44,a,22475,a),rewrite([9(7)])]. 

22486 le(x,y v c(y v c(y v x))).  [para(10(a,1),22476(a,2,2,1,2,1))]. 

22497 le(x v y,x v c(x v c(x v y))).  [para(110(a,1),22486(a,2,2,1,2,1))]. 

22518 x v c(x v c(x v y)) = x v y.  [hyper(41,a,22497,a),rewrite([7388(9),9(7)])]. 

22519 $F # answer("OMA").  [resolve(22518,a,51,a)]. 

 

============================== end of proof ========================== 

 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 91.76 (+ 2.37) seconds: "OMA". 

% Length of proof is 56. 

% Level of proof is 14. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u3(x,y) = 1 <-> perp(c(x),c(y)) # label("Hypothesis for Proposition 2.11u3") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

8 x = c(c(x)) # label("AxL1").  [assumption]. 

9 c(c(x)) = x.  [copy(8),flip(a)]. 

10 x v y = y v x # label("AxL2").  [assumption]. 

11 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

13 x v (x ^ y) = x # label("AxL5").  [assumption]. 

14 x ^ (x v y) = x # label("AxL6").  [assumption]. 

15 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

16 c(x) v x = 1 # label("AxOL2").  [assumption]. 

17 x v c(x) = 1.  [copy(16),rewrite([10(2)])]. 

18 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

24 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

25 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(24),rewrite([18(3),9(3),18(7),9(6),9(6),10(7),18(9),11(14)])]. 

34 u3(x,y) = i3(c(x),y) # label("Df: u3").  [assumption]. 

35 u3(x,y) = c(c(x) v y) v (x v (c(x v c(y)) v c(c(x) v c(y)))).  

[copy(34),rewrite([25(3),9(10),9(10),10(13),11(13)])]. 

40 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

41 -le(x,y) | c(c(x) v c(y)) = x.  [copy(40),rewrite([18(2)])]. 

44 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 u3(x,y) != 1 | perp(c(x),c(y)) # label("Hypothesis for Proposition 2.11u3").  

[clausify(4)]. 

47 c(c(x) v y) v (x v (c(x v c(y)) v c(c(x) v c(y)))) != 1 | perp(c(x),c(y)).  

[copy(46),rewrite([35(1)])]. 

50 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

51 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(50),rewrite([10(6),18(7),9(4),10(12)])]. 

52 c(1) = 0.  [back_rewrite(15),rewrite([18(2),9(2),17(2)])]. 

53 c(c(x) v c(x v y)) = x.  [back_rewrite(14),rewrite([18(2)])]. 

54 x v c(c(x) v c(y)) = x.  [back_rewrite(13),rewrite([18(1)])]. 

56 x v (y v z) = y v (x v z).  [para(10(a,1),11(a,1,1)),rewrite([11(2)])]. 

58 x v (c(c(x) v y) v (c(x v c(y)) v c(c(x) v c(y)))) != 1 | perp(c(x),c(y)).  

[back_rewrite(47),rewrite([56(13)])]. 

62 x v (y v c(x v y)) = 1.  [para(17(a,1),11(a,1)),flip(a)]. 

74 c(x) v c(x v y) = c(x).  [para(53(a,1),9(a,1,1)),flip(a)]. 

78 c(0 v c(x)) = x.  [para(17(a,1),53(a,1,1,2,1)),rewrite([52(3),10(3)])]. 

79 1 v x = 1.  [para(52(a,1),53(a,1,1,1)),rewrite([78(6)])]. 

84 x v c(c(x) v y) = x.  [para(9(a,1),54(a,1,2,1,2))]. 

88 x v 0 = x.  [para(17(a,1),54(a,1,2,1)),rewrite([52(2)])]. 

89 x v x = x.  [para(52(a,1),54(a,1,2,1,2)),rewrite([10(3),78(4)])]. 

90 x v (y v c(x)) = y v 1.  [para(17(a,1),56(a,1,2)),flip(a)]. 

103 x v 1 = 1.  [para(79(a,1),10(a,1)),flip(a)]. 

105 x v (y v c(x)) = 1.  [back_rewrite(90),rewrite([103(5)])]. 

106 0 v x = x.  [para(88(a,1),10(a,1)),flip(a)]. 
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111 x v (c(x v y) v (c(c(x) v y) v c(c(x) v c(y)))) != 1 | perp(c(x),y).  

[para(9(a,1),58(a,1,2,2,1,1,2)),rewrite([9(9),10(11),11(11),9(17)])]. 

125 x v (x v y) = x v y.  [para(89(a,1),11(a,1,1)),flip(a)]. 

127 x v (y v x) = y v x.  [para(89(a,1),11(a,2,2)),rewrite([10(2)])]. 

130 x v (y v c(y v x)) = 1.  [para(10(a,1),62(a,1,2,2,1))]. 

168 c(x) v c(y v x) = c(x).  [para(10(a,1),74(a,1,2,1))]. 

193 x v c(y v c(x)) = x.  [para(10(a,1),84(a,1,2,1))]. 

195 x v (y v c(c(x v y) v z)) = x v y.  [para(84(a,1),11(a,1)),flip(a)]. 

250 x v c(y v x) != 1 | perp(c(x),y v x).  

[para(105(a,1),111(a,1,2,2,1,1)),rewrite([9(2),127(2),52(4),9(6),168(7),9(5),106(4),10(3)

,125(4),9(8)])]. 

1917 x v (c(y v x) v c(c(y v x) v z)) != 1 | perp(c(x v c(c(y v x) v z)),y v x).  

[para(195(a,1),250(a,1,2,1)),rewrite([10(8),56(8),195(22)])]. 

25067 perp(c(x v c(x v c(y v x))),y v x).  [hyper(1917,a,130,a),rewrite([10(3)])]. 

25068 le(c(x v c(x v c(y v x))),c(y v x)).  [hyper(44,a,25067,a)]. 

25087 c(x v c(x v c(y v x))) = c(y v x).  

[hyper(41,a,25068,a),rewrite([9(7),9(8),10(7),56(7),193(6),127(2)]),flip(a)]. 

25091 x v c(x v c(y v x)) = y v x.  [para(25087(a,1),9(a,1,1)),rewrite([9(3)]),flip(a)]. 

25119 x v c(x v c(x v y)) = y v x.  [para(10(a,1),25091(a,1,2,1,2,1))]. 

25164 $F # answer("OMA").  [back_rewrite(51),rewrite([25119(9),10(3)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.11 ([5]), for each of i = 1,2,3 .  The proofs 

assume the default  inference rules of prover9. The general form of a line in this proof is 

“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, 

and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, 

and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 140 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  With the exception of 

Proposition 2.11, the proofs in Figure 3 for 

i=2 and i=3 are symmetric in their 

derivational dependencies and useL1, L2, 

L5, L6, OL1, OL2, and OL3.  The proof for 

i=1 uses L1, L2, L3, L5, OL2, and OL3.   

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 4,5, and for orthomodular 

lattice theory implies Propositions 2.11i, i = 

1,2,3,4,5. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum union; thus, this 

paper together with the papers mentioned in 

(3), constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-identity.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum-union-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed unions 

   u1(x,y) =  i1(c(x),y)          

   u2(x,y) =  i2(c(x),y)          

   u3(x,y) =  i3(c(x),y)          

   u4(x,y) =  i4(c(x),y)          

   u5(x,y) =  i5(c(x),y)          

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    c(x)  c(y) 
 

where  
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 x i y means c(x) i y 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.11 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive OMA from Proposition 2.11 of 

[5], for each of  i = 4,5  together with ortholattice theory (orthomodular lattice theory, without the 

OMA), then executed in that framework  on a  Dell Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under the Windows Vista Home 

Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

Proposition 2.11 (for each of  i = 4,5), together with ortholattice theory, imply the OMA.  

 
============================== PROOF ================================= 

 

% Proof 1 at 169.67 (+ 3.56) seconds: "OMA". 

% Length of proof is 54. 

% Level of proof is 14. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u4(x,y) = 1 <-> perp(c(x),c(y)) # label("Hypothesis for Proposition 2.10u4") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

8 x = c(c(x)) # label("AxL1").  [assumption]. 

9 c(c(x)) = x.  [copy(8),flip(a)]. 

10 x v y = y v x # label("AxL2").  [assumption]. 

11 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

13 x v (x ^ y) = x # label("AxL5").  [assumption]. 

14 x ^ (x v y) = x # label("AxL6").  [assumption]. 

15 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

16 c(x) v x = 1 # label("AxOL2").  [assumption]. 

17 x v c(x) = 1.  [copy(16),rewrite([10(2)])]. 

18 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

26 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ c(x))) # 

label("Df: i4").  [assumption]. 

27 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(26),rewrite([9(3),18(3),9(4),9(6),9(6),18(5),9(11),18(12),9(11),9(11),10(13),11(13)

])]. 

36 u4(x,y) = i4(c(x),y) # label("Df: u4").  [assumption]. 

37 u4(x,y) = y v (c(y v c(x)) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(36),rewrite([27(3),9(11),10(12)])]. 

40 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

41 -le(x,y) | c(c(x) v c(y)) = x.  [copy(40),rewrite([18(2)])]. 

44 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 
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46 u4(x,y) != 1 | perp(c(x),c(y)) # label("Hypothesis for Proposition 2.10u4").  

[clausify(4)]. 

47 x v (c(x v c(y)) v (c(c(x) v y) v c(c(x) v c(y)))) != 1 | perp(c(y),c(x)).  

[copy(46),rewrite([37(1)])]. 

50 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

51 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(50),rewrite([10(6),18(7),9(4),10(12)])]. 

52 c(1) = 0.  [back_rewrite(15),rewrite([18(2),9(2),17(2)])]. 

53 c(c(x) v c(x v y)) = x.  [back_rewrite(14),rewrite([18(2)])]. 

54 x v c(c(x) v c(y)) = x.  [back_rewrite(13),rewrite([18(1)])]. 

56 x v (y v z) = y v (x v z).  [para(10(a,1),11(a,1,1)),rewrite([11(2)])]. 

60 x v (y v c(x v y)) = 1.  [para(17(a,1),11(a,1)),flip(a)]. 

68 x v (c(c(y) v x) v (c(c(x) v y) v c(c(x) v c(y)))) != 1 | perp(c(y),c(x)).  

[para(10(a,1),47(a,1,2,1,1))]. 

86 c(x) v c(x v y) = c(x).  [para(53(a,1),9(a,1,1)),flip(a)]. 

90 c(0 v c(x)) = x.  [para(17(a,1),53(a,1,1,2,1)),rewrite([52(3),10(3)])]. 

94 1 v x = 1.  [para(52(a,1),53(a,1,1,1)),rewrite([90(6)])]. 

107 x v c(c(x) v y) = x.  [para(9(a,1),54(a,1,2,1,2))]. 

113 x v x = x.  [para(52(a,1),54(a,1,2,1,2)),rewrite([10(3),90(4)])]. 

144 x v (y v c(y v x)) = 1.  [para(10(a,1),60(a,1,2,2,1))]. 

150 x v (x v y) = x v y.  [para(113(a,1),11(a,1,1)),flip(a)]. 

218 x v (y v (c(c(z) v (x v y)) v (c(c(x v y) v z) v c(c(x v y) v c(z))))) != 1 | 

perp(c(z),c(x v y)).  [para(11(a,1),68(a,1))]. 

289 x v c(y v c(x)) = x.  [para(10(a,1),107(a,1,2,1))]. 

291 x v (y v c(c(x v y) v z)) = x v y.  [para(107(a,1),11(a,1)),flip(a)]. 

345 c(x) v c(y v x) = c(x).  [para(10(a,1),86(a,1,2,1))]. 

389 x v (y v (c(y v x) v z)) = 1.  

[para(144(a,1),11(a,1,1)),rewrite([94(2),11(5)]),flip(a)]. 

401 x v (y v c(z v c(x v y))) = x v y.  [para(289(a,1),11(a,1)),flip(a)]. 

616 c(x v y) v c(x v (z v y)) = c(x v y).  [para(56(a,1),345(a,1,2,1))]. 

2746 x v (c(c(y) v x) v (c(c(c(y) v x) v z) v (c(y v c(x v c(c(c(y) v x) v z))) v c(c(y) 

v c(x v c(c(c(y) v x) v z)))))) != 1 | perp(c(y),c(x v c(c(c(y) v x) v z))).  

[para(291(a,1),218(a,1,2,2,1,1)),rewrite([10(16),10(26),56(30)])]. 

11022 c(x v y) v c(x v c(z v c(x v y))) = c(x v c(z v c(x v y))).  

[para(401(a,1),616(a,1,2,1)),rewrite([10(9)])]. 

26625 perp(c(x),c(y v c(y v c(c(x) v y)))).  [hyper(2746,a,389,a),rewrite([10(5)])]. 

26627 perp(x,c(y v c(y v c(x v y)))).  [para(9(a,1),26625(a,1)),rewrite([9(2)])]. 

26631 le(x,y v c(y v c(x v y))).  [hyper(44,a,26627,a),rewrite([9(7)])]. 

26639 le(x,y v c(y v c(y v x))).  [para(10(a,1),26631(a,2,2,1,2,1))]. 

26650 le(x v y,x v c(x v c(x v y))).  [para(150(a,1),26639(a,2,2,1,2,1))]. 

26669 x v c(x v c(x v y)) = x v y.  [hyper(41,a,26650,a),rewrite([11022(9),9(7)])]. 

26670 $F # answer("OMA").  [resolve(26669,a,51,a)]. 

 

============================== end of proof ========================== 

   

 
 
============================== PROOF ================================= 

 

% Proof 1 at 244.24 (+ 5.18) seconds: "OMA". 

% Length of proof is 53. 

% Level of proof is 14. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u5(x,y) = 1 <-> perp(c(x),c(y)) # label("Hypothesis for Proposition 2.10u5") # 

label(non_clause).  [assumption]. 

5 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

8 x = c(c(x)) # label("AxL1").  [assumption]. 

9 c(c(x)) = x.  [copy(8),flip(a)]. 

10 x v y = y v x # label("AxL2").  [assumption]. 

11 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

13 x v (x ^ y) = x # label("AxL5").  [assumption]. 

14 x ^ (x v y) = x # label("AxL6").  [assumption]. 

15 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

16 c(x) v x = 1 # label("AxOL2").  [assumption]. 

17 x v c(x) = 1.  [copy(16),rewrite([10(2)])]. 

18 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

28 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 
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29 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(28),rewrite([18(2),18(7),9(7),10(9),18(12),9(11),9(11),10(12)])]. 

38 u5(x,y) = i5(c(x),y) # label("Df: u5").  [assumption]. 

39 u5(x,y) = c(c(x) v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(38),rewrite([29(3),9(10),10(12)])]. 

40 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

41 -le(x,y) | c(c(x) v c(y)) = x.  [copy(40),rewrite([18(2)])]. 

44 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 u5(x,y) != 1 | perp(c(x),c(y)) # label("Hypothesis for Proposition 2.10u5").  

[clausify(4)]. 

47 c(c(x) v y) v (c(x v c(y)) v c(c(x) v c(y))) != 1 | perp(c(x),c(y)).  

[copy(46),rewrite([39(1)])]. 

50 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(5)]. 

51 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(50),rewrite([10(6),18(7),9(4),10(12)])]. 

52 c(1) = 0.  [back_rewrite(15),rewrite([18(2),9(2),17(2)])]. 

53 c(c(x) v c(x v y)) = x.  [back_rewrite(14),rewrite([18(2)])]. 

54 x v c(c(x) v c(y)) = x.  [back_rewrite(13),rewrite([18(1)])]. 

56 x v (y v z) = y v (x v z).  [para(10(a,1),11(a,1,1)),rewrite([11(2)])]. 

60 x v (y v c(x v y)) = 1.  [para(17(a,1),11(a,1)),flip(a)]. 

67 c(x v y) v (c(c(x) v y) v c(c(x) v c(y))) != 1 | perp(c(x),y).  

[para(9(a,1),47(a,1,2,1,1,2)),rewrite([9(9),10(11),11(11),9(16)])]. 

88 c(c(x) v c(y v x)) = x.  [para(10(a,1),53(a,1,1,2,1))]. 

90 c(0 v c(x)) = x.  [para(17(a,1),53(a,1,1,2,1)),rewrite([52(3),10(3)])]. 

94 1 v x = 1.  [para(52(a,1),53(a,1,1,1)),rewrite([90(6)])]. 

106 x v c(c(x) v y) = x.  [para(9(a,1),54(a,1,2,1,2))]. 

110 x v 0 = x.  [para(17(a,1),54(a,1,2,1)),rewrite([52(2)])]. 

111 x v x = x.  [para(52(a,1),54(a,1,2,1,2)),rewrite([10(3),90(4)])]. 

113 x v (y v c(x)) = y v 1.  [para(17(a,1),56(a,1,2)),flip(a)]. 

132 x v 1 = 1.  [para(94(a,1),10(a,1)),flip(a)]. 

135 x v (y v c(x)) = 1.  [back_rewrite(113),rewrite([132(5)])]. 

136 x v (y v c(y v x)) = 1.  [para(10(a,1),60(a,1,2,2,1))]. 

142 0 v x = x.  [para(110(a,1),10(a,1)),flip(a)]. 

151 x v (y v x) = y v x.  [para(111(a,1),11(a,2,2)),rewrite([10(2)])]. 

218 x v c(y v x) != 1 | perp(c(x),y v x).  

[para(135(a,1),67(a,1,2,1,1)),rewrite([9(2),151(2),52(4),9(6),88(8),142(4),10(3),9(8)])]. 

246 x v c(y v c(x)) = x.  [para(10(a,1),106(a,1,2,1))]. 

248 x v (y v c(c(x v y) v z)) = x v y.  [para(106(a,1),11(a,1)),flip(a)]. 

2992 x v (c(y v x) v c(c(y v x) v z)) != 1 | perp(c(x v c(c(y v x) v z)),y v x).  

[para(248(a,1),218(a,1,2,1)),rewrite([10(8),56(8),248(22)])]. 

28598 perp(c(x v c(x v c(y v x))),y v x).  [hyper(2992,a,136,a),rewrite([10(3)])]. 

28599 le(c(x v c(x v c(y v x))),c(y v x)).  [hyper(44,a,28598,a)]. 

28618 c(x v c(x v c(y v x))) = c(y v x).  

[hyper(41,a,28599,a),rewrite([9(7),9(8),10(7),56(7),246(6),151(2)]),flip(a)]. 

28622 x v c(x v c(y v x)) = y v x.  [para(28618(a,1),9(a,1,1)),rewrite([9(3)]),flip(a)]. 

28766 x v c(x v c(x v y)) = y v x.  [para(10(a,1),28622(a,1,2,1,2,1))]. 

28818 $F # answer("OMA").  [back_rewrite(51),rewrite([28766(9),10(3)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.11, for each of i = 4,5.  The proofs 

assume the default  inference rules of prover9. The general form of a line in this proof is 

“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, 

and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, 

and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 410 

seconds. 
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4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  With the exception of 

Proposition 2.11, the proofs in Figure 3 for 

i=4 are symmetric and use L1, L1, L2, L5, 

L6, OL1, OL2, and OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2,3, and for orthomodular 

lattice theory implies Propositions 2.11i of 

[5], i = 1,2,3,4,5. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum union; thus, this 

paper together with the papers mentioned in 

(3), constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-identity.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum-union-based equivalents of the OMA from orthomodular lattice theory.  The proofs may be 

novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 
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the OMA from QL yields a "truer" quantum  

logic.  

 

 

 
Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed unions 

   u1(x,y) =  i1(c(x),y)          

   u2(x,y) =  i2(c(x),y)          

   u3(x,y) =  i3(c(x),y)          

   u4(x,y) =  i4(c(x),y)          

   u5(x,y) =  i5(c(x),y)          

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    c(x)  c(y) 
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where  

 

 x i y means c(x) i y 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.11 of [5] 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.11 of [5], for each 

of  i = 1,2,  from  orthomodular  lattice theory, then executed in that framework  on a  Dell 

Inspiron 545 with an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, 

running under the Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

orthomodular lattice theory implies Proposition 2.11 of [5] (for each of  i = 1,2). 

 
============================== PROOF ================================= 

 

% Proof 1 at 7.44 (+ 0.23) seconds. 

% Length of proof is 54. 

% Level of proof is 9. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u1(x,y) = 1 <-> perp(c(x),c(y)) # label("Proposition 2.10u1") # label(non_clause) # 

label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

21 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

22 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(21),rewrite([17(3)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

30 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(29),rewrite([17(2),17(7),8(7),9(9),17(12),8(11),8(11),9(12)])]. 

31 u1(x,y) = i1(c(x),y) # label("Df: u1").  [assumption]. 

32 u1(x,y) = x v c(x v c(y)).  [copy(31),rewrite([22(3),8(3),8(3)])]. 

41 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

42 -le(x,y) | c(c(x) v c(y)) = x.  [copy(41),rewrite([17(2)])]. 

43 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

44 le(x,y) | c(c(x) v c(y)) != x.  [copy(43),rewrite([17(2)])]. 

45 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

47 u1(c1,c2) = 1 | perp(c(c1),c(c2)) # label("Proposition 2.10u1").  [deny(4)]. 

48 c1 v c(c1 v c(c2)) = 1 | perp(c(c1),c(c2)).  [copy(47),rewrite([32(3)])]. 

49 u1(c1,c2) != 1 | -perp(c(c1),c(c2)) # label("Proposition 2.10u1").  [deny(4)]. 
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50 c1 v c(c1 v c(c2)) != 1 | -perp(c(c1),c(c2)).  [copy(49),rewrite([32(3)])]. 

51 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

52 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

53 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

55 x v (y v z) = y v (x v z).  [para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

58 x v (c(x) v y) = 1 v y.  [para(16(a,1),10(a,1,1)),flip(a)]. 

66 le(c(x),y) | c(x v c(y)) != c(x).  [para(8(a,1),44(b,1,1,1))]. 

71 perp(x,c(y)) | -le(x,y).  [para(8(a,1),46(b,2))]. 

72 c1 v c(c1 v c(c2)) = 1 | le(c(c1),c2).  [resolve(48,b,45,a),rewrite([8(14)])]. 

79 c(x) v c(x v y) = c(x).  [para(52(a,1),8(a,1,1)),flip(a)]. 

83 c(0 v c(x)) = x.  [para(16(a,1),52(a,1,1,2,1)),rewrite([51(3),9(3)])]. 

84 c(x v y) v c(x v c(x v y)) = c(x).  

[para(52(a,1),19(a,1,2,1,2)),rewrite([9(5),79(11)])]. 

85 1 v x = 1.  [para(51(a,1),52(a,1,1,1)),rewrite([83(6)])]. 

89 x v (c(x) v y) = 1.  [back_rewrite(58),rewrite([85(5)])]. 

94 x v 0 = x.  [para(16(a,1),53(a,1,2,1)),rewrite([51(2)])]. 

96 x v x = x.  [para(51(a,1),53(a,1,2,1,2)),rewrite([9(3),83(4)])]. 

109 0 v x = x.  [para(94(a,1),9(a,1)),flip(a)]. 

113 x v (x v y) = x v y.  [para(96(a,1),10(a,1,1)),flip(a)]. 

263 le(c(x),y) | c(c(y) v x) != c(x).  [para(9(a,1),66(b,1,1))]. 

371 c1 v c(c1 v c(c2)) = 1 | c(c1 v c(c2)) = c(c1).  

[resolve(72,b,42,a),rewrite([8(12)])]. 

18968 c(c1 v c(c2)) = c(c1).  

[para(371(a,1),30(a,2,1,1)),rewrite([30(15),8(23),113(22),8(29),55(28),89(28),51(23),9(23

),109(23),9(22),84(22),51(12),8(18),113(17),8(24),55(23),89(23),51(18),9(18),109(18),109(

17)]),flip(b),merge(b)]. 

18969 -perp(c(c1),c(c2)).  [back_rewrite(50),rewrite([18968(6),16(4)]),xx(a)]. 

18970 -le(c(c1),c2).  [ur(71,a,18969,a)]. 

18971 $F.  [ur(263,a,18970,a),rewrite([9(4),18968(5)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 69.53 (+ 1.26) seconds. 

% Length of proof is 52. 

% Level of proof is 10. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u2(x,y) = 1 <-> perp(c(x),c(y)) # label("Proposition 2.10u2") # label(non_clause) # 

label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

23 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

24 i2(x,y) = y v c(y v x).  [copy(23),rewrite([8(3),17(4),8(3),8(3)])]. 

33 u2(x,y) = i2(c(x),y) # label("Df: u2").  [assumption]. 

34 u2(x,y) = y v c(y v c(x)).  [copy(33),rewrite([24(3)])]. 

41 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

42 -le(x,y) | c(c(x) v c(y)) = x.  [copy(41),rewrite([17(2)])]. 

43 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

44 le(x,y) | c(c(x) v c(y)) != x.  [copy(43),rewrite([17(2)])]. 

45 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

47 u2(c1,c2) = 1 | perp(c(c1),c(c2)) # label("Proposition 2.10u2").  [deny(4)]. 

48 c2 v c(c2 v c(c1)) = 1 | perp(c(c1),c(c2)).  [copy(47),rewrite([34(3)])]. 

49 u2(c1,c2) != 1 | -perp(c(c1),c(c2)) # label("Proposition 2.10u2").  [deny(4)]. 

50 c2 v c(c2 v c(c1)) != 1 | -perp(c(c1),c(c2)).  [copy(49),rewrite([34(3)])]. 

51 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 
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52 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

53 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

72 c2 v c(c2 v c(c1)) = 1 | le(c(c1),c2).  [resolve(48,b,45,a),rewrite([8(14)])]. 

78 le(x,x v y).  [resolve(52,a,44,b)]. 

79 c(x) v c(x v y) = c(x).  [para(52(a,1),8(a,1,1)),flip(a)]. 

84 c(x v y) v c(x v c(x v y)) = c(x).  

[para(52(a,1),19(a,1,2,1,2)),rewrite([9(5),79(11)])]. 

90 x v c(c(x) v y) = x.  [para(8(a,1),53(a,1,2,1,2))]. 

94 x v 0 = x.  [para(16(a,1),53(a,1,2,1)),rewrite([51(2)])]. 

95 x v c(y v c(x)) = x.  [para(19(a,1),53(a,1,2,1))]. 

104 le(x,y v x).  [para(9(a,1),78(a,2))]. 

109 0 v x = x.  [para(94(a,1),9(a,1)),flip(a)]. 

219 le(c(c(x) v y),x).  [para(90(a,1),104(a,2))]. 

229 perp(c(x v y),x).  [resolve(219,a,46,b),rewrite([8(2)])]. 

234 perp(c(x v y),y).  [para(9(a,1),229(a,1,1))]. 

290 x v (c(y v c(x)) v z) = x v z.  [para(95(a,1),10(a,1,1)),flip(a)]. 

371 c2 v c(c2 v c(c1)) = 1 | c(c1 v c(c2)) = c(c1).  

[resolve(72,b,42,a),rewrite([8(12)])]. 

12922 x v c(y v c(y v c(x))) = x v c(y).  [para(84(a,1),290(a,1,2)),flip(a)]. 

18964 c2 v c(c2 v c(c1)) = 1 | c1 v c(c2) = c1.  

[para(371(b,1),8(a,1,1)),rewrite([8(12)]),flip(b)]. 

65210 c1 v c(c2) = c1.  

[para(18964(a,1),12922(a,1,2,1)),rewrite([51(9),9(9),109(9)]),flip(b),merge(b)]. 

65229 perp(c(c1),c(c2)).  [para(65210(a,1),234(a,1,1))]. 

65232 c2 v c(c1) = c2.  [para(65210(a,1),95(a,1,2,1))]. 

65887 $F.  [back_unit_del(50),rewrite([65232(5),16(4)]),xx(a),unit_del(a,65229)]. 

 

============================== end of proof ========================== 

 
 

Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.11from orthomodular lattice theory, for 

each of i = 1,2.  The proofs assume the default  inference rules of prover9. The general form of a line 

in this proof is “line_number conclusion [derivation]”, where line_number is a unique identifier of a 

line in the proof, and conclusion is the result of applying the prover9 inference rules (such as 

paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), to the 

lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 74 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  Both of the  proofs in Figure 3 

use L1, L2, L3, L5, L6, OL1, OL2, and 

OL3.   

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 4,5, and for Propositions 2.11i, 

i = 1,2,3,4,5, implies the OMA. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum union; thus, this 

paper together with the papers mentioned in 

(3), constitutes a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.   

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-identity.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  two quantum-union-based equivalents from orthomodularity theory.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed unions 

   u1(x,y) =  i1(c(x),y)          

   u2(x,y) =  i2(c(x),y)          

   u3(x,y) =  i3(c(x),y)          

   u4(x,y) =  i4(c(x),y)          

   u5(x,y) =  i5(c(x),y)          

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    c(x)  c(y) 
 

where  
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 x i y means c(x) i y 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.11 of [5] 

 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.11 of [5], for each 

of  i = 3,4,5  from ortholattice theory,  then executed in that framework  on a  Dell Inspiron 545 

with an  Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under 

the Windows Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

Proposition 2.11 of [5] (for each of  i = 3,4,5) is derivable from orthomodular lattice theory.  

 
============================== PROOF ================================= 

 

% Proof 1 at 387.65 (+ 7.08) seconds. 

% Length of proof is 63. 

% Level of proof is 11. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u3(x,y) = 1 <-> perp(c(x),c(y)) # label("Proposition 2.10u3") # label(non_clause) # 

label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

25 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

26 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(25),rewrite([17(3),8(3),17(7),8(6),8(6),9(7),17(9),10(14)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

30 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(29),rewrite([17(2),17(7),8(7),9(9),17(12),8(11),8(11),9(12)])]. 

35 u3(x,y) = i3(c(x),y) # label("Df: u3").  [assumption]. 

36 u3(x,y) = c(c(x) v y) v (x v (c(x v c(y)) v c(c(x) v c(y)))).  

[copy(35),rewrite([26(3),8(10),8(10),9(13),10(13)])]. 

41 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 
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42 -le(x,y) | c(c(x) v c(y)) = x.  [copy(41),rewrite([17(2)])]. 

43 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

44 le(x,y) | c(c(x) v c(y)) != x.  [copy(43),rewrite([17(2)])]. 

45 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

47 u3(c1,c2) = 1 | perp(c(c1),c(c2)) # label("Proposition 2.10u3").  [deny(4)]. 

48 c(c2 v c(c1)) v (c1 v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | perp(c(c1),c(c2)).  

[copy(47),rewrite([36(3),9(4)])]. 

49 u3(c1,c2) != 1 | -perp(c(c1),c(c2)) # label("Proposition 2.10u3").  [deny(4)]. 

50 c(c2 v c(c1)) v (c1 v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) != 1 | -perp(c(c1),c(c2)).  

[copy(49),rewrite([36(3),9(4)])]. 

51 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

52 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

53 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

55 x v (y v z) = y v (x v z).  [para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

56 c1 v (c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) != 1 | -perp(c(c1),c(c2)).  

[back_rewrite(50),rewrite([55(20)])]. 

57 c1 v (c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | perp(c(c1),c(c2)).  

[back_rewrite(48),rewrite([55(20)])]. 

60 x v (c(x) v y) = 1 v y.  [para(16(a,1),10(a,1,1)),flip(a)]. 

79 le(x,x v y).  [resolve(52,a,44,b)]. 

80 c(x) v c(x v y) = c(x).  [para(52(a,1),8(a,1,1)),flip(a)]. 

84 c(0 v c(x)) = x.  [para(16(a,1),52(a,1,1,2,1)),rewrite([51(3),9(3)])]. 

85 c(x v y) v c(x v c(x v y)) = c(x).  

[para(52(a,1),19(a,1,2,1,2)),rewrite([9(5),80(11)])]. 

86 1 v x = 1.  [para(51(a,1),52(a,1,1,1)),rewrite([84(6)])]. 

90 x v (c(x) v y) = 1.  [back_rewrite(60),rewrite([86(5)])]. 

91 x v c(c(x) v y) = x.  [para(8(a,1),53(a,1,2,1,2))]. 

95 x v 0 = x.  [para(16(a,1),53(a,1,2,1)),rewrite([51(2)])]. 

96 x v c(y v c(x)) = x.  [para(19(a,1),53(a,1,2,1))]. 

97 x v x = x.  [para(51(a,1),53(a,1,2,1,2)),rewrite([9(3),84(4)])]. 

105 c1 v (c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | le(c(c1),c2).  

[resolve(57,b,45,a),rewrite([8(27)])]. 

106 le(x,y v x).  [para(9(a,1),79(a,2))]. 

111 0 v x = x.  [para(95(a,1),9(a,1)),flip(a)]. 

115 x v (x v y) = x v y.  [para(97(a,1),10(a,1,1)),flip(a)]. 

201 x v (y v c(c(x) v z)) = y v x.  [para(91(a,1),55(a,1,2)),flip(a)]. 

203 le(c(c(x) v y),x).  [para(91(a,1),106(a,2))]. 

211 perp(c(x v y),x).  [resolve(203,a,46,b),rewrite([8(2)])]. 

215 perp(c(x v y),y).  [para(9(a,1),211(a,1,1))]. 

274 x v (c(y v c(x)) v z) = x v z.  [para(96(a,1),10(a,1,1)),flip(a)]. 

286 c1 v c(c1 v c(c2)) = 1 | le(c(c1),c2).  

[back_rewrite(105),rewrite([274(20),201(14),9(7)])]. 

288 c1 v c(c1 v c(c2)) != 1 | -perp(c(c1),c(c2)).  

[back_rewrite(56),rewrite([274(20),201(14),9(7)])]. 

13482 c1 v c(c1 v c(c2)) = 1 | c(c1 v c(c2)) = c(c1).  

[resolve(286,b,42,a),rewrite([8(12)])]. 

151209 c(c1 v c(c2)) = c(c1).  

[para(13482(a,1),30(a,2,1,1)),rewrite([30(15),8(23),115(22),8(29),55(28),90(28),51(23),9(

23),111(23),9(22),85(22),51(12),8(18),115(17),8(24),55(23),90(23),51(18),9(18),111(18),11

1(17)]),flip(b),merge(b)]. 

151210 -perp(c(c1),c(c2)).  [back_rewrite(288),rewrite([151209(6),16(4)]),xx(a)]. 

151215 $F.  [para(151209(a,1),215(a,1)),unit_del(a,151210)]. 

 

============================== end of proof ========================== 

 

============================== PROOF ================================= 

 

% Proof 1 at 420.06 (+ 7.00) seconds. 

% Length of proof is 56. 

% Level of proof is 11. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # label(non_clause).  

[assumption]. 

4 u4(x,y) = 1 <-> perp(c(x),c(y)) # label("Proposition 2.10u4") # label(non_clause) # 

label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 
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12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

27 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ c(x))) # 

label("Df: i4").  [assumption]. 

28 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(27),rewrite([8(3),17(3),8(4),8(6),8(6),17(5),8(11),17(12),8(11),8(11),9(13),10(13)]

)]. 

37 u4(x,y) = i4(c(x),y) # label("Df: u4").  [assumption]. 

38 u4(x,y) = y v (c(y v c(x)) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(37),rewrite([28(3),8(11),9(12)])]. 

41 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

42 -le(x,y) | c(c(x) v c(y)) = x.  [copy(41),rewrite([17(2)])]. 

43 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

44 le(x,y) | c(c(x) v c(y)) != x.  [copy(43),rewrite([17(2)])]. 

45 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

46 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  [clausify(2)]. 

47 u4(c1,c2) = 1 | perp(c(c1),c(c2)) # label("Proposition 2.10u4").  [deny(4)]. 

48 c2 v (c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | perp(c(c1),c(c2)).  

[copy(47),rewrite([38(3),9(10),9(16)])]. 

49 u4(c1,c2) != 1 | -perp(c(c1),c(c2)) # label("Proposition 2.10u4").  [deny(4)]. 

50 c2 v (c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) != 1 | -perp(c(c1),c(c2)).  

[copy(49),rewrite([38(3),9(10),9(16)])]. 

51 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

52 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

53 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

55 x v (y v z) = y v (x v z).  [para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

72 c2 v (c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | le(c(c1),c2).  

[resolve(48,b,45,a),rewrite([8(27)])]. 

78 le(x,x v y).  [resolve(52,a,44,b)]. 

79 c(x) v c(x v y) = c(x).  [para(52(a,1),8(a,1,1)),flip(a)]. 

84 c(x v y) v c(x v c(x v y)) = c(x).  

[para(52(a,1),19(a,1,2,1,2)),rewrite([9(5),79(11)])]. 

90 x v c(c(x) v y) = x.  [para(8(a,1),53(a,1,2,1,2))]. 

94 x v 0 = x.  [para(16(a,1),53(a,1,2,1)),rewrite([51(2)])]. 

95 x v c(y v c(x)) = x.  [para(19(a,1),53(a,1,2,1))]. 

104 le(x,y v x).  [para(9(a,1),78(a,2))]. 

109 0 v x = x.  [para(94(a,1),9(a,1)),flip(a)]. 

219 le(c(c(x) v y),x).  [para(90(a,1),104(a,2))]. 

229 perp(c(x v y),x).  [resolve(219,a,46,b),rewrite([8(2)])]. 

234 perp(c(x v y),y).  [para(9(a,1),229(a,1,1))]. 

290 x v (c(y v c(x)) v z) = x v z.  [para(95(a,1),10(a,1,1)),flip(a)]. 

371 c2 v (c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | c(c1 v c(c2)) = 

c(c1).  [resolve(72,b,42,a),rewrite([8(25)])]. 

12902 x v (y v (c(z v c(x)) v u)) = y v (x v u).  [para(290(a,1),55(a,1,2)),flip(a)]. 

12922 x v c(y v c(y v c(x))) = x v c(y).  [para(84(a,1),290(a,1,2)),flip(a)]. 

13162 c2 v c(c2 v c(c1)) = 1 | c(c1 v c(c2)) = c(c1).  

[back_rewrite(371),rewrite([12902(20),95(13),9(7)])]. 

13164 c2 v c(c2 v c(c1)) != 1 | -perp(c(c1),c(c2)).  

[back_rewrite(50),rewrite([12902(20),95(13),9(7)])]. 

158756 c2 v c(c2 v c(c1)) = 1 | c1 v c(c2) = c1.  

[para(13162(b,1),8(a,1,1)),rewrite([8(12)]),flip(b)]. 

160444 c1 v c(c2) = c1.  

[para(158756(a,1),12922(a,1,2,1)),rewrite([51(9),9(9),109(9)]),flip(b),merge(b)]. 

160455 perp(c(c1),c(c2)).  [para(160444(a,1),234(a,1,1))]. 

160458 c2 v c(c1) = c2.  [para(160444(a,1),95(a,1,2,1))]. 

161989 $F.  [back_unit_del(13164),rewrite([160458(5),16(4)]),xx(a),unit_del(a,160455)]. 

 

============================== end of proof ========================== 

 

 

 
Figure 3.  Summary of a prover9 ([2]) derivation of Proposition 2.11, for each of i = 3,4,5, from 

orthomodular lattice theory.  The proofs assume the default  inference rules of prover9. The general 
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form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique 

identifier of a line in the proof, and conclusion is the result of applying the prover9 inference rules 

(such as paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), 

to the lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 800 

seconds. 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1. Each of the  proofs in Figure 3 

uses L1, L2, L3, L5, L6, OL1, OL2, and 

OL3. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2,5 and for Propositions 

2.11i, i = 1,2,3,4,5 implies the OMA. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum union; thus, this 

paper together with the papers mentioned in 

(3), constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  .  

Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-identity.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide an automated deduction 

of  a quantum-union-based equivalent of the OMA from orthomodularity theory.  The proof may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either other, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  
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Lattice axioms 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

Definitions of indexed unions 

   u1(x,y) =  i1(c(x),y)          

   u2(x,y) =  i2(c(x),y)          

   u3(x,y) =  i3(c(x),y)          

   u4(x,y) =  i4(c(x),y)          

   u5(x,y) =  i5(c(x),y)          

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

 

There are at least 21 nominal equivalents (in the sense that ortholattice theory, together with these 

"equivalents", imply the OMA, and vice versa) of the OMA in quantum logic ([5], Theorem 2.5); 

as nominal equivalents, they are thus of import to optimizing quantum circuit design.  Among 

these is the Proposition shown in Figure 2: 

 

 x i y    <->    c(x)  c(y) 
 

where  
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 x i y means c(x) i y 

 x  y means le(x,c(y)) 
 i = 1,2,3,4,5 

 

                                         Figure 2.  Proposition 2.11 of [5] 

 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, Pavičić, and Horner ([5], [14], [15], [16], [21], [22]) were 

implemented in a prover9 ([2]) script ([3]) configured to derive Proposition 2.11 of [5], for  i = 5  

from ortholattice theory,  then executed in that framework  on a  Dell Inspiron 545 with an  Intel 

Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under the Windows 

Vista Home Premium /Cygwin operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] on the platform described in Section 2.0, that 

Proposition 2.11 of [5] (for i = 5) is derivable from orthomodular lattice theory.  

 
============================== PROOF  

 

% Proof 1 at 561.59 (+ 10.45) seconds. 

% Length of proof is 62. 

% Level of proof is 11. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # 

label(non_clause).  [assumption]. 

2 perp(x,y) <-> le(x,c(y)) # label("Df: perpendicular") # 

label(non_clause).  [assumption]. 

4 u5(x,y) = 1 <-> perp(c(x),c(y)) # label("Proposition 2.10u5") # 

label(non_clause) # label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

18 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

19 x v c(x v c(y v x)) = y v x.  [copy(18),rewrite([17(3),8(2)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: 

i5").  [assumption]. 
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30 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(29),rewrite([17(2),17(7),8(7),9(9),17(12),8(11),8(11),9(12)])]

. 

39 u5(x,y) = i5(c(x),y) # label("Df: u5").  [assumption]. 

40 u5(x,y) = c(c(x) v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(39),rewrite([30(3),8(10),9(12)])]. 

41 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

42 -le(x,y) | c(c(x) v c(y)) = x.  [copy(41),rewrite([17(2)])]. 

43 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

44 le(x,y) | c(c(x) v c(y)) != x.  [copy(43),rewrite([17(2)])]. 

45 -perp(x,y) | le(x,c(y)) # label("Df: perpendicular").  

[clausify(2)]. 

46 perp(x,y) | -le(x,c(y)) # label("Df: perpendicular").  

[clausify(2)]. 

47 u5(c1,c2) = 1 | perp(c(c1),c(c2)) # label("Proposition 2.10u5").  

[deny(4)]. 

48 c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) = 1 | 

perp(c(c1),c(c2)).  [copy(47),rewrite([40(3),9(4)])]. 

49 u5(c1,c2) != 1 | -perp(c(c1),c(c2)) # label("Proposition 

2.10u5").  [deny(4)]. 

50 c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) != 1 | -

perp(c(c1),c(c2)).  [copy(49),rewrite([40(3),9(4)])]. 

51 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

52 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

53 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

55 x v (y v z) = y v (x v z).  

[para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

58 x v (c(x) v y) = 1 v y.  [para(16(a,1),10(a,1,1)),flip(a)]. 

72 c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) = 1 | 

le(c(c1),c2).  [resolve(48,b,45,a),rewrite([8(25)])]. 

78 le(x,x v y).  [resolve(52,a,44,b)]. 

79 c(x) v c(x v y) = c(x).  [para(52(a,1),8(a,1,1)),flip(a)]. 

83 c(0 v c(x)) = x.  

[para(16(a,1),52(a,1,1,2,1)),rewrite([51(3),9(3)])]. 

84 c(x v y) v c(x v c(x v y)) = c(x).  

[para(52(a,1),19(a,1,2,1,2)),rewrite([9(5),79(11)])]. 

85 1 v x = 1.  [para(51(a,1),52(a,1,1,1)),rewrite([83(6)])]. 

89 x v (c(x) v y) = 1.  [back_rewrite(58),rewrite([85(5)])]. 

90 x v c(c(x) v y) = x.  [para(8(a,1),53(a,1,2,1,2))]. 

94 x v 0 = x.  [para(16(a,1),53(a,1,2,1)),rewrite([51(2)])]. 

95 x v c(y v c(x)) = x.  [para(19(a,1),53(a,1,2,1))]. 

96 x v x = x.  [para(51(a,1),53(a,1,2,1,2)),rewrite([9(3),83(4)])]. 

104 le(x,y v x).  [para(9(a,1),78(a,2))]. 

109 0 v x = x.  [para(94(a,1),9(a,1)),flip(a)]. 

113 x v (x v y) = x v y.  [para(96(a,1),10(a,1,1)),flip(a)]. 

217 x v (y v c(c(x) v z)) = y v x.  

[para(90(a,1),55(a,1,2)),flip(a)]. 

219 le(c(c(x) v y),x).  [para(90(a,1),104(a,2))]. 

229 perp(c(x v y),x).  [resolve(219,a,46,b),rewrite([8(2)])]. 

234 perp(c(x v y),y).  [para(9(a,1),229(a,1,1))]. 

290 x v (c(y v c(x)) v z) = x v z.  

[para(95(a,1),10(a,1,1)),flip(a)]. 

371 c(c2 v c(c1)) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) = 1 | c(c1 v 

c(c2)) = c(c1).  [resolve(72,b,42,a),rewrite([8(23)])]. 
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18974 c(c1 v c(c2)) = c(c1) | c1 v c(c1 v c(c2)) = 1.  

[para(371(a,1),290(a,1,2)),rewrite([9(11),85(11),217(23),9(16)]),fli

p(b)]. 

176457 c(c1 v c(c2)) = c(c1).  

[para(18974(b,1),30(a,2,1,1)),rewrite([30(15),8(23),113(22),8(29),55

(28),89(28),51(23),9(23),109(23),9(22),84(22),51(12),8(18),113(17),8

(24),55(23),89(23),51(18),9(18),109(18),109(17)]),flip(b),merge(b)]. 

176458 c(c1) v (c(c2 v c(c1)) v c(c(c1) v c(c2))) != 1 | -

perp(c(c1),c(c2)).  [back_rewrite(50),rewrite([176457(10),55(15)])]. 

176460 c1 v c(c2) = c1.  

[para(176457(a,1),8(a,1,1)),rewrite([8(3)]),flip(a)]. 

176461 c(c2) v c(c(c1) v c(c2)) = c1.  

[para(176457(a,1),19(a,1,2,1,2)),rewrite([9(7),176460(13)])]. 

176464 perp(c(c1),c(c2)).  [para(176457(a,1),234(a,1))]. 

176465 c2 v c(c1) = c2.  [para(176457(a,1),95(a,1,2))]. 

177121 $F.  

[back_unit_del(176458),rewrite([176465(6),176461(11),9(4),16(4)]),xx

(a),unit_del(a,176464)]. 

 

=================== end of proof  

 

 
Figure 3.  Summary of a prover9 ([2]) derivation of Proposition 2.11, for i = 5 from orthomodular 

lattice theory.  The proofs assume the default  inference rules of prover9. The general form of a line in 

this proof is “line_number conclusion [derivation]”, where line_number is a unique identifier of a line 

in the proof, and conclusion is the result of applying the prover9 inference rules (such as 

paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), to the 

lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 560 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1. The poof in Figure 3 uses L1, L2, 

L3, L5, L6, OL1, OL2, and OL3. 

 

 2.  The proof in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2,5 and for Propositions 

2.11i of [5], i = 1,2,3,4,5 implies the OMA. 

 

 4.  Proposition 2.13 can be regarded 

as a definition of quantum union; thus, this 

paper together with the papers mentioned in 

(3), constitute a proof that  the definition of 

quantum intersection is equivalent to the 

OMA in orthomodular quantum logic.  

.Companion papers derive equivalences for 

the OMA with definitions of quantum-

intersection and quantum-identity.  

Collectively, these papers provide a  theory 

of equivalence of the OMA with the 

quantum connectives.  In light of these 

equivalences, QL without the OMA would 

hardly qualify as a logic. 
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Introduction

Since the 90s, the numbers of schools and students in higher education have

been surging in Taiwan. Net enrollment rate rate had exceeded 15% in the academic

year of 1988 and later on exceeded 50% in the academic year of 2004. Ever since then,

higher education in Taiwan entered the stage of what Trow (1974) called ‘universal

education.’However, the government budget was not able to increase at the same rate

commensurate with the expansion of higher education. As a result, education

resources were diluted and some schools even encountered financial difficulties. In

order to maintain the quality of education, schools had to looked for other financial

sources, one of which being tuition rise.

However, the rise in tuition caused much controversy among students, parents,

and school management. Therefore, the present study aims to survey the general

public in order to understand the issue of tuition rise from different perspectives, and

thereby provides insights and solutions to the issue.

Literature Review

The idea of cost sharing in higher education

The idea of sharing and shifting the cost of education was proposed by

Johnstone (1986), who argued that the beneficiaries of higher education include

governments, individuals, parents, and donators. According to the benefits-received

principle, the beneficiaries of higher education are responsible for sharing the cost of
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the education based on the benefits received, under the assumption that the cost of

higher education can be clearly defined.

First, as far as the government is concerned, one of the most important purposes

of higher education is to create quality human resources and to provide the

opportunity of upward social mobility for the lower socio-economic class, which can,

in turn, facilitate democracy, economic development and social harmony.

Second, as for the individuals, due to the fact that higher education is not

mandatory, college students are willing to sacrifice the time and money to receive

higher education because they anticipate higher income and social status, as well as an

improvement on the quality of life. Moreover, according to the OECD (2013) data, the

private rate of return of higher education is in general greater than the social rate of

return. Therefore, it is reasonable for individuals to share the cost of their education.

Finally, many NGOs in Taiwan have been urging the reform of the taxation

system: taxing corporate organizations for their capital gain, and dedicating the

money for enhancing higher education. Therefore, the present study also views

corporate organizations as an entity responsible for sharing the cost of higher

education. It is attributable to the fact schools create talented individuals who can

generate profits for corporate organizations. Moreover, the increase of national quality

can also enhance the social and economic development of a country, which is the

fundamental to business growth. Therefore, corporate organizations ought to share the

cost of higher education as well.

The status quo of the cost-sharing system in Taiwan

Before 1998, college tuition fees in Taiwan were set by the Ministry of

Education, adjusted annually by the standard of governmental pay. Other fees were

adjusted in accordance with the Consumer Price Index announced every April. Same

adjustment was made for all schools. However, this system failed to reflect the actual

cost of education: some outstanding schools were financially restricted whereas some

underperformed schools were being overprotected. Moreover, private and public

schools could not compete on an equal basis because private schools were usually not

sufficiently subsidized by the government, and donation was not socially encouraged
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at the time. Thus, in order to meet the trend of higher education, since the academic

year of 1990, the Ministry of education ceased to stipulate college tuition rates.

Accredited schools were then given the right to set their own tuition rates.

In early 1990s, with the rising economy in Taiwan and the intention to reduce the

tuition difference between private and public schools, the tuition fees of public

schools were raised by 52%, from NT34112 in 1995 to NT51954 in 2000. It then was

raised again by 15% to NT59490 in 2005. As for private school, the tuition fees were

raised by 13% from $92088 in 1995, and to $103950 in 2000. The fess were then

raised again by 4% in 2005 to $108026, which lowered the ratio of public and

private school tuition from 1:2.70 in 1995 to 1:1.82 in 2005 (Department of Statistics,

MoE, 2012b). However, in recent years, due to the increasing poverty gap in Taiwan,

both public and private schools ceased to raise the tuition since 2006 and 2008,

respectively, under government’s moral suasion.

Since college tuition rates were not able to be adjusted in accordance with the

operation cost of schools, which may potentially affect the quality of education and

the development of schools, Taiwanese government reinitiated the debate on the issue

of college tuition in 2012, and proposed the College Tuition Adjustment Plan.

However, due to the misunderstanding between the planners and stakeholders on the

content of the policy, what the planners thought to be an excellent policy might not be

thoroughly and effectively implemented. Therefore, it would be helpful for the

planners to survey the general public as they are planning in order to understand the

public opinion.

Research Design and Implementation

From a cost-sharing perspective, the present study was conducted through

Computer-Assisted Telephone Interview (CATI), in order to understand participants’

views on different entities sharing the cost of education. The research tool, framework,

and participants are detailed as follows.

Research tool

The design of the questionnaire was two phases. Based on the literature, the
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researchers first came up with four possible entities responsible for cost sharing. Then

the researcher consulted experts to revise and finalize the questionnaire. After the

questionnaire was finalized, a pilot study was carried out by a private survey company.

Tested by F-test, the results of the pilot study were valid and coherent. The

questionnaire was designed based on the research goals and previous literature, and

was then revised based on experts’comments.

Participants

Participants of this study were recruited from the 22 counties in Taiwan,

including Kinmen and Matsu counties. They must be at least 20 years old. Sampling

from the Yellow book, the study conducted stratified random sampling based on the

population in each county. A thousand and sixty-eight people were recruited. Random

digit dialing was used to make sure numbers that were not registered had the same

probability of being selected. The sampling period started from 05/01/2012 to

05/04/2012 during 6:30 to 10:00pm. Two-thousand-nine-hundred-and-eighty-three

numbers were successfully sampled. One-thousand-and-eighty were interviewed.

The success rate was 36.21%. In order to assure that the statistical analysis matched

the demographic property, we conducted a variance test on the valid samples against

the population. Although the geographical distribution of the sample was similar to

that of the population, there were significant differences between the sample and

population in gender and age. Therefore, we adopted raking ratio estimation of

multivariate to adjust the weight of the variables gender and age in the valid samples

until the sample and population were similar in structure, validated by chi-square.

Data Analysis

After the telephone interview, we analyzed the data through IBM SPSS for

Statistics. First, we conducted number distribution, analyzed each question item and

calculated their average and percentage to obtain a preliminary idea about the

participants’ opinions. Second, we conducted a t-test and ANOVA on different

background variables (gender, age, level of education, family members who attend

school and areas of residence). If the t-test was significant, a Levene homogeneity test
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was then conducted. If the Levene test was not significant (<.05), the Scheffe’s

Method was adopted for comparison. If the Levene test was significant (>.05),

Dunnett’s T3 was adopted for comparison, in order to avoid the problem of

homogenous variable hypothesis. In addition, since the participants sometimes

misunderstood the questions, answers such as ‘I don’t know’ or ‘I don’t want to

answer’were taken as missing values.

Results and Discussion

1.As far as government responsibility is concerned, most of the participants

suggested that schools should not be able to freely raise the tuition or adjust the tuition

with price level. Instead of subsidizing public schools, government should subsidize

underprivileged students. On the issue of government responsibility, more than half

(57.7%) of the participants disagreed on the issue that schools should be able to freely

raise the tuition. In addition, 66.9% of the participants were of the opinion that tuition

rates should not be adjusted with inflation or price level. As for government subsidy to

higher education, up to 84.4% of the participants were supportive of the government

reducing the amount of money given in subsidy to public schools, and increase the

financial aid for underprivileged students instead. Participants in general were of the

opinion that government has the responsibility to monitor college tuition, and regulate

the tuition from floating with price level or being raised by schools. Government

should also economize and spend the money more efficiently by providing financial

aids to underprivileged students.

2.In terms of corporate responsibility, participants suggested that corporate

organizations should take the social responsibility to share part of the cost of higher

education. Females and participants aged from 20-39 were more supportive of the

government raising funds from corporate organizations to assist underprivileged

students. In terms of corporate responsibility, the overall results showed that 88% of

the participants agreed that corporate organizations have the social responsibility of

cultivating individuals’ talents and sharing the cost of higher education. As for the

way of sharing cost, 72.8% of the participants suggested that government should

impose bonus tax on corporate organizations and dedicate the money to education. Up
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to 91.2% of the participants suggest that government should establish an education

fund intended for underprivileged students.

3.As for the responsibility of individuals, most of the participants agreed that

loaners can pay off the debts based on their future salary, but disagreed that the

government should pay off the debt for the loaner if the debt is not paid off in 25 years.

As for the responsibility of individuals, the overall results showed that 88.4% of the

participants support the idea that loaners can pay off their debts based on their future

salary. When asked if loaners can extend the timeline to pay off their debts,

participants tend to be more reserved— only 49% of the participants agreed.

Seventy-six percent of the participants disagreed that that the government should pay

off the debt for the loaner if not paid off in 25 years.

Conclusion

Most of the participants thought that government should play a key role in the

tuition issue, ensuring students’right to education. The results showed that 58% of the

participants disagreed that universities can freely raise the tuition. Sixty-seven percent

of the participants disagreed that tuition should float with the price level. Eighty-four

percent of the participants agreed that government should reduce the amount of

money given in subsidy to public schools, and provide more financial aid to

underprivileged students. In other words, most of the participants hoped that the

government can play a key role in the tuition policy in assisting students who are in

need, in order to make sure that students’right to education is protected.

Participants from different generations showed different opinions: the youth

disagreed more that tuition should float with price level, and agreed more that

government should reduce the amount of money subsidized to public schools and

provide more financial aid to underprivileged students. Analyzing the background of

the participants, we found that age had an effect on participants’ viewpoints on

government responsibility. Compared to participants aged from 50-59, participants

aged from 20-29 agreed more that government should reduce the money given in

subsidy to public schools and provide more financial aid to underprivileged students.

Also, they disapproved of tuition rising with price level. As such, during the time
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when higher education was only available to the privileged, higher education was

greatly subsidized by the government under the low tuition policy, the general public

was not aware of the cost of higher education. However, after higher education was

made available to the general public, individuals were required to share a larger

proportion of the cost, which inflicted upon the younger generation a greater financial

burden. Therefore, the government is expected to take the tuition issue under control.

In addition, the majority of the participants are more supportive of the government

subsidizing underprivileged students instead of public schools.
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Abstract. An approach to design of evolving computer 
system is presented. Drawbacks of existing systems are 
explained showing limitations of hardware and software. 
New design principles, models of representation for 
algorithms and architecture are introduced and 
described  with explanation how to achieve better 
parallelism and reduce concurrency. Structure of 
required  system software and hardware for 
reconfigurable adaptable system are presented and 
explained. Prototype architecture of evolving system of 
computer is discussed in terms of gain for performance, 
reliability and power-saving. Comparison with Berkley 
approach to future computer systems  is given. 
  
Keywords: Redundancy; Reconfigurability, 
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1. Fundamental problem 
 
Human race sequential way of thinking was 
evolutionally supported by a structure of the languages 
and accompanied grammars, [1], where differences in 
dictionaries and alphabets and grammatical rules were 
visible, but not critical  [2].  
 
Indeed, we speak, write and listen each other 
sequentially - word after word, phase after phrase and, 
therefore, create one-dimensional sequence of 
information.  
 
With appearance of technological support of logical and 
arithmetic calculations a processing implemented by 
computers did follow our habit of “sequentialism”. 
Calculations were implemented by developed  hardware.  
 
Modern hardware technology squeezed logic elements 
down to nano-micron size, and  did change hardware 
structure making electronics mapped into matrix of 
interconnected blocks, in other words, hardware 
topology became two-dimensional.  
 

Recent attempt to make 3D chips of memory and 
processors - simple Internet search indicates 40 Millions 
hits on the subject - that since 2007 IBM, Intel, 
Samsung, Toshiba and others are progressing in making 
three-dimensional chips. There are declarations that 
Moore law will be finally overcame  and boost of 
performance for future computers will be substantial.  
 
It is worth to mention here that “Moore law” actually is 
not a law of nature or physics, thus discussion of “Moore 
law” limitations does not have any sense in the first 
place. This is a subject for research of mass media 
impact on technological developments, social science 
researchers might find it interesting also.   
 
There is a strange feeling through, that declared progress 
will not be achieved; let us imagine a simple model: 
imagine a rope, with pretty big length, which we need to 
put into square box of much smaller size.  
 
There is no doubt,  this process will take time and boxed 
rope will not be as convenient to use as straight one. 
Now imagine that the box became three-dimensional… 
We are not sure that our ability to use rope efficiently 
will grow at all…  
 
Adding the need of dynamic changes for some segments 
of rope, updating or deleting them and reassembling of 
the rope as a whole - typical functions of run-time 
system, can reduce an optimism about impact of 3D  to 
next-to-none. “Rope” here means, of cause, a 
generalization of a program with code and required data.  
 
In brief, Fig.1 illustrates problems we are facing in 
computer design. It is clear that marriage of one-
dimensional program with two or three-dimensional 
hardware will not be a happy one. It is clear also that 
dynamic support of this collaboration will cause even 
more complications. 
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Fig. 1 Software vs Hardware dimension mismatch 
 
 
2. Computer design problems 
 
A. Known solutions ( what we have ) 
 
Computer science reincarnates parallel computing since 
the late 40's - early 50's of the last century [3-12].  Real 
boom has started just several years ago. An absolutely 
stunning level of technology and hardware density was 
recently achieved [14,15], with processor frequencies up 
to 4.7 Ghz and beyond [16]. Surprisingly, the main 
questions of computer design and technology are still the 
same as half a century ago. Specifically, the most 
challenging goal is design and development of a system 
with proper use of the dependencies in performance, 
power consumption, cost, reliability, adaptability and 
flexibility. None of these dependencies   are studied 
together except [17], nobody even set a goal to make 
system that will be efficient and flexible along 
requirements mentioned. 
 
Relationship of performance, reliability, energy 
efficiency and ability to “trade” of this properties 
through design and observe changing of properties along 
the life cycle were only initially described by us in [17].  
The theory and development of the system with required 
properties, their interdependencies and modifications 
(evolution) that consider properties as a processes and 
not static requirements is in the beginning.  
 
What we have now in ICT does not looks encouraging:  
in the system design we failed to achieve even doubled 
performance by applying twice higher frequency and 
quadruple energy, we failed to achieve any visible 
system performance growth using the same programs. 
Part of the reasons of cause is: computer technological 
progress was not accompanied or supported enough by a 
theoretical development, i.e. something serious was 
missing in the first place. Applying our mantra: 
“Power of theory lies in prediction and applicability”                                 

we regretfully accept  that computer science has failed to 
lead ICT world and degraded down to description of 
technological developments.  
 
In system software the situation is confusing and again, 
not really optimistic: overcrowded language families 
(2500 members) [18], slightly less run time systems 
(500+) [19] manifest  full size confusion and an absence 
of breakthrough in terms of efficient system software 
and hardware designs and co-existence. Market 
domination of one or two operating systems or 
languages has nothing to do with “best player wins” rule.  
 
In turn, state of the art in hardware can be described by 
example of complete loss of direction - Intel’s attempt 
on an eighty-core processor system has ended up with 
statement [19]:  
“...Despite using such an efficient grid, the researchers 
found they could actually hurt performance by adding 
too many cores. Performance scaled up directly from 
two cores to four, eight and 16, performance began to 
drop with 32 and 64 cores. ...”.  
Examples prove nothing, but it is clear: a new design 
strategy is required for next generation of computer 
architectures. It should start from design phase and 
pursued through and along the whole life cycle of the 
system and applications. New design strategy should  
aim an ability of a system to evolve with support from 
both: hardware and system software. This evolving 
feature should be available on demand of user 
applications and operation requirements.   
 
It is also clear that next generation of computer systems 
have to  address all three mentioned evolving 
requirements of  performance-, reliability- and energy-
smart functioning. They should be pursued from the first 
phases of system design, enabling an efficient trade 
between P,R,E if user or environment require. 
 
B. Attempt to evolve 
 
Our previous attempts to revise existing designs and find 
balanced development of ICT hardware and software 
were presented in [21],[22],[17]. This work summarizes 
our earlier  concepts and developments. 
 
At first, we propose a revision of the area of computer 
designs and development by introducing a new system 
paradigm. Any paradigm has to be useful - see our 
mantra above, thus we have to develop  supporting 
theoretical models and prototype system in both: 
software and hardware. Several holistic principles we 
were using are:  
 
- simplicity and redundancy 
- reconfiguration and scalability 
- reliability and fault tolerance 
- energy-wise design  
 
The whole process of concept, development, 
construction of algorithms, and further joint design of 
hardware and system software up to implementation and 
maintenance has to be revised pursuing simplicity and 
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introducing essential redundancy. This defines an ability 
of future system to reconfigure for the purposes of 
performance-, reliability- and energy-smart operation.  
 It means also that new systems have to provide efficient 
“trading” of reliability, performance and power 
consumption. Reconfigurability might be implemented 
efficiently  only when  hardware designs are supported 
by system software solutions. Semantics and structure of 
computer hardware vary. While area where information 
is transformed (we call it active zone) is complex and 

nothing near to regular, passive zone of hardware - 
where information is stored has regular structure and 
highest density of transistors. Interfacing zone as a 
bridge between mentioned two others serves to 
maximize speed of data exchange.  
 
Table 1 illustrates how these  principles can be 
supported during the development of new hardware 
architectures (HW) and system software (SSW). 

 
                                                                  

Table 1 Principles and implementations

In terms of information processing, computer 
architectures can be divided into three areas: the 
processing area – further called active zone, the storage 
area – called passive zone and the interconnection zone. 
All three zones have to be reconfigurable for their own 
purposes and other zones requirements.  
Dependencies between zones define the level of 
reconfigurability and flexibility of hardware and system 

software parts of system architecture. Note here also that 
P-,R-,E are no longer static system requirements as they 
become modifiable during life cycle: from the first 
phases of system design [23] down to maintenance. 
Thus, evolving requirements themselves have to be 
considered as processes. P-R-E dictates that system 
software has to be modified, including language, run-
time and service operating systems. Figure 2 below 
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qualitatively shows that system performance (P), 
Reliability (R) and Energy (E) smart design might be 
implemented by means of various methods (circles) and 
to achieve any development we should choose only not-
mutually exclusive solutions. 

      Fig. 2 System properties at system software 
 
It is worth to mention that properties of system software 
that are required and convenient at program preparation 
time are not required at all during program run i.e. they 
should be “stripped off” program code and instead “fine 
tuning” of code to fit existing hardware applied. 
Communication or interaction between agents, processes 
should also be implemented taking into account P-,R-,E- 
requirements. One of immediate reflection from Fig.2 
regarding performance is: parallelisation of program 
should be prepared and supported as much as program 
structure enables, or even more, while concurrency 
within program and during execution should reduced to 
minimum or excluded. Below we present just one 
approach on attempt of system software redevelopment 
for performance improvement.  
 
3. Proposed approach (what we need and why) 
 
At first,  we should choose the nearest in rigorousness 
language and run-time system and define a sequence of 
steps enabling the system software involvement in 
reconfigurability, se  Table above.  
 
To make reconfigurability working we describe program 
and hardware  using meta-models, that are independent 
from technological aspects but describing structural 
properties of the algorithm and programs:  Control Data 
Predicate (CDP) and graph-logic (GLM) [22]. 
 
Languages of structural programming, modular 
programming [24], [25] and object oriented 
programming [26], [27] were invented to provide the 
programmer a higher level of abstraction. 
 

There is no doubt, separation of concerns increases 
visibility, clarity and eases the process of programming. 
These properties, regretfully are not necessary and even 
reduce performance during the execution, when HW 
load and power consumption are crucial. 
At the same time, in terms of P,R,E properties of the 
system all attempt to deal with parallelism and 
concurrency of programs and their execution are still far 
from providing substantial gain, in spite of extreme 
efforts [28],[29]. Dijkstra [30] has published extension 
of Dekker algorithm for  solution of  concurrent 
execution of multiple processes and this solution in one 
form or another is used within languages and hardware ( 
instructions like “test and set”, IBM360). The problem 
of automatic extraction of the program parts that are 
independently executable - parallelism is still “work in 
progress” and attracts attention of researches on a 
regular basis, all around the implementations of mutual 
exclusion [31],[32],[33].  
 
In discussions of performance gain system from 
software parallelism vast majority of publications are 
oriented on Amdahl’s law. Regretfully, Amdahl’s  
simplification of efficiency of parallelism by cutting - 
see our mentioned earlier  rope into n chunks does not 
reflect the fact that chunked segments of the rope should 
be delivered into processing areas, and results after 
processing should be collected back usually into one 
block of data - i.e. in Amdahl ratio denominator grows, 
reducing gain from parallelism even more.  
 
Thus the roles and impacts from language, service 
operating system and run-time system on support of 
parallelisation were largely ignored and, therefore, 
promised by Amdahl gain was never achieved. Works 
and publications [14],[15],[34],[35] highlighted 
problems of massive parallelism in future hardware 
designs, showing that proposed approaches either limit 
seriously or make impossible to cope with requirements  
of configurability and scalability. 
 
Due to architectural and technological limitations, 
known hardware designs are not flexible enough in the 
mapping of algorithms to the HW, and above all, do not 
support changing of software structures or hardware 
configurations “on the fly”.  
 
Commercial systems (Windows, Linux, etc.) have 
shown that attempts on effective use of HW features 
have largely been a failure: the chip frequency now goes 
beyond 5Ghz, but hardware design and existing  
software reduced useful system performance down to the 
range of hundreds Mhz. Therefore, future architectures 
must be re-designed with justification of concepts and  
arguments from the user level of abstractions down to 
the hardware level of representation maximizing 
required characteristics. 
 
Technologically, new hardware chips have almost 
astronomical numbers of logic gates and high physical 
density giving substantial advantage for programming 
multiple-data problems when it is possible to use matrix 
algebra or multiple data tasks with simple instructions. a 
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the same time, density of hardware elements has reached 
technological limit  of  thermal density. As it was 
already mentioned, accordingly the principle of 
separation of concerns  the programming language has to 
be hardware independent as this way the logic and 
complexity of an algorithm will be visible and separated 
from hardware implementation. From another point of 
view we should improve efficiency of hardware and 
software work. So the question remains: 
 How and what to modify in algorithms and   
implementations to achieve PRE-smartness of a system? 
 
At first, the compilation process of a program should be 
“fine tuned” for execution on the specific hardware. 
Additionally, reconfiguring  hardware  before program 
execution  also reduces  overheads.  
 
Examples prove nothing, unfortunately. In much more 
general terms program tuning for hardware performance 
or reliability or energy-smart operation is becoming 
some kind of reversed programming, when hardware, 
not the user (programmer) takes the dominant role. Thus 
we might separate explicitly “what is good for user from 
what is good for system and hardware” and, when 
possible, spread these requirements along life cycle of 
software and system development, as Table 2 illustrates. 
 
Thus separation of concerns and goal of PRE-smartness 
requires supportive  models of implementation from the 
system software point of view (language and run time 
systems) aiming improve hardware efficiency. 
 

Table 2 Phases of software development  

User oriented phases (UW) 

Concept Design Compilation Implementation 

System software and hardware oriented phases 

Analysis of the 
program through 
graph logic 
model to find 
intrinsic 
parallelism in 
control, data and 
predicate 
dependencies. 
 

Recompilation of 
the program into 
parallel form with 
introduction of 
hardware 
configuration and 
reconfiguration 
features into 
program as well 
as concurrency 
management – 
formation of the 
execution string 

Dual String 
Execution (New RT 
data structure that 
unites arrays and 
records) 

 
 
Two models we propose before for this are called 
control-data-predicate (CDP) and graph-logic- (GLM) 
models [2] . 
 
3. Supportive models 
 
Within CDP model each operator in a program has 
defined in terms of modifications of three connected 
graphs: control (C), data (D) and predicates (P). Thus 
operator is described by elements (nodes) in each graph;  

the volume of the resulting predicates, state registers, 
processor and program status words (PSW) physically 
represented in the hardware by so-called processor status 
registers, contributes into the “width” of each layer of 
these graphs. 
To support and exploit parallelism, all three graphs 
should be simplified by  separation of data and  control, 
making  them as independent as possible. Simplification 
of graph of predicates is achieved by deliberate 
fragmentation i.e. we propose that predicates should be 
processed when they needed for decision making and not 
stored in the hardware before that.   
 
Support of reliability and fault tolerance requires  
detection of possible change of program state caused by 
hardware deviation  and development of  recovery 
schemes of hardware and software [22]. Therefore, any 
complex operator and hardware instruction respectively 
jeopardise the possibility of generating ‘snapshots’ of 
the previous hardware states as well as the flexibility of 
program segmentation, allocation and reconfiguration. 
Regretfully, in the vast majority of architectures, as well 
as languages (their compilers)  and run-time systems  the 
functions of data access and data processing are mixed, 
tightly coupled, and hardware state modification due to 
program execution is not controlled explicitly, making 
condition change latent and execution of a program 
unjustifiably complex. 
 
In processors such ARM, Intel and SPARC, the 
arithmetic and logic unit (ALU), or even several of 
them, as well as shifters, registers, internal cache, special 
registers and pipeline sequencers are active during the 
execution of each instruction. The complexity of 
hardware handling becomes enormous: translation look 
ahead buffers, caches, synchronization and pipelining 
logic occupy 75% of the die size. However, none of 
these overhead required from the programming language 
and program  operators points of view. 
 
Any condition of hardware related to the operator or 
instruction representation requires checking. This makes 
parallelism or reliability unachievable. Reasoning is 
different through: while for parallelism  hardware should 
be designed as “flat as possible”, the reliability  demands 
limitation of fault propagation through hardware 
schemes. The complexity of a system and the 
implementation cost of parallelisation or fault tolerance 
are directly related to the amount of the resulting 
modifications of the hardware and program states thus 
when P (predicate) is used only for the selection of the 
program flow, a special operator and instruction can be 
defined to generate the current value of P and store the 
result in a register, making system reconfigurability 
easier to achieve. To summarize, the implementation of 
parallelization at the level of the instruction set, the 
design objectives will be: 
 
- Simplification of predicate logic in a program; 
- Mapping of language operators as close as possible to   
  the modified instruction set of the processor; 
- Reducing size of the program state required to be  
saved before instruction’s execution. 
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As a further improvement of parallelisation and at the 
same time concurrency reduction we need to handle the 
actions that were initiated in parallel, but eventually  
ended up in conflict of access to one or several 
resources, i.e. concur after resources. To describe this 
we  introduce the graph-logic-model (GLM). Note that 
GLM might be applied for any of graph of the CDP 
model. Until now research in parallelism was mostly 
targeted at finding parallel branches of programs and 
independent data elements. However, expecting pure 
parallelism is hardly feasible: what is initiated as parallel 
segments ends up ultimately in concurrent mode, 
competing for a resource such as a socket, printer, data 
concentrator, etc. The rare exception, such as graphic 
processors with high numbers of SIMD-like processors 
just proves the rule. The simple notation similar to one 
introduced in http://www.it-acs.co.uk/files/Transaction_GLM.pdf 
can describe program structures and hardware structures 
consistently in terms of co-existing concurrency and 
parallelism. GLM explicitly separates parallel and 
concurrent elements in the system description by 
introducing logic operators in the program graph for 
incoming and outgoing ends of edges. The application of 
the logic operator XOR (exclusive OR) on an input or 
output of an edge defines ALL possible concurrencies in 
the program graphs. In turn, all possible parallelism in 
the control graph are defined by finding all outgoing or 
incoming edges explicitly described by the AND 
operator. The same approach might be applied for the 
data and predicate dependency graphs of the CDP 
model. Having a correct program, CDP and GLM can 
then be applied to extract the parallel segments and data 
paths and help in reducing concurrency. This reversed 
programming gives us a chance to play with the software 
and monitor software redundancy, (deliberately 
introduced at the recompilation phase) and hardware 
redundancy (introduced at the design phase) on the fly. It 
also enables to use reconfigurability of the system for 
performance, reliability, or energy-smart functioning 
when it is necessary. 
 
Figure 5 proposes sequence that clearly separates 
properties required at the program writing phase with 
properties required during execution as latter are 
dependent on the available hardware resources available 
and changeable during execution. This way hardware 
features (that might be dynamically adapted during 
runtime) become represented in the program logic.  

 
                       Fig. 5 Making parallel  
 
 
 
 

4. System software for evolving systems  
 
A new language is needed to naturally express 
algorithms in a form that supports program 
recompilation into a redundant form that fits the 
“hardware view”. This does not mean that other 
programming paradigms such as structured or OO are no 
longer useful. It means though that they have their limits 
and serve mostly for user convenience and interfacing. 
The proposed paradigm serves to improve performance 
of the end product by design of a new reconfigurable 
architecture, system software and transformation of 
existing software into a form that is efficiently 
executable by adaptable hardwaree. Note that 
parallelisation might be applied to all three graphs: 
control, data and predicate, deducing the best parallel 
form. The availability of hardware  serves as the 
termination condition for this algorithm. The same 
algorithm might be reapplied during execution.            
 
The system software for next generation of evolving 
systems includes a new modular programming language 
called Active Language (AL) and two operating 
systems: a runtime system, called the Active 
Reconfigurable Run Time System (ARRUS) and service 
operating system (SOS). AL and ARRUS are tightly 
coupled, as AL needs runtime support for some features, 
such as recovery go program.  
 
The language AL derivates from Oberon [26], [27] and 
COMPOSITA [36,37], includes the following new 
features: 
- A new data structure is introduced that eases the mapping 

of data to memory (dual string model); 
- GLM extensions is exploited in the control and operator 

model representation; 
- Separation of interface and implementation to support 

dynamic software and hardware reconfiguration  
- Reduction number of supported data structures  
- Physical separation of constant, global and local variables 

and introduction of recovery points [18]  
- Support for recovery and reconfiguration points at the 

module level using special program structures  
 
AL revises language constructs such as unbounded loops 
and introduces calculation of upper execution times and 
stack sizes to ease certification. Rigorous memory 
management implemented without pointers and 
references. AL inherited from COMPOSITA that 
programs are entirely composed of active components 
which govern strict encapsulation, dynamic wiring with 
a dual concept of offered and required interfaces and 
communication-based interactions (Fig.6).   

       Fig. 6 Hierarchical component structures 
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As the language is based on hierarchical composition 
and does not employ any ordinary pointers or references, 
surrounding components properly controls the deletion 
of components and no garbage collection is needed for 
safe memory management [36,37].  
 
Figure 7 shows an example of a component structure, 
where a component can contain an inner network of sub-
components. 
 
Communications follow a formal protocol written in an 
EBNF-like notation. Due to the strict encapsulation the 
components and can be easily mapped to various 
hardware architectures. It inherently enables parallelism 
(N components may be scheduled on up to N processors) 
as well as redundancy (the same components may be 
executed as multiple replicated instances). In the 
ongoing work, a prototype compiler and run-time system 
for evolving system were already developed.  

 
  
          Fig.7 Component interactions 
 
Direct support for reconfigurability and recoverability of 
program structures at the language level makes 
reconfiguration of system possible in case of hardware 
degradation due to faults or task special requirements of 
system power-saving operation or on the opposite 
boosting task by using maximum hardware resources for 
completion a task with required time limits.  
 
For hardware fault tolerance especially due to substantial 
ratio of malfunctions over permanent fault system 
software at the language level should include recovery 
points for program at various levels of program 
presentation: procedure, module, task.  
 
Detailed description of language support of hardware 
fault tolerance using recovery points is presented in [22] 
where we show that the recovery point scheme will be 
embedded in the language and oriented on the programs 
and data structure reducing the overhead for recovery 
after malfunctions and eases the impact of possible 
permanent faults.  
 
ARRUS. Run time system ARRUS monitors real-time 
processing as well as real-time reconfiguration of the 

underlying hardware elements and the respective 
network topology, including:  
 
- Flexible dynamic hardware resource management  
- Performing of software reconfiguration to adapt to 

changes of HW states and system conditions  
- Management of hardware/software interactions in 

presence  of hardware faults  
- Hardware state monitoring and support of graceful  

degradation using testing and recovery procedures and 
reconfiguration management  

 
To match the required features such as reconfigurability, 
parallelisation, real time, resilience to hardware 
degradation and distributed control processing, the 
ARRUS itself is built in a strict hierarchical manner, as 
it is illustrated in Fig. 8.                        
          

 
 
                   Fig.8. ARRUS architecture 
 
The lowest level module has no dependencies at all and 
consists of the main system monitor which is responsible 
for the coordination of all activities, such as the 
initialization of reconfiguration entities, timer services 
(not shown), interrupt handling and all the remaining 
depicted functions.  
 
ARRUS provides also all standard functions of a runtime 
system such as memory management, which are well 
known and explained in literature [34], [35]. These 
features are omitted in Fig.8 to keep the diagram 
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understandable. In a standard control loop system, it is 
up to the programmer and the applications to diagnose 
faults and react appropriately. In ARRUS however, this 
is not the responsibility of the application but of the 
runtime system.  
 
Thus, ARRUS is responsible for diagnosing faults 
(software failure, malfunction, permanent fault, etc) and 
notifying the appropriate software and hardware 
monitoring services of any required changes. User 
applications are not allowed to communicate directly 
with the reconfiguration mechanisms. The rationale 
behind this principle is the idea that the runtime system 
is the only entity that knows the current hardware state, 
all ongoing processes and their resources. In case of a 
fault, it can thus based on the available resources 
reconfigure the applications.  
 
The following developments will be crucial for the 
ARRUS fault handling mechanism: 
 
- Monitor HW state. Possible either with interrupts (HW 

signals changes), or periodic software initiated hardware 
checking (further both approaches are required to 
implement hierarchical HW check) [22]. 

- Reaction on HW state changes. The runtime system is 
responsible for the management of the hardware states and 
reconfigures the applications accordingly  

- Collaboration of checking and recovery processes at the 
system software level and HW level. Introduction of fault 
resilient task scheduling and HW / SW fault handling 
strategies. (schedule simpler task versions)  

- Fault tolerant semaphores: A new concept that eliminates 
deadlocks caused by HW deficiencies. 

              
ARRUS handles changes of hardware conditions using 
the notion of hardware states and transitions, as Figure 9 
shows. A hardware element in the states Active, Master 
or Slave is included in the current working 
configuration. If an element is in the state Stand-by, it is 
not active but can be activated in a further 
reconfiguration step. 

          Fig. 9 Hardware state graph at ARRUS 
 
If a fault is detected, the affected HW element is set into 
the state Suspected which means that at least for a while 
(until the generalized algorithm of fault tolerance [18] is 

completed and a new valid configuration is established), 
this HW element will not be included in any working 
configuration.  
 
This representation of the hardware state for every ERA 
element defines the current configuration of the ERA 
hardware at the run-time system level. A configuration 
change can be triggered by changed application, power, 
reliability or performance requirements, or a detected 
error. 
 
5. Evolving system: hardware 
 
Basic schemes.  The indicative structure of hardware  
element for evolving system is presented in Fig.10. 
Configurators called T-logic provide flexible use of 
processor and memory elements in the system 
configuration for performance and health conditions: 
when one processor is dealing with its own program 
(self testing, autonomous calculations) it disconnects 
from the other nodes. The same technique is used to 
form reconfigurable hardware that is capable to adjust to 
program requirements or react to other events such as 
detected permanent faults. 
 
The memory configuration of EvSy element (Fig. 10) 
work for both: resilience or performance. A special logic 
scheme, called T-logic configures of the memory 
structure. 

   
                    Figure 10 - EvSy element 
 
When an application requires maximum reliability, the 
T- logic scheme might configure the memory as a 4, or 3 
(shown)  unit with voter. The configurations: two to 
compare and one spare or three independent memory 
elements are possible. The number of memory elements 
might vary, as for recent implementations four memory 
elements were proposed. However, the principles of 
configurability by using T-Logic elements remain the 
same. 
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The instruction set of elementary processor is designed 
to recover from hardware malfunctions by repetition of 
the instruction making malfunction tolerance efficient  
[18]. In comparison with Motorola, ARM, Intel 
proposed EvSy is much simpler, and a higher level of 
parallelism and frequency can be achieved.  Due to 
simplicity by-design EvSy needs only 10% power 
compared to the competitors. 
  
The same technique is used to form a hardware 
configuration adjustable to the program requirements or 
when a hardware element itself (or architecture) detects 
hardware faults and thus can’t be involved in further 
program execution either on a temporary or permanent 
basis. The final decision about permanent isolation of an 
element is performed during a special mode of self–
healing when testing and recovery procedures are 
executed. 
Each element can be turned off individually to decrease 
power consumption. Note that the structure assumes 
only one leading element at a time enforced by a 
“rotation” of the T-logic element. T-logic makes the 
whole EvSy possible to operate until the last soldier 
stands: i.e. until at least one processor and memory 
element can communicate. 
By design, the evolving recoverable reduced instruction 
computer is able to recover from major malfunctions and 
repeat the ongoing instruction when an error was 
detected. The specially designed instruction set and its 
declared top-down implementation of all required 
features reduces the impact of malfunctions on the 
performance and reliability of a system as a whole.  
As it was shown in [21], the efficiency of malfunction 
tolerance depends on the fault coverage, and the amount 
of involved redundancy. The efficiency of malfunction 
tolerance grows together with the ratio of malfunction to 
permanent faults.  
Finally, the absence by design of pipelining and ability 
of several accesses memory during  instruction 
execution enables to monitor and vary processor 
frequencies when applications require extreme 
performance. Figure 11 below demonstrates first 
prototype of EvSy designed and developed by authors in 
collaboration with ITACS Ltd and initial run made by 
V.Castano. 

 
        Fig.11 - EvSy element - first prototype  

 Memory organized as 4 mutually replaceable schemes 
with virtual addressing that configure EvSy for 
reliability (two pairs or triple structure with spare 
element), energy-smartness (one element is active the 
rest are disabled) or full capacity - when all elements 
form one memory bank for program. ROM is functions 
as one or both active. At the moment all reconfigurations 
and EvSy processor elements (4 of them) are assembled 
in Altera PLD shown. Further development obviously 
will lead to special chip for processors, memories with 
reconfiguration support and special design of T-logic 
element to achieve maximum simplicity, performance 
and reliability. 
 
The design of proposed reconfiguration scheme has been 
completed, PLD level development in full progress;  it is 
worth to note EvSy reconfiguration is able almost linear 
exchange or reliability/performance/power consumption, 
enabling user task define the actual configuration 
through special request to runtime system. 
 
 
6. Multi-element configuration 
 
There is no doubt - see “model of rope and box” above -  
one has to address how resources of multi-agent systems 
supported by multi-element architecture.   
 
Conceptually, each element of EvSy might work and 
serve for providing system property of evolving: it can 
be turned off individually to decrease power 
consumption, or turn to be inactive but able to be 
included in required by application configuration, or 
aggregated with others for maxim capacity or reliability.  
 
Applied through the whole system T-logic elements 
make the whole system to  operate “until the last soldier 
stands”: i.e. until a single processor, called ERRIC on 
the figure, and a single memory element can 
communicate through remained links.   
 
Note that active and passive elements (processor and 
memory)  can be at the far ends of the system.  Various 
areas of Evolving Architecture can be involved in 
different type of tasks.  
Thus some segments might run safety critical extremely 
demanding in terms of reliability tasks, while other 
execute heavy calculations of matrix algebra.   
Proposed approach is promising. Initially it was 
presented at 2005 FET Infoday January 13,2005 in 
Brussels  by Prof Schagaev (Londonmet) with assistance 
of Prof Gutknecht (ETH Zurich). Since then hardware 
prototype and essential system software was developed. 
 
 
7. EvSy approach vs. Berkley view 
 
Recently  published Berkley view on parallel computing 
[38] differ with our approach.  The Table 4 illustrates 
difference,  is self-explanatory and show both – system 
software and hardware concepts and implementations. 
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Table 4 Berkley view vs evolving reconfigurability approach  
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8. Conclusion and future work 
 
I.Known drawbacks of computer architectures blocking 
efficient use of reconfigurability of hardware and 
software for performance, reliability or energy-wise 
functioning are analysed. 
II.Several holistic principles were presented and pursued 
through the whole life cycle of computer systems: from 
the preparation of algorithms down to the execution of 
programs and hardware. 
III.Proposed approach introduces system evolving 
features of mutual design of architecture and system 
software.  
IV.From system software point of view centre of gravity 
for hardware reconfigurability is based at compiler level, 
leaving only essential reconfigurability handling at the 
run-time level.  
V.Shown that consistent support of reconfigurability 
eases parallelisation, reduces concurrency, assists fault 
tolerance and implement power-awareness for 
applications when necessary.   
VI.Two models: control-data-predicate dependency of 
the program and  graph-logic represent concurrency and 
parallelism of a program and enable their explicit 
separation.  
VII.A sequence proposed to find the parallel for program  
potentially reducing time overheads up to the level 
limited only by available hardware resources. 
VIII.System reconfigurability pursued and supported  by 
programming language,  service operating system and 
run-time system results ultimately in a simple, yet 
scalable, reliable system, and providing performance, 
reliability and power saving options with linear trade 
between. 
IX.Hardware elements and the prototype with maximum 
reconfigurability (till the last soldier stands) are 
described. 
X.A comparison of the evolving reconfigurability 
approach with known approaches was presented. 
XI.Philosophically speaking, a degree of freedom in any 
system defines its adaptability and evolvability. A 
system’s ability to adapt, use or exploit fundamental 
limitations depends externally on properties of nature, 
while internally force us to design future systems giving 
us an option to exploit topologic features, hardware and  
system software making evolving achievable.  
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Abstract - Simple paradigm to unite control operators for 
programming languages into one scheme using graph-logic 
representation of relations between agents (or elements of 
interaction) assuming independence of behavior for each 
element is presented. Shown that power of this structure 
exceed known models of description of behavior for 
concurrence and parallelism. Proposed model explicitly 
separates concurrency and parallelism and indicates further 
steps to automatic reprocessing programs for making them 
better tuned to modern architectures. 
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1 Introduction 
  Every algorithmic language describes decision actions 
using logic statement of selection: 

 “if” to choose one of two options  
 “case of” to choose options from more than two  
 “while” when our decision depends on conditions with 

uncertain time trigger or other independent parameter 
change  

 
This is well supported by classification of relations 
introduced by E. Kant [1], whom I consider as a first 
theoretical programmer, opposing to a sentimental story of 
Ada, lady-lover of lord and part-time poet Byron. (Frankly, 
Nabokov’s ADA makes much more sense to me). 

E.Kant classified statements in terms of relationships and 
possible interactions between elements involved. Accordingly 
E. Kant an object might correspond, relate, and interact with 
others using the following relationships:  

 One-to-one,  
 one-to-many,  
 many-to-one,  
 many-to-many 
 

And it seems to me nice and easy, provided we make 
decisions where to go, what to choose and our decisions are 
mutually exclusive. That is why, by the way, each processor 
instruction set has operator XOR and set-and-wait. 

  

 

2 New Control Scheme  
 Unfortunately or fortunately our decisions are not 
always that simple as presented above: we can be friendly 
with different groups of people, make not mutually exclusive 
decisions, starts selective actions with various taboo: ““you 
can go your party but you do not drink and back before 
11pm!” - remember? ;), etc., etc. 

And this is all executes at the same time... Thus E.Kant 
diagram should be extended, one option of extension, called 
GLM is shown below on Figure 1. GLM stands for graph 
logic model to describe mutual dependency of various kind, 
was successfully applied in real world applications, including 
active conditional control systems, active safety monitoring 
systems, overpowers descriptive power of Markov and 
Bellman models and similar. Accordingly GLM, leaving one 
state, say “a” we might describe our leaving conditions using 
logic basic operators {AND, OR, XOR} attached to a leaving 
end of the links between “a” and neighbors. 

  
 

Figure 1 Graph Logic Model of interactions between nodes 

Note that at the same time the various options are possible: 
selection of leaving conditions to several neighbors using 
{OR} on each out-coming link, or broadcasting to all 
neighbors through all out-coming links using {AND}, or 
picking just one and only neighbor using {XOR}. 

Still, we think that we are the important ones and make 
impeccable decisions. This claim stands when we act and all 
others just follow…  
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But how about civil disobedience (for more on the subject I 
recommend to read Henry David Thoreau “On civil 
disobedience” or Gandhi passive resistance, when no matter 
what and which government (in first example US in the 
second UK) instructing how to obey and we do not follow 
and note – we act differently?  

How to describe Vichy’s collaborationism and De Gaulle 
resistance at the same time existing in France during WW2? 
How to describe Italian type strikes when people sit in office 
and do nothing? (Sound like EC...) 

Did anybody spot - we are talking distributed computing now, 
as we have introduced various modes of reaction of opposite 
side of link and have to accept it’s own will to act without our 
“instructions”. 

From now on the interactions between nodes with logic based 
decision rules applied to “own socket” for both sides of link 
are assumed! 

All these examples of other nodes involvement in interaction 
force us to attribute the same link twice - at the leaving end 
and at the incoming end with different logic operators if 
necessary, Figure 2. 

 

Figure 2 Logic operators for incoming and out-coming links 

Using GLM we are able to describe mentioned above political 
phenomena and much wider and wilder conditions appeared 
in really of complex models without difficulties. 

As another extreme example, when we assume that all logic 
operators within graph are operators are XOR we converge 
GLM into Markov model. In turn, adding weights (Greek 
letters on the graph of Figure 1) on links (cost, time other 
independent variables required) and assuming, again XOR as 
only operator allowed for out-coming and in-coming links we 
are able to describe Bellman optimization model using GLM 
notation. 

Thus nodes and links between them with attributed logical 
operators attached to each leaving and coming ends form, in 
fact, new basis for control operators for next generation of 
programming languages. 

3 Concurrency and  Parallelizm  
 
 Almost everything that starts together, or at the same 
time or using the same data sooner or later will face a conflict 
of interests - parallel branches of program will require final 
aggregation of it into few numbers or functions; access to 

hardware, or informational, or time resources will be limited 
and conflict arises. 

There are very few pure parallel program and systems - to 
name one known Sony PlayStation or any digital TV set - 
where incoming data flow splits and distributed in parallel to 
display visual elements. 

For all the rest existing descriptive schemes of parallel 
program are not actually correct or useful. Use of GLM might 
help here:   

What we start in parallel (leaving condition is AND for each 
link from a chosen node) might be completed in mutually 
exclusive mode (incoming condition XOR). 

Using Figure 1 example traces a-d-f and a-b-e-f can be 
activated in parallel and eventually end up with conflict of 
interests, thus each of incoming links to node f should be 
attributed with XOR operators.  

Tracing of branches of a program with attaching operators is 
becoming interesting area of research as we are able using 
GLM to separate really independent segments and allocate 
them properly on existing or next generation [2] hardware. 

 

4 Conclusions 
 Graph logic model provides exceptional flexibility for 
expressing of control in various environments of interacting 
agents.  

Attributed logical operators attached to each leaving and 
incoming ends of edge form new scheme of control operators 
for next generation of programming, when number of co-
existing active agents will interact voluntarily.  
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Concrete State Machine Language (CSML) 
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1. Introduction

Software programs do essentially two things: compute and communicate. Mainstream                   
languages, such as C++ and Java, are based on a core set of general purpose constructs that                                 
can be used for either task. The hypothesis of CSML is that these two subtasks place different                                 
and independent demands on the language, and thus that things are simplified by combining a                             
computingonly language with a communicationonly language.  

CSML is named after ASML (Abstract State Machine Language), invented by Yuri Gurevich in the                             
mid 1980’s as a high level (or, more accurately adjustable level) algorithm specification                         
language. It has since become an industry standard, though in systems engineering more so                           
than in software. ASML was conceived as a procedural pseudocode, using a set of functional                             
primitives that may vary from program to program. The only constraint on the primitive functions                             
of an abstract state machine (ASM) is that the human reader of the pseudocode understand their                               
meaning. The name concrete state machine comes from the fact that, rather than leave the                             
primitive functions of the machine as pseudocode, or implementing them as lower level state                           
machines (a common procedure known in the ASM community as refinement), we plan to                           
implement the primitive functions of the machine in a functional programming language. 

2. Syntax

A variable declaration is either an empty string or an expression of the form varsx1:S1 …                               
xn:Sn,   where each x is an identifier and each S is a  SequenceL sequence.

An action is one of the following: 
● x:=E   (where x is a state variable and E is a term)
● playSound(s)(where s is a sound)
● blit(M,k) (where M is a set of images and k is an integer). k is the priority of the blit,                                       

where blits with higher priority cover up blits of lower priority.

A rule is one of the following: 
● an action
● if p:R   (where p is a Boolean expression and R is a rule)
● a string of two or more of actions
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An init statement is written init:R  where R is a rule

The sequential and nested structure of rules and declarations is represented by spacing and                           
indentation, as in Python.  

A concrete state machine consists of a variable declaration, an init statement, one or more rules,                               
and a SequenceL program.  

3. Semantics

An input port is one of the following: 
● mousePosition
● leftButtonDown
● rightButtonDown
● keyPressed(c), where c is the ascii code of a character

A state variable of a CSM is an identifier appearing on the left hand side of an assignment in its                                       
initialization. The functional program that accompanies a CSM can be written treating any state                           
variables and input ports as constant symbols. A definedfunction that references one of these                           
symbols in its definition is called a fluent, since it may return different values when called with the                                   
same arguments when the machine is in different states.  

The semantics of rules is as follows: 
● The semantics of actions is assumed to be clear.
● An instance of a rule if p:R is obtained by replacing each of its logical variables with a                                 

value from the sequence which is the range of that variable. When a rule is fired, each of                                 
its instances fires in parallel. if p is true then R is executed.

● The sequence R1,...Rn of rules is executed by executing each of its rules in random order                             
(possibly in parallel)

The semantics of the entire CSM is as follows: First the initialization rule is executed, then all                                 
other rules are executed once per time step, in any order (including, possibly, in parallel), until                               
the program is interrupted by an outside signal (such as the user closing the program window).                               
The following is an example of a CSM for a tictactoe application (the SequenceL                           
implementations of the machine’s primitive functions of the machine are not shown). This can be                             
thought of as the procedural component of the program. 

// This is a CSML program for a tic tac toe game. To run, it would require
// functions  emptyBoard:Seqence<Int>, turn: Player > Bool,
// empty:Cell>Bool, clicked:Cell>Bool, restartClicked:Bool, occupies:
// Player*Cell>Bool, gameOver:Bool, resetButton:Sprite, hashMarks:Sprite,
// resultsMessage:Sprite
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// A *player* is either “x” or “o”, and a cell is an integer in [1...9].

vars:
player:["x","o"]
cell:[1...9]

// The board starts out empty

init:  board:= emptyBoard

// If it is a player’s turn and an empty cell is clicked, that player
// now occupies that cell.

if turn(player) &  empty(cell) & clicked(cell): board[cell]:=p

// If the restart button is clicked, the board returns to its
// original empty state.

if restartClicked: board := emptyBoard

// Video output
//////////////////////////////////////////////////////////////////

// Always display the hashmarks and the reset button.
blit (hashmarks ++ resetButton)

// If a player occupies a cell, show his mark there.
if occupies(cell, player): blit(playerMark(cell,player))

// If the game is over, show a message reporting the result
if gameOver:  blit(resultMessage)

Conclusions and overview 

CSML is a simple (though outsideofthebox) procedural language which, when combined with a                         
functional language, can be used to write fairly complex interactive applications. The basic idea                           
has been vetted through its use as a standard tool in systems engineering. 

We estimate that in a typical CSML program, 90% of the code would be functional and 10%                                 
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would be CSML. This is based on programming commericalscale applications using                     
SequenceL is a pure functional language that is used with C++ to create applications. 

CSML is inherently event driven rather than sequential/looping/branching, so that the main loop                         
and “event driving architecture” that typically forms the boilerplate of large application fades into                           
the background semantics of the language. With functional computation also encapsulated into a                         
separate component, we can view CSML simply a language for nothing but event handling.                           
Handling events is a pretty simple concept, intuitively (any time this happens, do this), and the                               
fact that CSML does this and nothing else allows it to conform to the simplicity of the intuition. 

The use of logical variables (as in Prolog) rather than loops (as in C, etc.) makes the syntax                                   
closer to natural language and common sense. For example, compare 

If a bird lands in the tree and eats a berry, blow the whistle 

with 

For all b in Birds, for all T in trees, for all r in berries, if B lands in T and 
eats r then blow  the whistle. 

This difference can be seen in the tictactoe program in a couple of places, when compared                               
with what the corresponding code would look like in, say, java. 

There is a lot of nondeterminism in the control flow of CSM’s. Therefore, they are amenable to                                 
artificially intelligent automatic parallelization. However, the resulting parallel executable cannot                   
be guaranteed, in general, to be race free. Generating warnings about race conditions for CSML                             
is a toic for future research.  

To be used as a fullscale application development tool, CSML would have to somehow                           
incorporate a wrapper for whatever read and write operations were needed. This would be a big                               
undertaking to do for general purposes. The proposed solution to this is to enable the                             
programmer to write their own actions and input ports in the target compilation language (say,                             
C++). That way they just use CSML for control flow architecture. The message, then, is “You                               
can use whatever read/write commands you want to interface with hardware, and we will give                             
you an easier way to describe the logic of your program.”  
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