
SESSION

MICRO-CONTROLLERS, MICRO-PROCESSORS,
PROGRAMMING, SOFTWARE SYSTEMS AND

RELATED ISSUES

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 1

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

2 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Lumousoft Visual Programming Language and its IDE

Xianliang Lu

Lumousoft Inc. Waterloo Ontario Canada

Abstract - This paper presents a new high-level graphical

programming language and its IDE (Integration Development

Environment) for microprocessor-based embedded system.

The graphical programming language allows programming in

the graphical block diagram environment. In comparison with

textual programming languages, it allows direct bit operation,

and enables to program or lay out complicated networks for

cognitive algorithm application. With the trace analyzer, the

graphical language can fully recycle memory, reduce

reductant code to reduce the cost, and improve performance.

The graphical structure including basic units, layout format

and modules are described in details. This new graphical

language provides great convenience for embedded software

maintenance, coding, verification, validation and reusable

components.

Keywords: graphical; module; programming; language;

IDE

1 Introduction

 With the increasing complexity and sophistication of

electronics device, the more efforts are put on embedded

software that plays a pivotal role in electronic industry. There

are great demands for more efficient, productive and reliable

software-developing tool to facilitate embedded software

design, development and maintenance.

 It is proved that the blueprint is the most efficient way in

engineering practice for design, validation, verification, test,

maintenance and modification. Embedded software is more

restrict and complex than other software field due to real time

and reliability. Embedded software faults might cause serious

damage to electronic device. An embedded software engineer

or developer usually has electronic background and familiar

with blueprints. But current embedded software design and

development have to be on the text-based platform that is

hard to read and catch the whole map of software project.

Consequently, developing software has to take more efforts

and much more time than other engineering fields like

electricity, mechanics.

C/C++ language is a dominant language in embedded

system due to similarity to assembly language and more

readability. Comparing with assembly language, C/C++

compiler might generate bigger size of machine codes and use

up more memory, sometimes may cause memory leakage and

memory conflict or boundary corruption, yielding more cost

in hardware and poor quality of performance. Because it has

more readability and efficiency than assembly language, it

still gains dominant application in the embedded field.

 In addition to textual language, visual programming

language (VPL) begin to be found application in embedded

system like flowcode produced by Matrix Multimedia for

programming embedded devices. Most of VPL languages

have limit application and less flexibility because

programming capability depends on how many graphical

components available from VPL provider.

 Lumousoft graphical language is a visual programming

language for microprocessor allowing programming in block

environment with high usage of hardware resource and high

quality of performance. This graphical language not only has

the same programming capability as textual language such as

C but also enables to program complex network for cognitive

algorithm application.

2 Syntactic structure

 Lumousoft graphical language is a programming

language in block environment. In general, the textual

language uses textual statement to represent flowing program

path in the form of parse tree, and each tree branch is not

allowed to be interconnected , an example parse tree is

shown in Fig.1. Unlike textual language, Lumousoft graphical

language uses block, connection line and direction symbol to

form program flowing pattern, the block diagram connection

pattern is not limited to parse tree, allowing branches to be

interacted to form complicated networks. An example is

illustrated in Fig.2 . In lumousoft graphical language, a path

analyzer is employed to analyze the program pattern

including loop.

 Lumousoft graphical language uses path analyzer to

indentify block connection pattern other than parse tree,

However, in each block are there multiple lines of expression

for logic or arithmetic operation, these lines of instruction are

Fig. 1. Textual language parse tree

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 3

http://en.wikipedia.org/wiki/Syntax

arranged in executable sequence without jumping branch.

While, each line of expression still follows parse tree for

analysis and compilation.

Lumousoft graphical language employs path analyzer to

determine network. This mechanism is different from current

textual language syntactic structure and allows lumousoft

graphical language to handle more complicated network to

accomplish the more complex and sophisticated task.

3 Layout format

3.1 Basic unit

Lumousoft graphical language is made of four units:

block, line, direction and statements in a block. The block

contains executable statement, which performs logic and

arithmetic operation; line is to build connection between

blocks; direction determines how the process flows. The

symbol of direction is shown in Fig. 3 there are two class

directions, input and output. The output can be divided further

into non-conditional output (pass output) and conditional

outputs (pair of true and false output and switch).

Because lumousoft graphical language is a programming

language, the program codes need to be modified form times

to times, the symbol or shape of graphic icon might change

accordingly, this will cause great inconvenience for developer

and waste a lot of time to adjust symbol or icon. Therefore,

Lumousoft graphical language does not adopt the standard

flowchart symbols, just employs block for ease of

programming.

3.2 Connection models

 The block layout can be in the form of series, parallel,

selection, loop and bridges. Fig. 4 illustrates the basic layout

formats. With these basic layout units, a complicated network

can be created.

3.3 Series

Similar to series circuit, the program executes in sequence.

3.4 Parallelism

In our daily life, parallelism exists like electrical circuit.
The current Lumousoft language version is applied to single
chip microprocessor, not for multi-cores. In order for single
core to handle parallelism, the parallel branches need to be
rearranged and connected in sequence. Fig.5. demonstrates the
conversion of parallel to sequence.

The parallelism that lumousoft graphic can handle should
meet the following condition.

Fig. 2. Block network

Fig. 3. Block direction symbols
Fig. 5. Transformation form parallel to sequence

Fig. 6. Illegal parallel connection

Fig. 4. Basic layout format

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

4 Int'l Conf. Embedded Systems and Applications | ESA'14 |

http://en.wikipedia.org/wiki/Syntax

 Parallel branches should have start terminal and end
terminal. Just like electrical circuit, if the branches start
from some point without join later, it will cause error.

 The branch after joined terminal will not be executed until
all the join branches have been executed, in other words, if
a branch after parallel join is executed before any parallel
branch will cause error.

 Except the bridge connection (Contrained to 2 parallel
branches) as shown in Fig.4 (2) and Fig.4 (4), the parallel
branch is not allowed to be joined in or jump out of parallel
by a decision path. Fig.6 shows some examples of illegal
parallel patterns.

The parallel connection can be nested in a loop or contains
a loop as shown in Fig. 7 (a) and (b). Parallel connection can
be as complicated as Fig.7 (c) shows.

3.5 Selection and Loop

The selection branches either consist of true and false
branches coming from decision block or switch clause blocks
as shown in Fig.3. (c), (d) respectively.

In true false selection branch, which branch will be flowed
from decision block depends on the last line of statement in the
decision block. If the value of last statement in the decision
block is non-zero value or true, the program will flow to true
branch; if the value of last statement in the decision block is
zero or false, the program will flow to false branch.

 Switch consists of switch block and case blocks. The
switch block is the block attaching a switch output symbol.

While, the case block is the one which input is connected to the
switch symbol as shown in Fig. 8. The switch can be
categorized into constant case switch and non-constant case
switch. As the name implies, when case blocks contain
constant expression we call constant case switch, the switch

path goes to the case block where the switch expression at the
last line of statements in switch block matches the value of
constant expression in the case block. Fig.8 (a) illustrates
constant case switch.

 While, non-constant case switch is that when case blocks
contain non-constant expression. Fig.8 (b) shows the non-
constant case switch. The non-constant case switch is more
like the clause “if .. else if .. else..” of textual language. The
process path is selected when the value of case block
expression first turn out to be true or non-zero. The check-up
for true takes place from the left to the right if all case blocks
lay out horizontally, and from the top to the bottom if case
blocks lay out vertically.

 In Lumousoft language, switch must contain only one
default case block. The default case block is defined when the
content of a case block is empty or blank.

By selection block, complicated network including loop
can be created. In C language, it uses statement to represent
loop and condition like “switch(..){case..; case..; ..;
default: ..;}”,”if(){..}else if(..) {..}…else {..}”, “do…while
(condition);”, “for()”, “ while(){..} ”, ”if().. else ”. Fig.8. and
Fig.9. illustrates graphical expressions for above textual
expressions.

3.6 bridges

Fig.4 (1)-(4) show four kinds of basic bridges. With these
basic bridges, lumousoft language is able to design complex
algorithm with less efforts.

Fig. 7. Parallel connection samples

Fig. 9. Loop and Condition

Fig. 8. Switch

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 5

4 Variable

Like other programming languages, Lumousoft graphical
language has local, global, system, constant, array pointer
variable. Except the regular data type, lumousoft graphical
language has bit variable that is especially helpful for
microprocessor application. As soon as a variable is defined,
the variable can be accessed in the whole scope where the
variable stays. There is no need to make declaration of variable.

4.1 Memory Optimization

Because lumousoft graphical language adopts block
network instead of parse tree, tremendous memories might be
required. The memory size is one of factors that affect the
price of microprocessor. The bigger size of memory the more
expensive microprocessor is.

A variable usually is assigned a memory or register to store
a special value. When the content of a memory is written and
the previous value of the memory is lost, we can say that the
previous value is dead and the variable associated with this
dead value die too. While, when the memory is written a new
value, the variable associated with this memory is born. A
variable has life span from the variable is assigned a new value
to the last time usage before the memory was override. The
variable might alive and die for many times in a program.

Lumousoft graphical language takes the advantage of trace
analyzer to indentify the life span of a variable, When a
memory is born or created, a memory will be allocated to the
variable, and when the variable is dead the associated memory
will be released and ready for a new variable. Because global,
static, system variables have permanent life, only the local
memory is going to be optimized in lumousoft graphical
language.

4.2 Bit Variable and Operation

Bit is the atomic data type of data. Current high level
languages like c does not allow directly operating on bit,
usually using indirect way like byte bitwise operation.
Lumousoft graphical language allows direct operate on bit.
Here, the variable holding the bit variable is called as bit
source variable, and where the bit sits in a bit source is called
bit position value.

The bit variable can be defined in the variable manager
dialog of IDE or use the below statement to define:

 bitVar = &(sourceVar # positionVal) (1)

Or uses the below expression to represent a bit variable

 sourceVar # positionVal (2)

where

 bitVar - bit variable

 sourceVar- bit source variable

 positionVal- bit position in the bit source variable

A bit value can be 0 or 1 like Boolean, when bit work with
non-bit data type variable or in logical operation, the bit

variable is treated as a Boolean variable. When the bit is set the
Boolean value is 1, and the bit is reset, the Boolean value 0.
Therefore, when a bit variable works with other non-bit
variable it works as Boolean similar to other language like c.

When a bit variable works with other bit variable it will
operate according to bit value. The bit operation can be:

and (&), or(|), xor(^), assign(=), not(~ or !),

 and assign(&=), or assign (|=), xor assign(^=).

When a bit source variable consists of more than one byte,
lumousoft graphical compiler will use expressions (3) and (4)
to find the byte that bit stay and find out the correct bit position.

 nByte= floor(bitPos / sysBitLen) (3)

 nPos=bitPos % sysBitLen (4)

Where

 nByte - the byte where the concerned bit stay.

 nPos – the bit position in the nByte

floor - a function to get the round down integer value

bitPos – bit position

sysBitLen – The bit number of memory that
microprocessor can handle

For example a bit variable is fifteenth bit of a bit source,
the bit source is short data type and supposed that it is allocated
by 2 bytes with the address of 0x20 and 0x21. The address of
0x20 is lower byte and 0x21 higher byte. The compiler will use
the 7th bit of the byte with the address of 0x21 to replace this
bit variable.

5 Modules

Lumousft graphical language is specially designed for
microprocessor application, the program consists of 5 parts:

 Main process module: It is similar to c language ‘main’
function, as shown in Fig.10 (a).Usually There is a big
loop in embedded application, a terminal block named End
Loop is introduced if necessary.

 Library: support compilation for logical and arithmetical
operation

 Interruption: it is to handle interruption routine for
microprocessor, as shown in Fig.10 (b).

 Sub module: it is similar to the function in c language and
can be used by other modules. Sub modules can exist in
different files. Sub module can be either module function
or inline module as shown in Fig.10 (d) and (e).

 Global initialization: It is used to initialize global, system
and static variable and perform microprocessor
initialization before running main program module as
shown in Fig.10 (c).

For the simplicity, we use single block to represent
complex block networks in Fig.10.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

6 Int'l Conf. Embedded Systems and Applications | ESA'14 |

A sub module in lumousoft graphical language is a group
of blocks to achieve a special task, and at any point of
statement in a block it can be called, just the same as function
in textual language. Lumousoft graphical language treats the
sub module name as a variable, while the function in textual
language it is just a return value. In lumousoft graphical
language, if a sub module name followed by a parentheses, it
indicates that the sub module will be called and assign a return
value to this sub module name variable. If there are not
parentheses followed, the sub module is simply a variable.

The sub module can be divided into two kinds of modules,
inline sub module and regular sub module, just like inline
function and function in textual language. Inline sub module
means that the calling statement is completely replaced with
the copy of the whole group of module blocks. A regular sub
module is used to be called. Because sub module name is a
variable, there is no need to be declared. But if the sub module
is in another file, it needs to be imported. When the file is
imported, all the sub-modules in the imported file can be
implemented.

Since the main module and the interruption module belong
to different thread, the memory of variables should be isolated
except to that of global variable. If the different thread modules
call the same sub module, Lumousoft graphical compiler will
makes one copy of the sub module including variables for each
thread usage.

6 Assemble Language

Since assembly language is flexible and efficient, the
assembly language is still found application in embedded field.
Usually assembly language is embedded in other language.

Lumousoft graphical language allows assembly language to be
embedded in block environment.

Assembly language operand can be a variable defined in
the module including array, pointer except bit variable. But
these variables used in assembly language must be those
variables that have known address through static analysis.
Unhandled variable like a[i], *p, where p=&x+i; the variable
“a” is array variable and “i” is a variable, “p” is pointer
variable; in other words, theses unhandled variables are those
that are only handled by indirect address.

Because the assembly instruction only handles single- byte
variable, if a variable is composed of more than one byte, only
the first byte can be handled by assembly instruction. To solve
one-byte problem, we can implement pointer to handle all
bytes.

7 IDE

Lumousoft IDE offers the facility to lay out lumousoft
graphical program, compilation and generation of assembly
codes, machine codes for burning to microprocessor as well as
other files like block flow file which textually describes how
the block flow, assignment file for variable address assignment
and label of program memory address. Fig.11 shows the
interface of IDE.

Lumousoft IDE graphical editor functions include drawing
line, block, directions, and terminal block. The editor has
functions like undo, redo, copy, delete, cut, paste, move, save,
selection, search etc.

The codes in block are edited through block diagram,
which pops up when double clicks on a block that wants to be
edited. Fig.11 shows the block dialog and variable manager.
The upper left text block is used to fill in codes. When a
statement is put in, the IDE will perform lexical analysis and

obtain variable, key words and other tokens. The scanned
variables are put into the variable tables on the right hand side.
When IDE find a new variable, the variable has default
attribute with data type of char and range type of local. The

Fig. 10. Modules

Fig. 11. Block dialog and variable manager

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 7

variable can be edited and change its attributes through
variable manger dialog as shown in Fig.11. All the variables
within the connected blocks can be accessed.

The bottom box is used for the user to write comment for
this block. Codes and comments can be flipped to display by
clicking on the radio button in the middle on the right hand
side of block dialog.

 Two situations need to be considered when click on
“compile” button on the right top of the menu bar:

 The current file does not contain main module. When click
on “compile”, it will generate an object file with extent
name “sub”, which is used for other files to import.

 The current file contains main module. When click on
“compile”, it will generate assembly codes and machine
codes for microprocessor.

8 Examples

8.1 Example 1

The example codes, shown in Fig.12, is an inline module
from the Lumousoft library, which is used to judge whether the
variable is zero for all kinds of data type such as bit variable,
constant, pointer variable, one byte or multiple byte variable.

Fig.13 is an alternative displays of code, showing the
block comment to indicate how the program flow.

8.2 Example 2

The next example is to design two sets of led display by
use of PIC16F677. The port A connects to a set of led and the
port B to another set of led. In each set of led, only one led
lights up at each time , all the leds display in turn. For the first
set, each led lights up for 2 seconds; while, for the second set,
each led lights up for 4 seconds.Interuption takes place every
one millisecond to record time. Since the two sets of led
operate simutaneously, we can apply parallel to handle. Fig. 14
and Fig.15 illustrate the graphical codes and machine codes
repectively.

9 Conclusion

Lumousoft graphical language is a high-level graphical
programming language, designed for microprocessor based
embedded system, allowing the user to design and develop
embedded software in the block environment. Lumousoft
graphical language uses path analyzer to analyze block
network connection pattern instead of parse tree, as a result,
lumousoft graphical language can offer more flexible and
intuitive method to handle more complicated algorithm with
less efforts. Taking advantage of path analyzer, Lumousoft
graphical language is able to determine each variable life span
and make full recycle of memory. Lumousoft IDE offers the
facility to layout lumousoft graphical program, compilation
and generates assembly codes, machine codes. Lumousoft
graphical language provides a graphical coding solution to
handle embedded software engineering like other blueprints
based engineering field. Because of graphical coding,
lumousoft graphical language can give the user a bird view of
their project with great convenience of embedded software

Fig. 12. An example graphical codes

Fig. 13. Graphical pseudo codes

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

8 Int'l Conf. Embedded Systems and Applications | ESA'14 |

maintenance, review, design, coding, validation, verification,
test and modification.

10 References

[1] Bragg, S.D. , Driskill, .G. D, "Diagrammatic-graphical

programming languages and DoD-STD-2167A",

AUTOTESTCON '94. IEEE Systems Readiness Technology

Conference. 'Cost Effective Support Into the Next Century',

Conference Proceedings, pp 211 - 220, Sep. 1994.

[2] W.Ackerman, "Data Flow Languages", IEEE

Computer, pp.15-25, February, 1982.

[3] Y. Zhang and B. Xu. “A survey of semantic

description frameworks for programming languages”. ACM

SIGPLAN, 39(3):14–30, 2004.

[4] Charles N. Fischer, Richard J. LeBlance, Jr. “Crafting

a Compiler”, Benjamin-Cummings Publishing Co.,

Inc. Redwood City, CA, USA, 2010.

[5] Dick Grune, Herri E.Bal, Ceriel J.H. Jacobs and Koen

G. Langendoen,”Modern Compiler Design”, John Wiley &

Sons, Inc., New York, NY, USA, 2000.

Fig. 14. Two sets of led display codes

Fig. 15. Machine Codes

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 9

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bragg,%20S.D..QT.&searchWithin=p_Author_Ids:38241448300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Driskill,%20C.G..QT.&searchWithin=p_Author_Ids:38229880600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3048
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3048
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3048

Analysis and Optimization of Paradigm Microprograms

Victor L. Winter1, James McCoy2, Dominic Montoya3, and Greg Wickstrom4

1Department of Computer Science, University of Nebraska at Omaha, Omaha, NE, USA
2Sandia National Laboratories, Albuquerque, NM, USA
3Sandia National Laboratories, Albuquerque, NM, USA
4Sandia National Laboratories, Albuquerque, NM, USA

Abstract— Microcode often plays a key role in modern
processor architectures. Microcode optimization is an im-
portant topic, and opportunities for microcode optimization
can present themselves at various levels of abstraction. The
Paradigm System, developed as part of a joint research effort
between Sandia National Laboratories and the University of
Nebraska at Omaha, consists of a high-level architecture-
independent microprogramming language together with it’s
compiler. This paper discusses the artifacts and mechanisms,
within the Paradigm System, that support the analysis and
optimization of Paradigm microprograms.

Keywords: micro-programming, microprogram optimization, mi-
croprogram analysis, program transformation

1. Introduction
On modern processing platforms there oftentimes exists

a computational gap between the functionality provided by
the assembly language instruction set, which is targeted
by high-level language compilers, and the set of signals
used to control hardware resources. In such an environment,
microcode (µcode) can be effectively used to emulate the
functionality of assembly language instructions that are not
directly supported by the hardware.

Because µcode lies at the core of a processor’s design, it’s
optimization is an important topic. Efficiency gains in µcode,
even small gains, can have a substantive impact on system-
level performance. Research into the optimization of µcode
spans algorithmic optimization of high-level µcode down
to determining the optimal order in which microoperations
(µoperations) should be executed.

1.1 Application
Paradigm is a high-level architecture-independent mi-

croprogramming (µprogramming) language that has been
developed as part of a joint research effort, funded by
Sandia National Laboratories (SNL), between SNL and the
University of Nebraska at Omaha. The primary application
motivating Paradigm is the development of a processor,
called the Scalable Core (SCore) [1]. The SCore is a hard-
ware implementation of a subset of the JVM, designed and
developed at SNL, for use in high-consequence embedded
systems [2].

Within the SCore, the functionality of Java bytecodes is
achieved through µprogramming. In particular, each Java
bytecode supported by the SCore is realized through a
corresponding µcode implementation. Furthermore, native
methods used in the JVM and supported by the SCore are
also implemented in µcode.

1.2 Contribution
The Paradigm System provides a unique environment for

exploring µcode optimization through a mixture of manual
activities such as restructuring high-level µprograms and
automated activities such as the compaction of low-level
µcode performed by the Paradigm compiler.

This article will discuss the following aspects of the
Paradigm System that facilitate µcode analysis and opti-
mization.

• extensive analysis – The Paradigm compiler produces a
variety of artifacts (heat maps, graphs, tables) providing
developers with insight into the allocation of registers
that occur during compilation as well as detailed esti-
mates of time/space trade-offs associated with calling
versus in-lining methods.

• user defined optimizations – Paradigm developers can
affect compilation in three important ways: (1) through
in-lining directives, which are source-code level di-
rectives instructing the compiler to inline particular
methods, (2) through optimizing transformations, which
are transformation rules that developers can add to
the compiler itself in order to perform specific opti-
mizations during compilation, and (3) through timing
constraints, which are used to guide the compaction of
µcode instructions.

The remainder of this article is structured as follows:
Section 2 reviews some the basic concepts and terminology
of microcoding. Section 3 overviews related work. Section
4 discusses analysis artifacts produced by the Paradigm
compiler. Section 5 overviews user-defined optimization
rules that can be added to the Paradigm compiler. Section
6 describes the declarative language used by Paradigm to
specify parallel capabilities of a target machine, and Section
7 concludes.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

10 Int'l Conf. Embedded Systems and Applications | ESA'14 |

2. The Basics of Micro-programming
The purpose of µprogramming is to orchestrate the be-

havior of resources in a CPU. The basic concept was
developed by Maurice Wilkes [3] in 1951 who also
coined the term micro-programming. Microprogramming
(µprogramming) provides what amounts to a software-based
alternative to the hardware-based logic boxes whose design
was (and is) considered to be a bit of a black art[4].

A µprogram is a specification of how the resources within
a CPU are to be controlled. µprograms can be expressed at
various levels of abstraction: High-level µprograms strive to
facilitate human comprehension, and can have syntactic and
semantic similarities to high-level general-purpose program-
ming languages such as C and Java. In contrast, low-level
µprograms are suitable for execution on a processor. The
purpose of a µcompiler is to translate a high-level µprogram
into a low-level µprogram.

A low-level µprogram consists of a sequence of
µinstructions. A µinstruction consists of a set of µoperations
each of which specify the control of a fundamental resource
within the processor. Typical examples of µoperations in-
clude:

• the transfer of data from memory to a register
• elementary operations such as shift, load, and clear

performed on data residing a register
• properly updating the internal registers of the control

unit in order to enable a jump

A µoperation consists of a set of fields. Fields are made
up of bits whose binary values correspond to control lines.
For example, a field consisting of k bits can be used to
denote 2k combinations of control lines. A special case
arises when k = 1 for all fields. µinstructions constructed
exclusively from µoperations having 1-bit fields are referred
to as horizontal µinstructions. Horizontal µinstructions are
long, but allow for the maximal expression of parallelism.
In contrast, the signals denoted by fields for which k >
1 are encoded, and µinstructions made up of such fields
are referred to as vertical µinstructions. A benefit of such
encoding is that the bit-width of µinstructions is significantly
reduced. However, the parallelism which can be expressed
through vertical µinstructions is limited and combinatory
logic is needed to decode field values.

Orthogonal to the vertical/horizontal nature of a
µinstruction is the architectural notion of how many
µoperations a µinstruction can hold. If only a “few”
µoperations can be placed into a µinstruction the machine
has a vertical architecture; otherwise it has a horizontal
architecture[5][6].

For architectures that support concurrent execution of
µoperations, be they vertical architectures or horizontal
architectures, the scheduling of µoperations presents an area
of optimization. In this context, the goal of optimization
is to produce a low-level µprogram having a minimal or

near-minimal number or µinstructions. For this form of
optimization, referred to as µcode compaction, achieving
optimal results has been shown to be NP-complete[7]. There
are two types of compaction: (1) local compaction which
focuses on restructuring the µoperations within straight-line
µcode(SLM) – also known as basic blocks, and (2) global
compaction whose focus spans multiple SLMs.

3. Related Work
Research into the design of high-level µprogramming

languages and µcompilers predominantly took place during
the 1970’s and early 1980’s. A number of papers have
been published on the topic of µcode optimization [8], [9],
[10], [5]. Agerwala [11] has written a survey on µcode
optimization. A central issue in the type of optimization
discussed in the survey is the reduction of the size of the
control memory needed to hold a µprogram implementing
a given function. Here, the control memory is modeled as
a two-dimensional array (W × B) where W denotes the
number of words (i.e., rows) and B denotes the number
of bits (i.e., columns) in the control memory respectively. A
primary goal of optimization is to reduce the control memory
along either of its dimensions.

In [11], optimization strategies are categorized as being
either high-level or low-level. High-level optimizations are
based on dataflow analysis of the source-code and strive to
discover parallelism inherent in the algorithm implementa-
tion. Optimizations possible at this level also include existing
(well-known) compiler optimization techniques. Roughly
stated, the result of high-level optimization is a sequence
of sets, called time frames, whose elements are µoperations.
This sequence of time frames is viewed as partitioning the
computation defined by the high-level (input) µprogram in
a manner that is maximally parallel irrespective of physical
limitations of the host machine. After such a partitioning
has been completed, low-level optimizations can be applied
to map the structure onto a host machine. These low-level
optimizations center on normalizing the existing partition
structure so that each set in the partition can be realized by
exactly one horizontal µinstruction.

SIMPL (Single Identity Microprogramming Language)
[12] is a high-level (machine dependent) µprogramming
language developed in the early 70’s having an ALGOL-
like syntax. During SIMPL compilation, a high-level se-
quential program undergoes sophisticated analysis in order
to produce a highly optimized low-level horizontal program.
SIMPL optimization is based heavily on the single identity
principle which states that a (particular) definition for a
variable holds from the point it is assigned up to the point
where it is reassigned. The single identity principle forms the
basis for partitioning a sequence of statements into subblocks
each of which constitute an independent set of µoperations.
This decomposition represents a key first step in solving the
global optimization problem.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 11

Though there were a number of µcode language and
compiler development efforts underway at the time, SIMPL
was considered to be the first high-level µprogramming
language in which both compilation and optimization were
performed automatically. A SIMPL compiler has been de-
veloped targeting the Tucker-Flynn dynamic microprocessor
[13].

Micro-C [14] is a high-level machine-independent
µprogramming language compatible with C. A Micro-C
µprogram can be compiled by a special compiler based
on the Portable C Compiler. The output produced by this
compiler is vertical (i.e., unoptimized) symbolic µcode.
This intermediate representation can then be optimized
by a “straight-line” packer which translates sequences of
µoperations into horizontal µinstructions. An assembler is
then used to translate the result into executable low-level
µcode.

In [15], a language is presented in which high-level
µprograms are composed of declaration statements and
command statements. The compiler for this language con-
sists of two phases: In the first phase of compilation, the
input µprogram is parsed, analyzed, and an unoptimized
sequence of µinstructions is produced. At this stage, each
µ-instruction performs exactly one elementary operation
(i.e., a µoperation). The second phase of compilation is an
optimization phase in which a number of tables contain-
ing machine-dependent information (e.g., parallel capabil-
ities of the hardware) are employed in order to compact
µinstructions taking full advantage of the parallel capabili-
ties of the hardware.

In [16], an approach is presented where machine-
independent high-level µcode optimization is performed by
the software component of a µcode compiler and low-level
machine-dependent optimization is performed by hardware
residing on the host machine (i.e., the machine on which
the µcode will be executed). In this context, the goal of
a hardware microcode optimizer(HMO) is to condense a
sequence of µinstructions (i.e., where each µinstruction con-
tains only one µoperation) into a functionally equivalent se-
quence of µinstructions taking full advantage of the parallel
capabilities of the host machine. At a higher-level, optimiza-
tion strategies are divided into two distinct categories: The
local optimization category is performed by the hardware-
based component of the compiler and focuses on the serial
combination (i.e., compaction) of µinstructions. The global
optimization category is performed by the software-based
component of the compiler and focuses on the commuta-
tive reordering µinstruction sequences (driven by dataflow
analysis) in order to more fully exploit parallelism.

4. Analysis
In addition to designing well-structured high-level

µprograms, developers often need to pay close attention to
the consumption of resources entailed by their design. For

example, how many internal registers are needed by the com-
piler to compile a given high-level µprogram? What is the
size, in terms of the number of µinstructions, of the resulting
low-level µprogram produced by the compiler? And, how
many µinstructions are executed when the program is run?

The Paradigm compiler produces three artifacts to assist
developers in their optimization-oriented analysis efforts: (1)
views, (2) heat maps, and (3) estimation tables.

4.1 Views
Paradigm provides a notation, called a view, for spec-

ifying subsets of methods. From the specification of such
subsets, views can be constructed. In particular, a view is
an acyclic directed graph whose nodes denote methods and
whose labeled edges denote the number of internal registers
allocated by the compiler relative to specific nodes. For
example, consider the graph below consisting of two nodes,
labeled f and g, connected by an edge labeled 12.�� ��f 12−−−−−−−−→

�� ��g

This graph indicates that (1) the method g is called in the
body of f , and (2) at the point of the call to g, the compiler
has allocated 12 internal registers local to the context of f .

A high-level µprogram may have multiple views defined
for it, each of which will be output to a correspondingly
named file. Such files are output in a “dot format” and can
be viewed using Graphviz. Figure 1, shows an example of a
view generated by the Paradigm compiler for a µprogram
produced for a hypothetical machine.

4.2 Heat Maps
Heat maps are another form of feedback produced by

the Paradigm compiler. Specifically, the Paradigm compiler
will output twelve attributes to a file in a comma-separated
value format. Attributes range from method arity, method
size, reference_frequency, inlined - called size, to (inlined -
called size) * reference_frequency. Figure 2 shows a heat
map for a hypothetical machine. In this heat map, the
first grouping (in grey) is by method type (e.g., macro,
subroutine, operator, operation, condition, interface). The
second grouping (also in grey) is the difference between the
in-lined size and the called size – this includes all overhead
associated with making a method call. The size of squares
in the heat map represents the called size, and the color
indicates reference frequency with red denoting the most
frequently referenced methods and blue denoting the least
frequently referenced methods.

4.3 Efficiency Estimator
In order to meet resource constraints, it may be necessary

for developers to optimize their high-level µprogram. To fa-
cilitate optimization, Paradigm provides high-level language
directives that can be used to instruct the compiler to in-line
various method declarations.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

12 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Fig. 1: A view showing internal register allocations performed by the compiler.

Fig. 2: Heat map of µcode for a hypothetical machine.

Method in-lining represents a time/space tradeoff, since
in-lining can cause the size of the low-level µcode to expand
dramatically. For example, suppose the body of a method
m consists of 100 lines of µcode. Further suppose that m
is called in 10 places in the µcode. If all 10 calls are in-
lined, then in-lining (without compression) will yield 1000
µinstructions. In contrast, suppose that a call to the method
m requires 20 lines of µcode. In this case, calling m 10
times will result in a total overhead of 200 lines of µcode.
Thus, an implementation in which m is called will contain
700 fewer lines of µcode(i.e., 200 lines of call overhead plus
100 lines for the method body). However, it should be noted
that in-lined methods always execute faster than their called
counterparts since there is no call overhead associated with
their execution.

The overhead associated with a method call is significant.
Internal registers must be allocated for the input parameters.
Instructions must be generated by the compiler to move
actual parameters to the internal registers corresponding to

formal input parameters of the method. A call instruction
must be generated by the compiler to transfer execution
to the method body, and a return must be executed upon
completion of the method body. Furthermore, moves, calls,
and returns do not lend themselves to compression. In other
words, only one such µoperation will fit into a µinstruction.
Thus, going back to our previous example, if the execution
of each µinstruction takes 1 unit of time, then executing the
body of m via a call will take 120 units of time.

As the body of a method gets smaller it gradually becomes
more attractive to in-line a method. Eventually, a crossover
point is reached where calling a method consumes more time
and more space than simply in-lining a method. It should
be noted that, from the point of view of development, the
method is a mechanism for abstracting functionality. Thus,
a best-practices approach to development would encourage
the use of methods as needed to give clarity to an imple-
mentation.

The Paradigm compiler, provides an estimation of the
effects of method call versus method in-lining. In particular,
two sorted tables are produced: (1) a static call-frequency
estimation table, and (2) an execution path estimation table.
Examples describing the information in both of these tables
are described in the sections that follow.

4.3.1 Example: Static Call-Frequency Estimation

Suppose method m1 is an in-line method candidate having
3 formal input parameters. Furthermore, let us assume that a
static inspection of the Paradigm application reveals that m1
is called from 10 syntactically distinct locations. Similarly,
suppose method m2 is inline candidate method having 2
formal input parameters. Furthermore, let us assume that a
static inspection of the Paradigm application reveals that
m2 is called from 20 syntactically distinct locations.

Static Call-Frequency Estimation
Method Move Instruction Overhead Static Overhead Sum
m1 3 ∗ 10 = 30 (3 + 2) ∗ 10 = 50
m2 2 ∗ 20 = 40 (2 + 2) ∗ 20 = 80

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 13

It should be noted that static-call-estimation provides a
fairly course grained and basic estimation of the overhead
associated with calling methods. In particular, static call
estimation does not take into account execution paths which
can have multiplicative effect on the number of times a
method can actually be called during runtime. For example,
suppose method m1 is called twice in the body of method
m2, and suppose method m2 is called 5 times within the
µcode. Note that in this example, there are only 2 lexical
occurrences of m1. However, m1 will be called a total of
5 ∗ 2 = 10 times during the execution of the application.
We call this second form of estimation execution path
estimation. It should be noted that, since it does not account
for loop iterations, execution path estimation is also only
an estimate, albeit a more accurate one than static call
estimation.

4.3.2 Example: Execution Path Estimation

Suppose methods m1, m2 and m3 are respectively called
5, 6, and 4 times from the µcode as shown in Figure 3. Also
note, that m1 is called 2 times from m2 and m2 is called 3
times from m3.

The execution path estimation table shows that the total
calls for m1 is 41. This value corresponds to the sum: 1 ∗
5 + 1 ∗ 6 ∗ 2 + 1 ∗ 4 ∗ 3 ∗ 2 = 41. More specifically, m1 is
called 5 times from the µcode. This accounts for the 1 ∗ 5
term. Next, m1 is called 2 times from m2, which itself is
called 6 times from the µcode. This accounts for the term
1 ∗ 6 ∗ 2. And finally, m2 is called 3 times from m3 which
is called 4 times from the µcode. This accounts for the term
1 ∗ 4 ∗ 3 ∗ 2.

In this example, the in-lined size for m1 is 0. This is
because the body of m1 is empty (after the removal of
the return instruction). The called size for m1 is 83 and
corresponds to 41 calls plus 41 returns plus the size of the
declaration of m1 (which is 1).

The in-lined time will always be equal to the in-lined size.
The assumption here is that each row in the µcode takes 1
unit of time to execute, and that additional compression of
method bodies is not possible.

The called time for m1 is 82. This corresponds to the
total calls to m1 times the sum of the number of moves
associated with calling m1 plus the number of microcode
rows associated with the call-to and return-from m1.

And finally, the speed up is 100%. This number is
computed using the following formula:

100.0−
(inlined_execution_time/called_execution_time) ∗

100.00

Although it is not highlighted by the example given, it
should be noted that the execution path estimator accounts
for the mandatory inlining of all macros, interfaces and

Size
Method Total Calls Inlined Called
m1 41 0 83
m2 18 36 39
m3 4 12 12

Time
Method Inlined Called % Speedup
m1 0 82 100%
m2 36 72 50.0%
m3 12 20 40.0%

Table 1: Execution path estimation.

interface call(LabelType toLabel) { aux_call(); }
interface return() { aux_return(); }

subroutine m1() returns void { return(); }
subroutine m2() returns void {

m1(); m1(); return();
}

subroutine m3() returns void {
m2(); m2(); m2(); return();

}

microcode {
m1(); m1(); m1(); m1(); m1();
m2(); m2(); m2(); m2(); m2(); m2();
m3(); m3(); m3(); m3();

}

Fig. 3: Example used for execution path estimation

conditions1. This is important because such mandatory in-
lining can result in dramatic changes in the final size of a
subroutine or operator. Also note that the size of the call and
return interfaces also take inlining into account.

5. User-defined Optimization Rules
The Paradigm compiler is transformation-based and im-

plemented in the TL System[17]. During compilation, a
Paradigm program is passed through a number of canonical
forms, each of which can be output in human-readable form.
The Paradigmcompiler is extensible in the sense that it sup-
ports the incorporation of user-defined transformation rules
into the compilation process. Such rules provide domain
experts the opportunity to perform custom optimizations
specific to a particular architecture or µcode design. Figure 4
is an example of a µcode fragment, which can be output by
the compiler, consisting of a sequence of µoperation method
calls separated by labels denoting jump destinations (e.g.,
starting positions of methods whose bodies have not been
in-lined).

By inspection of the sequence of operations we see that a
writeReg operation is immediately followed by a copyReg
operation. Suppose that by combining knowledge of the

1The language Paradigm has five different kinds of methods. The
rational behind this is beyond the scope of this article.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

14 Int'l Conf. Embedded Systems and Applications | ESA'14 |

label_f: ...

writeReg(T1Type.SOME, AType.$temp_reg 3);

copyReg(AType.$temp_reg 3 ,AType.$reg 2);

Fig. 4: A µcode fragment prior to custom optimization.

hardware architecture together with our understanding of
the semantics of the implementations of the writeReg and
copyReg operations we conclude that the transformation
shown in Figure 5 is correctness-preserving. Furthermore,
suppose that additional analysis leads us to conclude that
such a transformation would be correctness-preserving in
all contexts. That is, regardless of how it gets generated
by the compiler, whenever a “write” to a temp register X
is followed by a “copy” from that temp register X to the
register Y , then this pair of operations can be replaced by a
single operation that will directly “write” to the register Y .

Given that these conditions hold, we would like to expand
the functionality of the compiler to include such an opti-
mizing transformation. Paradigm supports such extension
of its compiler through a special transformation module in
which domain experts can place custom-designed program
transformations. There are no restrictions on the nature
of the transformations that can be created. In particular,
optimizing transformations can be developed utilizing the
full capabilities of the TL system.

writeReg(T1Type.SOME, AType.$temp_reg 3);

copyReg(AType.$temp_reg 3 ,AType.$reg 2);

→

writeReg(T1Type.SOME,AType.$reg 2);

Fig. 5: A custom program transformation.

6. Paradigm’s Timing Constraint Lan-
guage
Paradigm provides a declarative language, called TCL,

for specifying the timing constraints of a targeted hard-
ware architecture. Timing constraints form the basis of
a local compaction algorithm focusing on the compres-
sion of straight-line µcode (SLM). Timing-constraint based
optimization does not involve commutative reordering of
µoperations, instead it focuses on maximizing the com-
pression of adjacent (i.e., associative) µinstructions. It is
worth mentioning that in the compilation stage where timing-
constraint based optimization occurs, the µprogram being
compiled is in a form where all non-sequential control flows
are expressed in terms of jumps to labels. In this context, an

SLM is then simply the sequence of µinstructions occurring
between consecutive labels.

Conceptually, a timing constraint is a pair of logical
formulas that, if satisfied by adjacent µinstructions, prevent
them from being compressed into a single µinstruction.
Compression is also (implicitly) prohibited in cases when
corresponding fields, in adjacent µinstructions, contain dis-
tinct (i.e., unequal) non-default signals.

An abstract example of the syntax of a timing constraint
is shown in Figure 6. In the example, F1 and F2 denote the
pair of logical formulas of the timing constraint named TCk.

The evaluation of TCk with respect to a pair of adjacent
µinstructions Ij and Ij+1 proceeds as follows: If Ij sat-
isfies F1 and Ij+1 satisfies F2, then we say that the the
µinstructions Ij and Ij+1 satisfy the timing constraint TCk,
in which case the compression of Ij and Ij+1 is prohibited
by TCk; otherwise compression is not prohibited by TCk.

constraint TCk {

first_row: F1;
second_row: F2;

}

Fig. 6: An abstract example of a timing constraint.

TCL allows µcode compression to be restricted by a
set of timing constraints STC = {TC1, . . . ,TCm}. The
compression of any pair of µinstructions Ij and Ij+1 is
prohibited if ∃TCk ∈ STC such that TCk is satisfied by the
µinstructions Ij and Ij+1.

A more detailed look at timing constraints reveals that
they are logical formulas, in conjunctive normal form, whose
elements are equality/inequality matching-based compar-
isons involving fields. An abstract example of a disjunction
constraining the fields f1 and f2 is shown below.

field.f1 = field1Type.item1 | field.f2 != field2Type.item2

Within an element, there are three kinds of items that
can be associated with a fieldtype: (1) a symbolic name
denoting a constant value belonging to a type declaration, (2)
a subscripted variable which can match with field constants
(occurring in the µinstructions in which evaluation is taking
place), and (3) the keyword DEFAULT/NONDEFAULT.
The scope of a subscripted variable spans an entire con-
straint (both formulas) and can therefore be used to express
equality-based properties between fields within a constraint.

The Paradigm compiler provides feedback summarizing
the impact of the optimizations it performs. Figure 2 shows
an example of an optimization summary.

7. Conclusion
In the design of a high-level architecture-independent

µprogramming language, a major issue that must be con-
fronted centers on how architecture-specific information can

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 15

Optimization Metrics:
Standard Compiler Optimizations.
Total number of temp register optimizations = 0
Number of nop() statements removed = 0

Custom Optimizations.
Total number of row reductions due to custom optimizations = 0

Constraint-based Optimizations.
Number of row mergings prevented due to timing constraints = 1291
Number of duplicate row mergings = 500
Number of conflict-free row mergings = 1000
Total number of constraint-based row mergings = 1500

Number of rows before any optimization = 2800
Number of rows after all optimization = 1300
Size of optimized file as a percentage of the unoptimized file = 46.43%
The size of the unoptimized file was reduced by = 53.57%

Table 2: Optimization feedback provided by the Paradigm
compiler.

be specified, as well as how the compiler for the language
can utilize this information to produce efficient low-level
µcode targeting a host machine. Addressing this issue,
Paradigm provides a timing constraint language (TCL)
for specifying the parallel capabilities of a host machine.
Furthermore, the Paradigm compiler also provides exten-
sive feedback on the nature of its compilation, including
pretty-printed representations of the program being compiled
during various stages of compilation, register usage, call
frequency, and comparisons between overheads associated
with method call versus method in-lining. This informa-
tion can be used to guide time/space optimizations involv-
ing design level decisions such as method in-lining and
can even guide the development of user-defined rule-based
application-specific optimizations that can be folded into the
compilation process itself.

References
[1] J. A. McCoy, “An Embedded System For Safe, Secure And Reliable

Execution of High Consequence Software,” in Proceedings of the
5th IEEE International Symposium on High Assurance Systems
Engineering (HASE). IEEE, 2000, pp. 107–114.

[2] V. L. Winter, H. Siy, J. McCoy, B. Farkas, G. Wickstrom, D. Dem-
ming, J. Perry, and S. Srinivasan, “Incorporating Standard Java
Libraries into the Design of Embedded Systems,” in Java in Academia
and Research, K. Cai, Ed. iConcept Press, 2011.

[3] M. V. Wilkes, “The early british computer conferences,” M. Campbell-
Kelly, Ed. Cambridge, MA, USA: MIT Press, 1989, ch. The Best
Way to Design an Automatic Calculating Machine, pp. 182–184.
[Online]. Available: http://dl.acm.org/citation.cfm?id=94938.94976

[4] R. C. Haavind, Jr, “The many faces of microprogramming: What
started out as a convenience for systems designers may eventually
bring computers much better tailored to users’ needs,” SIGMICRO
Newsl., vol. 2, no. 4, pp. 12–16, Jan. 1972. [Online]. Available:
http://doi.acm.org/10.1145/1316527.1316529

[5] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett,
“Local microcode compaction techniques,” ACM Comput. Surv.,
vol. 12, no. 3, pp. 261–294, Sept. 1980. [Online]. Available:
http://doi.acm.org/10.1145/356819.356822

[6] S. Dasgupta, “The organization of microprogram stores,” ACM
Comput. Surv., vol. 11, no. 1, pp. 39–65, Mar. 1979. [Online].
Available: http://doi.acm.org/10.1145/356757.356761

[7] S. S. Yau, A. C. Schowe, and M. Tsuchiya, “On storage optimization
of horizontal microprograms,” in Conference Record of the 7th
Annual Workshop on Microprogramming, ser. MICRO 7. New
York, NY, USA: ACM, 1974, pp. 98–106. [Online]. Available:
http://doi.acm.org/10.1145/800118.803848

[8] J. Fisher, “Trace Scheduling: A Technique for Global Microcode
Compaction,” Computers, IEEE Transactions on, vol. C-30, no. 7,
pp. 478–490, July 1981.

[9] S. Davidson, D. Landskov, B. Shriver, and P. Mallett, “Some Ex-
periments in Local Microcode Compaction for Horizontal Machines,”
Computers, IEEE Transactions on, vol. C-30, no. 7, pp. 460–477, July
1981.

[10] P. Marwedel, “A Retargetable Compiler for a High-Level Micropro-
gramming Language,” SIGMICRO Newsl., vol. 15, no. 4, pp. 267–274,
1984.

[11] T. Agerwala, “Microprogram Optimization: A Survey,” Computers,
IEEE Transactions on, vol. C-25, no. 10, pp. 962–973, Oct. 1976.

[12] C. Ramamoorthy and M. Tsuchiya, “A High-Level Language for
Horizontal Microprogramming,” Computers, IEEE Transactions on,
vol. C-23, no. 8, pp. 791–801, Aug. 1974.

[13] A. B. Tucker and M. J. Flynn, “Dynamic microprogramming:
Processor organization and programming,” Commun. ACM, vol. 14,
no. 4, pp. 240–250, Apr. 1971. [Online]. Available: http://doi.acm.
org/10.1145/362575.362580

[14] W. C. Hopkins, M. J. Horton, and C. S. Arnold, “Target-Independent
High-Level Microprogramming,” in MICRO 18: Proceedings of the
18th annual workshop on Microprogramming. New York, NY, USA:
ACM, 1985, pp. 137–144.

[15] A. K. Tirrell, “A Study of the Application of Compiler Techniques
to the Generation of Micro-code,” in Proceedings of the meeting on
SIGPLAN/SIGMICRO interface. New York, NY, USA: ACM, 1973,
pp. 67–85.

[16] J. O. Bondi and P. D. Stigall, “Designing HMO, an Integrated
Hardware Microcode Optimizer,” in MICRO 7: Conference record
of the 7th annual workshop on Microprogramming. New York, NY,
USA: ACM, 1974, pp. 268–276.

[17] V. L. Winter, “Stack-based Strategic Control,” in Preproceedings of the
Seventh International Workshop on Reduction Strategies in Rewriting
and Programming, June 2007.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

16 Int'l Conf. Embedded Systems and Applications | ESA'14 |

http://dl.acm.org/citation.cfm?id=94938.94976
http://doi.acm.org/10.1145/1316527.1316529
http://doi.acm.org/10.1145/356819.356822
http://doi.acm.org/10.1145/356757.356761
http://doi.acm.org/10.1145/800118.803848
http://doi.acm.org/10.1145/362575.362580
http://doi.acm.org/10.1145/362575.362580

Rift Runner – Engineering Software for a Remotely Controlled Rover

Erik Willis, Sean Saunders, Nathan Cate, Jean-Paul Muyshondt and Devon M. Simmonds,

University of North Carolina Wilmington, 601 S. College Rd.

601 South College Road, Wilmington, North Carolina, 28403

{ emw8872, Sean_saunders@outlook.com, nathanc_ii@yahoo.com,

 jm5904, simmondsd }@uncw.edu

Abstract

The Runner is a project based on the first-person

piloting of a remotely controlled rover. The rover is

controlled by an Oculus Rift, a 3d immersive headset

that is designed to bring users into a deep experience

of the piloting and manipulation of the vehicle. Users

have the ability to upload and share their experiences

through the team’s web server. This paper describes a

model-based approach to the project design along

with results and lessons learned.

Keywords: software engineering, model driven

engineering, embedded software, UML, Remotely

controlled vehicle.

1. Introduction

There is an entire world of radio-controlled

(RC) vehicle enthusiasts that spend exorbitant sums of

time and money on this exciting hobby. Entry-level

cars start around $120, planes from $250 - $300, but

some planes can cost as much as $20,000[1]. Until

recently, piloting an RC vehicle has been a relatively

static experience – stand in a field and watch the

vehicle from a distance. As technology has progressed

the dream of piloting an RC vehicle from a first-person

perspective has become a reality. While the technology

currently exists to pilot RC vehicles through video

equipment relaying an image to a monitor, the military

uses such technology to pilot drones and the market

has been ripe for an affordable, first-person, 3-D

version. As of 2009 there were more than 5300 aerial

drones and 12,000 ground based drones [2]. The MQ-

1 Predator Drone costs around $4 million per unit [3],

and the MQ-9 Reaper Drone costs upwards of $12

million per unit [3]. Enter the Oculus Rift.

The Oculus Rift is a 3-D, immersive, virtual

reality (VR) headset that is currently being coupled

with video games to present a completely unique and

affordable user experience. The goal of this project is

to combine a video camera equipped RC vehicle with

the Oculus Rift to create an exhilarating piloting

experience. While most of the drone technology is

based around military uses, there are also non-military

applications. The Miami-Dade County police

department, for example, tested an aerial drone in 2011

with the aim of using the drone for aerial

reconnaissance and suspect trailing [4]. Another drone

that is non-military is the Curiosity Rover. On August

6, 2012 the Mars rover Curiosity landed on the red

planet. Curiosity is scheduled to spend two years

exploring Mars [5]. Our project is not intended for

such serious endeavors, but simply to create

entertainment value.

The Rift Runner is a project designed to

enable the first-person piloting of a remotely controlled

rover. Our main objective was to create a fun, usable,

affordable piloting experience. The rover is controlled

by an Oculus Rift, a 3d immersive headset that is

designed to bring users into a deep piloting and

manipulating experience of the vehicle. Vehicular

control is achieved through the use of a gamepad while

the Oculus Rift controls camera motion through the

users head movements.

Our biggest initial concern was the extent to

which we could successfully marry our various

hardware solutions into a realizable platform. During

initial research we discovered that video feed latency

has been a problem for similar endeavors. As such we

designed our hardware solution to minimize this

latency and create a pleasant user experience. To go

along with the vehicle we also created a web site that

provides a view of the video feed and enables image

captures and video segments to be saved. A database

was also implemented to track user profiles and links

to the image and video storage.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 17

2. Background

2.1 Oculus Rift

The Oculus Rift is a virtual reality head

mounted display (HMD) currently in development by

Oculus VR. The device began when Palmer Luckey, a

homeschooled tinkerer, decided to build his own

virtual reality headset [6]. The project was originally

debuted at the Electronic Entertainment Expo in 2012.

John Carmack, cofounder of id Software and creator of

the DOOM series, introduced the first prototype of the

Oculus HMD [7]. Following the initial reveal at the E3

in June 2012 the company announced a Kickstarter

campaign to raise funds to continue development of the

Oculus Rift. After only four hours the company had

secured its initial goal of $250,000 and within thirty-

six hours had raised more than $1 million [8]. The

Kickstarter campaign would later end having raised

$2,437,429 [9]. This funding was used to finance a

developer’s kit of the Oculus Rift. This developer’s kit

gave people early access to a reduced quality version

of the final Oculus Rift but allowed game designers

and other developers to begin creating and

experimenting with virtual reality environments much

sooner [10].

 The Oculus Rift, or OR, simulates a purely

visual experience for the user in their chosen

environment. As a binocular HMD it is worn on the

users head and features an optic display in front of

each eye. The HMD fully encompasses the user’s field

of view ensuring as immersive an experience as

possible. The OR uses a series of 3-axis gyroscopes,

magnetometers, and accelerometers to make head

orientation tracking nearly absolute in relation to the

Earth. The gyroscopes track the angle of motion as the

user moves their head; the accelerometers measure

how quickly the HMD is moving; the magnetometers

measure the gravitational pull of the Earth allowing the

Oculus Rift to keep track of its own orientation with

respect to “Up” and “Down” [11]. This head motion

tracking is translated to the screen inside the HMD;

when the user turns their head to the left the view turns

with them. This feature combined with a 90 degree

field of view creates a visual experience that mimics

real life. Using the Oculus Rift is so immersive and

fluid that many users have reported having motion

sickness after less than a minute of use. This is caused

by the mind thinking the body is moving but in reality

the body remains stationary. This issue has been

addressed by the company in a recent press release by

Oculus VR CEO Brendon Iribe in which he states “It is

going to work…It’s gonna work for everybody.” A

reduction in screen shaking and latency has improved

this aspect of the experience for users [12]. These

updates won’t be seen in the Oculus Rift until the

release of the second Developer’s kit. The currently

available developer’s kit still suffers from these motion

sickness inducing problems.

2.2 Virtual Reality

Virtual reality is a computer-simulated setting

that can generate an artificial physical presence either

in the real world or abstract environments. Virtual

reality can trace its lineage back to the 1500’s when

artists would create 360 panoramic scenes that would

take up entire rooms. An example of this is the Sala

delle Prospettive, a work by Italian painter Baldassare

Peruzzi [13]. It was not until 1966 that the world saw

its first glimpse of virtual reality when the T-27 Space

Flight Simulator was created for the U.S. Air Force

Aerospace program. The simulator was designed to

train pilots for space research missions [14]. In 1991

MIT graduate and NASA scientist Antonio Medina

developed a system to help direct Mars robots from

Earth. This system is an extension of virtual reality

[15]. Until recently the technology for virtual reality

has been limited in quality or availability for the

general public. The Oculus Rift aims to change that.

3. Software Design

 Figure 1. (a) Rift Runner Rover, (b) Oculus Rift and

Controller

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

18 Int'l Conf. Embedded Systems and Applications | ESA'14 |

In this project, hardware architecture preceded

software architecture and consisted of the rover (Figure

1a), and the Oculus Rift and controller (Figure 1b). As

Figure 1a shows, the camera is mounted at the top and

front of the rover.

 Figure 2. Use Case Diagram

 The Rift Runner software was designed using

a Model-Driven approach [19-21]. The design includes

UML [22] use case diagram (See Figure 2), UML

activity diagrams (see Figure 3), an architectural

diagram (see Figure 3), and Class diagram (see Figure

4).

 The Use Case Diagram (Figure 2) illustrates

typical actor interaction with the Rift Runner software

and rover. Actors include the end User and the systems

administrator who has exclusive rights to add and

delete user profiles.

2.1. Architectural Design

 The physical architecture for this project

consisted of the tripartite configuration of (1) the rover

and Raspberry Pi, (2) the Oculus Rift and (3) the

computer running the software. The logical

architecture consisted of a client-Server model

centered around a single UDP server as depicted in

Figure 5. The UDP server exists on the Raspberry Pi

and is responsible for pushing all the data from the

main application to the correct hardware, as well as

feeding the image data from the camera to the main

application. The Raspberry Pi has limited

computability having only 512 Mb of RAM, therefore

all of the number crunching is done in the main

application and then fed to the Raspberry Pi through

the UDP link. UDP offers a fast connection, a

requirement to limit image lag in the OR, but has no

guarantee of message integrity. Since the application is

pulling information from the various input devices at a

rate of 50 times a second a few misplaced packets is

not mission critical.

 The UDP client class packetizes all data from

the main application before passing it to the UDP

server. The main benefit of this architecture is that with

our implementation there is a single link of

communication. All data passes from the main

application through the client to the server and from

there to the correct hardware. The fast data transport

enabled by this single, simple communication link

helps to keep the latency to a minimum. While the

simplicity of this link is a major asset, the fact that it is

solitary (with no viable alternative) is a weakness. If

this link is severed all control of the rover is lost and a

system reboot is required. This is the architectural

design around which this project will be based.

Figure 3. The initial activity diagram for the Rift
Runner web site.

The Activity Diagram shown in see Figure 2 illustrates

a high-level overview of user navigation options

through the Rift Runner web site. Figure 4 on the other

hand, illustrates rover control activities for the project.

The user manipulates rover movements through a

thumb stick and the UDP server is responsible for

receiving, unpacking and pushing data to the hardware

driver.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 19

Figure 4. Rover Control Activity Diagram

Fig. 5. Client-Server Architecture

2.2 Subsystem Descriptions

Rover Controls

The Rift Runner is controlled with the left thumb stick

of an XBox 360 controller. The controller feeds

floating-point decimals to the tank control class in the

main application. The floats represent the x, y position

of the controlling joystick within a finite,

predetermined space. The rover control class converts

these floats to integers that represent power and

direction.

The rover control class then sends

these conversions to the UDP

Client that packages them and

sends them to the UDP server on

the Raspberry Pi. The Pi sends the

data to the PWM that sends the data

to the motor driver where they

become power designations for the

individual treads that will send the

rover in any desired direction.

Camera Controls: Controller

While the main purpose of this

project is first person piloting

through the Oculus Rift, the Rift is

not necessary for first person

piloting. When piloting without the

Rift the right thumb stick of an

XBox 360 controller controls the movement of the

camera. The controller feeds floating-point decimals to

the camera control class in the main application. The

floats represent the x, y position of the controlling

joystick within a finite, predetermined space. The

camera control class converts these floats to integers

between 160 and 630, and 460 and 150. These values

represent the desired location of the camera within the

allowable movement spectrum. The values are then

passed to the servo controller on the rover and the

camera is moved to the desired position. The controller

also controls image and video capture. Image capture is

mapped to the left trigger, and video capture is mapped

to the right trigger. When the left trigger is pressed,

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

20 Int'l Conf. Embedded Systems and Applications | ESA'14 |

whatever frame is currently on the camera is captured

and pushed to the application, and from there the user

has the option to save the image to the database or

discard the image. For video capture the right trigger is

depressed to signal the beginning of the capture and

then depressed again to signal the end. The final

feature of the controller camera control is a zero

position button. In order to synch the Rift view and the

camera position a zero position is needed. This zero

position represents straight forward in regards to the

rover heading and level with the horizon. This position

is designated as 350, 350 within the servo space and

when the A button is pressed the camera resets itself to

this position and that is mapped to the current heading

on the Rift.

Camera Controls: Rift

The Oculus Rift controls the camera on the

rover with the motion of the user’s head. The OR

pushes floating-point decimals to the rift camera

control class in the main application. These floats

represent direction of the user’s gaze based on an x, y

location from the midpoint of the OR viewer. The rift

camera control class converts the floats to integers

between 160 and 630 on the x-axis and 460 and 150 on

the y-axis. These numbers represent the minimum and

maximum allowable positions of camera movement.

3. Discussion and Lessons Learned

Over the course of the development cycle for

the Rift Runner there were many factors that created

limitations for the realization of the project goal. When

everything is taken into consideration most of those

can be placed under one of two headings: time or

expertise. While each member of the group had

individual expertise in areas that pertain indirectly to

the project such as web development and

programming, none of the team members had ever

used those skills to produce anything like our final

product. C++ was a new language to the team and we

had to develop expertise in using the 3d printer,

circuitry, and power management among others.

 While the gathering of expertise made for a

slow start, the hard deadline at the end of the semester

made that slow start stressful. As we are all students,

even mentioning time as a limiting factor seems like a

“cop out”. It is largely a limitation that we placed on

ourselves, but in an environment devoted solely to

development, our use of time cwould have been more

focused. The Mythical Man-Monthdefines average

output at 10 line of code per day. That definition

implies a typical professional working environment,

i.e. 8 hour workdays, of which 5 every week (at least)

are applied to the project. This schedule does not

necessarily apply to all projects. In fact not once was

there a day that did not involved the development of

this project. The fact that we finished our project, with

complete functionality, under these conditions makes

us proud.

 The main application and the Rift camera

control class were developed by two different team

members. They discussed what they were trying to

achieve, made sure they were on the same page and

built their code. One developer worked in Netbeans

and the other used Microsoft Visual Studio, both

applications were written in C++. When it came time

to marry the code and test their compatibility we had

little if any problems. It turns out that while Netbeans

and Visual Studio are both IDE’s that can be used to

develop C++ applications they have slightly different

library usage. That difference is enough to make

applications native to one incompatible with the other.

The Netbeans developer switched his IDE and the

problem was quickly corrected.

Motors and motor drivers are necessary

demons if one wishes to move some vehicle

electronically. The motor driver that we chose to use

has two inputs for power, a logic circuit and a power

circuit. If the power circuit receives no charge then the

motor will simply receive no power and will not move

a tread. On the other hand, if the logic circuit receives

no power the circuit board will overload and be

destroyed. Fortunately we discovered this in research,

not firsthand. It is imperative that we remember and

heed this.

 The last important piece of functionality that

we developed was the video streaming. For early

testing of the UDP connection a patchwork pipeline of

tools was used to stream video. Once we tried to use

this pipeline as our primary method we discovered that

too much latency was present to make this a viable

solution. Background research into video streaming

revealed two likely candidates as fixes to our woes:

OpenCV and GStreamer. The first attempt for a

solution involved GStreamer, in retrospect it would

have been advantageous to use OpenCV for the first

attempt. GStreamer did not improve out latency issues.

Once the OpenCV library became the primary solution

focus latency improved and the project became closer

to a success. The biggest hurdle during this process

was cross platform compatibility, or lack thereof. The

Raspberry PI OS is Linux based and the application

was designed to run in a Windows environment,

OpenCV was the only library we found that allowed us

to easily implement this cross platform functionality.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 21

3.1 Lines of Code Comparison

Table II shows a summary of our predictions

for the number of lines of code for the software side of

our project. At the bottom of the table are estimates for

the number of man-months required to complete the

project as well as budgetary estimates. Our initial

estimates were very naïve.

3.1 Lines of Code Comparison

Section LOC

Initial

LOC

Design

LOC

Final

Main Application 300 300 565

Vehicle – Controller 50 315 390

Vehicle – Control Transmission 200 *165 *360

Camera – Rift Motion Tracking 10 60 90

Camera – Control Transmission
(Rift)

100 *165 *360

Camera - Control Transmission

(Controller)

100 *165 *360

Camera – Image/Video Capture 50 50 35

Web Site – Home Page with

Login/Logout/Register

200 200 150

Web Site – Image/Video Archive 100 100 755

Web Site – User Profile/Admin 250 250 50

Database – User Profiles 50 50 10

Database – Image/Video Link

Storage

50 50 10

Total: 1460 1540 2415

Duration: Requirements – 7 man-months
 Design – 8 man-months

 Final – 12 man-months

Cost: Requirements - $41,850

 Design - $47,300

 Final - $71,000

Table II. Lines of Code comparison for the three phases of

reporting.

Once we began working in the design phase of the

project we reevaluated our estimates and found we had

misjudged the number of lines of code, and by

extension the amount of time and money, needed. As

project completion came nearer it became clear just

how misinformed we were even after the second

estimations were calculated. Table II shows that the

completed project contains nearly 900 more lines of

code than we estimated during the Design phase. As a

result of this underestimation, we nearly doubled the

initial cost. Luckily this was an academic endeavor;

and as such the cost was primarily in creating more

work for ourselves.

4. Conclusion

 It was our main objective to create a fun, usable,

immersive piloting experience. We believe we realized

our dream. The software development for the control

aspects of the Rift Runner followed an iterative

paradigm and software testing was executed similarly.

While testing was more concerned with functionality it

would be incorrect to say that testing was entirely

black-box. As each class was built it was white-box

tested based on its internal features. Testing began with

the controller class to ensure that the output generated

was precise, and to make sure the transformations

produced the correct numbers required by the

hardware.

 The UPD client and server were next

developed and tested to ensure connectivity. This

process was repeated with every new addition to the

software.

The overall testing cycle was: develop, then

test, then debug, and then make sure it plays well

previously developed components and the hardware.

When we finally determined that development was

complete a thorough test of the entire system was

undertaken, and we were blown away with the great

results. There is an immense feeling of satisfaction

when everything works together well as was the case

here.

References

[1] Lewis, Shauna. "Age not a factor among radio-

controlled vehicle enthusiasts." Eagle, The (Bryan, TX)

14 July 2011: Newspaper Source Plus. Web. 3 Nov.

2013.

[2] Singer, P.W.. "AMERICA'S NEW KILLING

MACHINES; A ROBOTICS REVOLUTION IS

CHANGING THE WAY WE DO BATTLE. BUT

WILL THE 'UNMANNING' OF WAR DO US IN?."

Record, The (Kitchener/Cambridge/Waterloo, ON)

n.d.: Newspaper Source Plus. Web. 3 Nov. 2013.

[3] "Department of Defense Fiscal Year (FY) 2011

President's Budget Submission".

http://www.saffm.hq.af.mil. February 2010. pp. 4–118.

Retrieved 28 October 2013.

[4] Wallace, Kenyon. "Florida cops using drone with

cameras." Toronto Star (Canada) n.d.: Newspaper

Source Plus. Web. 3 Nov. 2013.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

22 Int'l Conf. Embedded Systems and Applications | ESA'14 |

http://www.saffm.hq.af.mil/shared/media/document/AFD-100128-072.pdf
http://www.saffm.hq.af.mil/shared/media/document/AFD-100128-072.pdf
http://www.saffm.hq.af.mil/

[5] Knapp, Alex. "Curiosity Successfully Lands On

Mars." Forbes.Com (2012): 10. Business Source

Complete. Web. 3 Nov. 2013.

[6] Luckey, Palmer. "Oculus Rift: Step Into the Game."

Kickstarter. N.p., 26 Sept. 2012. Web. 27 Oct. 2013.

http://www.kickstarter.com/projects/1523379957/oculu

s-rift-step-into-the-game/posts/316239

[7] Welsh, Oli. "John Carmack and the Virtual Reality

Dream." Eurogamer.net. EuroGamer, 7 June 2012.

Web. 27 Oct. 2013.

<http://www.eurogamer.net/articles/2012-06-07-john-

carmack-and-the-virtual-reality-dream>.

[8] Horsey, Julian. "Oculus Rift Virtual Reality

Headset." Geeky Gadgets. N.p., 27 Sept. 2012. Web.

27 Oct. 2013. <http://www.geeky-gadgets.com/oculus-

rift-virtual-reality-headset-developer-kits-now-

available-to-pre-order-video-27-09-2012/>.

[9] "Oculus Rift Virtual Reality Headset Gets

Kickstarter Cash." BBC News. BBC, 1 Aug. 2012.

Web. 27 Oct. 2013.

<http://www.bbc.co.uk/news/technology-19085967>.

[10] Lang, Ben. "Watch the QuakeCon Virtual Reality

Keynotes Here." Road to Virtual Reality. N.p., 5 Aug.

2012. Web. 27 Oct. 2013.

<http://www.roadtovr.com/watch-the-quakecon-

virtual-reality-keynotes-here/>.

 [11] Oculus Rift: Virtual Reality 2.0. By:

Mangalindan, J. P., Fortune, 00158259, 6/10/2013,

Vol. 167, Issue 8

[12] Thier, Dave. "CEO Promises Oculus Rift Won't

Make You Sick." Forbes. Forbes Magazine, 17 Oct.

2013. Web. 27 Oct. 2013.

<http://www.forbes.com/sites/davidthier/2013/10/17/ce

o-promises-oculus-rift-wont-make-you-sick/>.

[13] "Virtual Museum, Searchable Database of

European Fine Arts (1000-1900)." Web Gallery of Art.

N.p., n.d. Web. 27 Oct. 2013.

<http://www.wga.hu/frames-

e.html?/html/p/peruzzi/farnesi3.html>.

[14] Allen, C. H., A. B. Doty, and E. C. .. Mccormick.

"Space Flight Simulator for U.S. Air Force Aerospace

Research Pilot School." Journal of Spacecraft and

Rockets 3.6 (1966): 793-99. Print.

[15] Gonzales, D., David R. Criswell, and Ewald Heer.

Automation and Robotics for the Space Exploration

Initiative: Results from Project Outreach. Santa

Monica, CA: Rand, 1991. Print.

[16] “Software Engineer: Median Salary”. http:

<//www.payscale.com/

research/US/Job=Software_Engineer_/_Developer_/_P

rogrammer/Salary>. 2013. Retrieved 28 October 2013.

[17] Brooks, Frederick P. Jr. (09 1983). "The Mythical

Man-Month". PC Magazine 2 (4): 210–240.

[18] Danielsson, Torkel. “Oculus FPV – First Flight.”

http: < //intuitiveaerial.com/ home/2013/7/14/oculus-

fpv-first-flight>. July 2013. Retrieved 3 December

2013.

[19] R. France and B. Rumpe. Model-driven

Development of complex software: A research

roadmap. In FOSE '07: 2007 Future of Software

Engineering, pages 37.54,Washington, DC, USA,

2007. IEEE Computer Society.

[20] B. Selic. The pragmatics of model-driven

development. IEEE Software., 20(5):19.25, 2003.

[21] Simmonds, D. M., Reddy, Y. R., Song, E. and

Grant, E. “A Comparison of Aspect-Oriented

Approaches to Model Driven Engineering”, in

Proceedings of the International Conference on

Software Engineering Research and Practice,

(SERP), 2009.

[22] The Object Management Group (OMG). Unified

Modeling Language: Superstructure. Version 2.2,

Final Adopted Specification, OMG,

http://www.omg.org/uml, February 2010.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 23

http://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game/posts/316239
http://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game/posts/316239
http://books.google.com/books?id=mt9tF7XMFX4C&lpg=PA287&pg=PA210#v=onepage&q&f=true
http://books.google.com/books?id=mt9tF7XMFX4C&lpg=PA287&pg=PA210#v=onepage&q&f=true

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

24 Int'l Conf. Embedded Systems and Applications | ESA'14 |

SESSION

EMBEDDED SYSTEMS + HPC + SENSORY
DEVICES + NETWORK ON CHIP SYSTEMS AND

APPLICATIONS

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 25

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

26 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Reducing DDR Latency for Embedded Image

Steganography

J. Haralambides1 and L. Bijaminas1
1Department of Math and Computer Science, Barry University, Miami Shores, FL, USA

Abstract - Image steganography is the process of encoding an

image within another, larger image and is considered an

encryption technique. Generalized versions of the technique

enable the encryption of various data forms including text

messages, files, and multimedia. Extensive research helps

produce encrypted data that withstand advanced cryptanalysis.

An FPGA implementation of the algorithm on an Atlys Spartan-

6 development board is presented here based on Least

Significant Bit replacement. Pixel mapping is performed

randomly using a Galois LFSR to protect against cryptanalysis.

The host image is stored on DDR2 memory utilizing a dual,

bidirectional (read/write) FIFO. Reduced read DDR latency is

achieved by extending LSB replacement from one to two least

significant bits and by generating random blocks of four

addresses. Each four-pixel block of the host image yields a

single pixel of the hosted image. Write latency can be improved

if RAM FIFOs are used in the memory controller.

Keywords: Embedded design, memory latency, encryption,

image steganography, FPGA, LFSR.

1 Introduction

 Image steganography is a well-known encryption

technique that allows for a smaller image to be concealed

within a larger host image. In its generalized form it allows for

encryption of various data forms such as text, data files, and

multimedia content [1, 7]. For uncompressed images in the

spatial domain this can be achieved by replacing pixel bits of

the host image by pixel bits of the hosted image. A common

method of mapping involves the least significant bit (LSB) of

a pixel. It is not uncommon for a larger number of lower

significance bits to be replaced or modified as in LSB2 or

LSB3 mapping where two or three least significant bits may be

affected, respectively. In color images in RGB mode or

equivalent, bit replacement may be carried over all color

channels in similar fashion. LSB replacement preserves the

quality of the host image and makes it undetectable to the

human eye.

Various cryptanalysis techniques have been devised to detect

pixel intensity alteration including data analysis [2, 6]. Such

techniques may involve visual or audible detection for image

or audio host files, statistical or structural analysis (pixel

patterns, histograms, timestamp or content modification,

checksum) [8].

The importance of steganography has led to hardware

implementations of the algorithm using programmable logic

[3, 4]. Embedded designs can be optimized to reduce the size

and cost of the product and increase its reliability and

performance. Such designs are tested for resource utilization,

maximum clock speed attained, and memory space or

buffering requirements.

We have implemented our design in VHDL on an Atlys

Spartan-6 development board using the Xilnx ISE Design Suite

platform. The “cover” or host image as well as the hosted

image are stored in a 256 MB on-board DDR2 memory. A

memory controller that employs two read/write FIFOs

interfaces user logic. Both FIFOs hold 64 32-bit words capable

of storing 64 image pixels in ARGB mode (color depth of 24

bits including eight bits for the alpha channel). This

configuration enables on-line memory communication with the

board’s HDMI I/O ports. Image data are transferred to the

board using a simplified USB protocol that utilizes the board’s

JTAG port and its FX2 microcontroller. A third read/write

FIFO is employed to facilitate the transfer. This FIFO operates

at a maximum clock rate of 48 Mbps.

Pixel mapping between the host and the hosted image is

accomplished using a pseudo-random number generator that

produces non-repeating number sequences. A Galois Linear

Feedback Shift Register (LFSR) is implemented for this

purpose [5, 6]. Address mapping is performed based on the

hosted image thus reducing overall addressing requirements.

The algorithm employs the LSB2 method whereby the two

least significant bits of host image pixels are replaced by

selected bits of the hosted image. Reading and writing of pixels

for the host image is done sequentially in bursts that equal

FIFO size. Reconstruction of randomly selected pixels for the

hosted image requires processing of consecutive pixel blocks

of size four resulting in the reconstruction of 16 pixels per 64-

pixel burst. The above algorithmic parameters allow for a

substantial reduction of memory latency caused by buffering

and smaller size bursts inherent in random addressing schemes.

The rest of the paper is organized as follows: In Section 2 we

give a description of the algorithm and all relevant hardware

components, while in Section 3 we propose an extension to the

implementation to achieve reduced write latency. Future work,

Conclusions, and References follow in Sections 4, 5, and 6,

respectively.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 27

2 The algorithm

 Before we give the details of the encryption/decryption

algorithm, we will describe the characteristics of the memory

controller for the on-board DDR2 memory that is generated by

the Xilinx Memory Interface Generator (MIG).

We have elected a design that employees two bidirectional

FIFOs to allow for interleaved read and write bursts for the

cover and encrypted image, respectively. A read burst loads the

first FIFO with pixels of the cover image while a write burst

loads the second FIFO with pixels of the hosted image.

Operation control is handled by corresponding command

FIFOs. A simplified architecture is shown in Figure 1. Each

bidirectional FIFO is capable of holding 64 32-bit words. Each

word represents a pixel in ARGB mode (Alpha, Red, Green,

Blue). This word configuration makes parallel processing of

color channels possible. A third read/write FIFO that is used

for the transfer of image data from the host computer to the

FPGA board using a simplified USB protocol is omitted here

for clarity purposes.

Figure 1. Spartan 6 Memory Controller Block (simplified).

Least Significant Bit (LSB) replacement is a common method

to encrypt pixels of the smaller, hosted image to a larger cover

image. In cases where protection against cryptanalysis is not

pursued, pixel mapping can be performed sequentially

achieving low DDR read and write latency. A single bit

replacement per channel requires eight pixels of the host image

to host or produce (during decryption) a single pixel of the

hidden image. It also limits the size of the smaller image to that

of one eighth of the host. A single 64-pixel read burst from

DDR2 to FIFO 1 results in an 8-pixel write to FIFO 2. This

constitutes stage 1 of the process. The process repeats in stages

2 to 8 followed by a 64-pixel write burst from FIFO 2 to DDR2.

This approach makes full use of both FIFOs and is depicted in

Figure 2.

Figure 2. LSB single bit replacement, sequential encoding

during first stage.

The above method is characterized by low latency but does not

provide protection against steganalysis. For this reason, we

perform pixel mapping pseudo-randomly using a Galois LFSR

and LSB2 mapping. The generated addressing sequence is non-

repeating and is only tested against image address boundaries.

Our experiments involve host images of 640  480 resolution

for a total of 307,200 pixels or 1,228,800 bytes. Encrypted

images are one quarter the size of the host image at a resolution

of 320  240 for a total of 76,800 pixels or 307,200 bytes.

While DDR2 is organized as a byte-addressable unit, read and

write bursts are carried at the pixel level (FIFO word size). This

reduces addressing requirements for the LFSR component

from 19 to 17 bits. Random addressing will occur within the

image resolution boundaries specified for the encrypted image

and, therefore, a total of 76,800 different addresses need be

generated. A 17-bit Galois LFSR is capable of generating a

total of 217 – 1 = 131,071 addresses. In case of byte-level

access, the addressing range would rise to 307,200 different

addresses in which case a 19-bit Galois LFSR would be

required. For random addressing performed at the pixel and

byte level of the host image, these requirements necessitate the

use of 19-bit and 21-bit LFSRs, respectively.

In our method, we have extended LSB replacement to 2 bits for

the following reasons: a) it allows for encryption of larger

images up to one-fourth of the host image, b) it reduces the

number of clock cycles during the reconstruction (decryption

phase) or distribution (encryption phase) of the pixels of the

hosted image, and c) it has a comparable visual effect to 1-bit

replacement.

A second key feature of our method is that reads from DDR2

during decryption (and, equivalently, writes during encryption)

are performed in pseudo-random sequences of 64-pixel bursts.

Each pixel block read results in the reconstruction of 16 pixels

of the hosted image. Similarly, during encryption, 16 randomly

selected pixels of the hosted image will be mapped in 64

consecutive pixels of the host image. This is a minor

compromise of the mapping randomness that offers a

substantial reduction in memory latency. The FSM (Finite

DDR
DDR2
DDR3
LPDDR

Memory

U
se

r
L

o
g
ic

CMD FIFO 1

CMD FIFO 2

32-bit
bidirectional

FIFO

Arbiter
Controller
Datapath

I/O Clocking Network
Dedicated Routing
Physical Interface
Calibration Logic

32-bit
bidirectional

FIFO

FIFO 1
…

…

…

…

0
1
2
.
.
.
.
.
.
.
.
.
63

FIFO 2

….

.

0
1
2
3
4
5
6
7
.
.
.
.
63

32-bit word 32-bit word

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

28 Int'l Conf. Embedded Systems and Applications | ESA'14 |

State Machine) depicted in Figure 3 gives an insight to the

reduced latency steganography algorithm for the decryption

phase. A more detailed description of the state machine

follows.

Figure 3. FSM for steganography, decryption phase.

State 0 serves as the initialization state. The address of the

cover image is set at 0 and that of the image to be decrypted is

set at 921,600 (640  480  3 bytes/pixel). Initialization is

directly followed by state 3. During this state the command

FIFO of the memory controller is set up for a read burst of 64

pixels. The address for the cover image is incremented by 256

(64 pixels  4 bytes/pixel) for the next read burst. Data reading

takes place in state 4 and the command FIFO is deactivated.

Data are transferred from DDR data banks to FIFO 1 of the

memory controller. Transition to state 5, the next state, occurs

when signal fifo_empty is deasserted for FIFO 1, indicating

data availability in the FIFO. At the same time, reading from

FIFO 1 is enabled (FIFO data will be available in the next

state). During state 5, pixel data for each of the red, green, and

blue channels are placed into 8-bit shift registers. More

specifically, the two least significant bits of each of the

channels are stored in the two most significant positions of the

shift registers. State 6 that follows and state 5 enter into a loop

that runs four times, thus acquiring all eight bits of the color

channel for one pixel of the decrypted image. In state 6, shift

registers shift pixel data two positions to the right making room

for the next pair of pixel data. Completion of the loop leads to

a write operation of pixel data to FIFO 2 and transition to state

1 where the command FIFO is set up for a write burst of one

pixel. The address for the decrypted image is incremented by 4

(1 pixel  4 bytes/pixel) to prepare for the next pixel. State 2

follows at which the command FIFO is deactivated and the

decrypted pixel is written to DDR. Upon assertion of the signal

fifo_empty of FIFO 2, the steganography process repeats if

more pixels need be examined (visiting state 3 for another read

burst, if FIFO 1 is empty, or state 5, if not) or terminated,

otherwise (visiting state 7). The algorithmic description for the

decryption phase is provided in Figure 4.

Figure 4. Steganography, decryption phase.

Step 0. Initialize

a. Set address of host image to 0.

b. Set address of decrypted image to 921,600.

c. Go to step 3.

Step 1. Set up command FIFO for write

a. Set mode to write and burst size to 1 word.

b. Set address to encrypted address.

c. Increment host address by 1 pixel (4 bytes).

d. Go to step 2.

Step 2. Write decrypted pixel to DDR

a. Deactivate command FIFO.

b. If FIFO 2 is empty

i. If all pixels are processed, go to step 7.

ii. Otherwise,

1. If FIFO 1 is empty, go to step 3.

2. Otherwise, go to step 5.

Step 3. Set up command FIFO for read

a. Set mode to read and burst size to 64 words.

b. Set address to host address.

c. Increment host address by 64 pixels (256 bytes).

d. Go to step 4.

Step 4. Read data into FIFO 1

a. Deactivate command FIFO.

b. If FIFO 1 is no longer empty, go to step 5.

Step 5. Read pixel data

a. Read two LSBs per color channel into two MSBs of

corresponding 8-bit registers.

b. Go to step 6.

Step 6. Construct decrypted pixel

a. Shift registers to the right by two bits.

b. If four shifts were performed

i. Write pixel to FIFO 2.

ii. Go to step 1.

c. Otherwise, go to step 5.

Step 7. Terminate process

0

3

4

5

2

1

6

7

initialize

DDR2 to FIFO 1
64-pixel

 read burst

stop

read

burst

read pixel
from FIFO 1

construct
decrypted

pixel

FIFO 2 to DDR
1-pixel

write burst

stop
write
 burst

done

next clock

n
ext

clo
ck

n
o

 m
o

re

p
ixels

FIFO
 1

n
o

t em
p

ty

P
ro

ce
ss

ed
 4

 p
ix

el
s

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 29

Since addressing is carried out in blocks of four pixels, the

LFSR random number generator for this method requires 17

bits. The corresponding feedback polynomial is: x17 + x14 + 1.

A 17-bit Galois LFSR with an example value of 7 is displayed

in Figure 5. The next value generated will be 73731. The

current value of 7 is shifted one position to the right and a least

significant bit value of 1 causes bits 17 and 14 to be

complemented.

Figure 5. A 17-bit Galois LFSR.

The 17-bit Galois LFSR cycles through a maximal number of

131071 states (217 – 1). State 0 is never reached. Cycling within

this period generates unique numbers that will represent non-

repeating random memory addresses. Different starting values

result in different random sequences. A shared key (starting

value) between the sender and receiver of hidden images

provides for a more secure encryption.

Encrypted images used for our implementation have a

resolution of 320  240 = 76,800 pixels requiring address

values between 0 and 76799. Random numbers in excess of

image resolution are skipped until a valid address is generated.

In the special case of state 76800, an address of 0 is returned.

To eliminate delays caused by invalid addresses, random

numbers generated by the LFSR are stored in a 16-word FIFO

having a word size of 17 bits. Simulation experiments have

shown that the size of the FIFO is sufficient to avoid any such

delays. The LFSR number generator operates independently

and continuously as long as the underlying FIFO is not full.

Table 1. Device utilization summary (estimated values).

Logic Utilization Used Available Utilization

Number of Slice

Registers
388 54576 0%

Number of Slice LUTs 705 27288 2%

Number of fully used

LUT-FF pairs
308 785 39%

Number of bonded

IOBs
81 218 37%

Number of

BUFG/BUFGCTRLs
3 16 18%

Number of PLL_ADVs 1 4 25%

Table 1 shows the device utilization values for the

implementation of the algorithm on the Atlys Spartan-6

development board. The report does not take into consideration

modules required for image data transfer between the host

computer and DDR memory on the board. It reflects the

hardware required for the memory controller module and the

steganography state machine.

3 Reducing memory latency

The algorithm presented in the previous section focuses on the

reduction of memory delays due to random read bursts from

DDR to FIFOs. These problems are alleviated by pixel

blocking and 2-bit LSB replacement. In case a replacement

method uses no pixel blocking, a clock cycle is dedicated to

setting up the command FIFO for a single-pixel read burst for

all pixels of the hosted image. For a hosted image having a

resolution of 320  240 = 76,800 pixels, a total of 76,800 cycles

is dedicated to command FIFO setup. On the other hand, the

total number of clock cycles for our pixel blocking method is

dramatically reduced to 76,800/64 = 1,200 clock cycles. In

addition to pixel blocking, LSB2 allows for the encryption of

images twice as large as images using the LSB1 method at the

same amount of time.

Memory latency is reduced further when consecutive addresses

are accessed in a single burst as opposed to the same number

of random addresses accessed in multiple bursts. Read

performance due to random addressing is further deteriorated

for DDR memories utilizing more than one data banks as

latency for such random memory accesses increases

substantially. User guide 388 published by Xilinx, Inc. offers

an additional insight to memory performance as it relates to the

command, read, and write FIFOs of the memory controller for

Spartan-6 FPGAs.

4 Future work

While pixel blocking reduces memory delays due to read

bursts, pixel writes are performed at single-pixel bursts. An

additional improvement may be obtained if a two-level

blocking technique is used. In this direction, use of a dual

LFSR structure is required. The first random number identifies

a block of 64 pixels from the entire image address space of the

host image. These pixels will be used to construct 16 pixels of

the hosted image. The second LFSR generates random

numbers in the range 0 to 15 for intra-block addressing.

Assuming a host image having a resolution of 640  480 =

307,200 pixels, a total of 307,200/64 = 4,800 blocks must be

accessed. A 13-bit Galois LFSR provides block addressing for

all 64-pixel blocks of the host image as it is capable of

generating 213 – 1 = 8,191 addresses. A 5-bit Galois LFSR

generates non-repeating sequences of all 16 address offsets

within the block. Due to rearrangement of target addresses

(addresses for the hosted image), memory controllers for DDR

need to employ RAM FIFOs. Such FIFOs will enable pixel to

FIFO writes at random FIFO addresses thus eliminating the

need of additional registers and extra clock cycles.

17 14 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

30 Int'l Conf. Embedded Systems and Applications | ESA'14 |

5 Conclusions

We have implemented a reduced DDR latency image

steganography algorithm on an Atlys Spartan-6 development

board. Encryption and decryption are carried out using pseudo-

random number generators to withstand cryptanalysis. Non-

repeating addressing sequences are produced through the use

of a Galois LFSR. Images are given in the spatial domain and

have not been subjected to compression. They are stored in on-

board DDR2 of the programmable device and are accessed in

read and write bursts using bidirectional 64-pixel, 32-bit

FIFOs. Pixels are word-sized in the ARGB format. An

immediate reduction in clock cycles can be achieved if the least

significant bit (LSB) replacement process is extended to

include two bits of the host image (LSB2). In addition to added

capacity for the hosted image, one half of pixel reads are

sufficient to encrypt/decrypt a pixel with no visual degradation

of the cover image. Additional improvements are seen in

comparison to single pixel bursts when 64-pixel blocks are

fetched from memory and processed as groups of 4 pixels.

Each group results in the reconstruction of a pixel for the

hosted image (decryption phase). If write latency reduction is

desired, the present implementation can be extended to two-

level random address mapping. This will require modification

of memory controller FIFOs to accommodate random access

of FIFO locations.

6 References

[1] C. P. Sumathi, T. Santanam, and G. Umamaheswari, “A

Study of Various Steganographic Techniques Used for

Information Hiding”, International Journal of Computer

Science & Engineering Survey (IJCSES), Vol. 4, No. 6, pp. 9

– 25, December 2013.

[2] S. Lyu , H. Farid, “Steganalysis using higher-order image

statistics”, IEEE Transactions on Information Forensics and

Security, Vol. 1, pp. 111 – 119, 2006.

[3] B. J. Mohd, S. A. Abed, T. Al-Hayajneh, and S. Alouneh,

“FPGA Hardware of the LSB Steganography Method”,

International Conference on Computer, Information and

Telecommunication Systems (CITS), pp. 1 – 4, May 14 – 16,

2012.

[4] B. V. Lakhsmi, B. V. Raju, “FPGA Implementation of

Lifting DWT based LSB Steganography using Micro Blaze

Processor”, International Journal of Computer Trends and

Technology (IJCTT), Vol. 6, No. 1, pp. 6 – 14, December

2013.

[5] A. K. Panda, P. Rajput, B. Shukla, “FPGA Implementation

of 8, 16 and 32 Bit LFSR with Maximum Length Feedback

Polynomial using VHDL”, International Conference on

Communication Systems and Network Technologies, pp. 769

– 773, May 11 – 13, 2012.

[6] J. Fridrich, M. Goljan, and R. Du, “Reliable Detection of

LSB Steganography in Color and Grayscale Images”, IEEE

Multimedia, Vol. 8, pp. 22 – 28, 2001.

[7] N. Provos, P. Honeyman, “Hide and Seek: An Introduction

to Steganography”, IEEE Security and Privacy, Vol. 1, No. 3,

pp. 32 – 44, May 2003.

[8] S. Lyu and H. Farid, “Steganalysis using higher-order

image statistics”, IEEE Transactions on Information Forensics

and Security, Vol. 1, pp. 111 – 119, 2006.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 31

Dynamic-prelink: An Enhanced Prelinking Mechanism without
Modifying Shared Libraries

Hyungjo Yoon1,2, Changwoo Min1, and Young Ik Eom2

1Samsung Electronics, Suwon, Gyeonggi-do, Korea
2Sungkyunkwan University, Suwon, Gyeonggi-do, Korea

Abstract— Prelink accelerates the speed of program startup
by fixing the base address of shared libraries. However,
prelink prevents the dynamic linker from loading shared
libraries by using Address Space Layout Randomization
(ASLR) in runtime because it modifies the program header
in binary files directly.

To resolve this problem, we introduce an enhanced pre-
linking mechanism, called dynamic-prelink, which separates
the memory address layout per program as well as keeps
high performance of prelink mechanism. Dynamic-prelink
records prelinked contents to a file instead of modifying
shared libraries. This makes dynamic linker be able to use
both ASLR and prelink mechanism. Our experimental results
show that the memory address layout of dynamic-prelinked
programs is separated per program and the dynamic linker
is able to randomly load shared libraries regardless of
dynamic-prelinking. In addition, the startup time of dynamic-
prelinked program becomes faster than common program in
the dynamic linker, about 42% on average.

Keywords: Dynamic linker, Prelink, ASLR, Shared library, Pro-
gram startup

1. Introduction
The dynamic linker loads shared libraries and executables,

and relocates the memory address layout of each binary.
Since it affects every program on the system, dynamic
linking is critical in speeding up the program startup.

Prelink accelerates the booting time and program launch-
ing time in various operating systems. Jelínek[1] found that
prelink reduces processing time of dynamic linking by about
83%, when GTK+ applications are evaluated. In Android,
which is most popular system in mobile devices, prelink
reduces the booting time by 5%, in practice [2].

But prelink has significant drawbacks. Prelink and Address
Space Layout Randomization (ASLR) cannot be used si-
multaneously on a system [2][3][14][16]. ASLR randomizes
the layout of memory including stack, heap, library, and

• Young Ik Eom is the corresponding author of this paper.
• This research was supported by the MSIP (Ministry of Science, ICT&Future

Planning), Korea, under the ITRC (Information Technology Research Cen-
ter) support program (NIPA-2014(H0301-14-1020)) supervised by the NIPA
(National IT Industry Promotion Agency).

executable for enhanced security level of system. According
to this, it is difficult for an attacker to expect the randomized
address of processes, and so attacks can be defeated ulti-
mately. ASLR is valuable for defending control flow hijack-
ing attacks and return-to libc (RTL) attacks [2][4][5][12].

In order to enhance the secure execution, the recent
operating systems adapt ASLR rather than applying prelink.
Android supported prelink up to the version of Ice-cream
4.0, but it supports ASLR in current version [10]. Several
linux’s distributions support PaX’s implementation of ASLR
by default [15]. Windows supports ASLR from Windows
Vista [11], and Mac OS X and iOS supported the preload
mechanism similar to prelink in the past, but ASLR is
supported from the version of Mac OS X 10.8 and iOS 4.3
in the entire system [8][9].

Prelink is partially adopted per program or it is adopted
in the whole system. In case that prelink is adapted per pro-
gram, prelinked program should not influence the launching
procedure of the other programs. But a prelinked program
prevents the dynamic linker from loading common programs
using ASLR on the operation system due to modifying
shared libraries directly. Prelink switches the base address,
which is described as PT_LOAD segment in program header,
from zero to a new value [1]. Thereafter, the dynamic
linker let mmap() load libraries into arbitrary address in the
memory by referencing PT_LOAD segment. If PT_LOAD
is not equal to zero and the indicated address is allocable
memory space, the kernel allocates a binary in virtual
address of PT_LOAD [6][7]. Therefore, the dynamic linker
cannot always load shared libraries related to prelinking
in random address if a prelinked program exists on the
system. For example, we assume that a program is already
prelinked. The dynamic linker always loads libc.so in the
same address for every process due to fixed libc.so’s program
header, and then applying ASLR is limited. This causes a
security problem under RTL attacks in which attacker injects
malicious codes into the fixed address of libc.so [4].

To resolve this problem, we introduce novel prelinking
mechanism, called dynamic-prelink, which separates the
memory address layout per program as well as keeps high
performance of prelinking mechanism. Our scheme separates
the memory address layout per program and records pre-
linked contents to a file instead of modifying shared libraries.
We make the following contributions in this paper.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

32 Int'l Conf. Embedded Systems and Applications | ESA'14 |

• We find an efficient mechanism that maintains the per-
formance of prelink and supplements prelink’s weak-
nesses.

• We design an enhanced prelinking mechanism to per-
form prelinking without modifying shared library.

• We discuss the challenges to handle the separate
memory address layout for each prelinked program.

We evaluate our dynamic-prelinking mechanism by com-
paring the performance of dynamic linker during starting
each application which applies dynamic-prelink, ASLR, and
original prelink. We get a result that dynamic-prelink is
better than ASLR, about 42% on average. Moreover, we also
check the memory address layout of the loaded program that
is generated by the dynamic-prelinking mechanism to prove
that programs can be loaded using both dynamic-prelink and
ASLR on a system.

In the rest of the paper, we analyze the overhead of
dynamic linker and the effect of prelink in Section 2. Section
3 introduces the design idea of dynamic-prelink, and we
address the implementation of dynamic-prelink in Section
4. Section 5 evaluates the implementation and discusses the
effect of dynamic-prelink. Section 6 concludes and discusses
future works.

Fig. 1: Execution time during executable’s launching.

Fig. 2: Spent time in the dynamic linker according to the
number of relocations.

2. Analysis of the dynamic linker and
prelink

Most of time in the dynamic linker is spent in file I/O,
relocations handling, and symbol lookups to load binaries

Fig. 3: Spent time in the dynamic linker according to the
number of symbol lookups.

Fig. 4: Comparison of spent time in the dynamic linker
during prelinked executable’s launching and original exe-
cutable’s launching.

such as libraries and executables [1]. Every time, this op-
eration is applied to memory pages which is written to be
loaded into the memory when program is started through
exec() in the dynamic linker [1]. The dynamic linker is
hard to enhance the performance by controlling file I/O,
but relocations handling and symbol lookups are able to
be handled by the dynamic linker. So developing algorithm
to reduce spent time of relocations handling and symbol
lookups is rather efficient to enhance the performance of
dynamic linker. Increase in the number of relocations and
the number of shared libraries make the dynamic linker
spend more time to search symbol scope and do symbol
lookups [1]. Additional factor increasing cost is the length
of symbol names mangled by C++. It makes the dynamic
linker spend more time to find symbols due to increasing
cost of comparing symbols. GUI programs become more
and more important in recent most of the desktop platforms
and the mobile platforms. Additionally, the complexity of
program is also increasing. It means future programs will
contain more libraries, larger relocations, more symbols and
longer the length of symbol [1].

But there is limitation to enhance the performance of
dynamic linker although efficient algorithm is designed. It
cannot make the number of relocations and the number
of symbol lookups be decreased. In terms of same ELF

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 33

binaries, it is hard to reduce the number of relocations and
the number of symbol lookups.

Both Figure 2 and Figure 3 show how the number of
relocations and the number of symbol lookups influence the
performance of dynamic linker in Intel i3 dual core 1.2GHz.
Those show that spent time in the dynamic linker linearly
increases according to enlarging the number of relocations
and the number of symbol lookups. Prelink executes reloca-
tion handling and the Global Offset Table (GOT) resolving in
advance to enhance effectively the performance of dynamic
linker. Prelink is able to complete relocations except some
relocation related dlopen() and conflicted information [1]. It
is absolutely better method in terms of only the performance.
To verify the performance of prelink in current computing
environment, we tried to compare the performance of pre-
linked program with original program. We divided the main
activity of dynamic linker up into two types of sections:
spent time in the dynamic linker before calling executable’s
main() (Figure 1c) and spent time for symbol lookup to
resolve the GOT during starting the program (Figure 1d).
Startup time (Figure 1c) in the dynamic linker is almost spent
for file I/O (Figure 1b) and relocations handling (Figure 1a).
We assumed that the total of spent time in the dynamic
linker during starting the program is the sum of spent time
of two type of sections (startup time in the dynamic linker
and symbol lookup time). Figure 4 shows the speed of
dynamic linker that loads prelinked program is faster than
the speed for original program about 60% on average and
the performance is enhanced in all of tested 14 applications.
As a result, prelink is still effective method in terms of the
performance of dynamic linker.

Table 1: The ratio of sections related the relocation in PIC
libc.so(byte) libstdc++.so(byte)

(A) Modified area 60260 104460

(B) Whole loaded area 1724620 904164

(C) Ratio (B/A)*100 3.4% 11.5%

3. Design of the dynamic-prelink
Most shared libraries are generated to the position-

independent code (PIC) ELF. The objective of PIC is to
maximize sharing the code of shared libraries and to save
the memory space. The section of ELF binary built in
the PIC is divided up into three types of sections; the
location-independent section, the location-sensitive section,
and the relocation section [13]. The relocation section
holds information related the location-sensitive section. The
dynamic linker adjusts the location-sensitive section using
the relocation section during starting the program. Prelink
finishes relocating operation by adjusting shared library’s
sections related the relocation ahead of time. It helps the
dynamic linker save time in runtime because relocation and

Fig. 5: The whole architecture of dynamic-prelink.

resolving the GOT are already finished. Table 1 shows the
ratio of shared library’s sections that are modified by prelink.
The ratio of modified sections is not greater in and out 10%
although there is difference depending on the property of
shared library.

We get an idea from what the ratio of relocated section
is very small. Our main idea is to record a relocated data
to a new binary file instead of directly modifying shared
libraries at prelinking time (Figure 5). So we design a
new cache file, named dynamic-prelink cache file, to record
relocated data per program. Dynamic-prelink can bring two
benefits, compared with prelink. First, dynamic-prelink can
create independent and random address layout per program
although several programs are prelinked. Second, programs
are not adopted by dynamic-prelink can be loaded normally
using ASLR because dynamic-prelink do not modify shared
libraries.

To support this idea, additional function is needed in the
dynamic linker. So we design a new dynamic linker, called
ldp.so, has the same function with original dynamic linker
as well as new function supporting our idea. ldp.so is able
to decode dynamic-prelink cache file and copy relocated
data into the memory during the program startup. Moreover,
ldp.so can distinguish dynamic-prelinked programs using
dynamic-prelink cache file and determine the method for
program loading (dynamic-prelink or ASLR) in the runtime.

4. Implementation
To verify the feasibility of dynamic-prelinking mecha-

nism, we implemented dynamic-prelink and a new dynamic
linker in the ubuntu 12.04. We contribute that dynamic-
prelink independently creates the memory address layout
of each prelinked program. It supports that non-prelinked
program can be loaded using ASLR. Moreover, the new
dynamic linker is developed to support dynamic-prelinking

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

34 Int'l Conf. Embedded Systems and Applications | ESA'14 |

mechanism. We start with a discussion about implementation
for the dynamic-prelinking mechanism and the new dynamic
linker.

4.1 Dynamic-prelinking
Dynamic-prelink has two important points about imple-

mentation. First, dynamic-prelink cache file is created to
help dynamic linker load the program fast. Dynamic-prelink
collects and records a prelinked data, called a cached data,
to dynamic-prelink cache file when it executes prelinking.
ldp.so copies the cached data to proper location using
dynamic-prelink cache file during starting the program. Sec-
ond, dynamic-prelink randomly makes the memory address
layout per program. It is possible that dynamic-prelink does
not modify shared libraries directly. So the base address
of shared libraries is assigned randomly, and the memory
address layout of each dynamic-prelinked program becomes
unique on the system.

Fig. 6: The format of dynamic-prelink cache file.

Table 2: The list of cached sections
Section name Type

.dynsym SHT_DYNSYM

.rel.dyn SHT_REL

.rel.plt SHT_REL

.dynamic SHT_DYNAMIC

.got SHT_PROGBITS

.got.plt SHT_PROGBITS

.data SHT_PROGBITS

.data.rel.ro SHT_PROGBITS

.__libc_thread_subfreeres SHT_PROGBITS

.__libc_atexit SHT_PROGBITS

.__libc_subfreeres SHT_PROGBITS

.init_array SHT_INIT_ARRAY

.fini_array SHT_FINI_ARRAY

.tdata SHT_PROGBITS

4.1.1 Dynamic-prelink cache file format

dynamic-prelink cache file is a binary which is recorded
by the cached data of the location-sensitive section and
the relocation section. This file is designed to manage
the list of dependent shared libraries of the program and
the cached data of each shared libraries. Figure 6 shows
how dynamic-prelink cache file format is designed. It is
composed to the field of app_cache_entry, app_cache_entry,
app_cache_header, section_header, cached section, and
hash map. The characteristic of each field is as follows.

• app_cache_entry: This structure gives the
offset of first index of app_cache_header, the
size of app_cache_header, and the number of
app_cache_header. It helps dynamic linker find all of
index of app_cache_header.

• app_cache_header: This structure gives a cached object
of each shared library. Each object gives the offset
of root header for cached sections and the number of
cached sections, those help dynamic linker find all of
index of section_header.

• section_header: This structure gives relative offset for
the cached data and the copied virtual address. The
format of structure is the same with Elfxx_Shdr of ELF.

• cached section: This is the set of cached data which
is recorded by dynamic-prelink ahead of time. The
dynamic linker can directly copy it into the memory
instead of relocating operation.

• hash map: This element holds the offset of
app_cache_header hash table to search fast object
related shared object.

We try to distinguish the type of sections to select the
cached data. The list of location-sensitive sections and the
list of relocation sections are found by comparing original
shared library with prelinked shared binary. Both vimdiff
and objdump, which are utilities, are used to find the list
of relocated sections. Table 2 shows the list of location-
sensitive sections and relocation sections. Mainly, those
sections are recorded to the cached data of dynamic-prelink
cache file.

The dynamic linker does not adjust both position inde-
pendent sections and irrelevant-relocation sections such as
.text, .eh_frame. But common executable is not built in
PIC, is the type of ET_EXEC. It means that all sections
of executable are able to be adjusted by the dynamic linker
during starting the program. It is impossible to keep the
cached data to dynamic-prelink cache file. But the address
of ET_EXEC’s program header is fixed during the link
processing at the compile time, the executable is loaded at
a known location always. In other words, the executable is
originally impossible to be loaded by using address random-
ization. So dynamic-prelink directly modifies the executable

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 35

in dynamic-prelinking time because it does not affect the
other programs.

Fig. 7: The size of .rel.dyn section is enlarged 1.5 times
before and after prelinking due to changing REL to RELA
and the relative offset of rel.plt is influenced by RELA.

Fig. 8: Comparison with the memory address layout accord-
ing to the loading mechanism. The location of RELA section
is moved at the last address of loaded memory space of each
shared libraries.

4.1.2 RELA section
we start with assumption that the data segments to be

page-aligned and relative offset of shared library are identical
before and after prelinking. If there becomes right assump-
tion, the size of sections, which are loaded in the memory,
is coincided before and after prelinking. But, in some cases,
prelink changes DT_REL to DT_RELA which is the prop-
erty of relocation section. RELA makes relocating operation
be easy because it does not need the relocated contents in
the memory [1]. Elfxx_Rela contains more a member which
is an explicit addend compared with Elfxx_Rel, and the size
of DT_RELA is 1.5 times larger than DT_REL. Moreover,
DT_RELA is commonly located in an intermediate position
of the binary file. Figure 7 shows the size of .rel.dyn section
is enlarged after prelinking, and the relative offset of rel.plt is
changed. It is big problem to mechanism of dynamic-prelink
due to the page alignment.

But we make one important observation about the relo-
cation section. The relocation section only contains infor-
mation about which data is relocated in runtime, and it is
independent against relative offset in the binary. Namely, it
is not important where the relocation section is located. The

dynamic linker commonly gets the location of relocation sec-
tion from PT_GNU_RELRO of program header. A program
can be normally operated if the location of relocation section
is identical to the address of PT_GNU_RELRO regardless
relative offset of relocation section. So we design that
dynamic-prelink changes the address of PT_GNU_RELRO
to the last address of loaded binary in case of generating
DT_RELA. Figure 8 compares the section alignment of each
loaded shared libraries (original shared library, prelinked
shared library, dynamic-prelinked shared library) into the
memory. Prelink makes the size of shared library’s .rel.dyn
be enlarged against original shared library. But dynamic-
prelink can maintain identical alignment with original shared
library by locating the RELA in the last address of mapped
memory.

4.1.3 Randomization of dynamic-prelink

when dynamic-prelink does prelinking for any program, it
is possible to randomly determine the base address of shared
library using /dev/random. Dynamic-prelink sets up various
prelinked memory address layout per program. Because an
address layout of program becomes unique on the system,
the randomization of dynamic-prelink makes it more difficult
to analysis the loaded address of shared libraries.

4.2 New dynamic linker: ldp.so
The new dynamic linker (ldp.so) supplements additional

feature for the dynamic-prelinking mechanism. First, ldp.so
is able to decode dynamic-prelink cache file format and
copy the cached data to proper address instead of original
dynamic linker mechanism. Second, the program, which is
not adopted by dynamic-prelink, is loaded normally us-
ing ASLR following original dynamic linker mechanism.
ldp.so is able to distinguish dynamic-prelinked programs by
checking dynamic-prelink cache file. Moreover, in case of
adding new rules, ldp.so is able to dynamically determine the
loading mechanism (ASLR or dynamic-prelink) in dynamic-
prelinked program startup.

Fig. 9: Modified executable’s .interp by dynamic-prelink.

Fig. 10: ldp.so is loaded in running dynamic-prelinked
program, but ld.so is loaded in running common program.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

36 Int'l Conf. Embedded Systems and Applications | ESA'14 |

When the kernel loads and executes a process in newly
constructed address space, the kernel checks the dynamic
linker first in executable’s .interp section. In user-mode, first
context of process is started in the entry point of dynamic
linker. The dynamic linker is also the shared library (ld.so),
but it is hard to control the memory address layout of ld.so
using the dynamic-prelinking mechanism. It is because there
is no chance to control the memory address layout of ld.so
in user-mode. To solve this problem, we make important
modification to the dynamic liker and the executable. First,
a new dynamic linker (ldp.so) is created without modifying
ld.so, and we induce that the system becomes to own two
dynamic linkers (ld.so and ldp.so). ldp.so is directly modified
in order to complete the relocation by dynamic-prelink in
advance. Second, executable’s .interp section is modified to
make the kernel load ldp.so as the dynamic linker. Figure 9
shows executable’s .interp section is changed to ldp.so by
dynamic-prelink. After all, programs, which are not adopted
by the dynamic-prelinking mechanism, are loaded by origi-
nal dynamic linker (ld.so) and dynamic-prelinked programs
are loaded by ldp.so as the dynamic linker. Figure 10 shows
that two dynamic linkers are able to be loaded according to
a mechanism adopted in program.

5. Evaluation
We start with a discussion to evaluate our dynamic-

prelinking mechanism by comparing the performance of
dynamic linker during starting the program and verifying
the memory address layout of program which is generated
by dynamic-prelink.

Fig. 11: Spent time before enter executable’s main() (Fig-
ure 1c) in the dynamic linker during 14 applications startup:
original prelinked program, dynamic-prelinked program,
original program.

5.1 Performance
We verified the effect of dynamic-prelink by evaluating

spent time in the dynamic linker in Intel i3 dual core
1.2GHz. We also divide the main activity of dynamic linker
up into two type of sections: spent time in dynamic linker
before calling executable’s main() (Figure 1c) and spent
time in symbol lookups to resolve the GOT during starting

Fig. 12: Spent time to resolve the GOT (Figure 1d) in
the dynamic linker during 14 applications startup: origi-
nal prelinked program, dynamic-prelinked program, original
program.

Fig. 13: Whole spent time in the dynamic linker during
startup of original prelinked program, dynamic-prelinked
program, and original program. This data is the sum of spent
time before enter executable’s main() (Figure 1c) and spent
time to resolve the GOT (Figure 1d).

the program (Figure 1d). We compared the performance
of original prelink, ASLR (RTLD_LAZY loading), and
dynamic-prelink by adding to dual data (We think this is the
performance of dynamic linker during starting the program).
Figure 13 shows the speed of the dynamic linker using the
dynamic-prelinking mechanism is faster than ASLR, about
42% on average, and it is slower than original prelink,
about 32% on average. The performance of dynamic-prelink
presents intermediate position between ASLR and original
prelink. This result is influenced by dynamic-prelink cache
file. Dynamic-prelink needs additional time for file I/O
and memory copy to control dynamic-prelink cache file.
Figure 11 shows spent time in the dynamic linker to load
dynamic-prelinked program (Figure 1c) is increased more
than original prelinked program. But we should concentrate
on saved time in comparison with ASLR. Dynamic-prelink
can save relocating time which is similar to original prelink.
So the speed of dynamic-prelink is enhanced in both spent
time before calling executable’s main() (Figure 11) and spent
time to resolve the GOT (Figure 12) in the dynamic linker.
Especially, spent time to resolve the GOT of dynamic-prelink
is similar to these of original prelink. (Although a program

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 37

is prelinked, dynamic linker should resolve the GOT due
to dlopen()). Namely, the performance of dynamic-prelink
is better than ASLR and is similar to prelink except the
overhead of dynamic-prelink cache file.

Table 3: Fixed address layout of shared libraries of two
dynamic-prelinked programs. Dynamic-prelinked programs
own different address layout each other.

application library 1st address 2nd address

soffice ldp.so 0x80000000 0x80000000

libc.so 0x41967000 0x41967000

libstdc++.so 0x41fd1000 0x41fd1000

nautilus ldp.so 0x80000000 0x80000000

libc.so 0x4b6d5000 0x4b6d5000

libstdc++.so 0x4be77000 0x4be77000

Table 4: The memory address layout of loaded programs
using ASLR in running programs which are adopted by
dynamic-prelinking mechanism.

application library 1st address 2nd address

chrome ld.so 0xb5efe000 0xb5f3a000

libc.so 0xaf9f2000 0xafa2e000

libstdc++.so 0xafbe6000 0xafc22000

firefox ld.so 0xb7726000 0xb770c000

libc.so 0xb740a000 0xb73f0000

libstdc++.so 0xb7619000 0xb75ff000

5.2 Memory address space layout
We verified the memory address space layout of processes

based on a dynamic-prelinked programs and non-dynamic-
prelinked programs using /proc/[pid]/maps to prove that
two mechanisms (ASLR and dynamic-prelink) are able
to be used on a system at the same time (Table 3, 4).
And we checked to hold different memory address layout
per program which is adopted by the dynamic-prelinking
mechanism (Table 3). Table 3 shows libc.so and libstdc++.so
are located in different address in running processes based
on two dynamic-prelinked programs, and ldp.so is loaded
instead of ld.so. It means that dynamic-prelink separates
address layout of two programs. ldp.so is always located
in the same address due to the effect of dynamic-prelink.

Another important point is that both libc.so and lib-
stdc++.so of non-dynamic-prelinked programs are loaded
using ASLR at same time in running processes based
on dynamic-prelinked program (Table 4). As a result, the
dynamic-prelinking mechanism does not affect the memory
address layout of non-dynamic-prelinked program. Besides,
the memory address layout of dynamic-prelinked program is
separated with it of the other dynamic-prelinked programs.

6. Conclusion
Dynamic-prelink makes the dynamic linker be able to use

mechanism of both ASLR and prelink at the same time.
Moreover, it helps dynamic-prelinked program be loaded
faster than common program in the dynamic linker, about
42% on average. Since dynamic-prelink supports indepen-
dent prelinking without modifying the shared libraries, a
dynamic-prelinked program does not affect the memory
address layout of the other programs. And dynamic-prelink
prevents exposing process’s address space layout to the other
programs. In addition, each program is able to be prelinked
selectively according to program’s importance by combining
several security mechanisms to enhance system performance.

In this paper, we do not discuss position independent ex-
ecutable (PIE) for dynamic-prelink. Original prelink cannot
support PIE prelinking due to modification of binary. But
we have a plan to adapt dynamic-prelink to PIE. Because
dynamic-prelink does not modify shared libraries, we expect
that PIE can be prelinked by dynamic-prelink. In addition,
we will solve a issue about the fixed base address of new
dynamic linker (ldp.so). We anticipate that ldp.so is loaded
into random address as well as dynamic linkers (ld.so,
ldp.so) can be unified to one component by modifying
kernel’s exec() mechanism.

References
[1] Jelinek, Jakub. Prelink. Technical report, Red Hat, Inc., 2004. available

at http://people.redhat.com/jakub/prelink. pdf, 2003.
[2] Bojinov, Hristo, et al. "Address space randomization for mobile de-

vices."Proceedings of the fourth ACM conference on Wireless network
security. ACM, 2011.

[3] van Veen, Sander Mathijs. "Concurrent Linking with the GNU Gold
Linker." (2013).

[4] Shacham, Hovav, et al. "On the effectiveness of address-space ran-
domization."Proceedings of the 11th ACM conference on Computer
and communications security. ACM, 2004.

[5] Spengler, Brad. "Pax: The guaranteed end of arbitrary code execution."
(2003).

[6] Loosemore, Sandra, et al. The GNU C libraryreference manual. Free
software foundation, 2001.

[7] Chamberlain, Steve, and Ian Lance Taylor. "Using ld: the GNU Linker."
(2003).

[8] "Apple OS X Mountain Lion Core Technologies Overview". June 2012.
Retrieved 3 December 2013.

[9] Dai Zovi, Dino A. "Apple iOS 4 security evaluation." Black Hat USA
(2011).

[10] "Android Security". Android Developers. Retrieved 9 December 2013.
[11] Windows, I. S. V. "Software Security Defenses." (2012).
[12] Payer, Mathias. "Too much PIE is bad for performance." (2012).
[13] Tool Interface Standards Committee. "Executable and Linkable For-

mat (ELF)." Specification, Unix System Laboratories (2001).
[14] John Moser. Prelink and address space randomization, 2006.

http://lwn.net/Articles/190139/.
[15] De Raadt, Theo. "Exploit mitigation techniques." (2005).
[16] Xu, Haizhi, and Steve J. Chapin. "Improving address space random-

ization with a dynamic offset randomization technique." Proceedings
of the 2006 ACM symposium on Applied computing. ACM, 2006.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

38 Int'l Conf. Embedded Systems and Applications | ESA'14 |

A Computer Engineering Approach to Detect,
Prevent and Manage Diabetic Foot Diseases

1Olawale David Jegede, 1Ken Ferens, 2Bruce Griffith, 3Blake Podaima, 1Ramin Soltanzadeh

1Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
2Avriel International Inc., Winnipeg, MB, Canada

3Internet Innovations Center, Winnipeg, MB, Canada
Ken.Ferens@umanitoba.ca

Abstract—Diabetes is one of the leading causes of

death in humans, which results from many complications
that include hyperosmolar hyperglycemic state (HHS),
diabetic ketoacidosis, kidney failure, heart disease,
sensory neuropathy and damage to the eye. In 2011,
diabetes accounted for 1.4 million deaths worldwide,
making it the 8th leading cause of death. There is a need
to prevent and manage this disease to avoid further
complications in existing patients. This paper proposes a
smart shoe system, which employs wireless technology
and intelligent interpretation of sensed data to detect,
prevent and manage chronic diabetic foot diseases.

Keywords— Wireless Networks, Local Area

Network, Wide Area Network, Sensors, Sensory
Neuropathy, Diabetes Mellitus, Operating System,
Application, Readings, Data.

 Introduction 1.

Diabetes is a disease that leads to too much sugar

in the blood. The widespread presence of diabetes
mellitus (DM) or simply diabetes cannot be
underestimated. In their work “global prevalence of
diabetes – estimates for the year 2000 and
projections for 2030”, Wild et al [1] estimated the
prevalence of diabetes for all age-groups globally to
be 2.8% in the year 2000; it was also estimated to
rise to about 4.4% by 2030. This rise in prevalence
has been largely attributed to corresponding increase
in population growth, aging, urbanization, and also
increase in the prevalence of obesity and physical
inactivity. According to the Danaei et al [2], in the
year 2008, it was estimated that about 347 million
people globally have diabetes. By 2013, the

International Diabetic Federation (IDF) reported this
estimate to have increased to 382 million people
with a prevalence of 8.3% [3]. The IDF also reported
the following:

 The number of people with type 2 diabetes is

on the increase in every country.
 The greatest number of people living with

diabetes falls within age bracket of 40 to 59
years.

Unfortunately, 80% of diabetic patients live in
low-and middle-income countries. The IDF also
projected that the number of people with diabetes
will have increased to about 592 million in less than
25 years’ time. The human and economic costs of
this disease cannot be underestimated. More money
was spent in the treatment of diabetes in North
America and the Caribbean than any other region of
the world. The IDF divided the global region into 7
and reported that an estimated health expenditure of
USD 263 billion was spent on diabetes in one of the
regions (the North America and Caribbean Region)
in 2013. This figure represents 48% of global health
expenditure on diabetes. Since almost half of the
death due to diabetes occurred in people whose age
falls within the working class (age less than 60), it is
necessary to invest in scientific approaches that can
prevent and manage the disease. In Manitoba,
Canada, the disease was declared a major public
health issue in 1996 [4]; one in 16 Manitobans was
reported to be diabetic in 2006 and the ratio keeps
going up. Major factors influencing this disease in
Manitoba include the higher rate of overweight and

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 39

obesity when compared to other provinces. Another
main factor is that Manitoba has the highest
concentration of Aboriginal people in Canada [5].
Diabetes has been reported to be prevalent among
Aboriginals due to genetic factors, unhealthy
lifestyle, socioeconomic problem and consumption
of food with high sugar content [6]. The impact of
the genetic factor is however not clear as it has been
unmasked by the other factors.

In this work we have focused on preventing

complications to the foot of diabetic patients. The
majority of diabetic patients suffer from a
complication known as sensory neuropathy. Sensory
neuropathy is a type of peripheral neuropathy which
is damage to the nerves of the human body that can
result to loss of movement, loss of sensation or affect
other aspect of health [7]. In particular sensory
neuropathy is most common to the foot of diabetic
patients; this is called diabetic neuropathy. It may
cause numbness to touch or movement, and reduced
or loss of sensitivity/feelings to happenings in the
foot such as humidity change, temperature change,
pressure change or injury. According to Armstrong
et al [8], this sensory neuropathy can lead to foot
ulcers in 15% of patients or surgical amputation in
85% of the patients. It has been reported that
diabetes accounts for the loss of about 100,000 limbs
each year in the United States [9]; foot damage
instantly doubles the chances of a diabetic’s dying
over the next decade when compared to a non-
diabetic. The neuropathic diabetic foot wounds are
followed by inflammation on the affected part of the
foot. Thus, it is important to measure this
inflammation. Some characteristics that can
distinguish spots of inflammation from non-infected
spots include difference in temperature, pressure
and humidity. In this work, our approach is to
develop a smart shoe that can detect wounds that
may occur to the foot of diabetic patients; thus,
preventing further complications such as foot ulcers,
amputations and death. This approach ensures
adequate management of diabetes.

The remaining sections of this write-up are

organised as follows. Section 2 represents related
work on diabetic foot wounds management and

prevention. Section 3 discusses our methodology
designed to monitor the conditions of the foot. In
Section 4, we have discussed some of the results
obtained and the implications. Section 5 concludes
the paper and gives future work.

 Related Work 2.

Some computer engineering approaches have

been developed to identify signs of injury in diabetic
patients at the early stage. Zequera et al [10]
identified several works which have measured
plantar pressures in order to detect injury in patients.
They advocated the quantitative evaluation of
repeated measurements of “plantar pressure and
postural balance”. They argue that this will help in
the evolution of clinical studies for application (app)
that can be used in the clinical settings to improve
the diagnostic evaluation. They conjecture the
following:

 The continuous performance of the Loran

platform on the same individual, for three
sessions, once a week, did not report any
significant variability.

 The changeability of plantar pressure and
postural balance measurement between
individuals is considerably more than intra-
individual changeability.

They established that the Loran Platform ensures

the possibility of obtaining repeated measurements
of the following variable: “percentage of load for
each foot (LLD), body barycenter (BBx and BBy),
foot barycenters (Bx and By), and a point of
maximum pressure”. These variables are used to
evaluate the balance control and plantar pressure
distribution in healthy individuals. Kanade at al [11]
also demonstrated that balance control is an essential
bio-mechanical parameter that can be used to
diagnose a diabetic foot. Frykberg et al [12] explored
the temperature parameter in determining areas of
inflammation on the foot. They introduced a novel
personal home care self-assessment device that helps
patients in examining the soles of their feet with a
combination mirror and liquid crystal temperature

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

40 Int'l Conf. Embedded Systems and Applications | ESA'14 |

sensitive pads. The device TempstatTM has been
designed to allow patients examine the plantar
surface of their foot easily as long as there is no
visual impairment. The device allows patient to
easily sight signs of cuts, bruises, irritation, swelling
or inflammation. The device operates such that color
difference between different parts of the foot indicate
temperature differences between the parts; an
indication of danger. Results show that the device
was easy to use and enhanced the ability of patients
to see the plantar surface of their feet. In using
temperature-based approach, Armstrong [13]
developed a simple self-evaluation home-based
dermal thermometry which offers a safe and
effective way to detect early signs of injury in
diabetic patients. Results show that self-evaluation of
the skin temperature using the developed device
resulted in reduced foot ulceration in high-risk
diabetic patients. Lavery et al [14] also evaluated the
effectiveness of an at-home infrared temperature
monitoring approach as a tool to prevent persons at
high risk for diabetes-related foot complications. The
reported results suggest that daily self-monitoring of
foot temperatures may be an effective tool that can
prevent possible foot complications in persons at
high-risk of diabetic related foot complications.
Another important parameter that can be used to
detect inflammation is the humidity of the skin.
Humidity simply is the quantity of water vapor in the
air. The temperature of the body when humidity is
taken into account is called the heat index. Thus, the
body feels much hotter than the actual temperature
whenever the relative humidity is high. The vice
versa is also true. The Centers for Disease Control
and Prevention [15] warns that diabetes makes it
difficult for the body to handle high heat and
humidity. Hot weather – temperatures of 80oF (27oC)
or above, with high temperature – can have adverse
effect on a diabetic patient’s medication and health.
In order to increase the level of accuracy of a
measurement device to the sensitivity of a patient’s
skin, our approach measures all of the three
parameters: temperature, humidity, and pressure at a
time.

 Computer Engineering Approach 3.

Measuring the temperature, pressure and humidity
of the foot can help mitigate against the risk of foot
ulceration [8]. Red “hot” spots are indicators of
inflammation; they are a warning sign of danger.
Typically the “hot” spots are associated with a
difference in the measure of any or all of
temperature, pressure or humidity at different spots
of the foot. The ideal is to have a uniform measure of
any of the parameter across the foot. If left untreated
a hot spot can lead to further complications. In this
work we have identified 8 hotspots that are sufficient
to monitor the well-being of the foot. The
distribution of the hot spots is:

 1 hotspot at the big toe
 1 hotspot at the third toe
 3 hotspots across the ball of the foot
 2 hotspot in the arch
 1 hotspot at the heel.

We have designed our smart shoe such that sensor

readings (data) of the temperature, pressure and
humidity are obtained for each hot spot at a set
interval of time. Fig. 1 shows the distribution of the
hotspots as explained earlier.

 Foot with hot spots. Fig. 1

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 41

3.1. System Model

 System Model. Fig. 2

Our system model is shown in 0. The various sub
systems are described below.

• Smart Shoe: We are developing a smart shoe that
can detect danger and mitigate against further
complications. We have termed the shoe “smart”
because of this functionality. Within the sole of the
shoe we have placed an Arduino microcontroller and
connected a Bluetooth module and sensors to
measure each parameter for each of the hot spots at
the same time. The microcontroller is designed to
obtain readings every second. The model and type of
microcontroller, sensors and Bluetooth used are
given in Table 1.

Table 1 Device used.

Device Functions

ATmega328 Microcontroller

DHT22 Measures humidity and
temperature

Strain gauge Measure pressure

HC-06 serial
Bluetooth brick

Enables Bluetooth
communication

The DHT22 [16] and the Strain gauge [17] are the
two sensors which have been placed at each hot
spots. They are connected to the ATmega328 as
described in the respective data sheets. We have
modified existing Arduino library to obtain readings
from the sensors. Since we have two sensors per hot
spot, the total number of sensor required for the 8 hot
spots is 16.

• HC – 06 Serial Bluetooth Brick: Majority of the
smart phones today have Bluetooth capability.
Bluetooth capability enables wireless connectivity
between devices. Smart phones generally support
operating systems including iOS, Android,
Blackberry and Windows. Each of these operating
systems today supports Bluetooth low energy. When
compared to other wireless communication
standards, the Bluetooth supports a much shorter
propagation range (1 – 100m); thus, it consumes less
propagation energy. We have chosen to use
Bluetooth because a mobile station (smart phone)
will typically be within the range of a Bluetooth and
consequently save more phone battery power. There
are a variety of Bluetooth modules available; we
have chosen the HC-06 because it is a plug and play
module that supports a wider range of operating
system versions [18]. We have connected the HC-06
module to the microcontroller as described in its data
sheet. The module allows the sensor readings on the
serial port of the controller to be transmitted
wirelessly to a connected smart phone.

• Smart Phone: A smart phone has more advanced
computing capability and connectivity than a basic-
feature phone. It has been reported that about 90% of
mobile phones in the world run on Android and iOS
mobile operating system [19]. A smart phone has the
capability of running apps that can be used to
monitor events from a wirelessly connected device.
In this case, we have paired the smart shoe with an
Android-based smart phone through Bluetooth.
There is an existing Android app that connects
through Bluetooth to an Arduino and displays
temperature readings [20]. We have modified this
app to display the sensor readings of the three
parameters at one hot spot. We have used the MIT
App inventor 1 platform [21] to develop the app. The

Central
Server

Smart Phone

Smart
Shoe

Bluetooth
Radio

Bluetooth
Connection

LAN /

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

42 Int'l Conf. Embedded Systems and Applications | ESA'14 |

app was programmed to display the readings every
one second. The smart phone is also connected to a
Central Server such that the phone sends the
obtained sensor readings to the server for processing.

• Central Server: This sub-system is designed to
receive sensor readings from the phone for the
purpose of data storage and interpretation by health
personnel. Software will be developed on the server
to store the readings and intelligently interpret the
implication of the readings.

 Experimental Results 4.

The sensors were connected to the port of the

Arduino board described in the data sheet. The
DHT22 (temperature and humidity sensor) and the
HC-06 Bluetooth module were connected to the
Arduino as given in Table 2. The strain gauge
connection to the Arduino also follows the data sheet
connection [22] [23]. The symbol “-” in Table 2
means there is no connection between the devices on
respective columns. It is important to note that these
are the readings for one hot spot. In 0, we have
presented the DHT22 sensor readings obtained after
every two seconds at the same environment
condition.

Table 2 Connection.

Arduino DHT22 Pin HC-06 Pin

D0 (Rx) - D0
D1 (Tx) - D1

D2 2 (Signal) -
Power 3.3V - V
Power 5V 1 -
Ground 4 G

Table 3 DHT22 Readings.

Parameter (Unit) Value

Humidity (%) 24.0
Temperature (oC) 23.9
Temperature (oF) 75.0
Temperature (oK) 297.0
Dew Point (oC) 2.1

Dew PointFast (oC) 2.1

As expected, we obtained the same reading in 0 as
the environmental condition was kept the same.
Also, as expected, these readings change when the
surrounding temperature and humidity conditions
also change. Figure 3 shows the temperature change
when the human body comes in contact with the
DHT22 over 1 minute. These readings were
obtained after every two seconds. Readings show a
linear relationship between the temperature reading
and time meaning the temperature changes at the
same rate with time. The significance of these
readings is that the sensor is sensitive enough to
ensure that after a certain set value of any of the
measured parameter (deemed not to be harmful to
the human body) is exceeded, the patient is notified
through a generated alarm which makes the patient
to check the foot and take necessary action(s).

 Temperature readings with time interval. Fig. 3

 Potential Limitations 5.

The successful usage of the wireless smart shoe

depends largely on the technical awareness of the
patient using it. For elderly patients who may have
problems with their eyesight, finger(s)/hand(s) and
other sensory organ, the usage of the smart shoe will
be hindered [24]. There is also the possibility of

0 5 10 15 20 25 30 35
24

24.5

25

25.5

26

26.5

27
T

e
m

pe
ra

tu
re

 C
ha

n
ge

 (
%

)

Time

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 43

patients not wanting to use the device. From the
economic perspective, the smart shoe may be
relatively costly for some patients; government or
insurance company’s subsidy will go a long way to
grant access to many patients. Also, in terms of the
shoe’s battery lifetime, there is a trade-off between
the battery power consumption (lifetime) and the
radio range. There are different classes of Bluetooth;
classes 1, 2, and 3 with radio range of approximately
100m, 10m and 1m respectively [25]. The higher the
radio range covered the higher the demand on
battery power; thus, the lower the battery lifespan.
The HC-06 (class 2) was used in this work because
we assumed a maximum distance of 10m between
the patient and the smart phone. The battery lifetime
is therefore less than that of a class 1 Bluetooth.
Although most Bluetooth applications are in indoor
conditions, the radio range may be much lower than
ideal due to signal attenuation due to obstructions
(walls, etc.) and signal fading due to reflections.
Another possible limitation will be the triggering of
the sensors when the ambient parameter (e.g.
temperature) is high although there may be no
danger to the patient’s foot. The alarm will mislead
the patient into thinking there is a dangerous
condition; this might affect the patient’s future
reaction to an alarm especially when there is a
danger. Thus, depending on the environment/climate
condition that the smart shoe is to be used, the
sensors might need to be calibrated differently.

 Conclusion and Future Work 6.

This work presents a computer engineering

approach to combine three important parameters that
can be used to measure the condition of the foot of
diabetics. Unlike previous works that had been done
in this area, combining these three features should
ensure more sensitivity to the conditions of the foot;
thus helping to prevent possible complications that
may result from untimely detection of hazardous
conditions to the foot. The sensors reading of the
foot temperature, humidity and biomechanical
pressure are transmitted to a smart phone through
Bluetooth. An app on the smart phone displays these
readings at specified time. We are currently working
on making use of smaller-sized humidity &

temperature sensor and combining it with the strain
gauge on a PCB that is small enough to occupy one
hot spot. This will be followed by a design in which
we can simultaneously obtain readings from all the
hot spots; the smart phone app is equally being
developed to graphically display these simultaneous
readings. The results obtained from measuring the
strain gauge has not been presented here because of
not-enough sensitivity. We are currently working on
adding an amplifier to increase the sensitivity in
other to obtain better readings. The results will be
published as part of future work. Also, further work
is to transmit the data to a central server over a LAN
or WAN. The central server will have software that
can store and interpret the data. This is to aid health
personnel in equally monitoring and analyzing
patients’ conditions.

 Acknowledgements 7.

The authors will like to acknowledge the support

of Dr. Bob McLeod and Dr. Marcia Friesen of the
Internet Innovation center, Department of Electrical
and Computer Engineering, University of Manitoba
for their advice and support during this research.

References

[1] S. Wild, G. Roglic, A. Green, R. Sicree and H. King,
"Global Prevalence of Diabetes - Estimates for the
year 2000 and projections for 2030," Diabetes Care,
vol. 27, no. 5, pp. 1047-1053, May 2004.

[2] G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J.
Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y.-H.
Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M.
Riley, C. A. Robinson and M. Ezzati, "National,
regional, and global trends in fasting plasma glucose
and diabetes prevalence since 1980: systematic
analysis of health examination surveys and
epidemiological studies with 370 country-years and
2·7 million participants," Lancet, pp. 1-10, 2011.

[3] International Diabetic Federation, IDF Diabetes Atlas,
6 ed., 2013.

[4] Government of Manitoba, "Manitoba Healthy
Living," [Online]. Available:
http://www.manitobahealthyliving.ca/are-you-at-risk.
[Accessed 21 04 2014].

[5] Canadian Diabetes Association, "At the tipping point:
Diabetes in Manitoba," [Online]. Available:

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

44 Int'l Conf. Embedded Systems and Applications | ESA'14 |

https://www.diabetes.ca/CDA/media/documents/publi
cations-and-newsletters/advocacy-reports/canada-at-
the-tipping-point-manitoba-english.pdf. [Accessed 21
04 2014].

[6] L. E. Dyck, "Diabetes and Aboriginal Canadians,"
Saskatchewan, 2010.

[7] Wikipedia, "Peripheral Neuropathy," 2014. [Online].
Available:
http://en.wikipedia.org/wiki/Peripheral_neuropathy.
[Accessed 21 04 2014].

[8] D. Armstrong, M. Sangalang, D. Jolley, F. Maben, H.
Kimbriel, B. Nixon and I. Cohen, "Cooling the foot to
prevent diabetic foot wounds," Journal of the
American Podiatric Medical Association, vol. 103,
pp. 103-108, 2005.

[9] Orpyx, "SurroSense Rx System," Orpyx, [Online].
Available: http://orpyx.com/pages/surrosense-rx.
[Accessed 23 04 2014].

[10] M. Zequera, L. Garavito, W. Sandham, J. C. Bernal,
Á. Rodríguez, L. C. Jiménez, A. Hernández, C.
Wilches and A. C. Villa, "Diabetic Foot Prevention:
Repeatability of the Loran Platform Plantar Pressure
and Load Distribution Measurements in Nondiabetic
Subjects during Bipedal Standing—A Pilot Study,"
Electrical and Computer Engineering, vol. 2011, pp.
1-14, 2011.

[11] R. Kanade, R. V. Deursen, K. Harding and P. Price,
"Investigation of standing balance in patients with
diabetic neuropathy at different stages of foot
complications," Clinical Biomechanics, vol. 23, no. 9,
p. 1183–1191, 2008.

[12] R. G. Frykberg, A. Tallis and E. Tierney, "Diabetic
Foot Self Examination with the Tempstat™ as an
Integral Component of a Comprehensive Prevention
Program," The Journal of Diabetic Foot
Complications, vol. 1, no. 1, pp. 13 - 18, 2009.

[13] D. G. Armstrong, "At-Home Skin Temperature
Monitoring Reduces Diabetic Foot Ulceration,"
Review of Endocrinology, pp. 53-55, 2008.

[14] L. A. LAVERY, K. R. HIGGINS, D. R. LANCTOT,
G. P. CONSTANTINIDES, R. G. ZAMORANO, D.
G. ARMSTRONG, K. A. ATHANASIOU and C. M.
AGRAWAL, "Home Monitoring of Foot Skin
Temperatures to Prevent Ulceration," Diabetes Care,
vol. 27, no. 11, pp. 2642-2647, 2004.

[15] Centers for Disease Control and Prevention, "Prepare
for diabetes care in heat and emergencies," 1 07 2013.
[Online].Available:
http://www.cdc.gov/features/DiabetesHeatTravel/.
[Accessed 22 04 2014].

[16] Arduino, "Class for DHT11, DHT21 and DHT22,"
Arduino, 11 02 2014. [Online]. Available:
http://playground.Arduino.cc/Main/DHTLib.
[Accessed 24 04 2014].

[17] Digi-Key Corporation, "CEA-06-250UW-350,"
Micro-Measurements (Division of Vishay Precision
Group), 2014. [Online]. Available:
http://www.digikey.com/product-
search/en?vendor=0&keywords=1033-1013-nd.
[Accessed 24 04 2014].

[18] Itead Studio, "Electronic Brick of HC-06 Serial Port
Bluetooth. Available:," 2013. [Online]. Available:
http://inmotion.pt/documentation/others/INM-
0750/DS_IM120710006.pdf. [Accessed 24 04 2014].

[19] C. Arthur, "Nokia revenues slide 24% but Lumia sales
rise offers hope," 2013.

[20] Kerimil, "How to control Arduino board using an
Android phone and a Bluetooth module," 18 02 2013.
[Online]. Available:
http://www.instructables.com/id/How-control-
Arduino-board-using-an-Android-phone-a/.
[Accessed 24 04 2014].

[21] Massachusetts Institute of Technology, "MIT App
Inventor," 2014. [Online]. Available:
http://appinventor.mit.edu/explore/.

[22] P. Fenner, "Reading Strain Gauge Scales with
Arduino," Deferred Procrastination, 2014. [Online].
Available:
https://www.deferredprocrastination.co.uk/blog/2013/
reading-strain-gauge-scales-with-Arduino/. [Accessed
04 24 2014].

[23] E. E. S. Exchange, "How to wire up a 3-wire load
cell/strain gauge and an amplifier?," Electrical
Engineering Stack Exchange, 2012. [Online].
Available:
http://electronics.stackexchange.com/questions/18669
/how-to-wire-up-a-3-wire-load-cell-strain-gauge-and-
an-amplifier. [Accessed 24 04 2014].

[24] J. Woodbridge, A. Nahapetian, H. Noshadi, M.
Sarrafzadeh and W. Kaiser, "Wireless Health and the
Smart Phone Conundrum," in The 2nd Joint
Workshop On High Confidence Medical Devices,
Software, and Systems (HCMDSS) and Medical
Device Plug-and-Play (MD PnP) Interoperability, San
Francisco, CA, 2009.

[25] Wikipedia, "Bluetooth," Wikipedia, 21 May 2014.
[Online].Available:
http://en.wikipedia.org/wiki/Bluetooth. [Accessed 23
May 2014].

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 45

Criteria-based Research on Fundamentals of Embedded System
Development in Higher Education

Steffen Büchner1 and Sigrid Schubert1
1Didactics of Informatics and E-Learning, University of Siegen, Siegen, Germany

Abstract— Computer science in general, and embedded
system development in specific, is experiencing a fast change
in technology paradigms. Educators have to decide which
of the current topics last long enough to be fundamental
and thus, worth teaching. Based on normative and empir-
ical data, this paper discusses which didactic criteria are
needed to identify fundamentals of a discipline. The authors
are focusing on embedded system development in higher
education. Examples and counterexamples of fundamentals,
as well as an analysis of a practical course for embedded
system beginners, illustrate the benefits of this procedure.

1. Motivation
Computer engineering is a rapidly evolving discipline with

a large body of knowledge. It has a major influence on
today’s society in terms of technology expectations. This is
especially true for embedded system devices in the consumer
market (e.g. smart phones or printers). The DFG-funded
research project Competence development with embedded
micro- and nanosystems (KOMINA) [1] introduced the “Em-
pirically Refined Competence Structure Model (ECSM)” to
provide educational groundwork for higher education. It is a
structured and rated collection of competence descriptions
which are linked to embedded system development. The
project members have been researching the development
of embedded micro- and nanosystems (EMNS) under the
presumption of diverse prior knowledge of the students.
This helps to improve courses, lectures and practicals. One
example is the reconstruction of a hardware-oriented practi-
cal at the University of Siegen, which now fosters the best
rated competences contained in the ECSM. Based on theses
results, we investigated the ideas behind the most commonly
used techniques, methodologies, and principles. We expect
those to be valuable for:

1) Future learning sessions, because the nature of the
idea is well known and will be applicable to different
contexts and situations.

2) Establishing relations between different knowledge
areas by referring to the underlying principles.

3) Helping the graduates to decide which topics and ideas
will be relevant for further education. The proposed
concept itself can later be used as a tool by the
students.

In order to check whether an idea is fundamental to
embedded system development, educators need criteria es-
pecially aligned to this field of application and the target au-
dience. With respect to the three major curriculum layouts of
computer science [2], the body of knowledge of our audience
is at least 40 - 50 % computer science-related. The remaining
parts are specific to the students’ subsidiary subject or/and
the field of application (e.g. computer scientists with minors
computer engineering, media studies, electrical engineering
or medical science).

2. Prerequisites and Methodology
The ECSM is the foundation for further research on em-

bedded system education. It was derived from a two-staged
research process. First, a set of subject-related competence
descriptions were extracted from curriculum recommenda-
tions of the ACM/IEEE and the German Research Society.
Those competences were clustered into four dimensions,
namely:

• competences as preconditions (C1),
• development competences (C2),
• multi-level development competences (C3),
• non-cognitive competences (C4).
Every dimension (C1-C4) contains several sub-categories

which themselves are built of related competence descrip-
tions extracted form the previously mentioned documents.
For the second stage of the research methodology, KOMINA
asked 171 embedded system experts at German univer-
sities to rate the importance of every listed competence
description. Possible answers were “very important (VI)”,
“rather important (RI)”, “rather unimportant (RU)”, and
“very unimportant (VU)”. This step was necessary to verify
the normative proceeding done earlier. An additional benefit
was, that different levels of importance and their correlations
were derived. The collection of the best-voted (more than
50% voted for “very important”) competences is shown in
Table 1.

The different sources in the normative proceeding lead
to heterogeneous competence descriptions. Their level of
detail, as well as, their specificity differs greatly. While these
descriptions are sufficient enough to investigate into further
research, they do not contain guidelines for course creation.
Take for example the competence descriptions listed under
C2.2 and C3.1 in Table 1. While the term special constraints

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

46 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Table 1: The majority of the survey participants rated this
competence as very important [1]

Competences VI RI RU VU

C1.1 Precondition Competences 57,9 38,6 3,5 0

Mathematics

C2 Development Competences 56,9 41,4 1,7 0

C2.1 They learn goal-oriented and structured proceeding for design

C2 Development Competences 56,9 29,3 13,8 0

C2.2 They know the special constraints of the design of embedded
systems

C2 Development Competences 61,4 35,1 3,5 0

C2.3 They gain elementary knowledge and basic comprehension about
the most important technologies and about the most important concepts
that are needed for design and analysis of computer-assisted systems

C2 Development Competences 54,4 36,8 8,7 0

C2.3 They understand the assembly and the function of all important
basic circuits and computer units

C2 Development Competences 56,9 29,3 12,7 1,7

C2.4 They can design circuits using a description language

C3 Multi-level Development Com-
petences

59,7 36,9 3,5 0

C3.1 They learn the acquaintance of the programming language C and
its interplay with the hardware. At the same time basic functionality
and the interplay of basic components of an operating systems, with
the focal point on efficient resource management, are procured

C3 Multi-level Development Com-
petences

55,2 41,4 1,7 1,7

C3.2 They have the ability to understand the relationship between
hardware concepts and the impact on the software, to create and apply
efficient programs as well as building a computer of basic components

C4 Non-cognitive Competences 56,9 39,7 3,4 0

C4.2 They can communicate competently in a professional field with
engineers and electrical engineering technicians as users of computer-
science

C4 Non-cognitive Competences 62,1 32,8 5,2 0

C4.3 They have the openness for new ideas/requirements

C4 Non-cognitive Competences 77,6 22,4 3,5 0

C4.3 They show willingness to learn

C4 Non-cognitive Competences 70,7 27,6 1,7 0

C4.3 They show willingness for commitments

is very vague, the relation of the programming language
C and its interplay with the hardware is very specific. We
searched for a way to unify those competence descriptions.
From the perspective of computer science education, a
unification of the competence descriptions is very desirable.
University teaching staff could choose the most fundamental
subjects, concepts and ideas and join them in the course

design.

2.1 Determining Fundamentals
Different approaches to find fundamental content have

been proposed for more than fifty years. The fundamental
ideas are the most popular approach, first mentioned by
Bruner [3]. These universal, fundamental, or great principles
have been a research subject in e.g. biology[4], mathematics
[5] and computer science [6]. Schwill defined the mandatory
criteria for a fundamental idea by stating:

“A fundamental idea with respect to some domain
(e.g. a science or a branch) is a schema for
thinking, acting, describing or explaining which
(1) is applicable or observable in multiple ways in
different areas (of the domain) (horizontal crite-
rion),
(2) may be demonstrated and taught on every
intellectual level (vertical criterion),
(3) can be clearly observed in the historical devel-
opment (of the domain) and will be relevant in the
longer term (criterion of time),
(4) is related to every language and thinking (cri-
terion of sense).”[6, p. 7]

He later added the criterion of objective which addresses
the, sometimes idealistic and unreachable, goal of an idea
[7]. Meyer and Land developed a similar approach named
threshold concepts, which is used for identifying important
learning content, too. They developed the methodology
after the observation “that in certain disciplines there are
’conceptual gateways’ or ’portals’ that lead to a previously
inaccessible, and initially perhaps ’troublesome’, way of
thinking about something” [8, p. 1].

One example of a threshold concept is the pointer-concept
in the C++ programming language. The fundamental idea be-
hind this topic is, however, call-by-reference. In our opinion,
fundamental ideas seem to be more appropriate for higher
education, because they are technique independent and thus
provide a better foundation for further learning and more
possible combinations with other ideas.

2.2 Methodology and Rating
Schwill only examined software engineering. Domains

like technical- and theoretical computer science and closely
related disciplines like computer engineering have not been
investigated. Thus, the fundamental ideas exposed, are not
computer science-, but software-engineering specific. Addi-
tionally, the selection of ideas has been constructed prag-
matically. Schwill explained his understanding of software
development in relation to the Software Life Cycle and
highlighted important steps which eventually led to terms
worth checking (e.g. algorithms and compilers).

Another approach was proposed by Zendler & Spannagel
[9]. They set up a questionnaire for experts who had to
evaluate the importance of a collection of concepts using

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 47

the four criteria shown earlier. The items for this survey
were taken from the ACM Computing Classification System
(version 1998), resulting in a complete, but ambiguous
collection of ideas which contains items like object, in-
formation, process, theory or system. This is problematic,
considering their general nature. Deciding whether system is
a widely applicable concept may be answered differently
when thinking about autonomous systems like embedded
ones, or operating systems as the abstraction layer between
hard- and software.

To summarize, the results of the KOMINA project, as well
as the research of Zendler & Spannagel, should be enhanced
with more detailed and homogeneous content naming. The
ACM and the IEEE updated their classification system
recently and now provide additional information about the
relation of terms (for instance used for, broader term, and
narrower term) which puts the content in a specific context.
Other options for deriving terms and subject areas include
the ISO Standards catalogue, curricula recommendations,
and the ACM Transactions. The Transactions on Embedded
Computing (TECS) are of particular interest, because of
the focus on actual scientific and practical problems of
embedded system development. In addition, the publication
frequency of TECS allows for a huge collection of terms
and ideas to be analysed. From 2007 to 2013, there have
been 38 issues on all topics of embedded system develop-
ment, for instance Critical Systems, Multimedia Systems, or
Smart Home- and Energy-Efficient systems. The scope of
challenges and interests ranges from requirements gathering,
design and implementation, to validation concerns.

3. Specific Adaptation of Important Cri-
teria

Schwills goal was the determination of fundamental ideas
of computer science. He took the software development
process as one popular field of application to draw conclu-
sions on the whole discipline. The research of the authors is
concerned with the development of embedded systems which
state a more interdisciplinary challenge than traditional soft-
ware development. Influences of mathematics, physics, and
electrical engineering need to be considered. Therefore, the
criteria must not only be relevant to computer science, but
to adjacent disciplines, too. Former research always targeted
school education and thus, an implementation equal or at
least similar to the spiral curriculum. While a spiral curricu-
lum can be realized in higher education, too, it is much more
difficult because of elective courses, heterogeneous student
knowledge and different student minors.

Besides, the goals of higher education are different from
those of school education. Whereas Schwills criteria in-
cluded relations to “everyday language and thinking”, the
criteria of our audience should be focused on scientific
reasoning and work-life related competences.

Schwills criteria are nonetheless a good start for an
amended version, aligned to the target audience and the field
of application. The following section names the differences
between both research settings and describes how the criteria
have to be revised.

3.1 Horizontal Criterion
The initial definition of the horizontal criterion can be

applied to higher education for the most part. The only
distinction is made on the term “discipline”. Embedded sys-
tem development is interdisciplinary because it incorporates
principles from different fields of research. For instance,
Analog-to-digital conversion can be seen as an electrical
engineering- or a computer-science-principle. In our opinion,
the notion is not important as long as the relation to
embedded systems development is apparent. Incorporating
adjacent disciplines seems therefore reasonable.

3.2 Advanced Training Criterion
The vertical criterion is removed, because the so-called

spiral curriculum of general knowledge is not the focus of
higher education. Undergraduates and graduates alike should
be able to comprehend how an idea works and for what
difficulties it might be useful for. Likewise, mediating the
learning content to the students should be no matter of the
students’ major or minor subject as long as they belong
to the target audience (see Section 2). This means, that no
specialists” knowledge is needed to recognize the value of
the idea, which implies that the idea has a general nature.
In this way the criterion makes sure that the related learning
content is a cornerstone for further education.

3.3 Criterion of Time
The criterion of time is taken over without modification.

As the curriculum recommendations from the ARTIST Net-
work of Excellence [10] highlight, different disciplines have
their own understanding of embedded systems, without nec-
essarily using the same term. Investigations should therefore
not only be limited to the history of computer science, but
adjacent disciplines, too.

3.4 Criterion of Objective
Zendler & Spannagel argue that the criterion of objective

is hardly tangible. In addition, it is already justified if one
can name the intention of an idea. Finding counterexamples
is difficult because every idea has an intention. In the authors
opinion the difference between the two terms idea and
concept is never strict, with or without this criterion. In
addition, an idea can only have a relation to work-life or
scientific-work if it tries to fulfill an objective, regardless of
reaching it or not. We see no advantage in the takeover of
this criterion. Quite the reverse, adopting this criterion would
overlap with our understanding of the criterion of sense.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

48 Int'l Conf. Embedded Systems and Applications | ESA'14 |

3.5 Criterion of Sense
Schwill wrote about the criterion of sense: “From the ped-

agogical point of view this criterion is closely linked to the
Vertical Criterion. Whenever we have to teach a fundamental
idea on a low intellectual level, i.e. we have to give students
a first vague impression of the idea, we may begin with
those situations in everyday life where a fundamental idea
becomes apparent.” [11]. In contrast to school education,
undergraduates need to know where ideas are observable
and applicable in professional and scientific fields of work.
The latter is especially important for graduates which might
continue their university career by becoming a PhD student.
As can be seen in the quoted statement, this criterion is
related to the advanced training criterion (former vertical
criterion), since depicting the impact of an idea in a practical
or scientific context is similar to the introduction of the idea
to a group of learners on a low level.

3.6 Criterion of Variance
The criteria that have been described till now support a

very structured methodology to determine fundamental ideas
out of a pool of suggestions. By applying every criterion to
every idea, a comprehensive collection of important ideas for
future experts of embedded systems can be determined. In
a first proof-of-concept, we tested how well the methodol-
ogy categorizes ideas of current embedded system design
research (see section 4). We used the TECS collection
described earlier. One observation therein has been, that such
an approach bears the risk to have rather similar items with
only minor deviations. We therefore propose the criterion of
variance, which requires a new facet not contained in any
other idea, or the connection of multiple existing ideas in a
new way.

4. Critique and Examples
While the benefits of research on fundamental ideas have

been stated in the last three sections, the concept has its
weaknesses, too. Those are:

• Fundamentality of ideas: There is no guarantee that
the fundamentals examined are those, which all experts
agree on. One way to ease this problem is to state the
discussion of the idea under observation in the context
of every criterion. Thus, the reasoning is comprehensi-
ble. In fact, one of the big advantages of the concept
is that the argumentation of experts are unified on a
methodological level. This does not necessarily mean
that all experts agree upon the determined ideas, but
that the discussion can take place with a well-defined
set of criteria.

• Completeness of the catalogue: The list of fundamen-
tals is most likely not complete. Taking an external
body of knowledge (like TECS) as a starting point

seems to be reasonable because it provides an exhaus-
tive view on the methods, techniques, and subjects
which depict fundamental ideas.

• Appropriateness of the criteria: The third argument
against fundamental ideas is the presumption that every
idea can be justified with the proposed criteria. While
it is true that some criteria are rather vague, we will
give examples and counterexamples of ideas for every
criterion to show their application.

The following examples and counterexamples are based
on the Transactions on Embedded Computing (TECS), al-
ready mentioned earlier. These calls provide descriptive list-
ings of topics which are currently a research subject. Every
method, technique, or issue containing the word design or
architecture has been recorded. Those which did not contain
one of those words, but are naturally related to at least
one of the keywords were recorded, too (e.g. Models of
Computation).

Table 2: Concepts, Techniques, and issues related to design
and architecture of embedded systems

Nr. Items
1 Models of computation and concurrency
2 Hardware/Software Co-Design
3 Platform-based design
4 Component-based design
5 Environment-constraint aware design
6 Co-Simulation and Verification
7 Synchronous and asynchronous design
8 Massively parallel architectures
9 Reconfigurable Computing
10 Run-time systems and middleware
11 Design, verification, and evaluation methodologies
12 Design-Space exploration
13 Estimation of system characteristics in an early stage of

development
14 Architecture- and domain specific languages
15 Non-functional constraint aware design
16 Network-On-Chip architecture and design
17 Heterogeneous hardware design with special resources
18 Design methodologies and languages for Real-Time embed-

ded systems
19 Protocols, interfaces and interactions between architectures
20 Model-based design
21 Probabilistic software design and computing architectures
22 Architecture customization techniques
23 Trade-Off analysis
24 Design-time optimization for cyber-physical systems
25 Embedded wireless network architectures
26 Innovative real-time operating system architecture for em-

bedded system

Topics which are too vague have not been included
in Table 2. One example for a dismissed item is tools,
infrastructures, and architecture found in the TECS call on
Real-Time, Embedded and Cyber-Physical Systems, 2013.
Keep in mind, that all given examples and counterexamples
are only discussed with regard to one criterion. To be of
fundamental value, all criteria have to be satisfied. A whole
list of all possible combinations is beyond the scope of this
article.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 49

The horizontal criterion justifies “Models of Computa-
tion (MoCs)”. Those define rules on how information is
processed inside a model. A graphical representation is
commonly used. The key idea behind this concept is to
map computational parameters to a descriptive language
(the model). This step allows the simulation or analysis of
certain tasks by using the model. Areas in which this idea is
needed range from organizing the overall packet structure of
functional and logical units inside the development process
to communication strategies of multiple network-connected
entities (e.g. Kahn-Process-Networks or State-Charts).

One counterexample of the horizontal criterion is Model-
driven Design. The idea is to use the specification document
as the implementation instead of separating requirements
gathering (list or text document), design (abstract models)
and implementation (source-code) into different documents.
There are multiple reasons for such a proceeding, e.g. the
closed connectedness between model and implementation,
or a “narrower” translation effort between designers and
customers by using domain specific languages.

Using a single modelling tool or description language
is very difficult because large systems usually consist of
several heterogeneous subsystems and conflicting modelling
requirements [12]. Taking an even further step to domain
specific models is often impractical in practice in terms of
reuse of developed artifacts (e.g [13]).

The concept of parallel execution will serve as an example
for justifying the advanced training criterion. It is heavily
used in soft- and hardware-development. The key idea be-
hind this concept is to separate information dependencies
where possible in order to speed up the processing. This
can either be in a communication or computational context.
It could falsely be taken as an approach to optimization only.
Hardware is naturally parallel which requires developers
to think about timing and information flow. Escaping the
view of sequential instructions, which is typical to computer
scientists, is important for further education.

A counterexample of the advanced training criterion
is the concept of massively parallel architectures and
design. At first glance, the example and counterexample
for this criterion seem to be similar, but they are not.
While massively parallel architectures make use of parallel
processing, the idea behind this concept is not just an
intensification or advance of parallelism. First, it is mainly
focused on computer organization or computer architecture
and therefore only relevant for a subset of students.
Secondly, massively parallel architectures include novel
attempts for redundancy or power consumption (more on
that in [14] and [15]). In addition, students have to be
familiar with parallelism before investigating into massively
parallel architectures. This topic is therefore too detailed to
be a basic for the target audience.

Hardware/Software Co-Design is a concept which is
justified by the criterion of time. Twenty years ago, the
time-to-market pressure on embedded system development
started to increase. In order to establish a system of reuse-
ability, programmable processors were used more and more.
Because hardware and software are fundamentally different,
developers and researchers evaluated design methodologies
which eased the difficulties and strengthened the features
of both worlds. Instead of a strict separation of hardware
and software in the development process, this concept unites
them on a functional level. Tasks can be assigned to hard-
ware, software or both, making Trade-Off analysis essential.
The idea behind this concept is somehow opposite to the Sep-
aration of Concerns-principle, recommended for traditional
software development projects. It is not necessarily about a
"‘vertical’" separation but separation in terms of computation
and communication, as well as architecture and application.

Following the success of a System-on-Chips, Networks-
on-Chip integrate a network of switches on a chip to widen
the communication bottleneck in parallel architectures. One
major benefit over traditional communication design is that a
developer is not directly concerned with the interconnection
of logical units, besides defining them in a high level
language like C++ or Java. The synthesizer/compiler will
synthesize the whole system to the hardware platform,
automatically refining the inter-resource communication.
The idea behind the concept is to automatically organize
network communication into a separate unit, comparable to
processing, memory or I/O units. Hemani et al., introduced
this approach in 2000 [16]. While a variety of research
papers refined and extended the concept, the practical
implementation is still at its beginnings. Therefore, this
idea is rejected by the criterion of time.

The criterion of sense is the one which highlights the
importance of a subject in terms of practical- and scien-
tific work. The reasoning can therefore be aligned towards
industry- or university-requirements, or even both. Co-Sim-
ulation and Co-Verification is such a subject which justifies
both aspects and therefore satisfies the criterion of sense. A
precondition for the approach is to simulate/model hardware.
This is problematic, since the mapping of Analog phenom-
ena to digital representations is not always possible. Due
to this option, one can use this simulation as an advantage
to design hardware and software simultaneously instead of
prototyping the software with a huge risk to obtain failures
at the later following step of system integration. While
researchers investigate in methodologies and tools to extend
existing practices, industry relies on Co-Simulation and Co-
Verification to cope with time-to-market requirements [17].

Probabilistic embedded computing is rejected by this
criterion. While it is a research topic on its own, the
practical impact is not widespread yet. This concept
aims at the implementation of embedded systems “[..]

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

50 Int'l Conf. Embedded Systems and Applications | ESA'14 |

using components which are susceptible to perturbations
from various sources [..]” [18, p. 1]. The idea behind
probabilistic approaches is to dismiss the objective of
building reliable and predictable components in favour
of methodologies which expect component failures. The
overall system ,however, is designed to be reliable by using
redundant components.

The criterion of variance is not just a mechanism for clus-
tering similar topics, but to differentiate ideas with strong in-
terconnections. Take for example the related subjects Model-
based design and Component-based design. They are not
equal but have a strong relation to one another. Structuring
a system by using components often takes place in model-
based design approaches. This does however not imply that
every model-based methodology utilizes components. Those
two would therefore justify the criterion of variance.

One counterexample can be found in programming lan-
guages. For instance, both VHDL and Verilog are Hardware
Description Languages with a similar scope of operation.
Neither of them would be fundamental because the differ-
ences between them are just too small. The idea behind both
is the specification of (reconfigurable) hardware by using a
description language.

We analysed a laboratory course created on the founda-
tions of the ECSM to check which relations to fundamental
ideas have been incorporated.

5. Application of criteria on a collection
of ideas

Besides the ECSM, the KOMINA project members carried
out an open, non-participating observation of a laboratory
course[19]. The practical was reconstructed according to the
best rated competences in the ECSM. This section will high-
light the relations between the practicals’ implementation,
the ECSM, and the fundamental ideas.

In previous years, all participants (about 60) had to
design a processor on basis of an FPGA. The students
now have to implement a home-automation with multiple
sensors and actuators, using micro-controllers, FPGAs, and
smart phones. This allows to mediate competences and
ideas regarding compilers, virtual machines, and different
programming paradigms. These are important in different
branches of embedded system development and, thus, in line
with the horizontal criterion.

The observation revealed, that most engineering stu-
dents had problems in programming. Simple techniques
like branches, loops, and variable declaration have been
understood in Java, but often falsely applied in C. The
participants were not able to implement a comparison of
an integer to a register value. Without the reconstruction of
the practical, those knowledge gaps would have not been
noticed.

As for the advanced training criterion, relations to hands
on practices for basic techniques like Ohm’s law or bridge
circuits can be seen. Overall, the whole practical has been
designed for embedded system beginners. Thus, almost all
tasks are in line with the reasoning of the advanced training
criterion.

Ideas which are historically accepted have been taken over
and correlate to the criterion of time. Analyzing a circuit with
oscilloscopes and function-generators are techniques which
pass the test of time for electrical engineering. Computer
science always relied on abstract model descriptions like
state machines. These can be used in connection with
micro-controller- and FPGA-programming. Those tools are
available within the Virtual Workspace (see [20]).

In the first run of the practical, the participants imple-
mented an already designed solution for a specific control-
ling problem. In the second run, the emphasis has been
put on the design part itself. This change is in line with
demands of professionals which require more graduates
knowing the overall system, instead of experts which do
not have a comprehension about the relations of all parts,
but in-depth knowledge in a specific area (i.e. [10]). Thus,
the role of design decisions and requirements analysis were
emphasized.

Another observation was surprising too. Most participants
had not been able to extract needed information out of data
sheets. This included hardware characteristics, interfacing
mechanisms, and general information. We believe that these
competences are mandatory for further education, but sel-
dom taught. Reading data-sheet and component specification
have been important for many years and will be of even more
importance in an age of globalization and outsourcing. The
need for those competences are in line with the high rating of
“(C1.7) scientific work” in the competence structure model
(see [1]). The practical course assigns this kind of search to
the students to mediate the needed competences, required in
industry and science (criterion of sense).

6. Conclusion & Further Work
We showed that the results of the KOMINA project

are difficult to apply in course design, because of the
heterogenity of the competence descriptions. We therefore
propose a refined version of the fundamental ideas which
are particularly suitable to face this problem. The illus-
trated approach unifies important competence descriptions of
computer-science- and adjacent disciplines. Several assump-
tions, like relations to every-day-life and needed profession,
do not permit a simple application of Schwills’ concept
of the fundamental ideas to higher education. Thus, we
reinvestigated into every criterion and realigned it to the
target audience with the result of introducing two new crite-
ria. These are the advanced training criterion which require
ideas to be a foundation for advanced topics in further
education and the criterion of variance which excludes topics

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 51

with similar ideas. A first proof-of-concept illustrated the
criteria’s usefulness for evaluating the benefits of learning
content in a practical course.

The proposed approach has only been shown superficially.
In order to receive a comprehensive catalogue of fundamen-
tals, all embedded system-related ideas of a collection (e.g.
TECS) need to be analysed. This is beyond the scope of this
paper. After identifying the fundamentals, didactic concepts
are needed to foster content and the competences linked to
those resulting in a set of embedded system specific teaching
recommendations.

References
[1] A. Schäfer, R. Brück, S. Büchner, S. Jaschke, S.

Schubert, D. Fey, B. Kleinert, and H. Schmidt, “The
Empirically Refined Competence Structure Model for
Embedded Micro- and Nanosystems”, in Proceedings
of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education, New
York, NY, USA, 2012.

[2] C. Hochberger, W. Karl, R. Kröger, E. Maehle, P.
Marwedel, U. Schmidtmann, and K. Waldschmidt,
“Curriculum Technische Informatik in Beachelor- und
Masterstudiengängen Informatik”, Mar. 2011.

[3] J. S. Bruner, The process of education. Harvard Uni-
versity Press, 1960.

[4] P. Nurse, “The great ideas of biology”, Clinical
medicine, vol. 3, no. 6, pp. 560–568, 2003.

[5] F. Schweiger, “Fundamental Ideas, A bridge between
mathematics and mathematical education”, in New
Mathematics Education Research and Practice, J.
Maass and W. Schlöglmann, Eds., Sense Publishers,
2006.

[6] A. Schwill et al., “Fundamental ideas of computer sci-
ence”, Bulletin - European Association for Theoretical
Computer Science, vol. 53, pp. 274–274, 1994.

[7] A. Schwill, “Philosophical aspects of fundamental
ideas: Ideas and concepts”, Lecture Notes in Infor-
matics, pp. 145–157, 2004.

[8] J. Meyer and R. Land, “Threshold concepts and
troublesome knowledge (2): Epistemological consid-
erations and a conceptual framework for teaching and
learning”, English, Higher Education, vol. 49, no. 3,
pp. 373–388, 2005.

[9] A. Zendler and C. Spannagel, “Empirical foundation
of central concepts for computer science education”,
Journal on Educational Resources in Computing
(JERIC), vol. 8, no. 2, p. 6, 2008.

[10] P. Caspi, A. Sangiovanni-Vincentelli, L. Almeida,
A. Benveniste, B. Bouyssounouse, G. Buttazzo, I.
Crnkovic, W. Damm, J. Engblom, G. Folher, M.
Garcia-Valls, H. Kopetz, Y. Lakhnech, F. Laroussinie,
L. Lavagno, G. Lipari, F. Maraninchi, P. Peti, J.
de la Puente, N. Scaife, J. Sifakis, R. de Simone, M.

Torngren, P. Verissimo, A. J. Wellings, R. Wilhelm,
T. Willemse, and W. Yi, “Guidelines for a graduate
curriculum on embedded software and systems”, ACM
Trans. Embed. Comput. Syst., vol. 4, no. 3, pp. 587–
611, Aug. 2005.

[11] A. Schwill, “Computer science education based on
fundamental ideas”, Samways, Brain (Hrsg.): In-
formation Technology–Supporting change through
teacher education. London: Chapman & Hall,
pp. 285–291, 1997.

[12] P. Marwedel, Embedded Systems Design - Embedded
Systems Foundations of Cyber-Physical Systems, 2nd.
Springer, 2011, ISBN 978-94-007-0256-1.

[13] C. Bunse, H.-G. Gross, and C. Peper, “Embedded
System Construction–Evaluation of Model-Driven
and Component-Based Development Approaches”, in
Models in Software Engineering, Springer, 2009,
pp. 66–77.

[14] I. Ahmad, “A massively parallel fault-tolerant archi-
tecture for time-critical computing.”, The Journal of
Supercomputing, vol. 9, no. 1-2, pp. 135–162, 1995.

[15] J. Torrellas, “Extreme Scale Computer Architec-
ture: Energy Efficiency from the Ground Up”, in
Application-Specific Systems, Architectures and Pro-
cessors (ASAP), 2013 IEEE 24th International Con-
ference on, IEEE, 2013, pp. 1–1.

[16] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J.
Oberg, M. Millberg, and D. Lindqvist, “Network on
chip: An architecture for billion transistor era”, in
Proceeding of the IEEE NorChip Conference, vol. 31,
2000.

[17] A. Hoffmann, T. Kogel, and H. Meyr, “A framework
for fast hardware-software co-simulation”, in DATE,
Feb. 13, 2006, pp. 760–765.

[18] K. V. Palem, L. N. Chakrapani, Z. M. Kedem,
L. Avinash, and K. K. Muntimadugu, “Sustain-
ing moore’s law in embedded computing through
probabilistic and approximate design: retrospects
and prospects.”, in CASES, J. Henkel and S.
Parameswaran, Eds., ACM, Oct. 26, 2009, pp. 1–10.

[19] S. Jaschke, S. Büchner, S. Schubert, A. Schäfer, and
R. Brück, “Competence Oriented Embedded Systems
Course for Computer Science Students”, in Pro-
ceedings of the Workshop on Embedded and Cyber-
Physical Systems Education, ser. WESE ’12, Tampere,
Finland: ACM, 2013, 6:1–6:7.

[20] S. Büchner and S. Jaschke, “Preparation for embed-
ded systems laboratories the virtual workspace ap-
proach”, in Global Engineering Education Conference
(EDUCON), 2013 IEEE, IEEE, 2013, pp. 171–175.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

52 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Embedded MTT-DAS Application Prototyping on an
FPGA based Multiprocessor Architecture

B.Senouci2, S.Niar1 ,J.Mitéran2, J.Dubois2

1University of Valenciennes Hainaut-Cambrésis ISTV2- Le Mont Houy, Valenciennes, France
2University of Burgundy, LE2I Laboratory, Dijon, France

ben.senouci@u-bourgogne.fr

 Abstract —Improving safety in automobile and vehicle
industry is one of the biggest preoccupations of embedded systems
designers. Driver Assistance System (DAS) is introduced specially
to deal with this concern and proposes solutions in order to assist
the car’s drivers with an efficient warning. In this paper we
present an FPGA based multiprocessor architecture for the
developed MTT-DAS application, then we introduce the notion of
software adaptation that signify the need for an embedded
Operating System to fill-in the gap between the MTT software
application and the HW multiprocessor architecture. Firstly we
show why an embedded operating system is needed for the
multiprocessor architecture based MTT-DAS application, and then
we study the porting and the debug of this embedded Operating
System on the top of multiprocessor FPGA architecture; secondly,
we describe the different steps of porting and validating the MTT
application on the hardware architecture, and discuss the HW/SW
integration step around the embedded operating system layer, and
lastly we present some results related to the MTT-DAS SW part
and the MTT-DAS HW part.

Keywords: MPSoC, Embedded operating system, FPGA based
design, Safety, HW/SW interface, Debugging,

1. INTRODUCTION
Improving safety in automobile and roads is one of the

biggest preoccupations in our every day’s life. Vehicles
Alert Systems (VAS) is introduced specially to deal with
this concern and proposes solution in order to assist the
car’s drivers with an automatic warning to evaluate quickly
a potential dangerous situation. In literature we refer to
these systems by DAS (Driver Assistance System).

One of the challenges addressed in this work is to fill in
the gap between the Multiple Target Tracking MTT-DAS
SW application and the FPGA based multiprocessor
architecture.

Contrasting the work presented in [2] [9], where the
mapping is done statically based on hand tasks allocation
with the use of some HW accelerators, here in this work the
mapping of the MTT’s tasks is done using an eOS in order
to increase the portability of the application, and allows
seamless management of the huge amount of the data
provided by the radars.

For that purpose we use the FPGA platform based
design approach with multiple processors (eg: Xilinx Virtex
family, Zynq, SmartFusion MicroSemi)

Unlike traditional MPSoC design/validation based
simulation techniques; hardware platform based design [1]

[3] [7] [9] allows a global and early validation in an
environment very close to the final implementation.

Recent research project focus on the use of DAS in
complex environments using camera-photo embedded in the
new car’s generation to detect obstacles; however these
techniques are not reliable in harsh weather conditions,
where the visibility will be tricky, also this existing alert
systems present limited functionalities with fixed
architecture and put up with expensive cost.

Radar based DAS system that operates even in very hard
conditions seems to be a better solution and promise a very
good ratio reliability/cost in automobiles safety applications
[2].

In our approach, the MTT-DAS system use several
radars embedded in a car to get information and signals
from obstacles and generates alarms for car driver. We
make out two parts in our DAS system; the SW part that
corresponds to the application executed by the processors
and the reconfigurable hardware multiprocessor architecture
that feet the ever increasing computation power of the SW
tasks. Especially, we discuss our viewpoint on DAS
application and its validation on the top of multiprocessor
architecture based on a FPGA fabric. This paper focuses
more on how the software adaptation is performed in order
to run and validate the application.

In MTT-DAS application, the putted up HW/SW system
has as objective to assist and help the driver to avoid
accidents. For that purpose, the car is kitted out with several
radars (sensors) that detect obstacles and transfer the data to
the electronic device (embedded circuit) in order to be
computed. Then, a small amount of data provided from the
radars can be computed using one computing node (one
processor), but once the amount of the data increase; due to
the number of the obstacles that can be manifested in the
same time; one computing node could not support the ever
increasing power computing taking into account the real
time constraints. Therefore, multiplying the number of
processors and parallelizing the execution for power
computing increase seems to be the best option. However it
presents several challenges, especially in the control level of
the architecture:

 In MTT application a huge amount of data is
received from the several radars; then, the control of
this data and their mapping on the computing nodes
present a real bottleneck,

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 53

 When we talk about the application mapping, we
will need dynamic control (ex: eOS, embedded
Operating System) that manages the tasks execution
on the multiprocessor architecture. The choice of
this eOS in terms of organization (centralized or
distributed), memory footprint, safety etc, will need
for a long time investigation.

 Programming multiprocessor architectures at
embedded operating system level is not only
complicated, but it makes very hard to choose an
inter-processor control in order that the performance
benefits expected from multiprocessing will not be
concealed by the communications overhead.

 Adding an eOS as an adapter layer between the
application’s task and the hardware architecture
need for a multifaceted development, and bring us
to a hard and long time debug process of the
HW/SW interface.

Furthermore, this DAS case study allowed us to
understand the debug difficulties in FPGA based design and
validation.

The rest of the paper is organized as follows: section 2
details some related works. Section 3 describes the
validation flow steps. Section 4 gives an insight of the
MTT-DAS application, while section 5 describes the HW
architecture. Section 6 describes the SW one. Results,
discussions and analysis are provided in section 7, while
section 7 concludes the paper.

2. RELATED WORK
Since long time the safety in automobile industry is

considered as an obligation in order to provide systems that
helps drivers to avoid road’s accidents. Many DAS systems
are available on the market place and already integrated in
cars industry. Parking aid with its ultrasonic sensors or
embedded cameras in the new cars generation illustrates
existent examples of these systems.

EyeQ2 [5] systems is one example of a single chip
dedicated to automotive security applications using vision
system, that consists of two 64- bit floating-point RISC
34KMIPS processors for scheduling and controlling the
concurrent tasks, five vision computing engines and three
vector microcode processors.

This architecture provides support for a specific set of
real time data intensive applications. In [6] authors present a
dynamically reconfigurable MPSoC (Multiple Processor
System on Chip) prototype for AutoVision system; It offers
functions such as object edge detection or luminance
segmentation, and are implemented as dedicated hardware
accelerators to ensure real time processing. Mainly, these
DAS based vision systems suffer from their reliability,
particularly in harsh environment where the visibility
become difficult or even impossible (cloudy weather, rain
and snow etc.).

Most of these systems used a pure software control
(embedded RTOS) in order to schedule and manage the
execution of the different tasks of the system.

Many embedded OSs are available, both in the market
place and in the open source community that include safety
support. Examples include QNX 4 RTOS, embedded Linux,
and eCos etc. The use of eOS is very helpful to enable
seamless porting of multithreaded application from one
architecture to another.

3. MTT-DAS VALIDATION FLOW
Figure 1 shows the validation steps for MTT-DAS

application. In this figure, the shaded part represents the
design steps that we are interested in for this work. We make
out three main steps:

1) Building the multiprocessor architecture on the top of
the Virtex 4 FPGA platform, then 2) Porting the MTT
application on the target multiprocessor architecture taking
into the account the software adaptation layer that map the
concurrent MTT tasks on the different computing nodes, and
3) Debugging the HW/SW interface on the top of the FPGA
fabric.

In the following paragraphs, we focus more on the shaded
part in the design steps. The key focus of this study is the
development and the debug of the software adaptation layer
for the MTT application.

Application Developpement

Automotive Safety Application

SW Adaptation Design
(OS,HAL)

HW/SW Integration
(Porting & Debug)

FPGA Fabric

Target HW Architecture

Final Embedded SW

Tasks Mapping

Parallelization

FPGA HW Prototype Design

HW Architecture

Middleware Design

Application Developpement

Automotive Safety Application

SW Adaptation Design
(OS,HAL)

HW/SW Integration
(Porting & Debug)

FPGA Fabric

Target HW Architecture

Final Embedded SW

Tasks Mapping

Parallelization

FPGA HW Prototype Design

HW Architecture

Middleware Design

Application Developpement

Automotive Safety Application

SW Adaptation Design
(OS,HAL)

HW/SW Integration
(Porting & Debug)

FPGA Fabric

Target HW Architecture

Final Embedded SW

Tasks Mapping

Parallelization

FPGA HW Prototype Design

HW Architecture

Middleware Design

Figure 1: FPGA based HW/SW Validation flow

The gap between the application tasks of the MTT-DAS
system and the target architecture needs for a software
adaptation. This gap represents the non-portability of the
software code on the target architecture. In FPGA based
design and validation, on one hand, the target architecture is
built using real components (CPUs, Memories, buses), on
the other hand the software application is captured at high

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

54 Int'l Conf. Embedded Systems and Applications | ESA'14 |

level of abstraction usually with a first native validation and
a lot of hypothesis on the hardware architecture, then this
gap deals exactly with this discontinuity between the two
parts of the MPSoC system. The software adaption layer is
introduced in order to fill in this gap.

The following sections detail the major steps in the
validation flow.

3.1 Parallelization and tasks mapping
To target the sequential application SW code on a

multiprocessor architecture, the code needs to be distributed,
i.e. parallelized using a parallel programming model on the
architecture. In this case study, the application has been
developed into concurrent tasks communicating with each
other via parallel programming primitives.

As parallel programming models suited to multiprocessor
architectures, there are two types: shared memory model
(e.g. OpenMP [12]) and message passing model (e.g. MPI
[10]). In our case study, we used hardware MPI as a parallel
programming model. The message passing interface is
represented by hardware communication channels
implemented in the FPGA and allows the concurrent tasks to
exchange data. The implementation of the hardware MPI is
detailed in implementation section.

3.2 SW Adaptation design
It’s one of the major steps in the validation flow. This

software adaptation step consists in developing a software
layer to feel in the gap between the application SW and the
HW architecture [3]. Usually, the application’s designer
performs a first native validation using simulation models
(RTL model) of the HW architecture (CPUs, memories, bus),
in that time the application’s designer stay far from the target
HW architecture by taking some supposition on the booting
system, scheduling strategy and the control.

Applications running on multiprocessor architecture
require sophisticated software adaptation layer. The notion
of the embedded operating system (eOS) is introduced
precisely to deal with this control and manage the parts of
the MPSoC that have been implemented in software.
Embedded OS provides a suitable abstraction allowing easy
mapping of application’s tasks on the many processor
architecture. Usually it’s developed in compliance with
standard application programmer interface (API-ex: POSIX),
at this level it makes this process even more effective and
enhances software portability and reuse across different
architecture. Depending on the computing nodes (resources)
available on the target hardware architecture, two main
control organizations are defined.
 Distributed: The implementation of the eOS is

distributed over multiple processors, each processor has
an identical/or specific copy of the eOS image loaded in
its nearby memory bank (local memory).

 Centralized: A single operating system to ensure all the
control software of the multiprocessor architecture

loaded in the main memory (global) and shared by all
the CPUs of the architecture.

A centralized control approach is used in this case study,
one eOS running on the large core (PowerPC) which
manages and distributes tasks on the other processor of the
architecture (small cores).

3.3 Target HW Architecture
As we target a complicated DAS application where we

trait a huge mount of information coming from several
targets/radars, a hardware architecture based on multiple
processor is needed. For that purpose, we built a
heterogeneous multiprocessor architecture using one
PowerPC for the control and several Microblaze for
computing DAS tasks.

3.4 HW/SW debugging
After the adaptation software design, designers need to

debug the porting of the software on the hardware
architecture. We define the term debug by debugging the
software adaptation layer on the FPGA itself and debugging
the interaction between the DAS tasks and the added SW
layer. In this work, HW/SW debug is done in a cycle
accurate way using FPGA prototyping platform, Xilinx
Virtex 4 [11], this has JTAG connector. The debugging step
starts by setting the debug options in EDK environment.
Then, the software part of system including the DAS
application tasks, the software adaptation, that complied and
downloaded on each processor of the hardware architecture.
At that time, the prototype of the entire HW/SW DAS
system is ready to validate. The debugging is supported by
breakpoints and source level checking.

4. MTT- DRIVER ASSISTANT SYSTEM
APPLICATION

Figure 5 shows the graph of DAS-MTT based tasks
application (Multiple Target Tracking).

Gate
Checker

Gate
Computing

Tracking
Filter

Cost Matrix
Generator

Assignement
Solver

Track
Maintenance

DATA Association

Track Estimation

Incoming
Data

Target

Estimation

Gate
Checker

Gate
Computing

Tracking
Filter

Cost Matrix
Generator

Assignement
Solver

Track
Maintenance

DATA Association

Track Estimation

Incoming
Data

Target

Estimation

Figure 2: DAS-MTT Task Graph

Mainly, the MTT application developed is represented

by five tasks communicate and exchange data with each

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 55

other. We designed and validated the DAS application case
study following the validation steps of the Figure 1.

Our main goal is to provide vehicle’s drivers a system
that assists them to avoid the collision with any kind of
obstacles during driving or parking time. Since several
obstacles could be defined, then the alarm provided by the
system must be appropriate for each obstacle in order to
predict the driver reaction on his car. Six radars are placed
on different side of the car; these radars get observations
from the obstacles in form of reflected signals that
considered as the input of the DAS task’s graph. Several
concepts are defined for DAS application:

Target: Stand for the obstacle
Track: Stand for the movement history of the Target

4.1 Gate Checker
In overall, the Gate Checker task receives the input

signal coming from the target via the radars, and test-
out/determined which track correspond to the detected
Target. Gate checking determines which observation-to-
track pairings are probable. The Gate Checker tests whether
an incoming observation fulfils the conditions set by the
state prediction and error covariance prediction [2].

4.2 Cost Matrix Generator
A mathematic computation is done by the Cost Matrix

Generator task in order to calculate the “Cost” for every
possible pair Target-Track. We mean here by “Cost” the
numerical distance between a Target and a Track in a full
matrix Mij; where “i” represent the observation signal of the
target, and “j” represents a prediction in the matrix tracks
history.
4.3 Assignment Solver

The cost matrix demonstrates a conflict situation where
several observations are potential candidates to be
associated with a particular prediction and vice versa. To
resolve the conflicts, the cost matrix is passed on to the
Assignment Solver block which treats it as the assignment
problem.
4.4 Tracking Filters

The Tracking filters block has to instantiated as many
times as the maximum number of targets to be tracked. In
our current work we have fixed this number at 20. We use
Kalman filters for this block since it is considered to be the
optimum recursive Least Square Estimator (LSE) for
Guassian systems [1] [2]. The Kalman filter continuously
cycles through a prediction correction loop. In the prediction
step, the filter predicts the next state and error covariance
associated with the state prediction. In the correction step, it
calculates the filter gain and estimates the current state and
the error covariance of this estimation.

4.5 Gate Computation
The Gate Computation sub-block of the data association

receives state prediction and error covariance prediction
form the tracking filters for all the targets. Using these two
quantities it defines the probability gates or windows which
are used to verify whether an incoming observation can be
associated with an existing track. The dimensions of the
gates being dictated by the prediction error covariance, these
gates demarcate the probability boundaries for the next state
coordinate measurements.

4.6 Track Maintenance
The Track Maintenance block consists of three

functions: the Observation less Gate Identifier, the New
Target Identifier and the Track Init/Del. The new target
identifier starts a counter for the newly identified target. If
the counter reaches 3 in five scans, the target is confirmed
and a new track is initiated for it. The counter is reset every
five scans. The case of Obs-less Gate indicates the
disappearance of a target from radar. The Obs-less Gate
Identifier looks for 3 consecutive misses in 5 scans to
confirm the disappearance of a target. The Track Init/Del
initiates new tracks or deletes existing ones when needed.

5. FPGA BASED HARDWARE ARCHITECTURE

5.1 HW Architecture Overview
Figure 3 gives a simplified block diagram of the

environment setting used for our experiments. The reader
looking for more details may refer to [8]. The FPGA
platform is composed mainly of two PowePC hard-cores
processors, one logic module about five million free gates,
configurable soft processor (Microblaze), and system buses
that is implemented as soft modules (OPB/PLB buses).
Moreover, the whole system is connected to a PC through
the JITAG port, and serial port to hyper terminal.

UART/RS232

PC/SW Tools

HyperTerminal

Program/Debug
JTAG Link

UART/RS232

PC/SW Tools

HyperTerminal

Program/Debug
JTAG Link

Figure 3: Virtex 4 Platform

Concerning the development environment, it is worth
mentioning that we used EDK 10.1 (Embedded

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

56 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Development Kit) to make up our project. In addition to
hardware configuration in the form of bitstreams, we may
supply software to initialize and operate the processors
core. Information about the software and the object code
itself for the Virtex-4/FX PowerPC/Microblaze processor is
specified by a (.bmm) and corresponding (.elf) files.

Timer

Global RAM

Sys
Bus

RS232
Terminal

IPLBDPLB

Data
Mem

Inst
Mem

PowerPC core

Icache Dcache

User
Logic

DOCMIOCM

PLB2OPB
Bridge

PLB2OPB
Bridge

IPIF

DLMBILMB

IOPBDOPB

Inst
Mem

Microblaze Core

Icache Dcache

Data
Mem

DLMBILMB

IOPBDOPB

Inst
Mem

Microblaze Core

Icache Dcache

Data
Mem

Timer

Global RAM

Sys
Bus

RS232
Terminal

IPLBDPLB

Data
Mem

Inst
Mem

PowerPC core

Icache Dcache

User
Logic

DOCMIOCM

PLB2OPB
Bridge

PLB2OPB
Bridge

IPIF

DLMBILMB

IOPBDOPB

Inst
Mem

Microblaze Core

Icache Dcache

Data
Mem

DLMBILMB

IOPBDOPB

Inst
Mem

Microblaze Core

Icache Dcache

Data
Mem

Figure 4: Multiprocessor Architecture

The configuration that we target is based on a large
processor core (PowerPC) and two small cores (Microblaze)
as shown in Figure 4.

6. EOS BASED SOFTWARE ARCHITECTURE
6.1 Software architecture

The MTT-DAS application is built on the top of the
FreeRTOS, an open source project. In Figure 1, the green
links represent the communication channels between the
different tasks of the MTT-DAS application.

6.2 eOS Overview
 The software architecture is built around a real time

embedded operating system (FreeRTOS), an open
source project.

HAL

Task
Fuctionality Semaphores

Boot

Intertask
Comm

Queues

Scheduler

CTX Switch

C Library

Mutexes

Hardware Architecture

HAL

Task
Fuctionality Semaphores

Boot

Intertask
Comm

Queues

Scheduler

CTX Switch

C Library

Mutexes

Hardware Architecture
Figure 5: FreeRTOS block diagram

Figure 3 shows its typical architecture. It composed
mainly of:

 Cooperative, pre-emptive and hybrid scheduler;

 Multiple inter-tasks communication schemes (queues,
semaphores, mutexes) ;

 Tasks and co-routine context;
 Hardware abstraction Layer.

6.3 Task synchronization
Synchronization is required whenever a shared data

needs to be accessed. In FreeRTOS, this is done using
different primitives: Mutexes, semaphores etc

6.4 Middleware: Tasks Communication layer
The MTT-DAS application is described as a graph of

communicating tasks, more particularly in the form of
message passing network. In this formalism, the tasks
communicate between them via FIFO channels (the links
between the boxes in Figure 2). Our implementation of this
communication library previews mainly two different
implementation schemes (SW or HW). In this case, SW and
HW communication FIFOs are synthesized on top of the
FPGA platform and are protected by semaphores.

6.5 SW on HW Mapping
The designer maps the parallelized SW code of the

MTT-DAS application on the built FPGA based
multiprocessor architecture. This includes mapping the
software parts (concurrent threads/eOS) on system memory
and mapping the concurrent threads on the top of the
multiprocessor platform architecture. In FPGA based design
approaches, the mapping of the different MTT-DAS tasks
on the HW architecture is the key process that associates the
function/task to the processing node. In our case (as shown
in Figure 6) the abstract architecture model consists of one
big PowerPC core and several small Microblaze cores. The
SW architecture is build around an eOS/FreeRTOS allowing
a static and distributed tasks scheduling policy. The several
processor cores (PPC, Microblaze++) a common view of the
architecture’s peripherals via the system bus (OPB). The
execution SW file (.elf) is physically loaded in the local
memory of the big core (PowerPC) and then the system boot
from their to initialize the eOS and create the main task and
scheduler queue of the MTT-DAS tasks. An MTT-DAS
function/task can be executed only on the small core that
allocated for allowing a static scheduling. In that way, the
system can be more efficient, increasing the global
architecture performance. As a comparison with the work
presented in [9], where the mapping is done statically based
on hand tasks allocation with the use of some HW
accelerators, here the mapping of the MTT’s tasks is done
using an eOS in order to increase the portability of the
application. And at this time all the MTT’s tasks are
implemented in software.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 57

PPC MB_0 MB_1

Memory Sys

FreeRTOS Scheduling

HAL HAL HAL

HW Arch

SW Arch

Gate Checker

Gate
ComputingTracking Filter

Cost Matrix
Generator

Assignement
Solver

Track
Maintenance

MemMemMem

MTT-DAS Tasks Application

S
W

 A
d

a
p

ta
ti

o
n

Bus System

T1 T2 T3

T4 T5 T6

Figure 6: HW/SW MPSoC System for MTT-DAS

7. EXPEREMENTATIONS RESULTS
In this centralized distributed configuration, the memory

footprint of the SW code (MTT-DAS + eOS) was around 14
Kbytes. This was the result of compiling more then 30 “C”
source files using PPC cross compiler, with –Os (size
optimized) as optimization option. Table 1 shows the code
size of software parts of the application in terms of
executable code size.

Table 1: Code size of the software part

Code Size
MTT-DAS 6 KBytes

eOS/FreeRTOS 8 KBytes
Boot-MB 1,2 KBytes

On the HW side, the logical synthesis process is
performed using XST tool. It does take about half an hour to
completely synthesis the hardware architecture on the Virtex
4 platform. Table 2 shows the synthesis logic results; where
the component names refer to the HW modules mentioned
in Figure 4. The other columns represent the logic size in
term of logic gates/Look-Up-Table, memory banks and
FlipFlops.

Table 2: Synthesis results of the hardware part

Component Slices 4 Input LUT Slice Flip

Flop
PowerPC 79 92 119

Microblaze 755 (2) 1510 (2) 741 (2)

System Bus 122 212 11

8. CONCLUSION
In this paper, a Multiple Target Tracking system is

presented in order to help the automobile industry to
improve their safety. A HW/SW based FPGA architecture is
presented for MTT fast computing. The HW architecture is
built on the top of a Virtex 4 FPGA, and the SW
architecture was built around an embedded RTOS
(FreeRTOS) that considered as an adaptation layer for the
MTT application. This adaptation layer, when the SW meets
the HW, is considered as the key challenges in MPSoC
HW/SW interface design. The goal behind using a
multiprocessor architecture with an RTOS for the control is
to increase the computing power and assure an optimal load
balancing, since several obstacles can be detected in the
same time, and increase hugely the amount of the data to
compute. Finally, using an FPGA based design allows for
the validation of the MTT application in an environment
very close to final implementation with a speed close to the
final MPSoC system. Acknowledgment

9. ACKNOWLEDGMENT
The present research work has been supported by International

Campus on Safety and Intermodality in Transportation the Nord-
Pas-de-Calais Region, the European Community, and the National
Center for Scientific Research. The authors gratefully acknowledge
the support of these institutions.

10. REFERENCES
[1] Yifan He, Dongrui She, Sander Stuijk, Henk Corporaal "Efficient

communication support in predictable heterogeneous MPSoC designs
for streaming applications" Journal of Systems Architecture, Volume
59, Issue 10, Part A, November 2013, Pages 878-888

[2] J.Khan, Smail Niar, Mazen Saghir, Yassin El-Hillali, Atika Rivenq,
"Driver assistance system design and its optimization for FPGA based
MPSoC," sasp, pp.62-65, 2009 IEEE 7th Symposium on Application
Specific Processors, 2009

[3] B.Senouci, A.Bouchhima, F.Rousseau, F.Pétrot, A.Jerraya
“Prototyping Multiprocessor System-on-Chip Applications: A
Platform-Based Approach” Journal IEEE Distributed Systems Online
archive Volume 8 Issue 5, May 2007

[4] http://www.freertos.org/
[5] G. P. Stein, E. Rushinek, G. Hayun, and A. Shashua, “A computer

vision system on a chip: a case study from the automotive domain,”
IEEE Conference on Computer Vision and Pattern Recognition
(CVPRW’05), p. 130, June 2005.

[6] C.Claus, W. Stechele, and A. Herkersdorf, “Autovision – a run-time
reconfigurable mpsoc architecture for future driver assistance
systems,” Information Technology, vol. 49, no. 3, pp. 181–187, 2007

[7] A.Nejad, A.Molnos, K.Goossens, A unified execution model for
multiple computation models of streaming applications on a
composable MPSoC, JSA Journal, November 2013, Pages 1032-1046,

 [8] “Xilinx virtex-4 fpga configuration user guide ug360 (v3.2),”
November 2010.

[9] LIU H., NIAR S., Radar Signature in Multiple Target Tracking
System for Driver Assistant Application, IEEE-ACM Design
Automation & Test Europe DATE‘2013 (Grenoble France).

[10] “Xilinx microblaze processor reference guide, ug081 (v11.0),”
Embedded Development Kit EDK 12.1, Sep. 14 2000.

[11] Usman Ali and Mohammad Bilal Malik. 2010. Hardware/software co-
design of a real-time kernel based tracking system. J. Syst. Archit. 56,
8 (August 2010), 317-326. DOI=10.1016/j.sysarc.2010.04.008
http://dx.doi.org/10.1016/j.sysarc.2010.04.008

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

58 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Formal Modeling and Verification of Dynamic Reconfiguration of
Autonomous Robotics Systems

Yujian Fu1, Mebougna Drabo2
1Department of Electrical Engineering & Computer Science, Alabama A&M University, Normal AL, U.S.A.

2Department of Mechanical Engineering, Alabama A&M University, Normal AL, U.S.A.

Abstract— Dynamic reconfiguration refers to the ability of
a system to dynamically change its structure and interface
according to different situations. It provides feasible and
flexible modeling and simulation environments with powerful
modeling capability and the extra flexibility to design and
analyze robotics systems. The aim of this work is the
modeling and verification of autonomous robotics systems
(ARMs) subject to dynamic changes using extensions of
Petri nets. It’s been one of the research axes of using
Petri nets to model reconfigurable systems, where structure
changes during runtime, especially in the high level Petri Net
domain. Numerous formalisms with different particularities
have been proposed. These formalisms try to deal with
some aspects of these systems. In this paper, we presented
a new, generic and expressive approach to the dynamic
reconfiguration on the extension of Predicate Transition
Nets, called Predicate Transition Reconfigurable Nets (PrTR
Nets). This approach allows the dynamic changes of net
structure and provides the flexibility of semantic analysis on
the reconfiguration analysis of the net. The formal definition
of the PrTR nets formalism will be discussed, and a case
study on a humanoid robotic system will be studied. Analysis
and verification of the motion scenario will be discussed and
related issues will be discussed.

Keywords: Reconfiguration, Humanoid robotics, Predicate tran-
sition nets

1. Introduction
Dynamic reconfiguration refers to the ability of a system

to dynamically change its structure and interface accord-
ing to different situations. It provides feasible and flexi-
ble modeling and simulation environments with powerful
modeling capability and the extra flexibility to design and
analyze complex systems. In addition, the goals of dynamic
behaviors of autonomous robots makes them ideally suited
for numerous environments with challenging terrain or un-
known surroundings. Applications are apparent in explo-
ration, search and rescue, and even medical settings where
several specialized tools are required for a single task. The
ability to efficiently reconfigure between the many structures
and behaviors of which an autonomous robot is capable is
critical to fulfilling this potential. Thus, it is important for
making autonomous robotics systems (ARSs) adaptable to

changes is one of the main challenge in the autonomous
robotics systems.

Moreover, considering the correctness of change and
ensuring the appropriate behavior during reconfiguration, it
will be more important that the mechanism for change be
explicitly represented into the model so that at each stage of
product development, designers can experiment the effect of
structural changes, by prototypes or verification tools. This
means that the structural and behavioral changes are taken
into account from the very beginning of the design process
rather than handling by an external and global system, e.g.
some exception handling mechanism, designed and added
to the model describing the system normal behavior. Thus
we favour and internal and incremental over an external and
uniform description of changes, and a local over a global
handling of changes. This approach is compatible with the
bottom-up modular synthesis of Petri Nets where a complex
system is derived from successive refinements of places or
transitions by sub-systems.

The remainder of the paper is organized as follows:
Section 2 gives related works of reconfiguration using Petri
nets and some other formal methods. Section 3 introduces
the formal representation of PrTRN model for autonomous
systems. Section 4 describes our approach for constructing
and analyzing models of a humanoid robot in the pressing
button scenario. Section 5 discusses the result and concludes
the paper.

2. Related Works
In this section, we will focus on the related works of

reconfiguration of the autonomous systems using Petri Nets.
Other than that, the reconfiguration specification using other
formal methods will be discussed also.

Several research works have been in the specification of
reconfiguration using Petri Nets. Valk’s self-modifying nets
[18], [19] is considered as an early attempt for an extension
of Petri net model with a built-in mechanism for handling
changes. The changes are captured by two fundamental
functions precondition and post condition. The notion of
systems of replacement of matrices takes the place of the
notion of systems of replacement/addition of vectors that
characterize Petri nets.

In the work of [4], [3], [16], a class of high level Petri
nets, called reconfigurable nets, is defined. Reconfigurable

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 59

nets can dynamically modify their own structure by rewriting
some of their net structure that described by rewriting rules
associated with the transition. A reconfigurable net is a Petri
net with local structural modifying rules performing the
replacement of one of its subnets by another subnet. The
tokens in a deleted place are transferred to a created one.
These nets were used for modeling dynamic changes within
workflow systems as in [8]. It was shown that boundedness
of a reconfigurable net can be decided by constructing a sim-
plified form of Karp and Miller’s coverability tree, however
this construction did not allow to decide whether a given
place of the net is bounded. However, the reconfiguration
only take place in consideration of the structural changes.
The rewriting rules that associated with the transition cannot
be executed simultaneously with regular transition firing –
each transition has two exclusive firing conditions.

On top of the work of [14], [15], to overcome the
drawback of reconfigure transition, a Flexible nets was
proposed in [13]. Reconfiguration of the structure of the net
is interpreted as an operation that manipulates this structure
by manipulating its components which are signed objects.
The presence of a positive object (resp. negative object) in
some place can be a reason to add (resp. delete) this object to
(resp. from) the structure of this net. The formalism proposed
is called Flexible Nets and reflects the idea that the model
has a dynamic structure. This structure can be expanded,
shrunken, or destroyed.

In [23], the authors proposed PrN (Predicate/Transition
nets) to model mobility. The main concepts of of mobility
is introduced as an agent. The agent space is composed of a
mobility environment and a set of connector nets that bind
mobile agents to mobility environment. Agents are modeled
through tokens. So these agents are transferred by transition
firing from a mobility environment to another. The structure
of the net is not changed and mobility is modeled implicitly
through the dynamic of the net.

In [17], authors proposed MSPN (Mobile synchronous
Petri net) as formalism to model mobile systems and security
aspects. They introduced notions of nets (an entity) and
disjoint locations to explicit mobility. A system is composed
of set of localities that can contain nets. To explicit mobility,
specific transitions (called autonomous) are introduced. Two
kinds of autonomous transition were proposed: new and go.
Firing a go transition move the net form its locality towards
another locality. The destination locality is given through a
token in an input place of the go transition. Mobile Petri nets
(MPN) [2], [1] extended colored Petri nets to model mobility.
MPN is based on Ãř-calculus and join calculus. Mobility
is modeled implicitly, by considering names of places as
tokens. A transition can consumes some names (places) and
produce other names. The idea is inherited from Ãř-calculus
where names (gates) are exchanged between communicating
process. MPN are extended to Dynamic Petri Net (DPN)
[2]. In DPN, mobility is modeled explicitly, by adding

subnets when transitions are fired. In their presentation [2],
no explicit graphic representation has been exposed.

In [5], authors studied equivalence between the join cal-
culus [9] (a simple version of π-calculus) and different kinds
of high level nets. They used ”reconfigurable netâĂİ concept
with a different semantic from the formalism presented in
this work. In reconfigurable nets, the structure of the net is
not explicitly changed. No places or transitions are added in
runtime. The key difference with colored Petri nets is that
firing transition can change names of output places. Names
of places can figure as weight of output arcs. This formalism
is proposed to model nets with fixed components but where
connectivity can be changed over time. Label associated is
used in the reconfigure transition in “Labeled Reconfigurable
NetsâĂİ [14], witch gives information about mobility.

In nest nets [21], tokens can be Petri nets. This model
allows some transition when they are fired to create new nets
in the output places. Nest nets can be viewed as hierarchic
nets where we have different levels of details. Places can
contain nets that their places can also contain other nets. So
all nets created when a transition is fired are contained in a
place. So the created nets are not in the same level with the
first net. This formalism is proposed to adaptive workflow
systems.

The power of Petri nets resides in its verification meth-
ods. To ensure verification of high level Petri nets, some
works were proposed. In [5], author proved the equivalence
between Reconfigurable nets and the join calculus. Recon-
figurable nets can be interpreted in join calculus and so
can be verified. In [6], P/ω nets are translated into linear
logic programming. Author of [17], encoded Synchronous
mobile nets in rewriting logic; they can use Maude to verify
specifications. In this paper, we have first way through
simulating the net or drawing automatically its reachability
tree. The second way that requires more development in
future papers, consists of the unfolding of the flexible nets
into the Dynamic Nets. These last one can be transformed
into CPN.

In this work, we attempt to provide a formal and graphical
model for dynamic reconfiguration of robotic systems. We
extended Predicate Transition nets with reconfigure guard
function that is associated with (reconfigurable) transitions
that are enabled when reconfiguration. Change of behavior
is modeled explicitly by the possibility of adding or delet-
ing nets which can be single node (transitions or places).
Modification can happen when the reconfiguration func-
tion is satisfied and tokens available in the reconfigurable
place. This allows different type of mobilities of the system
behavior changes. The system is described by component
based architecture, therefore, the mobility and bindings to
resources can be modeled by output from the different
components. We have introduce new sorts and operations
on the new sorts to specify the mobility and compatibility
of system changes. The calculus of system changes and

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

60 Int'l Conf. Embedded Systems and Applications | ESA'14 |

decision making will be modeled in separate components.
The concept of component based model of autonomous
behavior is inspired by SAM model [20], [22] that must
compute this type of information.

The proposed formal specification approach should in-
clude all the regular motions, ensure the correctness of these
normal behavior, describe the reconfiguration and ensure
the correctness of the reconfiguration by guaranteeing the
motion will be continued and finished successfully.

3. Modeling Dynamic Reconfiguration of
Autonomous Robotics Systems

In this section, we will present the Predicate Transition
Reconfigurable Nets (PrTR Nets) and Analysis of the PrTRN
nets. PrTRN nets are an extension on the Predicate Transition
Nets (PrT nets) with reconfiguration functions.

3.1 Predicate Transition Reconfigurable Nets
(PrTRN Nets)

In the PrTR nets, we consider following three aspects
of extension – net structure, signature, and net inscription
(mainly guard). The dynamic semantics and state system will
be discussed later based on the above extension. To allow
the changes of place and transition, two special sorts Pl and
Tr are defined, representing types of place and transition
respectively. An instance of the sort Pl can be a place in
a PrTR net, or can be a closed PrTR subnet that starts and
ends with places. Similarly, An instance of the sort Tr can
be a transition in a PrTR net, or can be an open PrTR subnet
that starts and ends with transitions. A super sort PNS is
defined as compatible with these two sorts Pl and Tr to
facilitate the net refinement and substitution.

In the traditional PrT nets, the operations on the regular
sorts can be regular operations including arithmetic oper-
ations, relational and logic operations, and set operations.
Considering the new sorts are the set of regulars sorts and
new sorts, we define operations of the sort of place and
transition as following:

1) The arithmetic operations on the new sorts are not
allowed.

2) The set operations can be the same on the new sorts
provided that treats the new sorts as set.

3) The substitution is defined on the new sorts Pl, Tr
and PNS.

Definition 1 (Predicate Transition Reconfigurable Nets):
Precisely, a Predicate Transition Reconfigurable Nets
(PrTR Nets) is an extension on the traditional Predicate
Transition Nets (PrT Nets) [12], [11] and is defined by a
tuple(PR, TR, F,ΣR, EqR, φR, L,G,GR,M0), where:

1) PR is a finite set of places that includes reconfigurable
place, TR is a finite set of transitions (PR ∩ TR =
Φ, PR ∪ TR ̸= Φ), and F is a set of arcs or flow
relations between each pair of P and T, e.g. F ⊆

(PR ×TR)∪ (TR ×PR). The tuple (P, T, F) forms a
basic Petri net structure.

• A reconfigurable place is nothing more than a
regular place but is used to hold the specific tokens
(such as those with sorts Pl, Tr and/or PNS).
Graphically, a reconfigurable place is denoted by
a double line circle.

• A reconfigurable transition is similar as regular
transition but the is enabled and fired by recon-
figurable guard GR. A reconfigurable transition is
graphically defined by a double lined box.

2) Σ =< St,Op > consists of some sorts (St) of
constants together with set of operations (Op) and
relations on the sorts. We define three special sorts
PNS, Pl and Tr represent PrT net system, place and
transition. The operation on the regular sorts are still
same. In addition, we define two new operations as
follows:

• subsort (denoted by 4) relation is defined as:
Pl 4 PNS, Tr 4 PNS, and ¬Pl 4 Tr and
¬Tr 4 Pl.

• Θ will return the sort of any variables, terms
and expressions defined on the place, arc and
transition, i.e., Op = Op ∪Θ or Θ ∈ Op.

• f is a merge operation defined on the sorts St
such that
– ∀v1, v2 ∈ V ar (where V ar is the set of

variables). f can be performed iff Θ(v1) =
Θ(v2).

– f: V ar1, ..., V arn → Θ(V ar) where i ∈ [1..n]
and V ar = V ar1 ∪ ... ∪ V arn.

• A dual operation g is a split operation defined on
the sorts St such that
– ∀v ∈ V ar (where V ar is the set of variables).

g can be performed iff Θ(v1) returns a multiple
set, i.e., the capacity of Θ(v1), |Θ(v1)| > 1.

– g: V ar → Θ (V ar1, ..., V arn) where i ∈ [1..n]
and V ar = V ar1 ∪ ... ∪ V arn.

– g is a reverse operation of f, and vice versa.
3) Eq defines the meanings and properties of operations

in OP .
4) φR : P → St is a relation associated each place p in

P with a subset of sorts.
5) L is a labelling function on places, transitions, arcs,

and variables. Given a place p ∈ P or a transition
t ∈ T , L(p) returns the name of place p, L(t)
returns the name of transition t. Given an arc f ∈
F , the labelling function of f , L(f), is a set of
labels associated with the arc f , which are tuples of
constants (CONs) and variables (X), which is best
described by L(f, TermsΣ,X). We use TermsΣ,X

represents the expressions on the label of arc f . We
use L(TermsΣ,X) to represent L(f, TermsΣ,X) when

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 61

there is no confusion in context. If f /∈ F , L(f) = Φ.
6) G is a mapping from transitions to a set of inscription

formulae. The inscription on transition t ∈ T , R(t),
is a logical formula built from variables and the
constants, operations, and relations in structure Σ;
variables occurring free in a formula have to occur
at an adjacent input arc of the transition.

7) GR is a reconfigurable mapping function defined on
the reconfigurable transitions and returns a set of
inscription formulae. The reconfigurable function GR

is boolean function that defined on the evaluation of
the variables in the reconfigure place. After evaluating
the variable of reconfiguration field, the reconfigurable
function GR will output the corresponding token
which is a subnet that the system is supposed to take.

8) M0 is the initial or current marking with respect to
sort, which assigns a multi-set of tokens to each place
p in P with the same sort, M0 : P → MCONs.

In the above definition, a reconfigure place is nothing
more than a regular place with sorts and holds tokens.
The sorts of reconfigure place is defined as a tuple of
< reconfig, PNS >, where reconfig is a status that is
set when the reconfiguration is needed, PNS is the PrTR
subnet systems that described by the above definition. The
subsort relation (4) defines an implicit compatible sorts –
any token with the sort of PNS can be used to substitute
the token with the sort of Pl or Tr. Any subnet of PrTR net
N can have sort, i.e., φ(N) = ∪i(φ(pI)∪φ(pO)), where pI
is the set of all input places and pO is the set of all outgoing
places. On top of the above, we define following compatible
relation:

• Given any two subnets N1 and N2, we can say the
sorts of two subnets N1 and N2 are compatible iff the
sorts of input places p1i (where i ∈ [1..k]) and p1i ∈
N1, ∪iSt(p

1
i and p2j (where j ∈ [1..m]) and p2j ∈ N2,

∪jSt(p
2
j) are same.

• Given any two subnets N1 and N2, we can say the sorts
of two subnets N1 and N2 are compatible iff the sorts
of expressions defined in the guard G of all interface
transitions are same, i.e., G1(ti) (where i ∈ [1..k]) and
ti ∈ N1, G2(tj) (where j ∈ [1..m]) and tj ∈ N2, are
same.

3.2 Dynamic Semantics
The dynamic semantics of PrTR nets are defined by two

conditions – enabled and firing of a transition. In order to
define the enabled and firing of a transition, we first give
the precondition and postcondition of a transition in a PrTR
net.

Let L(f, TermsΣ,X) be label expression that associates
with arc f = (p, t) ∈ F ∨ f = (t, p) ∈ F . For any place
p ∈ P , we can define the two functions – precond for the
token consuming (precond(L((p, t), T ermsΣ,X))) and and

postcond for token producing (postcond(L(f, TermsΣ,X)))
for a transition t as follows.

Definition 2 (Precondition of t): Precondition of a tran-
sition t, denoted by precond(t) or ·t, is defined as the
set of all input places (including the reconfigure place) of
the transition that hold tokens, the sorts of the tokens are
compatible with the expressions in the guard of the transition
G(t) (or GR(t)) so that G(t) (or GR(t)) is true.

∀p ∈ P.precond(L((p, t), T ermsΣ,X)) : p →
L((p, t), T ermsΣ,X) : α where L(f, TermsΣ,X) :
α ∈ φ(p), (p, t) ∈ F , and M ′(p) = M(p) −
precond(L((p, t), T ermsΣ,X)),

Definition 3 (Postcondition of t): Postcondition of a tran-
sition t is defined as producing the tokens to the output
places of the transition with the compatible sorts of the
output places, e.g.,

∀q ∈ P.postcond(L(f, TermsΣ,X)) : p →
L((p, t), T ermsΣ,X) : α where L(f, TermsΣ,X) :
α ∈ φ(p), (p, t) ∈ F , and M ′(p) = M(p) ∪
postcond(L((p, t), T ermsΣ,X).

From above two functions of precondition and postcon-
dition, we can see that for any transition t, the tokens
consumed in the incoming places of the transition t can
be described by a substitution of label expression in the
function precond(L(f, TermsΣ,X)), if the substitution of
label expression in the token set of preset of transition t;
while the tokens produced in the postset of the transition t
can be described by a substitution of label expression in
the function postcond(L(f)), if the substitution of label
expression satisfy the sort of postset of the transition t.
The token set of preset and postset of transition t can be
described by the substitution of sorts of preset and postset,
i.e., pre(t)(φ(p) : α) and post(t)(φ(p) : α). Therefore, we
have enabling and firing conditions as follows:

Definition 4 (Enabled t): A transition t, denoted by
enabled(t), is enabled if either the guard G(t) that is true
or the reconfigure function GR(t) is true.

precond(L(f, TermsΣ,X)) ∈ pre(t)(φ(p) : α)
In Fig. 1, there are two transitions and three places with

the initial markings (M0) in places p1 and p3. The net
structure is shown in the left box, while the net inscription is
shown in the right box. The guard of transition t G(t) is not
true since the two transitions t and t1 are mutual exclusively
enabled. Thus the example of Fig. 1 is non-deterministic
reconfiguration. When the transition t1 is enabled if the
guard G(t) and reconfiguration function GR(t) are true
under the substitution of tokens in the places p1 and p3.

If transition t1 is enabled, required tokens specified by
the label expression of input arcs of the transition must be
available in the preset of the transition. If the transition t1 is
fired, those required tokens are consumed and produce some
tokens that satisfy the label expression of output arcs of the
transition. Both consumed tokens and produced tokens must
have the same sort of incoming places of the transition and

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

62 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Fig. 1: Example of Reconfiguration (before reconfiguration t is enabled)

outgoing places of the transition respectively. In Fig. 1, by
the initial markings in the places p1 and p3, we can say that
the transition t1 is enabled. Similarly the transition t is also
enabled. It is worth to note that they cannot be fired at the
same time.

Definition 5 (Firing of t): A transition t can be fired if
• the transition t is enabled enabled(t), i.e., G(t) or

GR(t) is true and
• the tokens in the input places are consumed and there

are tokens produced to the output places.
postcond(L(f, TermsΣ,X)) ∈ post(t)(φ(p) : α)

• in the case of reconfiguration, in addition to the tokens
consumed in the regular input places, the token in the
reconfigure place will be consumed and a subnet with
the sort of PNS will be output. In this case, G(t)
will be false and GR(t) is true even enbled(t) and
enbled(tR) can be true. In other words t and tR cannot
be fired simultaneously.

Allowing both t and tR to be enabled can cause the non-
deterministic firing of the two transitions. In reality, the truth
is t won’t be able to enabled due to the disfunction of normal
behavior. This can be controlled by the motion planner or
supervisory controller.

In Fig. 2, it shows after the firing of transition t1, the net
is reconfigured and the markings is updated. The updated
net is specified in the reconfigure place p3. When the
reconfiguration happen, the status should indicate that the
system needs to reconfigure which is specified in the last
field of reconfigure place. All the three fields make the
reconfiguration has higher priority, the reconfigure function
will ensure the condition is true so that the system can update
to the new topology.

4. A PrTR Net Representation of Press-
ing Button Humanoid Robot

The component based architecture of a humanoid robot
system with hands and legs is specified in Fig. 3. In

Fig. 3, four components are specified as MotionP lanner,
HandMotionComponent, LegMotionComponent, and
TransEnvironment. Each component block is defined by
following the above component definition. Each component
captures a set of operations or functions of subunit or subsys-
tems with required ports definition. For instance, component
of MotionPlanner will accept all sensoring data, coordinate
the tasks and sends out the commands to other components.
The component HandMotion will conduct the hand motion
including moving forward or backward in specified angle
and direction. Similarly for the component of LegMotion.
Once the command is sent out from MotionP lanner, the
command will take all the parameters that are needed by
HandMotion and LegMotion component. This will ensure
these components can finish the task continuously without
frequently often communication to MotionP lanner. The
component TransEnvironment is an alia component for
the environment that sent out from MotionP lanner. This
is just for representation purpose. By using the component
TransEnvironment some environment behavior is simply
captured and the main behavior of the hand motion of the
humanoid robot can be clearly represented. The compo-
nent HandMotion can be split into two subcomponents
LeftHandMotion and RightHandMotion. Similarly for
the component of LegMotion. In the current version, we
only focus on the reconfiguration of hand motion.

It is clearly to note that the behavior of each component
is represented by a PrTR net. The double circled places are
reconfiguration places. The double lined box is reconfigura-
tion transition. Due to space limitation, we only show the
presentation of net structure. For the net inscription, you may
refer to the report [10].

4.1 Verification & Discussion
In our work we used Maude [7] model checker to verify

the property specification in PrTRN model. To automatically
implement the model checking using Maude, we design an

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 63

Fig. 2: Example of Reconfiguration (after reconfiguration)

Fig. 3: PrTR Model of Reconfigurable Humanoid Robot

algorithm to translate the PrTRN to the Maude programming
language.

All the properties are verified against the model and
several problems are identified and fixed. The most important
findings using verification is to ensure the system properties
and detect errors in the design model. We have specified
several properties regarding to the above categories. By
running the Maude model checker, several design errors are
identified. Thus the model has been fixed and updated for
each detected error. Now, it is error free for the current

model. For instance, in the balance category, the properties
was false in any initial conditions. The problem is the places
(COH1 and COH2) do not hold the behavior of another
arm. To fix it, the token will be sent back to these places.
However, the properties are still false. We found that this
is caused by the one of the initial condition missed in these
places. In addition to it, the guard condition of the transition
MvLB and MvRF are updated with one predicate to check
the initial case of moving arms.

Reconfiguration category is hard to verified. There are

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

64 Int'l Conf. Embedded Systems and Applications | ESA'14 |

several problems identified. First, the properties are false
because the tokens that were consumed from the place Btn
in the normal behavior cannot be available during reconfig-
uration. In other words, the button is not available during
reconfiguration, while in reality, the button is available all
the time. This is easy to fix by sending the token back to the
correct place. Similar problems in the places of PBComR
and PBComL, which indicates the pressing command is
still valid.

5. Conclusion
Petri nets are an elegant model for concurrency. Com-

bining with graphical representation and its mathematical
background, Petri Nets have been widely used to specify and
verify concurrent multi-processes systems. In this paper, we
have proposed “Predicate Transition Reconfigurable Nets”
(PrTRN), a formalism to specify reconfiguration in the
autonomous robotics systems with dynamic structure. We
have shown the expressiveness of this formalism through
the modeling of pressing button scenario of humanoid robot.
The use of PrTRN facilitates the tasks of the developer that
want to realize formal specification of robotics systems.

The future works include two aspects – transparency and
automation. We will develop some transformation rules that
help the translation from PrTRN toward regular PrT nets or
even Place Transition nets. So that automatic code generation
from PrTRN can be realized. To improve the verification
at the analyzing level, we need to work on the automatic
verification tool that can be used to verify the PrTRN
net automatically without the interaction of human beings.
Therefore the PrTRN models and the required proprieties
will be automatically related and checked.

Acknowledgment
The authors would like to thank all reviewers for the

kindly comments and suggestions on this work.

References
[1] A. Asperti and N. Busi. Mobile petri nets. Mathematical. Structures

in Comp. Sci., 19(6):1265–1278.
[2] A. Asperti, N. Busi, P. Porta, and S. Donato. Mobile petri nets.

Technical report, 1996.
[3] E. Badouel, Éc. Nat, S. Polytechnique, and Y. Cameroun. Modeling

concurrent systems: Reconfigurable nets. In In Proc. Int. Conf.
on Parallel and Distributed Processing Techniques and Applications
(PDPTAâĂŹ03, pages 1568–1574. CSREA Press, 2003.

[4] E. Badouel and J. Oliver. Reconfigurable Nets, a Class of High Level
Petri Nets Supporting Dynamic Changes within Workflow Systems.
Research Report RR-3339, INRIA, 1998.

[5] M. G. Buscemi and V. Sassone. High-level petri nets as type theories
in the join calculus. In Proceedings of the 4th International Conference
on Foundations of Software Science and Computation Structures, FoS-
SaCS ’01, pages 104–120, London, UK, UK, 2001. Springer-Verlag.

[6] I. Cervesato. Petri nets and linear logic: a case study for logic
programming. In In Proc. of GULP-PRODE’95, pages 313–318.
Palladio Press, 1995.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and J. F. Quesada. Maude: specification and programming in rewriting
logic. Theoretical Computer Science, 285(2):187–243, 2002.

[8] C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within
workflow systems. In Proceedings of conference on Organizational
computing systems, COCS ’95, pages 10–21, New York, NY, USA,
1995. ACM.

[9] C. Fournet and G. Gonthier. The Join Calculus: A Language for
Distributed Mobile Programming. Applied Semantics, pages 268–332,
2002.

[10] Y. Fu and S. Drager. Reconfiguration Anlysis of Automatic Robotics
Systems. Technical report, Air Force Research Lab, August 2012.

[11] H. J. Genrich. Predicate/Transition Nets. Lecture Notes in Computer
Science, 254, 1987.

[12] X. He. A formal definition of hierarchical predicate transition nets. In
Proceedings of the 17th International Conference on Application and
Theory of Petri Nets, pages 212–229, London, UK, 1996. Springer-
Verlag.

[13] L. Kahloul, A. Chaoui, and K. Djouani. Modeling and analysis of
reconfigurable systems using flexible petri nets. In Proceedings of
the 2010 4th IEEE International Symposium on Theoretical Aspects
of Software Engineering, TASE ’10, pages 107–116, Washington, DC,
USA, 2010. IEEE Computer Society.

[14] K. Laid and C. Allaoua. Code mobility modeling: a temporal
labeled reconfigurable nets. In Proceedings of the 1st international
conference on MOBILe Wireless MiddleWARE, Operating Systems, and
Applications, MOBILWARE ’08, pages 34:1–34:6, ICST, Brussels,
Belgium, Belgium, 2007. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[15] K. Laid and C. Allaoua. Coloured reconfigurable nets for code
mobility modeling. Int. J. of Computers, Communications & Control,
2008:358–363, 2008.

[16] M. Llorens and J. Oliver. Structural and dynamic changes in
concurrent systems: Reconfigurable petri nets. IEEE Trans. Comput.,
53(9):1147–1158, Sept. 2004.

[17] F. Rosa-Velardo, O. Marroquín-Alonso, and D. de Frutos-Escrig.
Mobile synchronizing petri nets: A choreographic approach for co-
ordination in ubiquitous systems. Electron. Notes Theor. Comput. Sci.,
150(1):103–126, Mar. 2006.

[18] R. Valk. Self-modifying nets, a natural extension of petri nets.
In G. Ausiello and C. BÃűhm, editors, Automata, Languages and
Programming, volume 62 of Lecture Notes in Computer Science, pages
464–476. Springer Berlin / Heidelberg, 1978.

[19] R. Valk. Generalizations of petri nets. In J. Gruska and M. Chytil,
editors, Mathematical Foundations of Computer Science 1981, volume
118 of Lecture Notes in Computer Science, pages 140–155. Springer
Berlin / Heidelberg, 1981.

[20] W. M. P. van der Aalst, K. M. van Hee, and R. A. van der
Toorn. Component-based software architectures: A framework based
on inheritance of behavior. Science of Computer Programming, 42(2-
3):129–171, 2002.

[21] K. M. van Hee, I. A. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova,
and M. Voorhoeve. Nested nets for adaptive systems. In Proceedings of
the 27th international conference on Applications and Theory of Petri
Nets and Other Models of Concurrency, ICATPN’06, pages 241–260,
Berlin, Heidelberg, 2006. Springer-Verlag.

[22] J. Wang, X. He, and Y. Deng. Introducing Software Architecture
Specification and Analysis in SAM through an Example. Information
and Software Technology, 41(7):451–467, 1999.

[23] D. Xu and Y. Deng. Modeling mobile agent systems with high level
petri nets. In Systems, Man, and Cybernetics, 2000 IEEE International
Conference on, volume 5, pages 3177 –3182 vol.5, 2000.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 65

A COGNITIVE APPROACH FOR STROKE
REHABILITATION BY ACUTE HAND

MONITORING

Hema Barathi.R1, Ramya Priyadarshini.D1, Sowmya.K1
,Ramalatha M 1

Department of Information Technology, Kumaraguru College of Technology,
Coimbatore, Tamil Nadu, India

Abstract - Cognitive rehabilitation for non-traumatic
brain injuries focuses purely on retrieving the
cognitive abilities of a person after an injury or an
illness affects one’s brain. Successful rehabilitation
for stroke has often resulted from using effective
motion sensing. The existing systems include a virtual
reality environment along with a high definition
camera used for motion capture. The major
drawbacks found in these systems are that they
measure only wider hand and leg movements and are
expensive. We have developed a Cognitive approach
for Stroke Rehabilitation by acute hand monitoring,
which measures acute displacements of hand that is
used in bringing effective cognitive rehabilitation for
stroke patients at the rehab stage. Flex sensors are
attached to the fingers of the patient to measure even
a slightest jitter and corresponding magnified finger
movement is displayed which motivates the patient.

Keywords: Cognitive rehabilitation, stroke
rehabilitation, hand monitoring.

1 Introduction
The three inborn skills of every human being

namely the sensory, the motor and the cognitive skills
are subjected to various experiments every now and
then as they could lead to the sprouting of new
innovative therapies and rehabilitation processes for
both traumatic and non-traumatic brain injuries.
According to the official journal of Indian Academy
of Neurology, of late, India is silently witnessing the
stroke epidemic and serious efforts must be taken to
fight against it. The currently existing stroke
rehabilitation in India primarily involves the
participation of a Neurologist, a Physiatrist, a
Psychiatrist, a Physical Therapist, an Occupational
Therapist and a Speech Therapist. The combined
contributions of all the above mentioned doctors
enable a stroke patient to undergo the rehabilitation
process successfully. This conventional rehabilitation
process involves more patience and round the clock
presence of another person which could be tiring.

According to studies made by The George
Institute for Global health, India, 87% of stroke
patients in low and middle- income countries such as

India have no access to Western form of stroke
rehabilitation as they are really expensive. On
summing up all these disadvantages on the existing
rehabilitation processes, there is a need for new,
economic friendly and easily accessible stroke
rehabilitation process and our attempt is focussed on
providing such rehabilitation process to the lower
economy stroke patients.

2 Literature survey
The survey on the existing rehabilitation

systems and techniques gave us many fruitful insights
which helped us to define our system’s objective. The
goal of Virtual Reality systems is to put the people
with disabilities in control of their own activities with
one such instance described by Norman [6]. The pros
and cons of virtual rehabilitation have been clearly
explained by Grigore [3]. However a major
disadvantage would be the attitude of the therapist
and inadequate communication between the patient
and the therapist. A SWOT analysis conducted by
Albert and Gerald [1] shows us that the major
strength is the motivation and confidence it creates in
the patients. But the acceptance of the patients and
doctors is been a major concern. The major
contributions of VR have been through the
development of games and virtual environment for
the patient with few instances such as hop hop frog
and bubble pop in [9]. Another development of VR is
the use of system from the home with remote
monitoring from the clinic [2].

A basic convenient home based virtual
reality rehabilitation system would normally consist
of a laptop or a computer with suitable user interfaces
and joy sticks [8]. Another approach is to obtain
postures from the human and create key frame
animations from poses captured from a single camera.
A very interesting approach was to use music in
stroke rehabilitation [5].Since music combines three
cognitive formats namely motor, iconic and verbal; it
promotes rehabilitation which reduces anxiety and
confusion thus improving motivation. Colour gloves
have different colour patches based on which the
motion of the hand is being monitored. According to
[10] the motion of the gloved hand is tracked by

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

66 Int'l Conf. Embedded Systems and Applications | ESA'14 |

capturing it through camera, which is later,
in the computer. But a drawback of using this
technology is that an exact motion of
never be tracked. Later cost efficient gloves were
developed such as one described in [7
serious disadvantage of increasing the physical
inconvenience to the patients. Another glove
developed with the same goal was described in [4
where they used cloth glove with colour markers.
Based on the colour of the marker the motion of t
hand is detected.

Figure 1: Colour gloves for stroke patients

Figure 2: Block diagram of the system

later, processed
in the computer. But a drawback of using this
technology is that an exact motion of the hand can

Later cost efficient gloves were
[7].But it had a

serious disadvantage of increasing the physical
Another glove

goal was described in [4]
where they used cloth glove with colour markers.

e marker the motion of the

Figure 1: Colour gloves for stroke patients

3 Inference of the survey
From the survey on virtual rehabilitation, it was

obvious that the concept of virtual rehabilitation
works effectively to a greater extent unlike its othe
rehabilitation counterparts. One main inference made
from the survey is that the concepts of virtual and
mental rehabilitation are technologies that are yet to
be utilized by Indian hospitals. These technologies are
things of the present at western countries
proved to be effective. So by implementing
rehabilitation concept through a cognitive approach,
the treatment for paralysis patients in India can
become more effective than those physical
rehabilitation practises that are currently in exis
The survey taken on the existing virtual rehabilitation
practises lead to several interesting perspectives. One
important perspective is that all the research papers
that were considered for the survey had a very
common drawback. All the systems pr
outwardly restricted the physical freedom enjoyed by
the patients. This in turn affects the rehabilitation
process to some extent. Hence it was necessary to
design a system that effectively enhances
physical freedom. The survey on data
gloves contributed to most of the objective of the
project. Colour gloves and data gloves are customized
equipments which cost material as well as money.
Since 5 out of 6 people are attacked with paralysis, it
is practically impossible for patients to afford the
gloves system for their rehabilitation. Thus through
this survey we conclude that we must develop a
system that is devoid of costly gloves but should
implement the functionalities that are effectively
performed by gloves.

Figure 2: Block diagram of the system

Inference of the survey
From the survey on virtual rehabilitation, it was

obvious that the concept of virtual rehabilitation
works effectively to a greater extent unlike its other

One main inference made
from the survey is that the concepts of virtual and
mental rehabilitation are technologies that are yet to
be utilized by Indian hospitals. These technologies are
things of the present at western countries and are

e effective. So by implementing virtual
rehabilitation concept through a cognitive approach,
the treatment for paralysis patients in India can
become more effective than those physical
rehabilitation practises that are currently in existence.
The survey taken on the existing virtual rehabilitation
practises lead to several interesting perspectives. One
important perspective is that all the research papers
that were considered for the survey had a very
common drawback. All the systems proposed
outwardly restricted the physical freedom enjoyed by
the patients. This in turn affects the rehabilitation

e extent. Hence it was necessary to
effectively enhances the patient’s

The survey on data and colour
gloves contributed to most of the objective of the
project. Colour gloves and data gloves are customized
equipments which cost material as well as money.
Since 5 out of 6 people are attacked with paralysis, it

ents to afford the
gloves system for their rehabilitation. Thus through
this survey we conclude that we must develop a
system that is devoid of costly gloves but should
implement the functionalities that are effectively

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 67

4 Overview of the system
Based on the inferences made from the

literature survey, we formed the overall block
diagram of the system which has three modules as
depicted above. The input module consists of
microprocessor which receives the signal from the
sensor that is fixed on the patient’s hands. The
microprocessor used here is Arduino Uno
sensor is flex sensor. Arduino Uno was selected
the system because of its simplicity and its nature
of being programmer friendly. Its ADC feature and
greater compatibility makes it easier to use and
program. For the sensor, first we considered the
three axis accelerometer ADXL335 but we had a
difficulty of placing it on the patient’s finger
because of its bulkiness. To overcome that
particular difficulty and also to achieve
objective of maximum physical freedom to the
patient, we chose the flex sensors. Flex sensors are
made up of carbon resistors and are available in
various lengths. We used the2 inch flex sensors and
the very thin structure of the sensor is
right on the fingers – on the back side of the hand.

Figure 3: Hardware of the system

The processing part composes of the computer
to which the Arduino is attached. The application
that takes care of the processing part is the
windows form application which is developed in
the C# language using the Windows Visual
Studio’s .NET framework. The form initiates the
communication with the arduino with a button
press event and once it receives a value from the
arduino, it triggers a video file to play.

The output module is primarily a display
device which displays the video file that
windows form has retrieved. The display device
will be of user’s choice say a TV screen, a
projector screen or a computer screen.

As any other real time system, our system too
has certain basic requirements as given below:

 There should be an attendant/nurse for
operating the application.

Overview of the system
Based on the inferences made from the

literature survey, we formed the overall block
three modules as

consists of a
signal from the

sensor that is fixed on the patient’s hands. The
microprocessor used here is Arduino Uno and the

sor. Arduino Uno was selected for
s simplicity and its nature

Its ADC feature and
greater compatibility makes it easier to use and

For the sensor, first we considered the
three axis accelerometer ADXL335 but we had a

tient’s finger
because of its bulkiness. To overcome that

difficulty and also to achieve our
maximum physical freedom to the

patient, we chose the flex sensors. Flex sensors are
made up of carbon resistors and are available in

lex sensors and
apt to place

on the back side of the hand.

of the system

The processing part composes of the computer
The application

that takes care of the processing part is the
windows form application which is developed in
the C# language using the Windows Visual

The form initiates the
communication with the arduino with a button
press event and once it receives a value from the

The output module is primarily a display
device which displays the video file that the

The display device
y a TV screen, a

As any other real time system, our system too
has certain basic requirements as given below:

There should be an attendant/nurse for

 The application is compatible with
Windows OS only.

 The videos suitable for the patients must
be selected for customization of
application.

 The patients are subjected to only

cognitive rehabilitation.

5 Working of the system

The efficiency of the system depends on how
well the system copes with the real time input it
receives and also how well the communication
takes place between the modules.
windows form application is installed
attendee’s computer, the person who is in charge of
the system.

The Arduino codes runs indefinitely until it
gets an input from the flex sensor. Once an impulse
is received, the arduino sends the angle of
movement received from the flex sensor to the
application. A sample screen shot with received
angle measure is shown below:

Figure 4: Angle Measure

 Once the angle measure is received, the
application displays options for customization. The
screen shot is given below:

Figure 5: Customization options
The customization options are

tone, status and gender. The options are initially

The application is compatible with

The videos suitable for the patients must
be selected for customization of

The patients are subjected to only

Working of the system

The efficiency of the system depends on how
well the system copes with the real time input it
receives and also how well the communication
takes place between the modules. An executable

installed in the
, the person who is in charge of

The Arduino codes runs indefinitely until it
gets an input from the flex sensor. Once an impulse
is received, the arduino sends the angle of

from the flex sensor to the
screen shot with received

Figure 4: Angle Measure

Once the angle measure is received, the
application displays options for customization. The

Figure 5: Customization options
stomization options are age group, skin

tone, status and gender. The options are initially

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

68 Int'l Conf. Embedded Systems and Applications | ESA'14 |

picked up and registered to the system under the
patient’s name except for the status option. The
status of the patient is determined by the angle
measure. Angle measure interval of 0 -25 is
determined to be ‘initial’ stage, 25 – 75 is the
‘middle’ stage and above 75 is the ‘final’ stage.

According to this system, the video will bring
up a cognitive impulse in the patient and thus
motivates him/her to move his/her finger a few
degrees more than the actual measured movement.
By doing so, the patient is expected to get back
one’s lost motor skill over a period of time.

6 Results
 The developed system is a real time system that
is yet to be subjected on stroke patients. With the
help of our researches and the methods we adopted
to develop the systems, we could obviously pick up
time duration and the degree of movement of the
finger as the primary metrics of efficiency of the
system.

7 Conclusion and future plans
The system provides a method of providing

encouragement to the afflicted patients. The
prototype has been tested for one finger which can
be expanded for all fingers and finally any
movement. This makes the system fairly suitable
for the relearning process. In addition the concept
can be extended to gaming and virtual reality
systems. Though the system that we developed is
expected to provide rehabilitation that is less
sustainable when compared to systems which
consider muscle point activation in hands, this can
be taken a starting point and more sophisticated
permanent methods can be used for chronic
patients. The further enhancement of the system
will be in terms of making the rehabilitation
process a stimulated virtual reality process.

8 References
[1] Albert “Skip” Rizzo, GerardJounghyun Kim(2005)

“A SWOT analysis of the field of virtual reality
rehabilitation and therapy, Presence -
Teleoperators and Virtual Environments – Special
Issue, Vol. 14, No. 2, 119-146, April 2005.

[2] S.H.Brown, J.Langan, K.L.Kern, E.A.Hurvitz
“Remote monitoring and quantification of upper
limb and hand function in chronic disability
conditions”, International journal on Disability and
human development, Vol. 10, Iss. 4, Jan, 2011.

[3] Grigore Burdea, “Keynote Address : Virtual
rehabilitation :Benefits and challenges “, First
International workshop on Virtual reality, 2002.

[4] Jang Han Lee, JeonghunKu,WongeunCho,Won
Yong Hahin, InY.Kim, Sang-Min Lee,
Younjookang, Deog Young Kim, Taewon Yu,
Brenda K.Wiederhold, Mark D.Wiederhold, Sun
I.kim (2003) “A Virtual Reality system for the
assessment and rehabilitation of the activities of
daily living “ in Cyberpsychology & Behavior,
Vol.6, No.4, July, 2005.

[5] Jimson Ngoe, TomoyaTamei, Tomohiro Shibata
“Continuous Estimation of finger joint angles
using music activation Inputs from surface EMG
signals”,www.biomedical-engineering-
online.com/content/8/1/2.

[6] Norman Alm, John L. Arnott, Iain. R. Murray, Iain
Buchanan “ Virtual reality for putting people with
disabilities in control “, International conference on
Systems, Man and Cybernetics, Vol.2, 1174-1179,
Oct 1998.

[7] Paul G. Kry, “Interaction capture and synthesis of
human hands”, Article, www.researchgate.net, Jan
2005.

[8] Rosa Maria Esteves Moreira da Costa, Lu´ıs
Alfredo Vidal de Carvalho(2004) “The acceptance
of virtual reality devices for cognitive
rehabilitation. :A report of positive results with
Schizophrenia “ in Computer Methods and
Programs in Biomedicine, Vol 73, Iss. 3, 173-182,
Mar 2004.

[9] Uri Feintuch, Maya Tuchner, AdiLorber- Haddad,
ZeevMeiner, Shimon Shiri “VirHab-A virtual
reality system for treatment of chronic pain and
disability”, Virtual reality International conference,
83-83, June 2009.

[10] Wai-Chun Lam, Feng Zou, Taku Komura “Motion
editing with data glove “, Proceedings of the 2004
ACM SIGCHI International Conference on
advanced computer entertainment technology, 337-
342, Sept 2004.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 69

A Primer for Mapping Techniques on NoC Systems

M. Sacanamboy1, F. Bolaños2, and R. Nieto3
1Department of Electronics and Computer Sciences, Pontificia Universidad Javeriana, Cali, Valle del Cauca,

Colombia
2Department of Electrical Engineering and Automatics, Universidad Nacional de Colombia, Medellín,

Antioquia, Colombia
3Department of Electrical Engineering, Universidad del Valle, Cali, Valle del Cauca, Colombia

Abstract - This paper is aimed to present a detailed
description of the main factors which must be considered for
task mapping onto Network on Chip (NoC) systems. A
survey of the most representative and outstanding reported
works is presented, along with conclusions and future work
regarding such a review.

Keywords: NoC (Network on Chip) Systems, Task
mapping.

1 Introduction
 In order to cope with performance requirements
imposed by applications, current computing systems are
moving to multicore platforms. Among such high
performance systems, embedded systems represent a big
fraction of the market, involving a plethora of devices such
as portable devices, vehicles, wireless sensors, home
devices, and so on.

Embedded systems are designed to implement special
features, and are different from generic computing systems
in the fact that they are devoted to implement one or more
specific functionalities. Such systems are constrained by the
applications, which impose operating conditions related to
some figures of merit, such as performance, real time,
power consumption, cost, etc. In order to cope with such
constraints, designers have conceived systems with several
processing cores, which may be different from each other,
and are organized on a single chip (MPSoC) [1, 2].

Heterogeneity in current MPSoC systems is related with the
variety of features which are present on each system core,
and allows achieving flexibility in dealing with several
kinds of applications. Many of current research efforts rely
on improving the interconnection and synchronization
systems of such cores, for the sake of speeding up the
overall performance of the system. Interconnection buses
are running out of capacity when dealing with a larger
number of nodes inside the system, so it is mandatory to
conceive efficient and structured communication
architectures for these MPSoC systems [3].

NoC systems are a current approach aimed to achieving
such interconnection objectives. Among some of its
appealing features, the use of NoCs is preferred because of
their scalability, high performance, and modularity.
Particularly, by using NoC systems it is possible to achieve
concurrent communications, as well as high components
reusability.

NoC systems are composed of nodes and a communication
architecture, which is based on network interfaces (NIs)
and routers. Routers are plugged to communication
channels, and nodes access such resources by means of the
NIs. Nodes are often related to computational or storage
resources, or a combination of both.

One of the most critical stages in designing a current
embedded system is the mapping of tasks onto the available
resources of the NoC. Such stage depends on the
application, as well as the target NoC architecture. Some
factors which are related to such an important design stage
are [4]: Application constraints, figures of merit for system
optimization, available mapping tools and their limitations,
available information of the system. Because of all of these
issues, task mapping is classified as a hard NP–problem [5].

This work is aimed to present a first review of several
factors which are involved with task mapping
methodologies in NoC systems. The paper is organized as
follows: Section 2 summarizes the key factors which must
be taken into account in the task mapping stage for NoC
systems. Section 3 surveys some of the most representative
works on this issue. Conclusions and future work are
presented on Section 4.

2 Key factors on task mapping
 Due to its criticity, some key factors must be
considered in the stage of mapping of tasks onto a NoC
system. Such key factors are described below.

2.1 Target architecture

 The target architecture is related to whether nodes on
the NoC system are heterogeneous or homogeneous.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

70 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Heterogeneity is the most common case, because this factor
may improve system performance in presence of different
kinds of applications. Heterogeneity refers to having
several kinds of nodes in the system (i.e., nodes may be
different among them).

2.2 Abstraction level of the application
specification

 The abstraction level in which applications are
described is a key factor in mapping tasks of such
applications to the available resources. The first possible
approach on this subject is to use Register Transfer Level,
or RTL. RTL is a valuable tool for modeling and designing
complex systems, and often relies on hardware description
languages, such as VHDL (VHSIC Hardware Description
Language) and Verilog. Such tools allow modeling a part of
the NoC system such as the communication system, or even
the entire system [6].

The second reported approach is based on transaction-level
modeling or TLM. Transactions are defined as the event of
synchronization or data exchange among system modules.
This approach is appealing because it allows performing a
functional verification of the system, and the modeling is
based on languages such as SystemC [7]. TLM has been
used successfully for synthesizing high speed MPSoC
systems [8], and for modeling the communications
infrastructure of a NoC [9].

2.3 Figures of merit

 This factor refers to the optimization criteria which
must be considered along the optimization process related
to the mapping stage. Such optimization can be viewed as a
solutions space exploration, where each solution represents
a single design choice with different values for the
objective functions. The task mapping process must find an
acceptable solution within the space with allowable and
optimized values for such functions. Among the most
common figures of merit used for such optimization
process, we may find: power consumption, delay time,
mapping time, temperature, mean number of hops across
the network, network contention, mean channel occupancy,
bandwidth, and so on.

2.4 Common–domain semantic

 This is a medium level representation which combines
information both from the high level application description
and from the implementation platform. Among the plethora
of representations available for these purposes, graph-based
approaches are the most common, with instances such as
task graphs (TG), communication task graphs (CTG),
communication weight graphs (CWG), communication
resources graph (CRG), annotated task graphs (ATG),

synchronous and asynchronous data flow graphs (SDFG
and ADFG), and so on. Some other kinds of such medium–
level representation are the Petri Networks (PN), and the
Kahn Process Networks (KPN).

2.5 Topologies

 Topology refers to the way in which system nodes are
physically interconnected. Topologies may be classified as
either regular or irregular. Some instances of common
topologies are meshes, torus, rings, and spidergon ones.
Regular topologies are more constrained with respect to the
connections distribution, which are generated by means of
mathematical functions [2, 17]. Irregular Topologies are
often the mixture of two or more regular forms, which leads
to hybrid, hierarchical or totally irregular topologies.

2.6 Optimization algorithms

 As already mentioned, the mapping stage relies on an
optimization process, which searches along a solutions
space, the design with a better tradeoff among the chosen
figures of merit. The kind of optimization algorithm used
for task mapping has a direct impact in the communications
nature [10]. For instance, off–line (static) optimization
forces to having predictable communication assessments,
whilst dynamic algorithms allow a more flexible
communication scheme.

A subset of static algorithms encompasses the so called
exact approaches, which are based on mathematical
modeling of the optimization problem. Integer Linear
Programming (ILP), Non Integer Linear Programming, and
Mixed Integer Linear Programing, are well–known
instances of exact algorithms, but their drawback relies on
their poor convergence performances as the problem size
increases [12].

On the other hand, search–based techniques are divided in
heuristic and deterministic algorithms. Deterministic
algorithms are devoted to search along the whole solution
space, whereas heuristic algorithms use the previous
experience in order to improve the searching process.
Among heuristic algorithms there are some approaches
which work with evolutive techniques (transformative) and
some others which produce partial solutions in an iterative
fashion until a good–enough solution has been reached
(constructive). Dynamic algorithms are all based on
heuristics. They must be quick enough to deliver a
reasonably good solution in run time, without sacrificing
task mapping quality. Table 1 summarizes the taxonomy
above described.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 71

Table 1. Taxonomy of the Optimization Algorithms.

Algorithm Nature Kind
First Free (FF)

Dynamic

Heuristic

Nearest Neighbor
(NN)
Packing-based
Nearest Neighbor
(PNN)
Minimum
Maximum
Channel Load
(MMC),
Minimum
Average Channel
Load (MAC)
Path Load (PL)
Best Neighbor
(BN)
Dynamic Spiral
Mapping (DSM)
Lower Energy
Consumption
based on
Dependencies-
Neighbor (LEC-
DN)
ILP, NILP, MILP Static Exact
Genetic
Algorithm,
Particle Swarm
Optimization, Ant
Colony
Organization,
Population-Based
Incremental
Learning

Static
Heuristic –

Transformative

Binomial,
Mapping
Algorithm,
Constructive
Mapping
Algorithm, Chain
Mapping
Algorithm,
Mapping on Noc,
Simulation
Environment
Mapping, LMAP
Algorithm,
Simulated
Annealing, Onyx,
Search Tabu

Static
Heuristic –

Constructive

Branch and Bound Static Deterministic

2.7 Tools

 Some software tools are available for supporting the
task mapping stage in NoC design environments. Among
such tools the following can be mentioned below.

• SUNMAP selects the best topology according to
application constraints (power, bandwidth, communication
delay) and generates the nodes allocation for the target
application and architecture. The process involves three
steps. Firstly, routing algorithm and allocation objectives
must be selected. In second place, the best topology is
chosen and thirdly, a model of the system is provided
through SystemC descriptions [13].

• SMAP is a mapping and simulation tool developed in
the Matlab environment, which provides several
optimization choices for the solution space exploration.
Some of these options are Genetic Algorithms, random, and
spiral. The communication among nodes can be simulated
with both deterministic routing algorithms (such as XY) or
adaptive algorithms (such as west-first or backtracking).
Some figures of merit assessments, such as power
consumption or execution time, are provided by the tool
[14].

• HeMPS is a custom platform for design and
simulation of NoC-based MPSoCs. This tool is based on
the Hermes network, a Noc with a two dimensional mesh
topology, a XY routing algorithm, and a wormhole
commutation mode. Nodes in Hermes may be a MIPS
processor, a RAM memory module, a DNA module, or a
NI module. First design stage in HeMPS implies
identifying the application specifications and constraints.
After that, some hardware platform parameters (such as the
size of the network, packet size, memory size, etc.) must be
settled and the partitioning algorithm is able to start. The
last stage implies the task mapping of the application on the
selected platform. Both static and dynamic mapping is
supported. The designer is able to integrate hardware and
software components to perform a simulation and
validation of the whole system. The final stage generates a
description of the platform by means of a Hardware
Description Language (HDL) [15].

• OPNEC is an open code platform for designing and
simulating NoC systems. It supports a variety of 2D and 3D
NoC architectures and several topologies (mesh, torus, ring,
bus). It is also capable of working with both static XY
routing algorithms and adaptive approaches, and supports
several kinds of processor and memory modules. Several
optimization objectives might be used, such as energy
consumption and communication delay. Energy
assessments are achieved by means of RTL models and are
aimed to provide estimations of the whole network system.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

72 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Table 2. Summary of reported mapping solutions

Ref.

Factor

Optimization
Criterion

(Figures of
Merit)

Common
Domain

Semantic /
Optimization

Algorithm

Target
Architecture

and
Abstraction

Level

[18] Execution
time

CTG / Exact
optimization

Homogeneous
architectures

and Algorithm
abstraction

[19] Energy
Consumption

CTG / Heuristic
Constructive

[20] Energy
Consumption

TG / Exact
optimization

Heterogeneous
architecture

and Algorithm
abstraction

[21] Communica
-tion cost

APCG /
Heuristic
Transformative

[22] Communica-
tion volume

CTG / Heuristic
Transformative

[23] Multi-
objective

TG / Heuristic
Transformative

[24] Bandwidth,
Area

CTG / Heuristic
Constructive

[25] Energy
Consumption
, Latency

ARG /
Heuristic
Constructive

[26] Communica-
tion Cost,
Bandwidth

CG / Heuristic
Constructive

Heterogeneous
architecture
and TLM
abstraction

[27] Execution
Time

AG / Dynamic

[28] Execution
Time Energy
Consumption
, Average
channel load,
Latency

AG / Dynamic
Optimization

[29] Energy
Consumption

CTG / Dynamic
optimization

Heterogeneous
architecture
and RTL
abstraction [30] Execution

Time
SDFG /
Heuristic
Transformative

[31] Energy
Consumption
, Execution
Time

CWG, CRG /
Heuristic
Constructive
Dynamic

Homogeneous
architecture
and RTL
abstraction

3 Reported mapping solutions
 This section summarizes the most representative
reported works in the subject of mapping solutions aimed to

NoC systems. In order to efficiently present such
information, Table 2 relates some of the literature
references, with some key factors on task mapping, as
described in Section 2. Some abbreviations are used in
Table 2. Their meaning is as follows. CTG:
Communication Task Graph; TG: Task Graph; APCG:
Application Characteristics Graph; CG: Core Graph; AG:
Acyclic Graph; SDFG: Synchronous Dataflow Graph;
CWG: Communication Weights Graph; CRG:
Communication Resources Graph.

In Table 2, all reported solutions work with mesh
topologies with exception of reference [30]. None of them
is aimed to hierarchical, hybrid, or irregular topologies.

4 Conclusions
 This document introduces a brief summary on task
mapping techniques for NoC Systems. A taxonomy of key
factors involving task mapping methodologies is
introduced. Finally, a survey of reported works in literature,
regarding tasks mapping is also presented. This survey
includes some of the key factors previously presented.

According with the results summarized in Table 2, most of
the mapping solutions reported in literature are aimed to
mesh NoC topologies. Network regularity and ease of
simulation and implementation might be part of the reasons
why mesh topologies are preferred. As future work, we
devise the study of mapping solutions in hierarchical and
more complex network topologies.

5 Acknowledgements
 The authors would like to thank Universidad Nacional
de Colombia, Pontificia Universidad Javeriana Cali and
Universidad del Valle, because of its support in the
development of this work.

6 References
[1] A. Guerre, N. Ventroux, David R, Merigot A.
“Hierarchical network-on-chip for embedded many-core
architectures,” Fourth ACM/IEEE International
Symposium on Networks-on-Chip (NOCS), pp. 189-196. 3-
6 May 2010.

[2] M. A. Siala, S. B. Saoud. “A survey on existing
MPSOCs architectures,” International Journal of Computer
Applications (0975 – 8887), vol. 19 (3), pp. 28-41, Abr
2011.

[3] F. Moraes, N. Clazans, A. Mello, L. Moller y L. Ost.
“HERMES: an infraestructure for low area overhead
packet-switching Networks on Chip,” Elsevier,
INTEGRATION, the VLSI journal 38, pp.69-93, 2004.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 73

Available at
http://www.sciencedirect.com/science/article/pii/S0167926
004000185.

[4] P. Mesidis. Mapping of Real-time Applications on
Network-on-Chip based MPSOCS. Tesis de Maestría
Universidad de York.2011.

[5] M. R. Garey and D. S. Johnson, Computers and
Intractability; A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Free- man & Co., 1990.

[6] M. Grange, A. Y. Weldezion, D. Pamunuwa, R.
Weerasekera, Lu. Zhonghai, A.Jantsch, D. Shippen.
“Physical mapping and performance study of a multi-clock
3-Dimensional Network-on-Chip mesh,” IEEE
International Conference on 3D System Integration, pp. 1-
7, 28-30 Sept. 2009.

[7] F. G. Assia, Transaction Level Modeling with
SystemC: TLM Concepts and Applications for Embedded
Systems. Springer 2005.

[8] V. Zadrija, V. Sruk. “Mapping algorithms for MPSoC
synthesis,” Proceedings of the 33rd International
Convention MIPRO, pp.624-629, 24-28 May 2010.

[9] R. Lemaire, S. Thuries, F. Heiztmann, C. Helmstetter,
P. Vivet, F. Clermidy “A flexible modeling environment
for a NoC-based multicore architecture,” IEEE
International, pp. 140-147, 9-10 Nov. 2012.

[10] Guerre A, Ventroux N, David R, Merigot A.
“Hierarchical Network-on-Chip for Embedded Many-Core
Architectures,” Fourth ACM/IEEE International
Symposium on Networks-on-Chip (NOCS). pp. 189-196. 3-
6 May 2010.

[11] P. K. Sahu, S. Chattopadhyay. “Survey on application
mapping strategies for Network on Chip design,” Journal of
Systems Architecture, vol. 59, Issue 1, pp. 60-76, Jan 2013.

[12] O. He, S. Dong, W. Jang, J. Bian, and D. Z. Pan,
“UNISM: Unified Scheduling and Mapping for General
Networks on Chip,” IEEE Trans. VLSI Syst., vol. 20, no. 8,
pp. 1496–1509, 2012.

[13] S. Murali, G. De Micheli. “SUNMAP: a tool for
automatic topology selection and generation for NoCs,”
Design Automation Conference. pp. 914-919, 7-11 Jul
2004.

[14] S. Saeidi, A. Khademzadeh, A. Mehran. “SMAP: An
intelligent mapping tool for Network on Chip,”
International Symposium on Signals, Circuits and Systems,
vol. 1, pp. 1-4, 13-14 Jul 2007.

[15] E.A. Carara, R.P. de Oliveira, N.L.V. Calazans, F.G.
Moraes. “HeMPS-A framework for NoC-Based MPSOC
generation,” IEEE International Symposium on Circuits
and Systems, (ISCAS), pp. 1345-1348, 24-27 May 2009.

[16] C. Jueping, H. Gang, W. Shaoli, Y. Lei, L. Zan, H.
Yue. “OPNEC-sim: An Efficient Simulation Tool for
Network-on-Chip Communication and Energy Performance
Analysis,” 10th IEEE International Conference on Solid-
State and Integrated Circuit Technology (ICSICT), pp.
1892-1894, 1-4 Nov. 2010.

[17] J. Duato, S. Yalamanchili, and L. Ni. Interconnection
Networks: An Engineering Aproach. Morgan
Kaufmann/Elsevier, 2003.

[18] S. Tosun. “Cluster-based application mapping method
for Network-on-Chip,” Advances in Engineering Software,
vol. 42, n.10, pp. 808-874, Oct 2011.

[19] L. Zhong, J. Sheng, M. Jing, Z. Yu, X. Zeng, D. Zhou.
“An Optimized Mapping Algorithm Based on Simulated
Annealing for Regular NoC Architecture,” IEEE 9th
International Conference on ASIC (ASICON), pp. 389-392,
25-28 Oct. 2011.

[20] E. Khajekarimi, M. R. Hashemi. “Energy-Aware ILP
Formulation for Application Mapping on NoC Based
MPSoCs,” 21st Iranian Conference on Electrical
Engineering (ICEE), pp. 1-5, 14-16 May 2013.

[21] Y. Z. Tei, M. N. Marsono, N. Shaikh-Husin, Y. W.
Hau† “Network Partitioning and GA Heuristic Crossover
for NoC Application Mapping,” IEEE International
Symposium on Circuits and Systems (ISCAS), pp.1228-
1231, 19-23 May 2013.

[22] A. Racu, L.S. Indrusiak, “Using Genetic Algorithms
to Map Hard Real-Time on NoC-based Systems,” 7th
International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pp.
1-8, 9-11 Jul 2012.

[23] F. Bolaños. Mapping Techniques for Embedded
Systems Design with Reliability Considerations. Tesis de
Doctorado Universidad de Antioquia 2012.

[24] H. M. Harmanani, R. Farah. “A Method for Efficient
Mapping and Reliable Routing for NoC Architectures with
Minimum Bandwidth and Area,” Joint 6th International
IEEE Northeast Workshop on Circuits and Systems and
TAISA Conference, NEWCAS-TAISA, pp. 29-32, 22-25
June 2008.

[25] M. Janidarmian1, A. Khademzadeh, M. Tavanpour.
“Onyx: A new heuristic bandwidth-constrained mapping of

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

74 Int'l Conf. Embedded Systems and Applications | ESA'14 |

cores onto tile-based Network on Chip,” IEICE
Electronics Express, vol.6, n.1, pp. 1–7, 2009.

[26] Murali S, De Micheli G. Bandwidth-Constrained
Mapping of Cores onto NoC Architectures. Proceedings of
the Design, Automation and Test in Europe Conference and
Exhibition (DATE’04). Vol 2, pp.896-901. 16-20 Feb.
2004.

[27] E. Carvalho, N. Calazans, F. Moraes. “Heuristics for
Dynamic Task Mapping in NoC-based Heterogeneous
MPSoCs,” 18th IEEE/IFIP International Workshop on
Rapid System Prototyping, pp. 34-40, 28-30 May 2007.

[28] A. K. Singh, T. Srikanthan, A. Kumar, W. Jigang.
“Communication-aware heuristics for run-time task
mapping on NoC-based MPSoC platforms,” Journal of
Systems Architecture: the EUROMICRO Journal, vol. 56,
n. 7, pp. 242-255, Jul 2010.

[29] L. Ost, G. Almeida, M. Mandelli, E. Wachter, S.
Varyani, G. Sassatelli, L. S. Indrusiak, M. Robert, F.
Moraes. “Exploring Heterogeneous NoC-based MPSoCs:
from FPGA to High-Level Modeling,” Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC),
2011 6th International Workshop on. pp. 1-8. 20-22 June
2011.

[30] G. Wang, W. Gong, B. DeRenzi, R. Kastner. “Ant
Colony Optimizations for Resource and Timing
Constrained Operation Scheduling,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, n. 6, pp. 1010-1029, Jun 2007.

[31] C.A.M. Marcon, E. I. Moreno, N. L. V. Calazans,
F.G. Moraes. “Comparison of network-on-chip mapping
algorithms targeting low energy consumption,” Computers
& Digital Techniques, IET, vol. 2, n.6, pp. 471-482, Nov
2008.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 75

Intelligent Assistive Device to Monitor

Ankle-Foot Orthosis

Vengateswaran.S
1
, Ramani.V

1
 and Ramalatha.M

 1

Department of Information Technology, Kumaraguru College of Technology,

Coimbatore, Tamil Nadu, India

Abstract - Active Ankle foot orthosis is used to

compensate for muscle weakness, called Drop Foot

caused by stroke, spinal cord injury, multiple

sclerosis or any gait pathologies associated with

neuromuscular disorders. People with drop foot need

assistance in taking a step since the movement is

impaired due to weakening and stiffening of muscles

in different portions of the leg. This paper describes

a system for actuating a drop foot using electric

stimulation for muscles when the disorder is acute.

The position of foot is sensed and used as a feedback

to controller to make a decision on whether actuation

is required. The device also alerts the care taker of

the patient through mobile device connected through

Bluetooth and generates a progress report. A

laboratory model of the proposed system was

implemented. The control device can be used in

several applications involving control of different

types of orthoses used for gait correction.

Keywords: Ankle foot orthosis, drop foot, electric

stimulation, passive and active AFO, semiactive

AFO.

1 Introduction

Abnormal gaits are seen in patients with

neuromuscular disorders, such as stroke, cerebral

palsy (CP), amyotrophic lateral sclerosis (ALS), or

multiple sclerosis (MS), where pathologies of the

ankle-foot present an everyday problem, particularly

over a period of time. Drop foot is one example. This

is because, due to the damage of the long nerves or of

the brain or spinal cord, there is uneven spread of

reflexes over the different muscles of the leg. The

anterior muscles of the lower leg which work for

dorsiflexion become weaker while the posterior

muscles become stiffer. The result of this is a drop

foot. The obvious result of this disorder is the tripping

and falling of the patient due to the fact that the foot

drops in swing phases causing toe strikes instead of

heel strikes.

This has to be treated in two phases: The

first and foremost is to provide walking assistance to

the patient through artificial means. The second phase

is a prolonged benefit where the development of

abnormal gaits can be prevented over time. Though

much research has gone on in providing assistance to

drop foots both in the way of physical assistance as

well as providing a confidence to the patient, most

widely used solution is to wear a passive orthotic

device, such as an ankle-foot orthosis (AFO), which

forces the joint angle to be close to 90° [2].

1.1 Ankle Foot Orthoses

 AFOs are of many types. It is most

commonly classified as passive, semi-active, and

active. Passive devices are the static devices which do

not have any electronics in them but they may have

mechanical elements such as springs or dampers,

which enable motion control of the ankle joint during

gait. These devices have no automation in sensing or

responding. Semi-active AFOs are the ones using

computer to control variance in compliance or

damping of the joint in real-time. Here the control can

be automated but the monitoring is done manually.

Fully active AFOs are meant to have onboard or

tethered sources of power, one or more actuators to

move the joint, sensors, and a computer or onboard

electronics used to control the application of

assistance during gait.

 Active ankle-foot orthoses (AAFOs) are

orthotic devices intended to assist or to restore the

motions of the ankle-foot complex and are based on

force-controlled actuator [1].

These devices are more concentrated on the

actuation of the affected limb and these devices have

been developed to assist the patient but the progress

of the patient is not monitored. They are not focused

on long term assessment. When the device is simply

mounted on patient to make the limb move, it does

not mean that the patient will recover. There is a need

to monitor the patient continuously and motivate

them by showing them their progress.

Laboratory monitoring is usually

implemented in fully active AFOs. But the

monitoring is done by connecting the device to the

computer. This makes the device non portable. In

order to make the device portable with real time

monitoring, we need to establish wireless

communication between the device and the

monitoring system. In this case we cannot make the

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

76 Int'l Conf. Embedded Systems and Applications | ESA'14 |

monitoring device to be at one place. We need to

make the monitoring device also portable.

1.2 Android Device Monitoring

Android is the most powerful mobile

operating system, which is used in most of the

mobile devices now-a-days. It has wide range of

interfacing facilities in it to communicate with other

embedded devices. But using the android operating

system and be able to get information on the

condition of a patient from a long distance will keep

the family happier.

2 Literature survey:

Veneva I[2010] developed an autonomous

adaptive system for actuation, data processing and

control of active ankle-foot orthosis. This system is

composed of control system with actuation by

sensing the improper foot position and viewing the

results on a separate GUI display for monitoring.

This system is just for laboratory monitoring with a

graphical program written in MATLAB. The system

cannot be used for continuous monitoring [1]. Yong-

Lae Park et al [2011] have created the design of an

active soft ankle foot orthotic device powered by

pneumatic artificial muscles for treating gait

pathologies associated with neuromuscular disorders.

The design is inspired by the biological

musculoskeletal system of a human foot and a lower

leg, and mimics the muscle-tendon-ligament

structure. A key feature of the device is that it is

fabricated with flexible and soft materials that

provide assistance without restricting degrees of

freedom at the ankle joint .But the system is too

heavy to mount on the patient [2].

Blaya and Herr [2004] developed an adaptive

control system for ankle foot orthosis. They used a

serious elastic actuator and ankle angle sensor which

is a circular potentiometer to detect the angle by

resistance encountered. They applied variable-

impedance on the adaptive basis by using computer

controlled AFO. In this system importance for

continuous monitoring is not given [3]. Kenneth Alex

Shorter et al. [2013] have done study on

Technologies for Powered Ankle-Foot Orthotic

Systems. They made a complete comparison of

strategies about all AFOs, on powering, structure and

efficiency of the AFOs that are currently available on

the field [4].

3 Method

The active ankle-foot orthoses has three basic

components: Electro-Mechanical, Control and

Alerting and report generation unit. The Control Unit

receives values of the ankle’s angle and toe clearance

from sensors (Flex sensor to detect the angle and

pressure sensor to detect the toe clearance). By

receiving the values from the sensors, the arduino

microcontroller generates the flexion/extension

motions and controls the Electro-Mechanical Unit.

3.1 Electro-Mechanical Unit

Electro-Mechanical Unit consists of the

Actuator which actuates the leg to the normal

position whenever it detects a drop foot condition on

the leg. The flex sensor is placed on the top of the leg

across the ankle as shown in figure 1.The pressure

sensors will be placed inside the insole as shown in

the figure 2. The actuator does not affect the normal

leg movement. It actuates the leg only on the

condition of drop-foot.

3.2 Alerting and Report generation

Unit

Alerting and Report generation unit is a

separate device which is powered by android.

Figure 2 - Force Sensor embedded inside

insole

Figure 1 - Ankle Angle detection

Sensor (Flex sensor)

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 77

3.3 Control Unit

The control unit sends the leg position to that

device. The device is meant to be with care taker.

The device alerts the care taker in case of any

instability found during gait. It also records the

situations of instability of the patient. It stores data as

number of times the patient faced instability

condition in the day. A weekly report will be

generated on the device and it is sent to the

respective doctor.

4 System Design

The complete autonomous system consists

of four primary components - sensing, data

processing, actuation and alerting and report

generation.

The sensor system has been mounted onto

two basic components: insole with pressure sensor

and flex sensor for ankle angle detection. During

walking, the processing unit gathers and digitizes the

information from the sensors. In monitoring mode

these data are transferred through the Bluetooth to

android mobile device for alerting and report

generation.

 The system power source is an important

part of the project. Three separate power sources are

required. One is to power arduino, second is for the

actuation part and next is for Bluetooth module.

4.1 Sensing Unit

 Sensing unit consists of three sensors. Two

pressure sensors are used for toe clearance and one

flex sensor for ankle’s angle detection. Two pressure

sensors will be embedded inside the insole. The flex

sensor will be placed above the ankle with the help of

socks. The pressure sensors gives value depending on

the pressure/force applied on it. We need to map the

values according to our need. We have setup a

threshold value above which we detect the toe on

ground state.

 Same as the pressure sensor, the flex sensor

values have to be mapped in order to get the ankle’s

angle.

4.2 Data Processing Unit

 Data Processing Unit consists of the arduino

UNO which is microcontroller featuring basic

hardware peripherals such as Analog to Digital

Converter (ADC), serial communication to connect

with Bluetooth and PWM (Pulse Width Modulation)

signal to drive motor according to input signal. All

the sensors will be connected to the analog input pins

of arduino. The arduino converts the analog signal

into digital signal to process it.

The condition for actuation and alerting is

that the ankle must be leaned in such a manner it

becomes 180° and the toe must be on the ground.

When the foot is dropped, the system should actuate

the leg to normal position. Servo motors are used for

the part of actuation of leg. When the foot drops to

the improper position, the system automatically

actuates the ankle to move the foot to normal

position.

 Improper condition is found by the three

sensors namely S1, S2 and F1. The two pressure

Alert and Report Generation

INSOLE

Pressure Sensors

Sensors

(Flex Sensor)

Actuators

(Servo Motor)

Data Processing

Mobile Device

Bluetooth

Control Unit

Vibration

(DC Motor)

Figure 3 – System Design

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

78 Int'l Conf. Embedded Systems and Applications | ESA'14 |

sensors are S1 and S2 where S1 is fixed on the toe

and S2 is on the sole below the ankle. The angle of

ankle is determined by the flex sensor F1.

4.3 Actuation Unit

 Actuation unit consists of the servo motors.

The servo motors have the torque of 60KG in normal

conditions. If the person is heavier than 60KG then

we need to opt for higher torque servos. When the

drop foot condition is met, the servo rotates back to

the normal position (90°) thus actuating the foot to

normal position. The servos will be fixed near the

ankle.

4.4 Alerting and report generation Unit

 The flex and the pressure sensor values will

be sent to the android device which is connected to

the Bluetooth transmitter mounted on the leg. The

android device processes it and alerts the care taker

whenever there is an instance of about to fall or a

fall. It also stores the occurrence of instability in the

database consistently. It sends a weekly report to the

registered medical specialist about the number of

occurrences per day on the week through email so as

to keep track.

5 Experimental Results

(a)

Reset

 Actuate the leg to

normal position
S1=1 and S2=0 F1>170°

Figure 4 – Flow of Data Processing unit

Figure 5 - Ankle Foot Orthosis with

alerting and Monitoring

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 79

(b)

(c)

Figure 6 – Android Application for mobile

monitoring

a - Status Screen , b - Consolidated Progress Data,

c - Consolidated Progress Analysis

The device has been tested on two patients

affected by cerebral palsy for a week by letting them

wearing it. As commonly known, the patient affected

by cerebral palsy lacks the ability to walk normally

and is prone to fall often. Hence this device has been

designed to help them walk normally as any other

normal human. There are some situations where they

were meant to fall by misplacing their leg but at

those situations they have been brought to normal

state by the device. Such situations have been saved

in the database and the report has been generated.

The Graph has also been generated to have instant

understanding about the patient’s health condition.

6 Conclusion

 The monitoring system attached to the

actuating system gives overall progress report on the

patient’s condition which shows the continuous

improvement of the patient. This device has been

designed at the request of and in consultation with

the therapists at the Occupational therapy unit of

Kovai Medical Centre and Hospital, Coimbatore.

7 References

[1] Veneva I, “Intelligent Device for Control of

Active Ankle-Foot Orthosis“, Proceedings of the

7
th

 IASTED International Conference

Biomedical Engineering (biomed2010),

February 17-19, 2010 Innsbruck, Austria.

[2] Yong-Lae Park, Bor-rong Chen, Diana Young,

Leia Stirling, Robert J. Wood, Eugene Goldfield,

and Radhika Nagpal, “Bio-Inspired Active Soft

Orthotic Device For Ankle Foot Pathologies”,

2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems, September 25-

30, 2011. San Francisco, CA, USA.

[3] Joaquin A. Blaya and Hugh Herr, “Adaptive

Control of A Variable-Impedance Ankle-Foot

Orthosis To Assist Drop-Foot Gait”, IEEE

Transactions On Neural Systems And

Rehabilitation Engineering, VOL.12, No. 1,

MARCH 2004.

[4] Kenneth Alex Shorter, Jicheng Xia, Elizabeth T.

Hsiao-Wecksler, Member, IEEE, William K.

Durfee and G´eza F. Kogler, “Technologies for

Powered Ankle-Foot Orthotic Systems:

Possibilities and Challenges”, IEEE/ASME

Transactions on Mechatronics, VOL. 18, NO. 1,

FEBRUARY 2013

[5] Anindo Roy, Hermano Igo Krebs, Dustin J.

Williams, Christopher T. Bever, Larry W.

Forrester, Richard M. Macko, and Neville

Hogan. “Robot-Aided Neurorehabilitation: A

Novel Robot for Ankle Rehabilitation”, IEEE

Transactions on Robotics, VOL.25, No. 3, JUNE

2009.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

80 Int'l Conf. Embedded Systems and Applications | ESA'14 |

FPGA Realization of Hybrid Carry Select-cum-

Section-Carry Based Carry Lookahead Adders

V. Kokilavani
Department of PG Studies in Engineering

S. A. Engineering College

(Affiliated to Anna University)

Chennai 600 077, India

P. Balasubramanian
Department of Computer Science and

Engineering

S. A. Engineering College

Chennai 600 077, India

H. R. Arabnia
Department of Computer Science

University of Georgia

415 Boyd Building

Athens, Georgia 30602-7404, USA

Abstract—FPGA based synthesis of conventional carry select

adders, carry select adders featuring add-one circuits (binary to

excess-1 code converters), carry select adders sharing common

Boolean logic term, hybrid carry select-cum-carry lookahead

adders, and hybrid carry select-cum-section-carry based carry

lookahead adders are described in this paper. Seven different

carry select adder structures corresponding to 32 and 64-bit

addition were described topologically using Verilog HDL, and

were subsequently implemented in a 90nm FPGA (Spartan-3E).

The results obtained show that the carry select adder utilizing

section-carry based carry lookahead logic encounters minimum

data path delay among all its counterparts.

Keywords—Carry select adder; Carry lookahead; FPGA; High-

speed design; Binary to excess-1 converter; Common Boolean logic

I. INTRODUCTION

The carry select adder (CSA) is a high-speed adder [1] with

typical propagation delay of)(nO , where ‘n’ denotes the

adder size. With respect to physical realization of CSAs, there
are three basic types – a topology which consists of full adder
modules and 2:1 multiplexers (MUXes), an architecture which
consists of full adders, binary to excess-1 code converters
(BECs) and 2:1 MUXes, and another structure which is built
on the basis of sharing of common Boolean logic (CBL) term.
In the existing literature, conventional CSAs with and without
BEC logic, hybrid CSAs

1
 encompassing both CSA and carry

lookahead (CLA) adder topologies, and CSAs based on CBL
term sharing have been implemented in ASIC and/or FPGA
platforms [2] – [12]. In this paper, seven different CSAs have
been constructed using Verilog HDL in a topological sense viz.
conventional CSA (CCSA), CSA incorporating BEC logic
(CSA-BEC), hybrid CSA with a CLA adder in the least
significant stage (CSA_CLA), hybrid CSA with CLA adder in
the least significant stage and featuring BEC logic (CSA-
BEC_CLA), CSA based on CBL term sharing (CSA-CBL),
hybrid CSA with a section-carry based carry lookahead
(SCBCLA) logic incorporated in the least significant stage
(CSA_SCBCLA), and finally, CSA with a least significant
SCBCLA section including BECs (CSA-BEC_SCBCLA).
Among these, the last two hybrid CSA architectures represent
the novelty component of this paper. Referring to a recent work
[13], it was shown that the SCBCLA adder promised better
performance in terms of delay than a traditional CLA adder.
For example, a 64-bit SCBCLA adder exhibited 14% less data
path delay than a conventional 64-bit CLA adder.

In the rest of this paper, with an 8-bit addition as a running
example, Section 2 discusses the basic architectures of CCSA,
CSA-BEC and CSA-CBL adders. Section 3 deals with hybrid
CSA topologies featuring a CLA in the least significant stage
as a replacement for the ripple carry adder (RCA). The new
CSA_SCBCLA and CSA-BEC_SCBCLA adder architectures
are also described in this section. Section 4 presents the delay
and area results for seven different CSA variants corresponding
to 32-bit and 64-bit additions, based on synthesis targeting a
90nm FPGA, followed by the conclusions.

II. CONVENTIONAL CARRY SELECT ADDERS

The traditional CSA architectures are shown in Figure 1,
for the example case of 8-bit addition. Figure 1(a) shows the
CSA partitioning the specified data inputs into two groups and
addition within the groups are carried out in parallel using a
dual RCA, composed from full adder blocks. The full adder is
an arithmetic building block that adds an augend and addend
bit (say, ai and bi) along with any carry input (cin), producing
two outputs, namely sum (Sumi) and a carry output (cout). In
case of the CCSA shown in Figure 1(a), the full adders present
in the most significant nibble position are duplicated with carry
inputs of 0 and 1 assumed, i.e. a 4-bit RCA with a carry input
of 0 and another 4-bit RCA with a carry input of 1 are realized.
Both these RCAs have the same augend and addend inputs.
While the least significant 4-bit RCA would be adding augend
inputs (a3 to a0) with addend inputs (b3 to b0), the more
significant 4-bit RCA would be adding in parallel augend
inputs (a7 to a4) with addend inputs (b7 to b4), with 0 and 1
serving as input carries. Due to two addition sets, two sets of
sum outputs and output carries are produced – one based on 0
as carry input and another based on 1 as carry input, which are
in turn fed as inputs to 2:1 MUXes. The number of MUXes
used depends on the size of the RCA duplicated. To determine
the true sum outputs and the real value of carry overflow of the
higher order nibble position of the CCSA, the carry output (c4)
from the least significant 4-bit RCA is used as the common
select input for all MUXes corresponding to more significant
RCA stage, thereby the correct result pertaining to either RCA
with 0 as carry input or RCA with 1 as carry input is output.

The CSA-BEC category is rather different from the CCSA
in that instead of having an RCA with a presumed carry input
of 1 in a more significant position, BEC circuit is introduced.
The BEC logic adds binary 1 to the least significant bit of its
binary inputs and produces the resultant sum at its output. As
seen in Figure 1(b), the BEC accepts as input the sum and carry

1 Hybrid carry select and carry lookahead adders shall commonly be referred

to as hybrid carry select adders in this paper for simplicity.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 81

Full

Adder

a4 b4

Full

Adder

a5 b5

Full

Adder

a6 b6

Full

Adder

a7 b7

Sum4
0Sum5

0Sum6
0Sum7

0

Full

Adder

a4 b4

Full

Adder

a5 b5

Full

Adder

a6 b6

Full

Adder

a7 b7

Sum4
1Sum5

1Sum6
1Sum7

1

2:1

MUX

2:1

MUX

2:1

MUX

2:1

MUX

carry_out

Sum4Sum5Sum6Sum7

(a) 8-bit conventional CSA featuring dual RCAs (CCSA type)

Note: Circuits enclosed within top and bottom circles represent 4-bit CLA and 4-bit SCBCLA adders respectively. Circuit enclosed within

the ellipse signifies 4-bit RCA. Usage of 4-bit CLA adder instead of 4-bit RCA results in CSA_CLA configuration. Alternatively, usage of

4-bit SCBCLA adder instead of 4-bit RCA leads to CSA_SCBCLA architecture

cin = 0

cin = 1

Fig. 1. Conventional CSA topologies (with/without BEC logic), which may embed CLA and SCBCLA sections to form hybrid CSA architectures

Full

Adder

a0 b0

carry_in
Full

Adder

a1 b1

Full

Adder

a2 b2

Full

Adder

a3 b3

Sum0Sum1Sum2Sum3

Full

Adder

a4 b4

Full

Adder

a5 b5

Full

Adder

a6 b6

Full

Adder

a7 b7

Sum4
0Sum5

0Sum6
0Sum7

0

Sum4
1Sum5

1Sum6
1Sum7

1

2:1

MUX

2:1

MUX

2:1

MUX

2:1

MUX

carry_out

Sum4Sum5Sum6Sum7

c4

(b) 8-bit conventional CSA incorporating add-one circuit (BEC logic): CSA-BEC structure

Note: Circuit enclosed within the rectangle represents 4-bit RCA. Usage of 4-bit CLA adder instead of

4-bit RCA results in CSA-BEC_CLA configuration. Alternatively, usage of 4-bit SCBCLA adder instead of

4-bit RCA leads to CSA-BEC_SCBCLA architecture

cin = 0

5-bit Binary to Excess-1 Converter (BEC)

Sum4
0Sum5

0Sum6
0Sum7

0

c8
0

c81

c80

c8
1

4-bit CLA generator

carry_in

a3
b3

P3G3 P0G0

a0
b0

Sum3 Sum0

P0P3 c3

4-bit SCBCLA generator

a3
b3

P3G3 P0G0

a0
b0

Sum3 Sum0

a3 b3

Sum

Logic

Full

Adder

a0 b0

carry_in

c4

c4

Full

Adder

a0 b0

carry_in
Full

Adder

a1 b1

Full

Adder

a2 b2

Full

Adder

a3 b3

Sum0Sum1Sum2Sum3

c4

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

82 Int'l Conf. Embedded Systems and Applications | ESA'14 |

outputs of the RCA having a presumed carry input of 0, adds 1
to the input, and produces the resulting sum as output. Now the
correct result exists between choosing the output of the RCA
featuring an input carry of 0, and the output of the BEC logic.
Again, carry output c4 of the least significant RCA is used for
determining the correct set of outputs. The logic diagram
corresponding to the 5-bit BEC is shown in Figure 2, and its
governing equations are,

0

4

1

4
SumSum = (1)

0

4

0

5

1

5
SumSumSum ⊕= (2)

)(0

4

0

5

0

6

1

6
SumSumSumSum •⊕= (3)

)(0

4

0

5

0

6

0

7

1

7
SumSumSumSumSum ••⊕= (4)

)(0

4

0

5

0

6

0

7

0

7

1

7
SumSumSumSumcc •••⊕= (5)

 The CSA structure constructed on the basis of CBL term

sharing is depicted through Figure 3. The CSA-CBL adder is

founded upon the functionality of the full adder block, whose

underlying equations are given below assuming a, b and cin as

the primary inputs and Sum and Cout as the primary outputs.

in
cbaSum ⊕⊕= (6)

() ()
ininout

cabcbaC •+•+= (7)

 From (6) and (7), it may be understood that for a carry

input of 0, equations (6) and (7) reduce to: baSum ⊕= and

abC
out

= respectively, while for an assumed carry input of 1,

equations (6) and (7) become baSum ⊕= and baC
out

+= .

Based on this principle, the sum and carry outputs for both

possible values of input carries are generated simultaneously

and fed as inputs to two 2:1 MUXes. The correct sum and

carry outputs are then determined with the carry input serving

as the select input for the two MUXes. Though exorbitant dual

RCAs and RCA with BEC logic structures are eliminated

through this approach, leading to substantial savings in terms

of area and possibly less power dissipation, nevertheless, since

carry propagation occurs from stage-to-stage; the data path

delay varies proportionately with the size of the cascade. As a

consequence, the delay of the CSA-CBL adder tends to be

close to that of RCA, which is confirmed through simulations.

III. HYBRID CARRY SELECT ADDERS

Apart from synthesizing basic CSA topologies viz. CCSA
and CSA-BEC variants, hybrid CSA architectures involving
CLA and SCBCLA logic in the least significant stage were
also synthesized with the intention of minimizing maximum
combinational path delay. It is well known that a CLA adder is
faster than a RCA, and hence it may be worthwhile to include a
CLA adder in the CSA structure to replace the least significant

RCA to mitigate the propagation delay. Although the concept
of CLA is widely understood, the concept of SCBCLA may
not be well known and hence to elucidate the distinction
between CLA and SCBCLA modules, sample 4-bit lookahead
logic realized using these two styles is portrayed in Figure 4 for
an illustration. For details regarding diverse SCBCLA logic
implementations and realization of various SCBCLA adders,
the interested reader is directed to references [13] [14], which
constitute prior works within the realm of synchronous and
self-timed (asynchronous) design. The SCBCLA generator
shown within the circle in Figure 4 produces look-ahead carry
signal corresponding to a section or group of adder inputs,
while the conventional CLA generator shown within the
rectangle produces look-ahead carry signals corresponding to
each pair of augend and addend inputs. The SCBCLA module

M
U
X

M
U
X

M
U
X

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 83

differs from a conventional CLA module in that bit-wise look-
ahead carry signals need not be computed. The XOR and AND
gates used for producing propagate and generate signals (P0 –
P4 and G0 – G4) are highlighted using dotted lines in Figure 4.

a0

b0

P2

P1

P0

G2

G1

G0

carry_in

c3

c2

c1

4-bit CLA block

(excluding generate

and propagate signals)

Fig. 4. 4-bit CLA and SCBCLA generator modules

carry_in

carry_in

P3

G3

carry_in c4

4-bit SCBCLA block

(excluding generate

and propagate signals)

a3

b3

a1

b1

a2

b2

Exemplar 8-bit hybrid CSAs with/without BEC logic and
featuring traditional CLA adders in the least significant stage
viz. CSA_CLA adder and CSA-BEC_CLA adder are shown as
part of Figure 1 due to space constraints. They are obtained by
replacing the least significant RCAs shown within the ellipse
and rectangle in Figures 1(a) and 1(b) with the 4-bit CLA adder
shown enclosed within the circle at the top of Figure 1(a).
Similarly, 8-bit hybrid CSAs with/without BEC logic and
featuring SCBCLA adders in the least significant stage viz.
CSA_SCBCLA and CSA-BEC_SCBCLA adders are obtained
by replacing the least significant RCAs shown within the
ellipse and rectangle in Figures 1(a) and 1(b) with the 4-bit
SCBCLA adder shown within the circle at the bottom of Figure
1(a). Unlike a typical CLA adder which consists of propagate-
generate logic, CLA generator, and series of XOR gates to
produce sum outputs, the SCBCLA adder contains propagate-
generate logic, SCBCLA generator, full adders, and sum logic
as shown in Figure 1. The sum logic is basically derived from
the full adder in that only the sum output is produced with no
extra carry output. While rippling of carries occurs within the
carry-propagate adder portion constituting the SCBCLA adder,
which produces the requisite sum outputs, the look-ahead carry
signal pertaining to an adder section is generated in parallel.

IV. RESULTS AND INFERENCES

32 and 64-bit conventional and hybrid CSAs corresponding
to various architectures were described topologically in Verilog
HDL and were synthesized targeting a 90nm FPGA device

(Spartan-3E: XC3S1600E). The maximum combinational path
delay has been estimated after automated place and route and is
ascertained from the design summary. The critical path timing
and area results (in terms of number of LUTs) of different CSA
structures are mentioned in Table 1. Several carry chain
partitions were considered for the 32-bit and 64-bit CSAs and
among them; the optimized delay value is found out and listed
in Table 1. The optimum delay and area values corresponding
to 32 and 64-bit CSAs are highlighted in bold-face in the
Table. Percentage increases in delay for different CSAs in
relative comparison with the CSA_SCBCLA adder is indicated
within brackets in the third column of the Table.

The 32-bit RCA exhibits maximum propagation delay of
30.604ns, while the 32-bit CSA_SCBCLA adder encounters
approximately half its data path delay and exhibits the least
latency among all CSAs. For 64-bits, it is a similar story with
the CSA_SCBCLA adder featuring the least latency and
encounters just about one-third the delay of 64-bit RCA, whose
critical path delay is 71.555ns. Considering both 32 and 64-bit
additions, it is found that the CSA_SCBCLA adder leads to a
delay optimal solution minimizing the best delay metrics of
conventional CSAs (CCSA and CSA-BEC) and CSA_CLA by
24.7% and 15.6% respectively. However, with respect to area
occupancy CSA-CBL adders are preferable, which consume
59.4% less LUTs than CSA_SCBCLA adders on average.

TABLE I. MAXIMUM PATH DELAY AND AREA OF 32 AND 64-BIT CSAS

CORRESPONDING TO CONVENTIONAL AND HYBRID ARCHITECTURES

REFERENCES

[1] O.J. Bedrij, “Carry-select adder,” IRE Transactions on Electronic
Computers, vol. EC-11, no. 3, pp. 340-346, 1962.

[2] Y. Kim, L.-S. Kim, “64-bit carry-select adder with reduced area,” IET
Electronics Letters, vol. 37, no. 10, pp. 614-615, 2001.

[3] R. Yousuf, Najeeb-ud-din, “Synthesis of carry select adder in 65nm
FPGA,” Proc. IEEE Region 10 TENCON Conference, pp. 1-6, 2008.

[4] H.G. Tamar, A.G. Tamar, K. Hadidi, A. Khoei, P. Hoseini, “High speed
area reduced 64-bit static hybrid carry-lookahead/carry-select adder,”
Proc. 18th IEEE International Conference on Electronics, Circuits and
Systems, pp. 460-463, 2011.

[5] Y. He, C.-H. Chang, J. Gu, “An area efficient 64-bit square root carry-
select adder for low power applications,” Proc. IEEE International
Symposium on Circuits and Systems, vol. 4, pp. 4082-4085, 2005.

[6] M. Alioto, G. Palumbo, M. Poli, “A gate-level strategy to design carry
select adders,” Proc. IEEE International Symposium on Circuits and
Systems, vol. 2, pp. 465-468, 2004.

CSA

Size

Type of CSA Adder

Architecture

Maximum Delay

(ns); %age delay ↑↑↑↑

Area

(# LUTs)

32-bits

CCSA 19.109; (28.4%) 150

CSA-BEC 19.481; (30.9%) 120

CSA-CBL 37.604; (152.6%) 63

CSA_CLA 18.992; (27.6%) 150

CSA-BEC_CLA 19.481; (30.9%) 120

CSA_SCBCLA 14.887 143

CSA-BEC_SCBCLA 19.534; (31.2%) 127

64-bits

CCSA 28.335; (34.4%) 330

CSA-BEC 28.610; (35.7%) 241

CSA-CBL 70.525; (234.5%) 129

CSA_CLA 23.606; (11.9%) 263

CSA-BEC_CLA 28.293; (34.2%) 241

CSA_SCBCLA 21.084 331

CSA-BEC_SCBCLA 27.602; (30.9%) 257

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

84 Int'l Conf. Embedded Systems and Applications | ESA'14 |

[7] W. Jeong, K. Roy, “Robust high-performance low-power carry select
adder,” Proc. Asia and South Pacific Design Automation Conference,
pp. 503-506, 2003.

[8] Y. Chen, H. Li, K. Roy, C.-K. Koh, “Cascaded carry-select adder
(C2SA): a new structure for low-power CSA design,” Proc.

International Symposium on Low Power Electronics and Design, pp.
115-118, 2005.

[9] J. Monteiro, J.L. Guntzel, L. Agostini, “A1CSA: An energy-efficient
fast adder architecture for cell-based VLSI design,” Proc. 18th IEEE

International Conference on Electronics, Circuits and Systems, pp. 442-
445, 2011.

[10] A. Neve, H. Schettler, T. Ludwig, D. Flandre, “Power-delay product
minimization in high-performance 64-bit carry-select adders,” IEEE
Transactions on VLSI Systems, vol. 12, no. 3, pp. 235-244, 2004.

[11] B. Ramkumar, H.M. Kittur, “Low-power and area-efficient carry select
adder,” IEEE Transactions on VLSI Systems, vol. 20, no. 2, pp. 371-375,
February 2012.

[12] I.-C. Wey, C.-C. Ho, Y.-S. Lin, C.-C. Peng, “An area-efficient carry
select adder design by sharing the common Boolean logic term,” Proc.

International Multiconference of Engineers and Computer Scientists,
vol. II, pp. 1091-1094, 2012.

[13] K. Preethi, P. Balasubramanian, “FPGA implementation of synchronous
section-carry based carry look-ahead adders,” Proc. IEEE 2nd

International Conference on Devices, Circuits and Systems, pp. 260-
263, 2014.

[14] P. Balasubramanian, D.A. Edwards, H.R. Arabnia, “Robust
asynchronous carry lookahead adders,” Proc. 11th International
Conference on Computer Design, pp. 119-124, 2011.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 85

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

86 Int'l Conf. Embedded Systems and Applications | ESA'14 |

SESSION

POSTERS

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 87

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

88 Int'l Conf. Embedded Systems and Applications | ESA'14 |

The development of NFC-based medication management
system for elderly patients

Taebok Yoon1, and Jonghee Lee2
1Department of Computer Software, Seoil University, Seoul, South of Korea

2Department of Strategic Planning, INPOESTI Company, Seoul, South of Korea

Abstract - With entering into an aged society, more and more
people pay attention to their health and disease. Especially, it
is significant for senior citizens with chronic disease to have
a medication system as it is directly related to their lives. This
study suggests the NFC-based medication management
system for elderly patents. By developing hardware and
software, the suggested method can assist elderly patients to
take medicines properly without missing or abusing through
guidance and alarm and maintain their health.

Keywords: near field communication (NFC), medication
management system, elderly patients

1 Introduction
 The aged population has been rapidly increasing due to
improvement of living environment and development of
medical technology. The ratio of Korea’s aged population,
which entered into the aged society with over 7 percent in
2000, is forecast to rise to 14.3 percent in 2022 which means
the aged society, and 19.7 percent in 2026, the super aged
society[1]. Most of developed countries also have more
proportion of aging population earlier so that more of high-
tech companies in Silicon Valley, U.S. are developing
technologies not on young generation but on the elder or their
children or providers who live with to their load off. In
addition, businesses are developing various goods for the
aged or handicapped as they are on rise as a major customer
layer. Compared with other age groups, senior citizens need
more attention on management of their health and diseases.
Researches show that most of the elder, who are over sixty-
five years, has more than three chronic diseases including
high blood pressure. A clinical statistics indicated that four
out of ten senior citizens take more than four medications.
Some seniors are even hospitalized from drugs' side effects.
However, they need to be cautious not to worsen diseases or
ruin their health by not taking medications to avoid side
effects. These elderly patients understand how important
regular medications are to treat their diseases, but have
trouble taking medicines due to cognitive impairment and

decreased memories[2]. They need special attention as they
take various medicines for chronic diseases and complications,
so there are more possibilities to have side effects or harmed
from drug interactions. This research will analyze cases of the
elderly patients' medication manage system and suggest NFC-
based smart medication management system.

2 Related works
 There are precedent medication management products
such as medication organizers with alarm system, pill bottles
with a built-in wireless module, medication alarms and
information management software. Firstly, the product of
Apex Medical Corp., U.S. is a medication organizer with
alarm system to set timer with LED screen and its buttons.
GlowCap of Vitality is a pill bottle with a built-in wireless
modem of Telit to alarm patients to take their medicines.

Fig 1. (Up) Apex Weekly Pill Turtle Organizer, (Down)
Vitality-Glow Caps[3]

This research was supported by Leap Technology Development Program
funded by Small and Medium Business Administration (SMBA). (No.
C0142730)

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 89

They also have functions such as monitoring when patients
took medications, reporting if patients took medication on
time and requesting to pharmacies to fill medications by
pressing a button. However, it is uncomfortable for elderly
patients to take medicines out of their package to put into
cases. There is an Android application named "Pills on the
go", a medication alarm and information management
software. This app can support basic medication-related
alarming but can't manage medication as it is software.

3 NFC-based medication management
system

 This suggested system is divided into a bottle-typed
medicine attachment for NFC-based medication management
and NFC-based medication information management software.
First, a cap is developed for NFC-based medication
information management which is attachable to existing
medication for serving elderly patients' medication easily. On
top of the NFC-based medication information management
cap, LED Display module is installed with functions of
display and alarm so that it rings once it's time for a user to
take medicines. Then, if the user's smart phone reads NFC tag
module on the bottle cap, the user can input and check
medication schedule of the medicine with ease. The user also
can turn off the alarm (light and/or sound) on the cap for
medication information management, which is also significant
information to check medication. The entire operation process
of suggested system is as Figure 2.

Fig 2. The workflow for medication management services

Fig 3. Block diagram of medication Information cap

The attachable cap of bottle-typed NFC-based u-medication

information management is consisted of NFC module to save
and transfer medication information and control device
module to manage medication information. The NFC module
already has a NFC Read/Write module and a memory module
to memory medication information and the device module is
consisted of a medication time alarm LED, a Beep and a
switch. Medication information management control software
is made of I2C Communication, NFC function control
software, LED display and alarm control software. The data
flow and function is as Figure 3.

4 Conclusions
 This study has introduced NFC-based smart medication
management system for the elderly patients. To enhance
convenience and availability of the suggested system, surveys
were conducted for pharmacies and elderly patients and
reflected the results on the product plan and development.
With this product, elderly patients can manage their
medication information easily so that they can prevent missing
or abusing essential medications. For further research,
purchasers' taste and preference on various cap design and
production will be considered before deploying on a
commercial scale

5 References
[1] Report of an aging society analysis, Statistics Korea
Website,
"http://kostat.go.kr/portal/korea/kor_ki/2/4/index.board?bmod
e=read&aSeq=198957&pageNo=&rowNum=10&amSeq=&s
Target=&sTxt=". (accessed Mar., 10, 2014)

[2] Westbrook J.I., Lo C., Reckmann M.H., Runciman W.,
Braithwaite J., Day R.O., "The effectiveness of an electronic
medication management system to reduce prescribing errors
in hospital," Proceedings 18th National Health Informatics
Conference, Aug., 2010.

[3] Vitality-GlowCaps Website, "http://www.vitality.net".
(accessed Mar., 14, 2014)

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

90 Int'l Conf. Embedded Systems and Applications | ESA'14 |

The Modelling Design for Arm Strength Training
Machine with Biofeedback

Tze-Yee Ho1, Yuan-Joan Chen2, Mu-Song Chen3 , Chih-Hao Chiang1, Wei-Chang Hung1

1Dept. of Electrical Engineering, Feng Chia University, Taichung, Taiwan, R.O.C
2Dept. of Info. Management, Ling Tung University, Taichung, Taiwan, R.O.C

3Dept. of Electrical Engineering, Da-Yeh University, ChangHua, Taiwan, R.O.C

Abstract - This paper develops a friendly human interface
for an arm strength training machine with biofeedback
system to reduce the occurrence of improper operation of
exercise machine by real time monitoring. In order to shorten
the development schedule duration and reduce the manpower
needs, the modelling design of the arm strength training
machine with biofeedback is presented for the consideration
of system integrity on chip in future work. Finally, a
prototype of arm strength training machine with biofeedback
system is implemented and demonstrated. The experimental
results show the feasibility of the modelling designed system.

Keywords: arm strength training machine, biofeedback

1 Introduction
 A study indicates that chronic stroke patients who
gained maximal functional benefits from the biofeedback
intervention initially had greater active range of motion at all
major upper extremity joints [1]. Consequently, the proper
utilization of electromyographic biofeedback can lead to
substantial improvements among select chronic stroke
patients and can be of considerable functional benefit to
others. Therefore, the usage of EMG not only can help the
physical therapy but also achieve the more effective
rehabilitation [2]. An arm strength training machine (ASTM)
based on an embedded microcontroller system that utilizes a
PMSM motor drive to simulate the stack of iron weights has
better performance than that of the conventional exercise
apparatus is presented in [3]. The ASTM with biofeedback
system not only can help the physical therapist diagnose the
progress of rehabilitation, but also raise the user exercise
desire. The modeling design methodology has been widely
applied to electronic device as well as electrical equipments
for reduction of development schedule duration. Recent years,
the highly development of semiconductors has made the
system on chip become more easy to realize. Therefore, the
modeling design of an arm strength training machine with
biofeedback that includes a microcontroller module,
protection circuit module, gate drive module, inverter module,
speed and current sensor module, communication interface
module, and the EMG amplifier module, is presented in this
paper. The software programs are written in C language and
programmed based on the MPLAB integrated development
environment (IDE) tool by Microchip technology incorporate

[4]. Finally, the experimental results show the feasibility and
fidelity of the complete designed system.

2 The Modelling of ASTM
 The modeling of an arm strength machine with EMG
sensor based on an embedded microcontroller system is
shown in Fig. 1. It consists of a microcontroller module,
protection circuit module, gate drive module, inverter module,
speed and current sensor module, communication interface
module, and the EMG amplifier module. The embedded
microcontroller, such as the dsPIC 30F4011, or TI
TMS28F335, as well as integration of several peripheral
assembling the embedded microcontroller module, is the core
controller of the ASTM. The independent power source
module provides a 5-volt and four sets of 15-volt voltage to
microcontroller and the gate of MOSFETs, respectively. The
gate drive module is designed to support PWM signal to the
gate of switching MOSFET. The photocoupler TLP250 is
used for electrical isolation module between the
microcontroller system and the high DC voltage bus voltage
as well as the independent power source. The motor currents
are sensed through the speed and current detection module.
The ACS 712-20 current sensor IC which has the resolution
of 100 mV per ampere, is adopted for stator phase current
detection.

Fig. 1. The system modelling of ASTM with EMG.

The EMG amplifier module consists of the EMG electrodes,
the EMG amplification circuits and the bandpass filter. Two
electrodes of EMG sensor are attached to the surface skin of
an arm. A third electrode is attached to the common point for

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 91

voltage reference. The potential difference is generated when
the muscle group contracts and then fed into the
instrumentation amplifier for amplification. Therefore, system
modelling design described above, such as embedded
microcontroller module, gate drive module, speed and current
sense module and EMG amplifier module bring the design
more friendly and thus shorten the development schedule.

3 The Experimental Results
 The prototype of arm strength training machine is tested
under different load conditions in which are fulfilled with the
dynamometer. Fig. 2 shows the command setting of desired
force 2 kg and desired speed of 10 cm/sec. The waveform of
EMG signal is also displayed in the lower part of Fig. 2, so
that the user can monitor the muscle action in real time when
she/he operates the ASTM. This proves that the EMG signal
biofeedback can reflect the muscle contraction and be
displayed on the human interface when user operates the
ASTM. The current response while the ASTM being
manipulated by 2 kg force is shown in Fig. 3. The experiment
is repeated by the same cycle of 60 seconds. Observing the
waveform of Fig. 9, it can be seen that the motor draws about
the 300 mA current to counter the force exerted by the user.
This verifies the system design feasibility. The data displayed
in Fig. 3 is firstly saved in the memory and then sketched by
using the Microsoft EXCEL software. The integrity of
complete system design by modelling each function block of
the embedded microcontroller module, independent power
module, communication interface module, gate drive module,
and inverter module, speed and current sensors as well as the
EMG amplifier module together has been verified by
experimental tests. Finally, the practical system configuration
of designed ASTM with EMG sensor is shown in Fig. 4.

Fig. 2. The test for force 2 kg-cm, speed 10 cm/sec and EMG

Fig. 3. The current response for 2 kg-cm being applied and

released

Fig. 4. The practical system of ASTM with EMG sensors.

4 Conclusions
 The establishment of interactive communication
between ASTM and the user, can make the exercise and
rehabilitation therapy become more friendly. This paper
develops a friendly human interface for ASTM with EMG
system to reduce the occurrence of improper operation of
exercise machine by real time monitoring. The experimental
results demonstrated by using the human interface display,
has verified the system integrity for system hardware and
software design. The modelling design of the arm strength
training machine with biofeedback is also presented for the
consideration of system integrity on chip in future work. The
experimental results show the feasibility and fidelity of the
complete designed system. Therefore, system modelling
design described above, such as embedded microcontroller
module, isolation module, current module and EMG module
can bring the design more friendly and thus shorten the
development schedule.

5 Acknowledgment
 The authors thank to fund support of the National
Science Council at Taiwan under project NSC 102-2221-E-
035-047, for part of this work.

6 References
[1] Steven L. Wolf and Stuart A. Binder-Macleod,
“Electromyographic Biofeedback Applications to the Hemiplegic
Patient,” Physical Therapy, Journal of American Physical Therapy,
vol. 63, no. 9, pp 1393-1403, Sep. ,1983.

[2] Tony Boucher, Sharon Wang, Elaine Trudelle-Jackson,
Sharon Olson, “Effectiveness of surface electromyographic
biofeedback-triggered neuromuscular electrical stimulation
on knee rehabilitation,“ North American Journal of Sports
Physical Therapy, vol. 4, no. 3, pp 100-109, August 2009.

[3] Tze-Yee Ho, Mu-Song Chen, Hung-Yi Chen, and Po-
Hung Chen, “The Design and Implementation of Arm
Strength Training Machine”, IEEE EUROCON 2013, July 1-
4, 2013, Zagreb, Croatia.

[4] dsPIC30F4011/4012 Data Sheet, Microchip Technology
Inc., 2005..

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

92 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Instruction Cache Pre-Loading Method to Reduce Initial

Cold-Misses using SDRAM Burst Transfer

Hyo-Joong Suh
1

1
 School of Computer Science and Information Engineering,

The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Korea

Abstract - Minimize of response latency of user interactive

systems such as a mobile phone is important issue due to

seamless user responsiveness. But initial slack of execution is

invoked by concentration of cold-misses at an application

beginning time. This study focuses on every SDRAM access by

cache misses incurs wasteful latencies by RAS-CAS driving

sequence of SDRAM, and proposes a pre-loading method to

remove the unnecessary access latency by cache image

transfer using SDRAM burst transfer mode. Simulation results

show the proposed method improves initial slack of execution.

Keywords: access latency, cold-miss, instruction cache,

image pre-loading, SDRAM

1 Introduction

 User interactivity is important part of comfortable use of

Smartphones, and waiting time of initial execution-to-

response is very important due to many users feel which is

responsiveness of devices. In terms of execution, from the

user invoke till the user-ready, it has several steps; program

loading to main memory (DRAM) by OS, processor jumps to

the application code, and instruction cache loads instruction

codes in the cache.

Since 1993, Synchronous DRAM (SDRAM) was widely

accepted in the electronic industry, and the density was

quadrupled about 3 years, and the data rates also doubled by

adopting double-data-rate method (DDR, DDR2, DDR3). But

the access latency of the SDRAM was not improved which

compared to the data rate, and its access sequence (RAS-CAS

driving method) was not changed also. Due to this reason, the

access latency from the RAS driving is around 25~30ns, while

the burst data rate is around 2ns [1].

Fig. 1 is a standard DDR2 SDRAM cycles that show the

access delay from the RAS active. It shows the initial RAS-

CAS active consumes lots of clock cycles. In terms of the

access latency, cascaded (burst) transfer of SDRAM is very

fast that was comparable to the processor speed.

This RAS-to-DATA access latency makes a big suffer to

processors for every cache misses because most of cache

misses incurs RAS-to-DATA delay. Furthermore, if user starts

the application in the device, most of concentrated cold

misses are concentrated at the beginning stage of application,

which followed by user interaction stage.

Figure 1. DDR and DDR2 SDRAM access latencies

2 Instruction Cache Loading

 To remove the initial cold misses on instruction cache,

this study proposes a burst SDRAM-to-cache loading method

which gains a benefit of latency hiding of burst transfer mode.

The burst transfer of SDRAM is very useful to match the

processor clock speed, while the burst data are limited to

consecutive address only. Generally, the cache data were not

consecutive, thus the cache contents from the SDRAM cannot

utilize the gain of the burst mode [2].

For utilizing the burst mode, proposed method requires extra

cache image that holds aggregated cache data, and tag

generation (address) also. From the application starting,

operation system loads the executable code and cache image

from storage to SDRAM, and this transfer (program loading)

was generally by using burst mode of SDRAM and storage

also (e.g. synchronous NAND flash).

Clearly, proposed loading sequence requires extra time that

proportional to the cache image size, but it still maintains

some gains in two terms;

Clean loading: General case, the program loading from

storage (NAND flash) to SDRAM. Executable and cache

image are transferred using burst mode. By the latency hiding

effect of burst mode, extra cycles for (small) cache image

transfer are relatively tiny compared to the wasted RAS-to-

DATA cycles by every cold misses.

Re-execute: Special case of mobile OS, in case of mobile OS

(e.g. Android), many terminated programs occupies the

SDRAM (empty process in Android) until the OS reallocates

the memory to the other programs. In this case, the program

and the cache image can be remained in the SDRAM. Thus if

re-execute the program starts from the cache image transfer

using burst mode with the full benefit of the latency hiding.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 93

3 Cache Structure Modification

 To accomplish of the cache image loading, instruction

cache data and tag must be loaded simultaneously. General

cache data/tag cannot loaded explicitly, thus the proposed

method requires cache modification. Fig. 2 shows some added

data path, multiplexor, tag generator, and path selector to

loading the cache image.

Figure 2. Tag generator and path selector for image loading

When the OS loads a program to the SDRAM, address

positioning is run-time event, thus the tag address must be

generated run-time also. Hence the tag generator combines the

base address and the offset from the cache image.

4 Image Creation and OS Support

 The cache image can be generated at the compile time if

a program has static execution property with some fixed target

processor. But it is almost impossible to the real-world

processors and programs. Thus the cache image can be

created during the program installation steps. Fortunately,

state-of-the-art mobile OS (such as the Android and the iOS)

supports powerful installer which manipulates the program

binary and additional data in the NAND storage. The cache

image creator can be easily implanted in the installer program.

Fig. 3 shows sequence of image creation, OS and H/W part.

Figure 3. Image creation, OS and hardware part

5 Simulation Results

 For the evaluation of the proposed method, The

SimpleScalar simulator[3] was used to implement the

modified cache architecture, pre-loading of the cache image,

and the cache image creator. Evaluated programs were

selected from MiBench embedded benchmark suite which

selected from embedded system applications [4]. Tab. 1

shows the programs and parameters for the evaluation.

Table 1. Selected programs from MiBench
Application Program Parameters

Network Patricia Small.udp

Automotive
qsort Input_small.dat

bitcount 100 iterations

Security rijndael input_small.asc, encoding

Fig. 4 shows total number of reduced cache misses by the

proposed method. Simulation results exhibits around 30% of

cache misses can be removed by the cache image loading,

thus the RAS-to-DATA access latency can be reduced

proportional to the reduced miss count.

Figure 4. Reduced cold misses

6 Conclusion

 Generally, bursty cold misses are concentrated at

beginning stage of a program execution, and every cache

block loading requires wasteful RAS-to-DATA access latency

by the SDRAM.

The proposed method solved this issue by the cache image

loading using the burst transfer of a SDRAM with modified

OS and cache structure.

By the simulation results, proposed method shows about 30%

of cache misses on the beginning stage can be removed by the

cache image loading without wasteful RAS-to-DATA

latencies.

Acknowledgment

 This research was supported by Basic Science Research

Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education (2013R1A1A2057967)

References

[1] Samsung Electronics. DDR2 SDRAM Device Operating

& Timing Diagram, 2007.

[2] H.-J. Suh, T. Kim. “Burst Loading Method of Instruction

Cache Image for Program Latency Reduction and Energy

Saving”; Journal of KIISE: Computing Practices and Letters,

Vol.19, No.4, 163-170, 2013.

[3] D. Burger, T. M. Austin. “The SimpleScalar tool set,

version 2.0”; ACM SIGARCH Computer Architecture News,

Vol.25, Issue 3, 13-25, 1997.

[4] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, R. B. Brown. “MiBench: A free, commercially

representative embedded benchmark suite”; Proc. IEEE Intl.

Work. Workload Characterization, 3-14, 2001.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

94 Int'l Conf. Embedded Systems and Applications | ESA'14 |

SESSION

LATE BREAKING PAPERS AND POSITION
PAPERS: EMBEDDED SYSTEMS AND

APPLICATIONS

Chair(s)

Prof. Hamid R. Arabnia

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 95

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

96 Int'l Conf. Embedded Systems and Applications | ESA'14 |

An Adaptive Cryptographic and Embedded System Design with
Hardware Virtualization

Chun-Hsian Huang
Department of Computer Science and Information Engineering,

National Taitung University, Taiwan

Abstract— This work proposes an adaptive cryptographic
and embedded system (ACES) design that can adapt its
hardware and software functionalities at runtime to different
system requirements. By using the hardware virtualization
technique in the ACES design, a fixed set of logic resources
can be configured as different hardware modules at runtime
to support multiple software applications. Further, by taking
the advantages of architectural characteristics of FPGAs,
the ACES can support high-performance computing for
computing-intensive functions such as cryptographic and
image processing functions. Experiments with ubiquitous
computing applications have also demonstrated that the
ACES can accelerate by up to 26.5x the processing time
required by using the software solution. Compared to the
traditional embedded system design, the ACES can reduce
29% of slice registers and 33% of slice LUTs required
for supporting all the five required hardware functions.
Through the advantage of system adaptation, the ACES can
also dynamically reduce its power consumption at runtime,
according to different environmental conditions.

Keywords: Adaptability, hardware virtualization, partial reconfig-
uration

1. Introduction
As network technology scaling, transferring information

and data between different electronic devices becomes more
and more convenient. Further, with the increase in user
requirements, mobile ubiquitous computing applications en-
able information processing to be thoroughly integrated into
everyday living. In such a ubiquitous computing environ-
ment, services and devices can be dynamically adapted to
changing environments.

The target applications of this work are mainly used
in the ubiquitous computing environments, especially for
the field of image processing and cryptographic applica-
tions. To support dynamically changing and unpredictable
ubiquitous computing applications, adaptability becomes a
key requirement in providing high-performance computing
and complete data protection on the network in this work.
However, in the most existing dynamic adaptive approaches
[1]–[5], only software services and applications can be
adapted, and hardware devices support the changing software
applications passively. This means that hardware functions

cannot be reconfigured at runtime, which also leads to the
inefficient use of hardware resources. To be able to not
only adapt on-demand functionalities but also provide better
system performance, designing an efficient embedded system
architecture to meet the dynamic requirements of various
environmental situations becomes very important.

This work tries to solve the above problem about system
adaptability and performance by proposing an Adaptive
Cryptographic and Embedded System (ACES) design. Figure
1 gives an example for illustrating the practicability of the
proposed ACES. Here, real-time image are captured from
the camera and then displayed on the monitor. The filters are
used to reduce the effects of the noise in the source images
for further image processing applications. The images can
also be transferred to a client via the network. To ensure
the security of data transfers on the network, all data are
first encrypted and then transferred to the client. Based on
the effects of noise in the source images and the security
requirements of data transfers, the ACES can adapt on-
demand its filter and cryptographic functions for providing
better Quality-of-Service (QoS).

Figure 1 gives the ideal blueprint to apply the ACES
to ubiquitous computing environments. It must solve the
following issues related to ubiquitous computing, including
1) what method can make hardware adaptable? 2) how to
use hardware resources efficiently? 3) how to support high-
performance computing and reduce power consumption at
runtime?

To make hardware adaptable, the ACES design integrates
the dynamic partial reconfiguration technology from Xilinx
[6]. Thus, one part of the FPGA device in the ACES is
being reconfigured, while other parts can remain operational
without being affected by reconfiguration. This shows that
the filter and cryptographic hardware functions in the ACES
can be dynamically adapted to different environmental re-
quirements. Further, the partial reconfiguration technology
can also be considered as the gate-level hardware virtu-
alization technique, using which multiple applications can
access a fixed set of logic resources in a temporally exclusive
way. Thus, the utilization of hardware resources can be
increased significantly. For system performance, computing-
intensive functions such as filter and cryptographic functions
are implemented in hardware, so that the ACES can take
the advantages of architectural characteristics of FPGAs for

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 97

Network

Crypt

HW2

Filter

HW

Microprocessor

Peripheral Controllers

ACES Filter

HW2 Filter

HW
Crypt

HW3 Crypt

HW

Fig. 1: Application Example

further enhancing system performance. Further, the ACES
contains the blank modules to disable the functionality of the
partial reconfigurable region in the FPGA. When no requests
are received from software applications, the blank module
can be used in the ACES to reduce power consumption at
runtime.

The rest of this paper is organized as follows. Section 2
introduces the related work. The detailed ACES design is
illustrated in Section 3. Section 4 presents our experiments
and analyses, and conclusions are given in Section 5.

2. Related Work
In a ubiquitous computing environment, computing de-

vices can be adapted to environmental changes for satisfying
user requirements. To support the capability of adaptation
more efficiently, Efstratious et al. [1] proposed an archi-
tecture that could support adaptive context-aware applica-
tions. However, their infrastructure only notified applications
about the environmental changes, and application themselves
needed to trigger the adaptive mechanism. Instead of the
passive application adaptation, Ghim et al. [2] further pro-
posed a reflective approach to dynamic adaptation that could
perform adaptation operation triggered by changes in the
policy and context. The other existing work [3]–[5] also
adopted the software solutions to adapt itself to different
system requirements. However, in the above designs [1]–
[5], hardware cannot be adapted to different requirements,
which also restricts system adaptation and performance.

As for our target cryptographic applications, the corre-
sponding algorithms are usually computation-intensive, hard
real-time and non-adaptive to changing network conditions.
The algorithms make different tradeoffs between security
and complexity. To allow multiple tradeoffs and to adapt
to changing network conditions at runtime, a data protective
process needs a high-speed and flexible embedded system.
T. Wollinger and C. Paar [7] demonstrated the advantages of
reconfigurable devices for cryptographic applications in em-
bedded systems, including architecture efficiency, resource

efficiency, throughput, and algorithm agility. Lagger et al.
[8] also compared a full-software design with a coprocessor
design embedded with an FPGA device that could be con-
figured with Data Encryption Standard (DES), triple DES,
and Route Coloniale 4 (RC4) hardware cores. Compared
to the software solution, the performance of the FPGA-
based design was significantly enhanced due to the specific
architecture. In other related researches such as [9], [10],
they leveraged the advantages of reconfigurable FPGA to
further enhance the performance of cryptographic hard-
ware applications. All the above researches [7]–[10] have
demonstrated that reconfigurable FPGAs are very suitable
for implementing cryptographic applications.

By using the architectural advantages of FPGAs, crypto-
graphic functions of the ACES are implemented in hardware
to support high-performance computing. Compared to the
software solutions [1]–[5], the ACES design supports the
hardware virtualization technique, so that system adaptabil-
ity and hardware resource utilization can be enhanced sig-
nificantly. The details of the ACES design will be introduced
in Section 3.

3. Adaptive Cryptographic and Embed-
ded System Design

To support high-performance and adaptive features, the
proposed ACES design is realized on an FPGA device, as
shown in Figure 2. The capture controller is responsible
for capturing real-time images from the camera, while the
display controller is responsible for displaying the process-
ing results on the monitor. Before the processing results
are transferred to a client via the network, they are first
encrypted through the cryptographic hardware function. To
reduce the effects of noise in the source images, the filter
function is also integrated into the image processing hard-
ware function.

Besides realizing the image processing function and the
cryptographic function as hardware circuits for enhancing

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

98 Int'l Conf. Embedded Systems and Applications | ESA'14 |

System Bus

ICAPµprocessor

FPGA
Display

Controller

Capture
Controller

PRR1
(Filter)

HW/SW
Interface

PRR2
(Crypt)

HW/SW
Interface

SysACE
Controller

Network
Controller

Network
Device

CF card
Partial

Bitstreams

Image Processing

Memory
Controller

Fig. 2: Adaptive cryptographic and embedded system design

system performance, the ACES further integrates the hard-
ware virtualization technology to increase the utilization of
hardware resources. As shown in Figure 2, two Partially
Reconfigurable Regions (PRRs), namely PRR1 and PRR2,
are implemented in the FPGA for configuring the filter
function and the cryptographic function, respectively. Thus,
the logic resources of each PR region can be reconfigured
as different hardware functions, according to system require-
ments. Therefore, besides the traditional software adaptation,
the ACES can also support hardware adaptation.

Based on the partial reconfiguration flow [6], two blank
modules are also individually generated to disable the func-
tionalities of PRR1 and PRR2. All the partial bitstreams
corresponding to the reconfigurable hardware modules are
stored in a CF card, and they are accessed by using the
SysACE controller. To support system adaptability, an In-
ternal Configuration Access Port (ICAP) [11] controller is
also implemented in the ACES for configuring the corre-
sponding partial bitstreams. Through the ICAP controller,
the ACES can dynamically adapt its hardware functionali-
ties at runtime, without the user’s intervention. To provide
efficient hardware/software communication and to support
complete system adaptation, a hardware/software communi-
cation interface, a virtualizable and hierarchical design, and
an adaptation policy are also proposed in the ACES. The
details are described in the following sections.

3.1 Hardware/Software Communication Inter-
face

To support seamless data transfers between reconfig-
urable modules and the microprocessor efficiently, a hard-
ware/software interface component based on the Intellectual
Property Interface (IPIF) is proposed in the ACES, as
shown in Figure 3. It contains a bidirectional buffer and
a device interrupt controller. Through the hardware/software
interface component, the processing results of the reconfig-
urable hardware module can be stored in the bidirectional
buffer sequentially, while the microprocessor can read the

Bidirectional
Buffer

Device Interrupt
Controller

HW/SW Interface PR Template

SW Accessible
Registers

Reconfigurable
HW Module

: Data wire : Control wire

Fig. 3: Hardware/software interface component and PR
template

processing results from the bidirectional buffer at the same
time. To ensure that all processing results can be read by the
microprocessor in real-time, the device interrupt controller
is used to notify the microprocessor to read the processing
results.

To enhance system scalability, our previously proposed
partially reconfigurable template (PR template) [12] is also
used in the ACES to ease the integration of user-designed
hardware functions with different I/O interfaces. The PR
template consists of eight 32-bit input data signals, one 32-
bit input control signal, four 32-bit output data signals, and
one 32-bit output control signal. To bridge with the interface
of the PR template, the proposed hardware/software inter-
face component also contains fourteen software accessible
registers for the microprocessor to access the reconfigurable
hardware module. Therefore, through the use of the PR
template and the hardware/software communication interface
component, new user-designed hardware functions can be
easily integrated into the ACES.

3.2 Virtualizable and Hierarchical Design
To provide a complete hardware virtualization mechanism,

besides the support of the hardware/software interface design
as described in Section 3.1, the device drivers corresponding
to different hardware functions need to be also implemented

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 99

Software
Application

1D MF 2D MF AES DES 3DES

1D MF
driver

2D MF
driver

AES
driver

DES
driver

3DES
driver

PRR1
PR Template

HW

PRR2
PR Template

HW

Device
Driver

Logic
Hardware

Physical
Hardware

APP 1 APP 2 APP n………

Fig. 4: Virtualizable and hierarchical design

in the ACES. In the design of the device driver, the related
Application Programming Interfaces (APIs) are provided for
software applications to interact with the software accessible
registers in the hardware/software interface component. As
a result, through the APIs, a software application can easily
access the reconfigurable hardware modules.

According to the requirements of our target applications,
a software application need to access only one of the filter
functions and one of the cryptographic functions at a time in-
stant. When the traditional embedded system design method
is used to support multiple functions, all the corresponding
hardware designs need be configured in the system at design-
time. Although this method enables system performance to
be significantly enhanced, because of hardware acceleration;
however, system adaptation and the utilization of hardware
resources also degrade. To solve the above problem, the
ACES is thus realized as a virtualizable and hierarchical
design, as shown in Figure 4. Here, besides the software
application layer and the device driver layer, the hardware
design of the ACES is divided into two layers, including the
logic hardware layer and the physical hardware layer.

Through the partial reconfiguration technique, the required
filter and cryptographic functions can be dynamically con-
figured in PRR1 and PRR2, respectively. This also indicates
that, only two hardware functions are configured in the
system at a time instant. The virtualization layer, including
the logic hardware layer and the physical hardware layer,
abstracts the real hardware characteristics. Furthermore, in
the ACES, all the device drivers corresponding to the recon-
figurable hardware modules are also provided for software
applications. From the viewpoints of software applications,
the ACES can support all the hardware functions, even
though not all hardware functions are configured in the sys-
tem at the same time. As a result, through the virtualizable
and hierarchical deign, system adaptation and the utilization
of hardware resources can be further enhanced.

3.3 Adaptation Policy
In our current implementation, the system adaptation

mechanism is realized as a software program executed on
the microprocessor. The ACES design contains two types of
adaptable hardware functions, including the filter function
and the cryptographic function.

The hardware filters are responsible for reducing the
effects of noises in the source images. The quality of source
images is classified into different levels according to the
Signal-to-Noise Ratio (SNR). Different hardware filters are
individually associated with their corresponding efficiencies
for the reduction of noise in the images. With the increase in
the effects of noise, the ACES can dynamically configure the
corresponding hardware filter to reduce the effects of noise
in the source images. In contrast, the ACES can reconfigure
the blank module to improve system performance, when the
effects of noise in the source images decrease.

The cryptographic functions are responsible for support-
ing the service of Secure Socket Layer (SSL). When a
client makes a request for data transfers, the ACES thus
negotiates with it to adopt the same cryptographic function
for ensuring the security of data transfers on the network.
If the negotiation succeeds, the ACES then configures the
requested cryptographic function into the FPGA to adapt
itself to different security requirements. Additionally, when
no requests for data transfers on the network are received,
the ACES can also reconfigure the blank module to improve
system performance and reduce power consumption. The
related experiments will be discussed in Section 4.

4. Experiments and Analyses
To demonstrate the practicability of our proposed method,

real applications are implemented in the ACES. In the
following sections, we will introduce the experimental setup,
the system resource analysis, the power consumption analy-
sis, and the system performance analysis.

4.1 Experimental Setup
The ACES design was implemented on the Xilinx

ML605 FPGA development board [13] with a Virtex-6
XC6VLX240T FPGA chip. A soft-core MicroBlaze mi-
croprocessor [14] at 100 MHz was integrated into the
ACES design. Two hardware median filters, including one-
dimensional (1D) median filter and two-dimensional (2D)
median filter, and three cryptographic functions, including
Advanced Encryption Standard (AES), DES, and triple DES,
were also implemented in the ACES. Two different sized
PR regions, namely a small PRR1 and a large PRR 2, were
implemented for the dynamic configuration of median filter
functions and cryptographic hardware functions, respec-
tively. As shown in Figure 5, the small PRR1 configured with
2D median filter and the large PRR2 configured with triple
DES are highlighted for displaying the relative locations

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

100 Int'l Conf. Embedded Systems and Applications | ESA'14 |

PRR1 PRR2

Fig. 5: FPGA implementation result

Table 1: Resource Usage

#Slice registers #Slice LUTs
1DMF 45 101
2DMF 730 1,795
AES 1,042 3,627
DES 3,955 6,152
3DES 11,457 18,312

1DMF: one-dimensional median filter. 2DMF: two-dimensional median filter.
3DES: triple DES.

in the implementation result of ACES. Further, a software
solution was also implemented and executed on the host
computer (Intel CoreTM i7-3770 3.40GHz, 32GB RAM) for
the comparison with the ACES design.

In the experiments, a point target detection function called
PMCE [15] was adopted as the main image processing ap-
plication. Real-time 320 × 240 pixel images were captured
from the camera for the application of point target detection,
which were then encrypted using the cryptographic functions
for data transfers on the network.

4.2 Resource Utilization
Compared to a conventional embedded design that re-

quires all the five functions to be implemented and integrated
into the system design, the ACES design can support all the
five functions by implementing only two PR regions. The
resource usages for the five hardware functions, including
1D median filter, 2D median filter, AES, DES, and triple
DES, are given in Table 1.

To further compare with the conventional embedded sys-
tem design, Figure 6 gives a comparison on the numbers
of slices registers and those of slice LUTs required for sup-

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

#Registers #Registers
for ACES

#LUTs #LUTs for
ACES

1DMF 2DMF AES DES TDES

Fig. 6: Resource analysis

Table 2: Power consumption

Dynamic (W) Quiescent (W) Total (W)
1DMF,DES 0.672 4.780 5.452
2DMF,AES 0.765 4.783 5.548

2DMF,3DES 1.020 4.791 5.812
PRR1BM,PRR2BM 0.594 4.778 5.372

1DMF: one-dimensional median filter. 2DMF: two-dimensional median filter.
3DES: triple DES. PRR1BM: blank module for PRR1. PRR2BM: blank module

for PRR2.

porting all the five functions. Experimental results show that
the ACES needs at most 12,187 slice registers and 20,107
slice LUTs in terms of the Xilinx Virtex-6 XC6VLX240T
FPGA. This presents the maximal resource usage by the
reconfigurable modules of 2D median filter and triple DES.
Compared to the conventional embedded system design,
the ACES can reduce 29% of slice registers and 33% of
slice LUTs in the Xilinx Virtex-6 XC6VLX240T FPGA.
Furthermore, by using the hardware/software interface and
the PR template, as described in Section 3.1, new user-
designed hardware functions can be easily integrated into
the ACES. This shows that, besides having efficient system
scalability and adaptation, the ACES can also support a
larger number of hardware functions by using the capability
of hardware virtualization.

4.3 Power Consumption
Besides supporting higher resource utilization as described

as Section 4.2, the ACES design can also reduce power
consumption. To perform the experiment on power consump-
tion, the Xilinx XPower estimator [16] was used to measure
the power consumption of the placed and routed netlists for
different combinations of hardware functions in the ACES.
Here, our measured results, including the dynamic power, the
quiescent power, and the total power, in watt (W) are given
in Table 2. Considering the worst case of using maximum
power for each of the two PRRs, that is, 2D median filter
in PRR1 and triple DES in PRR2, the ACES requires 5.812
watt.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 101

Table 3: Configuration Time

Function Time (ms)
PRR1BM 174

PRR 1 1DMF 192
2DMF 192

PRR2BM 2,009
AES 2,227

PRR 2 DES 2,227
3DES 2,009

1DMF: one-dimensional median filter. 2DMF: two-dimensional median filter.
3DES: triple DES. PRR1BM: blank module for PRR1. PRR2BM: blank module

for PRR2.

When the effects of noises in the source images de-
crease and no requests for data transfers on the network
are received, the ACES can reconfigure the blank modules
for PRR1 and PRR2 to reduce its power consumption.
As shown in Table 2, compared to the ACES configured
with 2D median filter and triple DES hardware functions,
when the corresponding blank modules are configured in
the ACES, the total power consumption can be reduced by
0.44 watt. This shows that, through system adaptation, the
power consumption of the ACES can be further reduced
at runtime, according to different environmental conditions.
This feature also benefits the development of low-power
embedded systems.

4.4 System Performance
Compared to the conventional embedded system design,

for hardware function switching, the ACES contains an
additional time overhead, that is, the configuration time. The
configuration time for each hardware function is given in
Table 3. We can observe that, the configuration times for the
hardware functions configured in PRR1 are approximately
the same, while that for the hardware functions configured in
PRR2 are also approximately the same. This is because the
configuration time is directly proportionate to the bitstream
size, which in turn is directly proportionate to the size of the
PR region. To reduce the reconfiguration time overhead, in
this work, the configuration prefetch approach [17] is also
applied to the ACES.

To further analyze system performance, 100 to 1,000
real-time 320 × 240 pixel images were applied to the
software solution and the ACES design. Figures 7(a), 7(b),
and 7(c) show the average time to process an image frame
by using AES, DES, and triple DES, respectively. Here, each
cryptographic function was also individually cooperated with
three different image processing applications, including the
pure PMCE function, the PMCE function with 1D median
filter, and the PMCE function with 2D median filter. We can
observe that, compared to the software solution, the ACES
can efficiently enhance system performance. According to
the experimental results, the ACES can accelerate by up
to 1.5x, 2.2x, and 5.2x the times required by using the

0

100

200

300

400

500

PMCE PMCE,1DMF PMCE,2DMFAv
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(m
s)

ACES Software

(a) Average processing time using AES

0

100

200

300

400

500

PMCE PMCE,1DMF PMCE,2DMFAv
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(m
s)

ACES Software

(b) Average processing time using DES

0

500

1,000

1,500

PMCE PMCE,1DMFPMCE,2DMFAv
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(m
s)

ACES Software

(c) Average processing time using triple DES

Fig. 7: Average processing time using AES, DES, and triple
DES

software solutions, when the pair of AES and the 2D median
filter, that of the DES and the 2D median filter, and that of
the triple DES and the 2D median filter, respectively, are
configured in the FPGA.

For the current ACES implementation, the data transfers
between the microprocessor and the cryptographic function
are mainly through the software accessible registers. In
order to further analyze the execution process for each
cryptographic function, the average time per register access
for different numbers of registers were measured as illus-
trated in Figure 8. We can observe that the average time
per register access gradually becomes a constant (196 ns).
This is because the operation of register access is mainly
through the system bus, and thus the measured time also
contains the initialization time over the bus. Considering the
number of register access for each cryptographic function
and the experimental results as shown in Figure 8, the pure

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

102 Int'l Conf. Embedded Systems and Applications | ESA'14 |

196

185
190
195
200
205
210
215

10 30 50 70 90 110 130 150 170 190

Av
er

ag
e

ac
ce

ss
 ti

m
e

(n
s)

#Register

Fig. 8: Average access time per register

execution times required by using the AES, DES, and triple
DES can be further calculated. In fact, the pure execution
times required by using the AES, DES, and triple DES
only take around 7%, 19%, and 29%, respectively, of the
measured time as shown in Figures 7(a), 7(b), and 7(c). The
experimental results show that, when the time per register
access is not considered, the ACES can accelerate by up
to 26.5x the time required by using the software solution.
This also demonstrates that, the ACES design leverages the
architectural features of FPGAs efficiently, so that system
performance can be enhanced significantly.

5. Conclusion
The proposed adaptive cryptographic and embedded sys-

tem (ACES) design can not only provide high-performance
computing by using the architectural advantages of the
FPGA device, but also can adapt its functionalities to dif-
ferent system requirements. Through the hardware virtual-
ization technique in the ACES, system adaptation and the
utilization of hardware resources can be further enhanced.
Experiments with real applications have also demonstrate
that ACES can accelerate by up to 26.5x the processing time
required by using the software solution. Further, through the
ability of system adaptation, the power consumption of the
ACES can also be reduced at runtime, according to different
environmental conditions.

References
[1] C. Efstratiou, K. Cheverst, N. Davices, and A. Friday, “An architecture

for the effective support of adaptive context-aware applications,” in
Proceedings of the 2nd International Conference on Mobile Data
Management (MDM 2001), January 2001, pp. 15–26.

[2] S.-J. Ghim, Y.-I. Yoon, and J.-W. Choe, “A reflective approach to
dynamic adaptation in ubiquitous computing environment,” in Pro-
ceedings of the International Conference on Networking Technologies
for Broadband and Mobile Networks (ICOIN 2004), February 2004,
pp. 75–82.

[3] J.-Z. Sun, “Adaptive determination of data granularity for QoS-
constraint data gathering in wireless sensor networks,” in Proceedings
of Symposia and Workshops on Ubiquitous, Autonomic and Trusted
Computing (UIC-ATC), June 2009, pp. 401–405.

[4] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn,
J. Lorenzo, A. Mamelli, and G. Papadopoulos, “A development frame-
work and methodology for self-adapting applications in ubiquitous
computing environments,” Journal of Systems and Software, vol. 85,
no. 12, pp. 2840–2859, December 2012.

[5] J. Zhou, E. Gilman, J. Palola, J. Riekki, M. Ylianttila, and J. Sun,
“Context-aware pervasive service composition and its implementa-
tion,” Personal Ubiquitous Computing, vol. 15, no. 3, pp. 291–303,
March 2010.

[6] Xilinx Inc., “Partial Reconfiguration User Guide - UG702,” January
2012.

[7] T. Wollinger and C. Paar, “How secure are FPGAs in cryptographic
applications,” in Proceedings of the 13th IEEE International Confer-
ence on Field Programmable Logic and Applications (FPL03), August
2003, pp. 1–3.

[8] A. Lagger, A. Upegui, E. Sanchez, and I. Gonzalez, “Self-
reconfigurable pervasive platform for cryptographic application,” in
Proceedings of 16th IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL06), August 2006, pp. 777–
780.

[9] N. Mentens, K. Sakiyama, L. Batina, I. Verbauwhede, and B. Preneel,
“FPGA-oriented secure data path design: implementation of a public
key coprocessor,” in Proceedings of the 16th IEEE International
Conference on Field Programmable Logic and Applications (FPL06),
August 2006, pp. 133–138.

[10] R. Laue, O. Kelm, S. Schipp, A. Shoufan, and S. Huss, “Compact
AES-based architecture for symmetric encryption, hash function, and
random number generation,” in Proceedings of the 17th IEEE Inter-
national Conference on Field Programmable Logic and Applications
(FPL07), August 2007, pp. 480–484.

[11] Xilinx Inc., “LogiCORE IP XPS HWICAP - DS586,” June 2011.
[12] C.-H. Huang and P.-A. Hsiung, “Model-based verification and esti-

mation framework for dynamically partially reconfigurable systems,”
IEEE Transactions on Industrial Informatics (TII), vol. 7, no. 2, pp.
287–301, May 2011.

[13] Xilinx Inc., “ML605 Hardware User Guide - UG534,” October 2012.
[14] ——, “MicroBlaze Processor Reference Guide, Embedded Develop-

ment Kit - UG081,” January 2012.
[15] C.-H. Huang, “An FPGA-based point target detection system using

morphological clutter elimination,” in Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), May 2013, pp.
2436–2439.

[16] Xilinx Inc., “XPower Estimator User Guide - UG440 (v13.4),” January
2012.

[17] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware HW-
SW partitioning for reconfigurable architectures With partial dynamic
reconfiguration,” in Proceedings of the 42nd ACM/IEEE Design
Automation Conference (DAC’05), Jun. 2005, pp. 335–340.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 103

Design of a Standalone FORTH Intepreter for the
Microchip PIC24F Family

Byron A. Jeff

Abstract—

A complete standalone FORTH kernel is implemented

for the PIC24FV16KM202 microcontroller using several ad-

vanced techniques and saved flash storage of user programs.

This facilitates development using a variety of student de-

vices using limited software on the students device.

Index Terms—Embedded Development, Programming

Languages, Embedded Systems Education

I. Introduction

Clayton State University’s Department of Computer Sci-
ence and Information Technology’s Computer Science pro-
gram has incorporated embedded systems development in
assembly language as part of the laboratory experience in
Computer Organization, Architecture, and Operating Sys-
tems courses. In addition, as one of the leaders in the
use of technology in the classroom, Clayton State Univer-
sity policy requires each student to have access to a lap-
top in the classroom. However, student laptops, as Bring
Your Own Device technology can be difficult to support
due to the varied platform and operating system choices
[5]. The FORTH interpreter described is designed to limit
the required software on the student machine to a termi-
nal emulator while providing a high level language envi-
ronment for embedded systems development. A FORTH
implementation requires several design choices including
Microcontroller selection, FORTH Virtual Machine Model
and Mapping, Threading Model, Primitive Selection, Dic-
tionary Implementation, and Internal control constructs.
The following sections describes each of choices.

II. Microcontroller selection

The microcontroller selected for the project is the
PIC24FV16KM202. This processor was selected because it
comes in a 28 pin DIP package, contains an internal oscil-
lator (with PLL) and has 5V power model that simplifies
breadboard based development for students. In addition
the 2K RAM and 16K flash program memory are sufficient
to support a FORTH kernel and RAM based user code de-
velopment and execution. The CPU model with 16 16-bit
registers coupled with indexed addressing modes includ-
ing auto increment/decrement simplifies mapping to the
FORTH VM Model. While the part is a Harvard archi-
tecture with separate program and data spaces, program
memory can be mapped into data memory which facilitates
an execution model from both Flash and RAM. The chip is
self flash programmable with a minimum write/erase row

Department of Computer Science and Information Technol-
ogy, Clayton State University, 2000 Clayton State Blvd, Mor-
row GA, 30260, USA, email: ByronJeff@mail.clayton.edu Phone:
(678) 466-4411

size of 32 instructions. This small row size facilitates in-
cremental flash extension of the FORTH executive. The
part has a price point of less than three dollars USD in
quantity.

III. FORTH Virtual Machine Model and

Mapping

Several FORTH Virtual Machine models are described
in [3]. While the PIC24FV16KM202 register and address-
ing model can support any of the specificed models, the
MachineFORTH model was choosen for implementation.
The implementation is a 16 bit cell, with A/B scratch
registers, and 64 cell data and return stacks. Specific
PIC24FV16KM202 registers are used for the instruction
pointer, instruction register, top of stack, data and return
stack pointers, and scratch registers.

IV. Threading Model

Standard FORTH high level words are implemented by
compiling an address for each word in a definition. Thread-
ing is the process of transitioning from the code of one
word to the next in a definition. The challenging part
of this task is that standard FORTH has several differ-
ent types of words which each execute a different action
including Code/primitive words implemented in native as-
sembly, High level FORTH words, Variables, Constants,
Words with user defined actions. Because of these differ-
ences each word address must be able to identify the action
associated with that word.

The PIC24FV16KM202’s Harvard architecture further
complicates the model because actual code can only be ex-
ecuted from the flash program memory. However, in order
to facilitate the interactive nature of the FORTH inter-
preter, new code must be compilable to and executable
from the chip’s data memory. [1] describes the several
FORTH threading models including indirect, direct, prim-
itive centric, and hybrid models.

Direct threading fails in the PIC Harvard Architecture
environment because native code cannot be executed from
data memory. Indirect threading works in the Harvard Ar-
chitecture environment because only addresses are stored
in high level FORTH words. However, this comes with the
execution performance penalty because each word execu-
tion, regardless of type, requires a second indirect reference
to determine how to process the word.

Primitive-centric threading was choosen because it com-
pletely separates code areas (primitives) from data areas
(high level forth words are all primitive addresses). There-
fore, no native code is required anywhere other than primi-
tive words. This fits the Harvard architecture model of the

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

104 Int'l Conf. Embedded Systems and Applications | ESA'14 |

PIC24FV16KM202 and facilitates execution of high level
FORTH words directly from data memory. In addition
performance of the threading model is improved over indi-
rect addressing by removing the extra level of indirection
required to access primitives. The hybrid indirect execu-
tion mechanism for dynamic word interpretation is imple-
mented to augment the primitive-centric threading. This
is accomplished by preceeding each word’s data (starting
at the Data Field Address: DFA) by an address for a code
routine that can process the word (Code Field Address:
CFA). The CFA is used only for dynamic interpretation
and compilation of words. Direct execution is performed
via primitive centric coding.

V. Primitive Selection

A FORTH kernel consists of a blend of primitive words,
which are coded in native assembly language, and high
level FORTH words, which consist of a string of primitives
in the primitive centric threading model. Primitive selec-
tion is the division of the activities of the kernel between
these two types of words. Highly portable FORTH sys-
tems start with a very limited number of natively coded
pritmitive words and has a large amount of the kernel im-
plemented as high level FORTH words. Efficient systems
implement, or compile the entire system into the native
language.

The PIC24FV16KM202 has a rich instruction set with
manipulations for bit, byte, word (16 bit), and double word
(32 bit) data. Primitive selection consists of the most com-
mon arithmetic, logic, shifting, and bit manipulation in-
structions. For both performance reasons and to exploit
the rich Instruction Set Architecture of the chip, virtually
all instructions in the above named categories are imple-
mented as primitives. In addition FORTH words for stack
manipulation and memory operations, scratch register op-
erations, and I/O operations to the serial port are primi-
tives.

VI. Dictionary Implementation

The FORTH dictionary serves both as the primary con-
version system of text into word addresses, and as a reposi-
tory for the storage of the CFA for each word. Each dictio-
nary entry/header is a fixed structure using a linked list.
FORTH headers contain the link to the next word, a hash
of the word and the CFA of the word.

In order to implement a fixed structure a 32 bit
BUZHASH [6] is used in lieu of storing actual words for
each entry. The BUZHASH is a cyclic XOR hash algo-
rithm that encodes each character as a 32 bit random to-
ken. The tokens table is generated such that each of the
32 bit columns contains an equal number of 1 and 0 bits,
which guarantees a uniform random distribution. The im-
plementation minimizes potential collisions and is a perfect
hashing algorithm for all of the words in the FORTH ker-
nel for this project. Each interpreted word is hashed and
dictionary lookup consists of matching the hashes. In the
event that there is a collision, the first match is used.

VII. Internal control constructs

The standard FORTH mechanism of braches with off-
sets is complete for implementing standard selection and
repetitive control structures. But it presents significant
challenges in the development phase of a FORTH kernel,
which is mostly written in high level FORTH, before the
text interpreter and compiler are fully implemented.

Factor [4] employs an alternative mechanism for condi-
tional, repetive, and functional mapping execution. Name-
less code blocks, called quotations, are used as parame-
ters for control structures. In the FORTH kernel, name-
less code blocks are not linked into the FORTH directory,
which defines the names for FORTH words. Instead quo-
tations are given only an assembly language label, and are
included within the context of the FORTH words that uti-
lize them.

The if combinator from Factor used for selection proved
cumbersome to implement due to the requirement that
quotations for both the true and false quotations are al-
ways required. As an alternative the IF, ELSE, and EL-
SEIF words were implemented separately with each only
using a single quotation for execution. The challenge in
the implementation is the fact that the ELSE and ELSEIF
words are dependent on the state of the flag from the exe-
cution of prior IF or ELSEIF words. The IF word transfers
the flag to the return stack. The ELSEIF words updates
the flag on the return stack. The ELSE and ENDIF words
both remove the flag from the return stack. Finally an
IFONLY word was implemented indicating that no further
flag testing would be done. The flag is not transferred to
the return stack at all when the IFONLY word is used.

Quotations are also used to implement looping con-
structs. The DOWHILE word expects a flag and a quota-
tion on the data stack. The word transfers the quotation
address to the return stack so that loops can be nested.
The quotation is executed as long as flag on the top of the
data stack is true. At the end of the loop execution, the
quotation address on the return stack is removed.

VIII. Text Interpretation and Compilation

Text interpretation and compilation use the same exe-
cution path: scan the next word, determine its meaning,
interpret/compile based on the current state. Words are
identified as numbers or dictionary words using recogniz-
ers [2]. There is a recognizer for words in the dictionary
along with hex, decimal, octal, and binary numbers. Once
a word is recognized, the recognizer will either interpret
the word or compile it into the next available RAM loca-
tion. The compiler can be extended in FORTH by the use
of immediate words which are interpreted even when the
system is in compiling mode.

IX. Internal Flash Storage

Development would be challenging if newly compiled
system words could not be saved. The FORTH kernel
implements a CHECKPOINT word, which saves all used
RAM and system variables into an area of flash program

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 105

memory along with a BUZHASH of the area as a check-
sum. At power on, the kernel will verify the saved memory
area against the saved checksum. If there is a match, the
RAM is automatically reloaded with save flash memory.
This system facilitates development over multiple power
cycles.

X. Contributions and Future Work

A complete standalong FORTH kernel is implemented
for the PIC24FV16KM202 microcontroller using several
advanced techniques and saved flash storage of user pro-
grams. This facilitates development using a variety of stu-
dent devices using limited software on the students device.
Further work will examine the implementation of turnkey
applications, and the extension of the FORTH kernel with
the permanent addition of user words into flash memory.

References

[1] M. Anton Ertl. Threaded code variations and optimizations. In
EuroForth 2001 Conference Proceedings, pages 49–55, 2001.

[2] Bernd Paysan. Recognizers. In 28th EuroForth Conference, pages
108–110, 2012.

[3] Stephen Pelc. Updating the Forth virtual machine. In 24th Eu-
roForth Conference, pages 24–30, 2008.

[4] Sviatoslav Pestov, Daniel Ehrenberg, and Joe Groff. Factor: A
dynamic stack-based programming language. In Proceedings of
the 6th Symposium on Dynamic Languages, DLS ’10, pages 43–
58, New York, NY, USA, 2010. ACM.

[5] Ieda M. Santos. Use of students personal mobile devices in the
classroom: Overview of key challenges. In Theo Bastiaens and
Gary Marks, editors, Proceedings of World Conference on E-
Learning in Corporate, Government, Healthcare, and Higher Ed-
ucation 2013, pages 1585–1590, Las Vegas, NV, United States,
October 2013. AACE.

[6] R. Uzgalis and M. Tong. Hashing myths. Technical report, De-
partment of Computer Science University of Auckland, 1994.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

106 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Design and Implementation of a Microcontroller Based
Egg Incubator with Digital Temperature read out.

 Anthony Obidiwe1, Chukwugoziem Ihekweaba 1, Patrick Aguodoh 1.

Computer Engineering Dept. Michael Okpara University of Agriculture, Umudike, Abia State Nigeria.

Abstract:

Modern day incubators need accurate and precise
temperature monitoring for optimal performance and
output. The operating temperature range of conventional

incubators lies within 92 0 F-102 0 F. Hence, the work
presented here involves the design of an intelligent
automated incubator system with a digital readout display,
which is capable of continuously monitoring and

maintaining the operating temperature (37 0 C) using an
automatic switching technique. In retrospect, the work
takes a panoramic and synoptic view of the history of
incubator systems. It finally moves ahead to present a
hardware system as well as an attendant software driver
derived for a microcontroller based egg incubator system.

Introduction:

In this present age of information technology, the control
and automation of devices, machines and systems are
mostly achieved through mechatronic means with
emphasis on soft control. This is mostly achieved by the
use of programmed microcontrollers. Consequently, this
research paper is geared towards the design of a
microcontroller based egg incubator with temperature
value display. The electronic system is designed using an
89C59 micro controller and real time software written in
assembly language. At the input of the system is a linear
temperature sensor: an LM35IC. The output of the sensor
is fed into an ADC 0804 (Analog to digital converter) that
converts the analog signal to an 8-bit parallel digital
output. Port 0 and port 1 of the 89C51 micro controller
respectively receives the 8-bit parallel data. A seven
segment display, common cathode type is interfaced to the
micro controller that displays the temperature numerical
values between 000C to 990C. Also an interface card
realized with the combination of a transition switch and an
electromagnetic relay is connected to the micro controller
output as an interface to the heating element of the
incubator. The entire system is designed in such a way that
the sensor obtains the value of the heat generated by the
heater. At a record of 370C the heater is automatically
switched off, subsequently, the egg hatching operation is
initialised. The primary motivation for the work lies in the

fact that the end product is an electronic automated system
capable of incubating eggs from the livestock to an
optimal condition necessary for hatching. In addition, the
work is multidisciplinary and represents a form of synergy
between three engineering disciplines namely Computer
Engineering, Agricultural Engineering and Industrial
Engineering. A product of this nature is necessary in a
modern livestock farm. It can also be used in biomedical
engineering after a few modifications. A product of this
standard can also be deployed to incubate premature
animals by veterinary operatives.

An evolution of temperature control systems and
the incubator:
The history of incubator design can be traced back to
prehistoric times in line with the agrarian endeavours and
exploits of the Egyptian and Chinese dynasties. Egyptians
before the time of Moses were able to design and
construct hatcheries with a capacity of ninety thousand
birds. A few of these hatcheries are still operative, and
even as late as the 1950s, were producing almost 90% of
all the chicks in Egypt.

The Chinese by the year 1,000 B.C. had also devised two
successful methods of hatching eggs which resulted in
high yields. The Greeks in pre-historic times also
produced hatcheries as described in detail in the works of
Aristotle by utilizing rotten manure. It can be said that
modern designs of incubators began in the 16th century
when Cornelis Drebbel of Holland together with his
contemporary; J. Kepler around 1624 developed an
automatic temperature control system for a furnace. This
was motivated by his belief that base metals could be
turned to gold by holding them at a precise constant
temperature for long periods of time. He also used this
temperature regulator in an incubator for hatching
chickens. Temperature regulators were studied by J.J.
Becher in 1680, and used again in an incubator by the
Prince de Conti and R.-A.F. de Réaumur in 1754. The
"sentinel register" was developed in America by W. Henry
around 1771. He suggested its use in chemical furnaces, in
the manufacture of steel and porcelain, as well as in the
temperature control of the hospital. It was not until 1777,
however, that a temperature regulator suitable for

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 107

industrial use was developed by Bonnemain, who used it
for an incubator. His device was later installed on the
furnace of a hot-water heating plant.

The first successful commercial machine was the hot
water incubator made by Hearson in 1881. In 1895 Cypher
put his 20,000 duck egg model on the market. The first all-
electric automated machine did not appear until 1922.

Methodology:

The micro controller based egg incubator with temperature
meter display is designed in six units. The units are
connected together to derive the functional hardware. At
the input is a temperature sensor LM358; a linear
temperature sensor from national semiconductor. This
particular unit senses the heat from the incubator chamber.
The second unit is the ADC 0804; this unit is the analog to
digital converter (A/D) that converts analog signal to
digital 8-bit parallel output. This data is fed into port 0 and
1 respectively of the 89C51 microcontroller. The third unit
is the 89C51 micro-controller designed to perform the
micro-program control. The fourth unit is a transistor
static switch realized with two (2) PNP bipolar junction
transistors; the BC327. These two transistors switch from
the least significant bit (LSB) to the most significant bit
(MSB) of the two (2) seven segment displays that display
between 000C to 990C. The fifth unit is the interface card
realized with the combination of a transistor switch and an
electromagnetic relay. Here the heater is connected as an
external device through a 13-amps socket outlet. The final
and the sixth unit is the digital temperature display
configured with the two (2) seven segments common
cathode type Light Emitting Diodes(LEDs).

Fig 1 below is an illustration of the system and its
component units.

System specification:

1. The Temperature sensor must be a linear
temperature sensor, with adjustable current
source such as the LM35. Alternatively the
LM334 or LM391 from National Semiconductor
can be utilised.

2. A quasi-crystal of 10MHz must be hooked to the
micro controller to maintain a steady clock
frequency for the microcontroller internal clock.

3. A common cathode ssd, RS25 miniton display is
chosen as display for the system.

4. A static switch for the ssd through the port 2 and
port 3 must be configured using PNP silicon
bipolar junction transistor to pave way for
conformity to their individual biasing
requirements based on the input output (I/O)
logic.

5. The electromagnetic relay must exhibit the
following parameters: Coil resistance of 400Ω,
maximum current rating of 10Amps, and voltage
of 12V max.

6. The microcontroller must be fortified with a
power up reset at the pin 9, precisely manually
operated to reset the system at any time.

Basic theory:

The microcontroller based egg incubator is basically a
feedback control system. Feedback control is the basic
mechanism by which systems, whether mechanical,
electrical, or biological, maintain their equilibrium or
homeostasis. In the higher life forms, the conditions under
which life can continue are quite narrow. A change in
body temperature of half a degree is generally a sign of
illness. The homeostasis of the body is maintained through
the use of feedback control [Wiener 1948]. A primary
contribution of C.R. Darwin during the last century was
the theory that feedback over long time periods is
responsible for the evolution of species. In 1931 V.
Volterra explained the balance between two populations of
fish in a closed pond using the theory of feedback.

Feedback control may be defined as the use of difference
signals, determined by comparing the actual values of
system variables to their desired values, as a means of
controlling a system. In feedback control, the variable
being controlled is measured and compared with a target
value. This difference between the actual and desired
value is called the error. Feedback control manipulates an
input to the system to minimize this error. Fig. 2 below
shows and overview of a basic feedback control loop. The

Temperature
sensor

(LM35)

ADC
0804
A/D

89C51
micro-

controller

Transistors
switch

Heater

Interface
card

Transistor

switch/
relay Fig 1: block diagram representation of the

microcontroller based egg incubator with digital
temperature display.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

108 Int'l Conf. Embedded Systems and Applications | ESA'14 |

error in the system would be the Output - Desired Output.
Feedback control reacts to the system and works to
minimize this error. The desired output is generally
entered into the system through a user interface.

 Fig 2. Feedback control loop

On the other hand, any control system that does not use
feedback information to adjust the process is classified as
open loop control. In open loop control, the controller
takes in one or several measured variables to generate
control actions based on existing equations or models.

Modern control theory is used to model natural control
systems, such as those that occur in living organisms or in
society, and to design man-made control systems such as
those used to control aircraft, automobiles, satellites,
robots, and industrial processes.

The output of the system is measured (by a flow meter,
thermometer or similar instrument) and the difference is
calculated. This difference is used to control the system
inputs to reduce the error in the system.

In this present age of information and communication
technology, the emphasis is on soft control, typically
involving the use of a programmed microcontroller
interfaced with sensors, actuators, electronic devices and
electromechanical systems.
 Basically, the microcontroller, is an integrated circuit(IC)
containing specialized
circuits and functions that are applicable to various
designs, especially mechatronic systems. It contains a
microprocessor, memory, I/O capabilities, and other on-
chip resources. It is basically a microcomputer on a single
IC. The basic architectural structure of an 8051
series/family of microcontrollers is shown in fig 3 below:

Timer 1
Time 0

P0 p1p2 p3

RXD

TXC

External

Interrupt
4K
ROM

128 bit
RAM Internal

control

CPU

OSC BUS
Control

Serial
port

Desired
output Output

Measured

Control
Decision

Final
Control
Element

Process

Sensor

Fig 3: Architectural Structure of the 8051 Microcontroller.
Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 109

System hardware development

Functional description of the system operation

The microcontroller based egg incubator with temperature
display is designed with LM35IC linear temperature
sensor that serves as the heat detector from the incubators
chamber, the output of this sensor runs in millivolts and is
purely analog in nature. The ADC0804 Intel
semiconductor converts the analog signal from the output
of the senor into 8-bit digital parallel output usually fed
into port 0 and port 1 respectively of the 89C51
microcontroller. R1 and C1 are frequency determining
components for the ADC. The 89C51 microcontroller is
embedded with real time software written in assembly
language. The ROM that contains the software reads the
data via port0 and port 1 and the read data is written by the
RAM into port2 and port 3 in the form of machine
language. Pin 9 of the microcontroller contains a manually
operated power up reset realized with R12/C2, while a
12MHZ quartz crystal is connected across pin18 and pin 19
to avoid frequency of the micro controller’s internal clock.

R2 – R5 are current limiting resistors for the seven segment
display that displays the temperature of the incubator
numerically. R2 – R4 are biasing resistors and Q1 –Q3. Q2 –

Q3 are transistor static switches that link the
microcontroller to the 7 segment display. The seven
segment display displays from the most significant bit
(MSB) to the least significant bit (LSB). Q1 is only biased
through R2 whenever the system reads the temperature of
370C thereby energizing the relay. Consequently the
normally closed contact opens then the heater circuit
brakes and hatching starts. The component values are
determined as appropriate.

Software system

In order to enable the controller perform the appropriate
and specified control functions, a software that models the
system operation is designed and implemented with
respect to the flow chart shown in fig 5 below:

 Fig 4 System Hardware Implementation

The system hardware is implemented as shown in the fig 4 below:

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

110 Int'l Conf. Embedded Systems and Applications | ESA'14 |

The source codes were developed in assembly language.
The program is assembled using the ASM51 assembler to
translate the source code into object code.

Control program operation mode

As the digital egg incubator is powered on, the control
program will display ‘’000 on the seven segment display
module. The result button is then operated which allows
the system to carry out a self test by checking the state of
all pins to know whether their voltage levels are as
expected.

YES

NO

 START

INITIALIZE 89C521/0 PORT

(SELF TEST)

ENTER STOP MODE WAIT FOR USER TO PRESS RESET BUTTON

IF AN INTERNAL INTERRUPT OCCURS DELAY FOR 250mSc TO
DEBOUNCE

IS THE INTERRUPT VALID?

GET TEMPERATURE READING FROM THE LM 25/ANALOGUE
TO DIGITAL

WAS THE OPERATION
SUCCESSFUL?

DISPLAY TEMPERATURE NUMERICFALLY (SEVEN SEGMENT
DISPLAY)

TEMPERATURE VALUE=37°C?

ENERGISE RELAY

STOP

CUT OFF RELAY POWER SUPPLY

YES

NO

YES

NO

Fig.5 System flow chart

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 111

If the Vcc (pin 40) and the ground (pin 20) of the
microcontroller are in good (normal) order and 18 pins are
certified to be the right logic state, the system then
displays ‘’000’’ on the seven segment display showing its
readiness to read increase in temperature.

The microcontroller based egg incubator displays
numerically the change in temperature, however, when a
temperature value of 370C is attained, the control program
causes the relay to switch ON the power and then hatching
starts. After which the reset button is operated to
reinitialize the system for the next reading.

Testing

Every component used to actualize this project was
properly checked and tested using both analog and digital
meter before construction. The following tests were
carried out successfully.

1. Test For Continuity

This is carried out to ensure if the components were
properly soldered to avoid a bridge on the copper strip
board since the copper strip board is internally connected
horizontally. If there is any bridge, cut can be made on the
copper strip board. It was also used to determine if the
component were properly connected to each other
properly.

2. Test For Performance

This test was used to know the performance level of the
entire circuitry i.e its ability to hatch egg at the
temperature of 370C.

3. Test For Thermal Stability

This was carried out to ascertain if the component used are
not overheated when powered which may cause excessive
flow of current or bridge in the circuitry. Components
such as transistors, capacitors, ICs are properly checked to
know their thermal level, if stable or not. By so doing, it
gives the difference between practical values and
theoretical values which may be caused due to tolerance or
losses as a result of soldering.

Suggestions for further improvement

The automated incubator system designed and
implemented in the present work can be improved upon by
the integration of a knowledge based network/system into
the operation of the controller. Although this may result in
a more complex design, the system will become more
versatile, adaptive and robust and will consequently be
able to meet up more stringent specifications.

Conclusion

This microcontroller based egg incubator with temperature
display has been built, tested and is working to the
conformity of the design. It has been shown to be a
versatile machine capable of incubating egg at the
temperature of 370C. Such system can be produced locally
with a minimum of complex circuitry, resulting in a
technological tool of utility and economy suited to the
need of modern poultry industries.

References
Gibson, G. and Liu, Y., Microcomputers for Engineers
and Scientists, Prentice-Hall,Englewood Cliffs, NJ, 1980.

Herschede, R., “Microcontroller Foundations for
Mechatronics Students,” masters thesis,Colorado State
University, summer 1999.

Microchip Technology Inc., www.microchip.com, 2001.

MicroEngineering Labs, Inc., www.melabs.com, 2001.

M. Morris Mano: Computer System Architecture, Third
Edition, Prentice Hall, New Jersey 1976.

McGraw-Hill Encyclopedia of Science And Technology,
vol. 1, 1997.

Olsen, H. Second Generation I.C. Voltage Regulator, Ham
Radio Magazine, 1973.
Horowitz, P. and Hill, W., The Art of Electronics, 2nd
Edition, Cambridge University Press,New York, 1989.

Predko, M. Digital Electronics Demystified, McGraw-Hill
(2004).

Ronald,J.Tocci, Neal,S.Widmer., Ninth Edition. Digital
System: Principles and Applications, DorlingKindersley
India Pvt Ltd, (2008).

Rosch, W. L. Hardware Bible Premier Edition, Sama.
Macmillan Computer Publishing. 2000.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

112 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Shadda, R.S. A Text Book of Applied Electronics, 2nd
Edition. S. Chad and Company Ltd, New Delhi, 1996.

V.K Mehta, Rohit Mehta, S Chand.Principles of
Electronics, Eleventh Edition, S Chand and Company,
New Delhi 1980 (reprinted 2010)

History of incubators. www.pleysierincubators.com. 2009.

K. Ogata. Modern Control Engineering, third
edition.Printice Hall Upper Saddle River New
Jersey.1997.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 113

Hardware/software co-design of particle filter in grid based Fast-
SLAM algorithm

B.G. Sileshi1, C.Ferrer2, J.Oliver3
1,3Departament de Microelectrònica i Sistemes Electrònics, Universitat Autònoma de Barcelona

Bellaterra (Barcelona), Spain
2Institut de Microelectrònica de Barcelona (CNM-CSIC)

 Bellaterra (Barcelona), Spain

Abstract-A hardware/software co-design based on system on a
chip method for particle filter in a grid based Fast-SLAM
algorithm is presented in this work. By giving more emphasis
on those steps of the algorithm that requires intensive
computations, hardware blocks are design in order to speed
up the computational time and interfaced with a central
Microblaze soft core processing core. The proposed
hardware/software resulted in an improvement in the overall
execution time of the algorithm.

Keywords: Particle filters, Hardware/software co-design,
computational complexity.

Conference Name: ESA

1. Introduction

Particle filters (PFs) are among the estimation frameworks

that offer superior flexibility on addressing non-linear and non
Gaussian estimation problems [1]. As a result they have been
applied to a wide variety of real world problems such as
navigation and positioning [2-6], tracking [7-8] and
robotics[9]. Their flexibility comes from their efficient
representation of a wide range of probability densities by sets
of points (particles). Such representational power of particle
filters, however, comes at the cost of higher computational
complexity that has so far limited their applications in
different types of real time problems.

To achieve real time performance in the application of

particle filters, hardware or hardware/software based
implementation is required to accelerate the computational
time. In the literature several studies tackles the real time
constrains of the particle filter through hardware
implementations. In this sense, FPGA hardware platforms are
considered to be one of the choices for such implementations
of the particle filter due to the possibility to introduce massive
parallelization and their low power consumption properties
which is critical for many application such as navigation.

Many studies have been proposed for the hardware

implementations of particle filtering on the FPGA platforms.
The authors in [10] studied the implementation of particle
filter on an FPGA for a mobile robot localization problem,
where adapting the size of the particle set is used in reducing

the run-time computation complexity of the algorithm. In [11]
the FPGA hardware implementation of particle filter for
location estimation is presented and compared with the
software solution running on an ARM7-based microcontroller.
A recent study in [12] presented a heterogeneous
reconfigurable system consisting of an FPGA and CPU for a
simultaneous mobile robot localization and people tracking
application. In this study they propose a method to adapt the
number of particles dynamically and utilize the run-time re-
configurability of the FPGA for reduced power and energy
consumption. From their study up 7.39 times speed up is
achieved compared to the Intel Xeon X5650 CPU software
implementation. The authors in [13] presented a
hardware/software co-design approach based on system on a
chip technique on a NIOS II processor to calculate the weight
for each particle and a hardware implementation to update the
particles. They claim that their proposed method significantly
improved the efficiency and it also provides flexibility in
design for various applications due to the software
implementation of the importance weight step.

The study in [14] presented the hardware architecture for an

FPGA implementation of the sampling importance resampling
(SIR) particle filter. The hardware architecture is simulated
with Modelsim and the real time performance of the hardware
architecture is also evaluated with use of UART for the input
sensor data. In [15] a System-on-Chip architecture involving
both hardware and software components for a class of particle
filters is presented. In this work parameterized framework is
used to enable the reuse of the architecture with minimal re-
design effort for a wide range of particle filtering applications.
In reference [16] three different hardware architectures are
proposed and suggested the use of a piecewise linear function
instead of the classical exponential function to in the decrease
the complexity of the hardware architecture in the weighting
step.

With the objective in solving the high computational

requirements of the particle filter, this work presented a
hardware/software co-design approach for the implementation
of the particle filter algorithm with the following specific
contributions ;

- As the underlying computations in particle filtering vary

from one application to the other, a generic approach is
presented for the analysis, design and speedup of the particle

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

114 Int'l Conf. Embedded Systems and Applications | ESA'14 |

filter computational steps. The same approach can be used in
developing other application specific particle filtering
implementations.

- An embedded hardware/software implementation of the

particle filter in grid-based Fast SLAM algorithm is presented.

- Fast hardware Gaussian random number generator design

and its application in particle filter for grid based Fast SLAM
algorithm is presented.

- The design and implementation of custom CORDIC

hardware module for the evaluation of the complex
mathematical operations involved in each step of the particle
filter algorithm is presented.

The organization of the rest of the paper is as follows:

Section 2 introduces briefly the SIRF particle filter and its
application in specific to SLAM algorithm called Grid based
Fast SLAM. Section 3 is a discussion on the identification of
the computational bottlenecks of the particle filter algorithm
and the partitioning of the different steps for hardware and
software implementations. Section 4 is dedicated to the
discussion on the hardware architecture design of the
hardware partitions. Section 5 is a discussion on the proposed
hardware/software architecture of the particle filter followed
by section 6 with explanations on the implantation results.
Finally section 7 concludes the paper.

2. Particle filter and particle filter based
SLAM algorithms

Simultaneous localization and mapping (SLAM) is the

problem of localizing and building a map of a given
environment simultaneously. It is usually described with a
joint posterior probability density distribution (equation 1) of
the map (�) and the robot states (��) at time t given the
observations (��:�) and control inputs (��:�) up to and
including time 	 together with the initial state of the robot
(��).

 �(�� , �|��:� , ��:� , ��) (1)

For the computation of the conditional probability given by
equation 1 for all times 	, a recursive solution based on the
Bayes Theorem is used in SLAM by starting with an estimate
for the distribution �(����, �|��:���, ��:���) at time 	 − 1 and
following a control �� and observation �� . Therefore, the
SLAM algorithm is implemented with the two standard
recursive time update and measurement update steps. Where
the recursion is a function of the robot motion model �(��|����, ��) and an observation model �(��|�� , �).

Time Update:
 �(�� , �|��:���, ��:���, ��) = � �(��|����, ��)�(����, �|��:���, ��:���, ��)����� (2)

Measurements Update
 �(�� , �|��:� , ��:� , ��) = �(��|��,�)�(��,�|��:���, �:���,��)�(�!|����,"�:#) (3)

The solution to the probabilistic SLAM problem involves

an efficient and consistent computation of the prior and
posterior distributions (prediction and update equations). The
different approach that has been used for performing such
computation includes the Kalman filters, the particle filters,
maximum a posteriori estimator [17].

Among the very few methods that use the particle filter for

the whole SLAM problem is the grid-based Fast SLAM [17]
algorithm, which is used in this work. As the particle filter is
the core of this algorithm and the main focus of this work
brief discussion is provided as follows.

In generic Sequential Importance Sampling (SIS) particle

filtering method a probability density function is
approximated by a discrete set of particles or samples with

their associated weights $��,% &�%'%(�)
. Where, * and + denotes

the index of particle and total number of particles respectively. ��,% ∈ -./ and &�% denotes the state of the particles and their
weights respectively and �� is the dimension of the state. One
of the most widely adopted variant of the SIS particle filtering
is the Sampling Importance Resampling particle filter (SIRF)
where it recursively propagation of the particle set 0� =$��% , &�%'%(�)

at time 	, from the set 0��� at the previous time 	 − 1 through sampling, importance weight and resampling
steps.

Sampling

In this step new particles are drawn from the prior density �(��%|����%) which is defined by the system equation �� =1�(����, 2���). Where f4 is possibly non-linear function of the

state x4�� and process noise v4�� at time t − 1.

Importance Weight

In this step a weight is assigned to each particle according

to the measurement �� .

 &�% ∝ 8&���% 9�8��:��%9 (5)

where, �(��|��%) is the measurement likelihood.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 115

Resampling

While the sampling and Importance weight steps are

performed at every time step t when new measurements are
available, particles may become degenerate (increase in
variance of the particles) after few iterations , the drawback of
SIS particle filtering. The resampling step overcomes this
problem by replicating particles with large weights and
discarding those with small weights.

In the resampling step of the particle filter, different

resampling algorithms [18] can be used as they are non
application specific algorithms. The specific resampling
method adopted in this study is Independent Metropolis
Hasting (IMHA) resampling algorithm. This specific
resampling algorithm has the lowest computational
complexity compared to most conventional resampling
schemes like systematic resampling [19]. As a result of such
interesting characteristics it is the preferred choice in this
work.

3. Computational bottlenecks identification
and hardware/software partitioning

In the speedup of the overall computation in particle filters,

a preliminary study in the identification of the critical
bottlenecks in the algorithm is necessary for the design of
hardware modules to accelerate those computational
bottleneck steps. Our study is based on the particle filter in a
grid based Fast SLAM algorithm discussed in section 2. In
this section detailed study is undertaken for the identification
of the computational bottlenecks among each step of the
algorithm for an embedded implementation on FPGA
platform.

For each step of the particle filter algorithm in the grid

based Fast SLAM algorithm, profiling is done using a
hardware timer. The summary of the results obtained from
such study is given in Table I. As per the profiling results
shown in Table I, the computation of sine and cosine
functions account for most of the execution time in the
sampling and importance weight steps of the particle filter
algorithm. Furthermore, the generation of Gaussian and
uniform random numbers accounts to most of the execution
time in the sampling and resampling steps of the particle filter
respectively. The computation of an exponential function also
contributes in the computational complexity in the importance
weight step of the algorithm for the evaluation of each particle
weight.

The profiling information of the particle filter given in

Table I can be used in the hardware/software partitioning i.e.
which parts of the algorithm should be implemented in
hardware and which ones can be kept in software (run on the
FPGA’s embedded processor). It is clear from Table I that,
the sine and cosine functions and random number generation

TABLE I

IDENTIFICATION IN COMPUTATIONAL BOTTLENECKS IN THE SAMPLING,
IMPORTANCE AND RESAMPLING STEPS

are the critical bottlenecks of the grid based Fast SLAM
algorithm and required to be implemented in hardware.

The hardware implementation for the sine, cosine and

exponential functions is based on the COordinate Rotation
DIgital Computer (CORDIC) algorithm [20]. The uniform
and Gaussian random number generation is based on the
Tausworthe[21] and Ziggurat[22] algorithms respectively. The
details of these algorithms are provided below and their
hardware designs are given in section 4.

A. CORDIC Algorithm

CORDIC is an iterative algorithm that requires simple shift

and addition operations, for hardware realization of basic
elementary functions . It is based on the rotation of a vector in
a Cartesian coordinate system and the evaluation of the length
and angle of the vector. It can operate in one of three
configurations: circular, linear, or hyperbolic. Within each of
these configurations the algorithm functions in one of two
modes rotation or vectoring.

Figure 1 The unified CORDIC algorithm [23,25].

Function

Execution time profiling

Sampling Weighting
Resampling (IMHA)

with 100 particles
Sin/cos 45.91% 75.34% -
Gaussian
random
number

53.62% - -

Uniform
random
number

- - 60.71%

Exponential - 7.65% -

�%;� = �% − <�%=%2�% =%;� = =% + �%�%2�% �%;� = �% − �%?%
Circular Linear Hyperbolic < = 1 < = 0 < = −1 ?% = 	AB��2�% ?% = 2�% ?% = 	ABℎ��2�%
Rotation mode: �% = D*EB(�%)
Vectoring mode: �% = −D*EB(=%)

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

116 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Using the unified CORDIC iteration equation in figure 1,
wide range of functions can be evaluated. However the
discussion here is focused to the evaluation of the sine, cosine,
exponential and logarithmic functions (both required in the
Ziggurat algorithm).

For the evaluation of exponential and logarithmic functions,
the CORDIC is required to operate in hyperbolic
configuration (< = −1) with rotation (�% = D*EB(�%)) and
vectoring (�% = −D*EB(=%)) modes respectively. For the
evaluation of sine and cosine functions it is required to operate
in Circular (< = 1) rotation mode (�% = D*EB(�%)).

After * iterations, the unified CORDIC equations given in
figure 1 converge to the following set of equations.
 � = F(�1� � − = 1G �) (6) = = F(= 1� � − � 1G �) (7) � = 0 (8)

where, in circular-rotation mode of configuration the functions 1� and 1G correspond to the sine() and cosine() respectively
and the constant K = 1.646. For hyperbolic-rotation
configuration 1� and 1G correspond sinh() and cosh()
functions and the hyperbolic constant K = 0.828159.

The evaluation of the sine and cosine functions are realized
by setting x = 1/K, y = 0 and z as the input argument to the
CORDIC algorithm. In case of exponential function
evaluation is obtained by setting x = 1/K, y = 0 and z as the
input argument and applying the property:
 ?��(�) = D*Bℎ(�) + STDℎ(�) (9)

For the evaluation of natural logarithmic function, the
CORDIC has to be configured in hyperbolic-vectoring mode
and setting x = 1, z = 0 and y as an input argument, the
algorithm converges to:
 � = FUV�G − =G (10) = = 0 (11) � = � + 	ABℎ�� WX�Y (12)

And the evaluation of natural logarithm function is obtained
indirectly by:
 ZB & = 2	ABℎ�� WX�Y (13) Where, � = & + 1 and = = & − 1

As a CORDIC algorithm works for a limited range of the

input arguments for the evaluation of the elementary functions,
it is required to extend the range of the inputs for each mode
of operation by applying proper pre-scaling identities. This is
achieved by dividing the original input arguments to the
CORDIC algorithm by a constant to obtain a quotient Q and

TABLE II
PRE-SCALING IDENTITIES FOR FUNCTION EVALUATIONS [23-24]

remainder D [23]. In the case of the sine and cosine functions
the constant value corresponds to cd and logh2 for the
exponential and logarithmic functions. The pre-scaling
identities for all the required functions are given in Table II.

B. Ziggurat algorithm

For the generation of the normal random numbers required

in the sampling step of the particle filter a Ziggurat algorithm
is used in this work. In the Ziggurat method, normally
distributed random variates are generated considering set of
points i = {(�, =)} under the curve of a probability density
function = = 1(�) and a subset the points l i.e. l ⊂ i by
uniformly taking the random points (�, =) until (�, =) ⊂ ∁ .

The function 1(�) is divided in to B rectangular blocks -% ,
where * = 0,1,2, … , (B − 1), of equal area 2 except the bottom
block which consists of a rectangular block joined with the
rest of the density starting from a point p. The rectangular
blocks extend horizontally from � = 0 to �% and vertically
from 1(�%) to 1(�%��).

Figure 2 Ziggurat Gaussian random number generation algorithm.

Identity Domain

sin WstG + uY = vsin u *1 s �T� 4 = 0cos u *1 s �T� 4 = 1−sin u *1 s �T� 4 = 2− cos u *1 s �T� 4 = 3x

 |u| < cd
cos WstG + uY = v cos u *1 s �T� 4 = 0− sin u *1 s �T� 4 = 1−cos u *1 s �T� 4 = 2 sin u *1 s �T� 4 = 3 x

 |u| < cd

?��(sZTEz2 + u) = 2{(STDℎ u + D*Bℎ u) |u| < ZTEz2 ZTEz(|2}) = ZTEz(|) + ~ZTEz2 0.5 ≤ | < 1.0

• Given the set {�%}%(���� generate normal random number �.
1. Choose an index 0 ≤ * ≤ B − 1 at random with uniform

probability 1 B⁄
2. Draw a random number �� from a uniform distribution �(0,1)

and let � = ���%.
3. REPEAT
4. IF * ≥ 1 and � < �%�� RETURN�. Rectangular
5. ELSEIF * = 0(Generate an � from the tail � > ��)
6. DO

7. Generate i.i.d. uniform (0, 1) variates �� and ��

8. � ← − ln(��) /p, = ← − ln(��) Tail
9. WHILE (= + =) < �G

10. RETURN � > 0? (p + �) ∶ −(p + �)

11. ELSE
12. Draw a random number �� from the uniform distribution
13. If ��|1(�%��) − 1(�%)| < 1(�) − 1(�%) RETURN�. wedge
14. UNTIL FALSE

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 117

As can be seen from the pseudo code of the Ziggurat
algorithm given in figure 2, a table of x� points and their
corresponding function values f� are required for the algorithm.
Normally, the number of the rectangular blocks n is chosen as
a power of 2(64,128,256). For n = 128 a value of r =3.442619855899	 is used is to determined the x�	points that
are required in the hardware implementation of the algorithm
[21].

4. Hardware designs

In this section the hardware design of the CORDIC and
Ziggurat algorithms is presented.

The implementation of the CORDIC module comprises of
three hardware computational blocks; CORDIC-core, pre-
scaling and post-scaling. The CORDIC-core implements the
unified equations given in figure 1. The pre-scaling and post-
scaling modules implement the equations given in table II for
extending the range of the input arguments for the different
functions.

To avoid the need for using multiple instances of the

CORDIC module for the evaluation of different functions, a
run-time configuration to the CORDIC module is provided
through its config port. With this port the CORDIC module
can be configured to operate any one of the functions as per
the requirement during run-time. This helps to minimize the
extra resource requirement if many instances of the CORDIC
module is used for the evaluation of every function. The
CORDIC-core in the proposed architecture of the CORDIC
module, implements a serial CORDIC with an accuracy of 24
bits. Figure 3 shows the input/output interfaces to the
CORDIC module. Where it has two possible inputs �� and ��,
and a two bit configuration input port config to choose a
specific function for evaluation. Depending on the
configuration bits on the config input interface to the
CORDIC module, one of the functions are evaluated and the
result is provided at the output interface. Even though not
shown in figure 3, there are also other control signals to the
input and output interface of the CORDIC module for its
correct functionality.

The hardware architecture of the random number generator
module is given in figure 4 and it comprises of the
Tausworthe URNG, CORDIC and Ziggurat NRNG sub-
modules. The Tausworthe URNG module is responsible for
generation of two uniform random numbers (�� and ��) that

0U

1U

Figure 3 Architecture of the CORDIC module.

1u

exp()

ln()

x

config

1u

0u

0u

Figure 4 Top level architecture of uniform and Gaussian random
number generator

are used by the Ziggurat module and in the resampling step of
the particle filter. The CORDIC sub-module implements the
architecture given in figure 3.

The hardware design of the Ziggurat sub-module shown in

figure 5 follows the description of the Ziggurat algorithm
given in figure 2, where it composed of individual hardware
blocks to generate the normal random number from the
rectangular, wedge and tail region of the distribution (figure
2). All the three modules (wedge, rectangular and tail) work
independently of one another. For the generation of random
numbers from the wedge region (lines 8-9) the evaluation of
an exponential function is required and in the case of the tail
region (line 6) it is required to compute the natural logarithm
function. For the computation of these functions a CORDIC
algorithm is used.

 As the Ziggurat algorithm requires simultaneous access to

the coefficients �% ’s and 1% ’s, it's important to provide these
values in parallel manner to speed up the normal random
number generation process. To achieve this, the random index
* is divided in to even and odd values and the respective
values of the �% and 1% are stored in separate memories (figure
6). For example, if the generated index * is an odd value the
�% 	and �%�� are read from the odd and even memories at the
same memory index positions simultaneously. However, if the

Odd MEMs

Even MEMs

RectangularWedge

MEMMEM

Random

index

MEM MEM

)(i

ix

Region

selector

0u

index even

index odd

Tail

x

MUX

)ln(0u)ln(1u)exp(x
1u

0u

Config

if

if ix

Figure 5 Architecture of the Ziggurat module.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

118 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Figure 6 Illustration for the storage of the x� and f� coefficients in
memory and the parallel access of the x� ,x��� , f� and f��� for n=128

generated index is with an even value, then �% is read from
the even memory and the �%�� is read from the odd memory at
the next memory position in parallel. As a result the parallel
access of the coefficients is achieved with such simple but
effective method.

5. Proposed hardware/software architecture

The architecture of the proposed system for the particle

filter in a grid based Fast SLAM algorithm is given in figure 7,
where it comprises of an embedded Microblaze processor
responsible for the execution of software functions, particle
filter hardware accelerator (PF HW accelerator), timer and
UART cores for the purpose analysis and verification of the
system. The PF HW accelerator composed of CORDIC and
random number generator cores explained in section IV and
they are connected to the Microblaze soft-core processor
through a dedicated one to one communication bus (Fast
simplex Link) for fast streaming of data.

In the implementation of the grid based Fast SLAM
algorithm, real time odometry and laser data collected from a
mobile robot platform are stored in a Block RAM memory to
be used for post processing. The odometry data is used by the
sampling step to generate new particle instances and the laser
data is used in the importance weight step for the evaluation

Figure 7 Architecture of the hardware/software co-design system

of particle weights .The particles and their associated weights
are stored in Block RAM for fast accessing. For
accommodating all the code and data in the embedded
processor two Block RAMS units are used in our
implementation.

Individual CORDIC hardware modules are assigned for the
evaluation of the elementary functions in the sampling and
importance weight steps. Uniform and Gaussian random
numbers are provided to the resampling and sampling steps of
the particle filter respectively by the random number generator
module.

6. Hardware/software co-design
implementation results and discussion

The implementation of the architecture given in figure 7 is

performed on a Xilinx Kintex-7 KC705 FPGA device running
at 100MHz. The design of the hardware modules is written in
VHDL language. For the implementation of the Ziggurat
module a value of B = 128 is used and, the �% and 1%
coefficients are represented as fixed point numbers with s�:G�
format (i.e. 8 bits for the integer part and 24 bits for the
fractional part). The same fixed point format is used for the
representation of the different data in the CORDIC module
design. For the variables in the software part of the algorithm
a 32 bit floating point representation is used by enabling the
floating point unit (FPU) of the Microblaze processor.

The summary of the execution time results in clock cycles

for the three steps of the particle filter in the grid based Fast
SLAM algorithm is given in table III. The obtained results in
general shows that the hardware acceleration leads to better
speed up in the execution time of the particle filter in all the
three steps of the algorithm. In particular, significant speedup
is achieved in the sampling step which can be attributed to the
fast generation of Gaussian random numbers by the random
number generator hardware module.

As the results of table III shows, the importance weight step

takes relatively a large number of clock cycles compared to
the sampling and resampling steps. This is due to the fact that,
for the evaluation of the weight of each particle in the
importance weight step, first it is required to transform every

TABLE III
EXECUTION TIME FOR SAMPLING, IMPORTANCE WEIGHT AND RESAMPLING

STEPS IN EMBEDDED SOFTWARE AND HARDWARE/SOFTWARE CO-DESIGN

 No. of
Particles

(N)

Execution times in clock cycles(100Mhz)

Sampling Weighting Resampling

Embedded
software

implementation

20

N × 47182

N ×3933958

127732

40 228982

60 329879

80 431962

100 533126

HW/SW

Embedded
implementation

20

N × 337

N ×219935

5129

40 10719

60 16321

80 21937

100 27537

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 119

Figure 8 Speedup in HW/SW co-design of particle filter

laser scan measurements point data (range and bearing angle)
from a robot frame of reference to a global frame of reference
where normally more than hundreds of laser scans points have
to be evaluated from the sensor. This requires the evaluation
of sine and cosine functions for every scan point. After this
step follows the search for the closest point between every
laser scan end point and occupied points in a map (which is a
computationally intensive step). However, at this stage this
step is implemented in software in the embedded Microblaze
processor but in the future we intend to speed up this process
in hardware. Furthermore, computation of an exponential
function is required in the calculation of the weight of each
particle for every laser scan points. These are the main reasons
attributed to the relatively large clock cycles obtained in the
importance weight step.

7. Conclusions
This work presents a hardware/software co-design

approach to speed up the computational time of the particle
filter in a grid based Fast SLAM algorithm. With initial
identification of the critical bottlenecks in each step of the
particle filter algorithm, hardware acceleration block are
designed and implemented to accelerate the computational
time. Such simple and effective approach resulted in an
improvement in the speedup of 140×, 14.87× and 19.36× in
the sampling, importance weight and resampling steps
respectively (figure 8). Such an approach can also be applied
to other applications of the particle filter due the flexibility in
the hardware/software co-design approach.

REFERENCES

[1] B. Ristic, S. Arulampalam, and N. J. Gordon, Beyond the

Kalman Filter: Particle Filters for Tracking Applications, Artech
House Publishers, Norwood, MA, 2004

[2] Gustafsson, F., "Particle filter theory and practice with positioning
applications," Aerospace and Electronic Systems Magazine, IEEE ,
vol.25, no.7, pp.53,82, July 2010.

[3] Nordlund, P.-J.; Gustafsson, F., "Sequential Monte Carlo filtering
techniques applied to integrated navigation systems," American
Control Conference, 2001. Proceedings of the 2001 , vol.6, no.,
pp.4375,4380 vol.6, 2001

[4] Atia, M.M.; Georgy, J.; Korenberg, M.J.; Noureldin, A., "Real-time
implementation of mixture particle filter for 3D RISS/GPS integrated
navigation solution," Electronics Letters , vol.46, no.15, pp.1083,1084,
July 22 2010

[5] M. M. Atia, M. J. Korenberg, and A. Noureldin, “Particle-Filter-Based
WiFi-Aided Reduced Inertial Sensors Navigation System for Indoor
and GPS-Denied Environments,” International Journal of Navigation
and Observation, vol. 2012.

[6] Georgy, J.; Noureldin, A.; Goodall, C., "Vehicle navigator using a
mixture particle filter for inertial sensors/odometer/map data/GPS
integration," Consumer Electronics, IEEE Transactions on , vol.58,
no.2, pp.544,552, May 2012

[7] Happe, M., et al.: A self-adaptive heterogeneous multi-core
architecture for embedded real-time video object tracking. Journal
Real-Time Image Processing (2011).

[8] Medeiros, H.; Park, J.; Kak, A., "A parallel color-based particle filter
for object tracking," Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW '08. IEEE Computer Society Conference
on , vol., no., pp.1,8, 23-28 June 2008

[9] G. Grisetti , C. Stachniss and W. Burgard “Improved techniques
for grid mapping with Rao-Blackwellized particle filters”, IEEE
Trans. Robot., vol. 23, no. 1, pp.34 -46 2007

[10] Chau, T.C.P.; Luk, W.; Cheung, P.Y.K.; Eele, A.; Maciejowski, J.,
"Adaptive Sequential Monte Carlo approach for real-time
applications," Field Programmable Logic and Applications (FPL),
2012 22nd International Conference on , vol., no., pp.527,530, 29-31
Aug. 2012

[11] Fross, D.; Langer, J.; Fross, A.; Rössler, M.; Heinkel, U., "Hardware
implementation of a Particle Filter for location estimation," Indoor
Positioning and Indoor Navigation (IPIN), 2010 International
Conference on , vol., no., pp.1,6, 15-17 Sept. 2010.

[12] T.C.P. Chau, X. Niu, A. Eele, W. Luk, P.Y.K. Cheung, and J.M.
Maciejowski "Heterogeneous Reconfigurable System for Adaptive
Particle Filters in Real-Time Applications" In Proc. Int. Conf. on
Reconfigurable Computing: Architectures, Tools and Applications
(ARC). Pages 1–12. Springer. Mar. 2013.

[13] Shih-An Li; Chen-Chien Hsu; Wen-Ling Lin; Jui-Pin Wang,
"Hardware/software co-design of particle filter and its application in
object tracking," System Science and Engineering (ICSSE), 2011
International Conference on , vol., no., pp.87,91, 8-10 June 2011

[14] Binli Ye; Yunhua Zhang, "Improved FPGA implementation of particle
filter for radar tracking applications," Synthetic Aperture Radar, 2009.
APSAR 2009. 2nd Asian-Pacific Conference on , vol., no., pp.943,946,
26-30 Oct. 2009

[15] S.Saha, N.K.Bambha, and S.S.Bhattacharyya, “Design and
implementation of embedded computer vision system based on
particle filters,” Comput. Vision Image Understanding, vol. 114, no. 11,
pp. 1203–1214, 2010

[16] HAA El-Halym, I Mahmoud, S Habib, Proposed hardware
architectures of particle filter for object tracking. EURASIP J. Adv.
Signal Process. 2012, 17 (2012).

[17] S.Thrun, W. Burgard, and D. Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents series). Intelligent
robotics and autonomous agents. The MIT Press, August 2005.

[18] R.Douc; O.Cappe, “Comparison of resampling schemes for particle
filtering,” Image and Signal Processing and Analysis, 2005. ISPA
2005. Proceedings of the 4th International Symposium on, vol., no.,
pp.64, 69, 15-17 Sept. 2005.

[19] Sileshi, B.G.; Ferrer, C.; Oliver, J., "Particle filters and resampling
techniques: Importance in computational complexity analysis," Design
and Architectures for Signal and Image Processing (DASIP), 2013
Conference on , vol., no., pp.319,325, 8-10 Oct. 2013

[20] J. E. Volder., The CORDIC Trigonometric Computing Technique, IRE
Trans. Electronic Computers, pp. 330-334, Sept 1959.

[21] G. Marsaglia and W. W. Tsang, “The ziggurat method for generating
random variables,” Journal of Statistical Software, vol. 5, pp. 1–7,
2000

[22] P.L 'Ecuyer, Maximally equidistributed combined Tausworthe
generators, Mathematics of Computation, vol. 65,no. 213, pp. 203–213,
1996.

[23] J.S. Walther. “.A Unified Algorithm for Elementary Functions”,
Proceedings of the Spring Joint Computer Conference, 1971, pp. 379-
385.

[24] Boudabous, A.; Ghozzi, F.; Kharrat, M.W.; Masmoudi, N.,
"Implementation of hyperbolic functions using CORDIC
algorithm," Microelectronics, 2004. ICM 2004 Proceedings. The 16th
International Conference on , vol., no., pp.738,741, 6-8 Dec. 2004

[25] B. Lakshmi and A. S. Dhar, “CORDIC Architectures: A
Survey,” VLSI Design, vol. 2010, Article ID 794891, 19 pages, 2010.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

120 Int'l Conf. Embedded Systems and Applications | ESA'14 |

The Design of an embedded Self-Diagnostic Hybrid
Aquarium Control System

Tochukwu Chiagunye, Chukwugoziem Ihekweaba, Henrieta Udeani

Computer Engineering Dept. Michael Okpara University of Agriculture, Umudike, Abia State Nigeria.

 Abstract
An aquarium control system which permits the
monitoring and management of most of the
parameters of the electrical devices that can be
found in an aquarium has been designed in the
course of this project. The microcontroller used to
realize it combines a real time clock and a
temperature sensor in order to control the seven
relays used for switching of the various aquarium
resources. The liquid crystal display shows the
current-date and time, the temperature, water level
and light level as detected by the sensors. Also, it
permits one to visualize each port status. Other
important features include an automated
mechanical feeding device for the aquarium as well
as automated water draining and refilling
operations of the aquarium after a specific time
frame. This system offers flexibility in the control
of operations by providing a user interface with
which parameters can easily be adjusted. The
flexibility that exists in the system makes room for
future enhancement.

Keywords; Aquarium Control, multi-disciplinary
system, Self-Diagnostic, Software Agent.

1. Introduction

The development of hybrid systems consisting of
software, electronics and mechanical components

which are operating in a physical world is usually a
challenge. These challenges arise from the need to
develop complex firmware products that take the
constraints of the physical world into account. The
task is made even more challenging due to the fact
that these types of systems often are developed out
of phase. Initially, the mechanical parts are
designed, followed by the electronics and finally
the system software is developed. Any problems
discovered late in the development process, can
really only be corrected in the software without
causing significant delays to the complete project
due to longer iterative cycles in the electronics and
mechanical development. These very late changes
often increase the complexity of the software and
the risk of introducing new bugs. Hence, a well
thought-out software design can be compromised.
In order to avoid situations like this, early feedback
at the basic systems level is invaluable. In order to
develop hybrid systems, engineers from different
backgrounds and with diverse fields of expertise
are involved, making communication much harder
than in mono-disciplinary projects. It is close to
impossible for each individual engineer to foresee
all the cross-discipline consequences of a given
design decision. The system in Fig 1 below
describes the system controlling the level of
water,temperature level, light intensity and the
feeding of fish in an Aquarium.

Fig 1 The system overview

F/F
OUTLET INTERFACE

HEATER INTERFACE

COOLER INTERFACE

INLET INTERFACE

FEEDER INTERFACE

LIGHTING INTERFACE

AQUARIUM

CLOCK
GEN

MICROCONTROLLER LCD

 R C

ADC

POWER UP ONE-

Keypad

1 out of4
Analogue
MUX

Sensor
Signal
Conditio

Level
sensor

interface

LIGHT
SENSOR
interface

Temp
Sensor

Interface

P H
SENSOR
interface

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 121

The Sensor interface (temperature,level,PH and
light) to the system are used to monitor the changes
in the set physical conditions of the system and
transmits same to a microcontroller through an
Analog-to-Digital converter. Subsequently the
system calculates and actuates the
temperature,level and light transducers as well as
the electric motor control signals. Also, a reagent
fluid is pumped into the water in order to lower the
bacteria level below a predetermined threshold as
detected by the PH sensor.

2. Materials and Methods

The hardware components used in this design
include;sensors, relay and driver, Electric
motor,Liquid crystal display, Light emitting
diodes, Transistors,Capacitors, Resistors and the
Microcontroller.The LM 35 Temperature sensor is
an integrated circuit sensor that can be used to
measure temperature hence the analogue electrical
output signal is proportional to the temperature in
degree celsius. The light dependent resistor is a
resistive light sensor that changes its electrical
resistance from several thousand ohms in the dark
to only a few hundred ohms when light falls upon
it. The net effect is a decrease in resistance for an
increase in illumination. ULN 2003A relay driver
is a high-voltage, high current Darlington transistor
array. Each driver consists of seven NPN darligton
pairs that feature high-voltage outputs with
common-cathode clamp diodes for switching
inductive loads. The collector – current rating of a
single darlington pair is 500mA. The darlington
pairs can be paralleled for higher current capability
for the output to the feeder system.

In this project, the seven NPN darlington pairs, 1C
to 7C are configured as follows:

1C is used to drive the inlet pump
2C is used to drive the outlet pump
3C is used to drive the heater
4C is used to drive the cooler
5C-7C are used to drive the feeder system

The Liquid crystal display (LCD) is a thin, flat
electronic visual display that uses the light
modulating properties of liquid crystals (LCs). This
project used LCD 16 x 4 as a display system. The
LCD 16 x 4 has four rows, where each row
displays 16 characters. Here the first two rows
display the sensor values, sensed by the
temperature, level and light sensors, while the last
two rows display the condition of the output, for
example if the pump is ON the display on 3rd row
is pump ON, if heater and light is ON, then the 3rd

and 4th rows will display heater and light ON
respectively. Light emitting diodes emit light when
an electric current passes through them. The buzzer
is an alarm system that gives a warning sound
during fault condition. A major component
deployed in this system is the microcontroller.
Microcontrollers are independently programmable
and can have a great deal of additional
functionality combined on the same integrated
circuit. A typical microcontroller can access from a
megabyte to a gigabyte of memory, and is capable
of processing 16, 32 or 64 bytes of information or
more with a single instruction. In contrast to the
microprocessor, a microcontroller includes a
central processing unit, memory and other
functional elements, all on a single semiconductor
substrate, or integrated circuit.

A typical microcontroller might have a core
microprocessor, a memory controller, an interrupt
controller, and both asynchronous and synchronous
serial interfaces. The advantage of a
microcontroller as compared with a microprocessor
is that the microcontroller can be used in an
autonomous way. No external circuitry is needed
for their operation. This is why their use is very
wide spread in relatively straight forward
applications, such as in small electronic
products.The specific type of microcontroller used
in this project is a microcontroller from the
ATMEL technology incorporated AT 89C51.The
design approach used in this project is the top
down design. Here the whole system was broken
down into different smaller modulus.

The final step is integration of the different
modules to form the system required. It is
important to note that any of the above modules
can be tackled first and important information that
can be used for the other recorded appropriately for
reference purpose.

3. System Design

This work is divided into hardware and software
sections. The hardware part consist of three sub-
systems which include; the input sub-system,
control sub-system, and output sub-system. The
software unit is an Agent based control program.

Self-diagnostic
aquarium

Control System

Hardware subsystem
Subsystem

Software subsystem
Subsystem

Fig 2 Block Diagram of the system
 Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

122 Int'l Conf. Embedded Systems and Applications | ESA'14 |

The input- sub system (monitoring unit) consists of
a temperature sensor circuit, water level sensor
circuit and light sensor circuit. The temperature
sensor senses the water temperature inside the
aquarium. The water level sensor functions to
detect the level of water inside the main aquarium
and reserve tank. The function of the light sensor is
to detect light intensity outside the aquarium. The
Analogue-to-Digital converter (ADC) sends the
digitized data to the microcontroller.
The control sub-system consists of an AT89C51
microcontroller, 16MHz crystal oscillator, 5V
regulator used to regulate the voltage to 5V, reset
button and other basic ports of the microcontroller.
The control sub-system processes digitized data
received by the data acquizition system and sends
digitally processed data to the LCD and other
output devices through the output interface.

The output sub-system consists of 74ACT574
Octal D-Type Flip-Flop with tri-state output. This
is used to latch the output port 0 of the
microcontroller to the LCD, as well as the ULN
2003A relay driver that drives the resources
feeder,heater,cooler,inlet pump, outlet pump, LCD
and the resources interfaced to the aquarium.

Assembly language is used to develop codes for
the microcontroller to enable it read the values sent
by the sensors and take appropriate actions. Visual
basic programme is used to interface the operations
of the system to the liquid crystal display (LCD)
and the assembly language program running on the
hardware in order to read the user set point values
and the current values.

Hardware Sub-System Design

ADC Configuration

Analog-to-Digital converters are among the most
widely used devices for data acquisition. Since
physical quantities such as temperature, pressure,
humidity, etc, need to be converted to analogue
electrical signals, there arises the need for an
analogue-to-digital converter which in turn
converts the analogue signals to digital quantities,
for the use of the Microcontroller. The ADC used
is ADC0804. For the ADC selected,
The frequency of operation;

f =

Here, R = 10k, c=150pF

f =

f = 606.0606 = 606Hz

Fig 3 Block diagram of ADC0804 (copy right (c)
2009-2013 Texas instruments incorporation)

Table i Vref/2 relationship with Vin range

Vref/2 (v) Vin (v) Step size
(mV)

Not connected 0 to 5 5/256 = 19.53
2.0 0 to 4 4/256 = 15.62
1.5 0 to 3 3/256 = 11.71
1.28 0 to

2.56
2.56/256 =

10.0
1.0 0 to 2 2/256 = 7.81
0.5 0 to 1 1/256 = 3.90

The output voltage, Dout =

Thus for the temperature sensor; LM 35 with input
of 250mV to the ADC, the digital output from the
ADC after conversion is:

Dout =
= 25 (in ̊ C) as temperature

reading.

Water Level Sensor interface design
The water level sensor used in this project is a
comparator; LM324 (Low Power Quad Operational
Amplifiers). If the water sensor probe detects
water, the voltage output from the LM324 to the
controller is 0v. Conversely, the voltage from the
LM324 to the controller is about 3.8v.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 123

In practise, when the liquid comes in contact with
the electrode tip, a conductive path is established
between the sense electrode and the tank wall
/reference electrode. This current is sensed,
amplified and made to operate a relay whose
contacts in turn are used for annunciation/control.

The Control System Design
The 89C51 Microcontroller was used to implement
the control subsystem of the project.

For the RC Auto reset network used in this design,
t (time delay) must be at least two (2) instruction
time cycles. However, the basic instruction cycle of
the microcontroller is 12 clock pulses. The
frequency of oscillation chosen for the
Microcontroller is 16MHz

f = 16MHz
T = I/f =
For an instruction cycle,
T = 6.25 x 10-6 x 12 = 7.5 x 10-7 secs.
 using 2 instruction cycles,
 2T = 2 x 7.5 x 10-7 = 1.5 x 10-6 secs

= 1.5µ secs.
t =Iη 2RC, where t = 1.5µ secs
 choice of 10µf capacitor was made
Taking t = 7ms, R =?
Therefore, 7 x 10-3 = 0.693 x R x 10 x 10-

6
R = = 1010.100Ω

 R = 1kΩ
The number of reset network used is one

(1)

The crystal oscillator is a thin slice of natural
quartz or a syntheses material.

The piezoelectric crystal is used as a resonant
circuit, in place of an alternative; LC circuit. The
Piezoelectric effect of the crystal helps it to vibrate
mechanically when excited electrically thus
producing an AC voltage output. The resonant
frequency is fixed by the speed of the crystal.
Typical values of the frequency are 0.5 to 30MHz.
The value used for this project was 16MHz.

Finally, the transparent latch and the relay driver
are incorporated into the system as already
outlined. The final circuit derived is shown in fig 4
below.

The Software Sub-System Design

The Flow chart of fig 5 shows the detailed control
flow from initialization to the last command stage
that derives the feed sub-routine and refill sub-
routine.

Fig 4: Circuit Diagram

Software Sub-System Flow Chart

Save parameters

Y

Start

Display prompts to
enter Parameters

Initialize LCD

Initialize the System

Any command
to start?

N

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

124 Int'l Conf. Embedded Systems and Applications | ESA'14 |

 Fig 5: Software Sub-System Design Flow Chart

Read water level

Off H20 Pump

ON
H20 Pump

Is
H20 >=UL

N

Y

Read & Display Temperature

OFF Heater
ON FAN

Is
Temp>=UT?

Is
Temp<LT?

N

N

Y

ON Heater
OFF FAN

Is
it Dark?

Y
ON Light

N

Time to
feed?

Perform Feed
Routine

Is it
Refill time?

Perform Refill
Routine

N

Y

N

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 125

Fig 6: Feeder Routine Flow Chart.

Fig 6 above shows the Feeder routine flow chart.

This routine checks the set time to feed and the

condition of the feeder, whether it is faulty or not,

to determine what action to take. Here an Agent

that monitors and displays the fault condition if any

is used to constantly monitor the feeder.

The refill Sub-Routine flow chart shown in fig 7

monitors the conditions of refilling, that is, checks

the water at the reservoir, the refill time to either

refill or start Alarm while displaying the fault

condition.

 Fig 7: Refill Routine Flow Chart



Open Feeder
Time Feeder

Is
Feeder
Faulty?



ON Feeder

Time =
Limit?

Start Alarm
Display Fault

Close Feeder
Reset Time

N

N

Y

Y

Start

Return

REFILL ROUTINE



Start Alarm /
Display

Condition



Open Outlet
Pump

N

N

Close outlet
Pump and
Open Inlet

Pump

Is Tank
Full?

Y

N Is Tank
empty?

Y

Is H20
at

Reservoir?

Y

Start

Close Inlet
Pump

Reset Refill
Time

Return

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

126 Int'l Conf. Embedded Systems and Applications | ESA'14 |

4.0 Tests and Results

Table ii Test results

Circuit
Output
(dc-
voltage)

Display

Temperature sensor
(35)

 Ice (0 ̊ c)
 Boil water

(100 ̊ c)

0 v
1 v

Tested ok

Water sensor
 Sense water
 Sense no

water

0 v
3.8v

Tested ok

Lighting sensor
 Dark

environment
 Bright

environment

0 v
2v – 4v

Tested ok

Push button
 Closed circuit

(PUSH)
 Open circuit

(normal)

0 V
5V

Reliable

Microcontroller
output

 Data logic 1
 Data logic 0

4.7v
0V

Tested ok

After the correction of the errors encountered during the
sub-system tests, the overall system test was carried out
and the required result was achieved with the hardware
and software parts harmoniously working together.A
Multidisciplinary Project of this sort is not left with
challenges like integration, finance and environmental
factors, all these were handled with the help of software
agent based prototype system that is working perfectly
well.

5.0 Recommendation and Conclusion

The main goal of the work is to design a self-diagnostic
multi-disciplinary embedded system. The project meets
all the objectives set forth while satisfying the
constraints.

The system was designed to be much user-friendly by
providing the owner with keypad and liquid crystal
displays interface where one can stipulate set-point and
monitor the changes in trends. The detailed analysis of
this project design is made available to expose the
underlying technology of this project and related works.
This is particularly significant in view of the fact that
food security has become a very serious global issue.

 REFERENCES

1. Merriam-Webster Online Dictionary
"Definition of aquarium".. http://www.m-
w.com/dictionary/aquarium. Retrieved 2013-10-03

2. Adey, Walter H.; Loveland, Karen (1991). Dynamic
Aquaria. San Diego:
Academic Press. ISBN 0-12-043792-9

3. http://www.aquariumslife.com/headline/amazone-
biotope-video/. Retrieved 2013-08-25

4. "A Preventative Maintenance Schedule".
http://www.aquariumfish.net/information/maintenance_s
chedule.htm. Retrieved 2013-09-20

5. Sanford, Gina (1999). Aquarium Owner's Guide. New
York: DK Publishing. pp. 180–199. ISBN 0-7894-
4614-6.

6. STMicroelectronics LM324 low power quad operational
amplifiers. Italy: Data sheet. June 1999.

7. www.ti.com (2009-2013) Texas Instruments

Incorporation.Retrieved 2013-09-12

8. http:\\www.atmel.com. 8-bit Microcontroller with 4k
bytes flash. Retrieved 2013-09-15

9. www.en.wikipedia.org/wiki/Transducer.

http:\\eedept.ncue.edu. Retrieved 2013-10-08
10. http:\\www.datasheetarchive.com/ ADC 0804. Retrieved

2013-10-16.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 127

A Consolidated Review on Embedded Micro-Controllers for
Pace Maker Applications

Abhishek Sharma
Accendere Knowledge Management Services Pvt Ltd

 Flat No. 302, Plot No. 553, Rama Residency, KPHB VI Phase, Kukatpally, Hyderabad – 500085l
India.

Abstract— This review paper is based on the real world
applications of various microcontrollers in the field of
pacemakers. The study conducted is based on various factors
such as cost, power consumption, power saving, reliability,
efficiency etc. These features differentiate each
microcontroller from the other. The goal of this study is to
study each microcontroller that are being employed in the
field of pacemakers and based on the observations; we can
find the best alternative to the presently used
microcontrollers. That means, finding a microcontroller
which will function as a close substitute to the presently used
microcontroller. The microcontrollers which showed similar
characteristics to the ones presently being used are suggested
to be used for serving the purpose of real time embedded
pacemakers and related applications. The various
microcontrollers that were studied included PIC
(10F,12F,18F) series, MegaAVR(ATMEGA 32, ATMEGA
328P) series, Freescale RS08 Family & TI MSP4300XX series
of microcontrollers. By studying their diverse characteristics
such as program and data memory, clock cycles, memory,
data retention rate, peripherals, I/O features etc., various
other microcontrollers were searched for which showed more
or less the same characteristics as the above listed ones had.
Such similar microcontrollers are hence suggested to be used
in the pacemaker and other related application. Suggested
microcontrollers include Intel 87C52, PIC (10F, 12F, 16F87x,
18Fxx2) series, FRDM-KL 25Z, Freescale RS08 Family, TI
MSP 430XX series of microcontrollers.

Keywords: pacemaker, embedded hardware, review, micro-
controllers

1. INTRODUCTION

Microcontrollers are being used today in huge variety of
applications such as mobile phones, auto mobiles, CD/DVD
players, Pacemakers, ATM machines, cameras, washing
machines, microwave ovens, EVG machines and the list goes
on and on.

Microcontrollers in pacemakers are being studied and we
find the most suitable applications of various microcontrollers
in:

• A biomedical sensor system for real-time monitoring
of astronauts’ physiological parameters during extra-vehicular
activities

• A heart disease recognition embedded system with
fuzzy cluster algorithm

• Realtime & Embedded System Testing for
Biomedical Applications

• Design Overview Of Processor Based Implantable
Pacemaker

• Design and Implementation of Portable Health
Monitoring system using PSoC Mixed Signal Array chip

• Adaptive Electrocardiogram feature extraction on
distributed embedded systems

• Real time monitoring of ECG signal using PIC and
web server

• Differential diagnosis of QRS complex Tachycardia
and Tachyarrhythmia in Noisy ECG Signals through Fuzzy
Neural Signal Processing Embedded System

• Hardware Embedded System on a Chip for the
Normal ECG Recognition

• The Design of Ecg Signal Generator Based on ARM9

2. BRIEF LITERATURE SURVEY ON THE

CURRENT PACEMAKER

MICROCONTROLLERS

• Manasi Safaya developed the fetal pacemaker circuit
using PIC 10F202 which was successful in pacing at the
desired heart rate set by the user (Doctor). For a heart rate of
120bpm, the circuit pulsed every 500ms.

• Jacob I.Laughner, Erik R. Zellmer, Matthew R.
MacEwan, Sophia X.Cui, Igor R. Efimov, Scott B. Marrus,
Carla J. Weinham, Jeanne M. Nerborne successfully
implemented fully implantable mouse pacemaker based on
wireless power transfer and control capable of 30 days of in
vivo pacing using PIC12F675. All experiments were
performed on anesthetized animals with a hand-held
transmitter. Integration of transmitter coil into the mouse
housing was done. The system was designed to generate
voltage fields in excess of the 3.9 V cap on the receiver
throughout the cage to eliminate communication issues
between the transmitter and receiver to ensure that mice will

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

128 Int'l Conf. Embedded Systems and Applications | ESA'14 |

always be paced independent of the location they occupy in the
cage.

• Cliff Nixon, James Smith, Tony Ulrich, Rebecca
Davis, Christopher Larson, Kua Cha achieved desired
sensitivity of +-20% in an academic dual chamber pacemaker
by using PIC18F452. It was also possible to attain an error of
less than 1% under all input via adjustment of the digital
controlled voltage reference at the comparator with respect to
measured results. The pacing circuit provided a pulse width of
.05ms to 1.9ms, with a .2ms tolerance through digital control of
the semiconductor switches involved in pacing. The pacing
amplitude was variable from 1.2 to 7v, with a tolerance of
12%. The program for measuring lead impedance was not
written due to time constraints. The theory for performing this
operation was verified, and simulation yielded excellent
results. The requirements for this circuit were lenient, allowing
25% error. Simulation proved that an error of only 1% could be
obtained. Taking into account resistor tolerances and voltage
drops across switches, the error is expected to be no greater
than 5%. The system was fully functional and met all
specifications regarding control of the rate limits and blanking
periods.

• Kenneth Chee showed that the MCU/FPGA and the
FPGA implementation had a 128% and 86566% increase in
speed, respectively, when compared to a MCU
implementation. The increase in speed also increased the
power consumption due to the parallelization of the algorithm
implementation. By adding an FPGA the MCU/FPGA and
FPGA implementation had a maximum instantaneous power
increase of 204% and 105%, respectively, when compared to
the MCU implementation. This was done using ATMEGA
328P using the Kendall Tau algorithm for adaptive pacing.

• Carlos Cassillas used a High performance, low cost,
low power MCU i.e, Freescale RS08 (MC9RS08KA2). System
is battery operated with Continua Health Alliance Connectivity
over USB. It makes use of only 1 Lead. However, a full 12
lead ECG can also be implemented using DSC MC56F8013.

• Santosh Chede and Kishore Kulat employed TI
MSP430F1611 in appropriate measuring and modeling scheme
which was successfully implemented to measure instantaneous
current and to derive energy consumption. They successfully
developed low power processor based implantable pacemaker
and estimated software related current/ energy consumption.

Since the embedded portable devices (in our case a
pacemaker) are generally battery operated, therefore they
should be designed in such a manner that minimum power is
consumed. Design constraints such as size, weight,
encapsulating material & longer battery life are mainly
emphasized. Therefore, design must be optimized. VLSI based
analog/digital custom processor and interfacing peripherals
used in pacemaker increases the cost and time to market.

Safety issues related to pacemakers and defibrillators due to
firmware problems, software related issues etc. is studied. The
devices which showed reasonable probability to cause adverse
effects on health or even death were classified as Class I by
Food and Drug Association. Software is not reviewed by FDA
during pre market submission. There are no set standards for

this because code length may be as long as 80,000 lines or
more. But a few guidelines are recommended for software
review. It is the manufacturer’s responsibility to demonstrate
the safety & efficacy of device software. The methodologies
used to monitor this are documentation of code inspections,
static analysis, module level testing & integration testing.
However, these tests are basically open loop tests and thus they
fail to check the correctness of device software. Effective
software evaluation & verification methodology is needed to
analyze the risks and certify the medical device software
during pre-market submission phase.

Today’s testing methods are erroneous and traditional
methods are ineffective because testing depends upon a
particular patient’s state and organ. The problem changes as the
testing environment changes, the latter not being under the
control of the tester.

Implantable medical devices are primary example of
medical cyber physical system where software’s safety and
effectiveness has to be evaluated within a closed loop context
of a patient. The major challenge is to generate physiologically
relevant test such that device does not generate irrelevant
therapy & does not adversely affect the condition of patient.
Also the mechanism must be interactive and adaptive i.e, it
must take into account the previous values as well as present
values. Traditional testing methods are basically open loop
tests for error debugging involving methods such as theorem
proving, constraint logic programming & symbolic execution,
model checking, using an event flow model and using a
Markov chains model. Therefore, testing becomes complex and
difficult when program under test is non deterministic. The
primary approach to a system level testing of medical devices
is unit testing in which pre recorded electrogram and electro
cardiogram signals are played back just like a tape is played in
a tape recorder. However this method is unable to check safety
violations due to inappropriate stimulus generated by the
pacemaker. Heart rate should be properly maintained. It should
not be too fast (Tachycardia) or too slow (Bradycardia). It
should be at a normal pace (Normal Sinus Rhythm). There
should be synchronism between atrioventricular muscles.
Pacemaker mediated Tachycardia introduces following
complications:

• Endless Loop Tachycardia
• Atrial Flutter & pacemaker mode-switch function
Embedded system must be reliable and should deliver high

performance. Reliability is difficult to maintain using
traditional designs because large systems are complex &
complexity introduces errors. High performance adds to
complexity. A major limitation of Application level simplex
architecture is that bugs present in microprocessor, RTOS are
not handled safely. The system level simplex architecture has 2
types of faults:

• Logical Faults: Occurs when incorrect value is
encountered by the controller.

• Resource sharing faults: These are caused by failures
in common resources among components.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 129

3. MICROCONTROLLER PACEMAKERS

CURRENTLY BEING USED

PIC 10F series: (PIC 10F202)
Highlighted Features:
1. SOT 23 Package.
2. High Performance RISC CPU.

PIC 12F series: (PIC12F675)
Highlighted Features:
1. High-Performance RISC CPU.
2. Small Size.
3. Low Cost.
4. Internal Memory enables 14 different programmable

stages.

PIC 18F series: (PIC 18F452):
Highlighted Features:
1. High-Performance RISC CPU.
2. Responsible for directing the pacing of heart.
3. Wide academic use & flexible I/O ports.
4. I/O ports include several communication protocols

and interrupts that streamline programming and increase
response times.

MegaAVR Series: (ATMEGA 328P)
Highlighted Features:
1. High Performance, Low Power AVR® 8-Bit

Microcontroller with Advanced RISC Architecture.
2. 1 ALU limits it to 1 instruction executing at a time.
3. High performance is delivered using FPGA instead of

multiple MCUs.
4. It lets designer to define the required hardware &

minimizes power consumption.

5. MCU acts as master and FPGA acts as slave.

Freescale RS08: (MC9RS08KA2):
Highlighted Features:
1. Low cost.
2. Ultra low end 8bit MCU.
3. ICS—Internal clock source avoids the use of the

external oscillator and provides a bus clock of up to 10 MHz
for fast code execution.

4. MTIM—8-bit modulo timer is used to define time
intervals used in heart beat detection algorithms.

5. ACMP—Analog comparator has internal threshold
levels and offers the possibility of adding an external reference.

6. BDM—Background debug module provides a single-
wire in-circuit debug interface.

7. 6-pin and 8-pin packages—Small packages for small
designs. Enough pins for heart rate monitor implementation.

TI MSP430 series: (MSP 430F1611):
Highlighted Features:
1. Ultra low power MCU.
2. 5 low power modes to extend battery life in portable

biomedical applications.

a. Tabular Representation of the same is given
below:

Apart from the highlighted features, various other features
were studied as shown in Table 1.

Based on the Table 1 mentioned below, advantages and
disadvantages of the microcontrollers, some new and similar
microcontrollers for pacemaker applications can be suggested.

Type of
Microcontro
ller

Number of
instructio
ns

Addressing
Modes

Operating
Characteristics

Operating Current Standby
Current

Data
Retention

Temperature
Range

Operating
Voltage

Timer

PIC10F202 33 single
word
instructio
ns 12 bit
wide

Direct,
Indirect and
Relative

4MHz internal
clock, 1µs
instruction
cycle

<175µA@2V, 4MHz,
typical

100nA@2V
typical

>40 years Industrial: -
40˚ C to
85˚C

Extended: -
40˚C to
125˚C

2V-5.5V 8bit real time
clock/counter
TMR0 with
8bit
programmabl
e prescaler

PIC12F675 35 single
word
single
cycle 1µs
except for
program
branches

Direct,
Indirect and
Relative

DC 20MHz
clock

8.5µA@32kHz,2V,typical
100µA
@1MHz,2V,typical

1nA@2V,
typical

>40 years -40˚C to
85˚C

2V-5.5V 8bit real time
clock/counter
TMR0 with
8bit
programmabl
e prescaler

PIC18F452 16bit wide
instructio
ns, 8bit
wide data

Literal,
Direct &
Indirect

DC 40MHz
osc/clock input

<1.6µA typical
@5V,4MHz

25µA typical @3V,

<0.2µA
typical

>40 years -40˚C to
125˚C

2V-5.5V Two 16bit
timer/counter
with

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

130 Int'l Conf. Embedded Systems and Applications | ESA'14 |

path 32kHz prescaler

One
8bit/16bit
timer/counter
with
prescaler

One
8bit/16bit
timer/counter
with 8bit
period
register

ATMEGA3
28P

131
powerful
instructio
ns, 15 bit
wide

Direct,
Indirect,
Indirect with
displacement,
Indirect with
pre-
decrement,
Indirect with
post-
decrement

DC 20MHz
clock

40mA per I/O pin 0.07mA-
0.15mA
@6MHz

20years
@ 85˚C,
100 years
@ 25˚C

-40˚C to
85˚C

1.8-5.5V Two 8bit
timer/counter
with separate
prescaler &
compare
mode.

One 16bit
timer/counter
with separate
prescaler,
compare &
capture mode

Freescale
MC9RS08K
A2

Simplified
S08
instructio
n set with
added
high
performan
ce
instructio
ns

Inherent,
Relative,
Immediate,
Tiny, Short,
Direct,
Extended,
Indexed

20MHz
internal clock
source upto
10MHz
internal bus
operation

120mA NA Min
15years,
100 years
typical

-55˚C to
150˚C

0.3-5.8V MTIM: 8bit
modulo timer

 Table 1: Key features of presently used microcontrollers

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 131

Clock Max frequency of
operation(MHz)

 4 4 4 4

Memory Flash Program
Memory

 256 512 256 512

Data
Memory(Bytes)

 16 24 16 24

Peripherals Timer Module(s) TMR0 TMR0 TMR0 TMR0

Wake up from
sleep on Pin
Change

 Yes Yes Yes Yes

Comparators 0 0 1 1

Features I/O Pins 3 3 3 3

Input only Pins 1 1 1 1

Internal Pull-ups Yes Yes Yes Yes

In-Circuit serial
Programming

 Yes Yes Yes Yes

Number of
Instructions

 33 33 33 33

Packages 6-pin SOT-
23

8-pin PDIP

6-pin SOT-23

8-pin PDIP

6-pin SOT-23

8-pin PDIP

6-pin SOT-23

8-pin PDIP

Table 2: Key features for suggested PIC 10F Microcontrollers

Device Program Memory Data Memory

 I/O 10 Bit A/D

 (ch)

Comparators Timers

8/16bit

FLASH(words) SRAM

(bytes)

EEPROM

(bytes)

PIC12F629 1024 64 64 6 -- 1 1/1

PIC12F675 1024 128 128 6 4 1 1/1

PIC12F683 2048 128 256 6 4 1 2/1

Table 3: Key features for suggested PIC 12F Microcontrollers

PIC10F200 PIC10F202 PIC10F204 PIC10F206

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

132 Int'l Conf. Embedded Systems and Applications | ESA'14 |

 Device

On-Chip Program Memory

 On-Chip
RAM(bytes)

 Data
EEPROM(bytes)

FLASH(bytes) Single Word
Instructions

PIC18F242 16k 8192 768 256

PIC18F252 32K 16384 1536 256

PIC18F442 16K 8192 768 256

PIC18F452 32K 16384 1536 256

Table 4: Key features for suggested PIC 18F Microcontrollers

 Key Features PIC16F873 PIC16F874 PIC16F876 PIC16F877

Operating Frequency DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz

RESETS (and Delays) POR, BOR
(PWRT, OST)

POR, BOR
(PWRT, OST)

POR, BOR
(PWRT, OST)

POR, BOR
(PWRT, OST)

FLASH Program
Memory

(14-bit words)

4K 4K 8K 8K

Data Memory (bytes) 192 192 368 368

EEPROM Data Memory 128 128 256 256

Interrupts 13 14 13 14

I/O Ports Ports A,B,C Ports A,B,C,D,E Ports A,B,C Ports A,B,C,D,E

Timers 3 3 3 3

Capture/Compare/PWM
Modules

2 2 2 2

Serial Communications MSSP, USART MSSP, USART MSSP, USART MSSP, USART

Parallel Communications --- PSP --- PSP

10-bit Analog-to-Digital
Module

5 input channels 8 input channels 5 input channels 8 input channels

Instruction Set 35 instructions 35 instructions 35 instructions 35 instructions

Table 5: Key features for suggested PIC 16F Microcontrollers

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 133

4. SUGGESTED MICROCONTROLLERS

FOR PACEMAKERS APPLICATIONS

The names in bold letters are the microcontrollers that have
not been used in pacemakers while the ones which are
underlined and bold are the microcontrollers used in
pacemakers.

1. The Intel 87C52 is a MCS-51 CHMOS single-chip 8-
bit microcontroller with 32 I/O lines, 3 Timers/Counters, 6
Interrupts/4 priority levels, 8K Bytes On-Chip ROM/EPROM,
256 Bytes on-chip RAM, Programmable Serial Channel with
Frame Error Detection. It can be used instead of
ATMEGA328P.

2. The PIC10F series(200,204,206) are functionally
similar to PIC10F202 because they are from the same family
of microcontrollers. A tabular representation highlighting
different features is shown in Table 2.

3. The FRDM-KL25Z is an ultra-low-cost development
platform for Kinetis L Series KL1x (KL14/15) and KL2x
(KL24/25) MCUs built on ARM® Cortex™-M0+ processor.
Features include easy access to MCU I/O, battery-ready, low-
power operation, a standard-based form factor with expansion
board options and a built-in debug interface for flash
programming and run-control. The FRDM-KL25Z is
supported by a range of Freescale and third-party development
software.

4. The PIC12F675 belongs to PIC12F series of
microcontrollers. The functionalities are listed in Table 3 along
with those of PIC12F629 and PIC12F683.
 5. The only difference between MC9RS08KA2 and
MC9RS08KA1 is the On-chip Flash EEPROM that is:

 — MC9RS08KA2: 2048 bytes
— MC9RS08KA1: 1024 bytes.
6. PIC18F452 belongs to PIC18Fxx2 series as shown in

Table 4.
7. PIC16F87X series(873,874,876,877) are highlighted in

Table 5.
8. TI MSP430F1611 has 48KB, 256B Flash Memory,

10KB RAM whereas TI MSP430F2131 has 8KB,256B Flash
Memory,256B RAM.

5. CONCLUSIONS
The microcontrollers mentioned in section 4 can be

successfully used to serve the application of pacemaking. The
preferred microcontrollers as shown in the various tables can
replace the ones used presently. The key features highlighted in
the above tables makes the suggested group of microcontrollers
a potential candidate for pacemaker applications.

6. REFERENCES
[1] Longjian Xu, Houwu Zhang, Kaixue Yao “The analysis and

design of diphasic pacemaker pulse system based on
microcontroller”, Coll. of Comput. Sci. & Inf., Guizhou Univ.,
Guiyang, China.

[2] Jacob I. Laughner, Erik R. Zellmer, Matthew R. MacEwan,
Sophia X. Cui, Igor R. Efimov(Department of Biomedical
Engineering, Washington University in Saint Louis, Saint Louis,
Missouri, United States of America), Scott B. Marrus, Carla J.
Weinheimer(Department of Internal Medicine, Division of
Cardiovascular Sciences, Washington University in Saint Louis,
Saint Louis, Missouri, United States of America), Jeanne M.
Nerbonne(Department of Developmental Biology, Washington
University in Saint Louis, Saint Louis, Missouri, United States
of America) in “A Fully Implantable Pacemaker for the Mouse:
From Battery to Wireless Power”.

[3] D. Radhakrishnan, “A microcontroller based pacemaker tester,”
in Journal of Network and Computer Applications, Volume 19,
Issue 4, October 1996.

[4] Carlos Casillas(RTAC America, Guadalajara, Mexico), “Heart
Rate Monitor and Electrocardiograph Fundamentals”.

[5] Santosh Chede and Kishore Kulat, “Design Overview of
Processor based Implantable Pacemaker,” Department of
Electronics and Computer Science Engineering, Visvesvaraya
National Institute of Technology, Nagpur, India.

[6] Kityee Au-Yeung, Chad R Johnson and Patrick D Wolf, “A
novel implantable cardiac telemetry system for studying atrial
fibrillation”, Department of Biomedical Engineering, Duke
University, Durham, NC 27708, USA.

[7] Irena Jekova and Vessela Krasteva, “Real time detection of
ventricular fibrillation and tachycardia”, Centre of Biomedical
Engineering, Bulgarian Academy of Sciences, Acad. G.
Bonchev str. bl. 105, 1113 Sofia, Bulgaria, 2004 Physiol. Meas.
25,1167

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

134 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Design and Implementation of Microcontroller-Based R-F
Remote Controlled safe with Digital Code Lock and

Indicator
BY

Kenneth Nwachukwu-Nwokeafor.C., Ogechi Ihekweaba, Emenike Ukeje.

Computer Engineering Dept. Michael Okpara University of Agriculture, Umudike, Abia State Nigeria.

Abstract

The paper work presents a brief history and evolution of
key locks, as well as the various key types and key locks.
Also, the basic concepts of telecommunications and
modern digital systems are elucidated. The system
architecture of a microcontroller-based radio frequency
remote controlled lock and indicator is showcased with the
attendant description of the operational details. The paper
further describes the system implementation. Finally, tests
were performed in stages and the results obtained were
then used to conclude that an elegant Microcontroller-
Based Code Lock System has been achieved.

Keywords: Microcontroller, Radio-Frequency, Key-locks,
Digital systems, Code Lock.

Introduction

In this present age of digital technology, the concept of a

digital revolution carries the ramifications of paradigm

shift from traditional to new ways of doing thing in real-

time this has given rise to revolutionary trends that has

orchestrated industrialization in the world today, and

consequently improved the socio-economic, political and

technological base of many countries and the world in

general. Also, the recent technological advancement in

management information systems and sharing of

information across nations and amongst the international

community has also reshaped our society to a great extent,

this has no doubt been made possible by the efforts of

various technologies advancements in micro-electronics,

devices, machines and micro-controller-based systems

with most at times computer interface which has yielded

an information technology society where a successful and

dynamic relationship between engineering and societal

needs meet.

After the industrial revolution, the world directed towards

the information age with the development of computers

during the 1950’s. This was followed by the invention of

Integrated Circuits (ICs) in the 1980’s which led the

electronics world to the peak by its compact size, weight,

and cost with an attendant increased quality and reliability

in real-time as well as the launching of communication

satellite in 1962. The world converted into a global village

such that we are not only able to use the products of

engineering, but also have been challenged to study about

existing technologies with a view to creating our own idea

with a view to solving contemporary problems.

This work is aimed at considering the possibility of

designing a Microcontroller-Based gate opener with

Digital Code Lock through a Radio Frequency (RF)

Remote Controller which can enhance Security in homes,

offices, etc. This of course is an indispensable concept in

industrial electronics. More so, The value of security to

man is applicable to the facilities used by him. Most gates

in industrial settings are fortified with automation. This

microcontroller based project for safeguarding a house or

office focuses on the use of RF remote to control the

entrance and exit from a gate with an embedded

personalized code lock.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 135

Brief Historical backgrounds of Locks

Security is the concern of people around the world.

Beyond hiding object or constantly guarding them, the

most frequently used option is to secure them with a

device.

Locks are the most widely employed security devices.

They are found on anything to which access must be

controlled, such as vehicles, storage containers, doors,

gates and windows. The security of any property or

facility relies heavily on locking devices. Locks merely

deter or delay entry and should be supplemented with

other protection devices when a proper balance of physical

security is needed. And assessment of all hardware

including door frames and jams, should be included in any

physical security survey. Locking devices vary greatly in

appearance as well as function and application, as written

in a book by Sandra Kay Miller (1996).

In 1778, English man Robert Barron patented a

completely new kind of lock, the lever tumbler lock,

which originally only uses two tumblers along with

traditional wards – obstructions for key bit. The idea of

building tumblers into the lock itself was completely

revolutionary, and represented the first “modern” door

lock. The Barron lock was manufactured completely by

hand and was pricey for its day. Part of Barron lock was

soon copied and was used and developed by competitors

in his country.

Jeremiah Chubb of Portsmouth, England, invented a

detected lock, a type of lever tumbler that instantly

stopped working if the wrong key was used. Only the

original key or a special regular key would activate the

lock again. Chubb invented the lock in 1818 in response to

a government – sponsored context to develop an unpick

able lock. The Chubb lock had a spring –loaded bolt

which was held in closed position by four oblong

perforated brass lever tumblers. The tumblers were placed

one on top of the other and locked on one end with a

dowel. The other end of the tumblers was lifted by the bit

of the key, which was shaped like a sort of stair case, each

step corresponding to one of the levers.

In 1824, Charles patented an improved version that didn’t

need a regulator key to reset the lock. The original lock

had four lever tumblers,

Another locksmith, American Alfred Charles Hobbs,

invented the protector lock. Hobbs became famous as the

first man to be able to pick the Chubb detector lock at the

1851world fair in London (The Great Exhibition), but in

1947 Charles and his son john increased the number to six.

They later invented another device that made it impossible

for a lock – picker to detect the additional tumbler. In

1984 Chubb and Sons Lock & safe Co Ltd became a part

of the Racal Electronic group, making the Chubb lock

group one of the largest in its field in the world. Another

company, Williams Holdings, brought Chubb Security in

1997; but sold it on to in 2000 after poor sales figure.

In his book on locks, Allen Palms (1999) stated that, in the

15th to 16th century, sacristies were added on Swedish

church on the north side of the building outside the

sanctuary. They were built with sturdy stone walls and

arched stone or brick ceilings, and the windows are

protected by sturdy iron bars. Between the sanctuary and

the sacristy was a heavy wooden door with wrought- iron

hinges. It often had iron fittings or iron stripes riveted on.

The door was locked with a wooden block lock, a smith

tumbler lock, or in the 18th century, with a large rot iron

rim lock.

A time lock is a part of a locking mechanism commonly

found in bank vault and other high- security container.

The lock is a timer designed to prevent the opening of the

safe or vault until it reaches zero, even if the correct

combination(s) are known. Most safes or vaults utilize at

least two independent clock mechanism as a fail –safe

system to guarantee the unlocking of the safe peradventure

one of the timers (called movement) fails. Only one needs

to reach zero in order for the safe to be opened. Time

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

136 Int'l Conf. Embedded Systems and Applications | ESA'14 |

locks can typically be set from 15minutes to 144hours

(6days).

Time locks were originally created to prevent criminals

from kidnapping and torturing the person(s) who knows

the combination, and the using the extracted information

to later burgle the safe of vault.

There is also the time delay combination lock which will

open at anytime with the correct combination, but will not

actually unlock until a set delay period elapses, usually

less than one hour. Modern time locks are electronic but

otherwise serve the same function as the old mechanical

wind- up time lock, however, when the battery dies, the

time lock unlocks.

Materials and Methods.

This electronic system is designed with an 89C51 of the
8051 microcontroller family. An electromagnetic relay
driven by a transistor static switch is interfaced to the
microcontroller. Also four light emitting diodes (LEDs),
red, yellow, green and blue serve as a form of indicators
(LED indicator) when the remote is in use, presence of an
RF signal, when the gate is open and closed respectively
and an interfaced soft coding key pad.

A relay is an electrically operated switch. Many relays use

an electromagnet to operate a switching mechanism

mechanically, but other operating principles are also used.

Relays are used where it is necessary to control a circuit

by a low power signal (with complete electrical isolation

between control and controlled circuits), or where several

circuits must be controlled by be signal. The first relays

were used in long distance telegraph circuits, repeating the

signal coming in from one circuit and retransmitting it to

another. Relays were used extensively in telephone

exchanges and early computers to perform logical

operations.

The system components were all assembled and placed

together in modules. They were tested individually and

then placed on a bread board. The system was tested, and

when proved to be working, they were replaced on a Vero

board. The components were soldered on the Vero board

using soldering lead and soldering iron. After the entire

system had been tested it was packaged in a casing for

better presentation.

A type of relay that can handle the high power required to

directly drive an electric motor is called a contactor. Solid-

state relays control power circuits with no moving parts,

instead using a semiconductor device to perform

switching. Relays with calibrated operating characteristics

and sometimes multiple operating coils are used to protect

electrical circuits from overload or faults; in modern

electric power systems these functions are performed by

digital instruments still called protective relays.

When electromagnetic radiation interacts with single

atoms and molecules, its behavior also depends on the

amount of energy per quantum (photon) it comes.

Basic Theory; Electromagnetic Spectrum

The electromagnetic spectrum is the range of all possible

frequencies of the electromagnetic radiation. The

electromagnetic spectrum of an object is the characteristic

distribution of electromagnetic radiation emitted or

absorbed by that particular object. The electromagnetic

spectrum extends from low frequencies used for modern

radio to gamma radiation at the short wave-length end,

covering wavelengths from thousands of kilometers down

to a fraction of the size of an atom. The long wavelength

limit is the size of the universe itself, while it is thought

that the short wavelength limit is in the vicinity of the

Planck length, In principle the spectrum is infinite and

continuous.

Electromagnetic waves are typically described by any of

the following three physical properties: the frequency f,

wavelength, or photon energy E. The frequencies range

from 241023 Hz (1 GeV gamma rays) down to the local

plasma frequency of the ionized interstellar medium (-1

kHz). Wavelength is inversely proportional to the wave

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 137

frequency, so gamma rays have very short wavelengths

that are fractions of the size of atoms, whereas

wavelengths can be as long as the universe. Photon energy

is directly proportional to the wave frequency, so gamma

rays have the highest energy and radio waves have very

low energy.

These relations are illustrated by the following equations:

f = c/, or f = E/h, or E = hc/………………………(1)

Where: c = 299.792,458 m/s is the speed of light in

vacuum and

 h = 6.62606896(33)  10-34 Js = 4.13566733(10)  10-15

eV is Planck’s constant.

Generally, electromagnetic radiation is classified by

wavelength into radio wave, microwave, infrared, the

visible region we perceive as light, ultraviolet. X- Rays

and

Radio frequency (RF) , is a rate of oscillation in the range

of about 30 kHz to 300 GHz, which corresponds o the

frequency of electrical signals normally used to produce

and detect radio waves. RF usually refers to electrical

rather than mechanical oscillations, although mechanical

oscillations do exist.

The communication is done through a resonator, a circuit

with a capacitor and an inductor forming a tuned circuit.

The resonator amplifies the oscillations within a particular

frequency band, while reducing oscillations at other

frequencies outside the band. The conductor or the

capacitor of the tuned circuit is adjustable allowing the

user to change the frequencies at which it resonates. The

resonant frequency of a tuned circuit is given by the

formula

f0 = 1/2LC ………………………………….(2)

Where f0 is the frequency in Hertz, L is inductance in

henries, and C is capacitance in farads.

Special Properties of RF Electrical Signals

An electrical current that oscillates at RF has unique

characteristics, one of such property is the ability to ionize

air thus, creating a conductive path through it. This

property is exploited by ‘high frequency’ units used in

electric arc wielding, although strictly speaking, these

machines do not typically employ frequencies within the

HF band. Another special property is that RF current

cannot penetrate deeply into electrical conductors but

flows along the surface of conductors; this is known as the

skin effect. Another property is the ability to appear to

flow through paths that contain insulating materials, like

the dielectric insulator of a conductor. The degree of

effects of these properties depends on the frequency of the

signals.

Bands

The band is a small section of the spectrum of radio
communication frequencies, in which channels are usually
used or set aside for the same purpose. Above 300 GHz,
the absorption of electromagnetic radiation by earth’s
atmosphere is so great that the atmosphere is effectively
opaque, until it becomes transparent again in the infrared
and optical window frequency ranges.

To prevent interfaces and allow for efficient use of the

radio spectrum, similar services are allocated in bands.

Each of these bands has a basic band-plan which dictates

how it is to be used and shared, to avoid interfaces and to

set protocol for the compatibility of transmitters and

receiver.

Bands are divided at wavelengths of 10th meters, or
frequencies of 3  1011 hertz.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

138 Int'l Conf. Embedded Systems and Applications | ESA'14 |

Table 1. Radio Frequency Bands.

BAND NAME ITU
BAND

FREQUENCY AND
WAVELENGTH IN AIR

Sub-hertz 0 <3 Hz
> 10,000km

Extremely low
frequencies

1 3 - 30 HZ
100,000 km – 10,000 km

Super low
frequency

2 30 - 300 Hz
10,000 km – 1000 km

Ultra low frequency 3 300 - 3000 Hz
1000 km – 100 km

Very low frequency 4 3 - 30 kHz
1000 km – 100 km

Low frequency 5 30 - 300 kHz
10 km – 1 km

Medium frequency 6 300 – 3000 kHz
1 km – 100 m

High frequency 7 3 - 30 MHz
10m – 1m

Very high frequency 8 30 - 300 MHz
10m – 1m

Ultra high
frequency

9 300 – 3000 MHz
100mm – 10mm

Super high
frequency

10 3 – 30 GHz
100mm – 10mm

Extremely high
frequency

11 30 – 300 GHz
10mm – 1mm

Terahertz 12 300 – 3000 GHz
1mm - 100m

SYSTEMS SCHEMANTIC BLOCK DIAGRAM

FIG.1, The System Schematic Block Diagram.

Basic Features of a Microcontoller Layout.

A microcontroller can be considered a self- contained

system with a processor, memory and peripherals and can

be used as an embedded system. The majority of

microcontroller in used today is embedded in other

machinery, such as automobiles, telephones, appliances

and peripherals for computer systems. These are called

embedded systems. While some embedded systems are

very sophisticated, many have minimal requirements for

memory and program length, with no operating system,

and low software complexity. Typical input and output

devices include switches, relays, solenoids, LEDs, small

or custom LCD displays, radio frequency devices, and

sensors for data such as temperature, humility, light level

etc. Embedded systems usually have no keyboard, screen,

disks, printers, or other recognizable I/O devices of a

personal computer, and may lack human interaction

devices of any kind.

Programs: Microcontroller programs must fit in the

available on –chip program memory, since it would be

costly to provide a system with external, expandable,

memory. Compliers and assemblers are used to convert

high- level language codes into a compact machine code

for storage in the microcontroller’s memory. Depending

on the device, the program memory may be permanent,

read –only memory that can be programmed at the factory,

or program may be field- alterable flash or erasable read –

only memory.

FIG.2, MICROCONTROLLER PIN LAYOUTS

RECEIVER
CIRCUIT

ADC0804

MICRO
CONTROLLER

KEYPAD
 (1– 8)

TRANSIST
OR

SWITCH/
ELECTRO
MAGNETIC

RELAY

SERVOM
OTOR AS

DOOR
PRIME

MOVER

LED PANEL
INDICATOR

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 139

Interrupt: microcontrollers must provide real time

(predictable, though not necessarily fast) response to

events in the embedded system they are controlling. When

certain events occur, an interrupt system can signal the

processor to suspend processing the current instruction

sequence and to begin an interrupt service routine (ISR, or

“interrupt handler”). The ISR will perform any processing

required based on the source of the interrupt before

returning to the original instruction sequence. Possible

interrupt sources are device dependent, and often include

events such as an internal timer overflow, completing an

analog to digital conversion, a logic level change on an

input such as from a button be pressed, and data received

on a communication link. Where power consumption is

important as in battery operated devices, interrupts may

also wake a microcontroller from a low power sleep state

where the processor is halted until required to do

something by a peripheral event. Etc.

Systems Circuit Diagram

XTAL218

XTAL119

ALE30

EA
31

PSEN29

RST9

P0.0/AD0 39

P0.1/AD1 38
P0.2/AD2 37

P0.3/AD3 36
P0.4/AD4 35

P0.5/AD5 34
P0.6/AD6 33

P0.7/AD7 32

P2.7/A15 28

P2 .0/A8 21
P2 .1/A9 22

P2.2/A10 23
P2.3/A11 24

P2.4/A12 25

P2.5/A13
26

P2.6/A14 27

P1.01
P1.12

P1.23
P1.34

P1.45
P1.56

P1.67
P1.78

P3 .0/RXD 10
P3.1/TXD 11

P3.2/INT0 12
P3.3/INT1 13

P3.4/T0 14

P3.7/RD 17P3.6/WR 16
P3.5/T1 15

U?

80C51

VIN+6

VIN-7

VREF/29

C LK IN4

A GND8

R D2
WR3

INTR5

CS1

D GND10

D B7(MSB) 11DB6 12
DB5 13DB4 14
DB3 15DB2 16
DB1 17DB0(LSB) 18

C LK R19

VCC 20
U1

ADC0803

X?
CRYSTAL

C?

33pf

C?

33F

C?
10uF

R?
10k

R?
10k
R?
10k
R?
10k
R?
10k
R?
10k
R?

10kR?

10k
R?
10k

R4
220

R3
220

R2
220

R1
220

D1
LED

D2
LED

D4
LED

D3
LED

R5

10k

Q?
NPN

D?
DIODE

RL?
12V

RV?
2K

C?
1nF

C?
1nF

D?

DIODE

TR?

TRAN-2P2S

L?

100nH

R?
10k

C?
1nF

C?

1nF

C?
1nF

L?
100nH

VC?
CAP-PRE

Q?
NPN

C?
1nF

C?

1nF

C?
1nF

L?
100nH

C?
1nF

R?
10k

FIG.3, SYSTEMS CIRCUIT DIAGRAM.

System Design and Implementation

The microcontroller based RF remote controller gate

opener with digital code lock is designed with a digital

keypad introduced at port two of the microcontroller. The

keypad is designed to communicate with the gate. The pull

up resistors, R1 to R8 ensure that the switches of the

keypad do not float. A power reset realized using RC

network is connected to the pin 9 of the microcontroller to

enhance automatic reset. Pins 18 and 19 of the

microcontroller is connected to a 12MHz quart crystal in

order to avoid frequency drift, that is, t ensures that there

is frequency stability at the microcontroller where the

controlling software is stored is designed to read the input

data in the form of a handshake from the keypad.

When a correct password is entered through the keypad,

the data is fed into the microcontroller and the RAM

writes the data in the form of machine language which is

then outputted. An electromagnetic relay is connected at

the common collector of the transistor, such that whenever

the connection is driven to saturation, the relay is

energized and the normally closed contact of the relay

opens while the normally open contact closes. When this

happens, the gate unlocks. This electromagnetic relay is

connected to drive the servomotor which energizes the

gate. The servomotor must confirm to the following; 12v

AC maximum of 3Amp and coil resistance of 600ohms

and 300watt maximum power output. A green LED at he

indicator panel glows when the correct password is

entered on the keypad to unlock the gate while a blue light

glows to lock the gate.

YES

NO

YES

 Initialize I/O port of
MCU

Start
MsS

Receive input
from keypad

Energize

door

Is pass -
world
correct?

Energize relay to lock

 Stop

Energize

door

Energize relay to
unlock door

Receive input
from keypad

Is
password
correct?

 Energize blue

 Energize green LED

System Software Design Flow Chart

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

140 Int'l Conf. Embedded Systems and Applications | ESA'14 |

System Tests and Result.

Each unit was tested individually using a multi-meter.

Some malfunctioned and were replaced with those of

appropriate values.

After assembling each module in the breadboard, a visual

inspection was carried out. Each module was re- tested

before being transferred to the Vero board. The

components were then soldered and the Vero board re-

tested.

The system was re- inspected to ensure that the wired

circuit was properly built before powering the system

(continuity test). After the system was coupled, it was

tested using a power source and it worked in accordance

with the system design objective. That is, the red light

glows to signify power, the yellow light glows when there

is the presence of an Radio Frequency signal, the green

light glows when the gate is open, while the blue comes

up when the gate it is locked.

 System Maintenance Considerations

Every working system must be carefully monitored to

ensure that its initial objectives are still being met.

Maintenance, therefore should involve all activities and

precautions taken to ensure optimal performance of a

system. It also involves correction of faults or errors

created in the cause of using the system

To prevent system failure, it is necessary to advice on the

following;

 Ensure that a system operated under specification

 Ensure proper training of persons that are to use

the system

 Avoid contact with liquids which could cause the

system to malfunction.

 Keep a maintenance log book as this will help to

keep track of possible faults or problems that

arise as the system is being used, in other to assist

future improvements.

The reasons that satisfy the need for system evaluation and

maintenance include;

 To confirm that the initial objectives of the

system are constantly being met.

 To deal with unforeseen problems arising from

operation.

 To ensure that the system is able to cope with

changing requirements of its operational site.

Suggestions for Further Improvements.

The system can be improved upon by applying some
Artificial Intelligence Techniques to make it a more
complex and robust and result oriented system ,
thereby enhancing its capacity to perform the various
set functions in real-time.

Summary and Conclusion

This project was actualized by the design, construction

and implementation of a microcontroller- based RF remote

control gate opener with digital code lock. It should be

noted that the system has been designed in such a way that

it can be modified with respect to change in the future, as

regard technological growth.

Furthermore, it is evident to say that the project so

conceptualized, designed and produced has shown the

effectiveness and efficiency in improving comfort and

security, conserving energy and most especially saving

time.

Also it is worthy to note that the work pattern of any

organization may be affected by the introduction of a new

system. The change from an old system to a new one is

usually not easy until the detail of the essence of the new

system is properly communicated to the users within the

environment.

References

Alan Muinford (1993): The IT Manager: Security And

Training, Prentice-Hall, Inc. New Jersey.

Alan Pritchard (1997) A Guide To Computer Literature:

An Introductory Survey Of The Sources Of

Information, Clive Bingley Ltd, United kingdom.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 141

Allen Palms (1999): Lock: Locks and locked, Time

square, United Kingdom.

Anderson, F. (1998): Computer In Agriculture, Acta-Hall,

United kingdom.

Assa Abloy (1997): Door Opening Solutions, Whispering

fuse, Maryland.

Baker C, R. (1999): An Analysis Of Fraud On Locking

Devices, Spectra Inc, New York.

Boxus, P. (1998): Multiple-Cycle Micro propagation

Control, Specks Publishers, London.

Carter G.N (1963): An Input-Output Analysis Of The

Nigerian Economy Cambridge press, London.

Dennis Roddy and John Coolen (2002): The Small World

Of Microcontrol, Computer Prints, New York.

Freeman, R. and Meed J. (1993): How To Study

Effectively, Collins Educational, London.

Irving Gottlied (1973): Basic Electronics Procedures,

Foulsham-Tab Limited, USA.

Jeffrey Whirtten, and Lanni Bentley, (2001): System

Analysis And Design, (Fifth Edition), Mc Graw

Hill Publisher, New York.

Kevin Dittmam (1987): Dictionary Of Computer

Information Processing Telecommunication

(second Edition), Mc-Graw Hill Inc.

Loveday, R. (1964): A First Course In Statistics, Newman

Books, New York.

Michaelson, H. B. (1990): How To Write And Publish

Research Engineerring Paper And Reports,

(Third Edition): Phoenix Az, Oryx.

Morris Mano and Charles Kime (1991): Logic And

Computer Design Fundamentals, Space Design

Inc. Arkansas.

Osy Igweonyia (2002): Standard Methods In Business

Research (Millennium Edition), New Generation

Books, Enugu.

Sandra kay Miller (1996): How to analyze security Needs

2010 Penton Media, Inc.

http://en.wikpedia.org/wiki/time.lock

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

142 Int'l Conf. Embedded Systems and Applications | ESA'14 |

A

I
N
p
a
I
w
c
m
m
r
s
g
b
m
f
w
d
a
s
e
m
c

K

f
e
n
a
r
c
o
c

r

t
A
J
M
c
b
I
a

Enkhzul

1Electronic an

2School o

Abstract— C
Control Units)
ISO11783 wi
Number) base
protocol by al
are transferred
ISO11783 stan
wireless monit
core microcon
marvel8686 w
monitoring sy
reads message
screen in easi
generate mess
bus systems. T
monitor and s
functionality of
work, we hav
development c
and firmware
system is att
equipped by w
monitors all m
computer and

Keywords— ISO

Agricultural
field of study
electronics, an
new generatio
advanced they
responsibilities
counterparts. T
of continuing
constituent di
standard has
research within

 The ISO 1
tractor and i
AGCO Corpo
Jonh Corporat
Müller-Elektro
created a spec
be recognized.
ISOBUS. All
address claim

Doopalam1,2

nd information

of Information

3C

Communication
) in agricultur
idely, that is
ed communica
ltering its iden
d and received
ndard. This pap
toring system.
ntroller embed
wireless modu
ystem, attache
es interpret the
ly comprehend
sages and mon
The monitoring
simulate real t
of the ECUs. In
ve implemente
onsists of two p
level program

tached to the
wifi module; f

messages in com
smart device.

O 11783, PGN,

 1 Intro
l machinery co

concerning th
nd software en
on of tractors
y can be assum
s once ent
This evolution
g research
sciplines. The
and, continue

n the agricultur
11783 standard
implements m

oration [18], A
tion [20], De

onik [22]. The
ification defini
. This specifica
packets, excep
packets, cont

Wirele
2, Luubaatar

Woo
Department, K

5-ga,
and Communi

Chonbuk Nation

n between EC
ral machinerie
s PGN (Para
ation protocol
ntifier part. Me
d between ECU
per discusses a
We used an AR

dded developm
ule. The wire
ed into commu
em, and displa
dible form. It c
nitor the traff
g system conne
traffic of comm
n fact, in order
ed the monitor
parts: GUI of

mming. Hence
e communica
farmer/dispatc
mmunication li

CAN, wifi, AR

oduction
ontrol is an in
he integration

ngineering expe
exists with

med in many o
trusted to
in tractors is t
advancements

e ISO 11783
es to be, an
ral engineering
d was jointly

manufacturers
AGROCOM [1
eere & Comp
ese manufactu
ing how this s
ation is comm
pt for the req
tain eight byte

ss Anal
Badarch3, A

onchul Ham3

Korea Universit
Seongbuk-gu,
ications Techn

Ulaanbaa
nal University

Us (Electronic
es tends to use
ameter Group

lays on CAN
Messages in line
Us according to
about design of
RM Cortex-M3

ment board and
eless ISOBUS
unication line
ay them on the
can be used to
fic on physica
ected to ECUs
munication and
r to support our
ring tool. The
the application
the monitoring
tion line and

cher in a farm
ine on persona

RM Cortex-M3.

nterdisciplinary
of mechanics

ertise. Today a
capabilities so

of the roles and
their human

the direct resul
s among its

[11]~[16][17
active area o

g community.
developed by
including the

19], DICKEY
pany [21], and
urers have also
standard should

monly known a
quest PGN and
es of data and

lyzer of
Amartuvshin
3, Kahng Hyu
ty, Room 342 B
Seoul, Republ

nology, Mongo
atar, Mongolia
, Chollabuk-do

c
e
p
N
e
o

of
3
d
S
e,
e
o

al
s,
d
r
e
n
g
d
m
al

y
s,
a
o
d
n
lt
s
]
f

y
e
-
d
o
d
s
d
d

standard h
group nu
message’
message’
implemen
need to
communi
ISOBUS
PGN ana
know how
output in
generate
In order
PGN ana
PGN ana
in STM32
for smar
developm

Fi

Develo
applicatio
in develop

2 Har

The P

board wh
cored ST
interfaces

f ISOBU
Togooch2, E

un Kook1
Bio-Technolog
lic of Korea

lian University
a
o, Jeonju, South

header which c
umber (PGN),
s 29-bit ident
s function a
nt and develop
o analyze a
ication line. F

PGN analyze
alyzer reads da
w to interpret

n an easy to
and monitor th
to support our
lyzer tool in p

alyzer here we
2F103 develop
rt devices. T

ment system is s

gure 1. General ar

opment of analy
on in personal
pment board an

rdware de
a

PGN analyzer
here main CP

TM32F107 dev
s. Once develo

US
Enkhbaatar T

gy Building, 13

y of Science an

h Korea

contains an ind
which is emb

tifier [1-3]. A
and associated
p the networke
and control
For this purpos
er in the previ
ata from the I
what it is see
read format.
he traffic on ph
r work, we ha

personal compu
developed we

pment board w
The general a
shown in figure

rchitecture of deve

yzer consists o
computer, we

nd firmware lev

esign of IS
analyzer

is implemente
PU is 32 bit,
velopment boa
opment board

Tumenjargal

36-701, Anam-

nd Technology

dex called para
bedded in the
A PGN identif
d data [4-6]

ed tractor syste
all message

se we implem
ious work. W
ISOBUS it nee
eing and displa

It can be us
hysical bus sys

ave implemente
uter. To advanc
eb based appli

with wireless m
architecture o
e 1.

elopment system

f three parts: G
eb based appli
vel programmi

SOBUS PG

ed on the emb
72MHz Cort

ard with two
of analyzer ha

l2,

-dong

,

ameter
CAN

fies a
]. To
em we
es in
mented

When a
eds to
ay the
sed to
stems.
ed the
ce our
cation

module
of our

GUI of
cation
ing.

GN

edded
texM3
CAN

as two

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 143

c
p
w
c
c
m
P
b
t

E
E

f
f
p

serial interfac
communication
program in PC
wi-fi developm
channel is used
channel can
monitoring tw
PGN analyzer
board. We can
the Fig. 2. He
sample ECUs
ECUs, for exa
ECU and VT.

Figure 2.

3 Firm

The hardwa
firmware leve
firmware leve
program has be
• Receive

and the I
• Processin

interface
• Processe

RS232 an
• Processe

via RS23
• Wifi dev

web base

Figure 3. Main al

ces we use o
n between th

C and commun
ment board fo
d to monitor th
be used as

wo ISOBUSs. T
r is depicted
n see the appea
ere ISOBUS c
s are depicted
mple: GPS sen

PGN analyzer con

mware leve

are programm
l. The Fig. 3
el program.
een five main f
data from the p
SOBUS via CA
ng received d

d data send to
nd the ISOBUS
ed data send to
32 interface
velopment boa
ed application f

lgorithm of the bu
CAN

one serial inte
he analyzer an
nication betwee
or smart device
he ISOBUS. H

well, if ther
The status info
on the LCD

arance of the PG
connected PGN
d. We implem
nsor, lighting,

nnected with ISOB

el program

ming is implem
shows the ma
PGN analyz

functions:
personal comp
AN[1] interfac
data both RS2

o the personal
S via CAN inte

o the wi-fi deve

ard display pro
for smart devic

uffering method be
N-bus

erface for the
nd application

en analyzer and
es. The CAN1
owever, CAN2
re is need o
ormation of the
display of the
GN analyzer in
N analyzer and
mented sample
sprayer, tracto

BUS ECUs

mming

mented in the
ain structure o
zer’s firmware

uter via RS232
ce
232 and CAN

l computer via
erface
elopment board

ocessed data in
ces

etween RS232 and

e
n
d
1
2
f
e
e
n
d
e
r

e
f
e

2

N

a

d

n

Recei
data into
firmware
sequence
status dat
 Recei
sequence
in the Fig

Fig

There

waiting,
waiting, c

Durin
Cortex-M
value, in
waiting ti
next expe
in 200ms
and losse
The CAN
receives
STM32F
to be sen
the filter
 If the p
sequence
sequence
bytes and
 Anothe
to inform
program
the comm
Therefore
whether t

4 Gr

There

dedicated
implemen
with the o
for smar
HTML5.
system, b
(RAD) i

ving part rec
o one CAN p

program has
to send and r

ta.
ving part of th
recognition an

g.4.

gure 4. State mac

e are six steps,
total bytes w

checksum wait
ng RS232 data
M3 CPU monit

order to recog
ime is 200 ms
ectable byte. If
s, receiving sta
es all the in com
N receiving pa
CAN packet f
107 and check

nt to the PC by
list.
packet is allow
to be sent to t
(‘@’and ‘$’),

d checksum.
er function of t

m the status of
via RS232 pe

mand ‘L’ (de
e, application
the hardware is

raphical U
A

e are two gr
d for the
nted in the Bo
object oriented
rt or mobile

Delphi it is
because it ha
interface and

ognizes and a
packet. Applic

the predefine
receive CAN p

he firmware pro
nd accumulatio

hine diagram of

, we can see f
waiting, comm
ting and end w
a sequence rec
tors via SYST
gnize data los

s, which is allo
f there no byte
atus shifts in to
mplete bytes th

art of the firmw
from the CAN

k it that the CA
y filtering with

wed, it repackag
the PC: adding
, command (‘T

the firmware le
the hardware i

er second. It se
vice is alive-

program can
s functioning o

User Interf
Analyzer

raphic user
personal com

orland Delphi 7
d Pascal langua

device which
effective to d

as rapid applic
good tool to

accumulates R
cation program
ed structure of
package, contro

ogram’s RS232
on process is s

f PGN analyzer

from the Fig.4
mand waiting,
aiting.
eiving functio

TICK time cou
s from the PC

owed to wait f
is received any

o start_waiting
hat are receive
ware level prog
N1 peripheral o
AN packet is all
h the PGN valu

ged into RS232
g head and tail
T’), number of

evel programm
in to the applic
ends the status
-status) per se
n easily reco

or not at momen

face of PG

interfaces. On
mputer whic
7.0[10] environ
age. Another G
h is develop
evelop this ki
cation develop
o help agains

RS232
m and
f data
ol and

2 data
shown

; start
, data

n, the
unting

C. The
for the
ymore
g state
ed yet.
grams
of the
lowed
ues in

2 data
of the
f total

ming is
cation
s with
econd.
ognize
nt.

GN

ne is
ch is
nment
GUI is
ed in
ind of
pment
st the

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

144 Int'l Conf. Embedded Systems and Applications | ESA'14 |

d
p

a
d
u
l
p
p
a
N
d
m
c
a
e
a
r
m
p
p
d
m

E
p
p

a
t
t

developing m
problems.

The GUI o
application pr
data to conver
used the CA
logalizer cons
packets, those
parsing proced
a console appli
Named pipes
directionally
makes them
console applic
a rich GUI to
environment. H
application tha
range of appl
may be comp
processing ste
packet parsing
data from R
messenger und

Figure 5. Rece

The CAN
Ethernet netw
program’s stan
pipe connected
standard input
and interpretin
those interpret
tree control.

Figure

mistakes wh

of PGN analyz
rograms runnin
rt CAN packet

AN server, C
sole applicatio
 original mad

dure using nam
ication in wind

allow two p
synchronously
ideal for putt

cation. Softwar
o easily run a
However, user
at typically pr
lication option
osed into a pi

eps. The Fig.
g procedure u

RS232 interfac
derstandable fo

eived CAN packet

messenger se
work. The CAN
ndard output co
d to CAN loga
. The logalizer
ng user under
ted data parsed

 6. Transmitted CA

hich cause

er program’s b
ng for parsing
t and reverse

CAN messenge
on tools for
e from the Iso

med pipes to co
dows environm
processes to s
y or asynchr
ting a GUI f
re developers u
an application
rs sometimes p
rovides access

ns via console
ipeline of user
5 illustrates

until GUI. We
ce then conv

ormat.

parsing procedure

nd to CAN se
N server conso
onnected the vi
alizer[8] consol
r analysis stand
rstandable form
d then add to l

AN packet shown

understanding

backbone some
g RS232 seria
procedure. We
er, and CAN
parsing CAN

oAglib. In this
onnect a GUI to
ment.
share data bi
ronously. This
front-end on a
usually provide
n in a desktop
prefer a console
s to the fulles
e interface and
r interface-less
received CAN
capture seria

vert to CAN

e shown in GUI

erver by using
ole application
irtual pipe. The
le application’s
dard input data
mat. The fina
list control and

in GUI

g

e
al
e

N
N
s
o

-
s
a
e
p
e
st
d
s

N
al
N

g
n
e
s
a

al
d

Figure

Trans

GUI. The
transmiss
received C

Figure

The G
object or
operation
HTML5.
the Fig. 9

7. CAN packet pa
c

mitting proced
e Fig.6 and 7 a
sion procedure
CAN packets i

e 8. Sample capture

GUI software o
riented Pascal

nal system. Th
The main int

9 and Fig 10.

Figure 9. G

arsing and interpre
command line

dure is similar
are shown in th
e for PGN an
interprets is sho

ed data from our P

of personal com
l only runs u
he web based
erfaces for the

GUI of the PGN An

ting procedure in t

rly the receivi
he block diagr

nalyzer. The sa
own in the Fig

PGN analyzer devi

mputer is writ
under the Win

GUI is writt
e user are sho

nalyzer

the

ing in
ram of
ample

g.8.

ice

tten in
ndows
ten in
wn in

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

Int'l Conf. Embedded Systems and Applications | ESA'14 | 145

Figure 10. Web based GUI of the PGN Analyzer

5 Conclusions

In this paper we presents the hardware and software

development of wireless ISO11783 parameter group
number (PGN) analyzer device that is implemented in
STM32F107VC Cortex-M3 development board with the
Wi-Fi module.

In programming of ISO 11783 PGN analyzer, we
focused on both of firmware programming and GUI on
the monitoring computer and smart devices. The main
role of the firmware programming is capturing CAN
packet and converting to RS232 serial data format or
receiving RS232 data from computer, converting it into
CAN data and sending. GUI of PGN Analyzer receives
RS232 data and converting to CAN packets in order to
monitor them. Those converted CAN packets send to
some of hidden application programs, by using one useful
programming technique pipe. We used two virtual pipes
for parsing and interpreting CAN packets. Finally parsed
and interpreted data is shown on GUI of PGN analyzer in
ISO11783 standard form. Even all converting, parsing
and interpreting procedures are simultaneously made in
two development boards, final displaying GUIs are
different. GUIs are written by the Delphi visual
programming language and HTML5. Hence our web
based application is written in HTML5 which has a good
opportunity to support other mobile devices.

6 REFERENCES
[1] Robert Bosch, GmbH, “CAN specification,” Germany, 1991.
[2] E. Tumenjargal, L. Badarch, H. Kwon, and W. Ham, “Embedded

software and hardware implementation system for a human
machine interface based on ISOAgLib,” Journal of Zhejiang
University-Science C-Computers & Electronics, vol. 14, pp. 155-
166, Mar 2013.

[3] K. Hyeokjae, T. Enkhbaatar, and H. Woonchul, "Implementation
of Virtual Terminal Based on CAN by Using WinCE Platform
Builder 6.0," Key Engineering Materials, vol. 480, pp. 938-943,
2011.

[4] W. Ham, T. Enkhbaatar, B. Luubaatar and K. Hyeokjae,
“Implementation of ECU for Agricultural Machines Based on
ISOAgLib Open Source”, presented at the 11th Int. Conf.
Precision Agriculture, Indianapolis, Indiana, USA, Jul. 15-18,
2012.

[5] T.Enkhbaatar, B.Luubaatar, K.Hyeokjae and W.Ham, “Design and
Implementation of Virtual Terminal Based on ISO11783 Standard

for Agricultural Tractors,” presented at the 11th Int. Conf.
Precision Agriculture, Indianapolis, Indiana, USA, Jul. 15-18,
2012.

[6] E. Tumenjargal, L. Badarch, K. Hyeokjae, and W. Ham,
“Software Development Tool for Agricultural Machinery Based
on IsoAgLib Open Source Library,” presented at the 2012 ASABE
Annual Meeting, Dallas, Texas, USA, Jul. 29 – August 1, 2012.

[7] Md. M. K. Sarker, D. Park, W. Ham, E. Tumenjargal, and J. Lee,
“Embedded Workbench Applications of GPS Sensor for
Agricultural Tractor,” presented at the WorldComp’12, Las
Vegas, Nevada, USA, Jul. 16-19, 2012.

[8] A. Spangler and M. Wodok, "IsoAgLib–Development of ISO
11783 Applications in an Object Oriented way," ed, 2010.

[9] S. Ingle, S. Dessai, and R. Gore, “Development of Software for
CANlog Device to Determine the Performance of Tractor”,
International Journal of Recent Trends in Engineering, Vol. 1, No.
3, May, 2009.

[10] G. Craessaerts, K. Maertens, and J. De Baerdemaeker, “A
Windows-based design environment for combine automation via
CANbus”, Journal of Computers and Electronics in Agriculture,
pp. 233–245, 2005.

[11] ISO 11783-1, “Tractors and machinery for agriculture and forestry
- Serial control and communications data network,” Part 1:
General standard for mobile data communication, International
Organization for Standardization, 2007.

[12] ISO 11783-2, “Tractors and machinery for agriculture and forestry
- Serial control and communications data network,” Part 2:
Physical layer, International Organization for Standardization,
2002.

[13] ISO 11783-3, “Tractors and machinery for agriculture and forestry
- Serial control and communications data network,” Part 3: Data
link layer, International Organization for Standardization, 2007.

[14] ISO 11783-4, “Tractors and machinery for agriculture and forestry
- Serial control and communications data network,” Part 4:
Network layer, International Organization for Standardization,
2001.

[15] ISO 11783-5, “Tractors and machinery for agriculture and forestry
- Serial control and communications data network,” Part 5:
Network management, International Organization for
Standardization, 2007.

[16] ISO 11783-6, “Tractors and machinery for agriculture and forestry
- Serial control and communications data network,” Part 6: Virtual
terminal, International Organization for Standardization, 2004.

[17] P. Fellmeth, "CAN-based tractor-agricultural implement
communication ISO 11783," CAN Newsletter, vol. 9, 2003.

[18] AGCO Corporation. FieldStar, the Science of Agriculture, Virtual
Terminal User’s Guide. Publication No. 79015206 (English),
February 2002, Duluth, GA.

[19] AGRCOM Gmbh and Agrarsystrem KG. CEBIS MOBILE VA
User Guide. Manual (English). 2009, Bielefeld, Germany.

[20] DICKEY-John Corporation. Auto Section Control System,
Operator’s manual. Publication No. 11001-1561B-201207
(English). 2012, Auburn, IL, USA.

[21] Deere and Company. GreenStar 3 Display 2630 operator’s
manual. Publication No. OMPFP12408 (English). 2012,
California, USA.

[22] Müller-Elektronik GmbH. ISOBUS-Terminals flexible and future-
proof through APP & GO. 10/11. 2012, Salzkotten, Germany.

Copyright © 2014 CSREA Press, ISBN: 1-60132-269-0; Printed in the United States of America

146 Int'l Conf. Embedded Systems and Applications | ESA'14 |

