
SESSION

NOVEL APPLICATIONS, METHODOLOGIES AND
CASE STUDIES + INTELLECTUAL PROPERTY

ISSUES + EDUCATION

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 1

2 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Principles for Profiling Healthcare
Data Communication Standards

R. Snelick1 and F. Oemig2

1National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
2Agfa Healthcare, Bonn, Germany

Abstract - Healthcare organizations often have many
proprietary heterogeneous information systems that must
exchange data reliably. Seamlessly sharing information
among systems is complex. The widely adopted HL7
version 2 messaging standard has helped the process of
systems integration. However, using the HL7 standard
alone does not ensure system interoperability. The HL7
standard offers a wide range of options. Trading
partners, without prior agreement, are not likely to
implement options that are compatible. As a result,
interoperability is hindered and organizations are left to
employ their own ad hoc solutions. Message profiles
provide a solution to this problem. Message profiles
define a standard template that provides a precise
definition of the data exchanged between applications in
a common format. Defining a set of message profiles for
controlling message exchanges establishes a well-
defined communications interface among organizations
and facilitates interoperability. However in order to be
effective, message profiles must be designed and applied
correctly. Additionally, with efficient design, a family of
message profiles can be developed which leverage
existing message profile components. Such a strategy is
employed in the development the United States EHR
certification family of standards for laboratory ordering
and results reporting. This paper presents a methodology
and best practices for designing a set of related message
profiles. Although the methodology is applied to the
healthcare messaging standards it has broad
applicability for the class of communication standards.

Keywords: Conformance; Communication Standards;
Interoperability; Message Profiles; Messaging Systems.

1 Introduction
 A major challenge for the healthcare industry is
achieving interoperability among proprietary applications
provided by different vendors. For example, each
hospital department may use one or more applications to
share clinical and administrative information. Each
application may support multiple communication
interfaces that must be modified and maintained. This is
a difficult way to achieve interoperability. Alternatively,
interoperability can be achieved through the use of
standardized interfaces; the definition of which can

remove the cost of building a separate interface for each
associated application. Developers can build applications
that conform to the standardized interface definition,
increasing the likelihood of interoperability and reducing
cost. Maintenance cost is also reduced because the
number of interfaces to maintain decreases.

The Health Level Seven (HL7) Application Protocol for
Electronic Data Exchange in Healthcare Environments
Version 2.x standard (hereafter HL7) is the de facto
standard for moving clinical and administrative
information between healthcare applications [1]. The
standard is based on the concept of application-to-
application message exchange. An HL7 message is an
atomic unit of data transferred between systems [1].
Typical HL7 messages include admitting a patient to a
hospital or requesting a laboratory order for a blood test.
HL7 describes an abstract message definition for each
real world event (e.g., admitting a patient). The abstract
message definition is comprised of a collection of
segments in a defined sequence. Rules for building an
abstract message definition are specified in the HL7
message framework, which is hierarchical in nature and
consists of building blocks generically called elements.
These elements are segment groups, segments, fields,
components, and sub-components. Each element has
associated attributes that further defines and constrains
the element. These include optionality, cardinality, value
set, length, and data type attributes. Segment groups and
segments can contain additional elements, fields and
components can contain additional elements or be
primitive elements; sub-components are strictly primitive
elements. Primitive elements are those that can hold a
data value and have no descendant structure.

When originally developed, HL7 was designed to
accommodate the many diverse business processes that
exist in the healthcare industry. This universal design was
necessary to gain broad industry support. However, such
broad accommodations resulted in a standard with many
optional elements, thus aligning interface
implementations presented difficulties.

Applications using HL7 are generally connected in two
ways, point-to-point or via middleware, typically
communication server products. Point-to-point entails

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 3

connecting each pair of applications independently of
other applications. In the communication server
approach, all applications are connected to a centrally
located message broker. A set of HL7 message
definitions specifies the requirements between the
communicating applications. Although the message
definitions are specific there are many ways to specify a
given HL7 transaction. In practice, vendor-provider
specifications may not quite match, therefore differences
need to be accounted for in each connection. In point-to-
point architectures, each new combination will require a
separate implementation. With communication servers, a
new mapping transformation definition needs to be
defined. In both cases, the breadth of the specification
leads to cumbersome and ad hoc interface
implementations. System implementations are prone to
error, difficult to maintain, and do not scale easily.

To help alleviate this shortcoming, the HL7 standard
introduced the concept of conformance message profiles
(also commonly referred to as conformance profiles,
message profiles, or profiles—hereafter message profile
or profile). Message profiles by defining processing rules
and which optional elements in the standard a message
might include provide an unambiguous description of
HL7 messages.

2 HL7 Message Profile Defined
Message profiles1 constrain HL7 message structure and
requirements for a particular interaction. A message
profile provides a mechanism for specifying a single
message definition. An implementation guide is often
created to organize a collection of message profiles for
specifying a set of related HL7 V2.x interactions
described by a use case or use cases. Implementation
guides typically describe broader conformance
requirements such as a use case model, a dynamic
definition, a static definition, and application functional
requirements. IHE integration profiles can be
characterized as implementation guides [7].

The use case model provides a description, defines actor
responsibilities, and describes a sequence of actions
performed by the sending and receiving applications. The
dynamic definition describes the interaction between the
sender and the receiver in terms of the expected
acknowledgments (or other transactions such as
query/response). The static model provides a precise
definition of the message structure and constraints for a
single message; this is the message profile. Functional
requirements describe the application (or actor) level

1 Message profiles are not to be confused with the
Integrating the Healthcare Enterprises (IHE) integration
profiles. Often IHE integration profiles will use HL7
message profiles.

requirements. Such requirements may include how a set
of messages are to be used to enact certain application
functionality. The message profile definition, use, and
organization within an implementaiton guide are key
issues addressed in this paper.

A message profile can be represented as an XML
document, Figure 1 shows an example XML profile
snippet. Each element in the message profile is listed
along with its associated attributes. For a more detailed
description of a message profile refer to the HL7
standard [1]. It is important to note that the attributes and
the constraints a profile places on a message provide a
clear and unambiguous definition, thereby, facilitating
the design, implementation, and testing of interfaces
[3,4,5].

Fig. 1. Snippet from a Message Profile

…
<Segment Name="PID" LongName="Patient Identification"

Usage="R" Min="1" Max="1"/>
 <Reference>3.4.2</Reference>

 <Field Name="Set ID - PID" Usage="R" Min="1" Max="1"
Datatype="SI" MaxLength="4" MinLength="1">

 </Field>
…

 <Field Name="SSN Number - Patient" Usage="X" Min="0"
Max="0" Datatype="ST" MaxLength="16" MinLength="1" />

 <Field Name="Driver's License Number - Patient" Usage="R"
Min="0" Max="0" Datatype="DLN" MaxLength="66"
MinLength="1">

 <Component Name="License Number" Usage="R"
Datatype="ST" MaxLength="20" MinLength="1" />

 <Component Name="Issuing State, Province, Country"
Usage="R" Datatype="IS" Table="0333" MaxLength="20"
MinLength="1" />

 <Component Name="Expiration Date" Usage="O"
Datatype="DT" MaxLength="24" MinLength="1" />

 </Field>
…

The rules for constructing a message are described by the
message framework [1]. In addition, for each real world
event, for example “Admitting a Patient”, a specific
abstract message structure (ADT_A01) is defined. The
message structure defines a template or structure in
which the message must comply; it explicitly defines the
elements and the order the elements must appear in a
message instance. For example, in Figure 1, the “PID”
segment contains the field “Set ID – PID”, and so on.
The usage attribute refers to the circumstances in which
an element appears in a message [1]. For example, the
“Driver’s License Number” component in the profile
snippet is required (Usage=”R”) and must be present in a
valid message instance. Cardinality refers to the
minimum and maximum number of occurrences an
element may have [1]. An example of an element
cardinality is [0..1]; the element may not appear in the
message instance, but can only have one occurrence if it
does. A table of allowable values can be defined and
associated with a certain element. For example, see the

4 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

“Issuing State, province, country” component in Figure
1; this element must be populated with a data value that
is defined in Table 0333. The length attributes define the
minimum and maximum allowable lengths a value can
have for a particular element. The data type defines the
allowable data values an element can contain. For
primitive data types, such as string (ST), interpretation is
straightforward and requirements for each data type are
specified in the standard [1]. Complex data types, such
as the Extended Person Name (XPN), may be composed
of primitive types or other complex data types. For
example, an XPN contains a family name (FN), which
itself is a complex data type that is composed of five
primitive elements, all of type string (ST). All complex
data types are ultimately composed of primitive data
types.

A message profile is distinguished from a specification
by application of the conformance rules, the openness
permitted by the base standard is ultimately removed to
such an extent that the interface specified by the profile
may be directly implemented (Figure 2). The HL7
standard allows for numerous ways to define an
interface; profiles reduce the number of possibilities to a
manageable set, and their use helps to ensure that
systems attempting to communicate with each other
implement compatible sets of possibilities. It is important
to recognize that profiles do not eliminate possibilities
allowed by the standard; they select a specific group
from the total set of those allowed. In this regard, a
profile defines a constraint on the standard, such that the
resultant constrained specification may be used to
implement the interface. The profile also imposes a
discipline upon the interface partners. This ensures
harmony in the actual implementation which is necessary
to fulfill a certain use case.

A key development for promoting interoperability was
the codification of a means to express message profiles
in a standardized way. While natural language
documentation of a message profile acceptably facilitates
interoperability at the message implementation level, the
standardization of the message profile documentation
itself adds a new dimension to the promotion of
interoperability. The standardized conformance profile is
an XML document specified in terms of a normative
schema. This standardized form aids in many aspects in
documentation, implementation, and testing. The NIST
EHR certification conformance test tools use the XML
message profile as the basis for validation [5].

2.1 Message Profile Hierarchy

HL7 V2 message profiles have three levels of
specification:

• HL7 Standard Profile Level

• Constrainable Profile Level
• Implementation Profile Level

The HL7 Standard Profile (hereafter standard profile)
represents the base standard definitions and constraints
for a specific message structure (e.g., ORU_R01 for
laboratory results reporting). At this level, the overall
structure including the data type definitions are fully
defined, however many element attributes are not. The
standard profile can be more precisely defined by adding
constraints to the elements attributes.

Fig. 2. Message Profile Hierarchy

Other message profile levels are derived from the
standard profile. A Constrainable Profile (hereafter
constrainable profile) is derived from either the standard
profile or another constrainable profile and further
constrains the message definition attributes. For example,
an element with a usage of “optional” may be changed to
“required”, however, the data type structure for that
element cannot be changed. In a constrainable profile,
analogous to the standard profile, not all element
attributes are fully constrained. An Implementation
Profile (hereafter implementation profile) defines all
elements such that all optionality and openness is
removed. All deployed interfaces are implementation
profiles whether they are documented (explicitly) or not
(implicitly). It is highly recommended that interfaces are
completely documented to the implementation profile
level using the profiling mechanisms described in this
paper and the HL7 V2.x Conformance Chapter [1]. An
implementation profile may also be derived from another
implementation profile. In this case all openness has been
removed. However, further constraints on attributes can
be applied; for example, the usage of “required, but may
be empty” can be strengthened to “required”.

As described, constraints can be added iteratively,
thereby forming a hierarchy of messages profiles. As
such, a certain set of rules must be followed. A message
profile is prohibited to further refining certain
requirements defined in the parent message profile. For
example, if an element (e.g. field) is “required” in the
parent profile it can’t be profiled to “optional” in the
child profile as the requirement is relaxed (The allowable
derivations are described in HL7 V2.x Conformance

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 5

Chapter [1]). Figure 2 illustrates the concept of profile
hierarchy and acceptable derivations.

Two possible real world scenarios for using the profile
hierarchy model are presented in Figure 3. In the first
case a national level constrainable profile is developed. A
hospital (chain) adopts and refines the national level
guidance provided in the realm specific constrainable
profile. The hospital procures a vendor that has a product
that can be configured to satisfy the requirements. The
hospital and the vendor finalize the requirements and the
software is installed. The resultant interface is
documented as an implementation profile. Alternatively,
the hospital could have provided the implementation
profile directly to the vendor.

In the second case, a vendor refines national level
guidance profile and provides a generic implementation
based on this constrainable profile. When working with
clients in which this profile closely satisfies their
requirements a final refinement is made at the specific
sites. The vendor will often (or should) provide the
documentation of the interface installed in the form of an
implementation profile. These examples can be nested
and refined to any depth as appropriate (See Figure 2).

Fig. 3. Use of Profile Examples

The concept and use of constrainable profiles is
important in practice as this level is often (and should be)
what standard organizations (e.g., IHE or the HL7
affiliates [9]) specify. Constrainable profiles can be
thought of as a set of harmonized requirements and are
useful at a national or any intermediate level down to the
local site implementation. Employing implementation
profiles at a high-level such as nationally often precludes
widespread adoption because of their restrictiveness.
Therefore, this practice is not recommended and should
be avoided.

Use of the message profile hierarchy is the strategy
employed in the United States by the Office of the
National Coordinator (ONC) Meaningful Use (MU)
electronic health records (EHR) certification program.
The named standards in the certification criteria specify
“national level” requirements—although they are not
explicitly named as such. For the HL7 V2 messaging
standards these requirements are published in

implementation guides and realized as constrainable
message profiles—meaning that a selected set of
elements are fully specified while others are yet to be
determined. This approach guarantees that certified EHR
technologies (CEHRT) have a certain level of common
capabilities while providing flexibility for local
customization. However, these implementation guides are
independent, so no harmonization among the profiles is
guaranteed. For example, specification of patient
demographics does not necessarily coincide in the
transmission to immunization registry and laboratory
results reporting implementation guides.

Local installations are likely to complete trading-partner
agreements. That is, they will further refine the national
level requirements to satisfy their local requirements
within the framework established by the constrainable
profile. It is important that the local trading-partner
agreements do not relax or conflict with the national level
requirements. The certification of the EHR products
seeks to ensure a minimum level of capabilities that will
not necessarily meet all local requirements (and often
will not). Once local trading-partner agreements are put
in place, the EHR technology and partner systems will
need to be implemented and configured accordingly. For
example, a provider and their state immunization registry
will coordinate exchange requirements. The referenced
Meaningful Use interoperability standard (i.e., the
constrainable profile) provides the basis, but additional
requirements may be necessary for this jurisdiction
(specified in an implementation profile derived from the
constrainable profile). In this case, the system receiving
the HL7 V2 messages (i.e., the immunization registry)
must be able to consume and understand the state-level
information according to CEHRT to achieve the desired
interoperability. To ensure accuracy and integrity for this
exchange of information, local site testing must be
performed. At present, this aspect of testing is not part of
the Meaningful Use program; however, using CEHRT
provides a shorter pathway to achieving site-specific
interoperability.

2.2 Message Profile Component Defined

A message profile component (hereafter profile
component) defines a part or a certain aspect of a profile
and is used to differentiate requirements from another
profile or profile component. A profile component can be
applied to any construct or section of a profile. A profile
component in a family of profiles can be used to identify
different levels of requirements for the same use case or
to identify the differences in requirements for different,
but closely related, use cases.

In the first case, a specification may want to express
different levels of conformance. For example, a profile
may be written to require the use of Object Identifiers

6 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

(OIDs) for all identifiers. Another profile may be written
in which this is a not requirement. An intermediate
profile may be written which requires certain identifiers
to support the use of OIDs but not all. This specification
is describing three levels of conformance. These three
levels can be described using a base profile definition
and three profile components. The profile components
describe the differences in the requirements. A similar
scheme as described here is employed in the HL7 V2
2.5.1 Laboratory Results Interface (LRI) implementation
guide’s laboratory results message profiles (ORU_R01
message structure) [6].

In the second case, a profile component is employed to
express requirements for a different, but closely related,
use case. Here the profile component is used to leverage
the requirements of an existing profile since this profile
contains many common requirements. The HL7 V2.5.1
Electronic Laboratory Reporting (ELR) to Public Health
Revision 2 implementation guide uses the concept of a
profile component in this manner [8].

In the first case, the use case is the same; however, the
requirements in which it can be achieved are different.
The profile component is expressing a different level of
conformance. In the second case, the use case is similar
but different, therefore the requirements are different.
The profile component concept is used to leverage the
common requirements defined by the profile and to
express the differences in requirements by defining them
in a profile component.

Profile components can express missing requirements for
a base profile component, common requirements,
additional requirements, or replace requirements in a
profile or profile component.

The description of the different conformance levels,
profiles, and profile components are expressed in the
conformance clause section of a specification.
Subsequently an implementer makes a conformance
claim as to which level of conformance they support.

3 Profile Design and Management
 This section presents an approach for designing and
managing profiles such that profiles and profile
components can be leveraged. When writing a set of
related profiles (or a family of profiles such as those in
IHE or for a particular domain such as laboratory orders
and results) it is important to reuse the profile and profile
components, to harmonize the requirements and to gain
efficiency.

Figure 4 illustrates a sample of possible configurations
for composing a family of related profiles. The design
principle is to develop a common or base profile

component that applies across a family of profiles with
the intent of using the profile component concept to
specify profiles.

In the first depiction, a base profile component is
developed that expresses all of the common requirements
for a related set of profiles. Profile component 1 and
profile component 2 are also created for aspects that are
not defined in the base profile component. Combined the
three profile components are used to describe a complete
specification, Profile 1. For the second depiction, the
base profile component and profile component 1 are
reused and combined with profile component 3 to specify
Profile 2. In the third depiction, Profile 1 is combined
with profile components 4 and 5 to create Profile 3.

Fig. 4. Profiling Design Principles

Profile components can also express requirements that
replace requirements established in a base profile
component or profile. This may often be the case when
different levels of profiles are developed or the profile
provides utility outside the original set of related profiles.
The fourth depiction illustrates such a case where a
subset of requirements for an existing profile is
overridden. Here Profile 1 is used. However, certain
aspects are redefined according to the rules and
documented in profile components 6 and 7 which results
in Profile 4. For each of the complete specifications
illustrated in Figure 4 the resulting profile can be a
constrainable or an implementable profile.

The key design principles for developing a family of
related specifications is to leveraged existing profiles or
design/create base profiles that are a harmonization of
requirements for a related set of use cases. The profile
components can be developed at any level of granularity.
However, caution should be exercised when creating
profile components at the fine grain level. Often creating
and managing too many building block artifacts will start
to outweigh the benefits. If tooling is available then fine
granularity of profile components is attainable. A good
practice is to introduce an orthogonal structure of the

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 7

individual requirements, e.g., data type constraints in one
regard and value set definitions in another. This allows
for easy integration, combinations, and management.

Unfortunately, often in practice, a related set of profiles
are each fully specified that duplicate sizeable sections of
the document. These profiles are not harmonized and
unnecessarily lead to maintenance issues. It is also
important not to confound requirements targeted for
different use cases (interactions) within a single profile
definition. This also occurs in practice and should be
avoided. For each interaction, a separate message profile
needs to be defined. The use of profile components as
described facilitates this approach.

3.1 Publishing the Specification

An important design principle for publishing the
specifications is not to copy entire specifications that
express only small variances in requirements. This
creates management and maintenance issues when
modifications are made in the base profile component. If
possible, the profile should be part of the original
specification and distinguished as a profile variance
through the profile component mechanism. If however,
the new profile is created after publishing the profile in
which it is derived then only the variations should be
published in the new specification. Often this document
will be a few short pages. This approach quickly and
efficiently alerts the implementers to the modifications
from the original (base) profile.

If the specification is developed using authoring tooling
then the user is afforded various options for publishing
since the tool handles the rendering and maintenance.
The National Institute of Standards and Technology
(NIST) is developing a tool to enable manipulation of
profiles for HL7 V2. This tool builds upon the concepts
developed in the Messaging Workbench (MWB) [2,3].
The NIST tool is being designed to allow for the
development of profile components. Since all artifacts
related to the profile are machine process-able within the
tool, the user will have the option to publish a
specification that expresses the variance of a profile, the
complete profile, or other artifacts such as the XML
representation of the profile.

4 Information Mapping
This section describes an approach for system developers
for mapping information in their systems to HL7
interface data requirements. This technique provides a
flexible and universal methodology to a systematically
account for variations in interface requirements of trading
partners. Figure 5 illustrates a proposed information
mapping approach to support multiple interfaces with

varying requirements, which are expressed in a related
set of message profiles.

The basic principle is that specifications are not to be
influenced by implementation design or by trying to
accommodate different use cases (interactions) within a
single profile definition. This approach is not
recommended because requirements are confounded
when they should not be. A profile needs to be written in
a manner to express the requirement for a single
interaction and nothing more. The profile design
principle section describes how one can accommodate
similar uses cases (which require different interactions).
If this strategy is employed, there can be a gain in
efficiency by accommodating the various use cases and
without having to rewrite or create entirely new
specifications. This approach allows for more choices in
implementation design and support. If multiple use cases
are comingled into a single specification, then those who
choose not to support certain components are forced to
deal with the unwanted components. The profile design
mechanism proposed in section 3 also provides a clean
and flexible avenue for implementers, as they are not tied
to implementation choices dictated in the specification.

Fig. 5. Information Mapping to Support Multiple Interfaces

Figure 5 proposes a possible approach that a system
might implement to support various profiles to interact
with a multitude of systems with similar but different
requirements. Internally the system maintains a database
containing the information necessary for the application.
It is necessary that this application communicate with a
number of different trading partners. The trading partner
interfaces have slightly different requirements. Various
profiles are created that express the requirements for each
of the interfaces. The methodology described in section 3
is used to create the profiles. When communicating, the
sending system extracts data from the database and
transforms it into a common representation (e.g., an
XML specification). For each interface, the data is used
to populate the message using the message profile as a
map (i.e., template).

8 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

In the example depicted in Figure 5 there are three HL7
V2 interfaces that have to be supported. Depending on
the interface, the application creates a message based on
the given requirements expressed in the profile. The
profile is represented in XML and acts as a filter of the
complete data known to the system. Depending on the
trading partner, a different “filter” (profile) is utilized.
For each interface, a specific message is created with the
necessary requirements. There is no need to disambiguate
requirements for different trading partners or interface
requirements.

This is a simplification of the process and does not
account for all the complications (especially the mapping
of the data). However, it does illustrate a simple and
straightforward approach to interfacing with multiple
trading partners where the requirements are clearly
defined in isolation although built upon a common
foundation. That is, the requirements of an interface are
separated from the implementation and operational
aspects of the system. This design is scalable since many
more trading partners could be added that have different
interface requirements and the only additional artifact
needed is a profile. Of course, the above illustration
describes an interaction with nearly the same set of
requirements, for example, reporting immunization
records to an Immunization Information System (IIS).
The vendor product will often need to support all or
many of the state’s IISs each with slightly different
reporting requirements.

5 Summary
 The ability to share relevant information among diverse
healthcare systems and provide consistent data across
applications will help improve the quality of care. It will
also improve patient safety and reduce the cost of
healthcare. HL7 defines the specification for interfaces
that allow both centrally located and distributed
information systems to communicate. The standard
establishes rules for building interfaces and provides
many optional features to accommodate the disparate
needs of the healthcare industry. However, for interfaces
to be reliably implemented, a precise and unambiguous
specification must be defined. HL7 introduced the
concept of message profiles that precisely declare the
structure and constraints of a message. The use of
message profiles promotes interoperability by providing
trading partners a common format for documenting
interface specifications.

There are three levels of profiles that form a hierarchy
including the standard level, the constrainable level, and
implementation level. A message profile component
defines a part or a particular aspect of a profile and is
used to differentiate requirements from another profile or
profile component. A profile component can be applied

to any construct or section of a profile. Combining the
concepts of profile levels and profile components provide
implementation guide authors with the tools to effectively
create and manage a set of related profiles. A profile can
be represented in a standardized XML form that enables
automatic processing of many facets including publishing
and message validation. System developers can take
advantage of message profiles to simplify
implementations that support many similar or disparate
interface requirements.

To ensure interoperability among healthcare systems,
installations must be implemented correctly—
conformance testing is essential [3,4,5]. Using and
specifying well defined message profiles facilitates and
promotes more rigorous testing. Employing an
implementation and testing strategy based on message
profiles and the tools to support them will improve
interoperability among healthcare systems. This
ultimately leads to more reliable systems and reduced
costs.

6 References
[1] Health Level 7 (HL7) Standard Version 2.7,
ANSI/HL7, January, 2011, http://www.hl7.org.

[2] Messaging Workbench (MWB). Developed by
Peter Rontey. http://www.hl7.org.

[3] Towards Interoperable Healthcare Information
Systems: The HL7 Conformance Profile Approach. R.
Snelick, P. Rontey, L. Gebase, L. Carnahan. Enterprise
Interoperability II: New Challenges and Approaches.
Springer-Verlag, London Limited 2007 pp. 659-670.

[4] A Framework for testing Distributed Healthcare
Applications. R. Snelick, L. Gebase, G. O’Brien. 2009
Software Engineering Research and Practice (SERP09),
WORLDCOMP’09 July 13-16, 2009, Las Vegas, NV.

[5] NIST Laboratory Results Interface (LRI) EHR
Tool. http://hl7v2-lab-testing.nist.gov/mu-lab/

[6] HL7 Version 2.5.1 Laboratory Results Interface
(LRI) Implementation Guide. Draft Standard for Trail
Use. July 2012. http://www.hl7.org.

[7] Integrating the Healthcare Enterprises (IHE)
Technical Framework. http://www.ihe.net

[8] HL7 Version 2.5.1 Electronic Laboratory
Reporting (ELR) to Public Health Implementation
Guide, Release 2. Work in Progress. http://www.hl7.org.

[9] German Message Profile Architecture. 2004-2007.
http://www.hl7.de/download/documents/Profile_2.1.zip.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 9

http://www.hl7.org/
http://www.hl7.org/

A Model Driven Serious Games Development Approach for

Game-based Learning

Stephen Tang
1
 and Martin Hanneghan

2

School of Computing and Mathematical Sciences,

 Liverpool John Moores University

Byrom Street, L3 3AF Liverpool, UNITED KINGDOM.

Email: {1o.t.tang, 2m.b.hanneghan} @ljmu.ac.uk

Abstract - Computer games, predominantly a form of

interactive entertainment, are having some success being

repurposed for educational use. However, this approach is

hindered by the lack of availability of experience in serious

games tools. Much research is already underway to address

this challenge, with some who choose to use readily available

commercial-off-the-shelf games and others attempted to

develop serious games in-house or collaboratively with

industry expertise. These approaches present issues including

educational appropriateness of the serious game content and

its activities, reliability of serious games developed and the

(often high) financial cost involved. Developments in software

engineering that enable automatic generation of software

artefacts through modelling or Model Driven Engineering

(MDE) promises new hope for game-based learning adopters,

especially those with little or no technical knowledge, to

produce their own serious games for use in game-based

learning. In this article, we present our model-driven

approach to aid non-technical domain experts in serious

games production for use in games-based learning.

Keywords: Model Driven Serious Games Development,

Model Driven Engineering, Model Driven Development,

Serious Games, Game-Based Learning.

1 Introduction

 Game-based learning (GBL) refers to both the innovative

learning approach derived from the use of computer games

that possess educational value and other software applications

that use games for learning and education purposes (e.g.

learning support; teaching enhancement; assessment and

evaluation of learners etc.) [1]. These computer games are

also referred to as educational games or in a more popular

term known as serious games. As computer gaming becomes

a digital culture deeply rooted amongst the new generation of

learners, many educational researchers and practitioners agree

that it is now appropriate to exploit gaming technologies in

order to create engaging interactive learning content to

motivate learners to learn through game-playing using the

GBL approach [2].

 The preliminary results of GBL have shown some

positive impact towards students‟ learning [3]. However, the

adoption rate of GBL still remains low. One of the barriers to

the adoption of GBL is the extremely steep learning curve

required to create serious games. Most of the computer games

available in the market are designed for entertainment

purposes and the majority of content is not fit for educational

purposes. This has led some domain experts to create serious

games through bespoke in-house development, using open

source or royalty-free game engines in collaboration with a

team of developers and „modding‟ (or modifying)

commercial-off-the-shelf games by utilising a game editor

application. Many of these tools and technology platforms for

producing serious games are readily available but most of

these tools require substantial technical knowledge in games

development which hinders non-technical domain experts

from adopting games-based learning. We believe by

addressing the absence of high-level authoring environments

and support for non-technical domain experts (i.e. teachers)

to create custom serious games will be a major factor in the

rise of serious games.

 Advancements in software engineering are making the

creation of high-level serious games authoring environments

for non-technical domain experts viable. The MDE (Model

Driven Engineering) approach uses abstract models to

formally represent aspects of serious games software which is

then automatically transformed into more refined software

artefacts and subsequently into serious game software

applications. This approach provides non-technical domain

experts the tools to produce serious games easily and quickly

(and possibly at a lower cost) through the use of Domain

Specific Modelling Languages (DSML). This therefore

lowers the barriers that hinder the production of these

applications. MDE offers an increase in productivity,

promotion of interoperability and portability among different

technology platforms, support for generation of

documentation, and easier software maintenance [4]. In

addition, it can produce better code quality and improves

reliability of the code [5]. From the non-technical domain

experts‟ perspective, an MDE‟s ability to encapsulate the

technical aspects of development via a DSML massively

lowers the barriers that hinder the production of applications.

We believe by marrying games development and the MDE

approach, we can provide a technological solution to the

aforementioned issues.

 In this paper, we present our model-driven serious games

development approach. In Section 2, we briefly introduce our

model-driven serious games development framework and the

underlying models designed to formally represent serious

10 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Art

Assets

Artificial

Intelligence

Physics

Transformation

Engine

Generator E-learning suites

Operating

Platform8 Console
Smart

Phone
PC Web

XNA Java Unreal Flash
Technology

Platform7
E.g.

reference

bind with
uses

Transformation

Engine

Components

Library4

MDE Tools3

Code Template 1

E.g. XNA

Code Template

E.g. Flash

Code Templates5

tr
a

n
s
fo

rm
tr

a
n

s
fo

rm
g

e
n

e
ra

te

Artefacts6 Source Codes DocumentationSettings

SERIOUS GAMESSoftware9

Models2
Game

Content

Model

Game

Technology

Model

Game Context System

Game

Software

Model

Game

Model 1

E.g. XNA

Game

Model for 2

E.g. Flash

Game

Model N

Natural Language GUIScript
User

Interfaces1

….
Other

Game Models

Code Template N

…

Other

Code Template

Game

Structure

Game

Object

Game

Event

Game

Presentation

Game

Simulation

Game

Rules

Game

Scenario

Game

Objectives

Game

Player

Game

Theme

Game Simulation System

Core Components

Figure 1: Model-driven Serious Games Development Framework.

games. We then explain our model-driven approach and

describe our model driven technologies in Section 3. In

Section 4, we present a case study to demonstrate the design

and production of a serious game using our model-driven

approach and follow with a discussion in Section 5. Finally,

we draw conclusions on the future of this exciting field of

research in Section 6.

2 Model Driven Serious Games

Development Framework

 Our novel model-driven serious game framework (see

Figure 1) is designed to support the production of a variant of

serious game software that covers a wide range of technology

platforms as well as operating platforms. It consists of nine

parts namely: (1) User Interface (UI), (2) Models, (3) MDE

Tools, (4) Components Library, (5) Code Templates, (6)

Artefacts, (7) Technology Platform, (8) Operating Platform

and (9) Software. This configuration loosely couples the

modules allowing the framework developer to flexibly

substitute modules while maintaining the integrity of

relationships among the modules via well-defined interfaces.

It also clearly divides the views of entities while promoting

structured and systematic workflow [6]. At the core of the

framework are three models namely the Game Content

Model, Game Technology Model and Game Software Model.

2.1 Game Content Model

 Our novel Game Content Model improves on the existing

work Game Ontology Project (GOP) [7], Rapid Analysis

Method (RAM) [8] and Narrative, Entertainment, Simulation

and Interaction (NESI) [9]. It combines our study on game

design, game development and serious games with a selection

of concepts from the aforementioned existing works to form a

robust formal model. Our Game Content Model covers all the

essential game design concepts for documenting serious game

design in the role-playing and simulation genres initially (but

this can be easily expanded upon to support other genres).

The top level of our game content model consists of ten

interrelated key concepts that best represent the rules, play

and aesthetic information of a computer game. These are

Game Structure, Game Presentation, Game Simulation,

Game Rules, Game Scenario, Game Event, Game Objective,

Game Object, Game Player and Game Theme [10].

 In brief, the game structure provides the form and

organises the game into segments of linked game

presentations and game simulations. The interactions between

a game object and the results of an interaction in a game

simulation are defined using game rules. A game simulation

can be used to host multiple game scenarios aligned with the

storyline. Each game scenario is set up using a selection of

game objects to create an environment, a sequence of game

events and a set of game objectives that challenges the game

player‟s skills and knowledge about the game domain. The

game player can control game object(s) and interact with

others via hardware controllers or a graphical user interface.

And finally, the game theme describes the “look and feel” of

the game. Detail on our Game Content Model is available in

our previous work in [10].

2.2 Game Technology Model

 Our Game Technology Model is based on a data-driven

architecture and includes the essential game specific systems

and core components of software which facilitates the

operation of serious games. The Game Context System

handles the transitions between contexts and works

cooperatively with the Game Simulation System to simulate a

scenario. For ease of processing, a scene graph is used to

organise renderable and updatable objects such as media

components, GUI components, front-end display components,

game objects and lights. These objects are processed using

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 11

Figure 2: Overview of our Game Software Model to bridge between our Game Technology Model and a game software framework.

the platform independent core components such as renderer,

animation, audio, input, game physics, user interfaces, video

player, game resource manager, networking and artificial

intelligence [11].

 Supporting these core components are the helper

components namely the math library, random number

generator and unique object identifier management. The

functionality of each component defined in the Game

Technology Model are specified as interfaces that each wrap

a different implementation of a game technology. This allows

serious games software to be produced on different

technology platforms through code generation which reads

the Game Technology Model and translates it into software

artefacts. More details on our Game Technology Model can

be found in [11].

2.3 Game Software Model

 Our Game Software Model is the platform specific

software representation of the game software. The Game

Software Model is designed by a technical person who

possesses great understanding of the model driven framework

and the technology platform. Developers of the Game

Software Model may choose one of the two different

perspectives; (1) to bridge the Game Technology Model to an

existing game software framework (e.g. Microsoft‟s DirectX)

or (2) to implement game software from scratch for an

intended technology platform. Both these exercises may

require platform specific details or components to be added

which has been omitted in the Game Technology Model.

 Implementing the Game Software Model for an existing

game software platform will require framework developers to

map the components presented in the Game Technology

Model to the chosen game software framework. Often it is

likely to achieve a one-to-one mapping of Game Technology

Model components with game software framework

components with possible inclusion of information that is

required by the game software framework. Figure 2 illustrates

the overview of Game Software Model with component

wrappers (shaded in grey colour) which map components of

Game Technology Model to the appropriate component in a

game software framework.

 Unlike the former approach described above, designing a

Game Software Model for a specific software technology

platform will require the addition of certain platform specific

components which are used by the core components. These

are identified by Gregory [12] as window management, file

system, timer, graphics wrapper and physics wrapper. Most

game software frameworks would have these platform

specific components implemented in low-level code that is

coupled to a specific operating platform to ensure it delivers

the performance required of the game software. In our

approach, these platform specific components have been

omitted from the Game Technology Model and are only

added in the final stage of the model transformation to

achieve true operating platform independence. Implementers

of our Game Software Model will have to define these

platform specific components so they can be mapped to the

right implementation during the generation of program code.

This makes the Game Software Model structure differ from

the earlier version described above as the component wrapper

is replaced with platform specific components (shaded grey in

Figure 3).

3 Model Driven Serious Games

Development Approach

 Our model-driven serious game development approach,

based on our framework presented in Section II, is made-up

of a modelling environment, model translators and an

artefacts generator. An overview of this is shown in Figure 4.

In the following subsections, we briefly discuss the

implementation of our model-driven approach.

12 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 3: Overview of Game Software Model that includes platform specific components for a software technology platform.

3.1 Serious Games Modelling Environment

(SeGMEnt)

 Our modelling environment, referred to as Serious

Games Modelling Environment (SeGMEnt), is designed to

allow non-technical domain experts to model a serious game

using both graphical notations and step-by-step guides. We

have chosen to develop a web-based modelling environment

due to the wide-access the web can offer to the game-based

learning community. This approach can also lower the barrier

of entry for adoption of game-based learning as practitioners

don‟t necessarily require a high-performance multimedia

computer to produce serious games. We have chosen the

Adobe Flash platform as our initial development platform of

the modelling environment as it has a rich range of facilities

to support our requirements. Non-technical domain experts

will use this modelling tool to author serious game content,

collating the art assets and defining the necessary game

mechanics that make up the serious game.

 We have implemented five unique user interface (UI)

components that can assist non-technical domain experts

when modelling the aspects serious games design in the

SeGMEnt modelling environment. These UI components are:

 Flow visualisation – this provides visual tools to

represents the flow of states within the serious game

using a state diagram notation that has been extended to

include additional information;

 Dynamic option interface – this is a list of options

generated from data fetched from within SeGMEnt to

simplify the data entry process and to prevent error in

data entry;

 What-you-see-is-what-you-get (WYSIWYG)

visualisation – this aids users to visually position media,

graphical user interface (GUI), front-end display (FED)

and game objects strategically on a 2D space through

drag-and-drop interaction and edit properties of media,

GUI, FED and game objects via a simple data entry

interface;

 Statement construction interface – this guides users in

constructing an acting statement, which is an English-like

sentence that defines a game act, by selecting the verb,

noun or conjunction from the options presented in

dynamic option interface; and

 Guided data entry interface – this provides a step-by-

step guide for users to document aspects of serious games

systematically via common GUI components to avoid

overloading requests for information from users.

Figure 4: Model-driven pipeline for the prototype

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 13

Figure 5: Modelling Game Structure in Game Structure Designer.

 Our SeGMEnt tool consist of seven different viewpoints

designed to separate ten aspects of serious games design

described in our Game Content Model into smaller and more

manageable clusters of data. Each of the viewpoints uses a

combination of UI components described earlier to aid users

in visualising aspects of serious game design. These design

viewpoints are:

 Game structure designer which allows users to model

the flow and the structure of a serious game

(see Figure 5);

 Game scenario designer where users specify the flow

of events in a scenario through the definition of game

scenario, game events and game objectives;

 Game object designer which provides the interface to

define a game object‟s identity, specify the associated

attributes, assign an appearance, define actions and

define associated intelligence; Game simulation designer

which provides the facilities for users to specify game

simulation concepts by adding and positioning FEDs on

the virtual canvas and defining the game tempo and

physics via a data entry interface;

 Game presentation designer which offers the

viewpoint for users to model off-game user interfaces

such as a menu screen, a screen that presents the game

player with the game objectives and a screen that

presents the victory or loss results to the game player;

 Game environment designer where users model a game

environment in which a given scenario takes place by

strategically positioning game objects, proximity triggers

and checkpoints to construct the environment in which

the game-play will be set and place virtual cameras

visually on a 2D space; and

 Game player designer which provides the viewpoint

where users can specify the player‟s avatar, the inventory

size which limits the storage of virtual items, the game

attributes associated, the data to be tracked and the

mapping of game controls to a game object‟s action.

 Our SeGMEnt tool only serves as an interface aid for

domain experts to document the design of a serious game that

is compliant with our Game Content Model. Underlying the

UI is the data which needs to be saved, processed and

exported into eXtensible Markup Language (XML) format

which are then transformed into more refined models using

our MDE tools.

3.2 Model representation

 In our model driven approach we have chosen to use

XML as the format for representing our models. This offers

great flexibility for defining the data format for representing

models. In addition, XML can easily accept additional

information from the automated transformation process

between the models for MDE. Furthermore it is also well

supported by MDE technologies such as Eclipse Modelling

Framework (EMF) and Generic Modelling Environment

(GME) [13] making it the ideal choice for representing our

data-model.

3.3 Model Translation and Code Generation

 The Game Content Model generated by our SeGMEnt

tool needs to undergo a transformation process to be

translated into the Game Technology Model (a computational

model independent of platform) using an MDE tool. The

MDE tool can be developed using existing MDE technologies

such as EMF and GME as described in [14] or implemented

using any programming language with XML parsing

capability.

 In our model-driven serious games development

framework, we have developed custom transformation and

generation tools in PHP. The transformation from Game

Content Model to Game Technology is mainly a process of

refining data and reformatting it into a computation

14 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

independent model by reorganisation of data into

programmatic structures. This also involves the addition of

programmatic statement calls to the relevant Game

Technology Model component‟s function to process the

relevant data. The transformation from Game Technology

Model to Game Software Model further refines the data by

adding in platform specific data.

 Our implementation follows a simple approach by

traversing through the entire source model to locate the

required token of information (XML element) and a new

target model is composed by structurally reformatting data in

the source model and adding in the additional information.

This approach does not constrain us to the structure of the

source model. A similar approach is used to transform the

Game Technology Model to the Game Software Model by

appending additional tokens of information that mark the

interfaces of the components to be included to enable code

pairing during the software artefact generation process.

 Our basic code generation tool is also implemented using

an approach similar to that described for the transformation

tool. Each of the marked tokens are located and then

translated into code for a specific platform. Each token of

information either maps to a single line of code or a segment

of codes defined in some code template. The final code is

built up based on the structure of Game Software Model and

generated as a textual artefact.

4 Producing Serious Games for

Games-based Learning using A

Model-Driven Approach

 The production of serious games for game-based learning

is centred on design for learning where rules and game-play

are design to support the defined learning objectives. In our

previous work [15], we proposed an educational game design

methodology consisting of thirteen activities that are grouped

into three phases:

 Planning Phase: (1) Define learning objectives and

design goals, (2) understand learners, (3) identify

learning activities for learning objectives defined in

activity 1, (4) Sequence learning activities in increasing

complexity order, (5) design the story to set the scene

and link learning activities defined in activity 3;

 Protoyping Phase: (6) design game mechanics for

learning activities defined in activity 3, (7) Design game

components and associated behaviours, (8) Design

scenarios and game-play for learning activities defined in

activity 3 using activity 4 and activity 5, (9) prototype

game level, (10) evaluate prototype against learning

objectives, (11) refine the game level;

 Finalising Phase: (12) finalise educational game and

(13) quality assurance test on educational game.

 The model-driven approach follows the same process

where non-technical experts conduct the design activities 1 to

7 on paper. Once the details of the serious game have been

decided, domain experts can then model the serious game in

our SeGMEnt tool. Modelling in SeGMEnt follows a bottom-

up approach in which it requires a modeller to model basic

elements with a view to creating more complex composite

elements from these basic elements later on. There are seven

successive stages to follow when modelling a serious game in

SeGMEnt (see Figure 6). The first stage involves modelling

of game objects and this is done using the game object

designer. Once all game objects have been defined the game

environment can be set up using the game environment

designer. This is followed by modelling of the game scenarios

and definition of game rules and game objectives using the

game scenario designer. The next stage involves the

modelling of various game presentation contexts using the

game presentation designer. Then the domain expert can

model the game simulation parameters via the game

simulation designer. The order of stage 4 and stage 5 can

swapped as there is no precedence dependency. Once the

game presentation context, game simulation context and game

scenarios have been modelled, domain experts can now focus

on modelling the game flow. The final stage of modelling of

the serious game involves the definition of the game player

via the game player designer.

Figure 6: Stages of serious game modelling in SeGMEnt.

 The transformation of models and generation of code in

our model driven approach is automatic and can be initiated

through the “Export” command in the SeGMEnt tool. This

will first generate an XML file compliant with the Game

Content Model by passing the data from SeGMEnt to Game

Content Model Creator. After the file has been created, the

Game Content Model Creator will pass the control to Game

Technology Model Translator which will read the Game

Content Model and transform it into a programmable format

which is also in XML file format. Once the Game Content

Model has been transformed to Game Technology Model, the

control is then passed to the Game Software Model translator

which will read the Game Technology Model and add in

platform specific information to the Game Technology Model

to form the Game Software Model. Once the transformation

is complete, the control is then passed to the code generator

which generates code in the form of text output presented on

a web interface. At present, our code generator supports the

generation of ActionScript 2.0 code for execution on the

Adobe Flash platform.

5 Discussion

 This model-driven approach changes how serious games

are developed traditionally. Instead of developing software

based on a set of given design requirements, our model-

driven approach demands software developers to produce

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 15

assets and tools which non-technical domain expert can use to

produce serious games without worrying the technical aspects

of games development. The complexity of serious games

development is now hidden behind the SeGMEnt tool and

driven by the models and MDE tools that interprets and refine

the models for generation of software artefacts.

 Using the model-driven approach in serious games

development does not imply that every aspect of serious

games production is automated. Domain experts are expected

to understand serious game design and required to adhere to

the methodical approach of serious game modelling in

SeGMEnt to ensure that the Game Content Model produced

by experts using our SeGMEnt tool is valid. We acknowledge

that serious games design is still a creative process and it

demands specialised skill despite the tools being a guide and

aid for non-technical domain experts. Therefore we cannot

expect our model-driven approach to instantly transform a

novice tutor to a serious game designer capable of designing

interesting and creative problems for game players.

 Serious games as real-time applications demand lag-free

performance and generated codes can reduce opportunities

for code optimisation in some instances. This can limit the

level of complexity of a serious game and the amount of

dynamic objects the software can process during runtime.

Unlike generated code, manual hand-coding permits expert

game developers to apply clever solutions to improve

performance. We believe this trade-off in code performance

is far outweighed by the fact that more and more non-

technical game designers will be able to create and reuse

serious game resources.

6 Conclusions

 Game-based learning is a highly desirable learning

approach for the “PlayStation-driven” generation of learners.

However, it lacks technological solutions that can help non-

technical domain experts to author custom interactive

learning content to support this innovative learning approach.

Our model-driven framework supports the development of

serious games through the use of our MDE tools. The model-

driven approach helps non-technical domain experts to

produce serious games quickly, easily and affordably (in the

long term). Our vision is for our model-driven serious game

development framework and our model driven approach to

serve as a basis for more implementation of high-level serious

game authoring tools designed specifically for non-technical

domain experts who wish to produce serious games. We look

forward to a future where serious game artefacts are

published freely and openly by non-technical practitioners

around the world to build upon and improve opportunities for

learning.

7 References

[1] S. Tang, M. Hanneghan, and A. E. Rhalibi, "Introduction

to Games-Based Learning," in Games-Based Learning

Advancements for Multi-Sensory Human Computer

Interfaces: Techniques and Effective Practices, T. M.

Connolly, M. H. Stansfield, and L. Boyle, Eds., ed Hershey:

Idea-Group Publishing, 2009, pp. 1-17.

[2] FAS. (2006). Harnessing the power of video games for

learning, Summit on Educational Games 2006. Available:

http://fas.org/gamesummit/Resources/Summit%20on%20Edu

cational%20Games.pdf

[3] H. Jenkins, E. Klopfer, K. Squire, and P. Tan. (2003,

October 2003) Entering The Education Arcade. Computers in

Entertainment (CIE) [Applications]. 17-17.

[4] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA

Explained: The Model Driven Architecture : Practice and

Promise: Addison-Wesley, 2003.

[5] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling:

Enabling Full Code Generation. Hoboken, New Jersey:

Wiley-IEEE Computer Society Press, 2008.

[6] S. Tang and M. Hanneghan, "A Model-Driven

Framework to Support Development of Serious Games for

Game-based Learning," presented at the 3rd International

Conference on Developments in e-Systems Engineering

(DESE2010), London, UK, 2010.

[7] J. P. Zagal, M. Mateas, C. Fernández-Vara, B.

Hochhalter, and N. Lichti, "Towards an Ontological

Language for Game Analysis," in DiGRA 2005 - the Digital

Games Research Association’s 2nd International

Conference, Selected Papers, Simon Fraser University,

Burnaby, BC, Canada, 2005, pp. 3-14.

[8] A. Järvinen, "Introducing Applied Ludology: Hands-on

Methods for Game Studies," presented at the Digra 2007

Situated Play: International Conference of the Digital Games

Research Association, Tokyo, Japan, 2007.

[9] V. Sarinho and A. Apolinário, "A Feature Model

Proposal for Computer Games Design," presented at the VII

Brazilian Symposium on Computer Games and Digital

Entertainment, Belo Horizonte, 2008.

[10] S. Tang and M. Hanneghan, "Game Content Model: An

Ontology for Documenting Serious Game Design," in

Proceedings of 4th International Conference on

Developments in e-Systems Engineering (DESE2011), Dubai,

UAE, 2011, pp. 431-436.

[11] S. Tang, M. Hanneghan, and C. Carter, "A Platform

Independent Model for Model Driven Serious Games

Development," in 6th European Conference on Games Based

Learning (ECGBL 2012), Cork, Ireland, 2012, pp. 495-504.

[12] J. Gregory, Game Engine Architecture. Natick,

Massachusetts: A K Peters, Ltd., 2009.

[13] A. Ledeczi, M. Maroti, A. Bakay, G. Karsa, J. Garrett,

C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi,

"The Generic Modeling Environment," in Workshop on

Intelligent Signal Processing, Budapest, Hungary, 2001.

[14] S. Tang and M. Hanneghan, "State-of-the-Art Model

Driven Game Development: A Survey of Technological

Solutions for Game-Based Learning," Journal of Interactive

Learning Research, vol. 22, pp. 551-605, 2011.

[15] S. Tang and M. Hanneghan, "Designing Educational

Games: A Pedagogical Approach," in Design and

Implementation of Educational Games: Theoretical and

Practical Perspectives, P. Zemliansky and D. Wilcox, Eds.,

ed Hershey, PA: IGI Global, 2010, pp. 108-125.

16 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://fas.org/gamesummit/Resources/Summit%20on%20Educational%20Games.pdf
http://fas.org/gamesummit/Resources/Summit%20on%20Educational%20Games.pdf

Rocket Aiming Project: A Service Learning Study

J. Carroll, C. Zhao, F. Moinian, and M. Estep

Computing & Technology Department, Cameron University, Lawton, OK, USA

Abstract – The Rocket Aiming Project was introduced to

the Computer Science program at Cameron University in

the fall semester, 2011. The mission of this project was to

develop an unclassified rocket aiming algorithm for the

Guided Multiple Launch Rocket System (GMLRS) Program.

This project provided the Computer Science students a

unique opportunity to apply what they gained from

classroom teaching in solving a real-world problem. There

is discussion on how students were instructed to complete

the project following government software development

procedures. The authors concluded that a service learning

approach not only enriched the learning environment and

enhanced the students’ problem-solving abilities, but also

established a healthy relationship between Cameron

University and the Fires Center of Excellence at Fort Sill.

Key Words: Service Learning, Rocket Aiming, Problem

Solving

1 Introduction

 It is a crucial task in a Computer Science program to

enhance students’ problem solving ability. Traditional

classroom teaching may be insufficient due to a lack of

connection to the real world [1]. Service learning may

increase current student satisfaction [2, 3]. The Rocket

Aiming Project was introduced to the Computer Science

Program at Cameron University in the fall semester, 2011.

The purpose of the project was to develop an unclassified

rocket aiming algorithm for the Guided Multiple Launch

Rocket System (GMLRS) program to optimize aim point

distribution when attacking area targets. The algorithm

supports circular and rectangular targets distributing aim

points to maximize area coverage while weighing the center

of the target at a higher priority. The Rocket Aiming project

provided the authors’ CS students with a unique

opportunity to apply what they gained from classroom

teaching in solving a real-world problem. The CS4003

Rocket Aiming seminar was created to complete this

project. In this article, the software development process,

algorithm development and implementation, and testing

management is discussed. The rocket aiming project created

an enticing learning environment where students were

motivated to use their knowledge to solve a real problem.

The students also had an opportunity to learn the software

development process from U.S. government computer

scientists. This project not only enriched the students’

learning environment and enhanced their creative problem-

solving ability [4], but also established a healthy

relationship between Cameron University and the Fires

Center of Excellence at Fort Sill [5]. As a result, the

completion of this project benefited both student learning

and U.S. armed forces.

2 Methods and Procedures

2.1 Forming Teams and Signing Team

 Contracts

 Ten students were enrolled in the rocket aiming class.

They were divided into two even teams. Each team

consisted of a captain, a lead programmer, a lead algorithm

developer, testing designer, and systems analyst. Team

members first signed a team contract to clearly define each

member’s responsibilities and then worked together to

make a project management plan that included: milestones

of the project, Gantt chart, algorithm development

strategies, work log, and leaders for each task (Figure 1).

The two teams worked on the same project in competition

against each other, vying to produce the winning project

chosen by the client.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 17

Figure 1. Project Management (Gantt Chart)

2.2 Determining System Requirements

 The student teams met with the computer scientists,

mathematicians, and government agents to conduct a

Primary System Review. During this meeting, the students

asked questions that were prepared before the meeting to

determine the system requirements [6]. The resulting

requirements are shown in Figure 2.

Requirements

 Develop an aiming algorithm that supports both

Circular and Rectangular target geometries

 Develop an aiming algorithm that minimizes the

deviation from a given point regardless of the number

of aim points

 Develop an aiming algorithm that minimizes the

unaffected area within a target area regardless of the

number of aim points

 Develop an aiming algorithm that does not affect areas

outside the boundaries of a designated target area

unless the X value is larger than the target dimensions

given

 Provide to the government at no cost an aiming

algorithm in C or C++ format

 Provide to the government software documentation of

the developed code consisting of definitions, etc.

Requirements (cont.)

 Provide to the government a test plan and testing

procedures for the developed software

 Provide to the government the internal testing results

leading up to the acceptance test

 Provide to the government a text file detailing off-set

(from target center) aim point locations, minimum

requirement. Desired: a GUI depicting impact locations

 Provide an aiming algorithm capable of computing

impact locations (off-sets) for up to 12 aim points

 Provide an aiming algorithm capable of returning from

1 to 12 aim points from as many as 12 aim points

 Software shall employ a numbering convention (1-12)

from left to right, top to bottom

 Software shall return the specific aim point number

with associated aim point (offsets)

Figure 2. System Requirements

2.3 Conducting System Analysis and Design

 Based on the information obtained in the interview,

each team completed their system analysis and created a

system information flow chart [6]. An example chart is

shown in Figure 3.

18 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 3. Rocket Aiming System Information Flow Chart

2.4 Algorithm Development and

 Implementation

 Based on the approved system design, the teams

started their algorithm development to solve the problem

[6]. After finishing algorithm development, the teams

presented their algorithms to the clients in a Critical System

Review meeting. In their presentations, they had to prove

that their algorithm was correct mathematically and show

some basic functionality of the system using prototypes.

After the Critical System Review, the algorithm was coded

in C, and then the output of the program execution was

imported in a GUI display program to show the graphic

result. Two implementation samples are shown in Figure 4.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 19

Figure 4. Implementation Results: (a) Rectangular Target, (b) Circular Target

20 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

2.5 Testing

 Each team was required to make a testing plan that

included, but was not limited to, testing strategies, testing

data set, and testing methods [6]. A team testing plan is

shown in Figure 5. The test data was generated by a random

number generator, and millions of cases were tested. The

results of testing met the satisfaction of the clients.

Testing Plan

The purpose of testing these algorithms is to ensure each of

them, when properly used, is capable of producing accurate

aim points for any combination of length/width or radius.

Also, testing ensures that any invalid data entries are taken

care of properly to ensure there are no errors from the start

and only valid output is given. Testing was split into three

main parts to provide more accurate results overall.

1. The first mode of testing was in-bounds testing. The in-

bounds testing was done by starting at 0 for the width

and length or radius and incrementing them one at a

time for each test run all the way to 9999. When these

numbers are entered into the program, the program runs

and gives results; those results are the (x,y) coordinates

of all the rockets. When the results are analyzed they are

checked to see if the rocket radius lies outside the

bounds of the target. If so, then the dimension(s),

number of rockets, and the X value are documented so

that a tester could go back and replicate the error and

find out what went wrong.

2. The second mode of testing was the out-of-bounds

testing. This testing was done to validate that the

program would deny any unwanted or invalid data. This

was achieved by starting at -9999 for the width, length,

and/or radius as well as X and incrementing them one at

a time for each individual test case all the way to 0. The

results would come out to be all the test cases and if

they failed or not. If a test run failed, that means that it

was correct because every time a test case is run the

input was incorrect which should return invalid results.

If a test run completed then that means the invalid data

entered was accepted; they were documented then

reviewed and corrected.

3. The final mode of testing was done manually. A tester

would hard code numbers into the variables, compile

and run, then check the GUI to visually verify that the

results gave valid aim points that are within the bounds

of the target and properly spaced within the target. All

numbers entered into the program manually were

randomly thought of by the tester to try to push the

limits of the program for errors. If errors occurred they

were documented then submitted for review and

correction.

Figure 5. Sample of a Testing Plan

2.6 Acceptance Test & Results

 The final project was presented to Fort Sill Fires

Center of Excellence personnel, including the Commanding

General David Halverson and Lockheed Martin [5], at

Cameron University. Both student teams passed the

acceptance test and Fort Sill is in the process of integrating

the rocket aiming algorithms into their systems. Client

comments included the following...

 “It was apparent that both teams have dedicated a

lot of time into software development and briefing

products. You should be extremely proud of their

efforts. A project like this would have cost the

government an extreme amount of money and

would not be any better.”

 “From my perspective, both groups were excellent.

It was evident that a great deal of work was put

into both the briefings as well as into the products

themselves. In fact, all of the government people

present were impressed by the amount, quality,

and creativity of the work. As you know, the

ultimate goal of the CDR phase is to get a "green

light" to complete the work package. In the cases

of both groups, that approval was given.”

3 Discussion & Findings

 A real-world project provides a unique opportunity

for students to apply what they gain from classroom

teaching in solving a real-world problem. During this

problem solving process, the students are motivated

significantly and are willing to work harder than when

taking a regular lecture-based class. First, on-site job

training provides students with valuable lessons in personal

responsibility, citizenship, team work, and product quality,

which can be helpful to improve the quality of these future

computing professionals. Second, student learning

outcomes are enhanced, especially the ability to “learn by

doing.” Third, this approach builds a bridge between higher

education and community that benefits both parties. Finally,

the instructors teaching practices are enhanced as a

byproduct of working with students on a real-world project.

4 References

[1] Teaching Software Development vs. Software

Engineering, Gary Pollice, Worcester Polytechnic

Institute,

http://www.ibm.com/developworks/rational/library/de

c05/pollice/index.html

[2] Making Service Learning Accessible to Computer

Scientists, Brian J. Rosmaita,

http://academics.hamilton.edu/computer_science/bros

mait/talks

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 21

http://www.ibm.com/developworks/rational/library/dec05/pollice/index.html
http://www.ibm.com/developworks/rational/library/dec05/pollice/index.html
http://academics.hamilton.edu/computer_science/brosmait/talks
http://academics.hamilton.edu/computer_science/brosmait/talks

[3] The Cameron University Green Website Project-

Part 1: Service Learning in the Fall 2009, Mike

Estep, David Kenneth Smith, Chao Zhao, and Tom

Russell, International Journal of Education Research

, Volume 5 No. 2, Summer 2010

[4] Blooms Taxonomy, Vanderbilt University,

http://cft.vanderbilt.edu/teaching-

guides/pedagogical/blooms-taxonomy/

[5] Cameron University Announces Winners of

“University Choice Awards,” Cameron University,

http://www.cameron.edu/media-

releases2012/University-Choice-Awards

[6] Object-Oriented and Classical Software

Engineering, 8th Edition, Stephen R. Schach,

McGraw Hill, 2011.

22 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://cft.vanderbilt.edu/teaching-guides/pedagogical/blooms-taxonomy/
http://cft.vanderbilt.edu/teaching-guides/pedagogical/blooms-taxonomy/
http://www.cameron.edu/media-releases2012/University-Choice-Awards
http://www.cameron.edu/media-releases2012/University-Choice-Awards

Concurrent Collaborative
Captioning

M. Wald

ECS, University of Southampton, UK

Abstract - Captioned text transcriptions of the spoken
word can benefit hearing impaired people, non native
speakers, anyone if no audio is available (e.g. watching TV
at an airport) and also anyone who needs to review
recordings of what has been said (e.g. at lectures,
presentations, meetings etc.) In this paper, a tool is
described that facilitates concurrent collaborative
captioning by correction of speech recognition errors to
provide a sustainable method of making videos accessible
to people who find it difficult to understand speech through
hearing alone. The tool stores all the edits of all the users
and uses a matching algorithm to compare users’ edits to
check if they are in agreement.

Keywords: Accessibility, Speech recognition, Captioning,
Collaborative editing

1. Introduction
As more videos are becoming available on the

web these require captioning/(subtitling) if they are to
benefit hearing impaired people, non-native speakers,
anyone if no audio is available (e.g. watching TV at an
airport) and also anyone who needs to search, review
recordings of what has been said (e.g. at lectures,
presentations, meetings etc.) or translate the recording.

The provision of synchronized text captions with video also
enables all their different communication qualities and
strengths to be available as appropriate for different
contexts, content, tasks, learning styles, learning
preferences and learning differences. For example, text can
reduce the memory demands of spoken language; speech
can better express subtle emotions; while images can
communicate moods, relationships and complex
information holistically.

Professional manual captioning is time consuming and
therefore expensivei (e.g.180$/hour). Automatic captioning
is possible using speech recognition technologies but this
results in many recognition errors requiring manual
correction [1]. With training of the software and experience
some speakers can sometimes achieve less than 10% word
error rates with current speech recognition technologies for
conversational speech using good quality microphones in a
good acoustic environment. With conversational speech
however the accuracy can drop as the speaker

speeds up and begins to run the ends of words into the
beginnings of the next word. Speakers also use fillers (e.g.
ums and ahhs) and sometimes hesitate in the middle of a
word. People do not speak punctuation marks aloud when
conversing normally but speech recognition technologies
designed for dictation use dictated punctuation to indicate
the end of one phrase or sentence and the beginning of
another to assist the statistical recognition processing of
which words are likely to follow other words. However,
often it is not possible to train the speaker or the software
and in these situations, depending on the speaker and
acoustic environment, word error rates can increase to over
30% [2] even using the best speaker independent systems
and therefore extensive manual corrections may be
required. If close to 100% accuracy is required then a
human editor will be required and even if the Word Error
Rate is very low, unless a human editor checks it nobody
can be certain of the accuracy.

In this paper, further details of the development of a tool is
described that facilitates collaborative correction of speech
recognition captioning errors to provide a sustainable
method of making audio or video recordings accessible to
people who find it difficult to understand speech through
hearing alone [3]. If there is no correct version of the
transcript in existence there is no simple way of knowing
whether the person creating or correcting the captions is
making errors or not. The new approach described in this
paper therefore is to allow many people to edit the captions
at the same time and automatically compare their edits to
verify they are correct. The term ‘Social Machines’ii has
been used to describe such large scale collaborative
problem solving by humans and computers using the web.

Section 2 reviews other approaches, section 3 describes
Synote and its captioning method, section 4 describes the
new collaborative caption creation tool while section 5
summarises the conclusions and future planned work.

2. Review of other approaches
There are many web based captioning tools some

which only allow captioning of videos they host (e.g.
YouTubeiii, overstreamiv, dotsubv) while others allow
manual captioning of web based videos hosted elsewhere
(e.g. Amaravi, originally a Mozilla Drumbeat project called

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 23

Universal Subtitles; CaptionTubevii; Subtitle Horseviii; Easy
YouTube Caption Creatorix).

There are also many examples of desktop captioning/
subtitling software (e.g. magpiex, MovieCaptionerxi,
Subtitle Workshopxii etc.) but these cannot normally be
used with web hosted video and would involve transferring
files between captioners if more than one person was
involved in captioning.

None of the captioning systems are designed to allow more
than one person at a time to create the captions or edit the
captions.

Transcription is not only used for hearing impaired and non
native speakers. Speech recognition scientists need
transcribed speech to build and improve their acoustic
speech models but the accuracy of the transcriptions is less
important as Novotney and Chris Callison-Burch [4]
showed that the accuracy of speech recognition models
could be improved more cheaply using more lower
accuracy transcriptions by Amazon Mechanical Turk to
transcribe speech for 3% of the cost of more accurate
professional transcription. Lee & Glass [5] used workers on
the Amazon Mechanical Turkxiii with two stages of
transcription each using ASR to filter out poor quality. The
first stage presented each worker with five, five to six
second clips created automatically by silence detection. A
15% word error rate (WER) was achieved by proving
feedback using an automatic quality detector measuring
both the range of words used (e.g. to detect lots of ‘ums’)
and how closely it matched the n best words and phoneme
sequences (e.g. to detect random corrections) rejecting poor
quality transcripts with a WER greater than 65%. The
second stage joined together clips to make 75 seconds of
audio synchronised with the first stage transcripts to
provide more audio context. Feedback on performance
quality (with 80% being the acceptance threshold) was
given by comparing the number of corrections made with
the number of corrections needed estimated by using ASR
word confidence scores. Their trained support vector
machine classifier was able to judge 96.6% of the
submitted transcripts correctly, reducing poor quality
transcripts by over 85% and WERs to 10%.

3. Synote
Synote

xviii

xiv [6] is a cross browser web based
application that can use speaker independent speech
recognitionxv for automatic captioning of recordings.
Synote also allows synchronization of user’s notes and
slide images with recordings and has won nationalxvi and
international awardsxvii for its enhancement of education
and over the past four years has been used in many
countries . Figure 1 shows the Synote interface with the
video in the upper left panel, the synchronized transcript in
the bottom left panel with the currently spoken words

highlighted in yellow and the individually editable
‘utterances’ in the right panel. While Synote provides an
editor to correct speech recognition errors in the
synchronised transcript in the bottom left panel, the whole
transcript rather than individual corrections are saved to the
Synote server which can take a substantial time (many
seconds). If two people edit the same transcript then the
most recently saved version will overwrite the previously
saved version. It is therefore only possible to use
collaborative editing in this way by only permitting one
person to edit at a time. While this approach can be used
for professional editing, that is not an affordable solution
for editing of lecture recordings in universities. The
individual captions in the right hand panel are however
saved individually and so it may be possible to motivate
students to correct some of the errors while reading and
listening to their lecture recordings by providing rewards,
for example in the form of academic credits. Some short
experiments using a few students have indicated that
students who edit the transcript of a recorded lecture do
better on tests on the content of that lecture than students
who just listen to and watch the lecture. The top right hand
‘Synmark’ (SYNchronised bookMARKS) panel was
originally designed for creating synchronized notes rather
than captions although it does also allow for multimedia
captions as shown in Figure 2. where each caption has a
picture of the speaker and a different colour for what they
are saying which is very helpful to identify which speaker a
caption refers to. The pictures of the speaker are not stored
on Synote’s server but can be stored anywhere on the web
(e.g. imdb.com). A ‘parser’ was developed (Figure 3) to
automatically split the transcript into utterances which
could be uploaded as ‘Synmarks’. This enables the best
way of automatically splitting the synchronized transcript
into editable utterances/captions to be investigated;
including the number of words in an utterance, total time
length of utterance, the length of silence between words or
by the commas inserted by the default silence setting of the
IBM speaker independent speech recognition system [7].
The best way of automatically presenting the utterances for
correction is also being investigated including separating
utterances with commas or full stops or spaces and
capitalizing the first word of each utterance. The system
can produce both a standard text format SRT file for use
with most captioning systems or an XML file for use with
Synote.
Figure 4 shows some of a transcript created using speech
recognition without splitting into utterances while Figure 5
shows the same transcript split into utterances using
silences.
The transcript file format uploaded to the parser could be
Synote XML (the native format of the IBM speech
recognition used by Synote) , Synote Print preview
(Synote’s output format and so allowing uploading of
Synote’s manually edited and/or transcribed synchronized

24 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 1. Synote Player Interface

 Figure 2. Captioning in Synmarks

transcripts) or SRT (A common video captioning format).
Although Synmarks are saved to the server when they are
created by a user any changes to Synmarks by users will
only be updated in other users’ Synmark panels when they
choose to refresh the browser. This was a decision made
when Synote was being designed as updating all the
Synmarks whenever one Synmark was edited or created
took a few seconds and so detracted from the user
experience. This means that if users are editing the captions
in the Synmark panel, they must regularly refresh the
browser to check if any other users have edited or corrected
any Synmarks. Synote only stores the most recent edit to a
Synmark and keeps no record of previous edits. Synote also
allows multiple users to concurrently manually caption or
correct the errors in the speech recognition transcript. If
two users concurrently select the same time period to
caption (i.e. without realizing the other user is captioning
Synmarks) this could create an unsatisfactory user
experience of seeing multiple captions. If two users
concurrently edit the same speech recognition utterance in a
Synmark then the first person to save their correction will
have their correction overwritten by the second person
saving their corrections. A research tool was therefore
developed to investigate what would be the best design for
a collaborative editing tool.

Figure 3. Transcript Parser

Figure 4. Transcript without splitting into utterances

This is a demonstration of the problem of the
readability of text created by commercial speech
recognition software used in lectures they were
designed for the speaker to dictate grammatically
complete sentences using punctuation by saying
comma period new paragraph to provide phrase
sentence and paragraph markers when people speak
spontaneously they do not speak in what would be
regarded as grammatically correct sentences as you
can see you just see a continuous stream of text with no
obvious beginnings and ends of sentences normal
written text would break up this text by the use of
punctuation such as commas and periods or new lines
by getting the software to insert breaks in the text
automatically by measuring the length of the silence
between words we can improve the readability greatly

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 25

Figure 5. Transcript split into utterances

4. Collaborative Captioning Tool
The collaborative correction tool shown in Figure

6 stores all the edits of all the users and uses a matching
algorithm to compare users’ edits to check if they are in
agreement before finalizing the ‘correct’ version of the
caption. This improves the captioning accuracy and also
reduces the chance of ‘spam’ captions. The tool allows
contiguous utterances from sections of the transcript to be
presented for editing to particular users or for users to be
given the freedom to correct any utterance. The idea of the
tool is that students could watch recordings of lectures that
have captions created by automatic speech recognition and
they could correct as many or as few of the recognition
errors as they choose. Administrator settings (Figure 7)
allow for different matching algorithms based on the
closeness of a match and the number of users whose
corrections must agree before accepting the edit.
Contractions are accepted (e.g. I’m) as meaning the same
as the full version (i.e. ‘I am’) and to enable these ‘rules’ to
be easily extended a substitution rules XML file uploader is
provided (Figure 8). As shown in Figure 6, the red bar on
the left of the utterance and the tick on the right denote that
a successful match has been achieved and so no further
editing of the utterance is required while the green bar
denotes that the required match for this utterance has yet to
be achieved. Various display and editing modes are
provided for users. Users are awarded points for a matching
edit and it is also possible to remove points for corrections
that do not match other users’ corrections (Figure 9). A
report is available showing users’ edits (Figure 10).
Investigations are currently underway using this research
tool in order to determine the most sustainable approach to

adopt for collaborative editing. The tool has been designed
to be scalable for wide scale ‘crowdsourcing’ of captioning.

Figure 6. Collaborative correction tool

Figure 7. Collaborative Tool Settings

Figure 8. Substitution Rules Uploader

This is a demonstration of the problem of the
readability of text created by commercial speech
recognition software used in lectures
they were designed for the speaker to dictate
grammatically complete sentences using punctuation
by saying comma period new paragraph to provide
phrase sentence and paragraph markers
when people speak spontaneously they do not speak in
what would be regarded as grammatically correct
sentences
as you can see you just see a continuous stream of text
with no obvious beginnings and ends of sentences
normal written text would break up this text by the use
of punctuation such as commas and period or new
lines
by getting the software to insert breaks in the text
automatically by measuring the length of the silence
between words we can improve the readability greatly

26 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 9. Rewards and penalty scores

Figure 10. Report showing users’ edits

5. Conclusion
The use of collaborative correction of speech

recognition errors offers a promising approach to providing
sustainable captioning and Synote and its associated parser
and collaborative correction tool provide the opportunity to
investigate the best approach for both making it as easy as
possible for users to correct the transcripts and also for
providing the motivation for them to do so. Future work
will involve further user trials of the system. A wmv format
video demonstration of the systems tools described in this
paper is available for downloadingxix and is also available
on Synotexx captioned using Synote’s speech recognition
editing system. If users wish to annotate the recording on
Synote they need to register before logging in with their
registered user name and password, otherwise they can go

to the “Read, Watch or Listen Only Version”. The panels
and size of the video can be adjusted up to full screen and
the size of the text can also be enlarged.

6. Acknowledgments
Dawid Koprowski is the collaborative tool’s lead

developer and other ex ECS students Mike Kanani,
Karolina Kaniewska, Stella Sharma were also involved in
the tool’s development and Alex Kilcoyne conducted the
user trials

7. References
[1] Bain, K., Basson, S., Wald, M. (2002) Speech
recognition in university classrooms. In: Proceedings of the
Fifth International ACM SIGCAPH Conference on
Assistive Technologies. ACM Press, 192-196

[2] Fiscus, J., Radde, N., Garofolo, J., Le, A., Ajot, J.,
Laprun, C., (2005) The Rich Transcription 2005 Spring
Meeting Recognition Evaluation, National Institute Of
Standards and Technology

[3] Wald, M. (2011) Crowdsourcing Correction of Speech
Recognition Captioning Errors. In, W4A: 8th International
Cross-Disciplinary Conference on Web
Accessibility, Hyderabad, India, W4A.

[4] Novotney, S. Callison-Burch, C. (2010) “Cheap, fast
and good enough: automatic speech recognition with non-
expert transcription,” in Proc. HLT-NAACL, pp. 207-215.

[5] Lee, C. Y., Glass, J. (2011) A transcription task for
crowdsourcing with automatic quality control. Proc.
Interspeech2011, Florence.

[6] Wald, M. (2010) Synote: Designed for all Advanced
Learning Technology for Disabled and Non-Disabled
People. In, Proceedings of the 10th IEEE International
Conference on Advanced Learning Technologies, Sousse,
Tunisia, pp 716-717.

[7] Soltau, Hagen; Saon, G.; Kingsbury, B. (2010) "The
IBM Attila speech recognition toolkit," Spoken Language
Technology Workshop (SLT), 2010 IEEE , pp.97-102

i http://www.automaticsync.com/caption/
ii http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J017728/1
iii www.youtube.com
iv http://www.overstream.net/
v http://dotsub.com/
vi http://www.amara.org
vii http://captiontube.appspot.com

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 27

http://www.overstream.net/

viii http://www.subtitle-horse.com/
ix http://accessify.com/tools-and-wizards/accessibility-tools/easy-youtube-caption-creator/
x http://ncam.wgbh.org/invent_build/web_multimedia/tools-guidelines/magpie
xi http://www.synchrimedia.com/#movcaptioner
xii http://www.urusoft.net/products.php?cat=sw&lang=1
xiii https://www.mturk.com/
xiv http://www.synote.org
xv http://www.liberatedlearning.com/news/AGMSymposium2009.html
xvi http://www.ecs.soton.ac.uk/news/3874
xvii http://www.eunis.org/activities/tasks/doerup.html
xviii http://www.net4voice.eu
xix http://users.ecs.soton.ac.uk/mw/recordings/Mike%20Wald/webaccessibilitycompetitionsubmit/webaccessibilitycompetitionsubmit.wmv
xx http://www.synote.org/synote/recording/replay/55564

28 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://www.synchrimedia.com/#movcaptioner
https://www.mturk.com/
http://www.ecs.soton.ac.uk/news/3874

Dynamic adaptation of business process models
Application to the healthcare process in AP-HM

Renaud ANGLES
1,2

, Philippe RAMADOUR
2
, Corine CAUVET

2
, Sophie RODIER

1

1
Assistance Publique – Hôpitaux de Marseille

Direction des Systèmes d’Information et de l’Organisation

147, Boulevard Baille

13 005 MARSEILLE, FRANCE

{firstname.lastname}@AP-HM.fr, http://fr.AP-HM.fr

2
AMU (Aix-Marseille University), LSIS (UMR CNRS 7 296)

Domaine Universitaire de Saint-Jérôme

Avenue Escadrille Normandie-Niemen

13 397 MARSEILLE cedex 20, FRANCE

{firstname.lastname}@lsis.org, http://www.lsis.org

Abstract— Healthcare organizations, which are facing the

challenge of delivery personalized services to their patients, are

obviously affected by the problems of flexibility and adaptability

of their processes. This research is applied to healthcare

processes in the context of AP-HM hospitals (Assistance Publique

- Hôpitaux de Marseille). In this paper, we consider specifically

the drug circulation process where the complexity and the high

level of variability are critical issues and important in practice.

The paper introduces the V-BPMI approach for process

variability and it presents how dynamic adaptation can be

carried out for delivering process models that satisfy actor’s

business requirements. The paper focusses on both the steps of

the adaptation cycle and the adaptation trees dynamically

produced on business actors’ demand.

Keywords—Process flexibility, Process adaptation, Adaptation

trees, Variability trees

I. INTRODUCTION

Companies have identified enterprise information systems
agility as a competitive advantage required for increasing
product and service customization, for improving quality of
products and services delivered and for adapting their business
rules to highly dynamic working environments. Healthcare
organizations, which are facing the challenge of delivery
personalized services to their patients, are obviously affected
by the problems of flexibility and adaptability of their
processes. Many reports in the healthcare field state that there
is an “absence of real progress towards applying advances in
information technology to improve administrative and clinical
processes” [1]. Furthermore, in healthcare organizations, the
lack of flexibility of enterprise information systems is
considered as a major obstacle in improvement of
organizational and medical treatment processes.

This research is applied to healthcare processes in the
context of AP-HM hospitals (Assistance Publique - Hôpitaux
de Marseille). In this paper, we consider specifically the drug
circulation process where the complexity and the high level of
variability are critical issues and important in practice.

Our research is based upon a recent information system
paradigm known as PAIS (Process-aware Information
Systems): a PAIS is defined as “a software system that
manages and executes operational processes involving people,
applications and/or information sources on the basis of process

models”. Flexibility requirement for PAIS therefore raises two
issues: (i) how to express and manage variability in process
models at design-time [2], [3] and (ii) how to take into account
the business environment for adapting business process models
at run-time [1], [4], [5].

The proposal advocates V-BPMI, an approach where
process models emphasize variability and are supported by
services. V-BPMI provides a process modeling language (so-
called V-BPMN). Goal and context are the main concepts
introduced to support process variability and adaptation.
Process models are memorized in a process repository
statically structured with arborescent links (variability trees).
Dynamic adaptation of process models consists in discovering
and composing available process models to satisfy actor’s
business requirements. The paper focusses on dynamic
adaptation of process models. It introduces both the steps of the
adaptation method and the adaptation trees dynamically
produced on business actors’ demand.

The remainder of the paper is organized as follows. In
section 2, we introduce the requirements of variability and
adaptability in the drug circulation process of AP-HM hospitals
that have motivated this research. Section 3 presents an
overview of V-BPMI approach. Section 4 introduces the
V-BPMI base. Section 5 describes the dynamic adaptation
method and explains dynamic adaptation trees for producing
context-dependent process models. Section 6 presents
operators supporting dynamic adaptation in V-BPMI. Section 7
presents related work and section 8 concludes this paper.

II. PROCESS VARIABILITY REQUIREMENTS FOR THE DRUG

CIRCULATION IN THE AP-HM

This section introduces the drug circuit process in the
AP-HM organization and it highlights the highly dynamic
environment of this process. Such a process requires a very
flexible approach to adapt its execution on the fly in order to
deal with constraints in front of which this process is executed.

A. Overview of the drug circuit process

The process of circulation of the drugs is complex. But, at
high level, it is generally accepted that it can be specified with
three phases as shown in Fig. 1.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 29

Prescription Dispensation Administration

Fig. 1. High level BPMN description of the drug circulation process

The prescription is performed by a doctor in a medical
unit, according to a diagnostic. The dispensation consists in
the preparation and the delivery of the prescribed drugs.
Pharmacists are responsible for validating prescribed drugs and
carrying out the preparations in the pharmacy. Nurses are in
charge of the administration phase, so they are responsible for
giving the adequate drugs and monitor the patients.

B. Process variability

If we consider now in details the sub-process prescription,
it is a loosely specified process which has to be refined by end-
users during run-time, for example taking into account that if
the doctor is a senior the prescription is send immediately,
whereas if he is a junior the prescription has to be validated by
a senior. In this example, there is a predefined constraint
leading to execute or not some validation activities. In practice,
due to the high number of choices, not all of them can be
anticipated and hence pre-defined in a unique process model.

The AP-HM organization manages 4 different hospitals
with their own pharmacy. Each of them is concerned with the
dispensation phase of the drug circulation process. However,
due to available resources which differ from one pharmacy to
another, each one performs a specific variant of the drug circuit
process to satisfy the same business requirement.

Most of healthcare processes are complex and they are
partially realized by existing legacy applications which can be
shared among different processes. In addition, the benefits of
process automation from within a single hospital can be
transferred to other hospitals. Moreover, some process
activities are similar in all cases and there are some differences
regarding the involved software components. Nowadays, the
service paradigm seems to be a further step in process
flexibility due to “late biding” possibility of services. So,
services registries must be defined, managed and maintained.

C. Drug circuit process and its working environment

In practice, there are a large variety of constraints which
impact process definition and deployment as shown in Fig. 2.
The law around the drug circulation process is highly
fluctuative and revisions of the way the process has to be run
are often required, so legal constraints impact processes. The
pharmacy size and the available storage space have an impact
on the storage policy. Every constraint linked to the resources
and the environment is considered as an environmental
constraint. It is possible to perform a task with different
strategies: the storage policy or the period of the day devoted to
the dispensation, for example, are organizational constraints.
To finish, the same technologies are not available in every
pharmacy: the Wi-Fi coverage or the used software are not the
same for example. These are technical constraints.

The constraints where a process is deployed influences the
way it has to be modeled and the way it will be run [6], [7].

Legal constraints

Organisational
constraints

Environmental
constraints

Technical
constraints

Process

impacts

Influences Influences

InfluencesInfluences

Influences

Influences

impacts

Fig. 2. Process constraints and their interactions

Our proposal introduces a methodology, V-BPMI, to model
and manage process variability. Taking into account the
specificity of each deployment context, V-BPMI provides a
dynamic adaptation approach to produce a process suitable to
this context. In this paper, we only consider a simplified
representation of the dispensation phase of the drug circulation
process to illustrate V-BPMI.

III. V-BPMI OVERVIEW

The V-BPMI approach introduces concepts to model and
produce flexible processes in alignment with the business
requirements. This section presents the architecture of V-BPMI
and the main conceptual tools supporting it (Fig. 3).

Services
repository

V-BPMI base

Domain
ontology

V-BPMI
adaptation

engine

V-BPMI and
services

providers

Business
actors

Domain goals
Domain contexts
Domain actors
Domain processes
Domain resources
Domain terms + semantic links

Process lines
Process variants

+
ontological
links

Fig. 3. V-BPMI overview for process adaptation

V-BPMI is mainly supported by:

 A V-BPMI base: this repository contains V-BPMI
process lines and process variants, which support
process variability modelling and dynamic production
of adapted processes (cf. IV and V).

 A services repository: due to the services orientation of
processes in V-BPMI, the service repository is used to
implement such processes.

 A domain ontology: this ontology is used both for the
production and the usage of V-BPMI concepts (process

30 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

lines and process variants). This domain ontology
contains the goals, contexts, actors, processes,
resources of the domain and ontoligical links. It also
contains the domain terms with semantic links (mainly
synonymy, paronymy, hypernymy and hyponymy).
The Fig. 3 underscores the central role of the domain
ontology.

 A V-BPMI adaptation engine: this is the core of the
V-BPMI adaptation approach. This engine is used by
business actors (in our case, healthcare actors) to
produce dynamically adapted processes.

The V-BPMI approach adopts a dual orientation:

 This is an intentional approach: the notion of goal is
one of the main concepts supporting V-BPMI. Goals
allows to define variable processes, thus information
systems, in alignment with the strategy of the
enterprise. According to this orientation, we consider
that the deployement of a business process allows
satisfying a business goal.

 This is a contextual approach: due to the process
constraints interaction (cf. Fig. 2), we consider that a
goal can be satisfied in several ways, depending on the
situation in which it has to be satisfied. The contextual
orientation is powerful for describing several processes
satisfying the same goal, each one being discriminated
by the context in which its deployement is the more
relevant.

IV. THE V-BPMI BASE

We define the V-BPMI approach to model, store and
manage flexible processes. According to the dual orientation of
V-BPMI, we consider that a business process satisfies a goal in
a relevant specific context.

There are several languages for business process modeling.
One of the most common is BPMN [8]. This language mainly
allows expressing activities and their scheduling. Despite the
notion of ad-hoc processes, BPMN unfortunately doesn’t focus
on the variability. That’s why V-BPMI introduces the
V-BPMN language, which encapsulates BPMN and allows
modeling new concepts introduced in V-BPMI. One of the
reasons of the choice of a language encapsulating BPMN is the
service approach for the operationalization of the processes. It
introduces a first level of flexibility, allowing choosing the way
to operationalize a BPMN service task with a “late binding”
possibility. An advantage of this choice is that a BPMN
process is also a V-BPMN process.

This section presents the different concepts related to the
variability before introducing the V-BPMI base used to store
the variable processes.

A. V-BPMI Concepts Supporting the Variability

V-BPMI introduces some concepts for the process
variability modeling and management. We describe here the
main V-BPMI concepts supporting this dual orientation.

 A goal allows describing the finality of a business
process. Its expression is based on domain ontology.
Goals introduce a way for supporting the alignment
between the strategy of the enterprise and the process
deployed. Inspired by [9], we propose to formally
express a goal with an action and an object concerned
by the action: (To do)Action (Something)Object.

For example, (Pick up)Action (Drugs)Object is an
healthcare goal.

 A context is the formal expression of specific situation
in which the deployment of a process is relevant. A
context is a set of contextual assertions supported by
the domain ontology. The assertions are typed and
logically linked in a context with an AND operator (a
context is a conjunction of contextual assertions).
Some of them can be negated with a NOT operator.

For example, (Dispensation type =
emergency)Environmental AND (Storage mode =
Robot)Resource is an healthcare context.

 A process line abstracts all the ways (i.e. business
processes) for satisfying a business goal. A process line
is identified by a business goal. Each business goal to
be satisfied in the domain is associated with a process
line in the V-BPMI base. Thus, in a V-BPMI base, all
the business processes satisfying a business goal G are
associated with the process line identified by G. (cf.
Fig. 4).

(Dispense)Action (Drug)Object

Fig. 4. V-BPMN notation of the collapsed view of the process line of the

drug dispensation

 A process variant contains the description of a
business process in which the variability can be
emphasized (thus, this is a V-BPMN process, as shown
in Fig. 5). So, a process variant provides one of the
ways for satisfying a business goal in a specific
context.

(Dispensation type = emergency)Environmental

Select the drug
request

(Pick up)Action
(Drugs)Object

Give to the
messenger

(Validate)Action
(Prescription)Object

An emergency
request append

Fig. 5. V-BPMN notation of the expanded view of a process variant

A process variant is always associated with a process line:
the one identified by the goal satisfied by the V-BPMN process
contained in the process variant. Several process variants can
then be associated with the same process line, each one

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 31

providing a V-BPMN process satisfying the goal that identifies
the process line. That’s why we discriminate each process
variant by a context which identifies it (cf. Fig. 6).

(Dispense)Action
(Drug)Object

(Dispensation type =
normal)Environmental

(Dispensation type =
emergency)Environmental

Fig. 6. V-BPMN notation of the expended view of the process line of the

drug dispensation associated with 2 collapsed process variants

The V-BPMN process included in a process variant can
contain one or more references to process lines. Such
references allow expressing that a business requirement has to
be satisfied here and it can be satisfied in several ways. This
leads us to identify 2 types of process variants:

 Operationalizable process variants contain no
reference to any process line. In this case, the business
process included in the process variant is an usual
BPMN process which can be operationalized (for
example in BPEL [10], [11]).

 Abstract process variants contain at least one reference
to a process line. In this case, the business process
included in the process variant is a V-BPMN process
that can’t be immediately operationalized: a choice has
to be made to select a specific way for satisfying the
business goal which identifies each referenced process
line. The example of process variant in Fig. 5 is an
abstract process variant: the V-BPMN process it
contains refers 2 process lines.

The language V-BPMN defines 2 symbols to identify
operationalizable process variants and abstract process variants
(cf. Fig. 7).

Operationalizable
process variant

Context A

Abstract process
variant

Context B

Fig. 7. Collapsed V-BPMN notations for operationalizable process variants

and abstract process variants

B. Structure of the V-BPMI base

The concepts introduced above allow producing flexible
processes models. It is important to store the models in a base
taking care on the flexibility and the contextual and intentional
approach.

A process line and its associated process variants can be
structured in a two-level tree. The process line is the tree root
and they are as many leaves in the trees as process variants,
either operationalizable or abstract, associated with the process
line. The link between the process line and the process variants
is a selection link (i.e. an XOR link). This kind of tree is called
a variability tree in the V-BPMI approach.

Fig. 8 presents an example of a variability tree. Its root is
the process line identified by the goal (Pick up)Action
(Drugs)Object and its leaves are 3 process variants (the first one
is operationalizable and the second and the third ones are
abstract) discriminated by their context.

(Pick up)Action
(Drugs)Object

(Storage mode =
Shelves)Ressource

(Storage mode =
Robot)Ressource

XOR

(Storage mode =
Storekeeper)Ressource

Fig. 8. An exemple of variability tree

Such trees statically structure the V-BPMI base. Thus, the
V-BPMI base can be seen as a forest of variability trees (cf.
Fig. 9), each one containing all the managed ways (process
variants which are the leaves of the tree) which can satisfy a
managed goal (the one of the process line which is the root of
the tree).

Goal G

Ctxt A

XOR

Ctxt B Ctxt C

Goal G

Ctxt A Ctxt B

Goal G

Ctxt A Ctxt B

XOR XOR

Fig. 9. Forest of variability trees structuring the V-BPMI base

Leaves of the variability trees are process variants. Thus,
they can be operationalizable or abstract. Let’s remember that
operationalizable process variants are BPMN processes
whereas abstract process variants are V-BPMN processes in
which at least one reference to a process line appears.

So, due to abstract process variants, which can reference
process lines, it can be interesting to dynamically link some of
the variability trees. This is the role of dynamic adaptation trees
presented below.

V. DYNAMIC ADAPTATION OF PROCESSES

We introduce in this section the concept of dynamic
adaptation trees and their usage during the production of
adapted processes. This production is conducting according
with the cycle of dynamic adaptation.

A. Dynamic adaptation trees

The abstract variants associated with a process line refer to
other process lines contained in the V-BPMI base. Thus, it is
possible to dynamically link an abstract process variant to the
process lines it references. This can be done by linking the
variability tree of which the process variant is a leaf with the
variability tree of which the referenced process line is the root.

For example, the process line (Dispense)Action (Drug)Object
presented in Fig. 6 is the root of a variability tree which has 2
leaves corresponding to the 2 abstract process variants
appearing in Fig. 6. One of these variants, which is detailed in
Fig. 5, refers 2 process lines: (Validate)Action (Prescription)Object

32 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

and (Pick up)Action (Drugs)Object. It means that, to operationalize
this process variant, both referenced process lines have to be
satisfied. Thus, it is possible to dynamically link the process
variant of the process line (Dispense)Action (Drug)Object relevant
in the context (Dispensation type = emergency)Environmental with
the process line (Validate)Action (Prescription)Object and the
process line (Pick up)Action (Drugs)Object.

This kind of link is a dynamic composition link (i.e. an
AND link). Fig. 10 illustrates that link.

(Dispensation type =
emergency)Environmental

(Validate)Action
(Prescription)Object

(Pick up)Action
(Drugs)Object

AND

Fig. 10. An exemple of composition links between an abstract process variant

and referenced process lines

With such dynamic composition links, and existing static
selection links structuring the V-BPMI base, it is possible to
compose variability trees. The result of the composition of
variability trees is called a dynamic adaptation tree. The root of
an adaptation tree is a process line and the leaves are process
variants. Nodes of odd levels are process lines while nodes of
even levels are process variants (either operationalizable or
abstract). The links from process lines of an odd level n to
process variants of the even level n+1 are XOR links (selection
links). This links are static and are those which structure the
V-BPMI base throughout the variability trees. The links from
the process variants of an even level n to process lines of the
odd level n+1 are AND links (composition links). This links
are dynamic.

(Dispense)Action
(Drug)Object

(Dispensation type =
emergency)Environmental

(Dispensation type =
normal)Environmental

XOR

(Pick up)Action
(Drugs)Object

(Storage mode =
Shelves)Ressource

(Storage mode =
Robot)Ressource

XOR

(Storage mode =
Storekeeper)Ressource

(Pick up)Action
(Drugs)Object

AND

XOR
... ...

Fig. 11. Dynamic adaptation tree (partial view)

For example, the dynamic adaptation tree shown in Fig. 11
is the composition of 3 variability trees: the one in which the
process variant of the Fig. 10 is a leaf, the one in which the
process line (Validate)Action (Prescription)Object is the root and

the one in which the process line (Pick up)Action (Drugs)Object is
the root.

Adaptation trees are useful to support the cycle of dynamic
adaptation during which adapted processes are produced.

B. Cycle of dynamic adaptation

This cycle of dynamic adaptation is triggered when a
business requirement is expressed. A business requirement is
formally structured with a business goal (the one to be
satisfied) and a business context (the one in which the goal has
to be satisfied).

For example, a healthcare business requirement can be:

((Give)Action (A drug)Object)Goal

((Dispensation type = emergency)Environmental

AND
(Storage mode = Robot)Resources))Context

The output of the cycle of dynamic adaptation is an
operationalizable BPMN process which satisfies the goal of the
business requirement in the expressed context.

The cycle of dynamic adaptation is made of 4 phases.

The research phase requires a goal specification. The
V-BPMI adaptation engine determines the more relevant
process line, according to the domain ontology. If there is no
process line satisfying this goal, the user can dynamically
create one which then will be stored in the V-BPMI base.

For example, when the preceding business requirement is
expressed, the adaptation engine will search in the V-BPMI
base the more relevant process line. If the domain ontology
defines the terms “Dispense” and “Give” as synonyms, the
engine will select the variability tree (cf. Fig. 12) associated
with the process line introduced in Fig. 4.

(Dispense)Action
(Drug)Object

(Dispensation type =
emergency)Environmental

(Dispensation type =
normal)Environmental

XOR

Fig. 12. Output of the research phase

The selection phase requires both a process line and a
context specification. The first is provided by the research
phase and the second is given by the business requirement.
During this phase, the adaptation engine selects the more
relevant variant of the selected process line. This selection is
based on the ontology. At this step, a process variant is
selected. According to the business requirement expressed
above, the context compatibility will identify the convenient
variant.

In our example, the more relevant variant in front of the
initial business requirement is the second one (on the right).
Thus, the right-branch of the variability tree is selected, as
shown in Fig. 13.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 33

(Dispense)Action
(Drug)Object

(Dispensation type =
emergency)Environmental

(Dispensation type =
normal)Environmental

XOR

Fig. 13. Output of the selection phase: only one of the branches of the initial

variability tree is selected

The operationalization phase aims at specifying the way
of operationalizing all of the BPMN activities of the selected
variant. For example, for BPMN service tasks, the binding of
services has to be done. The adaptation engine will check in the
service base an adequate service for each BPMN service task.

In our example, the selected process variant contains a
BPMN service task (identified by “Select the drug request”).
This service task can be bind with a specific web service, as
shown in Fig. 14.

(Dispensation type = emergency)Environmental

Select the drug
request

(Pick up)Action
(Drugs)Object

Give to the
messenger

(Validate)Action
(Prescription)Object

An emergency
request append

Service Web
SelDrugReqbinding

Fig. 14. Output of the operationalization phase

The composition phase depends on the type of the current
variant. If the variant is operationalizable, it contains a usual
BPMN process which has been operationalized in the previous
phase. It then can be translated in a BPEL process (for
example) which is executable. Thus, in this case, the
composition phase is omitted.

If the variant is abstract, it then contains at least one
reference to process lines. Such references have to be
operationalized. This is the objective of the composition phase.
This stage aims at composing variability trees, which results in
a dynamic adaptation tree:

 The one in which the abstract process variant appears
as a leaf: it will be at the top of the dynamic adaptation
tree resulting from the composition,

 The ones in which the referenced process lines appear
as roots: they will be sub-trees in the dynamic
adaptation tree resulting from the composition.

The sub-trees have to be produced with new iterations in
the cycle of adaptation: input of these new iterations is a
business requirement expressed as following: the goal is the
one identifying a referenced process line and the context is the
actual context.

Thus, recursively, a dynamic adaptation tree is produced.
The iterations are stopped when all leaves of the dynamic
adaptation tree are operationalizable process variants, i.e. when
whole the variability has been “frozen”. All BPMN processes
appearing in all leaves are then composed and the result is a
classic BPMN process which can be translated in a BPEL
process [10] to be executed.

In our example, the abstract process variant refers to 2
process lines, each one associated with a variability tree:

 The first referenced process line, identified by the
business goal (Validate)Action (Prescription)Object,
corresponds to the variability tree shown in Fig. 15.

(Validate)Action
(Prescription)Object

(Validation level =
review)Environmental

XOR

(Validation level = documented
analysis)Environmental

Fig. 15. Variability tree to be composed

 The second referenced process line, identified by the
business goal (Pick up)Action (Drugs)Object, corresponds
to the variability tree shown in Fig. 8.

For each of those referenced process lines, a new iteration
has to be done in the cycle of dynamic adaptation, i.e. research
of the more relevant variability trees, selection of a unique
branch in those trees, operationalization of the produced
V-BPMN process and, possibly, composition with other
variability trees.

In our example, the final dynamic adaptation tree produced
is illustrated in Fig. 16. In this figure, we partly show it: some
of the unselected branches don’t appear. The selected branches
are shown in bold.

(Dispense)Action
(Drug)Object

(Dispensation type =
emergency)Environmental

(Dispensation type =
normal)Environmental

XOR

(Validate)Action
(Prescription)Object

(Validation level =
review)Environmental

XOR
...

(Pick up)Action
(Drugs)Object

(Storage mode =
Robot)Resource

XOR
... ...

AND

Fig. 16. Output of the composition phase: final dynamic adaptation tree

34 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

All leaves of this dynamic adaptation tree are
operationalizable process variants, which then contain BPMN
processes. These BPMN processes can be composed according
to the selected branches of the dynamic adaptation tree. This
results in a BPMN business process satisfying the goal of the
initial business requirement and relevant in the context
specified in this business requirement.

Dynamic adaptation trees are conceptual tools supporting
the cycle of dynamic adaptation. This cycle is also supported
by a set of operators described in the next section.

VI. OPERATORS SUPPORTING DYNAMIC ADAPTATION

We define a set of operators inspired of [12] supporting the
production of dynamic adaptation trees, i.e. the cycle of
dynamic adaptation. Three classes of operators are defined:
ontological operators for terms and contextual assertions
equivalence evaluation, similarity operator defined on goals
and compatibility operator defined on contexts and adaptation
cycle operators (selection, composition…).

A. Ontological equivalence operators

These operators support comparison between terms and
comparison between assertions by exploiting semantic links
(mainly synonymy, paronymy, hypernymy and hyponymy)
defined in the domain ontology.

The ≡ operator evaluates the rate of semantic equivalence
between 2 terms or 2 groups of terms T1 and T2. The result of
this operator is a float in [0..1] which corresponds to the rate of
semantic equivalence between T1 and T2 calculated as a
distance, in the domain ontology, throughout semantic links
between T1 and T2.

The operator is an operator which defines the rate of
semantic equivalence between contextual assertions. Let’s
remember that a contextual assertion is typed and has a
formulation. Thus, we can formally express a contextual
assertion with a couple (T, F), where T is the type of the
contextual assertion and F is its formulation. Let’s consider
two assertions A1 = (T1, F1) and A2 = (T2, F2). The rate of
semantic equivalence between A1 and A2 is null (0) if T1 ≠ T2
and returns (F1 ≡ F2) otherwise (the ≡ operator is the same as
presented before). Thus, the result of this operator is a float in
[0..1] which corresponds to the rate of the semantic
equivalence between F1 and F2 if T1 = T2 (0 otherwise).

B. Similarity and compatibility operators

These operators are mainly defined for matching goal and
context within a business requirement:

 goalsSimilarity(G1, G2): the goal similarity is evaluated
as following: the goal G1 is composed of ActionG1 and
ObjectG1, the goal G2 is composed of ActionG2 and
ObjectG2. Then, the similarity between G1 and G2 is
calculated as following: similarity(G1, G2) = (ActionG1

≡ ActionG2) × (ObjectG1 ≡ ObjectG2).

 contextsCompatibility(C1, C2): the context
compatibility is described as following: we define
Pos(C1) as the set of the assertions contained in C1 and

which are not operand of a NOT operator. We define
Neg(C1) as the set of the assertions contained in C1 and
which are operand of a NOT operator. Pos(C2) and
Neg(C2) are defined in the same way. Pos(C1) and
Neg(C1) are disjoined and it is the same for Pos(C2)
and Neg(C2). Then, the compatibility between C1 and
C2 is calculated as fallowing:

A Pos(C1), A’ Pos(C2) | (A A’) returns Pi

A Neg(C1), A’ Neg(C2) | (A A’) returns Ni

compatibility(C1, C2) = ∏Pi × ∏Ni

C. Adaptation cycle operators

We introduce here 5 operators: the first one supports whole
the cycle of dynamic adaptation, and the 4 other ones support
the 4 stages of this cycle.

 adaptationCycleIteration(businessRequirement(Goal
G, Context C)): this operator implements an algorithm
triggering iteration(s) of the adaptation cycle. Its input
is a business requirement and its output is a V-BPMN
process satisfying the goal G in the context C. This
operator is based on the 4 next ones.

 processLineResearch(Goal G): input of this operator is
a goal G. It researches in the V-BPMI base all process
lines identified by a goal similar to the goal G. If
several process lines are returned, they can be ordered
by similarity value with the goal G. Output of this
operator is in fact a variability trees VT corresponding
to the process line identified by the goal G’ the most
similar to the goal G. This operator is used during the
research phase of the cycle of dynamic adaptation.

 processVariantSelection(Context C, Variability Tree
VT): inputs are the variability tree VT produced
beforehand and the context C of the business
requirement. It research in the process variants of VT
the one discriminated by the context C’ the most
compatible with the context C. This process variant is
called PV, has a type T (operationalizable or abstract)
and contains a V-BPMN process Proc. This operator is
used during the selection phase of the cycle of dynamic
adaptation.

 processVariantOperationalization(processVariant
PV): input is a process variant PV, which has a type T
(operationalizable or abstract) and contains a V-BPMN
process Proc. For each activity in Proc marked as a
service task (according to BPMN definition), bind a
convenient service referenced in the service repository.
This operator is used during the operationalization
phase of the cycle of dynamic adaptation.

 processVariantComposition(processVariant PV): input
of this operator is a process variant PV, which has a
type T (operationalizable or abstract) and contains a
V-BPMN process Proc. If PV is operationalizable,
then this operator returns Proc, which is a BPMN
process. If PV is abstract, then, the following algorithm
is executed:

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 35

for each process line PL referenced in Proc

 PL is identified by the goal G

 BR is a business requirement (G, current context C)

 subProc ← adaptationCycleIteration

 subProc is integrated in PV instead

 of the reference to PL

end for each

This set of operators supports all the phases of the cycle of
dynamic adaptation. They allow a business actor to express a
business requirement and get back a BPMN process in which
service tasks are bind with available web services.

VII. RELATED WORK

Several approaches address variability in process modeling
[13], [14]. These approaches often consider variability capture
in process models. C-EPC [15] is an extension of the language
EPC and of the ARIS method [16]. It introduces the notion of
configurable nodes, configurable functions and the guidelines
to support the flexibility of the processes. PROVOP [17] starts
with a generic model that contains some adjustment points to
identify the variability zone in the process. It is possible to
define some sets of actions called options to modify (add,
delete, or modify) the activities to build an adapted process.
BPCN [18], [19] is a hybrid approach, blending a declarative
and descriptive definition of the process. There is a static part
of the process, and an ad-hoc part. In this part some non-
scheduled available activities are defined. BPCN introduce two
kinds of constraints networks to describe the way to use the
non-scheduled available activities. The notion of constraints
network is used in the DECLARE/YAWL framework [20],
[21]. The language DECLARE permits to describe a process
only with sets of constraints. They can be mandatory or
optional according to the need. It is possible to define
constraints templates to aggregate some sets of constraints
under a conceptual high level constraint.

Even if the existing methods propose powerful concepts for
variability capture they consider a little the intention and the
context of a process. In [22] the authors propose to link a
context and a goal to every process version, and in [23] it is
possible to link an intention to a process description to support
the variability of the organizational dimension of the process.
These approaches are concerned with process variability
modeling and they little exploit goal and context for guiding
process adaptation. In [24], the authors consider run time
adaptation by allowing the user to modify the process model.
Process adaptation guidance and process adaptation automating
are yet research issues. V-BPMI dynamic adaptation cycle
based on process lines and process variants reuse is a step
further in process adaptation.

VIII. CONCLUSION

We introduce the V-BPMI approach to model process
variability and provide tools and methodology for
contextualized processes production. The V-BPMI adaptation
cycle allows selecting process variants and composing the
relevant process lines in order to construct a process satisfying

a business requirement. Dynamic adaptation trees and
operators have been defined to support the adaptation cycle.

We actually address the definition of an architecture for
V-BPMI implementation. This architecture is service-oriented:
in particular, it involves user’s interface services, ontology
services (for the manipulation of the domain ontology) and
services for management of the V-BPMI base.

In the future, dynamic adaptation trees should be used at
design-time to evaluate the consistency of the V-BPMI base
and help the process designer in process lines and process
variants production.

In the AP-HM context, memorizing dynamic adaptation
trees should be an interesting issue for traceability of the drug
process design.

IX. BIBLIOGRAPHY

[1] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change

Patterns and Change Support Features - Enhancing

Flexibility in Process-Aware Information Systems,” Data &

knowledge engineering, vol. 66, no. 3, pp. 438–466, 2008.

[2] M. Rosemann and J. Recker, “Context-aware Process

Design: Exploring the Extrinsic Drivers for Process

Flexibility,” in The 18th International Conference on

Advanced Information Systems Engineering. Proceedings of

Workshops and Doctoral Consortium, 2006, pp. 149–158.

[3] M. Vervuurt, “Modeling Business Process Variability,”

University of Twente, 2007.

[4] M. Weske, “Business Process Management Architectures,”

in Business Process Management, Springer Berlin

Heidelberg, 2012, pp. 333–371.

[5] E. Andonoff, C. Hanachi, and S. Nurcan, “L’adaptation des

processus d'entreprise,” Cépaduès., P. Lopisteguy, D. Rieu,

and P. Roose, Eds. 2012.

[6] GMSIH, Informatisation du circuit du médicament et DMS -

architecture cible et son intégration dans le système

d’information de production de soins. 2008.

[7] ANAP, “Sécuriser la prise en charge médicamenteuse du

patient. La délivrance nominative des médicaments dans les

établissements de santé.” 2012.

[8] OMG, “Business Process Model and Notation (BPMN),”

2011.

[9] N. Prat, “Goal Formalisation and Classification for

Requirements Engineering,” Paris I - Panthéon-Sorbonne,

1997.

[10] S. A. White, “Using BPMN to Model a BPEL Process.”

2005.

[11] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel,

M. Dumas, and A. H. M. ter Hofstede, “Formal semantics

and analysis of control flow in WS-BPEL,” Science of

Computer Programming, vol. 67, no. 2–3, pp. 162–198,

2007.

[12] P. Ramadour and M. Fakhri, “Modèle et langage de

composition de services,” in INFORSID, 2011.

[13] C. Ayora, V. Torres, and V. Pelechano, “Dealing with

Variability in Business Process models: An Evaluation

Framework.” p. Technical Report, ProS–TR–2011–05,

2011.

[14] R. Denekere, E. Kornyshova, and I. Rychkova, “Des lignes

de processus aux familles de processus,” INFORSID, 2011.

36 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

[15] J. Mendling, J. Recker, M. Rosemann, and W. M. P. van der

Aalst, “Generating correct EPCs from configured C-EPCs,”

in Proceedings of the 2006 ACM Symposium on Applied

Computing (SAC’06), 2006, pp. 1505–1510.

[16] A. W. Scheer, ARIS: Business Process Modelling, 3rd

Edition, Springer-V. Berlin: , 2000.

[17] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing

Variability in Business Process Models : The Provop

Approach,” Journal of Software Maintenance and

Evolution: Research and Practice, vol. 22, no. 6–7, pp. 519–

546, 2010.

[18] L. Ruopeng, S. Shazia, and G. Guido, “Using a Temporal

Constraint Network for Business Process Execution,” in

ADC ’06 Proceedings of the 17th Australasian Database

Conference, vol. 49, G. Dobbie and J. Bailey, Eds.

Australian Computer Society, Inc. Darlinghurst, 2006, pp.

157–166.

[19] L. Ruopeng, S. Shazia, and G. Guido, “On managing

business processes variants,” Data & Knowledge

Engineering, vol. 68, no. 7, pp. 642–664, 2009.

[20] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL:

Yet Another Workflow Language,” Information Systems,

vol. 30, no. 4, pp. 245–275, 2005.

[21] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst,

“DECLARE: Full Support for Loosely-Structured

Processes,” in Enterprise Distributed Object Computing

Conference, 2007. EDOC 2007. 11th IEEE International,

2007.

[22] M. A. Chaabane, E. Andonoff, R. Bouaziz, and L.

Bouzguenda, “Modélisation multidimensionnelle des

versions de processus,” Ingénierie des systèmes

d’information, vol. 15, no. 5, pp. 89–114, 2010.

[23] S. Nurcan and M.-H. Edme, “Intention-driven modeling for

flexible workflow applications,” Software Process:

Improvement and Practice, vol. 10, no. 4, pp. 363–377,

2005.

[24] M. Rosemann, J. Recker, and C. Flender, “Contextualisation

of business processes,” International Journal of Business

Process Integration and Management, vol. 3, no. 1, pp. 47–

60, Jan. 2008.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 37

Research Trends and Open Issues in Mobile Application
Software Engineering

Mark Rowan and Josh Dehlinger
Department of Computer and Information Sciences

Towson University, Towson, MD USA

Abstract—Mobile development is becoming an
increasingly critical area of software engineering as more
users are integrating mobile devices into the fabric of
their daily lives. As an evolving field, it is important to
identify the research trends and challenges in order to
assess if the open issues are receiving the requisite
research and if any gaps exist. Some of the challenges
involve improving user interfaces, software development
processes, tools, and education programs. This paper
presents the results of a literature review analysis that
identified research work in mobile application software
engineering and subsequently classified papers by topic to
identify trends in relation to open issues. Results include
an analysis into the distribution of 103 classified
publications, to include identifying common research
questions. It was discovered that progress is being made
on some of the open challenges to mobile application
software engineering.

Keywords—mobile application, software engineering,
literature review

1 Introduction
Mobile application software engineering is an emerging

field and presents fresh software engineering challenges
(e.g., location-sensitivity or context-awareness, usability,
power consumption, etc.) [1, 2]. The development of
meaningful and functional mobile applications is important
to multiple stakeholders to include end users, businesses,
and organizations as they all try to interface with one
another in an increasingly mobile and networked
environment.

It is difficult to precisely describe how mobile application
software engineering is different than traditional software
engineering. One earlier perspective by Roman, Pico, and
Murphy stated that “mobility represents a total meltdown of
all the stability assumptions” made in software engineering
[3]. A more moderate view by Wasserman, points out that
mobile applications offer some unique requirements that
are less commonly found in traditional software
engineering [1], including: interaction with other
applications; sensor handling; native versus hybrid
applications; families of hardware and software platforms;
user interfaces; and complexity of testing. Wasserman also
offers a research agenda for software engineering research
in the development of mobile applications in the following
areas: user experience, non-functional requirements,
portability, and processes, tools, and architecture [1]. While
mobile application software engineering has been active,

the research community needs a better research agenda to
enable the design and development of more meaningful,
usable and robust mobile applications. To catalyze a
research agenda in mobile application software
engineering, this work presents a literature review analysis
that was conducted with the goal of identifying current
trends and exploring the relationship between published
research and some previously observed challenges in
mobile application software engineering. This paper helps
to improve understanding of the current trends and
challenges with mobile application software engineering as
well as the research currently being conducted. In this
analysis, mobile application software engineering trends
were identified by reviewing 103 full-text, peer-reviewed
publications published between 2008 and 2012 that were
acquired from the IEEE and ACM digital libraries [4–106].
Specifically, this paper provides the following
contributions:

• An analysis of current mobile application software
engineering research trends.

• A discussion of the open issues or least reported
topics related to mobile application software
engineering research.

The culmination of these contributions will enable
mobile application software engineering researchers to
focus their efforts in solving open research challenges in
this area. This work is part of a larger effort to better
understand the current trends and the open issues in mobile
application software engineering. The results will inform
mobile application developers with an overview of trends in
software engineering techniques and tools to design and
develop high-quality mobile applications as well as existing
open issues.

2 Research Methodology
The research goal of this work is to improve the

understanding of the current trends in mobile application
software engineering research and exploring the gap
between published research and some open issues in mobile
application software engineering. Specifically, the research
questions addressed in this study are:

• What are the common topics and nature of the
publications reporting on mobile application
software engineering?

• What are the open issues or least reported topics
within related to mobile application software
engineering?

38 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Answering these questions may inform mobile
application developers with an overview of trends in
software engineering techniques and tools to design and
develop high-quality mobile applications as well as existing
open issues that warrant further research. Prior to article
collection, explicit inclusion and exclusion criteria were
established as parameters for the literature review
performed in this work. The inclusion criteria were as
follows:

1. The publication was in English.
2. Mobile applications as a part of a software

engineering context.
3. The literature was current, which we defined as

being published between January 2008 and
December 2012.

4. The literature was peer-reviewed and presented in a
scholarly ACM or IEEE conference/journal.

 Similarly, the established exclusion criteria were as
follows:

1. Publications prior to January 2008 since we were
solely focused on identifying current trends.

2. Literature that was considered non-scholarly
reviewed: unpublished working papers, conference
tutorials, workshops or abstracts, news reports and
editorials.

3. Topics unrelated to mobile applications in a
software engineering context.

4. Summaries or other situations in which the full-text
publication could not be acquired.

The papers in this literature review were collected in
February 2013 from the ACM and IEEE digital libraries,
and most were drawn from conferences. Table 1 illustrates
the ten conferences that were found to have published the
most articles related to mobile application software
engineering. An advanced keyword search was completed
for software engineering in the ACM digital library using
the keywords mobile AND application, and published as a
journal, proceeding OR transaction for full-text
publications since 2008. This resulted in an initial capture
of 73 possible articles that was subsequently reduced to 64
possible articles based on a closer review of titles and
abstracts utilizing our selection criteria.

Similarly, in the IEEE digital library for Conference
Proceedings, an advanced keyword search was conducted
for software engineering in Conference Name using the
exact phrase mobile application in full-text publications
since 2008. This resulted in an initial acquisition of 44
possible articles that was subsequently reduced to 39
possible articles based on closer review of titles and
abstracts.

Table 1. Popular Conferences
Conference Title Count %

Software Engineering, Artificial Intelligence, Networking and
 Parallel/Distributed Computing 5 4.9%

International Conference on Software Engineering 5 4.9%

Software Engineering and Advanced Applications 5 4.9%

Symposium on Applied Computing 4 3.9%

Computer Science and Software Engineering 4 3.9%

Advances in Mobile Computing and Multimedia 4 3.9%

Mobile and Ubiquitous Multimedia 4 3.9%

MobileHCI 3 2.9%

Australian Software Engineering Conference 3 2.9%

Brazilian Symposium on Software Engineering 3 2.9%

After eliminating papers out of context, the remaining
103 papers were classified and the following data was
recorded: primary author, title, venue published, year and
the 1998 ACM Computing Classification System (CCS)
tags and a brief summary of the research. The papers were
classified with the relevant ACM CCS tags by the reviewer;
if the publication did not already have classifications. If
there was any uncertainty, the entire full-text publication
was reviewed. There were 55 different ACM CCS tags used
to describe the publications overall. Many publications had
more than one ACM CCS classification. Table 2 shows a
breakdown of 194 classifications within the ACM CCS
Level 2 for the set of 103 papers.

Table 2. ACM Second Level Classification Breakdown

ACM CCS Level 2 Count %

C2 Computer Communications Networks 16 8.2%

C3 Special Purpose and Application-Based Systems 1 0.5%

C4 Performance of Systems 6 3.1%

C5 Computer System Implementation 2 1.0%

D1 Programming Techniques 3 1.5%

D2 Software Engineering 79 40.7%

D3 Programming Languages 8 4.1%

D4 Operating Systems 2 1.0%

F2 Analysis of Algorithms and Problem Complexity 1 0.5%

F3 Logics and Meanings of Programs 3 1.5%

H1 Models and Principles 3 1.5%

H2 Database Management 2 1.0%

H3 Information Storage and Retrieval 11 5.7%

H4 Information Systems Applications 6 3.1%

H5 Information Interfaces and Presentation 26 13.4%

I2 Computing Methodologies 2 1.0%

I6 Simulation and Modeling 1 0.5%

J1 Administrative Data Processing 1 0.5%

J3 Life and Medical Sciences 3 1.5%

K3 Computers and Education 8 4.1%

K4 Computers and Society 7 3.6%

K6 Management of Computing and Information Systems 3 1.5%

194 100.0%

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 39

Table 3. Temporal Distribution

Year Count %

2008 25 24.2%

2009 20 19.4%

2010 20 19.4%

2011 15 14.6%

2012 23 22.4%

Grand Total 103 100.00%Data analysis of the 103 publications found the temporal
distribution as follows: 2008 (25), 2009 (20), 2010 (20),
2011 (15), and 2012 (23), as seen in Table 3.

Initially a bottom-up classification system was
considered, so the papers could create their own
classification system. After trial and error it was
determined that a top-down classification methodology
using an already established hierarchical classification
system would be a better approach to identify trends and to
prevent any gaps in information.

3 DISCUSSION
Table 4 illustrates that one of the most frequently

discussed mobile application software engineering
categories involved Design Tools and Techniques (D.2.2).
Reoccurring topics involved software libraries, modules,
interfaces and computer aided software engineering.
Examples can be found in [13, 20, 33, 36, 44, 47, 49, 69,
74, 77, 89, 93, 98, 101, 103].

As Wasserman suggests, the challenge of making the
best possible use of limited screen space, user interface
design takes on greater importance than ever for software
engineering [1]. The findings reflected mobile-related
software engineering based on User Interfaces (H.5.2),
human computer interaction, user-centered design, screen
design, creating user interfaces for differently-abled people
and improving usability were prevailing themes. Examples
can be found in [4, 7, 13, 40, 41, 43, 47, 67, 69, 75, 77,
86].

Table 4. Popular ACM Classifications
ACM CCS Level 3 Count % of Total
D.2.2 Design Tools and Techniques 17 8.8%
H.5.2 User Interfaces 17 8.8%
D.2.5 Testing and Debugging 13 6.7%
D.2.11 Software Architectures 11 5.7%
C.2.1 Network Architecture and Design 8 4.1%
D.2.8 Metrics 8 4.1%
C.2.4 Distributed Systems 7 3.6%
C.4 Performance of Systems 6 3.1%
D.2.4 Software/Program Verification 6 3.1%
H.3.5 Online Information Services 6 3.1%
K.3.2 Computer/Information Science Education 6 3.1%

Publications related to Testing and Debugging (D.2.5)
covered tracing, code inspections, walk-throughs,
debugging aides, distributed debugging and error handling
and recovery. Examples can be found in [12, 24, 38, 70, 87,
94, 96].

Software Architecture (D.2.11) related publications
discussed interoperability, domain-specific architectures,
patterns, distributed objects and service-oriented
architecture. Examples can be found in [11, 27, 42, 57, 66,
73, 78, 99].

This paper is an initial attempt at identifying trends and
open issues with software engineering related to mobile
applications. The overwhelming majority of articles in the
final data set represented qualitative research. There was a
lack of publications discovered during this literature
analysis that dealt with the following ACM CCS areas:
Processor Architectures (C.1), Coding Tools and
Techniques (D.2.3), Distribution, Maintenance, and
Enhancement (D.2.7). There is a need for more
quantifiable data, empirical studies and industry experience
on the trends in mobile application software engineering.
These gaps may be reflective of the early stage of
technology adoption or the fragmented nature of mobile
computing technologies. The following limitations were
also noted for this study:

• Different keyword searches may lead to different
findings. So the keywords were chosen to provide a
focused overview of current trends within the mobile
application software engineering community.

• The same keyword search in the same libraries at a
different date could lead to different findings (e.g.,
due to search engine or library updates). We were
satisfied with selecting 2008, because it signified the
beginning of broader acceptance of smartphones and
mobile applications in the general population, which
were influenced by the iPhone AppStore and
Android Market (now called Google Play).

These noted limitations were addressed and mitigated as
best as possible.

4 CONCLUSION
This paper briefly describes the findings of a limited

literature review and analysis conducted using research
articles published in the IEEE and ACM digital libraries.
The ACM CCS was used to classify 103 publications with a
top-down approach. Although this review was not
exhaustive, it indicates that progress is being made to
address some of the identified research challenges with
mobile application software engineering.

Future work is geared towards further investigating the
open issues and lack of publications involving the following
categories: privacy related issues, coding tools and
techniques, software distribution, maintenance, and
enhancement. More extensive investigation can be
accomplished with a manual citation review of identified
publications as well as expanding into journals and other
digital libraries. There is a need for more quantifiable data,
empirical studies and industry experience in mobile
application software engineering.

40 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

5 ACKNOWLEDGEMENTS
This material is based upon work supported by the

National Science Foundation under Grant No. 1140781.

6 REFERENCES
[1] A. Wasserman. 2010. Software engineering issues for mobile
application development. In Proceedings of the FSE/SDP
workshop on Future of software engineering research (FoSER
'10). ACM, New York, NY, USA, 397-400.
[2] J. Dehlinger and J. Dixon, Mobile Application Software
Engineering: Challenges and Research Directions, in Proceedings
of the Workshop on Mobile Software Engineering. Springer,
2011, pp. 29-32.
[3] G. Roman, G. Picco, and A. Murphy. 2000. Software
engineering for mobility: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering (ICSE '00).
ACM, New York, NY, USA, 241-258.
[4] A. Hussain and E. Ferneley. 2008. Usability metric for
mobile application: a goal question metric (GQM) approach. In
Proceedings of the 10th International Conference on Information
Integration and Web-based Applications & Services (iiWAS '08),
Gabriele Kotsis, David Taniar, Eric Pardede, and Ismail Khalil
(Eds.). ACM, New York, NY, USA, 567-570.
[5] M. Aleksy and B. Stieger. 2010. Supporting service
processes with semantic mobile applications. In Proceedings of
the 8th International Conference on Advances in Mobile
Computing and Multimedia (MoMM '10). ACM, New York, NY,
USA, 167-172.
[6] C. Hu and I. Neamtiu. 2011. Automating GUI testing for
Android applications. In Proceedings of the 6th International
Workshop on Automation of Software Test (AST '11). ACM, New
York, NY, USA, 77-83.
[7] S. Mirisaee. 2010. A human-centred context-aware approach
to develop open-standard agile ridesharing using mobile social
networks. In Proceedings of the 22nd Conference of the
Computer-Human Interaction Special Interest Group of Australia
on Computer-Human Interaction (OZCHI '10).
[8] A. Altaf,. M. Javed, A. Ahmed, "Security Enhancements for
Privacy and Key Management Protocol in IEEE 802.16e-2005,"
Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2008. SNPD '08. Ninth ACIS,
pp.335-339, 6-8 Aug. 2008.
[9] M. Maia, J. Filho, C. Filho, R. Castro, R. Andrade, and F.
Toorn. 2012. Framework for building intelligent mobile social
applications. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing (SAC '12). ACM, New York, NY, USA,
525-530.
[10] C. Quinton, S. Mosser, C. Parra, and L. Duchien. 2011.
Using multiple feature models to design applications for mobile
phones. In Proceedings of the 15th International Software Product
Line Conference, Volume 2 (SPLC '11), Ina Schaefer, Isabel John,
and Klaus Schmid (Eds.). ACM, New York, NY, USA, Article
23, 8 pages.
[11] N. Ali, C. Solís, and I. Ramos. 2008. Comparing architecture
description languages for mobile software systems. In Proceedings
of the 1st international workshop on Software architectures and
mobility (SAM '08).
[12] F. Balagtas-Fernandez and H. Hussmann. 2009. A
Methodology and Framework to Simplify Usability Analysis of
Mobile Applications. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering
(ASE '09).
[13] A. Lorenz and M. Jentsch. 2010. The ambient media player:
a media application remotely operated by the use of mobile

devices and gestures. In Proceedings of the 9th International
Conference on Mobile and Ubiquitous Multimedia (MUM '10).
[14] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs. 2011.
Towards an Elastic Application Model for Augmenting the
Computing Capabilities of Mobile Devices with Cloud
Computing. Mob. Netw. Appl. 16, 3 (June 2011), 270-284.
[15] V. Rivera-Pelayo, V. Zacharias, L. Müller, and S. Braun.
2012. Applying quantified self-approaches to support reflective
learning. In Proceedings of the 2nd International Conference on
Learning Analytics and Knowledge (LAK '12), Simon
Buckingham Shum, Dragan Gasevic, and Rebecca Ferguson
(Eds.). ACM, New York, NY, USA, 111-114.
[16] J. Ayres and S. Eisenbach. 2009. Stage: Python with Actors.
In Proceedings of the 2009 ICSE Workshop on Multicore
Software Engineering (IWMSE '09). IEEE Computer Society,
Washington, DC, USA, 25-32.
[17] N. Bencomo. 2009. On the use of software models during
software execution. In Proceedings of the 2009 ICSE Workshop
on Modeling in Software Engineering (MISE '09). IEEE
Computer Society, Washington, DC, USA, 62-67.
[18] A. Bertolino, G. De Angelis, F. Lonetti, A. Sabetta, "Let The
Puppets Move! Automated Testbed Generation for Service-
oriented Mobile Applications," Software Engineering and
Advanced Applications, 2008. SEAA '08. 34th Euromicro
Conference, pp.321-328.
[19] D. Brooker, T. Carey, I. Warren., "Middleware for Social
Networking on Mobile Devices," Software Engineering
Conference (ASWEC), 2010, pp.202-211.
[20] N. Cacho, F. Dantas, A. Garcia, F. Castor, "Exception Flows
Made Explicit: An Exploratory Study," Software Engineering,
2009. SBES '09, pp.43-53.
[21] B. Cafeo, F. Dantas, A. Gurgel, E. Guimaraes, E. Cirilo, A.
Garcia, C. Lucena, "Analysing the Impact of Feature Dependency
Implementation on Product Line Stability: An Exploratory Study,"
Software Engineering (SBES), 2012, pp.141-150.
[22] F. Chen, J. Chen, K. Chen, C. Shui, "Smart Energy
Management of Multi-threaded Java Applications on Multi-core
Processors," Software Engineering, Artificial Intelligence,
Networking and Parallel & Distributed Computing (SNPD), 2012,
pp.260-265.
[23] T. Clear, W. Hussain, S. MacDonell, "The Many Facets of
Distance and Space: The Mobility of Actors in Globally
Distributed Project Teams," Global Software Engineering
(ICGSE), 2012, pp.144-148.
[24] C. Colombo, G. Pace, G. Schneider, "LARVA --- Safer
Monitoring of Real-Time Java Programs (Tool Paper)," Software
Engineering and Formal Methods, 2009, pp.33-37.
[25] K. Gama, W. Rudametkin, D. Donsez, "Resilience in
Dynamic Component-Based Applications," Software Engineering
(SBES), 2012, pp.191-195.
[26] M. Girolami, S. Lenzi, F. Furfari, S. Chessa, "SAIL: A
Sensor Abstraction and Integration Layer for Context Awareness,"
Software Engineering and Advanced Applications, 2008. SEAA
'08. 34th Euromicro Conference, pp.374-381.
[27] M. Gomez-Rodriguez, V. Sosa-Sosa, I. Lopez-Arevalo, "An
External Storage Support for Mobile Applications with Scare
Resources," Software Engineering Artificial Intelligence
Networking and Parallel/Distributed Computing (SNPD), 2010,
pp.109-114.
[28] B. Hao, Y. Liu, D. Wei, Y. Sun, Z. Fang, "Research on the
Interconnection Model between Vehicular CAN Network and
Internet Based on In-vehicle Gateway," Software Engineering,
Artificial Intelligence, Networking and Parallel & Distributed
Computing (SNPD), 2012, pp.615-620.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 41

[29] G. Hislop, "Teaching Programming to the Net Generation of
Software Engineers," Software Engineering Education and
Training Workshop, 2008. CSEETW '08, pp.5-8.
[30] S. Kumar, A. Raj, S. Rabara, "A Framework for Mobile
Payment Consortia System (MPCS)," Computer Science and
Software Engineering, 2008, vol.2, pp.43-47.
[31] E. Lee, K. Seo, "Code Generation of an XForms Client for
Service Integration," Future Generation Communication and
Networking Symposia, 2008. FGCNS '08. vol.5, pp.75-80.
[32] L. Lima, J. Iyoda, A. Sampaio, E. Aranha, "Test case
prioritization based on data reuse an experimental study,"
Empirical Software Engineering and Measurement, 2009. ESEM
2009. pp.279-290.
[33] T. Bultan. 2010. Software for everyone by everyone. In
Proceedings of the FSE/SDP workshop on Future of software
engineering research (FoSER '10). ACM, New York, NY, USA,
69-74.
[34] R. Erikson, V. Rosa and V. Lucena, Jr.. 2011. Smart
composition of reusable software components in mobile
application product lines. In Proceedings of the 2nd International
Workshop on Product Line Approaches in Software Engineering
(PLEASE '11). ACM, New York, NY, USA, 45-49.
[35] C. Scharff and R. Verma. 2010. Scrum to support mobile
application development projects in a just-in-time learning
context. In Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering
(CHASE '10). ACM, New York, NY, USA, 25-31.
[36] J. Roth. 2011. Context-aware apps with the Zonezz platform.
In Proceedings of the 3rd ACM SOSP Workshop on Networking,
Systems, and Applications on Mobile Handhelds (MobiHeld '11).
ACM, New York, NY, USA, Article 10, 6 pages.
[37] X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and M.
Moskal. 2012. User-aware privacy control via extended static-
information-flow analysis. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2012). ACM, New York, NY, USA, 80-89.
[38] L. Zhang, M. Gordon, R. Dick, Z. Morley Mao, P. Dinda,
and L. Yang. 2012. ADEL: an automatic detector of energy leaks
for smartphone applications. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (CODES+ISSS '12). ACM, New
York, NY, USA, 363-372.
[39] L. Yan, T. Wong., "Component Architecture and Modeling
for Microkernel-Based Embedded System Development,"
Software Engineering, 2008. ASWEC 2008, pp.190-199
[40] G. D'Amico, A. Del Bimbo, A. Ferracani, L. Landucci, and
D. Pezzatini. 2012. Indoor and outdoor profiling of users in
multimedia installations. In Proceedings of the 20th ACM
international conference on Multimedia (MM '12). ACM, New
York, NY, USA, 1197-1200.
[41] F. T. Balagtas-Fernandez and H. Hussmann. 2008. Model-
Driven Development of Mobile Applications. In Proceedings of
the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE '08). IEEE Computer Society,
Washington, DC, USA, 509-512.
[42] C. Challiol, A. Fortier, S. Gordillo, and G. Rossi. 2008.
Model-based concerns mashups for mobile hypermedia. In
Proceedings of the 6th International Conference on Advances in
Mobile Computing and Multimedia (MoMM '08), Gabriele
Kotsis, David Taniar, Eric Pardede, and Ismail Khalil (Eds.).
ACM, New York, NY, USA, 170-177.
[43] J. Suárez, A. Trujillo, M. de la Calle, D. Gómez-Deck, and J.
Santana. 2012. An open source virtual globe framework for iOS,
Android and WebGL compliant browser. In Proceedings of the
3rd International Conference on Computing for Geospatial

Research and Applications (COM.Geo '12). ACM, New York,
NY, USA , Article 22, 10 pages.
[44] T. Mikkonen, A. Taivalsaari, and M. Terho. 2009. Lively for
Qt: a platform for mobile web applications. In Proceedings of the
6th International Conference on Mobile Technology, Application
& Systems (Mobility '09). ACM, New York, NY, USA, Article
24, 8 pages.
[45] B. Gil and P. Trezentos. 2011. Impacts of data interchange
formats on energy consumption and performance in smartphones.
In Proceedings of the 2011 Workshop on Open Source and Design
of Communication (OSDOC '11). ACM, New York, NY, USA, 1-
6.
[46] M. Mohsin Saleemi, J. Bjorkqvist, and J. Lilius. 2008.
System architecture and interactivity model for mobile TV
applications. In Proceedings of the 3rd international conference on
Digital Interactive Media in Entertainment and Arts (DIMEA '08).
ACM, New York, NY, USA, 407-414 [47] J. Seifert, B.
Pfleging, C. Valderrama, M. Hermes, E. Rukzio, and A. Schmidt,
“MobiDev : A Tool for Creating Apps on Mobile Phones,” in  
Human computer interaction with mobile devices and services,
2011, pp. 109–112.
[48] C. Siebra, P. Costa, R. Miranda, F. Silva, and A. Santos.
2012. The software perspective for energy-efficient mobile
applications development. In Proceedings of the 10th International
Conference on Advances in Mobile Computing & Multimedia
(MoMM '12), Ismail Khalil (Ed.). ACM, New York, NY, USA,
143-150.
[49] Y. Maki, G. Sano, Y. Kobashi, T. Nakamura, M. Kanoh, K.
Yamada, "Estimating Subjective Assessments Using a Simple
Biosignal Sensor," Software Engineering, Artificial Intelligence,
Networking and Parallel & Distributed Computing (SNPD), 2012,
pp.325-330.
[50] T. Miettinen, D. Pakkala, M. Hongisto, "A Method for the
Resource Monitoring of OSGi-based Software Components,"
Software Engineering and Advanced Applications, 2008. SEAA
'08. 34th Euromicro Conference, pp.100-107.
[51] L. Nascimento, E. de Almeida, S. de Lemos Meira, "A Case
Study in Software Product Lines - The Case of the Mobile Game
Domain," Software Engineering and Advanced Applications,
2008. SEAA '08. 34th Euromicro Conference, pp.43-50.
[52] U. Nikula, P. Oinonen, L. Hannola., "Extending Process
Improvement into a New Organizational Unit," Software
Engineering Conference, 2009. ASWEC '09, pp.267-276.
[53] Z. Pingping, J. Shiguang, C. Weihe, "A Location-Based
Secure Spatial Audit Policy Model," Computer Science and
Software Engineering, 2008, vol.4, pp.619-622.
[54] W. Premchaiswadi, S. Pattanavichai, "Pricing Model and
Real Options in 4G LTE Mobile Network," Software Engineering,
Artificial Intelligence, Networking and Parallel & Distributed
Computing (SNPD), 2012, pp.54-59.
[55] J. Reed, D. Janzen, "Contextual Android education,"
Software Engineering Education and Training (CSEE&T), 2011,
pp.487-491.
[56] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl. 2010.
Diagnosing mobile applications in the wild. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks
(Hotnets-IX). ACM, New York, NY, USA, Article 22 , 6 pages.
[57] G. Cugola, C. Ghezzi, L. Pinto, and G. Tamburrelli. 2012.
SelfMotion: a declarative language for adaptive service-oriented
mobile apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering (FSE '12). ACM, New York, NY, USA, Article 7 , 4
pages.
[58] W. Du and L. Wang. 2008. Context-aware application
programming for mobile devices. In Proceedings of the 2008

42 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

C3S2E conference (C3S2E '08). ACM, New York, NY, USA,
215-227.
[59] A. De Lucia, R. Francese, M. Risi, and G. Tortora. 2012.
Generating applications directly on the mobile device: an
empirical evaluation. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI '12), Genny
Tortora, Stefano Levialdi, and Maurizio Tucci (Eds.). ACM, New
York, NY, USA, 640-647.
[60] S. Casteleyn, W. Van Woensel, and O. De Troyer. 2010.
Assisting mobile web users: client-side injection of context-
sensitive cues into websites. In Proceedings of the 12th
International Conference on Information Integration and Web-
based Applications & Services (iiWAS '10). ACM, New York,
NY, USA, 443-450.
[61] D. Singh and H. Lee. 2009. Database design for global
patient monitoring applications using WAP. In Proceedings of the
2nd International Conference on Interaction Sciences: Information
Technology, Culture and Human (ICIS '09). ACM, New York,
NY, USA, 25-31.
[62] C. Safran and B. Zaka. 2008. A Geospatial Wiki for m-
Learning. In Proceedings of the 2008 International Conference on
Computer Science and Software Engineering - Volume 05 (CSSE
'08), Vol. 5. IEEE Computer Society, Washington, DC, USA, 109-
112.
[63] B Bergvall-Kåreborn and S. Larsson. 2008. A case study of
real-world testing. In Proceedings of the 7th International
Conference on Mobile and Ubiquitous Multimedia (MUM '08).
ACM, New York, NY, USA, 113-116.
[64] N. Huy and D. vanThanh. 2012. Evaluation of mobile app
paradigms. In Proceedings of the 10th International Conference on
Advances in Mobile Computing & Multimedia (MoMM '12),
Ismail Khalil (Ed.). ACM, New York, NY, USA, 25-30.
[65] A. Lago and I. Larizgoitia. 2009. An application-aware
approach to efficient power management in mobile devices. In
Proceedings of the Fourth International ICST Conference on
COMmunication System softWAre and middlewaRE
(COMSWARE '09). ACM, New York, NY, USA, Article 11 , 10
pages.
[66] A. Lorenz. 2010. Research directions for the application of
MVC in ambient computing environments. In Proceedings of the
1st International Workshop on Pattern-Driven Engineering of
Interactive Computing Systems (PEICS '10). ACM, New York,
NY, USA, 28-31.
[67] F. Balagtas-Fernandez, Max Tafelmayer, and Heinrich
Hussmann. 2010. Mobia Modeler: easing the creation process of
mobile applications for non-technical users. In Proceedings of the
15th international conference on Intelligent user interfaces (IUI
'10). ACM, New York, NY, USA, 269-272.
[68] Q. Mahmoud, S. Zanin, and T. Ngo. 2012. Integrating mobile
storage into database systems courses. In Proceedings of the 13th
annual conference on Information technology education (SIGITE
'12). ACM, New York, NY, USA, 165-170.
[69] B. Biel and V. Gruhn. 2010. Usability-improving mobile
application development patterns. In Proceedings of the 15th
European Conference on Pattern Languages of Programs
(EuroPLoP '10). ACM, New York, NY, USA, Article 11 , 5
pages.
[70] E. Boix, C. Noguera, T. Van Cutsem, W. De Meuter, and T.
D'Hondt. 2011. REME-D: a reflective epidemic message-oriented
debugger for ambient-oriented applications. In Proceedings of the
2011 ACM Symposium on Applied Computing (SAC '11). ACM,
New York, NY, USA, 1275-1281.
[71] Q. Mahmoud, T. Ngo, R. Niazi, P. Popowicz, R. Sydoryshyn,
M. Wilks, and D. Dietz. 2009. An academic kit for integrating
mobile devices into the CS curriculum. In Proceedings of the 14th
annual ACM SIGCSE conference on Innovation and technology in

computer science education (ITiCSE '09). ACM, New York, NY,
USA, 40-44.
[72] H. Truong, A. Manzoor, and S. Dustdar. 2009. On modeling,
collecting and utilizing context information for disaster responses
in pervasive environments. In Proceedings of the first
international workshop on Context-aware software technology and
applications (CASTA '09). ACM, New York, NY, USA, 25-28.
[73] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso.
2009. Calling the cloud: enabling mobile phones as interfaces to
cloud applications. In Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware
(Middleware '09). Springer-Verlag New York, Inc., New York,
NY, USA, Article 5, 20 pages.
[74] J. Cardoso and R. José. 2012. Creating web-based interactive
public display applications with the PuReWidgets toolkit. In
Proceedings of the 11th International Conference on Mobile and
Ubiquitous Multimedia (MUM '12). ACM, New York, NY, USA,
Article 55, 4 pages.
[75] A. Khambati, J. Grundy, J. Warren, and J. Hosking. 2008.
Model-Driven Development of Mobile Personal Health Care
Applications. In Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering
(ASE '08). IEEE Computer Society, Washington, DC, USA, 467-
470.
[76] S. Ashmore and S. Kami Makki. 2011. IMISSAR: an
intelligent, mobile middleware solution for secure automatic
reconfiguration of applications, utilizing a feature model
approach. In Proceedings of the 5th International Conference on
Ubiquitous Information Management and Communication
(ICUIMC '11). ACM, New York, NY, USA, Article 58, 7 pages.
[77] B. Pfleging, E. del Carmen Va.Bahamondez, A. Schmidt, M.
Hermes, and J. Nolte. 2010. MobiDev: a mobile development kit
for combined paper-based and in-situ programming on the mobile
phone. In CHI '10 Extended Abstracts on Human Factors in
Computing Systems (CHI EA '10). ACM, New York, NY, USA,
3733-3738.
[78] D. Sollenberger and M. Singh. 2009. Koko: engineering
affective applications. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems -
Volume 2 (AAMAS '09), Vol. 2. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC,
1423-1424.
[79] J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala. 2012.
Testdroid: automated remote UI testing on Android. In
Proceedings of the 11th International Conference on Mobile and
Ubiquitous Multimedia (MUM '12). ACM, New York, NY, USA,
Article 28, 4 pages.
[80] C. Scharff, "Guiding global software development projects
using Scrum and Agile with quality assurance," Software
Engineering Education and Training (CSEE&T), 2011, pp.274-
283.
[81] C. Schuster, M. Appeltauer, and R. Hirschfeld. 2011.
Context-oriented programming for mobile devices: JCop on
Android. In Proceedings of the 3rd International Workshop on
Context-Oriented Programming (COP '11). ACM, New York, NY,
USA, Article 5, 5 pages.
[82] N. Seyff, G. Ollmann, M. Bortenschlager, "iRequire:
Gathering end-user requirements for new apps," Requirements
Engineering Conference (RE), 2011 19th IEEE International,
pp.347-348.
[83] S. She, S. Sivapalan, I. Warren, "Hermes: A Tool for Testing
Mobile Device Applications," Software Engineering Conference,
2009. ASWEC '09. pp.121-130.
[84] Q. Sheng, S. Pohlenz, J. Yu, H. Wong, A. Ngu, and Z.
Maamar. 2009. ContextServ: A platform for rapid and flexible
development of context-aware Web services. In Proceedings of

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 43

the 31st International Conference on Software Engineering (ICSE
'09). IEEE Computer Society, Washington, DC, USA, 619-622.
[85] E. Stroulia, D. Chodos, N. Boers, J. Huang, P. Gburzynski,
and I. Nikolaidis. 2009. Software engineering for health education
and care delivery systems: The Smart Condo project. In
Proceedings of the 2009 ICSE Workshop on Software Engineering
in Health Care (SEHC '09). IEEE Computer Society, Washington,
DC, USA, 20-28.
[86] P. Ackermann, C. Velasco, and C. Power. 2012. Developing
a semantic user and device modeling framework that supports UI
adaptability of web 2.0 applications for people with special needs.
In Proceedings of the International Cross-Disciplinary Conference
on Web Accessibility (W4A '12). ACM, New York, NY, USA,
Article 12, 4 pages.
[87] Z. Ding and K. Chang. 2008. Issues related to wireless
application testing. In Proceedings of the 46th Annual Southeast
Regional Conference on XX (ACM-SE 46). ACM, New York,
NY, USA, 513-514.
[88] M. Kovács, P. Lollini, I. Majzik and A. Bondavalli. 2008. An
integrated framework for the dependability evaluation of
distributed mobile applications. In Proceedings of the 2008
RISE/EFTS Joint International Workshop on Software
Engineering for Resilient Systems (SERENE '08). ACM, New
York, NY, USA, 29-38.
[89] T. Pohjola, P. Tolppanen, and V. Kaksonen. 2008. Movial
IXS mobile internet device. In Proceedings of the 10th
international conference on Human computer interaction with
mobile devices and services (MobileHCI '08). ACM, New York,
NY, USA, 511-513.
[90] M .Tanuan, "Design and delivery of a modern mobile
application programming course — An experience report,"
Software Engineering Education and Training (CSEE&T), 2011,
pp.237-246.
[91] H. Truong, L. Juszczyk, S. Bashir. A. Manzoor, S. Dustdar,
"Vimoware - A Toolkit for Mobile Web Services and
Collaborative Computing," Software Engineering and Advanced
Applications, 2008. SEAA '08. 34th Euromicro Conference,
pp.366-373.
[92] C. Wang, J. Li, J. Chen, Z. Zhuang, Y. Zhou, "A Novel
Strategy Enhancing Location Cloaker for Privacy in Location
Based Services," Computer Science and Software Engineering,
2008, vol.3, pp.651-655.
[93] J. Winter, K. Ronkko, M. Hellman, "Reporting usability
metrics experiences," Cooperative and Human Aspects on
Software Engineering, 2009. CHASE '09. ICSE Workshop,
pp.108-115.
[94] H. Kim, B. Choi, and S. Yoon. 2009. Performance testing
based on test-driven development for mobile applications. In
Proceedings of the 3rd International Conference on Ubiquitous
Information Management and Communication (ICUIMC '09).
ACM, New York, NY, USA, 612-617.
[95] J. Huang, Q. Xu, B. Tiwana, Z. Morley Mao, M. Zhang, and
P. Bahl. 2010. Anatomizing application performance differences
on smartphones. In Proceedings of the 8th international
conference on Mobile systems, applications, and services
(MobiSys '10). ACM, New York, NY, USA, 165-178.
[96] Y. Ridene, N. Belloir, F. Barbier, and N. Couture. 2010. A
DSML for mobile phone applications testing. In Proceedings of
the 10th Workshop on Domain-Specific Modeling (DSM '10).
ACM, New York, NY, USA, Article 3, 6 pages.
[97] R. Scandariato and J. Walden. 2012. Predicting vulnerable
classes in an Android application. In Proceedings of the 4th
international workshop on Security measurements and metrics
(MetriSec '12). ACM, New York, NY, USA, 11-16.
[98] A. Wasserman. 2010. Software engineering issues for mobile
application development. In Proceedings of the FSE/SDP

workshop on Future of software engineering research (FoSER
'10). ACM, New York, NY, USA, 397-400.
[99] Q. Zhang, L. Zhang, "Aspect Oriented Middleware for
Mobile Real-Time Systems," Advanced Software Engineering and
Its Applications, 2008. ASEA 2008, pp.138-141.
[100] H. Ziv, S. Patil, "Capstone Project: From Software
Engineering to “Informatics”," Software Engineering Education
and Training (CSEE&T), 2010, pp.185-188.
[101] R. Honken, K. Janz, Z. Boudreau, and J. Yearous. 2012.
Building a sustainable mobile device strategy to meet the needs of
various stakeholder groups. In Proceedings of the 40th annual
ACM SIGUCCS conference (SIGUCCS '12). ACM, New York,
NY, USA, 41-48.
[102] H. Liu, B. Krishnamachari, and M. Annavaram. 2008.
Game theoretic approach to location sharing with privacy in a
community-based mobile safety application. In Proceedings of the
11th international symposium on Modeling, analysis and
simulation of wireless and mobile systems (MSWiM '08). ACM,
New York, NY, USA, 229-238.
[103] J. Silva and M. Aparicio. 2011. Community sharing
platform for mobile devices. In Proceedings of the 2011
Workshop on Open Source and Design of Communication
(OSDOC '11). ACM, New York, NY, USA, 7-11.
[104] A. Girardello and F. Michahelles. 2010. AppAware: which
mobile applications are hot?. In Proceedings of the 12th
international conference on Human computer interaction with
mobile devices and services (MobileHCI '10). ACM, New York,
NY, USA, 431-434.
[105] M. Maia, Claysson Celes, R. Castro, and R. Andrade.
2010. Considerations on developing mobile applications based on
the Capuchin project. In Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC '10). ACM, New York,
NY, USA, 575-579.
[106] T. Mikkonen and A. Taivalsaari. 2009. Creating a mobile
web application platform: the lively kernel experiences. In
Proceedings of the 2009 ACM symposium on Applied Computing
(SAC '09). ACM, New York, NY, USA, 177-184.

44 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Strategies to Improve Development in Brazilian
Financial Institution Integrating Distinct

Environments

 Claudio Gonçalves Bernardo Paulo Roberto Chineara Batuta
 MSc. Computer Engineering MBA Software Quality

 Universidade Paulista Centro Universitário de Araraquara
 Brasilia – Brazil São Paulo - Brazil
 claudiogbernardo@ig.com.br pbatuta@hotmail.com

Abstract – With every release of financial solution IT
organizations invest heavily in new technologies with the goal
of providing quality software products that meet customer
requirements. By this solution often requires processing
functionality in environments with totally different from one
another. Without the integration of these processes in different
environments can not meet the functional and nonfunctional
requirements such as integrity, performance, reliability,
transparency and inclusiveness. This article presents a solution
developed in Brazilian financial institution that was only
possible due to environmental Mainframe integration with
distributed platforms, manipulated in Eclipse Platform
products through Rational Developer for System z and
Rational Team Concert. We proposed a collaborative setting
that allowed it was tapped what each can provide a better
environment without losing its fundamental characteristics.
The direct beneficiaries are the end customers and the
financial institution responsible for the project.

Keywords: Tool Integration, Mainframe, Eclipse, Collaborative
Platform, Financial Industry.

I. INTRODUTION

Many financial institutions are improving its technology
with the goal of increasing their income and contemplate the
new regulatory requirements of the global market. The
requirements of each business point to a trend more
customers focused, that directs your needs for a corporate
infrastructure, unlike the former departments that possessed
particular structure and separated from other environments.
This requirement presents challenges as tools integration,
transparency in this integration, solutions for the end
customer. The difficulty of integrating different business
models with different hardware supporting software becomes
a big challenge, because it is complex and carries a big risk
involved. This requires a large technical effort both in IT and
in the business area [4].

Reference [11] laims that this situation is worsened by the
fact that there is an increase in the share of the budget
allocated for this purpose because a large sum of capital
spending is also in the maintenance of current applications,
since businesses can not stop. Integrated tools provide a
modern development platform that enables high productivity

both individually and as a team, extending the benefits of
collaborative management lifecycle for developers
completely different environments. This integration allows
speed up the "Time to Market" with high quality solutions
and increase the development of applications by managing
collaborative lifecycle development with integrated planning,
task tracking, version control, builds and management
reports.

This strategy reduces the capital investment required for
reconstruction or development of systems, taking advantage
of the business opportunities that arise every day. Thus
presents significant opportunities for solutions that
previously were either impossible to put into practice many
features demanded or presenting few results.

II. ENVIRONMENTS INTEGRATION

For the integration of environment totally different from
each other as insurmountable challenges arise. You must
create compatibility between interfaces and standardized data
structures, business rules must have the same goal, without
which it is impossible to bring a result that pleases the
consumer. Financial institutions are increasingly trying to
create this integration and to invest heavily in this
technology. Must meet the requirements of the financial
market and it is also necessary to integrate the technology
infrastructure.

A. Mainframe Development Environment

A Mainframe operating system is a collection of programs
that manage a computer system's internal workings— its
memory, processors, devices, and file system. Mainframe
operating systems are robust products with substantially
different characteristics and purposes. Although an operating
system cannot increase the speed of a computer, it can
maximize use of resources, thereby making the computer
seem faster by allowing it to do more work in a given period
of time. A computer's architecture consists of the functions
the computer system provides. The architecture is distinct
from the physical design, and, in fact, different machine
designs might conform to the same computer architecture. In

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 45

a sense, the architecture is the computer as seen by the user,
such as a system programmer. Part of the architecture is the
set of machine instructions that the computer can recognize
and execute. In the mainframe environment, the system
software and hardware comprise a highly advanced computer
architecture, the result of decades of technological
innovation. Principal operational system is z/OS [2], which is
IBM's foremost operating system. To edit programs and
manipulate files professionals use the product ISPF -
Interactive System Productivity Facility [13] which includes
a screen editor. It provides a terminal interface with a set of
panels and each of them include menus and dialogs to run
tools[5]. These panels provide an interface to run tasks and
jobs in batch processing. ISPF is used to manipulate data
sets. In Figure 1 is possible to see a normal screen used to
edit programs and access a data set.

Figure 1 – Use of ISPF product Font: authors

It is useful for mainframe developers to have a working
knowledge of other mainframe operating systems. One
reason is that a given mainframe computer might run
multiple operating systems [7].

B. Eclipse Platform

Eclipse is an open source software that consists of a
software development platform extensible Java-based.
Presents a framework and a set of services to application
development components, accompanied by standardized
plug-ins, including the Java development tools and a PDE -
Plug-in Development Environment, which allows developing
tools that integrate seamlessly into your environment.

The Platform defines the set of frameworks and common
services that collectively make up infrastructure required to
support the use of Eclipse as a component model, as a RCP -
Rich Client Platform and as a comprehensive tool integration
platform. These services and frameworks include a standard
workbench user interface model and portable native widget
toolkit, a project model for managing resources, automatic
resource delta management for incremental compilers and
builders, language-independent debug infrastructure, and

infrastructure for distributed multi-user versioned resource
management [8].

Like presented in figure 2 the Eclipse Architecture is
divided into some component areas as Workspace, Debug
Framework, Text Editor, User Assistance, Release
Engineering, Ant integration, Search Facility, Standard
Widget Toolkit, User Interface and others.

Java developers use Eclipse SDK - Software Development
Kit which includes the Java development tools [10]. Users
can extend its abilities by installing plug-ins written for the
Eclipse Platform, such as development toolkits for other
programming languages, and can write and contribute their
own plug-in modules [9]. Figure 3 presents this kit.

In this environment all the tools developers have a level
playing field to offer extensions to the Eclipse IDE and
provide a unified and consistent users. Although Eclipse is
written in the Java programming language, its use is not
limited to it. Its structure can also be used as a basis for other
applications not related to software development, to content
management systems.

Figure 2 –Architecture of Eclipse Platform Font: [8]

Being an open source Eclipse has a community of
volunteers who focus on creating an open development
platform comprised of frameworks, tools and runtimes
extensible for developing, deploying and managing software
across the lifecycle. Call Eclipse Foundation [8] is a
nonprofit corporation held by his associates that hosts the
Eclipse projects and helps cultivate an open source
community and an ecosystem of complementary products
and services.

The Eclipse Project was originally created by IBM in
November 2001 and supported by a consortium of software
vendors. Eclipse Foundation was created in January 2004 as
an independent nonprofit organization to act as the organizer
of the Eclipse community.

It was created to allow the emergence of a community
around the Eclipse independent supplier, with intention to be
open and transparent. It manages and directs its continued
development by providing services to the community.

C. RD/z – Rational Developer For System z

The Workbench is a graphical RDZ IDE - Integrated
Development also environment containing common

46 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

configuration tools to assist the developer in major
mainframe languages such as COBOL, C/C + + and PL/I but
being based on Eclipse platform. Applying this environment
runs on Windows and Linux Operating System, integrating
application development tools for the operating system z/OS
[2][6]. See these workbench in figure 4.

Figure 3 – Eclipse SDK Font: [10]

RDz has a debug session, whose functions with monitored
expressions, dynamic data update, breakpoints, access to
source tools like program analysis, flow diagram and
navigation, real-time access to edit and browse DB2 table
values, IMS database values, VSAM files and QSAM files.
Figure 4 shows how the interaction happens in RD/z. It is
proposed mainly in the financial services industries such as
banking, financial and similar. Its architecture described in
figure 5 allows a client software interact with z/OS resources
through a host-installed listener (a task) and interact throug
JDBC drivers to data sources. The principals Mainframe
security software acts in RDz tasks as the same politics.

D. RTC – Rational Team Concert for System z

RTC is a software innovation through collaboration [11].
Functions in real time, in-context team collaboration, make
software development more automated, transparent and
predictive. Acts in an integrated planning, source control,
work item, build management and project visibility, assess
real-time project health, capture data automatically and
unobtrusively, automate best practices, dynamic processes
accelerate team workflow, out-of-the-box choice of agile
processes or customize, unify software teams, integrate a
broad array of tools and clients, support for System z and
System i servers, Visual Studio Client and integrate
document collaboration.

Rational Team Concert for System z is a Jazz Team Server
whose can runs on System z/OS, taking advantage of the
quality of service, integrates with RACF, relies on DB2 on
z/OS, Linux for System z. Support server consolidation
initiative and LDAP can be under RACF control [14]. RTC
Build Engine can runs on system z/OS, it has access to the
z/OS Unix System Services commands, Rexx commands,

JCL submission and it allows interact with your existing
assets.

III. NEED FOR COLLABORATIVE SOLUTION IN

ORGANIZATIONS

The integration of the organizations keeping all operations
working has been presented as a necessity and some of these
organizations have a project to standardize infrastructure
outsourcing your IT environment. The integration is
performed by steps and systems of each area/unit are
migrated separately, the operations in operation and without
loss of information. This unification requires alignment
technology infrastructure in order to support the increasing
operation before smelting and growth for the next activities.

Figure 4 – A graphical IDE Based on Eclipse Font: [10]

It is important to note that you should consider security

issues with low impact, overseeing the operation,
maintenance and security of the entire IT infrastructure
which are the servers, operating systems, storage, network
devices, software and ERP.

IV. INTEGRATION OF RATIONAL TEAM CONCERT TO

MAINFRAME DEVELOPMENT
This paper presents an enterprise modernization solution

which has the intention of construct a smarter way to
maximize the value of applications, people and teams by
reducing application maintenance costs, increase agility to
respond to changes and increase overall quality. Its intention
is consolidate team infrastructure to increase efficiency,
collaboration, and governance across software lifecycle.
Achieve greater business agility and productivity by
leveraging existing domain knowledge and new talent.

For this goal was designed a platform for the business
process of software delivery aligning with evolving business
priorities and stakeholder constituencies. To improve
coordination and visibility, look for ways to collaborate
across the software delivery process broader and richer
participation in software projects virtualizes "team memory"
to overcome geographic and temporal gaps in the software

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 47

lifecycle, enable flexible, global resourcing and energy-
saving workplace models [11][12].

Collaborate means to drive organizational consensus on
priorities and improve workforce productivity, to ensure
progress towards business outcomes and look at how to
report on the software delivery process; make better
informed decisions by leveraging the real-time
instrumentation of the software delivery process; leverage
metrics for continuous individual and team capability
improvement; gain insight into a projects which span
organizational and geographic boundaries
with minimal disruption.

Figure 5 – RD/z Architecture Font: [11]

To increase efficiency look for ways to automate the
business process of software delivery, improve productivity
and reduce headcount, standardize processes and automate
repetitive tasks to improve team efficiency while reducing
time to value and enhance regulatory compliance through
self documenting data and workflows.

The Jazz Team Server [3] can run on System z/OS, it takes
advantage of the quality of service because integrates with
RACF, relies on DB2 on z/OS, run Linux for System z,
support server consolidation initiative. The Build Engine can
run on system z, on z/OS, it has access to the z/OS USS -
Unix System Services commands. Runs Rexx commands
and JCL submission. It allows RTC to interact with your
existing assets. Collaborate and unify software teams across
platforms, z/OS and distributed developers. Specialized
support for developing and building applications in z/OS
languages such as COBOL, PL/I and Easytrieve[12].

Rational Team Concert supports development teams in the
following roles: By analysts, define and managing change
requests, where are generated work items of requirements, by
team planning and assigning work items, where are
generated releases and iterations, estimating tasks linked to
work item assignments. By developer, design code and unit
test, track work item, define and initiate builds linked to
change sets and work items; By tester, tests functional,
integration, system, performance. Test definitions defects are
linked to work items, builds and change sets. A common
repository provides seamless transitions of all artifacts

between all activities and team roles, promoting traceability
throughout the lifecycle.

V. DEVELOPMENT IN BRAZILIAN FINANCIAL INSTITUTION

USING RDZ

The organization where this research was applied is a
publicly traded financial institution, large and providing all
types of financial services, operates in the areas of the
Brazilian financial sector and global. His area of
development is divided into two environments called DEVA
- The A Development and DEVB – B Development. The
number of systems currently reaches 1400 running their
programs on a 24 hours basis, both in batch execution -
called Batch Execution as Running Online, also called
Transactional.

The usage scenarios in this institution are: Job Batch with
DB2; DB2 Batch Job without DB2; Cobol Program under
CICS [1]; Transaction without terminal; program under
CICS Cobol application being called by Natural Language;
Cobol program under CICS being called by web application;
EEC dump; Transaction IVP Debug Tool among others. The
programs are developed suing the tools TSO - Time Share
Option and Roscoe.

Some data of customer are: 54 million customers, 15 k
Service Points, 40 k ATM, 5 k Banking Agencies, 110 k
employees, 2 centuries of foundation, 1st in financial assets
(USD 438 bilions), present in 21 countries, revenues of
Brazilian Credit Card Market : 20%, market value (USD 31
bilions), profit in 2011 (USD 5,4 bilions), implementation
plan at financial institution, implementation at 3 LPARS – 1
lab & 2 production environment, implementation of license
server, elaboration of instillation guide, installation in
workstations, definition of user model, validation of
development environment (compilation, tests and more),
workshop for knowledge transfer, hands on coaching.

From the current working scenario was presented a
proposal for modernization solution delivering collaborative
integrating RTC - Rational Team Concert and RDZ -
Rational Developer for System z, with options for station
development programs, local syntax, compiling, building
debugs and delivery. Figure 6 shows this configuration. The
scenery presented solution for the development environment
is as follows:

{1}Program Sources controlled by RTC and Maintained in
RTC

{1}Developer work controlled by RTC process and Work
Items

{2}Debugging and Remote Syntax Check with RDz
connected to Mainframe z/OS

{3}Coding and Local Syntax Check at Developer
workstation with RDz

Scenario Options for Compilations (for Development and
Builds) before delivery made to the development
environment is as follows:

 {2}{1}RTC Build (Smart Build) or full Build
 {2}{1}Personal Build with RTC/RDz
 {1}{2} Build submitting Dynamic JCL

48 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 {2} Submit JOBs with RDz
The Option is Delivered to Build Code submitted to the

development environment is as follows:
{2} {1} RTC Build (Smart Build) or full Build.

Figure 6 – Solution Configuration Font: [11]

The scenario generated for development with builds and
jobs and showed in figure 7 has the following activites:

1 - Create work item to manage a development task;
2 - Developer assigned for the work item starts work, in

RDz loads the project in local workspace;
3 - In RDz developer makes changes/codings to the

programs and local syntax check;
4 - Load zFiles to z/OS with RTC Client;
5 - Do compile/link with JCL / JOB's;
6 - On z/OS and RDz Test / Debug application;
7 - Deliver the changes to RTC repository;
8 - Do a normal Build to create the final executable, RTC

records the change;
The scenario generated for build using JCL has the

following activities:
1 - Dependent build with following configuration -

translator defined just to support upload of source files;
command post processor with a Rexx Program that will build
the JCL (for all sources) and with .submitJCL command to
execute the Job .

2 - Build definition executes in the following steps: RTC
uploads the source files (language definition in z/OS
dependent build); Rexx program in post-processing
command creates the JCL (parse buildableFiles.xml to find
the files) – correlation is buildRequesterUserId. Needs to
include customization required by the customer; .submitJCL
in port-processing executes the JOB created before in Rexx.

VI. CONCLUSION

This research proposed a solution to integrate environment
Mainframe is the product RDZ - Rational Developer for
System z environment with distributed developers,
represented by the product RTC – Rational Team Concert,
which collaborates and unifys software teams across

platforms. Found issues and dependences are: local syntax
check is limited if the developer workstation does not have
all SW installed (DB2 Connect, TX Series); to do syntax
check on programs with DB2 and CICS commands, all
workstations need to have DB2 and TX Series installed
(developer can do Remote Syntax Check and Syntax by
Editor); use debug perspective on RDz , CICS Explorer to
manage CICS transactions (Newcopy, Debug Profiles);
compilation of programs with JCL is not registered on RTC;
alternative to load zFiles, copy and paste from local
workspace to PDS using RDz; customer has his own
compiling Jobs that is dynamically created. So the build
process with RTC will need considerable customization to
create and submit Jobs.

Figure 7 – Scenario for development Font: [11]

It can be concluded from this research that the demands of
financial businesses that have a tendency more customer
focused, directs your needs for a corporate infrastructure. To
meet this need as tools integration challenges must be
overcome, introducing transparency and with solutions for
the end customer. The difficulty of integrating different
business models with different hardware supporting software
becomes a major barrier, poser be complex and bring great
risk. Some strategies to improve development in financial
institution like presented in this paper can be made from
using RD/z - Rational Developer for System z integrated
with RTC – Rational Team Concert.

VII. ACKNOWLEDGMENTS

Authors of this paper would like to acknowledge:
1 – FAPDF – Fundo de Apoio à Pesquisa do Distrito

Federal – A Brazilian fund to support research located in
Brasilia city, Distrito Federal state.

VIII. REFERENCES
[1] IBM. "CICS Transaction Server Glossary. CICS Transaction Server

for z/OS V3.2”. IBM Information Center, Boulder, Colorado, USA.
September, 2010.
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp.
Acessed in 02/06/2011.

[2] IBM. “IBM previews z/OS Version 1 Release 13 and z/OS
Management Facility Version 1 Release 13”. IBM Corporation,
Armonk, New York, USA. February, 2011. Available in: http://www-
03.ibm.com/systems/z/os/zos/. Acessed in 05/05/2012.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 49

[3] Jazz Foundation. “Jazz Team Server”. Available em:
https://jazz.net/products/jazz-foundation/jazz-team-server/ Acessed in
04/06/2013.

[4] PRESSMAN, R. S. “Software Engineering”, McGraw-Hill
International Editions, Artmed, 2006.

[5] IBM. "Modern development tools for mainframe application
development". Available em: http://www-
01.ibm.com/software/rational/products/developer/systemz/. Acessed
in 09/03/2013.

[6] IBM. "Rational System z Development and Testing Hub". Available
in:https://www.ibm.com/developerworks/mydeveloperworks/groups/s
ervice/html/communityview?communityUuid=5d4610cf-76f1-46d9-
806f-88f157367222. Acessed in 09/03/2013.

[7] IBM. "What are mainframe operating systems?". Available em:
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/
com.ibm.zos.zmainframe/zconc_opsysintro.htm. Acessed in
03/30/2013.

[8] Eclipse. "Platform Eclipse". Available in:
http://wiki.eclipse.org/Platform. Acessed in 03/31/2013.

[9] Developerworks. “Introdução à Plataforma Eclipse”. Available em:
http://www.ibm.com/developerworks/br/library/os-eclipse-platform/.
Acessed in 03/31/2013.

[10] Source Forge. Available in:
http://colorer.sourceforge.net/sshots/neweclipse4.png Acessed in
03/31/2013.

[11] Nagasaki, J. “Improve collaboration across multi-plataform teams
with IBM Rational Team Concert for System z”. Workshop taught to
employees of Banco do Brasil in 10/08/2012. Brasília, Brazil.

[12] Barosa, R; Feeney, T. "Modernizing your System z Application
Development with IBM Rational Integrated Solution for System z
Development - Lab Exercises". Proof of Technolgy taught in
03/26/2013, São Paulo, Brazil.

[13] IBM. " ISPF for z/OS is a multifaceted development tool set for
System z". Available in: http://www-
01.ibm.com/software/awdtools/ispf/. Acessed in 04/06/2013.

[14] IBM. "RACF - Resource Access Control Facility. Available in:
http://www-03.ibm.com/systems/z/os/zos/features/racf/. Acessed in
04/06/2013.

50 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Advocation Over Investigation
Comments on Robert Glass' Fact #55

James Neilan
Department of Computer Science

Northern Kentucky University
Highland Heights KY

neilanj1@nku.edu

Abstract – Robert Glass, in “Facts and Fallacies of
Software Engineering” [1], states clearly his view on
research in software engineering (SE). SE research in
the empirical sense does not adequately support current
SE practice as it is generally believed. Glass supports
his statement and provides a “fact” explaining that SE
researchers advocate more than they investigate. It is
agreed that the “fact” accurately describes the current
state of the field. In this paper, support for Glass'
statement and opinions on the two resulting components
are given. Marketing resources are provided which
detail the use of hype for targeted marketing strategies,
possibly contributing to advocating new tools rather
than investigating the viability of these tools in the SE
research paradigm.

Keywords—Software Engineering; Research;
Investigation; Advocation

Ι. INTRODUCTION

 There is a belief that a chasm exists between software
theory and practice [1]. This chasm or lack of theoretical
correlation with software engineering practices exists
due to the inability of current SE researchers to supply
practitioners with a valuation of current computing
technologies. This leads to practitioners being unable to
determine which new technologies can provide
substantial benefit. Researchers cite varied reasons as to
the cause of the chasm. A primary belief is that SE
research does not contain empirical methods that define
how research should be carried out for SE projects [2][3]
[7]. This belief is supported by Glass in [1] and [6]
stating that software engineering research is only 14%
evaluative; and computer science research, given the
entire field, is only 11% evaluative.

 Other researchers have attempted to address the
disconnection by first evaluating the types of research
papers in the SE field and then presenting methods to
improve and better develop the communication of
research results to other researchers. In [3], Shaw
presents an analysis of the types of questions found in
SE, types of research results, and the types of research
validations used to substantiate the results. Shaw also

goes on to validate the maturation of software
architecture research as the principle study of the
overall structure of software systems [4]. Shaw
identifies six typical phases:

• Basic Research
• Concept Formulation
• Development and Extension
• Internal Enhancement and Exploration
• External Enhancement and Exploration
• Popularization

 Software engineering is defined in [7] as
developing, maintaining and managing high quality
software systems in a cost effective and predictable
way. Researchers who study theoretical phenomena of
SE generally consider two main activities:

• Development of new, or modification of
existing technologies.

• Evaluation and comparison of the effect of
using such technology in complex interaction
of individuals, teams, projects and
organizations.

 Sjoberg, Dyba, and Jorgensen [7] also defined the
means to approach the disconnection between theory
and practice by stating that the need for increased
competence in application and combination strategies
for empirical methods, tighter links between academia
and industry, and development of common research
agendas, focusing on empirical methods and resources
for those methods.

 The general view in the computing community is that
software research and software development are
mutually exclusive. Engineers agree that this
exclusivity creates greater subsequent problems,
leading to software development cost overruns, project
failures, and market release failures. Wind and
Mahajan [6] give a review of the use of marketing
hype in product research and market introduction.
Wind and Mahajan state that despite advances in
concept testing and pre-launch product testing, the
percentage of new product failure is alarmingly high.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 51

Though [7] defines marketing hype and develops a
model for using it correctly and effectively, the use of
hype in a market strategy can adversely affect the end
product market outcome, ending in product acceptance
failure as shown in Bresciani and Eppler [8].

A consistent point is made in [1][2][3][6] and [7] that
the core inability of theory to support development in
positive ways stems from ill-defined methods of SE
research and the slow adoption of empirical,
scientifically valid research paradigm(s) in the field of
software research and development. This is expressed in
Glass' research fact #55.

ΙΙ. ANALYSIS – FACT #55

 Robert Glass presents his research “fact” in [1]
stating:

“Many Software researchers advocate rather than
investigate. As a result, (a) some advocated concepts
are worth far less than their advocates believe, and (b)
there is a shortage of evaluative research to help
determine what the value of such concepts really is.”

 Glass presents his fact in a somewhat backward
manner. He first claims that software researcher’s
advocate, assuming tools and techniques, a viable
product solution rather than researching the solution to
determine true viability. In part (a), Glass gives a result
of the facts premise; advocated concepts are worth much
less than what is believed by the researcher responsible
for the recommendation. Glass poses a cause and effect
from his main statement and part (a) of his results.

 There seems to be a circular argument in part (b) of
the statement. Glass is emphasizing that because
software engineers advocate rather than investigate, a
deficiency of evaluative research exists in the field.
However, it could be equally valid to state that a
deficiency of evaluated research techniques gives rise to
SE researchers advocating more than investigating due
to a lack of research methodologies. It is clear that (a)
follows from Glass' main statement, however, it is not
clear the (b) is also a result.

 Glass seems to be stating that SE researcher
unwillingness to investigate concepts prior to advocating
them leads to potentially misleading technology
promotion, instilling misplaced product confidence, and
leading to eventual concept failure. Is it the result of the
field’s lackadaisical attitude towards research? Or is it
that SE researchers simply do not have the tools and
training to perform valid, meaningful concept
investigation?

 It is true that when researchers do not do the
research, there is little for developers to review prior to
making judgments on new technology and concepts. If
product valuations are not done by other researchers,
than the only other source of product information
comes from the product developers and marketing
groups. If product information and evaluation stems
only from groups who can gain from product adoption,
than the information is inherently skewed and
presented in a way that promotes the product or
concept over others and not necessarily providing all of
the relevant information to the customer base.

 Three questions present themselves from Glass'
statement:

1. Do researchers have the tools to effectively
evaluate software concepts?
2. Does marketing hype sway researcher
opinions when the tools for evaluation are
absent or at best ill defined?
3. Do SE researchers perform pseudo-
research to promote their own concepts or
methods?

ΙΙΙ. THE HYPE CYCLE

 Bresciani and Eppler describe the hype cycle and
how it characterizes the relative maturity of market
technologies [8]. The Gartner hype cycle [9]
characterizes the progression of emerging
technologies, starting from a technology trigger and
traveling through five distinct phases.

1. Technology Trigger
2. Peak of Inflated Exceptions
3. Trough of Disillusionment
4. Slope of enlightenment
5. Plateau of Productivity

 The first phase, Technology Trigger, represents a
product launch or announcement such that it garners
significant press coverage and domain interest. The
second phase, Peak of Inflated Expectations, represents
the frenzied public enthusiasm and unrealistic
expectations typically generated [8]. The next phase,
Trough of Disillusionment, characterizes the state
when a technology fails to meet expectations and
quickly becomes “unfashionable” [8]. This phase is
then followed by the Slope of Enlightenment,
representing a technology's period of practical benefit
through experimentation by individuals or
organizations that adopted to continue with the product
through the Trough of Disillusionment. This leads into
the final stage, Plateau of Productivity, where the
benefits of the product become widely demonstrated

52 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

and accepted [8]. This phase also represents the stage
when the product obtains mainstream adoption.

 Bresciani and Eppler give a graphic representation of
the hype cycle. Figure 1 depicts the cycle as represented
in [8].

Figure 1 The Hype Cycle

 Feen, Bresciani and Eppler go onto explain that the
rationale behind the hype cycle, stating that the cycle is
more about human attitudes towards innovation rather
then to a given technology [8][9]. Public perception of
value in regards to technology arises in part from
speculation or promises and from real engineering data
or business maturity results [8]. The cycle is the result of
combining the initial excitement of a product and the
gradual maturity of the technology. These two concepts
describe the cycle of hype that is present in novel or
enhanced product release.

 Regarding Wind [5], Feen [9], and Brasciani [8],
there exists support for the use of hype for initial market
investment, hype as a natural phenomenon in new
technology perception, and the understood model of
product maturity. Taken together, the hype cycle
provides insight into how hype and product maturity
impact consumer perception.

IV. DISCUSSION

 Glass gives nine major categories of research focus in
the computer science field. Research can be of many
forms as well, such as informational, observational, or
literature report based. Research can also be analytical
or evaluative [1]. Giving the types of research and the
numerous combinations possible, Ramesh, Glass, and
Vessey [6] provide a formal analysis on topic types,
research approaches and methods.

 Glass' nine categories are:

• Problem solving concepts
• Computer concepts
• Systems/software concepts
• Data/information concepts
• Problem-domain specific concepts
• Systems/software management concepts

• Organizational concepts
• Societal concepts
• Disciplinary issues

 Ramesh, Glass, and Vessey [6] surveyed 595
articles from both the ACM and IEEE journals
covering the above nine categories. They found that the
top topic, with 28.67% of the papers representing
computer concepts covering hardware architecture,
inter-computer communication, operating systems, and
machine/assembly-level data/instructions. The next
highest topic was problem-domain specific concepts at
21.50% covering scientific/engineering, information
systems, systems programming, real-time systems and
robotics, and computer graphics. Systems/software
concepts was third at
19.11% with the major focus, 5.25%, on software
tools, with life cycle and design reuse trailing closely
behind at 3.82% each. The remaining categories
received 14.65% for problem solving, 15.45% for
data/information concepts, 0.32% for systems/software
management and organizational concepts, with no hits
for societal and disciplinary issues.

 Another interesting finding from [6] is the research
methods used in the study. Ramesh et al. found that
73.41% of the papers where conceptual
analysis/mathematically based,
15.13% strictly conceptual analysis based, and 2.87%
proof of concept implementation based. The remaining
methods where case study and data analysis with
0.16% respectively, field study another 0.16%,
laboratory experiment with humans 1.75%, literature
review 0.32%, mathematical proof with 2.39%,
simulation with 1.75%, and software experiment at
1.91%.

 Table I shows the top two and bottom two
categories with the representative number of papers.

TABLE I. TOP AND BOTTOM CATEGORIES

Top 2 and Bottom 2 Categories

Category Percentage
Number of

papers(of 595)

Top Computer Concepts 28.67 171

Top
Problem-Domain
Specific

21.5 128

Bottom
Systems/Software
Management

0.32 2

Bottom Organizational 0.32 2
a. Note: Not considering the topics of societal concepts nor Disciplinary

issues.

 We can also look at the top and bottom research
methods used, shown in Table II.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 53

TABLE II. TOP AND BOTTOM RESEARCH METHODS

Top 2 and Bottom 2 Research Methods

Methods Percentage
Number of

papers(of 595)

Top
Conceptual
Analysis/Mathematical

73.41 437

Top Conceptual Analysis 15.13 90

Bottom Literature Review 0.32 2

Bottom Case Study 0.16 1

 Considering the issue of software research, sitting at
1.91%, or 11 papers out of the 595, we can see where
issues lie in the field. What the study in [6] shows is the
level of interest in the categories and what methods are
most popular in working with in the nine categories. It is
clear that mathematically based analysis and conceptual
analysis in computer concepts and problem domain
specific topics dominate the computer science field. We
also see that case studies and literature review methods
are used infrequently and that systems/software
management and organizational research lacks
significantly. Coupled with the 1.91% of papers
concerned with software experimentation, it seems clear
that the interest in such topics is considerably low.

 Further support from a marketing view comes from
Wind and Mahajan [5]. They provide a good review of
the use of hype in product promotion. Concept adoption
is influenced by the number of people and the amount of
hype initially generated to create favorable and
supportive environments for the product. Wind and
Mahajan go on to state the given that most product
concepts and models are not based on the concept of
hype, it is important to modify the models and research
instruments to accommodate the concept.

 From a marketing perspective, we have a
documented source stating that hype should be used.
What is not clear is how hype should be used and what
checks should be used in ensuring that what is
advertised accurately represents the product’s
capabilities. The hype cycle, however, gives guidance to
the practitioner and can aid in navigating the viability of
a new software product.

 Additional evidence pointing to the lack of scientific
rigor in SE is given in [7]. Sjoberg et al. state very
clearly the current state in quality of the SE researcher:

• Researchers frequently do not build
sufficiently on previous research results.

• Research methods and included design
elements are frequently applied without
careful consideration of alternative study
designs.

• Study results are frequently not robust
due to lack of replication.

• Studies frequently conducted by
researchers with a vested interest in
study outcome, with insufficient
precautions to prevent bias.

• Reference points for comparisons of
technologies are frequently not stated,
nor relevant.

• The scope of validity of empirical studies
is rarely defined explicitly.

• Statistical methods are used
mechanically, and with little knowledge
about limitations and assumptions.

• Statistics-based generalizations are the
dominant means of generalizations.

 Out of 5453 scientific articles published in 12 major
SE journals and conferences spanning from 1993 to
2002, Sjoberg et al. identified only 113 controlled
experiments in which humans performed SE tasks [7].
This analysis, coupled with Ramesh et al. in [6], it is
easy to claim that, with the lack of empirical rigor, an
SE researcher would tend towards advocation over
investigation, trusting market hype to provide the
functional support and benefit of a product or concept.
Whereas the SE researcher should first consider the
hype cycle to better investigate prior to advocation.

 There were no publications that directly argue
against Glass' fact. Glass states that SE researchers will
back their own claims by denying that advocation
happens more often and in place of investigation.
Coupled with the results from [3][4][6], it is hard to
conclude that SE researchers can do anything more
than advocate. The results shown [6] and [7] clearly
point to the lack of research focus.

V. CONCLUSIONS

 What are the reasons behind the lack of scientific
rigor in software engineering? Is it that the field is to
young as eluded to by Shaw [4]? It is because the SE
industry pushes for re-using rather then re-inventing?
When SE researchers hear of a new, novel, and
seemingly beneficial product, do they jump on board
due to development time constraints? Is it time
constraints that cause researchers to rush to unsound
judgments? Are they swayed by personal reasons?
Should we blame the marketing hype as described by
Wind [5]? Many more questions can be asked as to the
whys of the seeming failure of SE research in computer
science.

 However, considering the three questions posed
earlier and given the fact that empirical methods have

54 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

yet to be fully adopted as stated in [2][3][4] and [7], it is
sound to answer the following:

1. Do researchers have the tools to effectively
evaluate software concepts?

 Yes. It seems that the empirical tools and techniques
have been developed though not popularized nor taught
as fully as they are needed [2][3][7].

2. Does marketing hype sway researcher opinion
when the tools for evaluation are absent or at
best ill defined?

 Yes. Marketing hype is a valid technique in raising
product awareness and angling market foot hold [5].
This can be used for both good and bad. Also, the study
by Feen and Bresciani clearly shows that hype is an
integral part new product release and reception. From
excitement, disillusionment and finally product maturity,
SE researchers must be aware of the product Hype
Cycle; and how to maneuver through it.

3. Do SE researchers perform pseudo-research to
promote their own concepts or methods?

 Glass and Sjoberg believes that this is true [1][8].
Researchers want to publish and show valid, novel
improvements over known and more traditional
methods. Academic dishonesty, plagiarism, and number
fudging have always been an unfortunate component of
scientific publication. It is left to the research
community to study the findings and ensure that the
inherent self-checking mechanism in the scientific
method succeeds. However, the initial hype curve,
evident in the Hype Cycle, is a powerful motivating
factor in early, inadequately researched, adoption of
technologies that are destined to fail meeting
expectations.

 It seems correct to state that researchers agree that a
chasm exists between theory and practice. Though
attempts have been made to bridge it, given the
literature, fact #55 models the actual state of SE
research. With the promise of better designed
approaches, higher quality results, and better empirical
analysis in SE, the tools exist to change the fact into a
fallacy. Yet, until further research proves otherwise,
each SE researcher must guard against quick adoption of
novel concepts and practices. It is up to the individual
SE researcher to understand the empirical methods
available to her such that a concept advocation carries

with it the full content of fact, utilizing level headed
scientific approaches that are required.

VI. REFERENCES

[1] Glass, R., “Facts and Fallacies of Software Engineering”,
Addison Wesley publishing. ISBN978-0-321-11742-7. 2003,
pp.147-150.
[2] Perry, D., Porter, A., Votta, L., “Empirical Studies of
Software
Engineering: A Roadmap”. Association for Computing
Machinery,
2000.
[3] Shaw, M., “What makes Good Research in Software
Engineering?”, International journal of Software Tools for
Technology Transfer. 2002,
vol. 4, no. 1, pp.1-7
[4] Shaw, M., “The Coming-of-Age of Software Architecture
Research”, ICSE 2000.
[5] Wind, J., Mahajan, V., “Marketing Hype: A New
Perspective for New Product Research and Introduction”. J
Prod INNOV MANAG 1987, vol
4, pp.43-49
[6] Ramesh, V., Glass, R., Vessey, I., “Research in computer
science: an empirical study”., Journal of Systems and
Software, 2004, pp165-176.
[7] Sjoberg, D., Dyba, T., Jorgensen, M., “The Future of
Empirical Methods in Software Engineering Research”.
IEEE FOSE, 2007.
[8] Bresciani, S., Eppler, M., “Gartner's Magic Quadrant and
Hype Cycle”, Institute of Marketing and Communication
Management , Univerita' Della Svizzera Italiana.
Collaborative Knowledge Visualization Case Study Series
Case Nr. 2, 2008
[9] Feen, J., “Understanding Gartner's Hype Cycle”, Gartner
Research ID Number G00144727, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 55

Senior Citizens in Interaction with Mobile Phones:

A Flexible Middleware Approach to Support the

Diversity

Vinícius P. Gonçalves
1
, Vânia P. A. Neris

2
, Jó Ueyama

1
, Sibelius Seraphini

1
, Teresa C. M.

Dias
3
, and Geraldo P. R. Filho

1

1Institute of Mathematics and Computer Science, University of São Paulo, 13566-590, São Carlos-SP, Brazil
2Department of Computing, Federal University of São Carlos, 13565-905, São Carlos-SP, Brazil

3Department of Statistics, Federal University of São Carlos, 13565-905, São Carlos-SP, Brazil

{vpg, joueyama, geraldop}@icmc.usp.br, vania@dc.ufscar.br, sibelius@grad.icmc.usp.br, dtmd@ufscar.br

.

Abstract - The elderly population grows and it is

necessary to develop appropriate technologies to them.

Although many elderly afford a mobile phone, several of

them only receive calls and do not benefit from other

mobile phones’ functions due to interaction problems.

The current design of mobile devices applications favor

young audience, instead of also considering the elderly

different interaction needs. The elderly population has

different educational levels, experience with technology,

cognitive skills and physical dexterity. This paper

presents the designs of user interfaces that are flexible to

meet the diverse requirements of elderly when interacting

with smartphones. A framework for the design of flexible

user interfaces was applied, and interaction requirements

were formalized considering syntactic, semantic and

pragmatic aspects. A set of rules defining the design of

the system adaptable behavior was specified. A

middleware was adopted and customized, and flexible

user interfaces to a commercial Android smartphone

were developed. The flexible solution was evaluated by

elderly users. The results suggest a reduction in the

interaction time with the use of flexible user interfaces

and an increase in users’ satisfaction.

Keywords: Reconfigurable middleware, mobile devices,

tailorable interfaces, elderly, evaluation, framework.

1 Introduction

According to the United Nations [19], there are

currently 893 million people over the age of 60 in the

world. This number will nearly triple to 2.4 billion by the

middle of this century. “All countries - rich or poor,

industrialized or developing - are seeing their populations

age in one degree or another” [19].

Even in the elderly population, there are differences

regarding educational levels, experience with technology,

cognitive skills and physical dexterity [8][9][17]. Many

of the solutions in information and communication

technologies (ICTs) are currently developed focusing on

young users and not including the elderly population that

has specific interaction needs [3][5][6][20]. Studies show

a negative association between age and interaction skills

[8][9][11][16] and a significant reduction in the number

of people over 45 that benefits from current ICTs [13].

However, the design solutions for mobile devices that

target the elderly public should not offer solutions that

discriminate or cause embarrassment [9][17]. This paper

argues for the design of interfaces that are flexible to

meet the diverse requirements of the elderly in the

interaction with mobile phones. The solutions should be

tailorable, respecting diversity in the group of users,

adjusting to each profile, considering differences related

to experience with technologies, cognitive skills,

education and physical abilities and minimizing the fears

arising from user inexperience or lack of knowledge

[7][15].

Flexibility refers to changes regarding the presentation

of the interface elements, namely changes in color, size

and window position, as well as changes in the order of

interaction actions [12]. It is therefore important to

emphasize that such interfaces should provide the user an

updated layout, subjectively interesting, with relevant

information, and with size and setting that is appropriate

to the context and that corresponds directly with the

users’ requirements and preferences.

Aiming to offer adaptable mobile interfaces to the

elderly, this paper applied a framework for the design of

flexible user interfaces named PluRaL [14]. Interaction

requirements were formalized considering syntactic,

semantic and pragmatic aspects. The design proposal was

also supported by the observation of a group of elderly

interacting with a commercial version of a mobile phone

agenda. To support the development of a flexible mobile

user interface solution, we have adapted a middleware

named OpenCom [4][18] and developed a framework

called FlexInterface.

The flexible solution was evaluated with 21 elderly

users. The results suggest a reduction in the interaction

time with the use of flexible user interfaces and an

increase in users’ satisfaction.

56 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

mailto:vania@dc.ufscar.br
mailto:sibelius@grad.icmc.usp.br

This paper is organized as follows: Section 2 presents

the related works; Section 3 describes the design of

flexible interfaces for mobile phones focusing on the

elderly diversity; Section 4 presents the FlexInterface

approach for tailorable interfaces; Section 5 describes the

evaluation with the elderly and compares the results of a

flexible approach with the commercial one which is non-

flexible and Section 6 presents the conclusion and

suggests future works.

2 Flexible Interface Design For

Elderly People

The first results of this research report the outcomes of

a case study with older users, in order to support the

formalization of a flexible interface design for mobile

phones to meet the interaction requirements of the elderly

public [7]. The case study considered the application of

the PLuRaL [14][15] framework for the design of flexible

interfaces. See Figure 1.

The PLuRaL is organized in three pillars. The first one

is to clarify the differences among the potential users,

devices and environments in which the system can be

used. Therefore, this step is to clarify the problem and

identify possible solutions.

To support the definition of the users’ need, elderly

people interacting with a commercial version of a

phonebook were observed. After that, some cards were

filled in. These cards consist in one of artifacts that

PLuRaL proposes. The aspects listed consider, for

instance, eyesight impairment as a physical characteristic,

ease of use as a use purpose and user satisfaction

regarding the cell phone.

Moreover, the form has a general specification, from

the simplest to the most essential characteristics. In the

"emotional issues", for example, impatience for the

restless users that use the mobile phone, and also the lack

of curiosity, and also some user’s fear of breaking

something new is highlighted. After filling in the cards

for different users’ profiles, devices and environments

where interaction may occur, interaction requirements are

specified considering six layers, including semantic and

pragmatic requirements.

Fig. 1. PLuRaL framework [15].

The second pillar is the formalization of functional

requirements, which is constructed upon a consistent

view of the domain, and that includes rules that oversee

the users’ behavior. Finally, the third pillar addresses an

approach that defines the design of flexible interfaces

through the formalization of norms for the tailored

behavior of the system, as can be seen in the Table 1.

Considering an approach that emphasizes the

Universal Design [1], it is important to design systems

that allow access to knowledge and information, without

physical and social segregation and also that makes sense

to the largest possible number of users according to their

different sensory, physical, cognitive and emotional

abilities. Thus, it is necessary to approach the elderly

users and understand their interaction requirements in

order to generate tailored interfaces that meet the

preferences and needs of this target audience.

Therefore, unlike conventional applications, the

development of a tailor-made system requires designers

to consider in their interfaces the different potential uses,

including the progress of users and their experience with

technology.

In order to meet the many interaction requirements of

the elderly public in a flexible approach that is aligned

with the Universal Design principles [1], this paper

adopted the PLuRaL as a reference to guide the design

process and OpenCom [10][18] to support the

implementation of these flexible interfaces. However,

perceiving that the literature emphasizes the interaction

problems faced by elderly users and brings little on the

various requirements of this population of users, a

practical observation activity was performed, to learn

more about the interaction diversity of elderly users [7].

The observation of the elderly corroborated with the

characterization of the public in question, which guided

and enriched the formal interaction requirements with

mobile phones in six different aspects, starting with those

regarding the physical aspect of the device, up to the

impact of this interaction with the real world and the

adjustable behavior of a cellular system to meet the

interaction requirements of the elderly [7].

For this research, the development of systems that

adapt to various needs is highlighted; meeting the

requests of different users, distinctive devices and

changes in environmental conditions. Given the

aforementioned considerations, this study did not

consider in its implementation only average needs, but

primarily the differences, as described in the next section.

3 Implementation Issues

Using the set of rules that were defined in Section 3,

for the design of flexible interfaces for elderly users, we

developed a functional prototype which provides the

interfaces that can adapt to the older public during run-

time. The FlexInterface is a framework that assists in

implementing flexible interfaces and was developed by

Adaptive Middleware OpenCom [10][18]. With the aid

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 57

of this resource, it is possible to have mobile phone interfaces that adapt to different older user profiles.

Table 1. Examples of norms representing a the tailorable behavior of a phonebook for different elderly users.

Context Condition Tailorable behavior

Device Environment Users Functionality Representation Element and mode

mobile phone any elderly with education level less

than 4 year

search contact contact List / index remove scrollbar

mobile phone any elderly with memory deficit save form polychromatic

mobile phone any elderly with education level

more than 4 year

buttons save / cancel more significant

mobile phone any Elderly inexperienced in the use

of mobile phones

save form fewer fields to fill

mobile phone any Elderly with physical motor

deficit

dial key greater distance

between the keys

mobile phone any elderly experienced in the use of

mobile phones

buttons save / cancel monochrome

mobile phone any elderly deficit of vision dial keyboard increase keyboard

3.1 The FlexInterface Approach

This research adopts a generic approach to build

adaptive applications for mobile devices. Thus, [9][18]

show that run-time reconfiguration is a key feature to

handle the heterogeneous hardware that is inherent in

mobile devices.

Thus, by defining the design of flexible interfaces so

that they meet the many interaction requirements of the

elderly with mobile phones [7] [17], it was possible to

develop a software layer called FlexInterface based on

the OpenCom component model [4][18].

FlexInterface is generic and has a flexible and

extensible architecture that is not dependent on language.

It is based on a microkernel, where the functions are

incremented upon request. In this context, there is

FlexComp, which is a generic and reflective component

of FlexInterface that has two receptacles called

FlowScreen and ProfileChecker, as shown in Figure 2.

The FlowScreen component is responsible for storing

the sequence of actions/screens that a given older user

profile possesses, so that it can carry out a task in the

device. Thus, with the FlowScreen it is possible, for

example, to determine a sequence of specific screens, for

older adults with a low level of education, to record a

contact in the cell phone’s agenda (Example: flow of

actions / screens: Record Name > Record Phone > Save

Contact).

Additionally, the ProfileChecker component receives

the user’s interaction data and based on this information,

it can set the most appropriate type of profile, and then

determine whether it is necessary to reconfigure the

FlexInterface components.

3.2 Flexinterface for Older Users

FlexInterface is a framework supported by the

development of adaptive interface designs that allows the

application to adapt to the needs of the user during his

interaction with it. Considering the results of the design

process specified in the set of norms (see Table 1), two

different profiles for elderly people were selected: seniors

with up to fourth-grade schooling (low education) and

those with education beyond the fourth grade (high

education).

Given the range of requirements, we used

FlexInterface to provide flexibility to the interfaces. This

meant that, as well as a change of actions/screen flow and

of the interface elements, changes in the structure and

size of the keyboard were also necessary. In view of this,

the ElderlyFlex has been created, which is an extension

of the FlexComp of the FlexInterface. This extension

includes a new receptacle that can load the keyboard

component and is suitable for the profile determined by

the ProfileChecker, as shown in Figure 3.

Thus, the keyboard is represented by three

components to meet the requirements of elderly users: a)

the default, b) for the elderly with low education and c)

for those with high education (DefaultKeyboard,

LowEducationKeyboard and HighEducationKeyboard,

respectively). Depending on how the user interacts with

the application, the ProfilerChecker sets the most suitable

profile at runtime and enables the ElderlyFlex to connect

to the keyboard component that is better suited to the

profile.

The components that represent the keyboards have the

same interface, called Ikeyboard that connects to the

ElderlyFlex receptacle. This interface provides the basic

features of a keyboard and allows other types of

keyboards to be defined and connected at ElderlyFlex

run-time.

 Fig. 2. ElderlyFlex Component and its receptacles.

58 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Fig. 3. Our FlexInterface Components along with implemented Plugable Extensions.

The FlexInterface architecture is organized in

components. The component which implements the

screen flow is called FlowScreen. For this particular

scenario, it was possible to explore the reconfiguration of

the actions/screen flow. In this case, the ProfileChecker

defines the interaction profile and analyzes the use of a

new layout with a different action flow that can be used

for the interface at the appropriate time.

Thus, owing to the change in the user´s standard

interaction, in the scenario in which the default

screens/actions flow component (DefaultFlow) is loaded

the ProfilerChecker can,for example, set the low

education as the most appropriate default for this older

user. As a result, the default flow component will be

disconnected and destroyed, freeing up the memory;

following this, the screens/actions flow component for

lower education (LowEducationFlow) will be created and

connected to ElderlyFlex, making the application suitable

for the new interaction default.

It should be noted that when the screens/actions flow

reconfiguration is added, the screens of each flow

establish the interface layout formatting, the position of

the keys, the colors and the voice access, by strictly

adhering to the rules defined by [7][9] and using the

PLuRaL framework.

4 Evaluation with Elderly People

For the case study, thirty one elderly above 60 years

old were observed while interacting with flexible user

interfaces for a mobile phonebook.

4.1 Planning

The proposal was applied in places with activities

geared to the target audience. Two factors were

instrumental in obtaining the sample. (1) find places with

activities for the elderly and (2) invite elderly people to

interact with a smartphone. Finally, the sample size was

determined by considering the locations and the number

of users who accepted the invitation. The study was

conducted in sessions during 4 days. Thus, the sample

has 31 participants.

Hypothesis: based on the different interaction

requirements of the elderly with cell phones, we believe

it makes sense to develop software solutions that address

the existence of specific situations, taking into

consideration the standards defined by (Gonçalves, Neris

and Ueyama, 2011) for the tailored behavior of the

interfaces.

Purpose of the case study: observe and analyze elderly

user interaction with smartphone flexible interfaces and

verify if there is an interaction improvement, using as a

parameter the practice (Gonçalves, Neris and Ueyama,

2011) of elderly interacting with smartphone non-flexible

interfaces.

Methodology applied: in order to analyze the elderly

user interaction using mobile phone flexible interfaces, a

senior user group was invited to participate in a practice

using cell phones. The purpose of the activity was for

the users to save a contact in the cell’s phonebook and

then place a call. With the data obtained in the

observation, it was possible to see whether FlexInterface

had facilitated the interaction.

Support Material: To conduct the case study, a Term

of Consent, a Profile Survey Questionnaire and a

Participant Observation Form were prepared. The Term

of Consent elucidated the participants regarding the

research objective, the voluntary participation and its

scientific nature. The Profile Questionnaire Survey had

social and cultural questions that allowed profiling these

elderly users. The Participant Observation Form was

designed to help observe the user during his interaction

with the cell phone.

Devices used: Each elderly people received a

smartphone Samsung Galaxy mini with Android with OS

version 2.3. The cell phone had the battery charged and

with prepaid credits to make calls.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 59

Fig. 4. Interaction with the cell phone.

4.2 Execution

In parallel to physical activities intended for seniors,

such as dance and theater, twenty one people were

invited to participate in some interaction tasks with the

cell phones, as described below.

First, the users were profiled. Furthermore, users who

did not have schooling, or never used cell phones, or just

used them to answer calls could be identified. However,

users with higher or secondary education besides making

calls, also send messages, take pictures, edit contacts and

play on their phones.

It should also be noted that there was a user who had

Alzheimer’s, which according to the teacher of the group,

was in an advanced stage.

For this application scenario a concept test that

allowed adapting the interface to two user profiles was

considered, defined by [7][9]: the elderly with low

education (studied up to fourth grade), and educated

elderly (studied beyond the fourth grade). It was

correlated that the low education profile was

characterized by having poor mobile phone experience.

Thus, for each such user profiles had a type of tailorable

interfaces, as seen in Figure 4

Also, these users were shown a paper that had the

name and phone number of a person they had to save in

the cell’s phonebook and then call the number in

question, as seen in Figure 5.

(a) (b) (c)

Fig. 5. Examples of flexible and non-flexible interfaces. (a)

Non-flexible interfaces, (b) flexible interfaces for non-educated

users, (b) flexible interfaces for educated users.

Fig. 6. Satisfaction second task completion With flexible

interaction (green = yes, red = no).

While the users performed the task with the cell

phone, the researchers conducting the case study filled

out an observation form with questions such as: Needed

help to start the task? The screen size is adequate for the

items? Besides these data, the interaction time was

observed and the users’ comments were annotated.

After completing the task, the authors performed a

discussion session with the elderly people, raising issues

related to flexibility, the requirements met and the

difficulties encountered during the cell phone interaction.

4.3 Observation Results

For users in the sample, 68% participated in the group

that interacted with the flexible interface. Considering

both groups, the average age is approximately 69 years

(standard deviation of about 8 years). The level of

education of the elderly in both groups ranging from no

education (19%) pos-graduation (10%), with the majority

(45%) is from 1st to 4th grade.

The task described in Section 5 was held for

approximately 90% of users. A variable degree of

satisfaction (measured by the positive and negative

spoken sentences) in the statistical analysis, was

classified in levels (Very low: 0 a 19; Low: 20 a 39;

60 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Good: 40 a 59; Very good: 60 a 79 e Excellent: 80 a

100).

Figure 6 and 9 shows the levels of user satisfaction

when performing the task with the flexible interface

(Figure 6) and non-flexible (Figure 7). Regardless of

whether or not completing the task flexible degree of user

satisfaction varies from 67% to 100% if the task is non-

flexible degree of user satisfaction varies from 33% to

67%.

A variable degree of satisfaction (measured by the

positive and negative spoken sentences) in the statistical

analysis, was classified in levels (Very low: 0 a 19; Low:

20 a 39; Good: 40 a 59; Very good: 60 a 79 e Excellent:

80 a 100). Figure 6 and 9 shows the levels of user

satisfaction when performing the task with the flexible

interface (Figure 6) and non-flexible (Figure 7).

Regardless of whether or not completing the task flexible

degree of user satisfaction varies from 67% to 100% if

the task is non-flexible degree of user satisfaction varies

from 33% to 67%.

To compare the execution times of task between

flexible and non-flexible proposal we applied the Mann-

Whitney test. This is a nonparametric test often used

when the assumption for applying a parametric test, as

for example, normal observations, it is not checked and

when the sample size is small. This test compares two

sets of data [2].

The Mann-Whitney variable is applied in the runtime

task, flexible and non-flexible. In this case, the

hypothesis H0 considers that, on average, the two

interaction times (flexible and non-flexible) are iqual and

H1 is the assumption that the interaction time with the

flexible solution is smaller than the interaction time with

the non-flexible solution, on average. The hypothesis H0

is rejected (p-value = 0.001). That is, the runtime task

proposed for flexible on average is less than the time of

the proposed non-flexible. The graph of Figure 8 shows

the behavior of this variable in each situation. Note that

50% of users performed the task in the flexible solution

up to 5 minutes and in the non-flexible interface, the task

was performed within 10 minutes.

Fig. 7. Satisfaction second task completion without flexible

interaction (green = yes, red = no).

Fig. 8. Boxplot of the task execution times.

 Similarly, the Mann-Whitney test is applied to the

variable degree of satisfaction of tasks, flexible and non-

flexible. In this case, the hypothesis H0 is equal, on

average, between the degrees of satisfaction for both

proposed and H1 is the hypothesis that the degree of

satisfaction of the proposal is less flexible than the

flexible proposal on average. The hypothesis H0 is

rejected (p-value < 0.001). That is, the satisfaction to

execute the task is higher when it is flexible. The graph

of Figure 11 shows the behavior of this variable for both

tasks. Note that 50% of users of the proposal presented a

flexible satisfaction between 83% and 100% for the

proposal and there is non-flexible satisfaction between

14% and 29%.

The results suggest that elderly users, while interacting

with the flexible user interfaces, took less time to

perfume the tasks and were more satisfied.

Fig. 9. Boxplot of the degrees of satisfaction, in each situation.

5 Conclusions and Further Work

Population aging is a widespread reality and must be

taken into account when designing “future” technologies

and services. Technological innovations are not just

comfort gadgets, but play an increasingly essential role in

people’s routines. The elderly, in particular, who

represent a significant portion of society can benefit from

the use of technological innovations. Therefore, it is

important to improve the development process of user

interfaces, adding quality to the design of tailorable

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 61

solutions that meet the preferences, needs and intended

uses of the elderly population.

Adaptability and extensibility are the potential benefits

of adopting a generic approach to adaptive flexible

interfaces in the field of smartphones. The use of

adaptable flexible interfaces allows to modify the

interface according to the individual needs of each user.

The generic approach of FlexInterface allows new user

profiles to be added to an application without the need to

change the other components.

The case study results suggest that users took less time

to performe the task in the adaptable interface and were

more satisfied.

In future work, we will better describe user behavior

collecting a greater amount of user interaction data (touch

screen clicks, keys, duration, etc.). This interaction detail

will also allow an element of the screen to be

reconfigured independently of the others. For example, if

a user takes too long to click the Save key having already

entered all the contact data. The color of the key changes

so that the user perceives what action he should do to

finish the task.

Accordingly, the detailed behavior together with the

reconfiguration of interface elements may allow these

interfaces to adapt to a wider range of features and skills

of elderly users.

6 Acknowledgements

The authors of this paper would like to thank FAPESP

for funding their research project (Process ID

2008/05346-4).

7 References

1. Connell, B. R., Jones, M. Mace, R., et al.. About UD:

Universal Design Principles. Version 2.0. Raleigh: The

Center for Universal Design. http://www.design.ncsu.

edu/cud/about_ud/udprinciples.htm (1997)

2. Conover, W. U. Practical Nonparametric Statistics. 3a. ed.

Wiley (1999)

3. Czaja, S. J.; Lee, C. C. The impact of aging on access to

technology. Universal Access in the Information Society

(2007)

4. Filho, G. P. R., Ueyama, J.; Villas, L.; Pinto, A.; Seraphini,

S. Nodepm: Um sistema de monitoramento remoto do

consumo de energia elétrica via redes de sensores sem fio.

In: Simpósio Brasileiro de Redes de Computadores e

Sistemas Distribuídos (SBRC 2013), 2013, Brasília. Anais

do SBRC 2013,v. 31. p. 17-30 (2013)

5. Gonçalves, V. P.; Leite, B. C. S.; Carvalho; J. R.; Gomes,

M. D. S. Inspeção de Usabilidade: Um Processo

Informatizado para Melhor Satisfazer os Objetivos do

Usuário. In: Escola Regional de Informática (ERIN 2010),

2010, Manaus. ISSN: 2178375-6-9-772178-375006. Anais

do ERIN 2010, v. 1. p. 157-166 (2010)

6. Gonçalves, V. P.; Neris, V. P. A.; Morandini, M.;

Nakagawa, E. Y.; Ueyama, J. Uma Revisão Sistemática

sobre Métodos de Avaliação de Usabilidade Aplicados em

Software de Telefones Celulares. In: IHC+CLIHC 2011,

2011, Porto de Galinhas. ISBN: 978‐85‐7669‐257‐7. Anais

do IHC+CLIHC 2011, v. 1. p. 197-201 (2011)

7. Gonçalves, V. P.; Neris, V. P. A.; Ueyama, J. Interação de

Idosos com Celulares: Flexibilidade para Atender a

Diversidade. In: IHC+CLIHC 2011, 2011, Porto de

Galinhas. ISBN: 978-85-7669-257-7. Anais do

IHC+CLIHC 2011, v. 1. p. 343-352 (2011)

8. Gonçalves, V. P.; Neris, V. P. A.; Ueyama, J.; Seraphini,

S. An Analytic Approach to Evaluate Flexible Mobile

Phone User Interfaces for the Elderly. In 14th

International Conference on Enterprise Information

Systems (ICEIS 2012), 2012, Wrolaw. ISBN: 978-989-

8565-12-9. In Proc. ICEIS 2012, v. 3, p. 91-96 (2012)

9. Gonçalves, V. P.; Neris, V. P. A. ; Ueyama, J. ; Seraphini,

S. ; Dias, T. C. M. Providing Flexibility to Mobile

Devices: An Approach to Meet the Diverse Requirements

of the Elderly. Journal of the Brazilian Computer Society,

Rio de Janeiro, RJ, Brasil. No prelo (2013)

10. Gonçalves, V. P.; Seraphini, S.; Neris, V. P. A.; Ueyama,

J. FlexInterface: a Framework to Provide Flexible Mobile

Phone User Interfaces. In 15th International Conference on

Enterprise Information Systems (ICEIS 2013), 2013,

Angers. In Proc. ICEIS 2013. No prelo (2013)

11. Hellman, R. Universal Design and Mobile Devices.

Proceedings of the 4th international conference on

Universal access in human computer interaction: coping

with diversity. Beijing (2007)

12. Henricksen, K.; Indulska, J. Adapting the web interface: an

adaptive web browser. In: Australasian User Interface

Conference (AUIC 2001), 4, 2001, Gold Coast,

Queensland, Austrália. Proceedings AUIC 2001. Gold

Coast, Queensland Austrália: IEEE (2001)

13. MT - Minister of Industry. Learning a Living - First

Results of the Adult Literacy and Life Skills Survey.

OECD, Paris. http://www.nald.ca/fulltext/learnliv/

learnliv.pdf (2005)

14. Neris, V. P. A.; Baranauskas, M. C. C. Making interactive

systems more flexible: an approach based on users'

participation and norms. In Simpósio de Fatores Humanos

em Sistemas Computacionais (IHC 2010): Belo Horizonte

(2010)

15. Neris, V. P. A.; Baranauskas, M. C. C. Designing

tailorable software systems with the users participation,

09/2012, Journal of the Brazilian Computer Society, v. 18,

p. 213-227, Rio de Janeiro, RJ, Brasil (2012)

16. Olwal, A., Lachanas, D., Zacharouli, E. OldGen: Mobile

Phone Personalization for Older Adults. In: Conference on

Human Factors in Computing Systems (CHI 2011),

Vancouver (2011)

17. Rodrigues, K. R. D. H; Gonçalves, V. P.; Neris, V. P. A.

Tecnologias de Informação e Comunicação Inclusivas e o

Envelhecer. In: Ana Cristina Viana Campos; Efigênia

Ferreira e Ferreira. (Org.). Envelhecimento. ed. Érica -

Iátria (SP). No prelo (2013)

18. Ueyama, J., Pinto, V. P. V., Madeira, E. R. M., et al.

Exploiting a Generic Approach for Constructing Mobile

Device Applications. In: The Fourth International

Conference on COMmunication System softWAre and

middlewaRE, Dublin. ACM (2009)

19. UN - United Nations. ‘Major’ rise in world’s elderly

population: DESA report. http://www.un.org/en/

development/desa/news/population/major-rise-in.html

(2010)

20. Wood, E., Willoughby, T., Rushing, A., Bechtel, L.,

Gilbert, J. Use of computer input devices by older adults.

The Journal of Applied Gerontology (2005)

62 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://www.nald.ca/fulltext/learnliv/
http://www.un.org/en/

 Semantic Obfuscation and Software Intention

Sheryl Duggins, Frank Tsui, Orlando Karam, and Zoltan Kubanyi
Department of Computer Science and Software Engineering, Southern Polytechnic State University,

Marietta, Georgia, 30060 USA

Abstract - Software protection (SP) research on intellectual
property (IP) protection has primarily focused on
entertainment media such as games, music and videos, using
Digital Rights Management (DRM) systems [1]. Today SP
research has broader goals, and includes all types of
software with the aim of preventing tampering, reverse
engineering and illegal redistribution. In this paper we
propose an approach to protect software IP by increasing its
complexity to prevent reverse engineering. We introduce four
Conjectures for SP through obfuscation and provide
rationale for why these four Conjectures make logical sense.
We also discuss the results of an experiment verifying our
conjectures.

Keywords: Obfuscation, Security, Software Protection,
Software Complexity, Intellectual Property

1 Introduction
 While many software solutions are provided through
open source, the question of proprietary interest still remains.
Much of the key intellectual property is often still hidden and
protected. In this paper we explore one potential approach to
protect software IP based on complexity. Software
complexity [2, 3, 4, 5] has traditionally been studied with the
goal of reducing complexity such that software quality and
software development productivity may be improved. In this
paper we propose the reverse, namely, that increasing
complexity may also have some positive effects for the
software industry.

 With the explosion of outsourcing software
development, there came the potential of one’s outsourcing
partners becoming competitors; if we give them access to
certain components, even with source code for some of them,
what would stop them from eventually reverse-engineering
those components and incorporating them into a competing
product? However, the scope of potential adversaries who
may try to attack the intellectual property of our software is
far greater than one’s outsourcing partners. As Colberg and
Thomborson [6] identified, there are three types of attack:
software piracy, malicious reverse engineering, and
tampering.

 Software piracy is a $58.8 billion dollar per year
industry [7] and is simply the illegal copying and resale of
software. Reverse engineering is increasingly being utilized
due to the prevalence of tools to aid in this task and the fact

that software is frequently distributed in forms like Java
bytecode that are easy to decompile and reverse engineer.
Tampering deals with the extraction or modification of
software that contains encryption keys like e-commerce
applications. Therefore, the question of how can we protect
the IP of our software component is becoming an issue of
much greater importance [8, 1, 9, 10, 11, 12] and can be
handled either legally through patents and copyright or
technically through techniques like syntactic obfuscation and
encryption. We show that protection through increasing the
complexity via semantic obfuscation may be another avenue
of protection.

 This paper will begin with a brief introduction to
obfuscation for security, and explore the types of obfuscation
used for defenses against malicious attacks. We then present
an example to illustrate our approach in the Simple Scenario
section. Then we pose a number of Conjectures and
demonstrate the merits of these Conjectures. Conjectures (a)
and (b) are discussed in the Syntactical and Enumeration
Analysis section and Conjectures (c) and (d) are discussed in
the Semantic Analysis section. We then discuss the results of
an experiment designed to verify our conjectures and follow
with conclusions.

2 Obfuscation Overview
 The term obfuscation means attempting “to transform a
program into an equivalent one that is harder to reverse
engineer” [6, p.737]. The earliest work on this was done two
decades ago by Cohen [13], who suggested increasing the
complexity of a system to a level such that the difficulty of
attack is too high to be worth the effort. He called this
“security through obscurity” and advocated program
evolution as the technique to increase complexity. This was
the first of many techniques for syntactic, or code
obfuscation. Code obfuscation involves a number of
transformations that change a given program into an
equivalent program such that obscurity is maximized and
execution time is minimized. Researchers today are still
developing techniques for syntactic obfuscation, including
recent work done on instruction embedding [14] and cloud
protection [15]. In addition to software developers using
code obfuscation to protect their products from reverse
engineering, writers of viruses and malware are also using
code obfuscation to hide their work from virus scanners [16].
Regardless of the technique being utilized, all researchers in
SP realize that the attacker is human and therefore has

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 63

creativity and motivation, and thus will eventually be able to
circumvent any defense in some period of time [1].

 Our work is unique in that we consider transformations
based on both the syntax and the semantics of the code.
Semantic obfuscation utilizes the fact that the attacker is
human, and therefore has a predefined set of background
knowledge. This background will determine whether or not
the true intention of a program will be discovered and the
attack successful. We posit that semantic transformations
will take longer to decipher and could therefore be a new
direction for SP research.

3 Simple Scenario
 We first describe a very simple scenario to demonstrate
the approach. Suppose we are asked to write a program that
will provide the sum of 1 to n consecutive integers, where n is
a non-zero, positive integer. A likely pseudo-code solution,
Solution A, may be the following.

1. initialize sum, n as integers of value zero
2. initialize counter as integer of value 1
3. ask for and read in the value of n
4. validity check the input value of n
5. if the input n is valid then repeatedly perform { (sum= sum
+ counter) and increment counter by 1}while the counter is
still less than n; then print out sum and terminate
6. if the input n is invalid then issue a message and return to
step 3

 An alternative approach, and perhaps a less likely one,
is to use a mathematical formula to calculate the sum of the
numbers 1 through n as follows. Call this Solution B.

1. initialize sum, n as integers of zero value
2. ask for and read in the value of n
3. validity check the input value of n
4. if the input n is valid then compute (sum = (n * (n+1))/2);
print out sum and terminate
5. if the input n is invalid then issue a message and return to
step 2

 Even for such a simple problem, the two solutions look
very different. Solution A has 6 statements, and Solution B
has 5 statements. Let the cardinality of Solution X, |X|,
represent the number of statements in Solution X. Then we
not only have |B| ≤ |A|, but also |A|/|B| = 6/5, showing that |A|
is a 20% increase over |B|. However, this expansion may be
worse than it seems. We will see later that if we consider the
permutations of 5 statements versus the permutations of 6
statements, the increase is significantly more.

 Now consider a third approach, using recursion, to add
the numbers 1 through n. Call this Solution C.

1. ask for and read in the value of n
2. validity check the input value of n

3. if the input n is zero then return 0; print out sum and
terminate
4. if the input n is not equal to zero return n + C(n-1)
5. if the input n is invalid then issue a message and return to
step 1

 Furthermore, note that the “crux” of the solution is in
statement 5 of Solution A and is in statement 4 of Solution B.
Statement 4 in Solution B is a straightforward arithmetic
computational assignment followed by print and termination.
On the other hand, statement 5 in Solution A involves a loop
which iteratively performs an arithmetic computational
assignment while a certain condition is true, then prints and
terminates when that condition is no longer true. Let us look
at the different types of activities involved in these two
statements. Both statements have an arithmetic computation,
a print, and a termination. But statement 5 of Solution A
includes a loop-structural statement with a terminating
condition. Thus statement 5 of Solution A includes one more
computational task type, a loop structure. If we compare both
of these two solutions with Solution C, we see that statement
4 of Solution C involves recursion, which is quite a bit more
complicated than a simple loop structure, even though the
cardinality of Solution A is greater than that of Solution C.

 In terms of these syntactical measurements, cardinality
of solution and number of different computational task types,
Solutions A and C’s source statements, as represented with
the pseudo-code, will be considered more complex. If more
complex implies its intention is less likely to be discovered,
then one might believe that Solution A or C is the better
solution. Thus Solution A or C may be thought, by some, as
more protective of the intent of the solution than Solution B.
Now, let’s review what a perpetrator may do to ascertain the
intent of these solutions. One obvious and commonly used
procedure is to observe the behavior of the three solutions by
feeding different inputs to the solutions, similar to black-box
testing approach. For illustrative purpose, we will ignore the
small potential problem of integer division by 2 in statement
4 of Solution B. Then all 3 solutions will behave alike in
terms of what they output. Since all 3 solutions will behave
alike with the same inputs, one may conclude that the intent
of all solutions will either never be cracked or cracked
simultaneously. Under such black-box analysis, the effort
required to discover the intent behind the three solutions will
essentially be equal. If the pseudo-code or the actual source
code were not available, black-box approach may be the only
available approach.

 Consider the scenario where the source code or the
pseudo-code became available (as in by reverse engineering
or from a partner). Then would there be a difference in the
effort expended for the discovery? According to the earlier
syntactical analysis, Solution A should be more difficult, or
take more effort, to analyze. On the other hand, if one is not
familiar with the term (n*(n+1))/2, then statement 4 in
Solution B may present quite a challenge. Similarly, for those
who are unfamiliar with recursion, Solution C may be even

64 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

more challenging. We also note that the variable name,
“sum”, may be a give-away. Thus we replace the variable
name “sum” with some arbitrary, possibly misleading name
such as “product.” The two respective statements, 5 in
Solution A and 4 in Solution B, would look as follows.

5. if the input n is valid then repeatedly perform { (product =
product + counter) and increment counter by 1}while the
counter is still less than n; then print out product and
terminate

4. if the input n is valid then compute (product = (n *
(n+1))/2); print out product and terminate

 This purposeful renaming of a variable further from its
contextual intent may make statement 4 in Solution B even
more difficult to analyze. The confusion introduced by this
purposeful renaming in statement 5 of Solution A may not be
as much as that in Solution B. But it opens a window into
what semantics behind the syntax may bring, and the topic
will be discussed in the section on semantic analysis.

 We have illustrated several Conjectures with this simple
example, and they are presented below.

(a) Cardinality of solution, in terms of number of statements
should make a difference in the effort required to discover the
real intention.

(b) Syntactical complexity, measured by some volume of
syntax whether it is cardinality of solution or number of
different operational types, should contribute to the effort
needed for discovery of the solution intent or purpose.

(c) Unfamiliar semantics behind a simple syntactical term
such as ((n * (n+1)) /2) may be a deterrent to discovery of
solution intent.

(d) Picking syntactical terms, such as “product” as opposed to
“sum,” which have less affinity to the real, semantic intent
also contributes as a deterrent to discovery of the real
intention.

4 Syntactical and Enumeration Analysis
 First, let us explore Conjecture (a) and the impact due to
the increase in cardinality of solution or the increase in the
number of programming or pseudo-code statements. The
simple example above of 5 statements versus 6 statements,
without considering the content of each statement, showed an
increase of 20% in cardinality of solution. Now, let us
consider the permutations of 5 statements. There are 5!
different ways the statements may be ordered, of which, there
may be several that would suffice as the solution. For
example, the order of the last two statements of Solution A
may be interchanged, and the solution would still be the
same. So there is more than one permutation of sequence of
statements that would suffice. We, as author of the
statements, may keep and hide the real order and then re-

order the statements to protect the solution and confuse the
perpetrator.

 If we employ the reordering of the sequence of
statements as one of the methods of obfuscation, then even a
small increase in cardinality of the solution may make a large
difference. The example of |A|/|B| = 6/5 with a 20% increase
is minor compared to 6!/5!. Note that the number of
permutations for Solution A is 6 times more than the number
of permutations for Solution B. Thus by increasing the
cardinality of solution, one can disproportionately increase
the permutations of the statements. For example, we can take
Solution B and expand it by splitting statement 4 into three
statements as follows:

- if the input n is valid, then compute y = n*(n+1)
- sum = y/2
- print out sum and terminate

 We can further add one more initialization statement for
variable y into Solution B and further increase its cardinality.
Obviously, there are many more ways to increase the number
of statements, resequence and confuse the potential
perpetrator.

 If the cardinality of solution, |Z|, is x, then adding one
more statement to the solution to get |Z| = x+1 would increase
the permutations by a factor of x+1. Adding two more
statements would increase the permutations by a factor of
(x+1)*(x+2) or an order of x2. Thus the following general
proposition may be stated.

- If k more statements are added to a list of source code
statements that has cardinality of solution of x, then the
number of permutations of those statements increases by an
order of xk.

 This is a tremendous increase in the possibilities of
confusing the potential code-pirate. Thus we believe
Conjecture (a) has a high potential in protecting the
intellectual property.

 Introducing confusion with additional syntactical terms
and unfamiliar terms is one of the primary types of code
obfuscation. We have introduced one more variable, y, in the
above discussion when we split statement 4 of Solution B into
three statements. In software engineering, many studies of
different complexity metrics [3, 17, 18, 5] exist. A classical
one that counts distinct syntactical terms and occurrences of
the terms as a contributor to complexity is Halstead’s metric.
If n is the number of distinct operators and operands and N is
the sum of the occurrences of distinct operators and operands,
then Halstead’s volume is defined as V=N*(Log2 n). Thus an
increase of k new terms increases the Halstead volume to at
least (N+k)*(log2 n+k). We say “at least” because k distinct
terms may have more than k occurrences. While this increase
is not as dramatic as the increase in permutations of
statements, it is still greater than a linear increase in number.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 65

Thus introducing more syntactical terms into the solution also
provides more opportunity for confusion. We, thus, believe
Conjecture (b) also has a high potential for software
protection.

 Next we examine Conjectures (c) and (d) via the
relation of syntax to the intended semantics.

5 Semantic Analysis

 In this section, we explore the relationship of syntax to
the intended semantics and the resulting possibility of
obfuscation. Hitherto we have focused on the syntax and the
enumeration of the syntactical statements except when the
term “sum” was purposely changed to “product.” Although it
was a simple syntactical change and the semantics of the
statement in terms of syntactical arithmetic assignment rule
was preserved, it was meant to purposely elicit some
confusion in semantics.

 While Conjectures (a) and (b) dealt with syntactical
obfuscation, Conjectures (c) and (d) are related to semantics
and intentions. We know from complexity studies and
previous work on syntactical obfuscation [1, 2, 4, 5, 6, 13, 14,
17, 18] that adding more terms or introducing misleading
terms increases complexity, thus more obfuscation. However,
the value of semantic obfuscation is virtually unexplored. We
believe that discovering the intention of a piece of code
requires not only semantic knowledge, but specific semantic
knowledge in the correct background. Therefore, the more
difficult statement to analyze in our code solutions is the
intention of statement 4 of Solution B, if one is not familiar
with the mathematics. Thus the interpretation function
requires both the semantics of the syntactical terms and the
correct background to properly map to the intention as shown
below.

 Interpretation (semantics, background) à Intention

 The semantics of the term “(sum = (n * (n+1))/2);” in
statement 4 of Solution B can be analyzed by following the
syntactical rules which parse the variables, n and sum, and the
constant 2 along with the operators of +, *, /, (,), and =.
Combining the specific meanings of each token and following
the syntactical rules allows us to develop the semantics of the
expression. However, even with clear syntactical rules, for
those who are unfamiliar with the mathematical equation, it
may still not be obvious that the intention here is to add the
sequence of integers from 1 through n. So, while the
semantics of the syntactical term may be clear and the
computational result is correct, the intention behind the
semantics may continue to be a mystery. That is, the term (n *
(n+1))/2 may still not be clear to a human reader. Thus we
further need the concept of interpreting the semantics to
intention. In order to determine the intention, we need the
"correct" background for the Interpretation function to realize
the intention of the semantics as shown in the Figure 1.

 We now turn our attention to statement 5 in Solution A
above. We realize that, loosely speaking, it has the same
intention as statement 4 in Solution B, though the semantics
are different. It includes the following: “repeatedly perform
{(sum= sum + counter) and increment counter by 1} while
the counter is still less than n.” If we used Halstead’s measure
of volume to count the number of operators and operands
according to V=N*(Log2 n), then this segment of statement 5
from Solution A will certainly have more volume and thus be
considered more complex than the “compute (sum = (n *
(n+1))/2);” segment in statement 4 of Solution B. However, to
computer programmers, the intent of this seemingly more
complex looping statement is quite clear. That is because
when we read pseudo-code, we are already using the
background knowledge of computer programming. Within
the programming background, the loop statement’s intent
becomes very clear. Thus to bring confusion (and protect the
software), it would be more powerful to move as far away
from the real intention as possible. Although for this solution,
the background of mathematics and the background of
programming would both satisfy the intention; many
programmers are less familiar with the background of
mathematics. Changing the background and causing
confusion on intention is a viable way to bring obfuscation.
Conjectures (c) and (d) both address this notion of obscuring
the real intent and thus are also high potentials for IP
protection.

6 Experimental Results

 We developed an experiment to assess the validity of
our assumptions and gave the experiment to students of our
Software Engineering (SWE) Capstone course, which is taken
by both undergraduate and graduate SWE students. These
students had taken all of the core software engineering
courses as well as all of the required math courses (e.g.,
Calculus and Discrete Math) required for the BSSWE or the
MSSWE. It should be noted that our BSSWE is an ABET
accredited program and our MSSWE is based on the Model
Curriculum for Graduate Programs in Software Engineering.
Thus, all Capstone students had also completed programming
courses through Data Structures. While our sample size was
small, we believe it was representative of typical practicing

66 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

software engineers, since about half of the participants were
already practicing software engineers and the rest were in the
process of looking for a SWE position. Capstone is taken
during the final term, so all of the students were graduating at
the end of the term. Our sample size was 14, of which 4 were
graduate students, and 10 were undergraduate students.

 We created two versions of the test, each containing
three versions of the code samples; each version contained
either the formula-based or the recursive-based solution,
followed by the semantically challenged version using
“product” instead of “sum”, and ending with the
straightforward loop version of sum. We built a program to
administer the tests and collect the data. The students were
presented with the code while a timer was going, and were
asked to click “Got it!” when he/she understood what the
code was doing. At that point the timer was stopped, and an
input box was displayed asking for a brief explanation of
what the code was doing. This was repeated for the three
code samples, and there was also an option to “Give Up” for
each code version. Our findings were very encouraging and
supported our intuition on the benefits of semantic
obfuscation.

6.1 Findings

 Most students took significantly longer trying to
decipher the formula-based and the recursive-based solutions,
indicating that they did not appear to have the mathematical
background needed to understand the semantics of those
methods. For the formula-based solution, most students
described the intent by simply writing out the code – doing a
literal translation; for example: “a (recursive?) method taking
in a number, multiplying it by one greater than it and then
dividing it by 2.” Recall this solution wasn’t recursive and
due to the lack of semantic knowledge in math, the students
missed the true intent, which was successfully obfuscated. In
the recursive solution, the common response was similar,
again the students typically gave a literal translation of the
code; for example: “if n equals to zero then return zero, else
return n plus class name n minus 1”. The whole idea of
recursion was missed, seemingly indicating a lack of
semantic knowledge of recursion, and an obfuscation of the
true intent of the code. Again it should be mentioned that all
students had passed Data Structures, Calculus, and Discrete
Mathematics, and should have had the requisite semantic
knowledge to understand all of the code samples. So why
didn’t they figure it out?

 We believe that the true intent of the code was
obfuscated both by the semantics as well as the students’
inability to select the correct background knowledge for the
Interpretation function to realize the intention of the
semantics. While each student in the experiment had learned
the requisite knowledge to be able to decipher the true
intention of each code sample, that correct background
knowledge was not successfully utilized, and the intention
was hidden.

 As shown in the table below, the discovery of the true
intention in these samples was very low – no one deciphered
the formula-based solution and only one student (who was a
professional software engineer) figured out the recursive
solution. The “product” term also confused the students as the
semantics interfered with their understanding, and
consequently this code sample took longer than the “sum”
version to process and several students came up with the
wrong explanation of the intent. For example, a fairly
common response was “determines if the product value is
equal to the int”, which means the students were unable to
figure out the true intention due to the semantic interference
caused by the term “product”. This was precisely what we
were expecting to happen, and it illustrates the potential of
semantic obfuscation for IP protection. Finally, the students
were familiar with the straightforward loop structure that had
no obfuscation since the term “sum” was used.
Consequently this code sample yielded the shortest time for
comprehension as well as the greatest accuracy of explanation
and intention.

 While this was an informal experiment, it was certainly
encouraging enough that we are planning on a more formal
experiment in our Usability Lab with a larger pool of students
and a more thorough set of tools. It need also be mentioned
that to utilize this style of obfuscation in a real-world setting,
one would need to use automated tools to facilitate the
semantic obfuscation: tools capable of inserting semantic
obfuscation as well as reverting back to the original code.

Table 1: Experimental Results

Code
Sample

% Correct Time
Range in
Sec.s

Mean in
Sec.s

Rationale

 Version 1
Recursion 20 7-33 9 Lacking math

semantics
background

Prod Loop 40 6-63 25.8 Semantic
obfuscation of
“product”

Sum Loop 100 8-18 11.8 Known syntax
& correct
background

 Version 2

Formula 0 8-138 50 Lacking math
semantics
background

Prod Loop 40 9-61 33 Semantic
obfuscation of
“product”

Sum Loop 80 5-36 9.6 Known syntax
& correct
background

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 67

 While this was an informal experiment, it was certainly
encouraging enough that we are planning on a more formal
experiment in our Usability Lab with a larger pool of students
and a more thorough set of tools. It need also be mentioned
that to utilize this style of obfuscation in a real-world setting,
one would need to use automated tools to facilitate the
semantic obfuscation: tools capable of inserting semantic
obfuscation as well as reverting back to the original code.

7 Summary and Conclusions

 Software complexity study and the desire to simplify
software originated from the needs of reducing development
effort and reducing error and defect rates in software. In this
paper we explored the reverse; we looked at introducing
complexity and the potential leveraging of complexity to
protect our intellectual property. Four Conjectures for
protecting our software through obfuscation were introduced.
We explored and provided rationale of why these four
Conjectures make logical sense and should be considered for
further formal experiments. We believe that complexity,
especially used with semantic obfuscation, may be
considered a positive tool besides the legal channels for
protecting our software intellectual property. Our
Conjectures were also demonstrated by the results of our
student experiment.

8 References

[1] C. Colberg, J. Davidson, R. Giacobazzi, Y. X. Gu,
A. Herzberg, and F. Wang. Toward Digital Asset
Protection, IEEE Intelligent Systems, November/ December
2011.

[2] J. M. Bieman and B. K. Kang, “Measuring Design-Level
Cohesion,” IEEE Transactions on Software Engineering, vol.
24, no. 2, February, 1998.

[3] M. H. Halstead, Elements of Software Science, Elsevier,
1977.

[4] R. Subramanyan and M.S. Krishnan, “Empirical Analysis
of CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects,” IEEE Transactions on
Software Engineering, vol. 29, no 4, April 2003.

[5] E. J. Weyuker, “Evaluating Software Complexity
Measures,” IEEE Transactions on Software Engineering,
vol.14, no. 9, September 1988.

[6] C. Colberg and C. Thomborson, Watermarking, Tamper-
Proofing, and Obfuscation – Tools for Software Protection,
IEEE Transactions on Software Engineering, vol 28, no 8,
August 2002.

[7] Business Software Alliance, Eighth Annual BSA Global
Software 2010 Piracy Study, May 2011.
Portal.bsa.org/globalpriacy2010/downloads/study_pdf/2010_
BSA_Piracy_Study-Standard.pdf , accessed March 2012.

[8] C. Colberg, CSc 620 lecture notes,
http://www.cs.arizona.edu/~colberg/Teaching/620/2002/Hand
out_13.ps retrieved February, 2012.

[9] E. S. Freibrun, “Intellectual Property Rights in Software:
What They Are and How the Law Protects Them,”
http://www.freibrun.com/articles/articl2.htm, accessed 2012.

[10] Software and Information Industry Association,
http://www.siia.net, accessed 2011.

[11] U.S. Department of Justice, Report of the Department of
Justice’s Task Force on Intellectual Property, October 2004.
http://www.justice.gov/criminal/cybercrime/IPTaskForceRep
ort.pdf, accessed 2011.

[12] M.H. Webbink, “A New Paradigm for Intellectual
Property Rights In Software,” Duke Law & Technology
Review, May, 2005,
http://www.law.duke.edu/journals/dltr/articles/2005dltr0012.h
tml, accessed 2012.

[13] F. Cohen, “Operating System Protection through
Program Evolution”, 1992.
https://all.net/books/tech/evolve.pdf , accessed March 2012.

[14] C. LeDoux, M. Sharkey, C. Miles, and B. Primeaux,
“Instruction Embedding for Improved Obfuscation,” in
Proceedings of the ACM SE 2012, Tuscaloosa, Alabama,
2012.

[15] M. Hataba and A. El-Mahdy, “Cloud Protection by
Obfuscation : Techniques and Metrics,” Proceedings of the
2012 Seventh Intenational Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, Victoria, Canada, November
12 – 14, 2012.

[16] A. Balakrishnan and C. Schulze, “Code Obfuscation
Literature
Survey,” http://pages.cs.wisc.edu/~arinib/writeup.pdf ,
retrieved May 2013.

[17] T.J. McCabe, “A Complexity Measure,” IEEE
Transactions on Software Engineering, vol 2, no 4, December
1976.

[18] F. Tsui, O.Karam, S. Duggins, and C. Bonja, “On Inter-
Method and Intra-Method Object-Oriented Class Cohesion,
International Journal of Information Technologies and
System Approach, 2(1), June 2009.

68 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Simulation Software Generation using a Domain-Specific Language for
Partial Differential Field Equations

K.A. Hawick and D. P. Playne
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: {k.a.hawick, d.p.playne }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2013

ABSTRACT

Domain-specific language techniques can considerably lower
the software development effort and time required for prob-
lems in computational science and engineering. We describe
our domain specific language for field-based partial differen-
tial equation simulations and show how it can address a whole
family of such problems. Our system requires minimal effort
to generate C++ software for a new equation model, but also
dramatically lowers the effort needed to generate code in a
different output language. We report on the lines of code for
several example problems discuss software engineering impli-
cations of this automatic code generation approach.

KEY WORDS
generative programming; DSL; partial differential equation.

1 Introduction
Many problems in computational science and engineering
can be formulated in terms of partial differential equations
(PDEs). A common simulation pattern involves the time-
integration of an initial value model where the system is de-
fined on a spatial mesh with spatial calculus operators in the
equation. Although the mathematical and numerical methods
for solving such problems are well known, it is still a tedious
and error-prone task to write correct and efficient software for
a new problem.
Although a great deal of techniques [1] are known for build-
ing optimising compilers [12, 15, 30] the goal of automatic
parallelising compilation remains elusive. Some important
progress was made for some data-parallel constructs [5, 29].
However it seems likely that there are some general prob-
lems that compiler generators will probably never be able to
solve completely, without programmer assistance [32]. More
optimistically however it is feasible to look at some specific
classes of application domain problems and use application
domain-specific languages and tools to address them.
In this paper we report on how modern compiler-level tools

Figure 1: Three-dimensional segments of field solutions of
the Cahn-Hilliard (left), Ginzburg-Landau (center) and Lotka-
Volterra (right) equations.

and technology can be used to make a generative program-
ming system that can create fast and readable data-parallel
software for solving some PDE based problems. Four exam-
ple PDEs that fit into the example category are introduced -
the Heat, Cahn-Hilliard, Ginzburg-Landau and Spatial Lotka-
Volterra equations. These PDEs are first-order in the time
derivative but contain second- or fourth-order spatial calcu-
lus operators. Example illustrations of the Cahn-Hilliard,
Ginzburg-Landau and Lotka-Volterra equations are shown in
Figure 1. We explain how a plain ASCII expression of these
mathematical equations can be parsed and used to generate
software in a language like C or C++. This is our domain-
specific language for formulating field-based PDE applica-
tions.
We show how a relatively minor change to the mathemati-
cal specification of the equation allows a whole new code
to be generated relatively trivially. These approaches com-
bined in saving on: programmer time; testing effort; and pro-
duction run time. This system supports the investigation of
whole families of problems that would hitherto have taken a
lot longer to tackle.
A number of software systems and algebraic problem solv-
ing environments allow users to automatically generate solver
source code in standard programming languages such as For-
tran [10, 11, 23]. A number of systems also address the prob-
lem of generating parallel code [35]. Research projects [3,24]
and commercial problem solving systems such as Matlab [31]
or Mathematica [34] also support code generation from a
mathematical formulation of equations. We are interested

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 69

however in combining all these.
Although there are a number of mathematical and numeri-
cal approaches such as finite-elements that can be expressed
using this approach to code generation, we focus in this pa-
per on regular mesh problems that can be solved using finite-
difference methods. We defer a detailed discussion on differ-
ent numerical time integration techniques and different stencil
operators for the spatial calculus to another work [28].
The idea of generating PDE solver software is not new. As
long ago as 1970, Cardenas and Karplus experimented with
manually written programs that combine both translation and
generation in a single ad hoc stage [8] partial differential
equation language (PDEL) based on PL/1 syntax. Some im-
portant work is being done by Logg and collaborators on
the semi-automatic generation of Finite Element algorithms.
The FENICS [20] and DOLFIN [21] projects take a some-
what different approach to the one we do, making more heavy
use of linear algebraic methods and the associated separately-
optimised software for solving linear algebra and matrix-
oriented problems such as BLAS [13], BLACS [14], LA-
PACK [4] and ScaLAPACK [9]. While it is also possible to
formulate the Finite Difference methods that we employ us-
ing full matrix methods too, we focus here on direct methods
and formulations for regular meshes that do not need full ma-
trices and that make use of explicit sparse data storage meth-
ods. This allows us the luxury of worrying less about storage
space for the spatial calculus and thus being able to experi-
ment more readily with higher-order time-integration methods
which themselves require multiple copies of the field data for
intermediate fractional time steps.
In this article we discuss the general form of applicable partial
differential field equation problems in Section 2. The struc-
ture and operation of our parser and code generator is given
in Section 3. We present some generated code examples and
associated run-time performance data in Section 6 and discuss
associated issues in Section 7. We offer some conclusions in
and ideas for future work in Section 8.

2 Solving Field PDEs
Many interesting problems in physics, chemistry, biology and
other areas of science can be formulated as partial differential
field equations that evolve over time. These formulations fall
into the general pattern:

du(r, t)

dt
= F(u, r, t) (1)

where the time dependence is first order and the spatial de-
pendence in the right hand side is often in terms of partial
spatial derivatives such as∇x,∇y,∇z,∇2,∇2 · ∇2, ... Some
well-known problems that fit this pattern are:
The Heat equation which models how heat is distributed
through a material over time. The heat distribution can be
defined in terms of the scalar field u and α which is a positive

constant representing the thermal diffusivity.

∂u

∂t
= α∇2u (2)

The Cahn-Hilliard equation [7,17] which models a quench-
ing binary allow and is expressed in terms of a scalar field
u:

∂u

∂t
= m∇2

(
−bu+ Uu3 − K∇2u

)
(3)

where it is usual to truncate the series in the free energy [6]
at the u4 term, although some work has used up to the u6

term [33].
The Time-Dependent Ginzburg Landau equation [22]
which can be used to describe the macroscopic behavior of
superconductors can be defined in terms of a complex scalar
field u:

∂u

∂t
= −p

i
∇2u− q

i
|u|2 u+ γu (4)

The Lotka-Volterra equation is often written as:

dP

dt
= F(P) (5)

where P might be vector of several population variables for
predator and prey species and F might incorporate a matrix
of cross-coupling terms and spatial calculus operators. This
equation can be formulated as a two-species predator-prey
model using the Laplacian operator for spatial coupling [16].
This can be defined as:

du0
dt

= D0∇2u0 +Au0 −Bu0u1
du1
dt

= D1∇2u1 +Du0u1 − Cu1 (6)

where u0 is the prey population and u1 is the predator popu-
lation.
In some cases the full details of the right-hand sides of these
sort of equations are known and are immutable parts of the
field model. In other cases a family of equations can be
generated by using different expansions or approximates. A
good example is the Cahn-Hilliard equation where the free-
energy term is usually approximated by a polynomial with
second and fourth order terms, but alternatives such as includ-
ing higher order terms make sense but are hard (tedious and
error-prone) to implement.
A powerful idea to address implementation difficulties is
therefore a software tool that can help generate lines of code
in a standard programming language like C, C++, D, Java,
Fortran, that implements one of the standard numerical ap-
proaches to solving the equation in question. There are some
well known lines of approach to solving the numerical integra-
tion in time - storing the state of the entire model field that ex-
presses the right hand side and applying second order methods

70 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

such as the midpoint method (aka second-order Runge-Kutta)
or higher-order methods such as the well-known Runge-Kutta
Fourth-order method as appropriate.

3 Parser and Generator Structure
In this section we describe the various components of our gen-
erative programming prototype - known as “Simulation Tar-
geted Automatic Reconfigurable Generator of Abstract Tree
Equations (STARGATES).” This system assembles simula-
tion code of partial-differential field equation(s) from differ-
ent simulation components. It is important to make the dis-
tinction between the model, the simulation and the implemen-
tation. The model is the equation(s) and the parameters of the
model. The simulation is the specific combination of a model
and the methods used to simulate it - the lattices, spatial sten-
cils, boundary conditions and numerical methods. The imple-
mentation is the target specific code that can be compiled into
machine code to compute that simulation.
The system will take the different components of the simula-
tion and use them to construct an abstract “simulation” object
that contains all the relevant information. To construct this
object all the components must be combined together in an
appropriate way. The stencils used by the equation must be
supplied and matched with the type of lattice the simulation
is using. The integration method must be combined with the
equation to form the calculations of each step of the integra-
tion. The final combination of components forms the simula-
tion object.
This object can be then queried by an output generator to pro-
duce code that performs the simulation using a desired target
programming language. Some additional configuration infor-
mation about the simulation must also be supplied to define
properties of the simulation such as system size, parameter
values etc. Different output generators will produce different
code which represents the different possible implementations
of the same simulation. The architectural structure of the gen-
erative system prototype is shown in Figure 2.

Figure 2: Structure and logical flow of STARGATES. The
system takes an equation description and a configuration file
as input and the output generator produces an output file.

A major advantage of this approach is the ability to separate
the simulation from the implementation. The simulations can
be defined and experimented with separate from the specific
code used to compute them. Migrating simulations to a new
computing architecture is as simple as writing a new output
generator. When developing a new simulation it is simply the
equation that must be defined which can make use of the other

components and immediately make use of optimised parallel
code. In this present paper we focus on the generation of CPU
serial C/C++ code but other output generators that produce
code using GPU CUDA, MPI, Pthreads and Intel’s Threading
Building Blocks have also be written. Additional generators
could also be written to produce implementations using FOR-
TRAN, OpenMP, OpenCL etc.

4 Equation Parser
The system allows the user to write the equation(s) that define
the model in a mathematical form using ASCII. The Equa-
tion Parser reads this ASCII and constructs a tree represent-
ing the equation. The equation tree will contain all the infor-
mation required by the rest of the system to generate output
code for that simulation. Parsing mathematical equations is a
potentially open ended problem but as indicated we are able -
for our prototype tool - to restrict the equation forms we are
addressing to some specific patterns, and make the problem
tractable.
To write the Equation Parser, we have made use of the com-
piler generator technology ANTLR [25]. ANTLR is a rela-
tively modern tool building upon historical developments [2]
including the well known lexing/parsing tools: lex/yacc [19]
and flex/bison [18, 26]. ANTLR allows us to specify a sim-
ple grammar from which ANTLR will automatically gener-
ate a Lexer and a Parser. The grammar shown here supports
the declaration of parameters, lattices and equations with sim-
ple mathematical operators +,−, ∗, /. The advantage of using
ANTLR is that it is very easy to extend and change the gram-
mar as necessary. A simple version of the grammar is shown
in Listing 1.

Listing 1: Simple equation ANTLR grammar.
DIGIT : ’ 0 ’ . . ’ 9 ’ ;
CHAR : ’ a ’ . . ’ z ’ | ’A’ . . ’Z ’ | ’ ’ ;
ID : CHAR (CHAR|DIGIT) ∗ ;
NUM : (DIGIT)+ (’ . ’ (DIGIT)+) ? ;
DERIVATIVE : ’ d / d t ’ ;
FUNC : (’ABS ’ | ’SQRT ’ |) ;
. . .

f i l e : (s t a t e m e n t)+ EOF ! ;
s t a t e m e n t : (d e c l a r a t i o n | e q u a t i o n) ;
d e c l a r a t i o n : ID ’ [’ ’] ’ ID ’ ; ’

| ID ID ’ ; ’ ;
e q u a t i o n : DERIVATIVE ID ’= ’ a d d i t i v e ’ ; ’ ;
a d d i t i v e : mul t ((’+ ’ ˆ | ’− ’ ˆ) mul t) ∗ ;
m u l t i : una ry ((’∗ ’ ˆ | ’ / ’ ˆ) una ry) ∗ ;
una ry : atom

| MINUS atom ;
atom : NUM

| ID
| ’ (’ a d d i t i v e ’) ’
| ID ’{ ’ a d d i t i v e ’} ’ ;

This grammar is sufficient to parse equations such as the
Cahn-Hilliard model (see equation 3) in the form:

floating M;
floating B;

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 71

floating U;
floating K;
floating[] u;
d/dt u =M*Laplace{(-B*u+U*(u*u*u)-K*Laplace{u})};

where the “equation” start-point defines a first order time-
differential equation, whose right hand side has a number of
spatial calculus operators as well as algebraic combinations of
the fundamental field and parameters.
This equation is processed by the ANTLR generated parser
which will construct a tree representing the model. This tree
includes the types, parameters, fields and equations of the
model. For example the tree created for the Cahn-Hilliard
equation (See equation 3) is shown in Figure 3.
After the initial equation is parsed, the tokens are converted
into a tree which can then be parsed by a ANTLR tree parser.
This tree parser constructs a tree representing the equation
out of objects that are each equivalent to a component of the
equation (parameters, operators, stencils etc). Given the ex-
ample of the Cahn-Hilliard equation (See equation 3), when
this equation is parsed, the ANTLR tree parser generates the
tree shown in Figure 3.

Figure 3: Two equation trees representing the Cahn-Hilliard
Equation. The initial tree created by the ANTLR parser (left)
and the tree after it has been rearranged by the Stencil Library
to contain no nested stencil nodes (right).

The tree contains all of the information about the equation
needed by the system. To form a simulation objection, this
equation tree must be combined with an integration method.
However, before this is done, the stencils used by the equation
must first be resolved. The Stencil Library provides the nec-
essary stencils and in some cases may manipulate the equation
tree. This is best performed before the tree is combined with
an integration method.
This equation parser is capable of processing equation files
that contain multiple fields and multiple equations. This is
necessary for equations such as the Lotka-Volterra model
which has a field for each of the multiple species popula-
tions and equations governing their interactions. The spatial
predator-prey form of the Lotka-Volterra model can be de-
scribed in ASCII form as follows:

float A;

Algorithm 1 C++ code structure template.

1: generate integration function
2: for all stage in Steps do
3: generate iteration code
4: generate neighbour access code
5: for all equation in stage do
6: traverse equation to generate calculation
7: end for
8: end for
9: generate function end

10:
11: generate main function
12: generate parameter allocation
13: generate parameter initialisation
14: generate lattice allocation
15: generate lattice initialisation code
16: generate time step iteration code
17: generate call integration function
18: generate end iteration code
19: generate main end

float B;
float C;
float D;
float D0;
float D1;
float[] u0;
float[] u1;

d/dt u0 = A*u0 - B*u0*u1 + D0 * Laplace{u0};
d/dt u1 = -C*u1 + D*u0*u1 + D1 * Laplace{u1};

5 Output Generator
The output generators are responsible for querying the simula-
tion object and creating language-specific output code. These
generators glean the information they need from the simula-
tion object and combine that information with language spe-
cific code templates to produce an implementation of the sim-
ulation. There is very little restriction placed by the system
on output generators. Multiple generators can be created to
target the same language but use different simulation struc-
tures or alternatively one generator can have many configura-
tion options to produce simulations with different structures.
Because the generators have access to the context of the simu-
lation, they can introduce specific optimisations when appro-
priate.
Code generators can be constructed for many different se-
quential and parallel programming languages [27]. The gen-
erators will differ in terms of the instructions they produce and
the general code structure. The syntax of the generators will
depend on the target language, but generators based on the
same syntax will often share similar components. For exam-
ple, both the C++ and CUDA generator use C-style syntax so
several elements of the target code will be the same. The high-
level structure of the code will be dependent on the type of im-
plementation they are producing. The example code structure
template for a C++ implementation is shown in Algorithms 1.

72 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

The generators also have many operation templates which are
populated with data from the simulation object to perform op-
erations required by the generator. These operations include
- allocating memory for a lattice, initialising parameters, call-
ing functions etcetera. Some examples of the instructions pro-
duced by this output generators are shown in Section 6.
The advantage of this approach is that the front-end parsing
and simulation object construction for the simulations remains
the same regardless of the output generator used. When a new
architecture or language is released, a new generator can be
written that will allow all existing simulations to be migrated
to make use of that new architecture or language. This makes
it much easier to adopt a new language or architecture without
the need to rewrite the entire simulation base. This is a far eas-
ier and more extensible programming model than maintaining
separate code versions for each simulation and computing ar-
chitecture.

6 Results
The system currently has a number of output code generators
that can produce target code of simulations for a number of
computing architectures. The main code generator discussed
in this work is for single-threaded C++ code generation. How-
ever, the system can also generate code for multi-core CPUs
using TBB or pThreads, for distributed machines using MPI
and for Tesla, Fermi or Kepler generation GPU devices using
CUDA.

Listing 2: Generated code sample produced by the C++ gen-
erator.

i n t main (){
f l o a t ∗u , ∗u0 , ∗u1 , ∗u2 ;
u = new f l o a t [Y ∗ X] ;
. . .
f o r (i n t t = 0 ; t < 1024 ; t ++){

rk2 (u0 , u1 , u2 , h) ;
swap (u0 , u2) ;

}
memcpy (u , u0 , Y ∗ X ∗ s i z e o f (f l o a t)) ;

}

void rk2 (f l o a t ∗u0 , f l o a t ∗u1 , f l o a t ∗u2 , f l o a t h){
f o r (i n t i y =0 ; i y < Y; i y ++) {

f o r (i n t i x =0 ; i x < X; i x ++) {
. . .

}
}
. . .
}

}

Here we present the code generated by the two output gen-
erators for the Cahn-Hilliard equation (see Equation 3). One
of the generators builds a single-threaded C++ program and
the other generates a CUDA program optimised for Fermi ar-
chitecture GPUs. Sample generated code can be seen in List-
ing 2 which shows the general structure of main function and
integration method for a C++ simulation of the Cahn-Hilliard

model using the Runge-Kutta 2nd order integration method.
The generator creates and initialises the main mesh of the
equation u. It also creates the three meshes required by the
RK2 method u0, u1 and u2. Also shown in Listing 2 is the
function to perform the integration steps, in this code both of
the RK2 steps are performed in one C++ function.
Since both the C++ and CUDA generator stages use C-like
syntax, the code to perform the actual equation is the same
for both generators. This code (with whitespace formatted
for ease of reading) is shown in Listing 3. This code calcu-
lates the change in one spatial cell for the Cahn-Hilliard equa-
tion u(x, y). We have tried to make the variable names and
code layout closer to human readable choices than some code
generators do since the programmer may decide to adopt the
generated code and include it in a code package that is subse-
quently human-maintained rather than regenerated.

Listing 3: The same equation calculation code generated by
both the C++ and CUDA generators.

M∗ (
−B∗ (u ym1x +

u yxm1 + (−4∗u yx) + u yxp1 +
u yp1x) +

U∗ ((u ym1x∗u ym1x∗u ym1x) +
(u yxm1∗u yxm1∗u yxm1) +
(−4∗u yx∗u yx∗u yx)+
(u yxp1∗u yxp1∗u yxp1) +

(u yp1x∗u yp1x∗u yp1x)) −
K∗ (u ym2x +

(2∗ u ym1xm1) + (−8∗u ym1x) + (2∗ u ym1xp1) +
u yxm2 +(−8∗u yxm1) + (20∗ u yx) + (−8∗u yxp1)
+ u yxp2 +

(2∗ u yp1xm1) + (−8∗u yp1x) + (2∗ u yp1xp1) +
u yp2x))

One of the major advantages of a code generator is the reduced
effort required to produce an implementation of a simulation.
Programmer effort is difficult to measure but the number of
lines of code required to define a simulation can be used as an
approximation. To define a simulation the programmer must
define both the model (fields, parameters and equations) and
the configuration (parameter values, integration method, lat-
tice geometry etcetera). Table 1 shows the number of lines of
code defined by the programmer (definition) and the number
of generated lines of code for a number of different simula-
tions.
The code that the generator produces obviously does not con-
tain every possible optimisation as humans are usually much
better at identifying which optimisations are applicable for
particular simulations. However, if the pattern of possible op-
timisation is identified, it could subsequently be incorporated
into an output generator. The generator can identify optimi-
sations that cannot easily be found by compilers due to the
higher level of information available to the generator.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 73

Heat Cahn-Hilliard Ginzburg-Landau Lotka-Volterra
Definition (lines) 12 18 21 23
Generated Code (lines) C CUDA C CUDA C CUDA C CUDA
2D Rectilinear Euler 50 55 69 80 71 86 72 89
2D Rectilinear RK2 71 79 106 120 101 120 102 123
2D Rectilinear RK4 127 141 234 238 189 216 190 219
2D Hexagonal Euler 56 61 83 94 79 94 80 97
2D Hexagonal RK2 83 91 134 148 117 136 118 139
2D Hexagonal RK4 157 171 292 312 233 260 234 263
3D Rectilinear Euler 61 66 94 102 86 101 87 104
3D Rectilinear RK2 90 98 153 167 126 145 127 148

Table 1: Lines of code defined by the programmer compared to the number of lines of code generated by the system.

7 Discussion
The optimisations that allow the hand-written simulations to
perform faster could be incorporated into the output generator
and are not fundamental changes to the model. It is possible
to build optimisations into the output generators that are either
always applied or applied to some simulations based on input
from the configuration file. Even so, these simple output gen-
erators still produce code that performs efficiently and have
performance comparable to hand-written code.
This generative programming system can significantly accel-
erate the process of simulation development. By allowing the
user to simply define a new model and construct it using exist-
ing components, the development effort of creating a simple
implementation and optimising it is significantly reduced.
The design of this system allows language-specific optimisa-
tions to be incorporated with ease. Because the output gener-
ators are purely responsible for traversing the simulation tree
and generating output code, optimisations can be added with-
out affecting any other part of the system. This means that
if a method of identifying when an optimisation is applicable
(or an option is added to the configuration file) then it can be
included into the generated code.
In general our design philosophy is to defer decisions that the
programmer might want to make about details for a particu-
lar “run” as far down the generation process as possible, and
associated with this, to separate as far as possible the differ-
ent specifications. So the equation parsing language should
be separable from the particular equation parameters, and the
code generation options and optimisation choices are also sep-
arated as much as possible. We have been through various
early stage software prototypes where a monolithic architec-
ture was used and as we have learned more about the processes
involved we have managed to aim at a cleaner more separable
set of components for our system.
ANTLR has helped considerably in providing a higher level
parser generator apparatus. In particular the concept of sep-
arating out the tree walker generation stages is much easier
using ANTLR.
We have deferred discussion of code generation for parallel

platforms to [28]. There is scope for applying the approach
we have outlined to many other members of this class of time-
integrated partial differential equation fierld equations.

8 Conclusions and Future Work
In summary, we have described how a staged parser and tree-
walking code generator can produce device agnostic soft-
ware for modern platforms, where the software is optimized,
human-readable and maintainable. This is possible as we have
focused on a very specific form of application domain prob-
lem - solving regular partial differential equations using finite
difference equations. The speed performance of the generated
code is very close to that attainable by expert hand-generated
software but with considerably less time required to develop
and test a new equation or indeed to deploy for a new plat-
form.
One important outcome of this work for us is the ability to
investigate whole families of problems rather than having to
focus on just one hand-coded one. Problems like the Cahn-
Hilliard equation or the Time-Dependent Ginzburg-Landau
equation have a number of choices embedded in them that,
while compactly expressible in mathematics, lead to quite dif-
ferent software formulations. A tool like this opens up a num-
ber of feasible investigations in computational physics that
would otherwise be quite time consuming - and in the past
have consumed a whole PhD-worth of research effort each in
terms of coding, testing and general experimental effort.
A more general outcome of this work is the software archi-
tecture for scientific problem domain specific languages that
can be parsed and can have output code generated in a num-
ber of different target languages and associated platforms. We
note the promise of modern compiler generator tools such as
ANTLR and the benefits of using them rather than attempting
a monolithic single stage parser-generator tool.
The domain-specific language approach is a powerful one for
lowering the software engineering effort required for investi-
gating problems in computational science. There is consid-
erable scope for expanding the simulation model-driven ap-
proach we have taken to other problems and platforms.

74 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

References
[1] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers Principles,

Techniques, and Tools. Addison-Wesley (1986), iSBN 0-201-
10194-7

[2] Aho, A.V., Ullman, J.D.: Principles of Compiler Design. No.
ISBN 0-201-00022-9, Addison-Wesley (1977)

[3] Benson, T., Milligan, P., McConnell, R., Rea, A.: A knowl-
edge based approach to the development of parallel programs.
In: Parallel and Distributed Processing, 1993. Proceedings. Eu-
romicro Workshop on. pp. 457–463 (Jan 1993), iSBN 0-8186-
3610-6

[4] Bischof, C.H., Dongarra, J.J.: A linear algebra library for high-
performance computers. In: Carey, G.F. (ed.) Parallel Super-
computing: Methods, Algorithms and Applications, chap. 4,
pp. 45–55. Wiley (1989)

[5] Bozkus, Z., Choudhary, A., Fox, G.C., Haupt, T., Ranka,
S.: Fortran 90D/HPF compiler for distributed-memory MIMD
computers: design, implementation, and performance results.
In: Proc. Supercomputing ’93. p. 351. Portland, OR (1993)

[6] Cahn, J.W., Hilliard, J.E.: Free Energy of a Nonuniform
System. I. Interfacial Free Energy. The Journal of Chemical
Physics 28(2), 258–267 (1958)

[7] Cahn, J., Hilliard, J.: Free energy of a non-uniform system III.
Nucleation in a two point compressible fluid. J.Chem.Phys. 31,
688–699 (1959)

[8] Cardenas, A.F., Karplus, W.J.: PDEL - A Language for Par-
tial Differential Equations. Comm. of the ACM 13(3), 184–191
(March 1970)

[9] Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: Scalapack: A
scalable linear algebra library for distributed memory concur-
rent computers. In: Proc. of the Fourth Symp. the Frontiers of
Massively Parallel Computation. pp. 120–127. IEEE Computer
Society Press (1992)

[10] Cook, G.O.: Code Generation in ALPAL Using Symbolic
Techniques. In: Int. Conf. on Symbolic and Algebraic Compu-
tation. pp. 27–35. ACM/SIGSAM, Berkeley, CA, USA. (1992),
ISBN:0-89791-489-9

[11] Cook, G.O., Painter, J.F., Brown, S.A.: How symbolic compu-
tation boosts productivity in the simulation of partial differen-
tial equations. Journal of Scientific Computing 6(2), 193–209
(June 1991), ISSN: 0885-7474

[12] Cooper, K.D., Torczon, L.: Engineering a Compiler. No. ISBN
1-55860-698-X, Morgan Kaufmann (2004)

[13] Dongarra, J.J., Croz, J.D., Duff, I.S., Hammarling, S.: A set
of level 3 basic linear algebra subprograms. ACM Trans. Math.
Soft. 16, 18–28 (1990)

[14] Dongarra, J.J., Whaley, R.C.: A users’ guide to the BLACS
v1.1. Tech. rep., Univ of TN, Knoxville (1997), http://
www.netlib.org/blacs

[15] Grune, D., Bal, H.E., Jacobs, C.J.H.: Modern Compiler De-
sign. No. ISBN 0-471-97697-0, Wiley (2000)

[16] Hawick, K.A.: Spectral analysis of growth in spatial lotka-
volterra models. In: Proc. International Conference on Mod-
elling and Simulation. pp. 14–20. No. 685-030, IASTED,
Gabarone, Botswana (6-8 September 2010)

[17] Hawick, K.A., Playne, D.P.: Modelling, Simulating and Vi-
sualizing the Cahn-Hilliard-Cook Field Equation. International
Journal of Computer Aided Engineering and Technology (IJ-
CAET) 2(1), 78–93 (2010), inderscience

[18] Levine, J.: flex and bison: Text Processing Tools. O’Reilly Me-

dia (2009), iSBN: 978-0-596-15597-1
[19] Levine, J.R., Mason, T., Brown, D.: LEX and YACC. O’Reilly,

2nd edn. (1992), iSBN 1-56592-000-7
[20] Logg, A.: Automating the finite element method. Arch. Com-

put. Methods Eng. 14(2), 93–138 (2007), http://home.
simula.no/˜logg/pub/papers/Logg2007a.pdf

[21] Logg, A., Wells, G.N.: Dolfin: Automated finite element com-
puting. ACM Trans. Math. Soft. 37(2), 1–28 (April 2010)

[22] M.A.Carpenter, E.Salje: Time dependent Landau theory for or-
der / disorder processes in minerals. Mineralogical Magazine
53, 483–504 (Sep 1989)

[23] McMullin, P., Milligan, P., Corr, P.: Knowledge assisted code
generation and analysis. In: High-Performance Computing and
Networking. LNCS, vol. 1225, pp. 1030–1031. Springer (1997)

[24] Milligan, P., McConnell, R., Benson, T.: The Mathematician’s
Devil: An Experiment In Automating The Production Of Par-
allel Linear Algebra Software. In: Proc. Second Euromicro
Workshop on Parallel and Distributed Processing. pp. 385–391
(Jan 1994), ISBN: 0-8186-5370-1

[25] Parr, T.: The Definitive ANTLR Reference - Building Domain-
Specific Languages. No. ISBN 978-0-9787392-5-6, Pragmatic
Bookshelf (2007)

[26] Paxson, V., Estes, W., Millaway, J.: The Flex Manual - Lexical
Analysis with Flex, version 2.5.35 edn. (Spetember 2007)

[27] Playne, D.P., Hawick, K.A.: Auto-generation of parallel finite-
differencing code for mpi, tbb and cuda. In: Proc. International
Parallel and Distributed Processing Symposium (IPDPS);
Workshop on High-Level Parallel Programming Models and
Supportive - HIPS 2011. pp. 1163–1170. IEEE, Anchorage,
Alaska, USA (16-20 May 2011), in conjunction with IPDPS
2011, the 25th IEEE International Parallel & Distributed Pro-
cessing Symposium

[28] Playne, D.P., Hawick, K.A.: Stencil methods and graphical pro-
cessing units for simulating field equations in parallel. In: Proc.
9th Int. Conf. on Foundations of Computer Science (FCS’13).
p. FCS3958. No. CSTN-173, WorldComp, Las Vegas, USA
(22-25 July 2013)

[29] Polychronopoulos, C.D.: Parallel Programming and Com-
pilers. Parallel Processing and Fifth Generation Computing,
Kluwer Academic Publishers (1988)

[30] Srikant, Y., Shankar, P. (eds.): The Compiler Design Handbook
- Optimizations and Machine Code Generation. No. ISBN 1-
4200-4382-X, CRC Press, second edn. (2008)

[31] The MathWorks: Matlab. available at
http://www.mathworks.com (2007), Availableathttp:
//www.mathworks.com

[32] Tofte, M.: Compiler Generators - What they can do, what they
might do, and what they will probably never do. No. ISBN 0-
387-51471-6 in EATCS Monographs on Theoretical Computer
Science, Springer-Verlag (1990)

[33] Tuszynski, J., Skierski, M., Grundland, A.: Short-range in-
duced critical phenomena in the Landau-Ginzburg model.
Can.J.Phys. 68, 751–755 (1990)

[34] Wolfram Research: Mathematica. available at
http://www.wolfram.com (2007), Availableathttp:
//www.wolfram.com

[35] Zima, H.: Automatic vectorization and parallelization for su-
percomputers. In: Perrott, R. (ed.) Software for Parallel Com-
puters, chap. 8, pp. 107–120. Chapman and Hall (1991)

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 75

A Component-Based Architecture for Ginga

Marcio Ferreira Moreno, Luiz Fernando Gomes Soares, Renato Cerqueira
Departamento de Informática – PUC-Rio

Rua Marquês de São Vicente, 225 – Rio de Janeiro/RJ – 22453-900 – Brasil
{mfmoreno, lfgs, rcerq}@inf.puc-rio.br

Abstract — This paper discusses how component-driven
development can be used in the design of the Ginga
middleware architecture, including its Ginga-NCL
presentation module. Presentation engines have an important
facility, since they allow for previewing when each specific
media player is needed. Therefore, to maintain temporal
consistency during application presentations, instantiation
time of media players can be computed. The paper describes
how this approach has been considered in the design and
implementation of Ginga, the middleware of ISDB-T
terrestrial digital TV system and ITU-T Recommendation for
IPTV services. The evaluations presented in the paper
illustrate the benefits component-driven architecture can
bring to digital TV middleware systems, such as decreasing
the amount of needed resources and improving their dynamic
evolution capability.

Keywords- component-driven architecture, NCL, Ginga,
Multimedia Synchronism, Digital TV, Interactive TV.

I. INTRODUCTION
In digital TV (DTV) systems, middleware is the software

layer that gives support to application execution and makes
them independently from receiver platforms.

The middleware design and implementation must take into
account some special constraints. Usually, receivers have
scarce resources offered to applications, due to cost limitations:
low power CPU and limited memory. However, they usually
provide specialized hardware targeting TV content
presentation.

Component-based development [1] can be an interesting
approach in this scarce resource scenario, in which a given set
of functionalities must be present, only when they are required
at presentation time. However, a critical issue must be stressed,
the delay imposed in loading a component may not impair the
temporal synchronization among media content during DTV
application presentation. To find a strategy that enables
multimedia presentations with the minimum software
components in memory during application running without
breaking the spatiotemporal relationships specified by
application authors is thus a key issue.

Another key issue in DTV middleware design that can also
take profit of component-based approach is the real time
support to software updates. Dynamic middleware evolution
support allows for integrating new functionalities, for replacing

old ones, and for architectural redefinitions coming from
unpredictable changes in the original project [1].

This paper discusses how component-driven development
can be used in the design of the Ginga middleware architecture,
including its Ginga-NCL presentation module. Ginga is the
middleware of the ISDB-T (International Standard for Digital
Broadcasting) standard [2]. Ginga-NCL supports the
presentation of applications developed using the NCL (Nested
Context Language) declarative language and its Lua scripting
language [2] [3]. Ginga-NCL and NCL are also ITU-T H.761
Recommendation for IPTV services [3]. The component-driven
approach proposed has been used in the Ginga reference
implementation [4].

The paper is organized as follows. After this introduction,
Section II presents some related work. Section III describes the
modular architecture of Ginga in its support to declarative
applications. Section IV discusses the component-driven
implementation applied to Ginga architecture. Section V
presents and comments performance measures coming from
the Ginga monolithic and the Ginga component-driven
implementations. Finally, Section VI concludes the paper.

II. RELATED WORK
Restraining our discussion to middleware systems, several

component-driven solutions aiming at providing high-degree of
adaptability and better control of computational resources have
been discussed in the literature.

Coulson et al. [5] present OpenCom as a software
component model to design low-abstraction-level systems, e.g.
middlewares, trying to provide the same reconfiguring facilities
other component infra-structures provide for the final
application levels. OpenCom has been used in middleware
systems for different application domains, such as
programmable network processors, reflexive communication
middleware systems, and routing systems for mobile ad-hoc
networks [6] [7].

The Fractal component model [8] has also been used to
design middleware systems. Layaida et al. [9] present an
archetype based on this fractal model for multimedia
application design, named PLASMA. In their paper, they show
how the architecture provides real time adaptations with low
performance impact, even if it is used by mobile devices with
scarce computational resources.

Souza Filho et al. proposed the FlexCM model [10] aiming
at the automatic composition of middleware architectures by
explicitly representing component connections using an XML

76 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

file to specify the middleware architecture. In the specification,
component interfaces are identified by Globally Unique
Identifiers (GUID) that guarantees the global individuality.
Each component can declare the required and provided GUID.
An execution environment is then able to compose the final
architecture. FlexCM was used in the design of FlexTV [10]
middleware for DTV Java applications.

Although there are reports about component-driven designs
for DTV imperative middleware systems, like those previously
introduced, to the best of our knowledge our proposal is the
first one targeting DTV declarative middleware engine. DTV
presentation engines have an important facility, since they
allow for previewing when each specific media player is
needed. Therefore, to maintain temporal consistency during
application presentations, instantiation time of media players
can be computed. If these players are not yet present in the
presentation platform, a prefetching plan for loading them can
be built.

The experimental results obtained for Ginga component-
driven implementation reinforce the advantages raised in works
presented in this Section II. However, it must be stressed that
the Ginga implementation was developed based on services
directly provided by the operating system, that is, without using
any software infra-structure for component-driven design, as is
the case of all previously mentioned approaches. This feature is
significant for our purpose since it can contribute to reduce
memory and CPU consumption, which are important
constraints for DTV receivers, as aforementioned.

Table 1 shows some central key points regarding the work
efforts mentioned in this section. Note that all proposals, apart
from Ginga, do not have temporal synchronization in their
requirements. This means that delay problems coming from
component loading are neglected. However, this is a very
important requirement for multimedia presentations by low
cost receivers, as those provided for DTV systems.

TABLE I. COMPARISON OF COMPONENT-DRIVEN APPROACHES

 Dynamic
Evolution

Resource
Management

Infra-structure
Independency

Temporal
Synchronization

OpenCom

Fractal

FlexCM

Ginga

III. GINGA COMPONENT-DRIVEN ARCHITECTURE
Figure 1 shows the Ginga modular architecture divided into

two main subsystems: Ginga-NCL presentation engine and
Ginga Common Core (Ginga-CC).

Ginga-CC provides basic media transmission/reception and
decoding services to Ginga-NCL and Ginga’s optional
extensions (not discussed in this paper). Ginga-CC is the single
part of Ginga that depends on the receiver hardware and the
operating system platform. It allows Ginga-NCL to be platform
independent.

Ginga-NCL is the logical subsystem of Ginga that controls
the entire life cycle of an NCL DTV application.

In presenting the Ginga architecture, a module is defined as
a set of software components that provides a specific
functionality. Software component is defined as in Szyperski
[1]: a unit of composition with contractually specified
interfaces and explicit context dependencies only.

There are two types of components: permanent and
temporary. The first ones are those that are used
uninterruptedly, while the device is in operation. Therefore,
they must be kept all time in memory. Updates in these
components should be done when the receiver is in the stand-
by mode. On the other hand, temporary components are those
only needed in specific moments of the presentation. They
should be kept in memory only when needed.

Figure 1. Ginga Architecture

A. Ginga-CC Componentization

The Tuner module of Ginga-CC is responsible for
identifying the set of services that compounds a DTV channel,
and for receiving these services’ content pushed by DTV
content providers. The Tuner components must be permanent,
since content presentations are usually interrupted only by
viewer actions.

DTV applications can be received from the Tuner module
or from other network interface. In this last case, the Transport
module is in charge of controlling the appropriate
communication protocols and network interfaces. If DTV
applications are received on demand, Transport components
can be kept in memory only during the data reception.

The Data Processing Module monitors information that
signalize DTV application transmissions and which are their
sources. The monitor components must be permanent since it is
impossible to determine when signalizing events will take
place. Applications multiplexed in DTV service data received
by the Tuner module are passed to the Data Processing
temporary components. These temporary components
demultiplex and generate application data files. These
components can be withdrawn from memory when the
generation process finishes.

The I/O module manages the temporary storage of DTV
applications, including their media content. The module’s
components can be temporary but must remain in memory
during all application life cycle.

The Players module is in charge of decoding and rendering
each media content type that compounds a DTV application.
Each media player component is temporary. The time interval

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 77

these components are kept in memory is defined by the Player
Manager, discussed in the next subsection. Ginga-NCL defines
an API that shall be followed by all media players, in order to
standardize the communication between the NCL Player and
the media players. If third party media player components are
integrated to Ginga, it can need the service of Adapters
modules. Content to be exhibited by media players can come
from the Data Processing module, if it comes multiplexed in
the service transport flow, or can be received from the
Transport module.

A special media player is the Lua engine for Lua code
execution. Like other media players, Lua engine is kept in
memory only during periods defined by the Player Manager,
discussed in the next subsection.

The Graphic Manager controls the global spatial content
rendering, including the main DTV video. The module’s
components must be permanent.

All Ginga components can be independently updated.
Updates can come as pushed data or received on demand using
the services of the Transport module. In the first case, a
permanent component of the Dynamic Evolution Manager
module is in charge of monitoring if there are component
updates multiplexed in the data received by the Tuner module.
In the second case, a temporary component of Dynamic
Evolution Manager module is in charge of querying servers for
updates, by using the services of the Transport module. This
temporary component should be kept in memory only during
query resolutions. Update query polices can be determine by
viewers. The other Dynamic Evolution Manager components
are responsible for the updating process, without interrupting
the middleware execution. These components are temporary
and should be kept in memory only during the updating
process.

The Device Manager module deals with tasks related to
distributed presentation on multiple exhibition devices: device
registering, device intercommunication, distributed-media
synchronization control, etc. [2] [3]. The module’s components
should be kept in memory only during distributed
presentations.

Finally, the Context Manager module administers
information about viewers and devices profiles, used in content
and content presentation adaptations. Since this information is
persistent, the module’s components can be kept in memory
only during information updating and access.

B. Ginga-NCL Componentization

The main module of the Ginga-NCL subsystem shown in
Figure 1 is the Formatter, or NCL Player. This module is in
charge of receiving and running NCL applications, no matter if
they are resident applications or if they are applications
received from Ginga-CC. The Formatter’s components can be
kept in memory only if there is an application to run.

Upon receiving an NCL application, the Formatter requests
the services of the XML Parser module that translates the NCL
textual specification into data structures that represents the
NCL conceptual data model, called NCM [2] [3]. The XML
Parser’s components are only needed during the translation
process and to compute NCL live editing commands discussed
ahead. Therefore, they may be all temporary components.

The resulting NCM entities are grouped in a data structure
called Private Base. Ginga-NCL associates at least one private
base with each TV channel (assembling a set of channel
services). Other private bases can be opened (or created), but at
most one to each service in a tuned channel. NCL documents in
a private base may be started, paused, resumed, stopped and
may refer to each other.

As soon as the XML Parser ends its translation process, the
Formatter calls the Scheduler to orchestrate the NCL
application presentation. The Scheduler interprets the NCM
data structures, using the services of the Converter module, in a
second translation step done during application presentation,
step by step. The Converter’s components are needed during all
the application presentation, differently from the XML Parser’s
components that do their job before presentations begin. This is
one of the reasons why two-step conversion has been used.

During the presentation, the Scheduler requests the Play
Manager module to instantiate players according to the content
type being presented. When a content presentation finishes, the
media player notifies the Scheduler. If there is no other content
of the same type to be exhibited, the Scheduler commands the
Player Manager to destroy the media player instantiation. The
same procedure can happen if the Scheduler needs to stop a
media presentation. Therefore, the Player Manager is in charge
of loading and freeing media player components.

Media content in exhibition must be placed in a display
area in agreement with the NCL application specification. The
Layout Manager module associates content rendered by media
players to display regions of one or more device screens. If
multiple exhibition devices are used, the Layout Manager calls
the Device Manager’s services to transmit content to be
presented to appropriate devices and to control their
presentation. The Layout Manager’s components must be kept
in memory during the whole presentation.

The Private Base Manager must control all created private
bases. This module’s components shall be kept in memory
while there is at least one active private base. The Private Base
Manager is also responsible for processing live editing
commands that allow for private base control (activation, open,
close, etc.), for controlling of NCL application life cycles, and
for changing applications during runtime. Changes on NCL
application requested by NCL editing commands may be
specified as XML parameters. Therefore, when needed, the
Private Base Manager module calls the XML Parser’s services
to translate these changes into NCM data structures.

Finally, the NCL Context Manager adapts NCL
applications, according to information provided by Ginga-CC
and NCL instructions programmed by application authors.

IV. COMPONENT-DRIVEN IMPLEMENTATION OF GINGA
From version 0.10.1 on, the Ginga reference

implementation has added a new optional module called
Component Manager. At compile time the instantiation or not
of this module defines if middleware libraries will result in a
component-driven Ginga implementation or in a monolithic
version. The two versions are provided to allow for
implementing Ginga in platforms that do not offer support to
component-driven development. These two versions are
compared in Section 5.

78 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

The Component Manager module, shown in Figure 2, has
the necessary functionalities to load and to release each
component of the Ginga architecture. These operations are
accomplished by the ComponentManager permanent
component through the libdl library, which is the single
introduced dependency to allow for loading and unloading
components into system memory, by using the
IComponentManager interface. The code for handling
components is kept centralized to make easier the middleware
embedment into receiver platforms that need an alternative to
libdl library.

Figure 2. Component Manager

The architecture specification is defined in an XML
document created by a script on component compilation and
installation. When the receiver device starts its operation, the
ComponentManager initiates and calls the services of the
CMParser component, through the IComponentParser
interface, to interpret the XML document. As a result, a set of
directives on component loading and unloading are represented
by the IComponent interface for all Ginga components.

If the middleware must be updated, the Dynamic Evolution
Manager module receives the updates and changes the XML
document by means of the IComponentDescriptor interface.
The Dynamic Evolution Manager module is also responsible
for notifying the ComponentManager, by means of the
IComponentManager interface, that the update took place.

Figure 3 shows the DTD (document type definition) of the
Ginga architecture XML specification. The <middleware>
element is defined as the parent element of one or more
<component> elements. To assist the Dynamic Evolution
Manager, the required attributes of the <middleware> element
define the receiver platform (identifier, operating system - OS,
OS kernel version) where Ginga will be embedded.

The <component> element defines the necessary
information to load and to unload the component represented
by the element. Its package, name and version attributes define
the architecture module the component pertains, the name of
the component and its version, respectively. The <component>
element may contain one or more <symbol> elements, zero or
more <dependency> elements, the <location> element, and
zero or more <repository> elements.

The <location> element gives the exact site of the
component, which can be remote or local, depending on the
value of the type attribute. The uri attribute defines the
component address. When a component is loaded from a
remote location, the uri contains its new local address, the
remote address is set to the uri attribute of the <repository>
element.

The <repository> element allows the Dynamic Evolution
Manager to deal with more than one repository of components.
In case of local component fails or loses, these repositories can
be accessed, as in the case of component updates.

To allow for using the component functionalities after its
loading, symbols that can be found during runtime must be
defined. The <symbol> element allows for defining the
creator, destroyer and object attribute. The object defines the
component functionality to be found; its creator and destroyer
are set to attributes of same names. The interface attribute
allows the ComponentManager to know all objects that
implement the same interface. For example, a middleware
component can use the ComponentManager to check all
platform network interfaces.
<?xml version="1.0" encoding="UTF‐8"?>
<!ELEMENT middleware (component+)>
<!ATTLIST middleware
 platform CDATA #REQUIRED
 system CDATA #REQUIRED
 version CDATA #REQUIRED>
<!ELEMENT component (
 (symbol, location) |
 (dependency+, location, repository) |
 (dependency+, symbol+, location, repository))>
<!ATTLIST component
 package CDATA #REQUIRED
 name CDATA #REQUIRED
 version CDATA #REQUIRED>
<!ELEMENT location EMPTY>
<!ATTLIST location
 type CDATA #REQUIRED
 uri CDATA #REQUIRED>
<!ELEMENT repository EMPTY>
<!ATTLIST repository
 uri CDATA #REQUIRED>
<!ELEMENT symbol EMPTY>
<!ATTLIST symbol
 object CDATA #REQUIRED
 creator CDATA #REQUIRED
 destroyer CDATA #REQUIRED
 interface CDATA #REQUIRED>
<!ELEMENT dependency EMPTY>
<!ATTLIST dependency
 name CDATA #REQUIRED
 version CDATA #REQUIRED>

Figure 3. DTD for XML component descriptions of the Ginga architecture

The <dependency> element specifies the dependency that a
component has of another component (its name and version).
This is used by the Dynamic Evolution Manager to update not
only a component but also all its dependencies.

The Component Manager and the Dynamic Evolution
Manager modules are also useful when applications need
components that were not predicted in the original
implementation. As an example, Figure 4 shows a fragment of
an NCL application in which the content type (DivX), not
required in a conformant Ginga implementation [2] [3], is
referred for presentation (line 4). To present this application,
the Ginga-NCL Player Manager will be called by the
Presentation Scheduler (see Section 3.2) to create the DivX
player.

In the Ginga monolithic implementation, when there is no
player able to display some content type, the Player Manager
notifies the failure to the Presentation Scheduler that tries to
maintain the presentation temporal consistency. However, in
the component-driven implementation, the player must be
downloaded from the location specified in the player attribute

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 79

(see Figure 4). A failure is reported only if the player
instantiation cannot be succeeded. In the example of Figure 4,
the Player Manager calls the Dynamic Evolution Manager to
analyze the “videoMM” media object and the corresponding
information specified (line 4). From the <media> element, it
infers that there is a description for a player adapter component
addressing the content type with the “avi” extension in the set
of component descriptions whose address is specified in the
player attribute.
1: <?xml version="1.0" encoding="UTF‐8"?>
2: <ncl id="unknownContent"

 xmlns="http://www.ncl.org.br/NCL3.0/EDTVProfile">
3: ...
4: <media id="videoMM" src="bolinha.avi"

 player="http://www.gingancl.org.br/plugins/avi.xml"/>
5: ...
6: </ncl>

Figure 4. NCL application with a non-predicted media type

If the remote XML document describing the component is
the one shown in Figure 5, the Dynamic Evolution Manager
module then knows that the “avi.xml” file has the DivX player
component targeting many platforms and operation systems.
1: <middleware platform="ST7100" system="stlinux"

 version="2.4">
2: <component package="gingancl"

 name="gingancldivxadapter" version="1.0.1">
3: <dependency name="divxplayer" version="1.0.1"/>
4: <dependency name="gingancladapter" version="0.13.5"/>
5: <location type="remote"

 uri="http://www.gingancl.org.br/plugins/st7100/"/>
6: <symbol object="DivXPlayerAdapter"

 creator="createDivXAdapter"
 destroyer="destroyDivXAdapter"
 interface="IPlayerAdapter"/>

7: </component>
8: </middleware>
9: <middleware platform="AOpen" system="Windows"version="7">
10: ...

Figure 5. avi.xml file: remote description of components

The Dynamic Evolution Manager is responsible for
analyzing the XML file to get the receiver platform description.
In this example the module will get the following descriptions
for its platform “ST7100”: the operation system is “stlinux” in
its version “2.4” (line 1); the “gingancldivxadapter”
component, in its “1.0.1” version, pertains to the “gingancl”
module (line 2); the location of this component is given in line
5; the component depends on “divxplayer” (“1.0.1” version)
and “gingancladapter”(“0.13.5” version) components (lines 3
and 4), so, all of them must be updated together. The symbols
for creating and destroying the “DivXPlayerAdapter” player
are also defined in the figure (line 6). In line 9 begins the
description of the DivX player for another platform.

As soon as a component and its set of dependencies are
downloaded using the Transport or Tuner modules, they are
stored in a local memory. Before any operation, the Dynamic
Evolution Manager verifies the possibility of running out of
resources. If there is no risk, the Dynamic Evolution Manager
updates the XML document that describes the middleware
architecture, adding or updating the new downloaded
components, and then notifies the ComponentManager.

While new components are being downloaded, the Player
Manager keeps the Presentation Scheduler informed that the
download process is in progress, and assures that the

application presentation continues even if the component
downloads fail. It should be stressed that using the solution
proposed in this paper the Ginga reference implementation may
be updated on-the-fly, and not only when it is halted in
background.

The Presentation Scheduler and Player Manager modules
assure that download delays do not impair the temporal
synchronization among content that compounds DTV
applications. For this sake, the Presentation Scheduler keeps a
presentation data structure (presentation plan [11]) knowing in
advance each content type to be presented and thus
commanding the Player Manager to do its job in time. Based
on the presentation plan, prefetching of updating components
can start to keep the temporal synchronization consistency.
However, the current version of Ginga used in the evaluations
presented in the next section does not implement an efficient
prefetching algorithm yet.

Another issue that deserves a better solution in the current
Ginga reference implementation is media player component
unloading. The Player Manager should evaluate if a media
player component will be reused near in the presentation
sequence. In the current version of Ginga, the Player Manager
holds a player component idle in memory for one second after
it has completed its job. If after this short period of time the
player component is still not needed, it will be unloaded by the
Player Manager.

V. SOME EVALUATIONS BASED ON MEASURES
This section presents some measures comparing the Ginga
monolithic and component-driven implementations (referred as
Mono and Comp in all figures, respectively), with regards to
resource usage, CPU consumption and delays, both
implementations have the same base platform: the Fedora Core
15 distribution of Linux operating system is used, all decoding
and rendering processes are implemented in software (there are
no specific hardware codec for any media content type); the
DirectFB library [12] is used to handle graphical interfaces, to
decode and to render text, images, audio and video content
types; media objects with Lua code and HTML code are
implemented using public libraries controlled by Ginga itself;
the RAM memory was limited to 256 MB, with only 144 MB
free memory (112 MB are used by Linux OS and other
processes); the swap partition and disk cache policy was
disabled.

Our first test document (document A) starts presenting in
sequence an image, a text, an object running Lua language
code, an audio, and an HTML page. The sequence is repeated
twice. In a pure monolithic implementation all players are
loaded from the beginning of the document presentation.
However, it should be stressed that the DirectFB library
implements the dynamic loading of media codecs without any
Ginga control. So, the Mono version used in the evaluations
indeed is not a pure monolithic case. To be more realistic, the
Comp version presenting document A should be compared
with the Mono version using document B, which contains the
same media objects, but all of them starting at the same time.
Note that when we load all media object of the document B, we
are not using the dynamic loading characteristics of DirectFB
library, which is more real for the Mono version evaluation. Of
course the presentation duration of both A and B documents
must be the same.

80 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

However, although taking care of simulating correctly the
component loading of the Mono and Comp versions, our
measures are still not precise due to another feature of
DirectFB: when a player is loaded it is kept in memory until
the end of the application presentation. Therefore, for the
Comp implementation version, we are not considering the
unloading of the image, text and audio codecs controlled by

DirectFB. Therefore, even better results than those presented in
this section could be obtained if unloading of those components
could be done. As Lua and HTML players use libraries
controlled by Ginga, the unloading problem does not happen.
Even at a disadvantage, the measures presented have sufficient
data for analysis.

Figure 6. Memory use: max confidence interval equals to 174 kB, with 0.95 of confidence level and sample size equals to 100

It should also be mentioned that the absence of video
content in the tests is due to the fact that this media type is
usually implemented in hardware in DTV receiver platforms.
The decoding and rendering of this content type in software
require a lot of CPU and memory resources that would affect
the scale of the evaluation graphs, making difficult to see the
measured results. The exclusion of video type in the tests does
not cause however any harm to the evaluations.

Figure 6 and 7 present the comparison between the Comp
version running A document and the Mono version using A
and B documents regarding amount of memory in use and
regarding amount of used CPU, respectively.

Note in Figure 6 that near 0s, the amount of memory
required by the Mono version is 3,7 times the one required by
the Comp version. This is an important time instant since at
this point only the Ginga implementation is in memory. During
the [0,02 s, 0,78s[time interval the Mono version loads all
DirectFB functionalities needed to run document B, while the
Comp version loads only the components (see Section 3)
needed to start the NCL application. When the first media
content starts its presentation at 0,78s, the difference between

the Comp version and the better case for the Mono version
(Mono-A) is 14567 KB. At t=9,78s the HTML player is loaded
and this is the moment at which the difference between the two
versions is the least, remembering that DirectFB does not allow
player unloading. This fact explains why at t=10,78s, t=13,78s,
t=25,78s e t=28,78s we have a considerable reduction of
memory use by the Comp version, since the HTML and Lua
players are not controlled by DirectFB, but by the Ginga
Component Manager, and these components are unloaded at
these moments.

As it is predictable the efficiency in memory use is very
high. Figure 7 confirms that this efficiency doesn’t happen at
great processing costs. Indeed, the Comp version demands less
CPU use than Mono-A and Mono-B. Note the difference in
CPU use required by the best case of the Mono version and the
Comp version due to instantaneous loading of all Ginga
libraries required by the Mono version. It is very important to
note that the loading and unloading process do not demand
relevant augments in CPU usage in the Comp version due to
the Ginga component model, developed based on services
directly provided by the operating system, that is, without using
any software infra-structure for component-driven design.

5000

7000

9000

11000

13000

15000

17000

19000

21000

23000

25000

0
,0
0

0
,5
6

1
,1
0

1
,6
4

2
,1
9

2
,7
3

3
,2
7

3
,8
1

4
,3
5

4
,9
0

5
,4
4

5
,9
8

6
,5
2

7
,0
7

7
,6
1

8
,1
5

8
,6
9

9
,2
3

9
,7
8

1
0
,3
2

1
0
,8
6

1
1
,4
0

1
1
,9
5

1
2
,4
9

1
3
,0
3

1
3
,5
7

1
4
,1
2

1
4
,6
6

1
5
,2
0

1
5
,7
5

1
6
,2
9

1
6
,8
3

1
7
,3
7

1
7
,9
2

1
8
,4
6

1
9
,0
0

1
9
,5
4

2
0
,0
9

2
0
,6
3

2
1
,1
7

2
1
,7
1

2
2
,2
6

2
2
,8
0

2
3
,3
4

2
3
,8
8

2
4
,4
3

2
4
,9
7

2
5
,5
1

2
6
,0
5

2
6
,6
0

2
7
,1
4

2
7
,6
8

2
8
,2
2

2
8
,7
7

2
9
,3
1

2
9
,8
5

3
0
,3
9

3
0
,9
4

3
1
,4
8

3
2
,0
2

3
2
,5
6

3
3
,1
1

VmLib
(kBmem)

t(s)

Comp

Mono‐A

Mono‐B

COMP:
00,02: startDocument
00,12: unload ParserNCL

00,78: start png
03,78: start txt
03,79: stop png

04,78: unload png
06,78: start lua
06,78: stop txt

07,78: unload txt
09,78: start html
09,78: stop lua

10,78: unload lua
12,78: start mp3
12,78: stop html

13,78: unload html
15,78: start png
15,78: stop mp3
16,82: unload mp3

18,78: start txt
18,78: stop png
19,78: unload png

21,78: start lua
21,78: stop txt
22,78: unload txt
24,78: start html

24,78: stop lua
25,78: unload lua
27,78: start mp3

27,78: stop html
28,78: unload html
30,78: stop mp3
31,78: unload mp3

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 81

Figure 7. CPU use: max confidence interval equals to 0.28 %, with 0.95 of confidence level and sample size equals to 100

VI. FINAL REMARKS
One of the main requirements, if not the most important

one, in the design and implementation of a DTV middleware is
to take into account the scarce resources of receiver platforms.
Another important requirement is the support to constant
middleware evolution, allowing fast, secure and easy updating
procedures. The use of component-driven implementations
plays an important role in this context, since it provides a high
degree of adaptability and of computing resource control.

One of the main contributions of this work is to show how
component-driven techniques can be used in DTV middleware
architectures and implementations, presenting the Ginga
implementation as an example. The proposal presented in this
paper allows for DTV middleware updating during application
runtime, without putting at risk the presentation in exhibition.
The component-driven implementation favors the minimum
waste of memory and CPU resources.

Ginga-NCL presentation engine, as other DTV declarative
environments, allows for building a presentation plan (a
hypermedia temporal graph - HTG) that allows for predicting
when each media content type player is needed. In the case
these players are not yet instantiated, a prefetching plan for
loading them can be built. An intelligent prefetching algorithm
should be devised to not impose any unnecessary memory
burden of having a component in memory for a time longer
than needed. Intelligent prefetching algorithms are in our future
working plans.

We plan also to continue with performance measures using
commercial receiver platforms, possibly without the limitations
we have had (like the previously mentioned DirectFB
characteristics) and possibly with other limitations coming
from their hardware/software scarce resources. We intend to
extend the evaluations to also take into account swap partition
use.

REFERENCES

[1] Szyperski, C., Gruntz, D., Murer, S. Component Software
– Beyond Object-Oriented Programming. Second edition.
ACM Press, 2002.

[2] ABNT NBR 15606-2. Digital Terrestrial TV Standard 06:
Data Codification and Transmission Specifications for
Digital Broadcasting, Part 2 – GINGA-NCL: XML
Application Language for Application Coding, São Paulo,
Brazil, 2007.

[3] ITU-T Recommendation H.761. Nested Context Language
(NCL) and Ginga-NCL for IPTV Services. Geneva, 2009.

[4] Soares, L.F.G, Rodrigues, R. F., Moreno, M. F. Ginga-
NCL: the Declarative Environment of the Brazilian Digital
TV System. Journal of the Brazilian Computer Society, v.
12, p. 37-46, 2007.

[5] Coulson G. et al. A Generic Component Model for
Building Systems Software. ACM Transaction on
Computer Systems (TOCS), Volume 26, Issue 1, 2008.

[6] Ramdhany R. et al. MANETKit: supporting the dynamic
deployment and reconfiguration of ad-hoc routing
protocols. Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware. Urbanna,
Illinois. 2009.

[7] Gomes A.T.A. LindaX: a Language for Describing
Adaptable Communication Systems. PhD Thesis.
Departamento de Informática. PUC-Rio. August, 2005.

[8] Bruneton E. et al. The FRACTAL Component Model and
Its Support in Java. Software, Practice and Experience.
36(11-12): 1257-1284. 2006.

[9] Layaïda O., Hagimont D. Designing Self-Adaptive
Multimedia Applications through Hierarchical
Reconfiguration, 5th IFIP DAIS, Athens, Greece, 2005.

[10] Filho S. M. et al. FLEXCM – A Component Model for
Adaptive Embedded Systems. Proceedings of the 31st
Annual International Computer Software and Applications
Conference - Volume 01. Pages: 119-126. 2007.

[11] Costa, R. et al. DocEng, ACM Symposium on Document
Engineering, “Intermedia Synchronization Management in
DTV Systems”, São Paulo, Brazil, 2008.

[12] DirectFB Library. www.directfb.org

0,00

2,00

4,00

6,00

8,00

10,00

12,00

0
,0
0

0
,5
6

1
,1
0

1
,6
4

2
,1
9

2
,7
3

3
,2
7

3
,8
1

4
,3
5

4
,9
0

5
,4
4

5
,9
8

6
,5
2

7
,0
7

7
,6
1

8
,1
5

8
,6
9

9
,2
3

9
,7
8

1
0
,3
2

1
0
,8
6

1
1
,4
0

1
1
,9
5

1
2
,4
9

1
3
,0
3

1
3
,5
7

1
4
,1
2

1
4
,6
6

1
5
,2
0

1
5
,7
5

1
6
,2
9

1
6
,8
3

1
7
,3
7

1
7
,9
2

1
8
,4
6

1
9
,0
0

1
9
,5
4

2
0
,0
9

2
0
,6
3

2
1
,1
7

2
1
,7
1

2
2
,2
6

2
2
,8
0

2
3
,3
4

2
3
,8
8

2
4
,4
3

2
4
,9
7

2
5
,5
1

2
6
,0
5

2
6
,6
0

2
7
,1
4

2
7
,6
8

2
8
,2
2

2
8
,7
7

2
9
,3
1

2
9
,8
5

3
0
,3
9

3
0
,9
4

3
1
,4
8

3
2
,0
2

3
2
,5
6

3
3
,1
1

COMP:
00,02: startDocument
00,12: unload ParserNCL
00,78: start png
03,78: start txt
03,79: stop png

04,78: unload png
06,78: start lua
06,78: stop txt

07,78: unload txt
09,78: start html
09,78: stop lua

10,78: unload lua
12,78: start mp3
12,78: stop html

13,78: unload html
15,78: start png
15,78: stop mp3
16,82: unload mp3

18,78: start txt
18,78: stop png
19,78: unload png

21,78: start lua
21,78: stop txt
22,78: unload txt
24,78: start html

24,78: stop lua
25,78: unload lua
27,78: start mp3
27,78: stop html
28,78: unload html
30,78: stop mp3
31,78: unload mp3

CPU (%)

t(s)

Comp

Mono‐A

Mono‐B

82 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Managing User Accounts Across Heterogeneous

Information Systems In The University

Askar Boranbayev
1
, Mikhail Mazhitov

1
, and Rinat Yamalutdinov

1

1
Nazarbayev University, Astana, Republic of Kazakhstan

Abstract - The present level of IT technologies provides the

ability to automate much of the academic and administrative

business processes of universities. With this said the park of

information systems and services, often built using different

technologies and architectures, in the universities is

constantly expanding. In this regard, there are a number of

issues related to the security of information, control of access

to the information, as well as the optimization of the use of

labor resources in the maintenance of information systems. To

solve these issues qualitatively - the university must have an

organized process for managing users of information systems

and user privileges. This article shows an example of how to

organize such a process with the use of modern IT means of

automation.

Keywords: Identity management, Identity and Access

Management, information technology, information systems,

authentication, authorization

1 Introduction

 Management of user accounts and their privileges is an

important part of the security of any information system (IS).

Inefficient management of users and privileges in IS can lead

to compromise, to incorrect functioning, and possibly even

full paralysis of these IS. Moreover, this kind of incident to

one or more IS belonging to a common IT infrastructure can

completely paralyze the entire IT infrastructure. In this case,

the less effective management of users and their privileges

and the bigger the park of information systems included in the

infrastructure, the correspondingly higher these risks.

 Any large organization nowadays is actively using multiple

IS to automate their processes. Each of these systems

automates certain set of business processes of the organization

and has pools of users with special privileges for each IS,

which, in turn, may overlap. The larger the organization, and

the more diverse its internal business processes, the greater

the number of IS involved in the automation of the business

processes of the organization, and the greater the degree of

difference, and the area of intersection between pools of users

of these information systems and their privileges.

 The infrastructure for automation of business processes of a

University, as an educational institution, is a fairly complex

set (may depend on the size of the university) of information

systems with associated structures of user privileges of

different IS. We must be aware that these IS store and process

important for the university and often confidential

information, loss or compromise of which can lead to serious

consequences and damage. Thus, the issue of increasing the

efficiency of managing users of IS and their privileges for

universities is an important task.

2 Choosing ways of solutions

2.1 Unique features of educational

organizations in the management of users

 As it was mentioned above, often the IT infrastructure

for automating business processes of universities is

represented by several interrelated IS, which actually is a

standard pattern at the current level of IT development.

However, educational institutions can have a number of

specific aspects of organizational type, which greatly

complicate the management of users of IS and their privileges:

 Extensive network of subsidiaries with a very flexible
organizational and staff structure. In this case, the
same employee may work in various positions in
various structural units and organizations of the
university and at the same time to take different roles.
For example, a person at a time can work as a
professor at another school and be a member of the
University Research Center, or even be a part time
student in a different school, etc. in various ways.

 Presence of groups of people who are neither students
nor staff, or have otherwise long-term formal
association with the University, who at different times
based on the non-recurring terms need to have access
to information systems and services of the University.
For example, third-party readers (outsiders) of the
library, professionals of auditing firms, or teachers
invited for short-term teaching, etc.

Such organizational issues impose additional constraints on

the management of users and their privileges. Solving these

issues by following standard techniques can lead to an

undesirable increase in beurocratic procedures, and also

greatly increases the risk of making an error by assigning

incorrect use privileges with all the ensuing consequences. So

when setting up a management of users and their privileges at

the university people should especially pay attention to these

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 83

aspects and take them into account when making

organizational and technical decisions on these issues.

2.2 Possible Solutions

 At its core, properly structured management of users and

their privileges should be a strictly regulated process,

deviations from which must be minimal. Privileges are

assigned to users based on their position in the organizational

structure of the organization and the role that the user plays in

the organization, which is strictly regulated by the internal

documents of the organization, as well as the hiring and firing

a worker (creating a user account and blocking a user

account). Therefore, for any organization, including the

university, we can develop an algorithm for creation/blockage

of user accounts in information systems of the organization

and destination of privileges.

 It is clear that the availability of a completed algorithm

allows automating the process that the algorithm describes.

The same applies to the management of users and their

privileges - currently on the market there are a number of

software systems of class IDM (Identity Management), or as

they are called IAM (Identity and Access Management)

intended for the centralized management of user access to

information, user accounts, passwords, and other attributes in

various information systems, thus reducing the risks of

information security, and optimize the cost of administering

IT infrastructure.

Currently there are two common approaches of automation of

processes of management of user accounts and their

privileges:

The first approach is to create a single point of

authentication and authorization (shown schematically in

Figure 1).

Figure 1. The single common center of authentication and authorization.

With such approach to the implementation:

 The authentication and authorization take place on the
side of the center of authentication and authorization,
and not on the side of information systems;

 User account credentials are stored only on the side of
the center of the authentication and authorization;

 The change of the user account credentials is possible
only on the side of the center of authentication and
authorization.

The second approach is to create a single repository of user

account information and their attribute information

(schematically shown in Figure. 2).

Figure. 2 - a single repository of user credentials

With such approach to the implementation:

 The authentication and authorization takes place only
on the side of Information Systems (IS);

 User account credentials are stored on both the IS and
on the side of the center of authentication and
authorization;

 There is a periodic two-way synchronization of
credentials between the center and the IS;

 The change of user account credentials is possible
both on the side of the center of authentication and
authorization and on the side of the IS.

3 The pros and cons of the various

approaches

 Let’s consider the advantages and disadvantages of the

above approaches to automate the user account management

process.

 The advantage of using a single center of authorization

and authentication over other solutions is:

 Less time spent on data synchronization - the access to
all of the systems and services (based on the user
rights and privileges) are available to the user
immediately after user registration;

 Low labor costs for the technical management and
maintenance;

 There is a minimal risks of possible information theft
and compromise a user's account.

The disadvantages of this approach are noted bellow:

84 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 In the case of connecting various active information
systems to this center we will required to make
changes to the operation of authentication and
authorization of these information systems, so it works
with the common single center. Sometimes it is not
possible to do this with the proprietary or out of the
box application software, which is not easy to
customize and adopt.

 the complexity of building and managing a single
repository in the environment of production processes;

 a mandatory single common password to access all of
the information systems;

 difficulty of implementing a number of business
processes due to lack of synchronization of
information between information systems;

 The failure in the operation of the single common
center of authentication and authorization leads to
failure in all of IS.

The advantages of the second approach over the first one

(namely the creation of a single repository of user account

information and their attributes) are:

 There is no need to revise or make major changes to
an information system in order to connect to the
center;

 The possibility of using the means of information
systems for authentication, authorization and for
control of additional parameters. Such ability gives an
opportunity to manage pools of users for each
information system separately (without being
controlled by a single common center). Also it can
simplify the granting of various privileges to users in
various information systems, in the case when a user
holds multiple occupations at the same time and plays
different roles in the organization;

 We minimize the risk of the failure of the whole
complex. In the case of failure of one central
authentication and authorization - the work in the
information systems will not be completely paralyzed;

 the ability to synchronize reference information;

 the ability to use different passwords for IS;

The shortcomings of this approach such as the need for

duplication of user account information in the information

systems, and the time spent on synchronization - are not

critical. That is why we can tell for sure that the second

approach to the automation of management of users and their

privileges in the information systems is better than the first

one.

4 Project Implémentation

Based on the information from above, in our university, in

January 2012, we initiated a project to design and install a

unified user management system, designed for a uniform and

centralized management of registration of user accounts and

user’s identity, and management of access to information

resources of the university by providing a transmission of user

information in the target IS.

The main challenge for the system being created was to

provide unified information about users in all of the IS of the

university. That is, the system should automatically sync all

user accounts (students, faculty and staff), and reference

information between information systems - Figure 3. In

particular, automatically, on the basis of the date from HR and

Student Registrar systems, create new user accounts and block

user accounts of dismissed or expelled students and staff.

Figure 3 - The process of management of user accounts of information

systems of the university and their privileges with MS FIM. [1]

The system implemented as part of the project consists of

three functional blocks:

1. User Management - the main purpose is to manage

directories, user registration data, user accounts, and

connectors to different IS, and synchronization of data;

2. Self-service for users - the main purpose is to allow users to

self-change their user account records and user registration

data;

3. Managing user access rights - the main purpose is to

provide access control to the system and the functionality to

configure user access to system resources.

The system is built with the use of Microsoft products, such

as:

• MS Forefront Identity Manager;

• MS SQL Server;

• MS IIS;

• MS Windows Server.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 85

 The major architectural design for this implementation is

the availability of specialized connectors MS FIM to the

technologies used to store information of users inside of third-

party IS, with the ability to synchronize, with a pre-defined

algorithm in the system, this information through SQL

queries, or through using LDAP or specialized APIs. In

summary, the system architecture is shown in Figure. 4 (see

below).

Figure 4. The overall architecture of the unified system of management of

users. [2]

 The project, which was successfully completed in four

months, a single repository of user credentials with 14

information systems integrated together was created. It was

built using various technologies such as Oracle DB, Oracle

Portal and WebCenter Suite, IBM WebSphere Portal, EMC

Documentum, Apache Tomcat and HTTP Server, MS IIS, MS

Access, My SQL. The system automates the process of

creating and managing user accounts of all information

systems at the University and the process of synchronization

of reference information, as well as registration information of

students and employees of the University in all target systems.

 The result of successful implementation of this system

shows that in the IT department of the University there is a

decline and optimization of the cost of labor for maintenance

and keeping up to date a list of all the users of information

systems and their privileges. Before the project

implementation this work was performed by 6 employees

working on part-time basis - after the implementation – one

person is enough. We can see that the number of incidents of

unauthorized access has greatly decreased. The transparency

has increased. The process of getting a user access to

information systems and services has become quicker.

The implementation of the project has allowed unifying user

account information and to maintain the integrity of the

personal data of users.

5 Conclusion

In this paper we have shown the process of automation of

management of user accounts and their privileges at our

university, with the approaches and techniques described

above. The system and the process have shown its

effectiveness technically and in terms of information security.

And given the favorable pricing of Microsoft to academic

institutions, compared with other producers of proprietary

software (IdM systems in particular) led to greatly reduce the

financial cost of the organization of an effective process of

managing user accounts and their privileges and to greatly

reduce the maintenance costs of the process in the future

6 References

[1] What is Microsoft FIM, and how does it work?
Galust Shahbazyan. 10.05.2012.
http://csbims.ru/about/publications/publications_9.html
[2] FIM 2010 Technical Overview, Updated: April 12,
2010. Applies To: Forefront Identity Manager 2010.
http://technet.microsoft.com/en-
us/library/ff621362%28v=ws.10%29.aspx
[3] Forefront Identity Manager 2010 R2:
http://www.microsoft.com/en-us/server-
cloud/forefront/identity-manager.aspx
[4] Forefront Identity Manager (FIM) Migration:
Decisions and Steps Toward a Major Change. By Jim Cook,
Ferris State University; Frank Drewes, Oxford Computer
Group.
http://www.merit.edu/events/mmc/abstracts.php?mamdate=20
12&sp=Cook
[5] Private University Reduces Identity Management
Workload by 320 Hours per Month. By Dan Cotterman,
Director of IT Infrastructure, Grand Canyon University:
https://images01.insight.com/media/pdf/insight-grand-canyon-
university-case-study-sharepoint.pdf
[6] Enabling Business Opportunities with Identity
Management: University of Iowa. By Robert Heitman &
Randy Wiemer:
https://www.brighttalk.com/webcast/8503/64991
[7] Georgia State University: Building an Identity
Management Infrastructure for the eUniversity:
http://www.nmi-
edit.org/case_studies/GSU_nmiCaseIdMgtFinal16Oct2004.pd
f
[8] FIM 2010 Product Site:
http://go.microsoft.com/fwlink/?LinkId=187552

[9] FIM 2010 Web Forum:
http://go.microsoft.com/fwlink/?LinkId=163230

86 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

[10] Technical Resources:
http://go.microsoft.com/fwlink/?LinkId=187554

[11] N.Hritonenko and Yu.Yatsenko, Creative destruction
of computing systems: Analysis and modeling, Journal of
Supercomputing, 38(2006), pp. 143-154.
[12] Yu.Yatsenko and N.Hritonenko, Network economics
and optimal replacement of age-structured IT capital,
Mathematical Methods of Operations Research, 65(2007), pp.
483-497.
[13] Boranbayev A, Defining methodologies for
developing J2EE web-based information systems, Nonlinear
Analysis (2009), doi: 10.1016/j.na.2009.02.002.
[14] Boranbayev A, Belov S, Data Center Design and
Implementation at the University, Proceedings of The 2012
International Conference on Computer Design (CDES'12),
Las Vegas, Nevada, July 16-19, 2012, pp. 124-126.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 87

Teams using Real World Projects in a Software Engineering Course

Nasser Tadayon, Associate Professor

Department of Computer Science and Information Systems, Southern Utah University, Utah, USA

Abstract: For a Computer Science undergraduate degree program the topics in software engineering are among

the core topics recommended by the joint task force in computing curricula 2005. There is a large area of literature

supporting the concept of project-based learning in a team setting to enhance teaching in a software engineering

course. This paper discusses the curriculum issues within a software engineering course and explores and analyzes

some advantages/disadvantages of using a team based approach with a real world project. Using data collected

through a software engineering course at Southern Utah University, the author examines the overall experience in

having a real software project from a local company using the PBL (Problem Base Learning) style in a team setting.

Keywords: Software Engineering, Team work, Real World Project, Education

1 Introduction

The main objective of an initial course in Software Engineering should be providing the students with knowledge

and experience as well as some level of comprehension through practical application within the ten knowledge areas

(KAs). These KAs are defined by the ACM/IEEE Computer Society in their 2004-SWEBOK (Software Engineering

Body of Knowledge) [9]. However, due to the dynamic nature of the software engineering discipline, a new

SWEBOK guide (V3) includes some adjustment/removal of non-relevant topics as well as the addition of new

knowledge areas. The ACM/IEEE Computer Society has also provided a guideline within undergraduate degree

programs in software engineering SEEK (Software Engineering Education Knowledge) which defines “Core

Material” as the minimal knowledge for a program in software engineering [8].

Software engineering courses within Computer Science undergraduate programs can vary from one school to

another. The most recent curriculum guideline for Computer Science programs CC2001 and CS2008 suggest

coverage of several software engineering concepts within a total of 31 core hours as follows:

SE1. Software design (8) SE7. Software evolution (3)

SE2. Using APIs (5) SE8. Software project management (3)

SE3. Software tools and environments (3) SE9. Component-based computing

SE4. Software processes (2) SE10. Formal methods

SE5. Software requirements and specifications (4) SE11. Software reliability

SE6. Software validation (3) SE12. Specialized systems development

Table 1- Curriculum guideline for Computer Science

Within this list, SE1 – SE8 are considered as core and others SE9 – SE12 as elective. Computer Science curriculum

2013 (Ironman Draft) further divided the KA requirements into two sections (Tier 1 and Tier 2). It contains 6 hours

in Tier1 (required core) and 21 hours in Tier2 (elective) within software engineering concepts. It also rephrased and

changed the core requirement of the “Programming Fundamentals” which was 38 hours in CC2001 and 47 hours in

CS2008 to SDF - Software Development Fundamentals (43 hours, all Tier 1). Amongst the SDF requirement several

software engineering concepts were added (like Program Correctness or Refactoring). CS2013-ironman (v0.8)

within software engineering requirement identifies the topics in tier1 and tier2 as follows:

CS2013 – Ironman (v 0.8) Core Tier 1 hrs. Core Tier 2 hrs. Includes Electives

SE/Software Processes 2 1 Y

SE/Software Project Management 2 Y

SE/Tools and Environments 2 N

SE/Requirements Engineering 1 3 Y

SE/Software Design 3 5 Y

SE/Software Construction 2 Y

SE/Software Verification and Validation 3 Y

SE/Software Evolution 2 Y

SE/Formal Methods Y

SE/Software Reliability 1 Y

Total 6 21

Table 2- Ironman 2013 for Software Engineering Curriculum

88 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

This indicates that there are overall 6 core hours in the required section with 3 hours in Software Design, 2 hours in

Software Processes, and 1 hour in Software Requirement. All other topics except Formal Methods are covered in 21

hours of the elective section. It is noteworthy that Software Design has remained one of the major topics within

software engineering. SWEBOK is updating its guideline but in its 2004 version indicated the following ten

knowledge areas (KAs):

1. Software Requirements

2. Software Design

3. Software Construction

4. Software Testing

5. Software Maintenance

6. Software Configuration Management

7. Software Engineering Management

8. Software Engineering Process

9. Software Engineering Tools and Methods

10. Software Quality

Although a software engineering course is a required course within many Computer Science programs, it was

removed from the core degree requirement in Computer Science in Southern Utah University. Based on input from

Department Industrial Advisory Board (IAB) members and students’ interest, the proposal to offer the software

engineering course as part of the elective requirement in the CS program was approved by the appropriate

curriculum committees. This paper explains the process as well as pros and cons of team selection in the software

engineering course offered through a hands-on practical approach using a real world project.

2 Software Engineering course

The main learning objectives of the software engineering course in a Computer Science program are to describe the

major problems in large system development and to discuss issues, principles, methods, and technology associated

with software engineering theory and practices (e.g. Planning, Requirement Analysis, Design, Coding, Testing,

Quality Assurance, and Configuration Management). Other important performance objectives include providing an

environment for students to work as part of a team and learning through hands-on experience with a real-world

project. Through this method, students can learn how to use a software development process to develop high-quality

software products in an effective manner.

In Southern Utah University, the software engineering course was offered in Fall 2012 as an elective course for CS

majors with 11 students for the first time since 2004. The course started by defining software engineering and issues

related to software quality as well as crises within software to give the students a deep understanding of the

importance of characteristics related to software quality. To promote a habit of data collection among students, they

were encouraged to follow incremental steps of PSP (Personal Software Process) as a simple individual

developmental process. The students were tasked with specific instructions to keep track of their time, line of code

(LOC), and defects within several relatively small programming assignments. Students were also instructed to use

their previously collected data in order to create a plan for the next assignment using PSP-tool. The purpose of these

exercises was to make students aware of their productivity and the quality of their programs. The other objective

was for each student to gather some data that can be used for planning his or her team project. Unfortunately,

students who undergo programming classes without following a specific process are accustomed to being assessed

on the final delivery of their product with minimal testing on functionality. It has been a challenge to encourage

students to plan for their small assignment tasks and collect correct data. One of the major problems in teaching

software engineering is to convince students to use a planning tool to collect data as most students find this work

redundant. Students at the senior level often develop a limited method for completing programming assignments,

and tend to allocate insufficient time to complete their work. It was apparent that several students faked time data in

order to meet the requirement of the assignment. One cause for this could be that overall the students are exposed to

programming much earlier than software engineering [6]. While some individuals demonstrated skills in planning

during team projects, the majority had missed this critical stage in their projects.

The external project used for the course was one from a local software development company that seemed to be

feasible for the level of the class. Although the students had gone through several advanced programming classes

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 89

before taking this class, there were only six students who were familiar with web programming using PHP, a

requirement for the project. There were several discussions with the customer to outline the scope and procedure to

use in their class project. The customer was eager and interested in their involvement in the project.

The project was scheduled for completion within three cycles. After providing the need statement, which was

coordinated with the customer for the project, the teams were guided through the launch activity. A milestone for the

first two cycles of the project was given. Critical sections of the requirement were identified and required to be

completed within the first two cycles.

Students in the teams went through all phases of the software development defined by TSP (Team Software

Process). They were guided during each phase and developed an initial plan, CM (Configuration Management by

defining base line and change process), SRS, SDS, and a test plan through each phase as well as postmortem at the

end of each cycle.

3 Project Team Management

3.1 Background

One of the main problems in any team-oriented project, especially in a software engineering course, is creating

teams with members that work well together. Although studies show that students learn more through participating

in a team environment [1], it is a challenge to form the teams with an open (members able to switch position,

support each other, and review each other’s work) and random (independent thinking and less directive) team style.

Team projects provide students with self-study skills in their programming and improve their written and oral

communications skills, which are standard requirements within large software development. Expected benefits in

team projects include gaining invaluable software development experience and providing problem solving and

critical thinking skills for students as well as training in teamwork coordination skills [1]. One other advantage of a

group project is the obligation and responsibility that some members of the team feel towards other members, a

sentiment that has proven in many occasions to be a driver that motivates students in contributing further toward a

project’s success. The author has noticed in several occasions that students with initially low interest spend time and

effort in order to demonstrate their abilities and to impress their teammates. The group project concept is also among

the largest problems in management within education as well as the real world in ensuring a collaborative

environment among the members working on a project [2].

A study has shown that the dominant personality type of software engineers has undergone a transition from

introversion to extroversion. This change could be associated with the increasingly diverse activities in the software

industry over the last thirty years and the ubiquity of software. [7]

3.2 Group Formation

Selection of team members for a project is a sensitive step which requires careful study. One proposed approach is

to use dynamic group management; however, this approach lacks many of the advantages of traditional group

projects, such as students’ motivation and dedication to teams. However, there are advantages in changing the

composition of each student group at each phase of the software lifecycle [5]. Another approach is to organize

students into an actual software development company and conduct activities that mimic real-world operations in

that company [3] [10]. This seems to work well as students are provided with training experience on the job.

Although there are many benefits to this approach, the educational aspect of software engineering should go beyond

a specific company’s process.

In order to get the best team members possible in a group and to ensure the success of all teams in the class, a first

step is to collect relevant information from the students in the class. In industry the team members are often selected

based on their familiarity and experience in similar projects; however, for a class environment there may not be any

useful information available.

Better results may be achieved if the roles and responsibilities of the team members are well-defined. Students need

to be given a brief description of different team members’ roles and responsibilities. These roles were defined by

TSP (Team Software Process) as:

1. Team Leader: leads the team and ensures that engineers report their process data and complete their

work as planned.

90 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

2. Development Manager: leads and guides the team in designing and developing the product.

3. Requirement/Support Manager: leads the team in developing the software requirements and helps the

team meeting its technology and administrative support needs.

4. Planning Manager: supports and guides the team in planning and tracking their work.

5. Quality/Process Manager: supports the team in defining their process needs and establishing and

managing the quality plan.

This set of team roles seems relevant and appropriate for a group project in a software engineering class. The

process of selection started with a survey to collect the information related to the students’ familiarity and

experiences with the programming languages. Additional information related to their experience on any other team

roles as well as their leadership or management practice, their weekly schedule, and their preference for team role in

the project were collected. The students were asked to indicate if there was anyone they would prefer to team up

with for the project. Typically, it is best to group students who know one another well and want to work together on

a project. They were told to indicate at most two other students in order of preference and they were assured that

every effort will be made to include at least one of these selections in their team.

The information gathered helped in forming the three teams and identifying their members, and the roles were

suggested and left to be decided among the team members during their first team meeting. The main driving force

for forming a team was student preference; however, in order to make sure all teams succeed and included at least

one experienced programmer, not all of the preferences in team selection were met for some students.

During the team’s launch meeting, all the team members adapted to their suggested role in the teams. Each team had

at least two competent programmers in the language used (PHP) to ensure their success. All team leaders had

indicated some experience in leadership positions at different levels (some in work and some in other team projects).

However, based on the size of the teams, there were some students who had to take several less demanding roles.

During the launch phase, teams were also asked to set up their weekly meeting time and place and to indicate some

measureable goals related to the project, both individually and as a team. The teams were encouraged to maintain

regular meetings at least once every week. The team leader was the main contact point and was encouraged to

inform the instructor of any problems or foreseeable issues.

As always, several students had a busy schedule and did not have (or did not wish to allocate) time to meet, but were

persuaded to make time by their team members. The team members were encouraged to be involved and participate

in all tasks while paying special attention to their role(s) and responsibilities. Although team members were warned

of common team problems, it was apparent that some teams experienced poor communication, ineffective

leadership, and poor planning. In the worst cases, some team members had weak participation, lack of discipline,

and no interest or motivation.

3.3 Survey Results

A survey1 was conducted to assess different aspects of teams as part of their postmortem from all students. The

teams had 4, 3, and 4 members consecutively and not all of the members participated in the survey. The ranking was

from 1 to 5 where 1 was the lowest ranking and 5 the highest. The following is the average of rankings from each

team based on team assessment that shows the number of participants:

Rating after Cycle 1 Team 1 (4/4) Team 2 (2/3) Team3 (4/4) Average

Team spirit 3.5 3.5 4.25 3.75

Overall effectiveness 4.25 3.5 4.25 4

Rewarding experience 3.75 4 3.75 3.83

Team productivity 4.25 2.5 3.25 3.33

Process and product quality 4 4 4 4

Overall Average 3.95 3.5 3.9 3.78

Table 3- Cycle 1 Teams Evaluation

1
 Acknowledgement: The survey was developed by Dr. Thomas Hilburn

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 91

The same questions after cycle 2 results are as follow:

Rating after Cycle 2 Team 1 (3/4) Team 2 (3/3) Team3 (4/4) Average

Team spirit 3.67 4.33 4 4

Overall effectiveness 4 4 3.75 3.92

Rewarding experience 4 4.67 3.5 4.06

Team productivity 4.33 3.67 3.75 3.92

Process and product quality 4.33 4 4.25 4.19

Overall Average 4.07 4.13 3.85 4.02

Table 4- Cycle 2 Team Evaluation

There were small improvements on all overall averages for teams except Team 3. One reason for this problem was

the fact that the software company that the students were working with hired three members of Team 3 and paid

them to do the project or other side projects at the same time. The hired students were exposed to different processes

which caused some dysfunction and confusion as well as loss of interest in the process used in the class. This was

the main catalyst for creating a lack of motivation among some other students in the class who were aware of the

hiring. Some students complained and felt that they were being used by the company to do their job. The customer

from the company hiring the students was using a process that did not require students to keep track of their time

and the primary objective was to get the job done within the shortest time. The average results of the survey rating

the student in each role for their overall contribution on a similar scale (1-5) is shown below:

Rating after Cycle 1 Team 1 (4/4) Team 2 (2/3) Team3 (4/4) Average

Team Leader 3.75 4.5 4.75 4.33

Development Manager 4.25 5 4.75 4.67

Planning Manager 4.75 3.5 3.75 4

Quality/Process Manager 3.75 3.5 4.25 3.83

Support Manager 3.75 3 4.25 3.67

Overall Average 4.05 3.9 4.35 4.1

Table 5- Cycle 1 Overall Contribution

Rating after Cycle 2 Team 1 (3/4) Team 2 (3/3) Team3 (4/4) Average

Team Leader 4 4.33 4.5 4.28

Development Manager 5 5 4.25 4.75

Planning Manager 5 4 3.5 4.17

Quality/Process Manager 4.67 4.33 4.25 4.42

Support Manager 4.67 4 4 4.22

Overall Average 4.67 4.33 4.1 4.37

Table 6- Cycle 3 Overall Contribution

This demonstrates the moderate decrease in contribution of Team 3 members to the project based on the data they

provided. As shown, the data for Team 1 and 2 has a moderate increase for all team members from Cycle 1 to 2.

The results of student ratings in each role for helpfulness and support are as follows:

Rating after Cycle 1 Team 1 (4/4) Team 2 (2/3) Team3 (4/4) Average

Team Leader 4.25 4.5 4.5 4.42

Development Manager 4.5 5 4.25 4.58

Planning Manager 4.75 4.5 3.75 4.33

Quality/Process Manager 4 4 3.5 3.83

Support Manager 4 4 3.75 3.92

Overall Average 4.3 4.4 3.95 4.22

Table 7- Cycle 1 Helpfulness and Support

Rating after Cycle 2 Team 1 (3/4) Team 2 (3/3) Team3 (4/4) Average

Team Leader 4.33 4.67 4.25 4.42

Development Manager 5 5 4.25 4.75

Planning Manager 4.67 4.67 4 4.44

Quality/Process Manager 4.67 5 4 4.56

Support Manager 4.67 4.33 3.5 4.17

Overall Average 4.67 4.73 4.00 4.47

Table 8- Cycle 2 Helpfulness and Support

92 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Parallel results can be observed in helpfulness and support for Teams 1 and 2; however, Team 3 indicates an

increase in rating for helpfulness/support from the Planning Manager and Quality/Process Manager, who happened

to be the same person. All other members had no increase in their ratings.

Finally, the results of the survey for each role performance are as follows:

Rating after Cycle 1 Team 1 (4/4) Team 2 (2/3) Team3 (4/4) Average

Team Leader 4.25 4 4.75 4.33

Development Manager 4.5 4.5 4.25 4.42

Planning Manager 4.25 4 4 4.08

Quality/Process Manager 4.25 3.5 4 3.92

Support Manager 4 4 4 4

Overall Average 4.25 4 4.2 4.15

Table 9- Cycle 1 Performance

Rating after Cycle 2 Team 1 (3/4) Team 2 (3/3) Team3 (4/4) Average

Team Leader 4.33 4.67 4.5 4.5

Development Manager 5 5 4 4.67

Planning Manager 5 4.67 3.75 4.47

Quality/Process Manager 4.67 4.67 4.25 4.53

Support Manager 4.67 4.33 3.75 4.25

Overall Average 4.73 4.67 4.05 4.48

Table 10- Cycle 2 Performance

The results of the performance survey ratings again emphasize the same concept. By end of Cycle 2, all teams and

their members had increased in their performance except Team 3. All members of Team 3 decreased in their

performance except the Quality/Process Manager.

4 Conclusion

The basis of having a team-based real-world project is that it is both effective and an essential tool for teaching

software engineering. The data clearly shows a decrease in the functionality of team members if they are paid to

work in the same company. It is essential to keep a professional and consistent relationship between students and

customers. In this project, the customer was a manager for the company and an alumnus of our program and held a

close friendship with some of the students. This caused a conflict of interest and some confusion about the

seriousness of the project. During the elicitation and final presentations, the owners were invited to attend with the

customer, which helped to ease the situation.

Among other issues, there were also complaints based on the inability of some members to contribute to the

development of project due to restrictions on the programming language. In addition, students provided generally

negative feedback on the paperwork and pace of the project.

5 References

[1] J. Guo, "Group Projects in Software Engineering Education," Consortium for Computing

Sciences in Colleges, pp. 194-202, 2009

[2] P. Y. Priyatham Anisetty, "Collaboration Problems in Conducting a Group Project in a

Software Engineering Course," Consortium for Computing Sciences in Colleges, pp. 45-52,

2011

[3] K. R. Jay-Evan J Tevis, "Using Industry-Style Software Engineering and Project

Management in a Project," Consortium for Computing Sciences in Colleges, pp. 77-82, 2010

[4] S. Davis, "Appointing Team Leads for Student Software Development Projects,"

Consortium for Computing Sciences in Colleges, pp. 92-99, 2009

[5] K. Anewalt, "Dynamic Group Management in a Software Projects Course," Consortium for

Computing Sciences in Colleges, pp. 146-151, 2009

[6] K. Garg, "People Issues Relating to Software Engineering Education and Training in Idia,"

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 93

in ISEC, Hyderabad, India, 2008

[7] D. Varona, "Evolution of Software Engineers' Personality Profile," ACM SIGSOFT, pp. Vol

37, No1 , 2012

[8] ACM, "Computing Curricula 2005," ACM, [Online].

http://www.acm.org/education/curricula-recommendations

[9] IEEE Computing Society, "Guide to the Software Engineering Body of Knowledge,"

http://www.computer.org/portal/web/swebok/v3guide

[10] L. Jaccheri, "On the Importance of Dialogue with Industry about Software Engineering

Education," SSEE 06 - ACM, pp. 5-8, 2006

94 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

An Investigation into Mobile Based Approach for Healthcare Activites

Occupational Therapy System

Sardasht Mahmood, Joan Lu

School of Computing and Engineering, University of Huddersfield, UK

Abstract — This research is to design and optimize the high

quality of mobile apps, especially for iOS. The objective of this

research is to develop a mobile system for Occupational

therapy specialists to access and retrieval information. The

investigation identifies the key points of using mobile-D agile

methodology in mobile application development. It considers

current applications within a different platform. It achieves

new apps (OTS) for the health care activities.

Keywords-component; Mobile Apps; Health care; Agile

Methodology; Mobile-D; Design; Optimzation; Testing.

I. INTRODUCTION

Mobile application development has progressed rapidly
in the recent years to provide a better performance for the
users. Mobile technology has developed in terms of
technology ‘Data communication’ and real world apps
‘Mobile apps’. Mobile apps have increased and improved in
different aspects such as health sector. Having more
demands on mobile apps from the users and organizational
needs made the numbers of different platforms and tools to
increase significantly in order to improve mobile
applications for various purposes [16]. Mobile computing is
a ‘computing that allows continuous access to remote
resources, even to small computing devices such as laptops
and digital cell phones’ [6: p.2]. Then, Occupational Therapy
(OT) enables ‘people to achieve health well-being and life
satisfaction through participation in occupation’ [20: p.761].

II. AIMS AND OBJECTIVES

 This research is to deploy an advanced methodology in

mobile apps. It is aimed to develop Occupational Therapy

System (OTS) mobile application for the heath sector,

which establishes the communication channel between the

patients and therapists. To access of the resources,

information and healthcare service delivery through wireless

technology [22]. Improving patient safety and reducing

costs are increasingly recognized and emphasized [22].

Design of the application within this research is based on

using mobile computing and software development. It is a

multi-tire iOS mobile application to improve some issues

within the health sector. It consists of the two main sections

which are server side and client side (user interface).

Furthermore, the vision behind this application is to provide

core functionalities to the patients and then improving the

health sector through identifying different functionalities.

 Usability, recovery error (robust), clear navigation and

minimum number of views are the main fundamental

functionalities within the application. Other functionalities

are delivery services in short time and secure process

(Authentication). Moreover, Data storage on the server side

(cloud) is one of the essential functionality, which leads to

increasing the performance of the application. Furthermore,

significant differences in mobile applications especially

within OTS are a design and optimization. This research

concentrates on the design and optimization within the

application to improve the usability and user interface

design. There are some specifications that identify what

OTS mobile application exactly does:

 The OTS application consists of three essential sections

as a tab bar style. It includes login, registration and

support for the patients and therapists.

 Only registered users (patients or therapists) can access

to the main view of the OTS application.

 The main view includes different services such as create

assessment, view assessment and access to therapist

feedback.

Figure 1 OTS Mobile Application

 Besides, OTS has been designed based on some of the

issues within mobile applications design.

III. BACKGROUND

 The background of this research is categorized into

some crucial sections which are Employed Method, Mobile

Apps Design, Implementation and Testing.

A. Employed Method „Mobile-D Agile Methodology‟

 Methodology is defined as a sequence process or ‘road
map to execute the processes to achieve the result’ [9: p.27].
The agile methodologies are designed based on reduction
and customization within the development process and being
more flexible [15]. Another definition for agile development

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 95

methodology is ‘incremental (multiple releases), cooperative
(a strong cooperation between developer and client),
straightforward (easy to understand and modify) and
adaptive (allowing for frequent changes)’ [1: p.17].

‘4-DAT’ is an analytical framework which is based on
the four elements to analyse the agility of methodology for
instance, method scope, agility characterization, agile values
characterization and Software Process Characterization [13].
The core functionality and fundamental elements in agile
methodology for developing mobile application consist of
the ‘simple design principles, a large number of releases in a
short time frame, extensive use of refactoring, pair
programming, test-driven development’ [12: p.2].

Mobile-D is defined as ‘the method is based on agile
practices, drawing elements from well established agile
methods such as Extreme Programming and Crystal
Methodologies [2: p.4]. Meanwhile, the mobile-D is adopted
from the different methodologies such as XP practices,
scrum and RUP phases [12]. Test-Driven Development
(TDD) is defined as XP method for developing an
application based on reducing the iterations [17]. It is one of
the techniques or approaches to develop software which is
based on writing test code (Unit test) before beginning to
write coding for the application (program) [3][11].
 There are some of the advantages of Mobile-D agile

methodology for mobile application development, for

instance ‘increased progress visibility, earlier discovery and

repair of technical issues, low defect density in the final

product, and a constant progress in development’ [2: p.175].
 Having more advantages of using agile methodology are

crucial to identify the way how to manage and create a plan

during the development processes of the application.

However, having more complexity during the combination

of different plans and lacking ‘scientific validation’ are

some of the arguments against agile methodologies

generally [16].
Adaptability of mobile development and each of the

Mobile-D phases have been identified clearly in detail to
simplify the whole processes during the development. In
addition, Mobile-D is providing the software documentation
completely [16]. Then, short iterations support changing user
requirements frequently which makes more agility rather
than to be fixed with the requirements. Having more
efficiency because of pair programming which allows the
maintenance and development easily. Stability is one of the
vital advantages between the stakeholder requirements and
developers [16].

On the other hand, Mobile-D is not perfect for the
complex or large system. Then, it has other weak points in
terms of testing an application. For that reason, mobile-D
should be adjusted with TDD to test different sections within
the project [16][17].

B. Mobile Apps Design

The backbone of mobile and software applications is
based on having a good design [10]. There are some of the
basic principles to design mobile application, for instance
readability, navigation, hotspots, pagination, button and call

to action [5]. Useful, desirable, accessible, credible, findable
and usable are different aspects that increase the value of
mobile applications [5]. Furthermore, user interface design is
a set of command or key navigation which can be used by
users to use the application [4][19]. Pettini (2007) indicates
that context is the main concept to design the application
which is divided into three elements which are context of use
(analyse requirements), context of medium (deign) and
context of evaluation (testing /evaluation) [4].

The rationale behind using MVC is critical to decrease
the limitation and expand the advantages of mobile
application by providing full functionality on the server to be
accessed by the clients [7]. For that reason, model, view and
controller might be reused repeatedly which leads to produce
another application [8].

One of the advantages of using MVC is to minimize or
optimise the architecture of mobile applications [8]. Then, it
is to provide a better maintenance for the functionalities of
an application separately. Moreover, reusability is another
advantage of MVC in terms of writing less programming
code.

However, some of the most important classes which are
absent within iOS to develop dual-platform mobile
applications [19]. That is why it is one of the weak points of
iOS to use MVC effectively because those classes are
responsible of controlling data management and user
interface design.

C. Implementation

Implementation of the OTS mobile application includes
both sides of the OTS application, which are patients and
therapists. Furthermore, it explains that how OTS mobile
application has been implemented based on Model View
Controller (MVC).

D. Testing

Testing mobile application is one of the essential parts
within developing mobile applications [14]. Unlike software
development, testing mobile application is difficult and more
complex [14][18]. The life cycle of testing mobile
application includes ‘Testing Environment’, ‘Levels of
Testing’, ‘Testing Techniques’ and ‘Scope of the Testing’.

White box testing and black box testing are fundamental
classes to test applications [21]. White box testing (structural
testing) is defined as ‘testing that takes into account the
internal mechanism of a system or component’ [14: p.36].
Furthermore, it is called structural testing which includes
Unit test. This type of test is inside the test level of the
mobile application testing. Unit test is defined as a ‘smallest
testable piece of software that can be compiled, linked,
loaded for example functions/procedures, classes, and
interfaces’ [14: p.1455].

However, Black box is defined testing as ‘testing that
ignores the internal mechanism of a system or component
and focuses solely on the outputs generated in response to
selected inputs and execution conditions’ [21: p.36].
Furthermore, it is called functional testing which includes the
test scope within the mobile application testing.

96 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

IV. EMPLOYED METHODO (CASE STUDY)

The research method employed based on comparisons
between some of the agile methodologies and assessing
them. The ability of continuous changes during the
development, improving the quality of the product and
customer satisfaction, reducing wasting time by completing
the development in short periods and predictability are
several key factors lead to increasing the practicality of using
agile methodology from some organizations.Having different
software development methodologies makes it difficult to
indicate the appropriate methodology within the project.

Several agile methodologies are described and compared
in terms of their strength as well as weakness based on key
points, characteristics and limitations such as Extreme
programming (XP), Crystal methodologies and Rational
Unified Process (RUP). However, none of them are specified
separately to develop and implement mobile applications.
That is why a suitable agile methodology for mobile
application development called Mobile-D which supports the
agility of mobile application.

The Mobile-D agile methodology consists of the five
main phases which are Explore, Initialize, Productionize,
Stabilize, and System Test & Fix. Each phase includes
different iterations which are identified in Figure 2.

Figure 2 Mobile-D Agile Methodology Phases and Stages

A. Explore

 Explore means to setup initial characteristics version of

the project requirements and establishing the project plan.

The main purpose of explore phase is to highlight the scopes

and requirements within the project.

B. Initialize (0 Iteration)

When the initial requirements and plans of the project are
well-organised and established, then, the Initialize phase
begins which requires from the developer to build the first
iteration within the project. Identifying the resources within
the project technically and physically is one of the key points
of this phase. Then, providing the communication channel
between the developer and stakeholders is another important
point during the application development.

C. Productionize

 It means the implementation of functionalities that are

collected within the Explore and Initialize phases of the

project. In addition, it is divided into three stages. Firstly,

the purpose of the planning day stage is to analyse the

gathered requirements and prioritizing them to identify the

core functionalities within the project. Then, it is providing

iterations planning for implementation of the application

development process which is called pre-established plan

with compromising the test plan.
Secondly, working days step begins heading towards the

pre-established plan which is provided to complete the core
functionalities by using Test-Driven Development. Finally,
when the testing process has been done perfectly release
days step is the working version of the application which is
produced successfully.

D. Stabilize

 It means to collect and combine iterations together to

finalise the product. To stabilise the application, one of the

vital stages is to integrate all parts and putting them together

as each system divided to different parts.

E. System Test & Fix

System Test & Fix is the final phase of Mobile-D agile
methodology which based on the application testing
frequently, fixing errors and finalises, complete the
documentation of the application.
 Having more characteristics and advantages of using

agile methodology in terms of software development makes

the agile methods more popular. Then, Mobile-D has been

chosen because it is an agile methodology which is specified

to develop mobile application.

V. SYSTEM DESIGN

To maximize the value of application, designers and
developers should be concerned about different aspects and
principles in mobile application development. In addition, it
is important to make a comparison between some of the
implemented user interfaces and then design the new
interface with more efficiency.

This research consists of designing OTS architecture and
diagrams based on using Model View Controller (MVC).
Designing interface for the mobile application is about the
achievements of the application and how it looks to produce
the high quality interface design of an application. Usability
and accessibility are two vital elements to obtain acceptable
design. User experience which means utilizing the
applications with features/services from users. Furthermore,
Button sound (audible), standard fonts, zoom and alert
vibration and background colours are some features in
mobile applications.

Flowchart, wireframes and stylization/skinning are some
of the essential ways to design the applications to create an
intuitive application interface and to produce fixed overall
design of the applications. User interface design is one of
the challenges for mobile application.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 97

 High quality of user interface design of the applications
can be achieved through making an attractive application
user interface, usability which is simplicity of screen size,
limitation which provides different keyboards based on the
input information. Some functionality should be considered
and applied in designing the applications such as user input
format, use of context and present minimum information on
the screen.

Figure 3 OTS Screen Design and User Interface

VI. IMPLEMENTATION

A. Classes and Operations (Model)

In this project, different operations are implemented to
meet the OTS requirements and specifications. Each of the
operations within the application consists of the two classes
with the graphical user interface. Classes are implemented to
store and manage the information within the application.

Figure 4 OTS Class Diagram

B. Graphical User Interfae (View)

It allows users to do various operations on the OTS
application. The application user interfaces (views) are
related to the View layer within the MVC. The OTS consists
of tab bar navigation to switch between login; registration

process and support as shown in Figure 1. Figure 2 illustrates
the other views of the application.

Figure 5 OTS Screen Design and User Interface

C. Appication Control (Control)

The final section within the MVC is a Control. The OTS
application controls the connection between more views and
models. The OTS database is uploaded to the indicated
server, the connection is established through access and
request to the files from the client side. Then, the query
against client’s requests executed within the server side.

VII. TESTING

Different techniques identified to measure the quality of
mobile applications because testing plan requires appropriate
strategies and techniques.

A. The Application Testing in this Research

The OTS application has been tested based on mobile
application testing. It covers each sections of the life cycle of
mobile application testing as shown in Figure 5.

Figure 6 Life Cycle of Testing Mobile Application

In Testing Environment, during the development, the

simulator used to test each actions and steps of the OTS
application. In Levels of Testing, the application tested
through White box testing (Unit testing). When the
implementation phase of the application has been completed
successfully, then unit testing begins by the developers.
Then, the OTS application has been tested by a developer,

98 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

post graduated graduate student and the supervisor, which is
an Acceptance testing.

In Testing Techniques, Automated testing used within
the project, the automated test case allows unit testing
performs within the iOS platform. In Scope of the Testing,
the application has been tested through Black box testing
which includes different areas such as Functional Testing,
Security Testing and Usability Testing.
 Rational behind testing mobile application is that
developers focus on and concern about the functionalities of
the applications rather than testing applications on the real
device. Moreover, lack of specific software to test mobile
applications. Different types, techniques and tool of testing
are given in order to improve the design of OTS application,
to provide run able application. There are some crucial points
behind testing application. Firstly, it is to verify that the
source codes works perfectly. Then, it is to ensure that the
application is stabilised and ready to use.

VIII. RESULTS

It seems that there are some mobile applications which
are designed for the purpose of a healthy life. Different tools
and languages used within this project to create OTS mobile
application for iOS platform. In this research, NHS direct
and Epocrates iPhone applications are disciplined and
analysed based on the principles of mobile application
design. Lists of current issues in the health sector are
identified. Furthermore, new designs of the mobile
application achieved which minimizing some issues within
those applications, OTS mobile application obtained which
works on the iOS platform.

It is a multi-tire mobile application (client and server
sides) which will be used within the health sector. The
communication channel obtained through the application
between the patients and therapists. In addition, the
application optimized and minimized the number of views
for different purposes such as easy to use, more user friendly
and clear navigation.

IX. EVALUATION AND ANALYSIS

 This research is to create a mobile application for iOS

platform. The aim was to organise, obtain and collect

valuable resources within this research. Document design is

one of the crucial steps before applications development

begins. For that reason, the appropriate methodology (MVC)

to design the OTS application was given. Then,

functionalities of the application had been identified.

 Furthermore, the OTS application had been designed

technically such as architecture of user interface and server

side, UML diagrams for the functionalities and screen

designs. Theoretically, designing document consisted of the

outlines of the application which include different sections

on the application identification in detail. Moreover,

designing document provided the initial document to clarify

goals and overall ideas about the application. After that, it is

possible to restructure or modify the outlines within the

application. One of the views was well structure planning at

the beginning of the project. Furthermore, analysing

requirements specification, establishing communication

channels and designing functionalities within the project are

other successful aspects.
The connection between the background of this research

and the OTS project is based on different views such as user
interface design, usability and functionality. Furthermore,
NHS Direct, Epocrates applications have been chosen
because of compatibility with OTS project. Both of
applications had been used for the purposes that they are
related to the health sector. OTS application comes out based
on those existed applications and other systems, which
operated on different platforms. Furthermore, OTS
application is reviewed and strengthened in terms of
readability, navigation, pagination, hotspots, buttons, and
call to action.

This project was managed through using agile
methodology to develop mobile application. Furthermore, it
considered choosing specific methods for mobile application
development, which is Mobile-D agile methodology.
Mobile-D is a combination of different agile methodologies
in software development such as XP, Crystal and RUP.
Mobile-D phases and stages had been applied within OTS
project.

Despite efforts to identify Mobile-D advantages and
disadvantages, there are some points require to be extended
to improve of the Mobile-D methodology in mobile
application development. One of the Mobile-D weak points
is testing. Besides, to minimize disadvantages of Mobile-D
methodology, different approaches to test the application are
given.

If you take the advantages of Mobile-D methodology
through iterations or reviews, Iterations in each phase of the
Mobile-D made the application more robust (error free),
reliable in terms of functionality. In terms of usability, it
made the OTS application easy to use and simple. Those
positive observations had been achieved through the OTS
application. Solving the issues technically and efficiently
extended the advantages of Mobile-D methodology within
the mobile application development.

X. CONCLUSION AND FUTURE WORK

 To sum up, this research proposed to use appropriate

methodology for OTS mobile application. In the research

method, it disciplined agile methodologies such as XP,

Crystal and RUP. Mobile-D agile methodology had been

chosen because it is a combination of those declared

methodologies. Furthermore, all phases of the Mobile-D are

explained with Mobile-D advantages and disadvantages in

mobile application development. The research conduct

explains how different phases of Mobile-D are applied

within this research.
Some applications and existing systems for iOS platform

had been taken into account. Different tools and software are
discussed in terms of mobile application for iOS platform.
The fundamental features of usability are stated in OTS
application such as effectiveness, efficiency and satisfaction.

In the design section, this research explained a brief
background and some principles of design mobile

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 99

applications. It presented each layers of Model View
Controller (MVC) with advantages and disadvantages in
mobile application development. The Architecture of the
application outlined in design section such as functionality
architecture and system architecture.

The implementation and testing of mobile application are
organised in a different sections. Implementation part
explains how OTS application is implemented. Furthermore,
testing section includes a background of testing mobile
application. It identified different types of testing mobile
application such as Black box and White box testing. Both
types of testing are applied within the OTS mobile
application. In evaluation section, project evaluation,
theoretical evaluation of the project and methodology
evaluation had been analysed.

REFERENCES

[1] Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J.

(2002). ‘Agile Software Development Methods: Review

and Analysis’. Finland: VTT Electronics VTT

Publications 478.

[2] Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T.,

Jäälinoja, J., Korkala, M., Koskela, J., Kyllönen, P. &

Salo, O. (2004). ‘Mobile-D: An Agile Approach for

Mobile Application Development’. In Proceeding

OOPSLA '04 Companion to the 19th annual ACM

SIGPLAN conference on Object-oriented programming

systems, languages, and application, Vancouver. ACM

Press, pp. 174-175

[3] Astels, D. (2003). ‘Test Driven Development: A

Practical Guide’. New Jersy: Prentice Hall.

[4] Ayob, N. Ab. Hussin, R. & Dahlan, H. (2009). ‘Three

Layers Design Guideline for Mobile Application’.

Information Management and Engineering. IEEE

Computer Society, ICIME '09. International Conference

on. pp.427-431 .

[5] Finck (2010). ‘Mobile Information Architecture &

Interaction Design.’ Design For Mobile. Chicago.

[6] Garg, K. (2010). Mobile Computing: Theory and

Practice. Delhi: Pearson Education.

[7] La, H. Lee, H. & Kim, S. (2011). ‘An Efficiency-centric

Design Methodology for Mobile Application

Architectures’. Wireless and Mobile Computing,

Networking and Communications (WiMob), 2011

IEEE 7th International Conference on. pp.272-279 .

[8] Lezama, A. (2010). Introduction to Mobile Application

Development with an example of a “PhraseBook

App”. (MSc) University Politècnica de Catalunya

[Available online]

http://upcommons.upc.edu/pfc/handle/2099.1/10994

[Accessed on 1st July 2012].

[9] Mainardi, R. (2011). Harnessing the Power of

Continuous Auditing : Developing and Implementing a

Practical Methodology. New Jersy: Wiley.

[10]Mark, D. (ed.) (2009). iPhone User Interface Design

Projects. New York: Apress.

[11]Pancˇur, M. & Ciglaricˇ, M. (2011). ‘Impact of test-

driven development on productivity, code and tests: A

controlled experiment’. Information and Software

Technology. 53, pp.557- 573.

[12]Puolitaival, O. (2008). ‘Adapting model based testing to

agile context’. Finland: VTT Electronic Publications

694.

[13]Qumer, A. & Henderson-Sellers B. (2008). ‘A

framework to support the evaluation, adoption and

improvement of agile methods in practice’. In The

Journal of Systems and Software. vol.81 (11) pp.1899-

1999.

[14]Selvam, R. & Karthikeyani, V. (2011). ‘Mobile

Software Testing – Automated Test Case Design

Strategies’. International Journal on Computer

Science and Engineering (IJCSE), Vol. 3 (4), pp.

1450-1461.

[15]Soundararajan, S. (2011). A Methodology for Assessing

Agile Software Development Approaches. (Doctor of

Philosophy) Virginia Polytechnic Institute and State

University [Available online]

http://arxiv.org/ftp/arxiv/papers/1108/1108.0427.pdf

[Accessed on 13th July 2012].

[16]Spataru, A. (2010). ‘Agile Development Methods for

Mobile Applications‟. (MSc) University of Edinburgh

[Available online]

www.inf.ed.ac.uk/publications/thesis/online/IM100767

 .pdf [Accessed on 15th June 2012].

[17]Tort, A., Olivé, A. & Sancho, M. (2011). ‘An approach

to test-driven development of conceptual schemas’.

Data & Knowledge Engineering, vol.70 (12), pp.

1088-1111.

[18] Tracy, K. (2012). ‘Mobile Application Development

Experiences on Apple’s iOS and Android OS’. IEEE.

vol.31. (4), pp.30-34.

[19] Uther, M. (2002). ‘Mobile Internet usability: what can

'mobile learning' learn from the past?’. Wireless and

100 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Mobile Technologies in Education. Proceedings. IEEE

International Workshop on. pp. 174- 176.

[20] Watson, M., Lucas, C., Hoy, A. & Wells, J. (2009).

Oxford Handbook of Palliative care (2
nd

 ed.) New

York: Oxford University Press.

[21] Williams, L. (2008). ‘A (Partial) Introduction to

Software Engineering Practices and Methods’. (5th

Ed.) NCSU CSC326 Course Pack, 2008-2009.

[22]Yu, P., Wu, M., Yu, H. & Xiao, G.(2006). ‘The

Challenges for the Adoption of M- Health’. IEEE

International Conference. pp.181-186.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 101

Teaching Software Engineering Through a

Real-World Project: A New Approach

C. Zhao, M. Estep, and K.D. Smith

Computing & Technology Department, Cameron University, Lawton, OK, USA

Abstract – Software Engineering is a commonly required

course in the Computer Science degree curriculum. It can

be a challenging task to teach the course in a way that is

relevant to what students will experience in industry upon

graduation. In this article, the authors discuss the use of a

real-world project to teach Software Engineering. This new

approach promotes a fresh and creative learning

environment in which students apply their knowledge to

engineer a real product for a real client. During the

process, basic principles, methods, and CASE tool usage of

Software Engineering are addressed. Student learning

outcomes are enhanced as well.

Key Words: Software Engineering, Real-world project,

Web Development, PHP, SQL, UML

1 Introduction

 Software Engineering (SE) is a required core course

in the Computer Science (CS) B.S. curriculum at Cameron

University. This course is designed to provide CS students

with necessary skills, techniques, and tools to develop and

manage complex programming projects. The way SE is

taught affects not only the quality of CS academic

programs, but also the quality of future software

professionals [1]. The traditional teaching method of

covering basic SE principles and general applications can

be insufficient to communicate the complexity and

dynamics of software development that is experienced

beyond the classroom [2]. In order to improve the quality of

the SE course, the authors have been exploring a new

approach – the use of interdisciplinary combined capstone

classes. Recently, the authors have combined CS SE and

Information Systems (IS) capstone classes to complete real-

world projects. Such projects provide students with an

opportunity to apply knowledge learned in class to solve

real problems for real clients. This in turn promotes a fresh

and creative learning environment where student learning

outcomes and problem-solving abilities are enhanced.

Moreover, completed projects have also benefited some

non-profit organizations, and therefore social impact was

positive [3]. In this article, the authors introduce basic

concepts and procedures on how this new approach was

recently conducted for CETESjobs.com, in the creation of a

job search engine designed to bring together a local

metropolitan business community with retired veterans

seeking employment [4].

2 Initial Methods

2.1 Class Arrangement

 The 16-week SE class was divided into two 8-week

parts: the first 8-week focus was on teaching students basic

principles, processes, and methods of SE and completing

analysis and design of the targeted project; the second 8

week emphasis was on coding, testing, and validation of the

project.

2.2 Forming Teams

 At the beginning of the semester, students turned in

two copies of resumes and job application letters, one with

identifying information and the other without identifying

information. Two teams were established with the team

captain being chosen by the instructors. Then captains

selected team members by using the blind resumes. Once

formed, teams acted as a unit to complete the project. A

typical CS team consisted of a captain, a lead programmer,

a lead algorithm developer, a testing designer, and a

coordinator.

2.3 Project Components

 The authors have completed four real-world projects

to date. A typical real-world project usually contains three

components, as shown in Figure 1:

(1) Front end Web pages that are coded in

HTML/CSS/JavaScript

(2) Middleware PHP code that fetches data from web

forms, processes it, and then sends data to…

(3) Back end system that consists of a MySQL

database and database management system

102 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 1. Web Project Components

2.4 Requirements

 In order to determine client needs, the authors

scheduled an interview between the client and students.

Before the interview, student developers developed an

interview question list. After interviewing the client,

student development teams were required to send a

summarized needs list back to the client for verification. As

necessary, this process was repeated until the client need

was clear and verified. At the same time, student developers

also collected forms from the client to obtain useful system

information.

2.5 Analysis

 Once system requirements were determined, each

team developed a system information flow chart and UML

class diagram/Use Case Diagram using System Architect to

show system components and relationships among the

system components. An example flow chart is shown in

Figure 2.

Figure 2. System Information Flow Chart

2.6 Design

 After obtaining instructor approval, each team

refined their basic system design using stepwise techniques

to develop a detailed system design, where each class entity

contained attributes and methods. After completing the

detailed design, the first in-process review (IPR) was

presented to the client. During the IPR, each team gave a

PowerPoint presentation demonstrating their basic system

design and how the system works. Client representatives

asked questions and verified their needs. After the first IPR,

system requirements and design were then modified to meet

the client needs. A screenshot of an example login page is

shown in Figure 3.

PHP/
JavaScript

SQL

HTML/
CSS

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 103

Figure 3. Login Page Screenshot

2.7 Implementation

 CS teams coded sample web pages using

HTML/CSS, PHP/JavaScript, and MySQL, after the

detailed design baseline was set. The second IPR was then

scheduled. During this IPR, CS teams demonstrated their

coded web pages to show basic system usage and

functionality. Multimedia teams developed the required

web pages using HTML/CSS. CS teams developed the

middleware that fetches data from web forms, processes the

data using PHP/JavaScript, and sends queries to the

database MySQL server. An example login script is shown

in Figure 4 [5]. The IS teams created the required databases

and tables.

<?php
/* Prepare to connect to database server */
include_once('connectDB.php');
 /* start a session */
 session_name('cameron');
 session_start();
 ob_start();
 /* connect function */
$conn = mysql_connect($host, $user, $pass)or die (' Database connection cannot be established.');
/* select the database */
$selectDB = mysql_select_db($database, $conn);
/* SQL injection protection function */
 include ('clean.php');
 /* Data validation Section */
 if ($_POST['submit'])

104 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 { $u_username = $_POST['username'];
 $u_password = $_POST['password'];
 /*check if data has been inputed properly */
 if (!$u_username || !$u_password){
 printf(" Username or password field is empty.");

}
else{ /* input data was validated*/

 $val = mysql_query("SELECT * FROM `user` WHERE `u_username` = '".$u_username."'");
 $num = mysql_num_rows($val);

 /* if u_username do not macth with database */
 if($num==0)
 {
 printf("username doesn't match with database.");
 }
 else{ /* if u_username matches,and then check for u_password */

$val = mysql_query("SELECT * FROM user WHERE u_username = '".$u_username."' AND
u_password = '".$u_password."'");

 $num = mysql_num_rows($val);
 /* if u_username and u_password both match */
 if($num==0)
 printf("password doesn't match with database.");
 else
 { /**** USER HAS AUTHENTICATED FROM HERE ****/
 /* fetch the matched user row into a associative array */
 $array=mysql_fetch_assoc($val);
 /* check for if account has been activated */
 if($array['active'] == 0)
 printf(" Account is still not activated. Please check your email. ");
 else {
 /*** ACCOUNT ACTIVATED MODE FROM HERE ****/
 /* store the login session. This is used to check if the user is logged in or not*/
 $_SESSION['u_id'] = $array['id'];
 printf(" You have successfully logged in. ");
 /* Set the timestamp of last login of the user */

mysql_query("UPDATE `members` SET `stamp` '".$time."' WHERE `id` =
'".$_SESSION['u_id']."'");

 printf(" You have successfully logged in ");
 // count current logged in user
 $_SESSION['count'] = 0;
 //setting a variable so that later i know that this user i logged in
 $_SESSION["isLoggedIn"] = 1;
 $_SESSION["user"] = $u_username;
 $currentCookieParams = session_get_cookie_params();
 $rootDomain = '.subedi.us';
 session_set_cookie_params (
 $currentCookieParams["life"],
 $currentCookieParams["path"],
 $rootDomain,
 $currentCookieParams["secure"],
 $currentCookieParams["httponly"]
);
 session_name('cameron');
 session_start();
 setcookie($cookieName, $cookieValue, time() + 3600, '/', $rootDomain);

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 105

 header('Location: ../retiree/profile.php');
 }
 }
 }
 }
?>

Figure 4. Login.php Supporting Login Page

2.8 Testing

 The students did two kinds of testing: (1) non-

executable testing of analysis and design. This kind of

testing was conducted using team walk-throughs, and (2)

executable testing to detect code artifacts. This testing was

carried out by team lead programmers and test data

designers to fix any syntax and logic errors.

2.9 Validation

 After completing the entire project, deliverable

products were presented to the client in a final meeting. The

client watched team presentations and assessed whether

deliverables were acceptable or not. The client then selected

the team project that best fit client needs. Once the chosen

deliverable passed validation, it was installed on a client

machine, after the chosen team completed necessary

modifications.

3 Discussion

 Software development is a two dimensional process,

rather than a linear process [6]: During developing

software to solve a real-world problem, the authors can

see there are generally five work flows – requirement,

analysis, design, implementation, and testing.

However, one work flow may be dominant over others.

Seeing this in a real-world project can help students

truly understand the complexity of the software

development process.

 Real software development experience: Each real-

world project development process offers students an

excellent opportunity to be engaged in all phases of

software development, which may benefit their

professional practice in the future.

 Ability to develop and manage a larger project: The

completed real-world projects may be considered as

mid-sized software development that needs to integrate

multiple programming languages HTML, CSS, PHP,

JavaScript, and SQL to have a working system. A

completed project may contain hundreds of PHP

modules and hundreds of analysis and design

documents.

 Communication skills: To complete a real-world

project, much oral and written communication has to

take place between the client and student development

teams, between different student teams, and within a

student team. This offers students a chance to improve

and enhance their professional communication skills.

 Student learning: Student learning is one of the core

values at Cameron University. The students from

different disciplines worked together and not only

learned professional knowledge from each other, but

also learned how to work with others.

 Benefits to society: Because deliverable projects are

provided pro-bono to clients, a beneficial service is

provided, which is especially helpful if the clients are

also non-profit organizations. This results in a positive

social impact on the southwestern area of Oklahoma.

4 Conclusion

 The real-world project approach changed the way the

authors teach SE at Cameron University. This approach

provides our students with a great opportunity to apply their

knowledge to solve a real-world problem. It also creates an

enjoyable learning environment that motivates the students

to go further and dig deeper in their professional field [7].

This practice can improve the quality of SE and student

learning outcomes. Moreover, the approach allows the

authors’ department and students to reach out to diverse

organizations in society, thereby providing significant

positive social impact.

5 References

[1] Teaching Software Development vs. Software

Engineering, Gary Pollice, Worcester Polytechnic

Institute,

http://www.ibm.com/developworks/rational/library/de

c05/pollice/index.html

[2] Teaching Software Engineering through Simulation,

Oh, Emily,

http://www.ics.uci.edu/~emilyo/papers/ICSEDS02.pd

f

[3] The Cameron University Green Website Project-

Part 1: Service Learning in the Fall 2009, Mike

Estep, David Kenneth Smith, Chao Zhao, and Tom

Russell, International Journal of Education Research

, Volume 5 No. 2, Summer 2010

106 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://www.ibm.com/developworks/rational/library/dec05/pollice/index.html
http://www.ibm.com/developworks/rational/library/dec05/pollice/index.html
http://www.ics.uci.edu/~emilyo/papers/ICSEDS02.pdf
http://www.ics.uci.edu/~emilyo/papers/ICSEDS02.pdf

[4] CETES Jobs, Bridging Opportunities,

http://www.cetesjobs.com

[5] PHP and MySQL Web Development, Fourth Edition,

Luke Weling, Laura Thomson, Addison Wesley, 2009

[6] Object-Oriented and Classical Software

Engineering, 8th Edition, Stephen R. Schach,

McGraw Hill, 2011

[7] How We Teach Software Engineering, Christine

Mingins, Jan Miller, Martin Dick, and Margot

Postema, Monash University, Melbourne, Australia,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.102.1045

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 107

http://www.cetesjobs.com/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1045
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1045

Why To Research in Knowledge Management in Software

Engineering Processes?

E.A. Galvis-Lista
1
, J. M. Sánchez-Torres

2

1
Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia.

Doctoral Student, Universidad Nacional de Colombia, Bogotá Colombia
2
Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá, Colombia

Abstract – Knowledge Management is a young discipline that

nowadays it is important for software development

organizations (SDO). For this reason, this paper presents a

review about the form knowledge management has been

included in several Software Process Reference Models. For

this study, five software process reference models, broadly

used in Latin-American countries, were analyzed. The findings

of this study show that in all models there are elements of

knowledge management processes, and there are two models

with a process area named Knowledge Management.

Nevertheless, the knowledge management aspects included in

these models is grounded in statements from Earl’s systems

and engineering schools. Likewise, in terms of Gold’s

knowledge management capabilities, the technology,

knowledge acquisition and knowledge conversion capabilities

are broadly covered but elements for others capabilities are

not included in these reference models.

Keywords: Knowledge management in software engineering,

Knowledge management processes, Software process

reference models, Knowledge management in software

organizations.

1 Introduction

 In recent years, Knowledge Management (KM) has

become an important set of processes in Software Engineering

(SE). Several publications have developed this topic from

diverse perspectives. One synthesis of the scientific work

about KM in SE [1] identified the predominant interest in

topics such as knowledge codification, IT-based knowledge

storage and retrieval. However, knowledge creation,

knowledge transfer and knowledge application, are processes

that have had little coverage. Furthermore, the authors

concluded that most of the empirical research works are focus

on KM in software process improvement (SPI).

In this regard, KM in software processes and KM in SPI were

identified by [2] as important research topics, because KM is

the main component of SPI initiatives. Also, the application of

KM in SE is useful in software process definition, the

application of a process approach in software engineering,

and the adaptation of software process for future uses.

However, in a deeper review of papers in which the main

topic is KM in SPI, published in the last five years, we found

out that the predominant approach is knowledge codification,

as can be seen in [3]–[9]. In addition, there are works about

knowledge mapping by the construction of organizational

knowledge directories [5], [10] and the creation and

empowerment of organizational structures to promote

knowledge sharing [10]–[13].

After the review we identified that the research on KM in SPI

has been focused in the application of KM as a tool in SPI

initiatives. However, KM does not be conceived as an integral

process within the scope of SPI. For that reason, the purpose

of this paper is to present a review about how KM has been

included in several SPRM. It is important to say that the

SPRM are the basis for SPI initiatives because they contain

the process definitions that a SDO could implement and

improve to gain process capability and organizational

maturity.

The remainder of this paper is organized as follows. Section 2

presents the theoretical background about KM. Section 3

describes the methodology used for the review. Section 4

presents the results of the review according to our chosen

theoretical background. Section 5 concludes.

2 Theoretical Background

 This section presents a synthesis of two theoretical

statements needed for the later analysis of the selected SPRM.

In the first part, a classification of KM work into schools of

thought that was proposed by [14] is presented. In the second

part, a complementary perspective, composed by a set of KM

organizational capabilities, proposed by Gold, Malhotra and

Segars [15], is described.

The first referent is a “KM strategies taxonomy” proposed by

Earl in 2001 [14]. The used methodology and the variety of

data sources make this classification one of the most detailed.

Further classifications can find in [16]–[24], but Earl’s

taxonomy is considered the most complete, because It was

constructed based on descriptive data from: (1) six case

studies in companies; (2) interviews with 20 chief knowledge

officers; (3) Workshops about KM programs in organizations;

and (4) a review of publications about KM from research and

practice. The identified KM schools are categorized as

“Technocratic”, “Economic” and “Behavioral”.

108 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

The technocratic schools are focused on IT tools to support

employees in their knowledge-based tasks. The technocratic

schools are the systems school, the cartographic school and

the engineering school. The systems school is focused on

technology for knowledge codification and sharing using

knowledge bases. The cartographic school is focused on the

creation and maintenance of knowledge maps using

knowledge directories. The engineering school is focused on

knowledge processes and knowledge flows within

organizations.

The economic schools are focused on the exploitation of

knowledge as intellectual capital to create revenues streams.

In the economic schools Earl identified only the commercial

school.

The behavioral schools are focused on the promotion and

encouragement of knowledge creation and sharing and all

organizational and personal issues to use knowledge as an

organizational resource. In the last category there are three

schools identified as organizational school, spatial school and

strategic school. The organizational school is focused on the

creation of networks for sharing knowledge. The spatial

school is focused on the design of work spaces to promote

knowledge sharing. The strategic school is focused on the

development of the organizational strategy based on

knowledge as its essence. A synthesis of Earl’s taxonomy is

showed in Table 1.

Table 1 Knowledge management schools [14]
Category School Focus Aim

Technocratic

Systems Technology Knowledge bases

Cartographic Maps Knowledge directories

Engineering Processes Knowledge flows

Economic Commercial Income Knowledge assets

Behavioral

Organizational Networks Knowledge Pooling

Spatial Space Knowledge exchange

Strategic Mindset Knowledge Capabilities

The second referent is the work of Gold, Malhotra and Segars

that was published in 2001 [15]. In this work, the authors

argue that organizations must leverage their knowledge and

create new knowledge to compete in their markets. In order to

accomplish this, organizations must develop two types of KM

capabilities: knowledge infrastructure capabilities and

knowledge process capabilities. Knowledge infrastructure

capabilities enable maximization of social capital, understood

as “the sum of actual and potential resources embedded

within, available through, and derived from the network of

relationships possessed by a social unit” [15].

Complementary, knowledge process capabilities are the

dynamic elements that leverage the infrastructure capabilities

to make knowledge an active organizational resource.

The three infrastructure capabilities are technology, structure

and culture. The technological dimension addresses the tools

and means that enable knowledge flows in an efficient way.

The structural infrastructure focuses on the existence of

norms, and trust mechanisms, as well as, formal

organizational structures, which enable and encourage people

to create and share knowledge. The cultural dimension refers

to the presence of shared contexts within organization.

The four process capabilities are knowledge acquisition,

knowledge conversion, knowledge application, and

knowledge protection. The knowledge acquisition process is

oriented toward obtaining knowledge from diverse sources

both within and outside organizations. The knowledge

conversion process is focused on making existing knowledge

useful based on knowledge encoding, combination,

coordination and distribution. The knowledge application

process is oriented toward the actual use of knowledge, and

the knowledge protection process is designed to protect the

organizational knowledge from illegal or inappropriate use or

theft. As illustrated in Figure 1, in terms of Gold et al,

infrastructure and process dimensions reflect an additive

capability to launch and sustain a program of change through

KM in order to gain organizational effectiveness.

Technology

Structure

Culture

Acquisition

Conversion

Application

Protection

Knowledge
process

capabilities

Knowledge
infrastructure
capabilities

Organizational
effectiveness

Figure 1 Knowledge management capabilities and

organizational effectiveness. [15].

3 Methodology

The methodology designed for this work consists of three

stages:

1. SPRM selection: The purpose of this stage was to select

a set of SPRM used at Colombian and Latin American

levels. To do this, a set of publications of the last

decade, which main topic was SPI in Latin America’s

SDO was reviewed. The five most mentioned SPRM

were selected.

2. Analysis of SPRM Processes and KM: The description

of each process within each SPRM was analyzed to find

aspects related to KM. The review was focused on the

statement of process purpose and the descriptions of

process outcomes. A subset of KM-related processes

was selected.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 109

3. Mapping of SPRM process and KM: In this stage, the

KM-related processes selected in the second stage were

analyzed in relation to the KM schools proposed by [14]

and the organizational KM capabilities, proposed by

[15]. To do this, a single mention of some idea from KM

schools or KM capabilities, was enough to map the

process.

4 Results

The main results of this work were: 1) the selection of five

SPRM; 2) the identification of 19 processes related to KM

within SPRM; and 3) the mapping of the 19 processes to KM

schools and KM organizational capabilities. In the next three

subsections the detailed results of each stage are described.

4.1 SPRM selection

The first result was the selection of five SPRM from a set of

155 documents from SCOPUS database. The selected models

were: 1) the ISO/IEC 122007 standard; 2) the Capability

Maturity Model Integration for Development (CMMI-DEV);

3) the Brazilian SPRM (MPS.BR, acronym of the Portuguese

expression “Melhoria de Processo do Software Brasileiro” or

Brazilian Software Process Improvement); 4) the Mexican

Software Industry Process Model (MoProSoft, acronym of the

Spanish expression “Modelo de Procesos para la Industria del

Software”); and 5) the SPRM from the program “Process

Improvement for Promoting Iberoamerican Software Small

and Medium Enterprises Competitiveness” (Competisoft). All

these models were developed in collaborative works between

the software industry and academic institutions. Also, they

have been developed under the general structure defined in

ISO/IEC 15504 standard [25]–[27]. In Table 3, the selected

SPRM are described.

4.2 Analysis of SPRM Processes and KM:

The analysis of the processes to identify those with some KM

ideas resulted in a set of 19 processes from the 101 processes

included in the five selected models. In Table 2, the selected

processes, for each SPRM, are presented.

Table 2 Processes related to KM ideas.

Model Process related to KM

ISO 12207

1. Software Configuration Management

2. Software Problem Resolution Process

3. Life Cycle Model Management

4. Human Resource Management

5. Reuse Asset Management

6. Domain Engineering

CMMI-DEV

1. Configuration Management

2. Organizational Process Definition

3. Organizational Training

MPS.BR

1. Configuration Management

2. Organizational Process Definition

3. Human Resource Management

4. Development for reuse

MoProSoft

1. Process Management

2. Human Resources and Work Environment Management

3. Organizational Knowledge

Competisoft

1. Process Management

2. Human Resources and Work Environment Management

3. Organizational Knowledge

4.3 Mapping of SPRM process and KM

Related to the analysis of SPRM and KM schools, we found

out that most of the KM aspects are related to systems school.

In other words, the predominant approach is knowledge

codification. In fact, even in several SPRM there is an explicit

reference to KM or to organizational knowledge (MoProSoft,

Competisoft), the scope of this process is limited to keep

available and manage a knowledge repository. The content of

this knowledge repository is, mainly, best practices, lessons

learned, knowledge work products, and knowledge about

process definitions. Also, ISO/IEC 12207, CMMI-DEV and

MPS.BR included the concept of an organizational knowledge

repository as part of two processes: configuration management

process and organizational process definition process.

In addition, all SPRM include aspects related to engineering

school. In particular, this school appears in the form of

training activities and the provision of qualified personnel to

do knowledge activities. These statements are part of human

resource management processes. In Table 4, the relations

between the selected SPRM and the KM schools are

presented.

Table 3 Description of selected SPRM.

Model
Last

update
Institution Country Processes Used References

ISO/IEC

12207
2008 International Organization for Standarization International 43

[28];[29]; [30];

[31];[32];

CMMI-DEV 2011 Software Engineering Institute USA 22 [33]; [34]; [35]

MPS.BR 2011
Association for Promoting the Brazilian Software

Excellence
Brazil 19 [36]; [37]; [38]; [39]

MoProSoft 2005
Mexican Association for Software Engineering

Quality
Mexico 8 [40]; [41]; [42]; [43]

Competisoft 2008
An Ibero American Research Network on Software

Quality

Spain –

Latin America
9

[44]; [45]; [46]; [47];

[48]

110 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

The analysis of the SPRM in relation to KM capabilities found

out that most of the KM aspects are related to technology

infrastructure capability and knowledge conversion process

capability. These findings are coherent with the emphasis on

Systems School. Another important element is that all SPRM

have at least a process concerning to the design and

implementation of a process-based organizational structure.

Likewise, the acquisition and application process capabilities

are covered explicitly within the models. The relations

between the processes from SPRM and the KM capabilities

are presented in Table 5.

5 Conclusions

 From an Earl’s KM schools perspective, the topics

included in SPRM are limited to the content of two schools:

systems and engineering. Hence, any software organization

involved in a SPI initiative cannot include KM strategies from

another KM schools in the implementation, evaluation and

improvement of its processes. For instance, the physical

design of workspaces to promote knowledge creation and

knowledge sharing, from spatial school, are not include in the

studied SPRM, even though a grown number of companies

have been applied it. In addition, many authors have argued,

in many publications, that the software industry is, by

definition, a knowledge-intensive industry. Hence it is

surprising that the statements of commercial school are not

explicitly included in the studied SPRM. Also, it is

remarkable that the statements of organizational and strategic

schools have a closed relation to the principles and practices

of agile methods to software development, but these schools

are not included in the studied SPRM too, even though, the

agile methods have an important influence in software

industry, especially in small and medium SDO.

In terms of the organizational KM capabilities, the studied

SPRM do not include explicitly the cultural knowledge

management capability. Nevertheless, in recent years the

research literature in software engineering process design and

improvement, especially all “agile” movement, has

emphasized the crucial role of organizational culture in SDO.

For this reason, this absence is a big gap to fill soon.

Moreover, the studied SPRM do not include two crucial

process capabilities: knowledge application and knowledge

protection.

Along these lines, this work has showed that the studied

SPRM include, within their scope, some aspects related to

KM. This fact reaffirms the importance of KM for SDO, and,

in particular, the importance of KM in SPI. Mainly, the topics

of interest about KM in SPRM are: 1) knowledge

codification, 2) use of knowledge repositories, and 3)

organizational training. These interest topics are located, in

terms of Buono and Poulfelt [49], in a first generation KM. In

this type of KM, knowledge is considered as a possession or

something that could be caught and stored in IT-based

knowledge repositories. On contrary, in the second generation

KM, knowledge is considered a complex phenomenon

concerning to socio-cultural, politic and technological aspects.

Hence, a gap is evidenced in the content of the analyzed

SPRM because they do not take into account elements from

the second generation KM.

These arguments allow us to formulate three questions that

serve as a source of motivation for future research: 1) what

KM outcomes and purposes should be included in the existing

SPRM to have a more complete reference in processes design,

implementation, evaluation and improvement within a SDO?;

2) is it possible to incorporate the KM purposes and outcomes

Table 4 Relations between SPRM’s process and KM schools.

Model Process related to KM

KM Schools

S
y

st
em

s

C
ar

to
g

ra
p

h
ic

E
n

g
in

ee
ri

n
g

C
o

m
m

er
ci

al

O
rg

an
iz

at
io

n
a

l

S
p

at
ia

l

S
tr

at
eg

ic

ISO 12207

Configuration Management X - - - - - -

Software Problem Resolution Process X - - - - - -

Life Cycle Model Management - - X - - - -

Human Resource Management X - X - - - -

Reuse Asset Management X - - - - - -

Domain Engineering X - - - - - -

CMMI-DEV

Configuration Management X - - - - - -

Organizational Process Definition X - - - - - -

Organizational Training - - X - - - -

MPS.BR

Configuration Management X - - - - - -

Organizational Process Definition X - - - - - -

Human Resource Management - - X - - - -

Development for reuse X - - - - - -

MoProSoft

Process Management X - - - - - -

Human Resources and Work Environment Management - - X - - - -

Organizational Knowledge X - - - - - -

Competisoft

Process Management X - - - - - -

Human Resources and Work Environment Management - - X - - - -

Organizational Knowledge X - - - - - -

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 111

as a new KM process within existing SPRM? Or, maybe is it

necessary a KM process reference model for SDO?; 3) if the

resultant KM process reference model would be used in an

process capability determination initiative, how could be the

correspondent KM process evaluation model?. The answers of

all these questions have high value in KM research and would

constitute a contribution aligned to the KM research trends

identified by [50]. They argue that future research in the field

of KM requires studies related to unifying different KM

models in the existing literature and understanding the

determinants of the evolution of KM in organizations. Also,

studies pertaining to KM effectiveness and associated

organizational and IT support are needed.

Summing up, this work constitutes an important reference for

research and practice because it presents a synthesis of the

knowledge management topics included in software process

reference models, and helps practitioners, from software

development organization, to identify the foundations and the

options to implement knowledge management initiatives

within their organizations. Likewise, this study helps

researchers to identify trends and topics to formulate new

research projects about include the different “flavors” of

knowledge management in software process reference models

or to develop a knowledge management process reference

model relevant for software development organizations.

6 References

[1] F. O. Bjørnson and T. Dingsøyr, “Knowledge management

in software engineering: A systematic review of studied

concepts, findings and research methods used,”

Information and Software Technology, vol. 50, no. 11, pp.

1055–1068, Oct. 2008.

[2] A. Aurum, F. Daneshgar, and J. Ward, “Investigating

Knowledge Management practices in software

development organisations - An Australian experience,”

Information and Software Technology, vol. 50, no. 6, pp.

511–533, May 2008.

[3] K. Alagarsamy, S. Justus, and K. Iyakutti, “The knowledge

based software process improvement program: A rational

analysis,” in 2nd International Conference on Software

Engineering Advances - ICSEA 2007, 2007.

[4] K. Alagarsamy, S. Justus, and K. Iyakutti, “On the

implementation of a knowledge management tool for SPI,”

in Proceedings - International Conference on

Computational Intelligence and Multimedia Applications,

ICCIMA 2007, 2008, vol. 2, pp. 48–55.

[5] K. Alagarsamy, S. Justus, and K. Iyakutti,

“Implementation specification for software process

improvement supportive knowledge management tool,”

IET Software, vol. 2, no. 2, pp. 123–133, 2008.

[6] J. Capote, C. J. Llantén, C. Pardo, A. Gonzalez, and C.

Collazos, “Gestión del conocimiento como apoyo para la

mejora de procesos software en las micro, pequeñas y

medianas empresas,” Ingenieria e investigacion, vol. 28,

2008.

[7] M. A. Montoni, C. Cerdeiral, D. Zanetti, and A. R.

Cavalcanti da Rocha, “A Knowledge Management

Approach to Support Software Process Improvement

Implementation Initiatives,” in Software Process

Improvement, vol. 16, R. V. O’Connor, N. Baddoo, K.

Smolander, and R. Messnarz, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 164–175.

[8] R. Cruz Mendoza, M. Morales Trujillo, M. Morgado C, H.

Oktaba, G. E. Ibarguengoitia, F. J. Pino, and M. Piattini,

Table 5 Relations between SPRM’s process and KM capabilities.

Model Process related to KM

KM Capabilities

T
ec

h
n

o
lo

g
y

C
u

lt
u

re

S
tr

u
ct

u
re

A
cq

u
is

it
io

n

C
o

n
v

er
si

o
n

A
p

p
li

ca
ti

o
n

P
ro

te
ct

io
n

ISO 12207

Configuration Management X - - - X - -

Software Problem Resolution Process X - - - X - -

Life Cycle Model Management - - X X - - -

Human Resource Management - - - X - - -

Reuse Asset Management X - - - X X -

Domain Engineering X - - X X - -

CMMI-DEV

Configuration Management X - - - X - -

Organizational Process Definition X - X - X - -

Organizational Training - - - X - - -

MPS.BR

Configuration Management X - - - X - -

Organizational Process Definition X - X - X - -

Human Resource Management - - - X - - -

Development for reuse X - - - X X -

MoProSoft

Process Management X - X - X - -

Human Resources and Work Environment Management - - - X - - -

Organizational Knowledge X - - - X - -

Competisoft

Process Management X - X - X - -

Human Resources and Work Environment Management - - - X - - -

Organizational Knowledge X - - - X - -

112 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

“Supporting the Software Process Improvement in Very

Small Entities through E-learning: The HEPALE! Project,”

in 2009 Mexican International Conference on Computer

Science (ENC), 2009, pp. 221–231.

[9] M. Ivarsson and T. Gorschek, “Tool support for

disseminating and improving development practices,”

Software Qual J, May 2011.

[10] Z. Li, S. Huang, and B. Gong, “The knowledge

management strategy for SPI practices,” Chinese Journal

of Electronics, vol. 17, no. 1, pp. 66–70, 2008.

[11] J. Capote, C. J. Llantén, C. Pardo, and C. Collazos,

“Knowledge management in a software process

improvement program in micro, small and medium-sized

enterprises: KMSPI Model,” Revista Facultad de

Ingenieria, no. 50, pp. 205–216, 2009.

[12] P. A. Nielsen and G. Tjørnehøj, “Social networks in

software process improvement,” Journal of Software

Maintenance and Evolution: Research and Practice, vol.

22, no. 1, pp. 33–51, Jan. 2010.

[13] S. B. Basri and R. V. O’Connor, “Knowledge

Management in Software Process Improvement: A Case

Study of Very Small Entities,” in Knowledge Engineering

for Software Development Life Cycles: Support

Technologies and Applications, IGI Global, 2011, p. 273.

[14] M. Earl, “Knowledge Management Strategies: Toward a

Taxonomy,” J. Manage. Inf. Syst., vol. 18, no. 1, pp. 215–

233, 2001.

[15] A. H. Gold, A. Malhotra, and A. H. Segars, “Knowledge

management: An organizational capabilities perspective,”

Journal of Management Information Systems, vol. 18, no.

1, pp. 185–214, 2001.

[16] S. Sieber and R. Andreu, “La gestion integral del

conocimiento y del aprendizaje. (With English

summary.),” Economia Industrial, no. 2, pp. 63–72, 1999.

[17] R. McAdam and S. McCreedy, “A critical review of

knowledge management models,” The Learning

Organization, vol. 6, no. 3, pp. 91–101, 1999.

[18] D. Apostolou and G. Mentzas, “Managing corporate

knowledge: a comparative analysis of experiences in

consulting firms. Part 1,” Knowledge and Process

Management, vol. 6, no. 3, pp. 129–138, Sep. 1999.

[19] M. Alvesson and D. Kärreman, “Odd Couple: Making

Sense of the Curious Concept of Knowledge

Management,” Journal of Management Studies, vol. 38,

no. 7, pp. 995–1018, Nov. 2001.

[20] H. Takeuchi, “Towards a Universal Management Concept

of Knowledge,” in Managing industrial knowledge, Sage,

2001, p. 315.

[21] B. Choi and H. Lee, “An empirical investigation of KM

styles and their effect on corporate performance,”

INFORMATION & MANAGEMENT, vol. 40, no. 5, pp.

403–417, May 2003.

[22] N. K. Kakabadse and A. Kakabadse, “Reviewing the

knowledge management literature: towards a taxonomy,”

Journal of Knowledge Management, vol. 7, no. 4, pp. 75–

91, 2003.

[23] D. Rodríguez Gómez, “Modelos para la creación y

gestión del conocimiento : una aproximación teórica,”

Educar, no. 37, pp. 25–39, Apr. 2007.

[24] A. Barragán Ocaña,, “Aproximación a una taxonomía de

modelos de gestión del conocimiento,” Intangible Capital,

vol. 5, no. 1, pp. 65–101, 2009.

[25] ISO/IEC, ISO/IEC 15504-2:2003, Software engineering -

Process assessment - Part 2: Performing an assessment.

Ginebra, Suiza: International Organization for

Standardization, 2003.

[26] ISO/IEC, ISO/IEC 15504-1:2004, Information technology

- Process assessment - Part 1: Concepts and vocabulary.

Ginebra, Suiza: International Organization for

Standardization, 2004.

[27] ISO/IEC, ISO/IEC 15504-3:2004, Information technology

- Process assessment - Part 3: Guidance on performing an

assessment. Ginebra, Suiza: International Organization for

Standardization, 2004.

[28] F. J. Pino, F. García, F. Ruiz, and M. Piattini,

“Adaptación de las normas ISO/IEC 12207: 2002 e

ISO/IEC 15504: 2003 para la evaluación de la madurez de

procesos software en países en desarrollo.,” in Proceedings

of JISBD’05, 2005, pp. 187–194.

[29] F. J. Pino, F. Garcia, F. Ruiz, and M. Piattini, “Adaptation

of the standards ISO/IEC 12207:2002 and ISO/IEC

15504:2003 for the assessment of the software processes in

developing countries,” IEEE Latin America Transactions,

vol. 4, pp. 85–92, Apr. 2006.

[30] ISO/IEC, ISO/IEC 15504-5:2006, Information technology

- Process Assessment - Part 5: An exemplar Process

Assessment Model. Ginebra, Suiza: International

Organization for Standardization, 2006.

[31] ISO/IEC, ISO/IEC 12207:2008, Standard for Systems and

Software Engineering - Software Life Cycle Processes.

2008.

[32] M. T. Baldassarre, M. Piattini, F. J. Pino, and G.

Visaggio, “Comparing ISO/IEC 12207 and CMMI-DEV:

Towards a mapping of ISO/IEC 15504-7,” in Proceedings

of the ICSE Workshop on Software Quality, 2009. WOSQ

’09, 2009, pp. 59–64.

[33] CMMI Product Team, CMMI® for Development,

Version 1.3, CMU/SEI-2010th-TR-033 ed. Pittsburgh, PA,

USA: Carnegie Mellon University, 2010.

[34] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for

Development®: Guidelines for Process Integration and

Product Improvement (3rd Edition), 3rd ed. Addison-

Wesley Professional, 2011.

[35] SCAMPI Upgrade Team, Standard CMMI® Appraisal

Method for Process Improvement (SCAMPI SM) A,

Version 1.3: Method Definition Document, CMU/SEI-

2011th-HB-001 ed. Pittsburgh, PA, USA: Carnegie Mellon

University, 2011.

[36] K. C. Weber, E. E. R. Araújo, A. R. C. Rocha, C. A. F.

Machado, D. Scalet, and C. F. Salviano, “Brazilian

Software Process Reference Model and Assessment

Method,” in Computer and Information Sciences - ISCIS

2005, vol. 3733, pInar Yolum, T. Güngör, F. Gürgen, and

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 113

C. Özturan, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2005, pp. 402–411.

[37] G. Santos, M. Kalinowski, A. R. Rocha, G. H. Travassos,

K. C. Weber, and J. A. Antonioni, “MPS.BR: A Tale of

Software Process Improvement and Performance Results

in the Brazilian Software Industry,” 2010, pp. 412–417.

[38] SOFTEX, MPS.BR - Mejora de Proceso del Software

Brasileño - Guía de Evaluación. Brasil: SOFTEX, 2011.

[39] SOFTEX, MPS.BR - Mejora de Proceso del Software

Brasileño - Guía General. Brasil: SOFTEX, 2011.

[40] H. Oktaba, C. Esquivel, A. Su Ramos, A. Martínez, G.

Quintanilla, M. Ruvalcaba, F. López, M. Rivera, M.

Orozco, and Y. Fernández, Modelo de Procesos para la

Industria de Software MoProSoft Version 1.3. México:

Secretaría de Economía, 2005.

[41] H. Oktaba, C. Esquivel, A. Su Ramos, A. Martínez, G.

Quintanilla, M. Ruvalcaba, F. López, M. Rivera, M.

Orozco, and Y. Fernández, Modelo de Procesos para la

Industria de Software MoProSoft Version 1.3 Por Niveles

de Capacidad de Procesos. México: Secretaría de

Economía, 2005.

[42] H. Oktaba, C. Esquivel, A. Su Ramos, A. Martínez, G.

Quintanilla, M. Ruvalcaba, F. López, M. Rivera, M.

Orozco, and Y. Fernández, Software Industry Process

Model MoProSoft Version 1.3. 2. México: Ministry of

Economy, 2006.

[43] H. Oktaba, “MoProSoft®: A Software Process Model for

Small Enterprises,” in Proceedings of the 1st International

Research Workshop for Process Improvement in Small

Settings, 2006, pp. 93–110.

[44] H. Oktaba, F. García, M. Piattini, F. Ruiz, F. J. Pino, and

C. Alquicira, “Software Process Improvement: The

Competisoft Project,” Computer, vol. 40, pp. 21–28, Oct.

2007.

[45] Competisoft, “COMPETISOFT. Mejora de Procesos para

Fomentar la Competitividad de la Pequeña y Mediana

Industria del Software de Iberoamérica,” 2008.

[46] Competisoft, “COMPETISOFT. Mejora de Procesos de

Software para PEqueñas Empresas,” 2008. [Online].

Available: http://alarcos.inf-

cr.uclm.es/Competisoft/framework/. [Accessed: 20-Aug-

2011].

[47] H. Oktaba, Competisoft : mejora de procesos software

para pequeñas y medianas empresas y proyectos, 1a ed.

México D.F.: Alfaomega, 2009.

[48] A. F. Aguirre, C. J. Pardo Calvache, M. F. Mejía, and F.

J. Pino, “Reporte de experiencias de la aplicación de

Competisoft en cinco mipymes colombianas,” Revista

EIA, no. 13, pp. 107–122, 2010.

[49] A. F. Buono and F. Poulfelt, Challenges and issues in

knowledge management, vol. 5. Information Age Pub Inc,

2005.

[50] Y. K. Dwivedi, K. Venkitachalam, A. M. Sharif, W. Al-

Karaghouli, and V. Weerakkody, “Research trends in

knowledge management: Analyzing the past and predicting

the future,” Information Systems Management, vol. 28, no.

1, pp. 43–56, 2011.

114 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

SESSION

SOFTWARE SYSTEMS, REQUIREMENTS +
MIDDLE-WARE + SOFTWARE DEVELOPMENT
PROCESS + MODELING AND ARCHITECTURE

DESCRIPTION LANGUAGES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 115

116 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Systems on Abstract Network

Kazutaka NAKAMURA∗, Kiyofumi TANAKA and Yasushi HIBINO
School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan.

Abstract— The authors developed a new system abstraction
method, “Abstract Network Framework”, implemented its
prototype, ANetFW, and confirmed feasibility of the new
method. In this paper, the method is proposed by explaining
the implementation and behavior of ANetFW. This method
does only abstraction of operations for inter-component
connection and the components directly communicate each
other at run-time without any intervention of the framework.
Therefore the method is easier to introduce than the method
of replacing the whole abstraction layers such as operating
systems, while it does not cause any run-time overheads due
to abstraction that overlay approaches such as middle-wares
would cause.

Keywords: Network Distributed System, Network Operating Sys-
tem, Middle-ware, System Abstraction Method, Abstract Network

1. Introduction
A system is a set of inter-communicating components.

Therefore system development is regarded as selection of
appropriate components for the system from available com-
ponents and connection of them.

Each component is prepared as a suitable form for its
requirements. Therefore, different components have differ-
ent interfaces and communicate by different communication
methods. This fact makes some pairs of components not
communicable, which raises a necessity of facilities to make
it possible.

There is another problem in system development. To
connect components, the developer needs to follow the
connection procedures according to the details of the im-
plementation. If he or she does it by himself/herself, he
or she needs to know about the details of the procedures
for all components used, which raises knowledge cost for
system development. Abstraction is the way of reducing this
cost by hiding differences in implementations of components
and allows users to handle various components and inter-
component connections in a single manner.

1.1 Conventional approaches
The most popular conventional method of solving the

problems has been provided as an abstraction layer, where
communication functions with protocol stacks or device

∗ Presently, the author is with Universal Shell Programming Laboratory,
Ltd, Tokyo, Japan.

drivers are provided on the layer. The example productsof
this method are operating systems or middle-wares [1].

But in some cases, the rich protocol stacks or device
drivers can not be installed. For example, the environment
has very limited resources, or the target system requires very
high performance. In other cases, the target system requires
some special functions and the existing abstraction products
do not have such functions, such as network distributed
environment support [2] or high security facility or advanced
error recovery. To solve such problems, there are two typical
approach.

The first is overlay approach which lay new abstraction
layer providing specific function on an existing layer. For
example, a network system based on RPC(Remote Procedure
Call) [3] consists of a middle-ware which provides RPC
function and is laid on a stand alone operating system.
Grid computing [4] provides substantial functionalities for
network distributed computing. The WWW which consists
of HTTP servers [5], [6] working on operating systems
is another example of this approach. Overlay approach
is easy to introduce but ad hoc. Thus it requires run-time
overhead and another new knowledge cost for the overlay
itself. Overlay approach provides some functionality and
abstraction in exchange for performance but is not for
knowledge cost reduction.

On the other hand, there is replacement approach which
makes whole new abstraction layer providing all functional-
ity for new requirement and replaces the existing layer. Em-
bedded operating systems and network distributed operating
systems [7], [8] are the products based on this approach.
Replacement approach causes no problems after introduc-
ing a product into the target system and learning about
new abstraction layer. Unfortunately, replacement approach
causes serious spreading or applicable area problem. In fact,
network distributed operating systems have not spread in
popular or distributed their benefits, and embedded operating
systems adopts only for embedded systems. Replacement
approach is an ideal solution but requires high cost for
introduction and could not spread in popular.

Due to these problems, Real systems is constructed on
patchwork approach and consit of various abstraction layer.
The example is web service. It uses some IPC(Inter-Process
Communication) or RPC mechanisms in their site and uses
HTTP to provide an interface for the user, since HTTP
clients, web browsers, have already spread widely and allow
to avoid the spreading problem.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 117

As saw above, conventional approaches lead chaos of
abstraction layers and have not achieve their goal, reduction
of knowledge cost.

1.2 The problems and The idea
This chaos is not desirable. To solve this, the authors

focoused that the conventional approaches are trying to
provide two function at a time, connection between compo-
nents of different implementation and abstraction of different
operation, and tryed to separate them.

At first, The authors recognized that there is no commu-
nication method which satisfies all of possible requirements
and each components adopts suitable communication meth-
ods or develop new one to satisfy the system requirements.
Therefore, the unification of communication method is im-
possible. Communication methods are also important parts
of systems. As a system requires various components, a
system requires various communication methods. Therefore,
if an abstraction layer also try to provide communication
method, the abstraction layer can not be a general purpose
abstraction layer.

Fortunately, the success of patchwork systems shows us
that system development does not require unified communi-
cation method. On the other hand, patchwork systems causes
very high knowledge cost. But every communication meth-
ods makes a set of components communicable each other.
Thus, various communication methods can be abstracted and
be handled in single manner.

The replacement approach does this abstraction of com-
munication methods but has spreading problem. The authors
thought it is causes the problem that the conventional ab-
straction layer is developed as a foundation for component
development, especially software component development.
For this purpose, software components on the layer expects
be able to execute all operation for every real communi-
cation methods. This task is difficult and requires run-time
conversion, in other words interpretation, in many cases.

But if a new abstraction layer does not try to be a founda-
tion for component development and does only abstractions
for component connection, the conversion can be completed
beforehand, in other words can be compile. In this solution,
the new abstraction layer does only designation of commu-
nication partner and then each components communicates
with its communication partner directly by their own natural
communication method. Therefore, there is no need for
whole replacement like conventional approach, only need for
laying a compiling layer like overlay approach. This solves
spreading problem.

Based on these idea, the authors developed new abstrac-
tion layer which does only abstraction of operation for inter-
component connection. This means the abstraction layer
does not provide communication functions and just connects
components by existing communication methods. While
using this new abstraction layer, since each component

can choose most suitable communication methods, their
requirements of communication methods will never be a
problem of abstraction layer functionality. And since every
operations for connection is converted beforehand to native
operations, there is no abstraction cost in run-time, is only
connection cost which is fundamentally necessary, and will
never be a problem of abstraction layer performance or
environment resource limit.

On this abstraction layer, a user chooses components and
connect them to construct a target system. And if a set of real
connections is derived from the set of abstract connections
for the target system, a set of command sequence for the real
connections is generated and executed, the target system on
abstraction layer is embodied as a real runnable system. If
this process, deriving, generate and execute, can be done by
abstraction environment, our new method can be realized.

1.3 The structure of this paper
The authors developed a new system abstraction method,

“Abstract Network Framework”, implemented its prototype,
ANetFW(Abstract Network FrameWork), and confirmed that
the prototype works correctly. Then the authors concluded
that Abstract Network Framework is feasible and propose
it in this paper. In the section below, the overview of
the method is explained. Next, through describing about an
use-case of the prototype, ANetFW, the implementation of
the method is illustrated. Finally, the authors discuss about
current problems, future opportunity and related works.

2. Overview of Abstract Network
Framework

Abstract Network Framework abstracts available compo-
nents and inter-component connections(Fig. 1-c) and pro-
vides a consistent view(Fig. 1-a) whose name is “Abstract
Network”. An abstract network is a conceptual commu-
nication network which connects between abstract function
1. A user can connects necessary functions without being
bothered by implementation and operation differences(Fig.
2-a). And the abstract functions and connections between
them are converted to, or embodied as real components
and real inter-component connections respectively by the
framework(Fig. 2-c), then the system on the abstract network
becomes a real runnable system.

2.1 Construction of Abstract Network
In order to construct an abstract network, all available

components and their inter-component connections(Fig. 1-
1) are described in “Base Network” definition(Fig. 1-b).
And the base network definition is abstracted(Fig. 1-2) as
an abstract network definition. Abstract Network Framework
abstracts connection operations of various components while
abstracting real resources to base networks and abstracts

1This method is based on various idea of network technology

118 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

(
c
)
R
e
a
l

C
o
m
p
o
n
e
n
t
s

(1) Resource Description

(
b
)
B
a
s
e

N
e
t
w
o
r
k

d
e
f
i
n
i
t
i
o
n

(
a
)
A
b
s
t
r
a
c
t

N
e
t
w
o
r
k

d
e
f
i
n
i
t
i
o
n

(2)Abstraction

Fig. 1: Abstract Network Construction

inter-component connections while abstracting a base net-
work to an abstract network.

Ideally, an abstract network should be automatically con-
structed for given environment like device detection of
operating systems. But in this time, the authors defined
abstract networks by our hands.

2.2 Connection and Embodiment
Abstract Network Framework converts operations on an

abstract network to operations on base network(Fig. 2-1),
and converts operations on base network to real command
sequences for real components. And it sends them to and
executes them in appropriate components(Fig. 2-2,3). In
Abstract Network Framework, these process is called “Em-
bodiment”. Abstract Network Framework is a framework for
and does embodiment process by referring abstract network
definition and base network definition.

2.3 Advantages
Abstract Network Framework abstracts system compo-

nents and their inter-component connections, does no any
operations on the target system during run-time and let

(
c
)
R
e
a
l

c
o
n
n
e
c
t
i
o
n
s

o
f

R
e
a
l

C
o
m
p
o
n
e
n
t
s

(
b
)
C
o
n
n
e
c
t
i
o
n

R
e
q
u
e
s
t
s

o
n

B
a
s
e

N
e
t
w
o
r
k

(
a
)
C
o
n
n
e
c
t
i
o
n

R
e
q
u
e
s
t
s

o
n

A
b
s
t
r
a
c
t

N
e
t
w
o
r
k (1)Convert

E
m
b
o
d
i
m
e
n
t

INet

IPC

I
N
e
t

(2)Distribute

(
3
)
O
p
e
r
a
t
e

(
3
)
O
p
e
r
a
t
e

(
3
)
O
p
e
r
a
t
e

BA C

D

A

B

C

D

B

A

C

D

Fig. 2: Flow of Embodiment

the components communicate each other directly. Therefore,
Abstract Network Framework is easier to introduce than the
products of replacement approach and cause no run-time
overheads due to abstraction that the products of overlay
approaches would generate.

3. Overview and Behavior of the proto-
type, ANetFW

The authors implemented a prototype based on Abstract
Network Framework and named it ANetFW. And the au-
thors constructed an abstract network from a simple system
environment, embodied a simple system by ANetFW, and
confirmed that ANetFW works correctly. In this section,
the overview of ANetFW and how to implement Abstract
Network Framework are explained while a construction
process of an abstract network and an embodiment process
of a system on the abstract network are illustrated.

In ANetFW, an abstract network is ANet, a base network
is BNet. There can be more than one possible embodiment
result for a system description on an abstract network. The

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 119

abstract network framework chooses one of them in the
embodiment. This choice affects the aspects of the system
embodied. ANetFW allows embodiment requirements to be
attached in attributes of the ANet connections and end nodes.
It conducts embodiment satisfying those requirements. A
prototype of the abstract network framework, ANetFW, are
implemented by Common Lisp [9], and runs on UNIX
operating systems.

3.1 Target system and environment
The target system which is tried to construct is a simple

system which depicted in Fig. 3. It accepts data from Src,
process the data in Proc and puts out to Dst. Each
component Src, Proc and Dst is a process. Src sends
out ASCII integers in each line. Proc receives such stream
of integers and sends out summations about each line from
head of stream. Dst receives the sums and displays it in
user interface.

Src

Proc

Dst

Fig. 3: Target System

The authors constructed the target system in a test envi-
ronment with ANetFW. The environment is depicted in Fig.
4. In the environment, there are two Internet node n and m,
and processes s, p and d which is running in the nodes and
corresponding to Src, Proc and Dst respectively. These
processes can communicate each other by TCP/IP network.
some of them can uses IPC(Inter-Process Communication)
mechanisms 2.

ANetFW abstracts this environment as an ANet. An user
constructs the target system(Fig. 3) without caring about
whether each process can use a communication mechanisms

2This prototype uses Unix Domain Socket as IPC

or not. When ANetFW receives a connection request from
an user, it selects real communication mechanism for cor-
responding real processes, generates command sequence to
connect them by chosen mechanism, and distributes and
executes it.

Host n

s p

Host m

p d

Inet

Fig. 4: Example System Environment

3.2 Preparation
To apply on the environment of Fig. 4, some preparation

is required.

3.2.1 BNet definition
At first, all available real components and their available

real inter-component connections must be described as BNet
definition. On a BNet, available components and their
connections are described and managed as nodes and links.
From the environment of Fig. 4, a BNet is defined like Fig.
6 which can be depicted like Fig. 5.

Node n

Function s

iarg

oarg

a

x

m

oport

Link

iport

IPC Link

TCP Link

g

x

a

p

a

x

d

a

x

o3 i3i3 o3

i2

o2

i1

o1

i2

o2

i1

o1

Fig. 5: BNet Definition Image

120 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

;; default port assignment constraint
;; == ‘‘(:p tcp)’’
(node n (i1 i2 i3) (o1 o2 o3)

(:fn (s () ((x(:p ipc tcp))))
(p ((a(:p ipc tcp))) (x))))

(node m (i1 i2 i3) (o1 o2 o3)
(:fn (p ((a(:p ipc tcp))) (x))

(d (a) ())))

;; inner loop of node n
(link (n o1) (n i1) (:p ipc) (:e (b 10)))
(link (n o2) (n i2) (:p tcp) (:e (b 1)))
;; inner loop of node m
(link (m o1) (m i1) (:p ipc) (:e (b 10)))
(link (m o2) (m i2) (:p tcp) (:e (b 1)))
;; inter link between n and m
(link (n o3) (m i3) (:p tcp) (:e (b 1)))
(link (m o3) (n i3) (:p tcp) (:e (b 1)))

Fig. 6: BNet Definition

BNet definition is a directed acyclic graph and consists
of nodes and links. On this BNet, each Internet node is
defined as a BNet node and each process in the Internet
nodes is defined as a BNet function in a BNet node. In the
description(Fig. 6), each clause which starts from (node
... is BNet node definition. And in a clause of a node
definition which starts from (:fn ..., each clause is a
BNet function definition. For example, the clause which
starts from (node n ... is a BNet node definition about
BNet node n. And in the clause of the definition of BNet
node definition n which starts from (:fn ..., the clause
which starts from (s ... is a BNet function definition
about BNet function s of BNet node n.

Each process needs to distinguish communication part-
ners. On a BNet it is treated as arguments of BNet function,
iarg(Input ARGument) and oarg(Output ARGument).

On a BNet, each available connection is described as uni-
directional links between BNet nodes. Many of connections
are provide bidirectional communication transport function.
On a BNet, such bidirectional connection is described as two
unidirectional links. Each contact point of a links to a node
is described as a BNet port which belongs to the contacting
BNet node. a point which contacts to inbound link is called
iport(Input PORT), and a point which contacts to outbound
link is called oport(Output port). A link is described as a pair
of an iport and an oport. For example, in the clause which
starts from (node n ..., the clause, (i1 i2 i3) and
(o1 o2 o3), is a clause of iport and oport of BNet node
n respectively. Each clause which starts from (link ...
is a BNet link definition. For example, (link (n o1)(n
i1) ...) is a BNet link definition which transports data

from port o1 of node n to port i1 of node n.
Each clause of BNet link definition which starts from (:e

... is description about performance of the link. For exam-
ple, bandwidth(b) of BNet link (link (n o1)(n i1)
... is 10. Each clause of BNet link definition which starts
from (:p ... is description about protocol of the link. For
example, protocol of BNet link (link (n o1)(n i1)
... is IPC(ipc).

A BNet function distinguishes communication partner
by its own argument and communicates with each partner
through a link. This is depicted as assigning a port to the
argument and called “Port Assignment”. What protocols the
function can use for an argument is described as constraints
of port assignment. In this example, the default port assign-
ment constraint is (:p tcp) and the identical description
of constraint is omitted. For example, the oarg x of function
s of node n is described as (x(:p ipc tcp)) which
means the oarg can use both protocol identified by ipc and
tcp for its communication.

These information for performance and protocol is used
to select appropriate connection for each connection request
on ANet.

3.2.2 ANet definition
BNet definition is direct description of available com-

ponents and their inter-component connections. Therefore,
connection operation on BNet, port assignment, is direct
designation which connection is used.

ANet is constructed by abstracting BNet to hide specific
real connections and allow users to focus on the functions
and their abstracted connections.

An ANet is defined like Fig. 7 which can be depicted like
Fig. 8. BNet functions s and p of BNet node n and BNet
functions p and d of BNet node m are abstracted as ANet
nodes(function) s, p1, p2 and d respectively. BNet links
which can actually connects a pair of BNet arguments are
abstracted as an ANet link.

(node s () (x) (n s))
(node p1 (a) (x) (n p))
(node p2 (a) (x) (m p))
(node d (a) () (m d))

(link s p1 ((n o1)(n i1)) ((n o2)(n i2)))
(link s p2 ((n o3)(m i3)))
(link s d ((n o3)(m i3)))
(link p1 p2 ((n o3)(m i3)))
(link p1 d ((n o3)(m i3)))
(link p2 p1 ((m o3)(n i3)))
(link p2 d ((n o1)(n i1)) ((n o2)(n i2)))

Fig. 7: ANet Definition

And finally, the processes which does embodiment actu-
ally are deployed on the environment.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 121

Node s

Function

iarg

oarg

a

x

d

a

x

p1
a

x

p2
a

x

Fig. 8: ANet Definition Image

3.3 Embodiment Process
On the ANet which is constructed like above, the authors

constructs the target system depicted in Fig. 3 by connecting
ANet functions. The connection request is like below.

(connection(s x) (p1 a)(:e(<= 10 b)));(1)
(connection(p1 x)(d a)) ;(2)

In this request, ANet connection (connection(s
x)(p1 a)...) is attached a clause, (:e(<= 10 b)),
which is called embodiment constraint description. ANetFW
tries to embody this connection by using a link whose
bandwidth(b) is at least 10.

The authors gave ANetFW this ANet connection request
and ANetFW converted the requests to BNet port assign-
ments like below.

(assign n s x o1) ; (1)
(assign n p a i1) ; (1)
(assign n p x o3) ; (2)
(assign m d a i3) ; (2)

From an ANet connection requests marked by (1),
ANetFW generates two BNet port assignment requests
marked by (1). It is same about (2). In this case, BNet
link (link(n o2)(n i2)...) can connect between
the arguments which specified by the ANet connection
marked by (1). But since the BNet link (link(n o2)(n
i2)...) does not satisfy the embodiment constraint
(:e(<= 10 b)), ANetFW selected BNet link (link(n

o1)(n i1)...).
These generated BNet port assignment requests are dis-

tributed to each node and executed corresponding real oper-
ation.

3.4 Behavior of the target system
And the authors made the embodied target system run.

The data whom the process s sends out is like below.

540
670
924
684
374

The user interface whom the process d controlling showed
data like below.

540
1210
2134
2818
3192

4. Discussion
From the behavior of ANetFW, the followings are drawn.

A system described as a set of ANet connection requests
was embodied and the system worked correctly. In the con-
version step, ANetFW correctly dealt with graph constraints,
port assignment constraints and embodiment requirements,
and chose relevant communication paths. In the operation
step, ANetFW correctly distributed port assignment requests,
and did setup for each BNet function. These facts show that
ANetFW is working correctly. Therefore Abstract Network
Framework is feasible.

Since the aim of this prototype is feasibility verification
for the basic idea of Abstract Network Framework, some
problems have been left in this time. A big problem is that
the construction of abstract network is done by hand. This
should be hidden to reduce knowledge cost which is the goal
of abstraction.

This prototype focused on the basic idea which con-
sists of management, abstraction and choice of available
components, their inter-component connections and their
operations, and did not treat the content of communication
that is data format or protocol. Some functions which treat
component protocols will make system development easier
on Abstract Network Framework.

Abstract Network Framework gives us more opportunities.
This prototype equips the basic function of Abstract Network
Framework, choosing appropriate inter-components connec-
tion from available connections. Since this was feasible, It
must be also feasible to choose appropriate components for
given target system. And if it was include connection macro
and able to treat composed function as link or function, it

122 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

can does automatic system construction in limited area, such
like insertion of compression or encryption functions into
communication paths.

4.1 Related works
Abstract Network Framework provides an abstract view

for whole computer system environment. The products of
conventional methods, such like operating systems and
middle-wares [1], [4], try to provide this but have prob-
lems described in section 1.2. Facing on this situation,
Abstract Network Framework is focused on their goal, the
function of abstraction and choice for components and
inter-component connections, and avoid the problems of
conventional methods. In other words, the conventional
methods seek compilers or interpreters and Abstract Network
Framework seeks powerful make [10] or linker [11]. From
this design, the products of Abstract Network Framework is
easier to introduce and does not cause any run-time overhead
for abstraction.

On the other hand, since Abstract Network Framework
is not a foundation for component development, it does not
provide various functions which is communication functions,
unified interface for various protocols or protocol stacks
for some protocols, and other additional functions, resource
multiplexing or fault tolerance. The authors think that the
functions can handle as one of functions of component or
inter-component connections, choose them and use them.

As system development environment, Abstract Network
Framework is component oriented technologies whose exam-
ples of existing products are object oriented frameworks [12]
or Service Oriented Architecture [13]. The existing products
base on middle-ware technologies which uses specific inter-
component communication mechanisms and cause some
problems. Abstract Network Framework trying to solve the
problems.

Since described target system on an abstract network
is embodied as real system, Abstract Network Framework
seems to be system generation technology from specification
whose examples of existing products are Model Driven
Architecture [14] or LOTOS [15], the protocol description
language. While system generation technology is top down
approach and aims to generate whole system from con-
nections to component itself, but it does not aim to reuse
of generated components. Abstract Network Framework is
bottom up approach and just a kind of abstraction method for
existing components, their inter-communication connections
and their connecting operations.

5. Conclusion
In this paper, the authors introduced a new abstraction

method, “Abstract Network Framework”, and illustrated its
implementation and behavior with the prototype implemen-
tation, ANetFW. Abstract Network Framework abstracts
available components, their inter-component connections

and their operations, and the components directly commu-
nicate each other at run-time without any intervention of
the framework. Therefore Abstract Network Framework is
easier to introduce than the replacement approach, such as
operating systems, while it does not cause any run-time
overheads due to abstraction that overlay approaches such as
middle-wares would generate. Abstract Network Framework
provides various opportunity which can be implemented as
additional feature. The feature which is implemented in this
prototype is automatic choice of component for given request
and allows users to construct systems without choice from
the components providing same function in his environment.

This prototype has some problems, but the authors try to
solve them and realize opportunities of Abstract Network
Framework.

References
[1] S. Tanenbaum, Andrew, Modern operating systems. Pearson Prentice

Hall, 2008. [Online]. Available: http://books.google.co.jp/books?id=
y22rPwAACAAJ

[2] S. Tanenbaum, Andrew and M. van Steen, Distributed Systems:
Principles and Paradigms (2nd Edition). Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 2006.

[3] D. Birrell, Andrew and J. Nelson, Bruce, “Implementing remote
procedure calls,” ACM Transactions on Computer Systems, vol. 2,
no. 1, pp. 39–59, 1984.

[4] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2004.

[5] The Apache HTTP Server Project, “Apache http server
documentation.” [Online]. Available: http://httpd.apache.org/docs/

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616: Hypertext transfer protocol–http/1.1,”
RFC, no. 2616, 1999.

[7] S. Tanenbaum, Andrew, R. van Renesse, H. van Staveren,
J. Sharp, Gregory, and J. Mullender, Sape, “Experiences with
the amoeba distributed operating system,” Communications of the
ACM, vol. 33, no. 12, pp. 46–63, Dec. 1990. [Online]. Available:
http://doi.acm.org/10.1145/96267.96281

[8] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from bell labs.” [Online].
Available: http://plan9.bell-labs.com/sys/doc/9.html

[9] L. Steele Jr., Guy, Common LISP. The Language. Second Edition.
Digital Press, June 1990.

[10] I. Feldman, Stuart, “Make–a program for maintaining computer pro-
grams,” Software: Practice and experience, vol. 9, no. 4, pp. 255–265,
1979.

[11] R. Levine, John, Linkers & Loaders, ser. Operating Systems
Series. Morgan Kaufmann, 2000. [Online]. Available: http:
//books.google.co.jp/books?id=Id9cYsIdjIwC

[12] Object Management Group, Common Object Request Broker Archi-
tecture(CORBA) Specification, Version3.2. http://www.omg.org/spec/
CORBA/3.2/, 2011.

[13] The Open Group, SOA Source Book. Van Haren Publishing, 2009.
[14] R. Raman and F. Paige, Richard, “Process-centered review of object

oriented software development methodologies,” ACM Computing
Surveys, vol. 40, pp. 3:1–3:89, February 2008. [Online]. Available:
http://doi.acm.org/10.1145/1322432.1322435

[15] International Organization for Standardization, “Information process-
ing systems-open systems interconnection-lotos-a formal description
technique based on the temporal ordering of observational behaviour,”
ISO, no. 8807:1989, 1989.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 123

XCD – A Design-by-Contract Architecture Description Language

Mert Ozkaya and Christos Kloukinas
Department of Computer Science, City University London, London, EC1V 0HB, UK

Abstract— Software architecture description languages
(ADL) have been proposed as a way to properly specify
the architectures of complex software systems, in a way
that allows both communication among the different stake-
holders and an early analysis of these systems for a number
of properties. However, practitioners seem to have shunned
the ADL developed in academia and mainly use other
modeling languages, that were not originally created for
describing architectures. In a recent survey, practitioners
have expressed a wish for analyzing their architectures
(esp. for non-functional properties) and at the same time
expressed their dissatisfaction with existing ADL, finding
that the formal notations they use have a learning curve
that they perceive as being too steep.

In this paper we propose a new ADL, called XCD, that
attempts to address these issues. To this end, XCD is a formal
language, allowing the formal analysis of systems. In its
current form, it focuses on safety and liveness properties
(deadlocks, etc.), leaving support for non-functional proper-
ties, such as reliability or performance, for later. In order to
avoid imposing a steep learning curve on practitioners, XCD
follows a Design-by-Contract (DbC) approach. DbC has the
advantage of allowing practitioners to express formal models
in a notation that resembles the programming languages they
use. DbC has in fact already been embraced by practitioners,
who so far use it mainly for improving their testing methods.

1. Introduction
There has been significant work on architectural descrip-

tion languages (ADL) from the early nineties as a way
of specifying the architecture of complex software systems
[15], [30]. Rapide [21], Wright [1], Darwin [22], UniCon
[34], ACME [14], XADL [10], and C2 [25] are widely-
known early ADLs; LEDA [7], AADL [11], Koala [35],
COSA [28], SOFA [31], RADL [32], PRISMA [29], π-ADL
[27], PiLar [9], and Connect [18] are ones developed more
recently. These languages have explored different ways of
representing architectures, using component and connector
abstractions or just component abstractions. Many among
them have been designed to facilitate formal analysis of
safety and liveness properties, for which they require ar-
chitects to specify the behaviors of system elements using
some formal language, usually a form of a process algebra.

A recent survey by Malavolta et al. [24] on the needs
of the industry with respect to architectural specification,

indicates that the languages developed in academia so far
have not been very successful in practice. Practitioners
remarked that they need to analyze their systems for non-
functional properties like performance or reliability, which
are not usually supported by ADL and their related tools.
They also considered the formal notations used in ADL as
imposing a learning curve that is too steep and having a low
return on investment in their eyes.

We take the view that both these issues are important
but we cannot resolve the former without first resolving
the latter. This is because safety and liveness properties,
like deadlock-freedom, are of a more basic nature than
performance and reliability analyses – after all, a deadlocked
system has zero performance and zero reliability. Therefore
we need to design an ADL that allows practitioners to
specify behaviors in a way that allows for formal verification
but without imposing upon them a notation that is unfamiliar
to them. For this reason we have developed XCD, a new
ADL that follows a Design-by-Contract (DbC) approach
[26]. XCD allows architects to specify the behaviors of
their systems in a language that resembles a programming
language, which should render the investment required in
learning the new notation small enough for it to become a
reasonable approach to consider.

1.1 XCD Language Design Considerations
Table 1 shows a number of ADL, covering both the

major early ones (Darwin to XADL) and more recent ones
(PRISMA to CONNECT). It compares them against three
characteristics that we believe to be important for supporting
the architectural specification of complex systems, namely
whether they allow formal behavior specification, whether
they support complex connectors as first-class elements and
whether the architectures expressed in them are realisable.
Most of these ADL do allow formal behavior specification,
albeit in notations that practitioners have found to require a
steep learning curve. The ones that do not support formal
behavior specification do so because they focus more on
direct code production from architectural descriptions. In-
terestingly, practitioners surveyed in [24] did not rate code
production as an important feature.

Then we see that the ADLs in Table 1 are more or less
divided between those that do support complex connectors
as first-class elements and those that do not, either allowing
a limited set of connectors only or requiring that architects
simulate these through components. We acknowledge that
this is somewhat a question of taste, just like Java requires

124 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Table 1: Some important ADL characteristics

ADLs Formal
behaviour

specification

First-class
complex

connectors

Realisable

Darwin [22] FSP No Yes
Wright [1] CSP Yes Potentially no

(glue centralised
controller element)

ACME [14] Possible with
annotations

Yes Potentially no
(when Wright

connectors
employed)

Rapide [21] Event patterns No Potentially no
(global

architectural
constraints pattern)

UniCon [34] No No Yes
C2 [25] Z No Yes
LEDA [7] pi-calculus No Yes
OLAN [2] No No Yes
XADL [10] Possible with

schema
extension

Yes Potentially no
(when Wright

connectors
employed)

PRISMA [29] pi-calculus Yes Potentially no
(when connector

aspects are
employed)

RADL [32] Finite State
Machine

No Yes

PiLar [9] process
algebraic
notation

Yes Potentially no
(when constraints

are employed)
π-ADL [27] pi-calculus Yes Potentially no

(when connector
protocols are

employed)
AADL [11] Automata No Yes
Koala [35] No No Yes
COSA [28] No Yes Potentially no

(glue centralised
controller element)

SOFA [31] Behaviour
Protocols

(simplified
CSP)

No Yes

CONNECT [18] FSP Yes Potentially no
(glue centralised

controller element)

that every procedure is specified as a method of some class
while C++ allows independent procedures too. As we do not
like having to write Math.sqrt() in Java to call the square
root function, we believe that it is better to not try to fit
everything into a single element and offer a separate notion
to characterize protocols – connectors.

Indeed, when (complex) connectors are implicit entities
embedded in components (as is, for instance, the case with
Darwin, Rapide, OLAN, LEDA, and RADL), they cannot
be re-used in different contexts. Furthermore, components
become less re-usable too being specific to certain interac-
tion protocols. Worse, when interaction protocols are omitted
entirely in architectures, this results in architectural mis-
match [13] That is, it is not documented how the components

are to behave in their environment and interact with other
components; thus, it is very likely that those components are
unable to be composed successfully to a whole system.

Having mentioned the importance of explicit complex
connectors in design, a careful reader will notice that in
Table 1 each referred ADL supporting connectors as a first-
class entity have a realisability problem. That is, centralised
global constraints are allowed (if not forced) to be speci-
fied that coordinate the behaviour of components – which
however can never exist in distributed (i.e., decentralised)
systems. In such a case, specifications would become un-
realisable that cannot easily be implemented in reality.
Separating the global constraints into distributed protocols
for the participating components may avoid this, which may
however be impossible to do. Worse yet, no tool can warn
designers that their design is potentially unrealisable, as the
realisability problem is undecidable in general.

Therefore, connectors in XCD are not specified with glue-
like centralised units. Instead, as depicted in Figure 1, we
consider connectors as abstractions of decentralised roles,
which represent the interaction behaviour of participating
components, and connector channels between the roles.
Thus, architectural design of distributed systems is specified
in a decentralised manner without the restriction of using
centralised glues rendering them realisable by construction.

In cases where glue-like centralised choreographers are
desired, they are specified as explicit connector roles too.

2. Architecture Specification with Design
by Contract

Design by Contract (DbC) invented by Bertrand Meyer
[26] is considered as an approach for specifying the be-
haviour of software in terms of contracts consisting es-
sentially of pre-conditions and post-conditions. A contract
herein imposes on software units that if the required pre-
condition is satisfied by the caller of the unit, then the unit
is executed and is ensured to meet certain post-condition.

In this section, we focus on the idea of adopting and
extending DbC for specifying software architectures that can
be easily developed and formally analyzed.

2.1 Why Design-by-Contract (DbC)
Formal specification DbC essentially promotes a formal

specification of software behaviour in that the notion of con-
tracts has its formal semantics based on Hoare’s logic [16]
and VDM’s rely-guarantee [3] specification approach.

Familiar to developers DbC has been supported by various
programming languages and thus already known and used
by many developers. This highly aids in contractual speci-
fications being more familiar among developers, compared
with process algebras requiring unusual concurrency oper-
ators such as parallel composition and (non)deterministic
choice operators. DbC has been widely utilized in test-driven

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 125

Fig. 1: Meta-model of XCD

developments with the purpose of improving fault detection
in software units. Indeed, there are ever-increasing attempts
put on this field, e.g., [4], [6], [33]. Java Modeling Language
(JML) [8] is one of most well-known work on DbC. Intended
for Java language, JML allows for specifying the behaviour
of Java modules (e.g., Java classes, methods, or interfaces)
with executable contracts. Hence, the behaviour of Java units
can be formally specified using JML and further formally
verified [12]. Moreover, JML is found easy to use by the
software engineering community in that it has been used in
teaching for undergraduates [19].

Gap in the field of software architecture Although DbC
has been widely considered for the implementation stage
of software development, the situation is the contrary for
the software architecture level of design stage. To our
knowledge, there is only a couple of ADLs developed so
far, i.e., RADL [32] and CBabel [5], which include in their
focus the DbC. However, their support is rather limited,
or, just like other ADLs, suffer from the above mentioned
problems. Given the advantages of DbC in specifying formal
behaviours and the importance of early formal verification,
we believe that this is a crucial gap not thoroughly addressed
so far. Indeed, if there was a DbC-based ADL providing
comprehensive support to specifying software architectures,
designers would be highly attracted enabling the formal
verification of their architectures early on in the design stage.

2.2 XCD– A DbC-based ADL
With the main intent on specifying the behaviour of

implementation components, DbC contracts are, in general,
considered for methods provided by classes, just like JML
does. Though this is enough for specifying and verifying the
implementation components, it is certainly not so at the level
of software architecture design. Indeed, architectural compo-
nents includes not only the explicit specification of provided
services but also that of required services. Moreover, compo-
nents in software architectures may communicate explicitly
by emitting/receiving asynchronous events too.

Therefore, following our initial attempt in [20], XCD
extends DbC to apply the notion of contracts to the software
architecture design. Component behaviour is specified with

contracts constraining the event/method actions performed
via component ports. Likewise, the connector roles played
by components are specified with contracts constraining
their port-variables (representing the participating compo-
nent ports – see section 2.2.2). Contracts, as depicted in
Figure 1, are separated into functional and interaction units:
the former is used to represent the functional behaviour of
components and the latter represents either the interaction
behaviour of components or the interaction protocols of
connectors. The rest of this section further elaborates on
contractual component and connector specifications.

Listing 1: Generic component structure
1 component Name {
2 data;*
3 provided port Name {
4 @interaction{
5 accepts: pre-condition
6 rejects: pre-condition
7 ***OR***
8 waits: pre-condition }
9 @functional{

10 requires: pre-condition
11 ensures: post-condition }
12 method;+
13 };*
14 required port Name {
15 @interaction{
16 promises: pre-condition }
17 @functional{
18 promises: pre-condition
19 requires: pre-condition
20 ensures: post-condition }
21 method;+
22 };*
23 emitter port Name {
24 @interaction{
25 promises: pre-condition }
26 @functional{
27 promises: pre-condition
28 ensures: post-condition }
29 event;+
30 };*
31 consumer port Name {
32 @interaction{
33 accepts: pre-condition
34 rejects: pre-condition
35 ***OR***
36 waits: pre-condition }
37 @functional{
38 requires: pre-condition
39 ensures: post-condition }
40 event;+
41 };*
42 }

2.2.1 Contractual Component Specifications
Components are used to specify at a high-level the func-

tional units in software systems. Unlike AADL, XCD allows
designers to describe high-level components without impos-
ing on them lower-level notions (e.g., threads, process).

Component types are essentially specified in terms of
(i) ports representing the points of interaction with their
environment and (ii) data representing the component state.

126 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

As depicted in Listing 1, four types of ports can be speci-
fied for a component: provided and required ports for receiv-
ing and making method calls respectively; emitter and con-
sumer ports for emitting and receiving asynchronous events
respectively from the component’s environment. Herein we
extend DbC to allow for contractual specification of not only
provided ports, but also required ports and event ports. Fur-
thermore, contracts are split into functional and interaction
contracts, allowing to distinguish between the functional and
interaction behaviour. Both contract types are specified over
component data and method/event action parameters.

The interaction contracts have precedence over functional;
the former states when an event/method action can be taken
by a port, and the latter the functional behaviour that is the
case upon successful execution of the action.

Provided ports – Provided ports are specified as a set
of synchronous method signatures, composed of return type,
id, parameters, and exceptions. Each method, as shown in
Listing 1, is specified using @interaction and @functional
contract pair. @interaction is defined with a pre-condition
that can take two alternative forms. In the first form, it
specifies when a call can be immediately accepted (accepts)
or rejected (rejects), while in the second form it specifies
wait condition which delays the caller before its method-call
is accepted. @functional is specified with pre- and post-
conditions, requires and ensures respectively. Herein, they
are used to specify what actual parameters are required in
the pre-state of the component that ensures certain specific
values for result/exception returned by the method-call.

Required ports – Likewise, required ports are spec-
ified with method signatures and contracts attached to the
methods. @interaction contract for a method herein is
specified with a promised pre-condition that needs to
be satisfied before making the method-call. @functional
contract herein is specified with promises, requires, and
ensures clauses: promises states the promised condition on
the actual parameters for the method to be called, requires
states the pre-condition on the response received for the
method-call (e.g., whether exception or result is expected),
ensures states the post-condition on the received response.

Emitter ports – Emitter port are specified similarly to
required ports. @interaction contract for an event herein
is specified with a promised pre-condition stating what
needs to be met before the event is emitted. @functional
is specified with promises and ensures clauses: the former
states the pre-condition on the actual parameters of the event,
the former states the condition on the component data after
the event emission with the promised actual parameters. Note
that unlike required ports emitter port does not wait for a
response.

Consumer ports – Consumer ports are specified
similarly to provided ports. @interaction contract for an
event is specified just like that of provided ports with the
same semantics. They state the acceptance (accepts) and

rejection (rejects) conditions on an event receipt or the wait
condition for an event to be received. @functional contract
is specified with requires pre-condition and ensures post-
condition. requires states the condition on the received
actual parameters of the event whose satisfaction leads to
the ensures condition being met. Note that consumer ports
receive event asynchronously and do not send responses, as
is the case with required ports communicating synchronous
methods.

Listing 2: Generic connector structure
1 connector Name {
2 role Name {
3 data;*
4 required/provided port_variable Name {
5 @interaction{
6 waits: pre-condition
7 ensures: post-condition }
8 method;+
9 };*

10 emitter/consumer port_variable Name {
11 @interaction{
12 waits: pre-condition
13 ensures: post-condition }
14 event;+
15 };*
16 }
17 channel;+
18 }

2.2.2 Contractual Connector Specifications
As aforementioned, connectors in XCD are introduced to

represent high-level complex interaction protocols which the
components interacting through connectors adhere to.

Connector types are specified via roles and channels. A
role acts as a component wrapper representing the interaction
behaviour of the participating component. It is described
with data and port-variables. The role port-variables es-
sentially represent the respective ports of the components
adopting the role. Channels of a connector represent the
communication links between interacting roles and are de-
scribed with a pair of communicating role port-variables.

As depicted in Listing 2, connector behaviour is specified
at the role port-variable level. Port-variables are specified
with @interaction contracts attached to the event/method
actions. These interaction contracts are specified to constrain
port-variable actions so that the respective component ports
behave in a particular manner (i.e., through execution of
certain action order) that meet desired interaction protocols.
In doing so, it can be avoided that components get involved
in unexpected interactions with other components associated
with the same connector. The end result is then a set of
components interacting with their environments successfully
to compose the whole system.

As shown in Listing 2, @interaction contract for a
port-variable action is specified uniformly for each port-
variable type, with waits and ensures clauses. Herein,
waits defines a pre-condition which delays the execution

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 127

of a port-variable action, namely the respective action of
the matching component port. When the wait condition is
satisfied, the method/event action may be executed. and the
ensures post-condition is then to be satisfied too. Note
that when the interaction contracts for an action imposed
via port-variable are met, then the interaction contracts of
component ports are evaluated before executing the action.

2.2.3 Shared-Data Access Case Study

Listing 1 below illustrates XCD’s DbC-based behavioral
specification on shared-data access. Two component types
are specified, user between lines 1-21 and memory between
lines 22-44. User comprises a required port, puserr (lines
4-12), through which its instances call method get from the
memory and an emitter port, pusere (lines 13-20), through
which event set is emitted. Memory comprises a provided
port, pmem_p (lines 25-34), through which its instances
accept calls for method get from users and a consumer port,
pmemc (lines 35-43) through which event set is received.

a) User Component Type: User’s required port puserr is
used to make a call for method get. These calls are delayed
until the promised condition specified in @interaction is
met. Since it is true in line 6, get can be called immediately.
Next, the @functional in lines 7-10 is evaluated; since get
has no parameters, there is no promised actual parameters
(promises condition in line 8 is true). Upon receiving
the response after calling get without parameters, if the
requirement that an exception is not thrown by the memory
is true, then the received result are ensured to be stored in
the data.

The user components emit event set through its emitter
port pusere. Note that events are specified without return
types – they can only have identifier and parameters. The
emission of event set is delayed until the promised condition
of @interaction in lines 14-15 is met. Since it is specified
as true, emission is made immediately with the promised
actual parameters specified in @functional (line 17). This
then ensures that initialised_u is set to true.

b) Memory Component Type: Memory’s provided port
pmemp receives calls for method get. These calls are
accepted when the accepts condition in @interaction is
met, initialised_m evaluating to true (line 27). Otherwise,
the call is rejected when initialised_m is false (line 29)
leading to chaos. If the call is accepted, then @functional
in lines 30-32 is evaluated. There, it is ensured that the
result value to be responded is equal to the sh_data.

The memory components receive event set via the
consumer port pmemc. The receipt of the event set is de-
layed until the promised condition is met in @interaction.
Since it is specified as true in line 37, the set is re-
ceived immediately. Upon successful receipt of the event

set, @functional in lines 38-41 is evaluated. If the
requirement that the received actual parameter data_arg
is greater than or equal to zero, then initialisedm is ensured
to be true and sh_data is assigned to data_arg.

c) Shared-Data Connector Type: Connector type,
sharedData, is specified in lines 45-90 which serves
as a mediator between users and memory. It essentially
avoids memory from performing a chaotic behaviour. In
the sharedData, three roles are specified, userRole in lines
47-53, initialiserRole in lines 55-69, and memoryRole
in lines 71-85, where the userRole and initialiserRole
are played by the user component instances and the
memoryRole by the memory instances.

Users playing the userRole can call method get or
emit event set in any orders. Indeed, the role port-variables
pv_userr and pv_usere in lines 48-53 do not include
contracts specified for the actions.

However, users playing the initialiserRole have to
emit event set before calling get, thus first initialising
the memory. The port-variable pv_initr in lines 57-62
includes @interaction contract for method get stating that
it cannot be called until the role data initialised_i is true;
the pv_inite in lines 63-68 also includes @interaction
allowing event set to be emitted immediately which then
ensures that the role data initialised_i is true.

The memoryRole has two port-variables, pv_memp

in lines 73-78 and pv_memc in lines 79-85. The former
includes an @interaction contract for method get so that
received method calls are delayed until the shared data is
initialized; the latter includes @interaction for event set
so that when an event set is received, initialised_m is
set to true. Therefore, memory components playing the
memoryRole cannot accept calls for method get until
they receive event set first. The end result is a set of users
playing either userRole or initialiserRole interacting
with a memory component that would not cause chaos.

In lines 86-89, there are four channels specified to
indicate which role port-variable communicates with which
other role port-variable.

The matching between connector roles and components
are performed via the connector parameters, as specified in
lines 45-46. At configuration time, when the sharedData
is instantiated, the user and memory component instances
are passed to first and last parameters respectively.

1 component user{
2 bool initialised_u = false;
3 int data;
4 required port puserr {
5 @interaction{
6 promises : true; }
7 @functional{
8 promises : true;
9 requires : !\exception

10 ensures : data = \result; }
11 int get();

128 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

12 };
13 emitter port pusere {
14 @interaction{
15 promises : true; }
16 @functional{
17 promises : data_arg = 7;
18 ensures : intialised_u = true; }
19 set(int data_arg);
20 };
21 };
22 component memory {
23 bool initialised_m = false;
24 int sh_data = 0;
25 provided port pmemp{
26 @interaction{
27 accepts : initialised_m;
28 also :
29 rejects : !initialised_m; }
30 @functional{
31 requires : true;
32 ensures : \result = sh_data;}
33 int get();
34 };
35 consumer port pmemc{
36 @interaction{
37 accepts : true; }
38 @functional{
39 requires : data_arg ≥ 0;
40 ensures : intialised_m = true
41 && sh_data = data_arg; }
42 set(int data_arg);
43 };
44 };
45 connector sharedData(userRole{pv_userr/e},
46 initialiserRole{pv_initr/e}, memoryRole{pv_memp/c}) {
47 role userRole{
48 required port_variable pv_userr{
49 int get();
50 };
51 emitter port_variable pv_usere{
52 set(int data_arg);
53 };
54 };
55 role initialiserRole{
56 bool initialised_i = false;
57 required port_variable pv_initr{
58 @interaction{
59 waits : when(intialised_i);
60 ensures : true; }
61 int get();
62 };
63 emitter port_variable pv_inite{
64 @interaction{
65 waits : true;
66 ensures : initialised_i = true; }
67 set(int data_arg);
68 };
69 };
70

71 role memoryRole{
72 bool initialised_m = false;
73 provided port_variable pv_memp{
74 @interaction{
75 waits : when(intialised_m);
76 ensures : true; }
77 int get();
78 };
79 consumer port_variable pv_memc{
80 @interaction{
81 waits : true;
82 ensures : initialised_m = true; }

83 set(int data_arg);
84 };
85 };
86 channel user2memory_m(pv_userr, pv_memp);
87 channel user2memory_e(pv_usere, pv_memc);
88 channel init2memory_m(pv_initr, pv_memp);
89 channel init2memory_e(pv_inite, pv_memc);
90 };

Listing 3: Shared-data Access in XCD

3. Formally Defined Semantics with FSP
The semantics of XCD are based on Finite State Process

(FSP) [23]. FSP is essentially a process algebra allowing
to specify system behaviour formally with interacting pro-
cesses. In this way, specifications with XCD can be trans-
formed into formal FSP specifications which can further be
analyzed for safety and liveness properties (e.g., deadlock).
This section gives an initial flavor of the FSP mappings for
XCD component and connector specifications in terms of
parallel interaction (||) of FSP processes.

Component Semantics The semantics of a component
with data D and ports p1,..., pn is the composite process:

PDc
|| Pp1 .. || Ppn (1)

where PDc is the data process and Pp1,..., Ppn each is a port
process whose definition is:

PIC || PFCa1
.. || PFCam

(2)
where PIC is the interaction constraints process and
PFCa1

..,PFCam
each is a process for a functional constraints

imposed on a single method/event action taken via the port.
Connector Semantics The semantics of a connector with

roles r1,..., rn channels ch1,..., chn is the composite process:
Pr1 .. || Prn (3)

where Pr1..., Prn each is a role process whose definition is:
PDr || Ppv1 .. || Ppvn (4)

where PDr is the data process and Ppv1 ,..., Ppvn each
is a port-variable process that represents the interaction
constraints imposed on method/event actions taken by the
port-variable.

Channels of a connector are mapped to FSP relabeling
function employed in the composite process corresponding
to the connector. The relabeling function, for each channel,
re-names the actions taken by the provided/consumer port-
variable in one end of the channel to the names of the
respective actions taken by the required/emitter port-variable
in the other end. Therefore, corresponding FSP processes can
synchronize on the actions they have been re-named to.

4. Conclusion and Future Work
In this paper, we presented a new ADL, XCD, which

resolves three main problems either of which seems to be
suffered by current ADLs: unfamiliar notations adopted in
specifying architectural behaviours, lack of support for com-
plex connector specifications, and potentially unrealisable
designs.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 129

In response to these problems, XCD is based on Design-
by-Contract approach in specifying the behaviour of soft-
ware architectures, instead of more abstract formal nota-
tions (e.g., process algebras). Thus, software architectures
can be specified with contracts that many developers are
already familiar with. Furthermore, architectural connectors
in XCD can be used to specify either simple interconnection
mechanisms or complex interaction protocols. So, large
and complex systems can be specified at a high level as
components interacting via complex interaction protocols
improving their development and analysis. Connectors are
specified in terms of decentralised roles played by the par-
ticipating components; there is no glue-like centralised units
forced in connector specifications. This leads to architectural
designs that are realisable by construction.

To allow for formal analysis, we define the semantics
of XCD using Finite State Process (FSP). We are currently
exploring a definition of XCD semantics based on Promela
[17], so as to take advantage of the SPIN model checker and
better control the state-space explosion problem.

5. Acknowledgements.
This work has been partially supported by the EU project

FP7-257367 IoT@Work – “Internet of Things at Work”.

References
[1] R. Allen and D. Garlan. A formal basis for architectural connection.

ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.
[2] L. Bellissard, N. De Palma, and D. Féliot. The olan architecture

definition language. Technical report, C3DS Technical Report, 2000.
[3] D. Bjørner and C. B. Jones, editors. The Vienna Development Method:

The Meta-Language, volume 61 of Lecture Notes in Computer Sci-
ence. Springer, 1978.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing
based on java predicates. In ISSTA, pages 123–133, 2002.

[5] C. Braga and A. Sztajnberg. Towards a rewriting semantics for
a software architecture description language. Electr. Notes Theor.
Comput. Sci., 95:149–168, 2004.

[6] L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis
contracts to improve the testability of object-oriented code. Softw.,
Pract. Exper., 33(7):637–672, 2003.

[7] C. Canal, E. Pimentel, and J. M. Troya. Specification and refinement
of dynamic software architectures. In P. Donohoe, editor, WICSA,
volume 140 of IFIP Conference Proceedings, pages 107–126. Kluwer,
1999.

[8] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions:
Advanced specification and verification with JML and ESC/Java2. In
FMCO’05 – Formal Methods for Comp. and Obj., volume 4111 of
LNCS, pages 342–363. Springer, 2006.

[9] C. E. Cuesta, P. de la Fuente, M. Barrio-Solórzano, and M. E. B.
Gutiérrez. An "abstract process" approach to algebraic dynamic
architecture description. J. Log. Algebr. Program., 63(2):177–214,
2005.

[10] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A highly-
extensible, xml-based architecture description language. In WICSA,
pages 103–112. IEEE Computer Society, 2001.

[11] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture Analysis
& Design Language (AADL): An Introduction. Technical report,
Software Engineering Institute, 2006.

[12] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for java. In J. Knoop and L. J.
Hendren, editors, PLDI, pages 234–245. ACM, 2002.

[13] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or
why it’s hard to build systems out of existing parts. In ICSE, pages
179–185, 1995.

[14] D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture
description interchange language. In Proceedings of CASCON’97,
pages 169–183, Toronto, Ontario, November 1997.

[15] D. Garlan and M. Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors, Advances in Software Engineer-
ing and Knowledge Engineering, pages 1–39, Singapore, 1993. World
Scientific Publishing Company.

[16] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[17] G. J. Holzmann. The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004.

[18] V. Issarny, A. Bennaceur, and Y.-D. Bromberg. Middleware-layer
connector synthesis: Beyond state of the art in middleware interoper-
ability. In M. Bernardo and V. Issarny, editors, SFM, volume 6659 of
Lecture Notes in Computer Science, pages 217–255. Springer, 2011.

[19] J. R. Kiniry and D. M. Zimmerman. Secret ninja formal methods.
In J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors, FM, volume
5014 of Lecture Notes in Computer Science, pages 214–228. Springer,
2008.

[20] C. Kloukinas and M. Ozkaya. Xcd - Modular, realizable software
architectures. In C. S. Pasareanu and G. Salaün, editors, FACS, volume
7684 of Lecture Notes in Computer Science, pages 152–169. Springer,
2012.

[21] D. C. Luckham. Rapide: A language and toolset for simulation of
distributed systems by partial orderings of events. Technical report,
Stanford University, Stanford, CA, USA, 1996.

[22] J. Magee and J. Kramer. Dynamic structure in software architectures.
In SIGSOFT FSE, pages 3–14, 1996.

[23] J. Magee, J. Kramer, and D. Giannakopoulou. Analysing the behaviour
of distributed software architectures: a case study. In FTDCS, pages
240–247. IEEE Computer Society, 1997.

[24] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang.
What industry needs from architectural languages: A survey. IEEE
Transactions on Software Engineering, 99, 2012.

[25] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using
object-oriented typing to support architectural design in the c2 style.
In SIGSOFT FSE, pages 24–32, 1996.

[26] B. Meyer. Applying “Design by Contract”. IEEE Computer,
25(10):40–51, 1992.

[27] F. Oquendo. π-adl: an architecture description language based on
the higher-order typed π-calculus for specifying dynamic and mobile
software architectures. SIGSOFT Softw. Eng. Notes, 29(3):1–14, May
2004.

[28] M. Oussalah, A. Smeda, and T. Khammaci. An explicit definition
of connectors for component-based software architecture. In ECBS,
pages 44–51. IEEE Computer Society, 2004.

[29] J. Pérez, I. Ramos, J. J. Martínez, P. Letelier, and E. Navarro. Prisma:
Towards quality, aspect oriented and dynamic software architectures.
In QSIC, pages 59–66. IEEE Computer Society, 2003.

[30] D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, Oct. 1992.

[31] F. Plasil and S. Visnovsky. Behavior protocols for software compo-
nents. IEEE Trans. Software Eng., 28(11):1056–1076, 2002.

[32] R. Reussner, I. Poernomo, and H. W. Schmidt. Reasoning about
software architectures with contractually specified components. In
A. Cechich, M. Piattini, and A. Vallecillo, editors, Component-Based
Software Quality, volume 2693 of Lecture Notes in Computer Science,
pages 287–325. Springer, 2003.

[33] D. S. Rosenblum. A practical approach to programming with
assertions. IEEE Trans. Software Eng., 21(1):19–31, 1995.

[34] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik. Abstractions for software architecture and tools to
support them. IEEE Trans. Software Eng., 21(4):314–335, 1995.

[35] R. C. van Ommering, F. van der Linden, J. Kramer, and J. Magee.
The koala component model for consumer electronics software. IEEE
Computer, 33(3):78–85, 2000.

130 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

A Quantitative Approach to the Evolution of
Domain-Specific Modeling Languages

Kiyotaka Ota, Kenji Hisazumi, Weiqiang Kong, Tsuneo Nakanishi, and Akira Fukuda

Graduate School of Information Science and Electrical Engineering, Kyushu University
Fukuoka-city, Japan

Abstract - Domain-Specific Modeling Languages (DSMLs)
are modeling languages that are effective only for particular
domains, and DSMLs can make software development much
simpler. It is often desirable for DSMLs to be usable
repeatedly and for a long time since developing DSMLs is
costly and time-consuming. However, this is not easy because
it is difficult to evolve existing DSMLs. Conventional evolution
of DSMLs is usually conducted based on the information
obtained from domain experts (i.e., the interview results of
domain experts). However, the DSML problems understood by
domain experts can be incomplete, which makes it difficult for
DSML developers to judge how to evolve DSMLs and whether
an evolution is effective or not. In this paper, we propose an
approach to the evolution of DSMLs using quantitative
information such as the application data of DSMLs.

Keywords: Domain-Specific Modeling Languages; Evoluti-
on; Metrics;

1 Introduction
 In recent years, software development meets many
problems that are caused by increase in software scale, the
complexity of software design, the reduction of development
schedule and cost and so on. Domain-Specific Modeling
(DSM)[1] as a method to solve these problems has been
attracting attention.
 DSM is to design by domain-specific languages (DSLs)
[1], the languages that are applicable only to particular
domains, so as to make software development small-scale.
Since DSLs are defined by concepts and terminologies
particularly used in specific software development, DSLs
facilitate the software development by domain experts, who
have much knowledge of the domain and are also end users
themselves. DSLs using graphical notations are called
Domain-Specific Modeling Languages (DSMLs) [1]. DSMLs
cannot be used for developing the software of other domains,
and additionally, the development of DSMLs takes much cost
and time before putting them into practical usages. Therefore,
it is desirable for a DSML to be usable for more software
development repeatedly and be used for a long time [1].
However, this is difficult because DSML developers must
evolve DSMLs in accordance with the changes of the
requirements of DSMLs. Conventional maintenance of
DSMLs employs qualitative information such as
dissatisfaction and needs from domain experts, and the

quantitative information is seldom used [2]. It is difficult to
show the validity and efficacy of DSML evolution to domain
experts because the DSML problems domain experts
understand are incomplete. Since it is difficult to assess the
efficacy of DSML evolution by the incomplete information,
DSML developers cannot evaluate DSML evolution.
 In order to improve this situation, we propose to
maintain DSMLs by quantitative information collected during
software development with DSMLs, and we call such
quantitative information DSMLs application data. With our
proposal, DSML developers can quantitatively analyze the
problems of DSMLs and decide possible options for solving
the problems. As a result, DSML developers can show the
validity and efficacy of DSML evolution to domain experts.
 In this paper, our purpose is to evolve abstract syntax
and concrete syntax of DSMLs. A DSML is comprised of
three components: abstract syntax, concrete syntax, and
semantics. The abstract syntax defines modeling concepts and
their relationships and the concrete syntax defines physical
appearance of the abstract syntax. The semantics is the
meaning that a model described by a DSML has, and is used
to translate the model. The target of our proposal is the
evolution of the concepts or the appearance of DSMLs, and
we are not concerned with the evolution of the translation of
DSMLs.

2 Process of DSML maintenance
 Figure 1 is the DSML maintenance process. In order to
make DSMLs usable for a long time, DSMLs are maintained
in the four phases except the Deployment Phase. These
phases are explained in detail below:

1) Deployment Phase: Domain experts develop software
with DSMLs. DSML developers collect DSML application
data for the purpose of the maintenance during domain experts
develop software. If fixed time passed or requirements to
DSMLs change DSML developers move to the Evaluation
Phase.

2) Evaluation Phase: DSML developers evaluate, based
on the collected data, DSMLs’ quality, efficacy, efficiency or
the achievement level of requirements. If there are problems,
they move to the Analysis Phase, otherwise, they move to the
Deployment Phase.

3) Analysis Phase: DSML developers analyze possible
options for solving the problems identified in the Evaluation
Phase. After analysis, a decision on choosing which options is
made.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 131

4) Design Phase: DSML developers re-design the DSMLs
newly.

5) Implementation Phase: DSML developers implement
the DSMLs designed in the Design Phase and enable domain
experts to use the DSMLs.

Do not
evolve

Evaluation

Analysis

Implementation

Deployment

Evolve

M
aintenance Process

Design

Figure 1. The process of DSML maintenance

3 Environment for collecting data of
the DSML application

 A software development environment to collect DSML
application data is required by our proposal. In this study we
utilize clooca [3] to collect DSML application data. clooca is
a web-based development environment to develop software
by DSMLs and data of described models can be accumulated
on servers. DSML developers can measure the quality of
DSMLs and analyze possible options for DMSL evolution
because they can use the available data for metrics. Moreover,
since clooca is under development, it is possible to expand
clooca so that we can collect DSML application data. Figure.
2a is a screen snapshot of clooca operation window and
Figure. 2b is a screen snapshot of clooca repository. (Note
that, as you can see from the snapshots, clooca supports
Japanese input as well as English input.)

(a)

(b)

Figure 2. (a) A screen snapshot of the clooca operation
window. (b) A screen snapshot of clooca repository.

4 Metrics for DSML evolution
 In this section we show the metrics required for the
evolution of DSMLs. There are two metrics in our proposal,
which are the metrics for DSML quality, and the metrics for
problem solving. They are computed from the data collected
during domain experts develop software by the DSMLs in the
Deployment Phase and are used by DSML developers for the
maintenance of the DSMLs. We explain them in detail below:

4.1 The metrics for DSML quality
 The metrics for DSML quality are used to measure the
quality of the DSMLs used in the Deployment Phase. DSML
developers can identify whether the evolution of DSMLs is
necessary or not by measurement their quality. If the DSMLs
are effective, it is then not necessary to evolve the DSMLs,
and the DSMLs should continue to be used. Moreover, the
measurement of DSML quality can make the objectives of the
evolution of DSMLs clearer. DSML developers can identify

132 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

the problems DSMLs have and can realize the quality that
should be improved by them.
 Table 1 is an example of the metrics for the DSML
quality. The targets of measurement by metrics of DSML
quality are classified in three kinds, which are the quality of
DSML definitions, the quality of DSMLs usages and the
quality of DSML products. The quality of DSML definitions
is the degree of the excellence of the characteristics that
DSMLs themselves have and the RDD in Table. 1
corresponds to it. The RDD demonstrates the degree of the
dissatisfaction that domain experts have. The RDD is
calculated by Equation (1). The ND in Equation (1) is the
number of domain experts who press a dislike button, a
button which clooca has to show dissatisfaction of a DSML;
the DE in Equation (1) is the number of domain experts who
use a DSML. The quality of DSML usages is the degree of
usability and efficiency when domain experts use a DSML
and the TMD in Table. 1 corresponds to it. The TMD
demonstrates the degree of the length to develop with a
DSML and the TMD is obtained by measuring time until a
model is completed. The quality of DSML products is the
degree of the excellence of the characteristics that DSML
products have and the CCM and the RSI in Table. 1
corresponds to it. The CCM demonstrates the quality of the
models described by a DSML and is calculated by the data of
the model in the database server of clooca. The RSI
demonstrates the conversion efficiency of source code. The
RSI is calculated by Equation (2). The SS in Equation (2) is
the size of source code and the MI in Equation (2) is the
number of model instances. The quality of DSML is
measured by these metrics.

 RDD =
ND

DE
(1)

 RSI =
SS

MI
(2)

Table 1. Example of metrics for DSML quality

Metric Description

CCM The cyclomatic complexity [3] of the model
described by a DSML.

RSI The ratio of the size of source code and the
number of instances of DSMLs.

RDD The proportion of domain experts who have
dissatisfaction to a DSML.

TMD The time spent for a model description.

4.2 The metrics for problem solving
 The metrics for problem solving are used to analyze
possible options for solving the problems DSMLs have. They

are used by DSML developers to design a DSML that do not
have the problems identified by using the metrics for DSML
quality. The evolution of DMSLs is classified under eight
patterns (Table 2). The options analyzed by the metrics have
one or more functions of these patterns.
 Table 3 is an example of the metrics for problem solving.
The DER measures the connection and the dependence of
DSML elements, the elements that are the words to describe
models, and is used for the union of DSML elements or the
addition of DSML constraint in Table 2. The DER is obtained
by calculating combination of DSML elements and frequency
of it by the database of clooca. The DEU measures utilization
of each DSML element and is used for the deletion of DSML
elements. The DEU is calculated by Equation (3). The EI in
Equation (3) is the number of model instances of a DSML
element and the AI in Equation (3) is the number of all model
instances. The NDE measures the dissatisfaction to each
DSML elements and is used for the deletion of DSML
elements, the modification of DSML elements, the union of
DSML elements, or the separation of DSML elements. The
NDE is measured by the dislike button of each DSML
elements.

 DEU =
EI

AI
(3)

Table 2. The eight patterns of the DSML evolution

Pattern Description
Addition of
DSML elements To add new elements to a DSML.

Deletion of
DSML elements To delete elements from a DSML.

Modification of
DSML elements To modify elements of a DSML.

Union of
DSML elements To unite elements of a DSML.

Separation of
DSML elements To separate elements of a DSML.

Addition of
constraint To add new constraint to a DSML.

Deletion of
constraint To delete constraint from a DSML.

Modification of
constraint To modify constraint of a DSML.

Table 3. Example of metrics for problem solving

Metric Description
DER DSML elements relevance.
DEU DSML elements utilization.

NDE The number of votes of dissatisfaction to
DSML elements.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 133

5 Case study
 In this section we show an evolution of a DSML for line
trace robots. Domain experts can command this robot to run
either following a line drawn in a course or run freely. This
DSML have a diagram like activity diagrams and domain
experts can describe the run scenarios of the robots. Figure 3a
is a simple metamodel of the DSML and Figure 3b is a model
described by the DSML. The model describes the following
things:

• After a robot runs following a line at speed 60 until 100
encoders counts pass, it stops for 10 seconds.

• It runs straight at speed 30 until 50 encoders counts pass
or 20 seconds pass.

We evolved this DSML by metrics.
 First, we measured the quality of the DSML by metrics.
The results of quality measurement by the CCD and the RDD
are as follows:

• The cyclomatic complexity of all models described by
the DSML is less than 10 (Figure 5).

• 92.9% of domain experts voted to dissatisfaction.

These results showed us the followings facts:

• Models described by this DSML are not complex.
• Many domain experts have dissatisfaction to the DSML.

We understood from the facts that we must make a re-design
to reduce dissatisfaction to this DSML.

 Then, using the results of the quality measurement, we
analyzed the possible options for a DSML evolution. In order
to reduce dissatisfaction, we must identify the points to which
domain experts have dissatisfaction. The results we analyzed
by the NDE in Table 3 are as follows:

• Much dissatisfaction is caused by the concepts of the
Time Setting, the Distance Setting, the Complete Time
and the Complete Distance (Table 4).

This result made us realize that we must modify the four
DSML elements. As a result of interview with domain experts
we obtained an opinion that it was bothersome to describe the
transitions caused by time or distance. Therefore, we decided
to analyze whether we can implement one or more of the three
patterns so as to achieve a simple description. We used the
DER in Table 3 to analyze options for describing the
transitions more easily. The results are as follows:

• The Time Setting and the Complete Time are mostly
used in combination such as shown in Figure 4a.

• The Distance Setting and the Complete Distance are
mostly used in combination such as shown in Figure 4b.

The results showed that we could unite these elements. Thus,
we decided to create the Time that unites the Time Setting and
the Complete Time, and the Distance that unites the Distance
Setting and the Complete Distance. Figure 6a is a simple
metamodel of the evolved DSML and Figure 6b is a model that
is described by the evolved DSML.

MetaObject

Activity

StartEnd MetaRelationship

Transition

MetaProperties

Event

Action Attribute

Push Button

Complete Distance

Complete Time

Distance Setting

Time Setting

Stop

1

2

1 1
1

1

from
to

to
from

inout
out
in

1..*

1

0..1

1

1..*

1..*
1 1..*

Finish

FreeRun

30
0

Complete
Distance

Complete
Time

Push
Button

(a)

(b)

Complete
Distance

Complete
Time

Finish Finish

FinishFinish

Stop
Time

Setting
10

Distance
Setting

50

Time
Setting

20

Distance
Setting

100

FreeRun

TraceRun

TraceRun

60

Figure 3. (a) A simple metamodel of the DSML for Line Trace Robot. (b) A model described by the DSML.

134 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 We compared the two DSMLs by considering the RSI
and the RDD of the metrics for DSML quality to evaluate the
efficacy of the evolution. The results are as follows:

• The proportion of domain experts, who have dissatis-
faction to the DSML, becomes 42.9%.

• Source code could be generated by fewer instances
(Figure 7).

We understood from these results that the DSML evolution is
effective.

Complete
Distance

Complete
Time

(a) (b)

Time
Setting
value

Distance
Setting
value

Figure 4. (a) A combination of the Time Setting and the

Complete Time. (b) A combination of the Distance Setting and
the Complete Distance.

Table 4. The number and the proportion
of votes of dissatisfaction to the DSML elements

Analysis Item Vote Proportion

DSML
Element
Appearance

Run 4 6.8

Stop 1 1.7
Time
Setting 3 5.1

Distance
Setting 3 5.1

Push 0 0
Complete
Time 0 0

Complete
Distance 0 0

DSML
Element
Concept

Run 0 0

Stop 0 0
Time
Setting 13 22

Distance
Setting 13 22

Push 0 0
Complete
Time 11 18.6

Complete
Distance 11 18.6

Total 59

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
he N

um
ber of M

odels�

Complexity�

Figure 5. A histogram of cyclomatic complexity described by the DSML.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 135

MetaObject

Activity

StartEnd MetaRelationship

Transition

MetaProperties

Event

Action Attribute

Push Button Distance Time
Stop

1

2

1 1
1

1

1 1

1 1

from
to

to
from

inout
out
in

1..*

1

0..1

1

1..*

1..*
1 1..*

Finish

(a)

(b)

FreeRun

30
0

Push
Button Distance:100 Time:10

Distance:50

Time:20

Stop

FreeRunTraceRun

TraceRun

60

Figure 6. (a) A simple metamodel of the evolved DSML. (b) A model described by the evolved DSML.

y = 72.337x
R² = 0.99972�

y = 85.854x
R² = 0.99732�

0
5000

10000
15000

20000
25000

0 50 100 150 200 250 300 350

Source C
ode Size [B

yte]�

The number of Instances�

Before evolution

After evolution

Approximation straight line (Before)

Approximation straight line (After)

Figure 7. Trends of source code size by the number of model instances.

6 Related work
 The work in [5] demonstrates a method to develop
DSMLs by community and a supporting tool. The community
means the group of DSML developers and domain experts.
The assessment by domain experts is carried out in each
phase of a DSML development process because the domain
experts participate in the whole development process. As a
result, DSML developers can analyze and design by using the
idea from domain experts, and they can reduce rework and
improve the quality. In this proposal, although the problems
of DMSLs are analyzed by qualitative information such as
proposals from a community, the design is evaluated by the
quantitative information such as the number of affirmative
votes to the proposals.
 The work in [6] proposes a systematic approach to
assess the efficacy of the introduction of DSLs. The usability
of a DSL for High Energy Physics (HEP) called Pheasant is
assessed by the data (i.e., the ratio of correct uses and the
training time). The purpose of this study is not the evolution
of DSLs but the assessment.
 In [7], the metamodel of UML is assessed by object-
oriented design metrics. The changes of UML are analyzed
by assessing the five metamodels of UML (i.e., UML 1.1,
UML 1.3, UML 1.4, UML 1.5 and UML 2.0). In this work, it
is argued that the method for assessing UML metamodels can
be used to control and predict the evolution of UML. The
purpose of this study is to assess the quality of UML
metamodels. However, the quality of usage is not assessed
and the evolution of UML is not proposed.

7 Conclusion and future work
 In this paper, we proposed a quantitative approach to the
evolution of DSMLs by DSML application data. This
approach requires two kinds of metrics: the metrics for
measuring the quality of DSMLs and the metrics for solving
the problem of DSMLs. The metrics for DSML quality are
used to find the problems of DSMLs and decide to evolve
DSMLs and the metrics for problem solving are used to
analyze the possible options for solving the problems DSMLs
have. The DSML application data for the metrics is collected
by clooca during domain experts develop software.
 We have to identify two problems, which are to define
the metrics for the DSML quality and the problem solving

and to further evaluate the results of our studies. Some
definitions of metrics will be provided by a survey of existing
researches. These researches will give us definitions of
metrics for DSML quality. With regard to metrics for
problem solving, we will be able to obtain them by not only
the survey of the researches to evaluate DSMLs, but also the
survey of the researches on the occurrence and the relation of
the DSML elements, for example, co-occurrence or model
clone. In addition to these researches, we will also analyze
necessary metrics for DMSL evolution from the DSML
deployment problems to software development problems.
Our proposed method must be evaluated by many DSMLs,
therefore, we will evaluate our studies by DSMLs designed
for the software development of agricultural robots or
airships. Moreover, we will use the application data of
DSMLs for quantitative evaluation.

8 References
[1] S. Kelly and J-P. Tolvanen, “Domain-Specific Modeling:
Enabling Full Code Generation”, Wiley-IEEE Computer
Society Press, 2008.
[2] A. van Deursen and P. Klint, “Little languages: Little
maintenance?”, In Journal of Software Maintenance, pp.75-92,
1998.
[3] Thomas J. McCabe, “A Comlpexity Measure”, In the
Proceedings of the 2th International Conference on Software
Engineering, pp.308-320, 1976.
[4] S. Hiya, clooca educational version, http://www.clooca
.com/, (Accessed 2013-03-18).
[5] J.L.C. Izquierdo and J. Cobot, “Community-Driven
Language Development”, In the Proceedings of the
International Workshop on Modeling in Software Engineering,
pp.29-35, 2012.
[6] Ankica Barišić, Vasco Amaral, Miguel Goulão, and
Bruno Barroca, “Quality in Use of Domain Specific
Languages: a Case Study”, In the Proceedings of the 3rd
ACM SIGPLAN Workshop on Evaluation and Usability of
Programming languages and tools, pp.65-72, 2011.
[7] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma and
Yanbing Jiang, “Applying OO Metrics to Assess UML
Metamodels”, <<UML>> 2004 - The Unified Model
ing Language. Modeling Languages and Applications, pp.12-
26, 2004.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 137

Using Productivity Measure and Function Points to Improve
the Software Development Process

Eduardo Alves de Oliveira and Ricardo Choren Noya

Computer Engineering Section, Military Engineering Institute, Rio de Janeiro, Brazil

Abstract - Usually, cost and time estimations are done at the
beginning of a software project for budget planning purposes.
Such estimations are used at the end of the project to verify if
the initial planning was followed or if there were any
deviations. In this sense, these estimations can only be used as
an input to improve the process for other projects. This paper
presents an iterative method, which uses productivity and
function points metrics, to identify possible deviations in the
amount of time and effort needed to carry out the process
tasks, thus continuously updating the estimations in order to
cope with the current project needs. It is presented a real case
study of how this process can be applied.

Keywords: Function Point Analysis, Indicator of Productivity,
Software Development Process, Project Management.

1 INTRODUCTION
Software development companies are getting more and

more competitive. To understand how competitive a company
is, it must measure the productivity and quality in their
Software Development Processes (SDP) [9]. Knowing the
productivity in the SDP, allows the company to improve the
prediction of several projects parameters such as effort, time
and cost. Both users and project managers want to know before
a project starts its estimated cost and time to enhance
performance with the best accuracy possible [14].

Currently, it is usual to calculate a productivity estimate at
the initial planning phase of a project and then to verify the
actual productivity yield at the end of the project. [11] The use
of a measure at these two moments is extremely important
because the estimates are based on historical productivity.
However, measuring the productivity only at these two
moments in a project is rather insufficient and may cause some
difficulties, e.g., knowing throughout the development cycle if
the time and cost estimates will be met; monitoring the
productivity of medium and large projects; detecting the factors
that impact the productivity of a SDP; providing ongoing
adjustments to the SDP, and; controlling whether the scope of
the project is being met or not.

There already are some techniques for monitoring the
productivity of a SDP [11]. Nevertheless such techniques do
not assess productivity through a functional measurement. This

makes it difficult for managers to compare the productivity of
the development of a given functionality to the productivity of
other functionalities and to the estimated productivity of project
as a whole.

A functional measurement standardizes the estimation of
the functional size of any project [8]. Thus it can be used as the
unit to be used to measure productivity. Moreover, by using
function units managers can assess the project productivity
throughout the project and not only at its end.

Changes in the scope of project requirements are a good
example of how the use of a functional measure can give
further information to managers. Such changes can present a
growth rate of 2% per month from the time the project moves
from specification to codification [4]. If some functionality had
its scope changed it is likely to have its functional size changed
thus impacting on productivity. If managers only measure
productivity at the end of the project they will probably find the
reason why it presented a downside in productivity: changes in
the scope. However they missed the opportunity to respond to
such changes in order to keep or even enhance productivity
during the project execution. The functional measurement
could show the productivity rate of function development
required for managers to cope with the difficulty to meet the
estimated productivity.

This paper presents a method for productivity monitoring
all along an iterative SDP execution. Each iteration should have
its size measured using a functional measurement of the project
use cases. The manager will give a percentage of size of the
iteration to each SDP phase. This will allow for effort and
productivity division and monitoring in every process iteration.
This work uses Function Point Analysis (FPA) [8] as functional
measurement.

This article is structured as follows. Section 2 presents how
project planning should be done using a productivity indicator.
Section 3 describes the method proposed in this paper, i.e. the
SDP productivity monitoring. Section 4 illustrates a simple
example and, finally, section 5 concludes this paper.

138 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

2 PLANNING PROJECTS USING

PRODUCTIVITY
The productivity indicator is an important information for

planning a project, since it improves the performance in the
production of software [12]. Productivity is measured to
monitor production, reduce costs and improve the quality of the
delivered product [7].

It is considered a complex project measure, which relies on
over a hundred known factors [3]. Productivity is a ratio of
production output to what is required to produce it. The
measure of productivity is defined as a total output per one unit
of a total input. [6]. A production output unit in software can be
represented by lines of code, components, artifacts or function
points. Inputs can be effort (time) or financial (this paper
consider inputs as effort measured in hours).

Figure 1 shows a simplified diagram of productivity [5]. It
shows how resources are consumed by a particular process or
sub process for the generation of a particular software product.

Figure 1: Simplified Model for Productivity [5]

The productivity indicator is calculated using a simple
mathematical equation (1).

 Productivity = Resource / Product (1)

This paper uses the measure of hours of effort (H). The
product is represented by the number of function points (FP)
produced. Thus productivity is calculated as:

 Productivity = H / FP (2)

There are other ways to measure the size of a project, such
as lines of code (LOC) [1, 10] and use case points. The function
point (FP) metric was chosen because it is currently the most
used measure for functional measurement software in the
market. Besides it is independent of the technology of the
format of the unit. This technique has emerged as a result of
studies at IBM in the 70s [2].

FP considers the functions that store data and the
transactions that manipulate such data. The FPA is described in
a manual that describes how to calculate the functional size of a
software project or improvement of software [8]. The technique
does not define, among other things, how to treat indicator of
productivity or costs (pricing).

This paper uses FP as a basic measure in the calculation of
productivity. FPA can be used to parameterize the functional
size of software systems and projects regardless of the
technology that will be used to build it [8]. It lets all functional
requirements, recognized and specified by the user, to be sized
as a number of function points. Thus it is possible for the
project manager measure all user functional requirements in a
standardized and objective way.

3 A METHOD FOR MONITORING

PRODUCTIVITY
This paper proposed a method to monitor the productivity

of a project in every iteration during its life cycle. The idea is to
allow for adjustments between iterations so that the project
does not suffer from delays, increased costs or loss of product
quality. It is important to mention that adjustment actions made
by managers will impact the project SDP. For these impacts to
enhance productivity, it is essential for the manager to know
which activities, sub processes or phases are presenting poor
(or downslope) productivity.

The method is presented as a set of steps. Each step
indicates an action that should be performed side by side with
the SDP activities. The main purpose is to allow the manager to
compare the actual current productivity with the previously
estimated project productivity, done at early project planning
phases.

Step1: Dividing the Development Cycle by Phase and Iteration

The development cycle corresponds to the total (i) effort
consumed, and (ii) software size (FP) produced in a project.
The project should divide the development in iterations (or
sprints for agile methods). Each iteration should correspond to
a sub cycle of the SDP. It is important to mention that the
management does not change the phases (add or drop) in an
iteration in order to increase or decrease the effort spent.

Each phase in an iteration is responsible for a share of the
total effort estimated for the iteration. The project manager
should establish such share to distribute the effort that will be
employed in each phase. Such distribution should be done by
using historical data or by experience. It is important that this
distribution be realistic.

Step 2: Estimating the size of an iteration in Function Points

After the preparation of the iteration, the project manager
will have the requirements approved by the client, and these are
described in a specification. The method proposed here was
used in projects that specified its requirements using use cases.
The method to estimate the FP count by use case is as follows:

1) Finding the Elementary Processes: the manager should
find the elementary processes in the use case flows. An
elementary process is the smallest unit of meaningful activity
for the user to specify the requirement [8]. For each elementary

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 139

process found in the use case, there should be a corresponding
transactional function. After finding the transactional functions,
the manager can identify the functions that manipulate data.

2) Finding the Data Functions: during the analysis of
transactional functions it is possible to identify the data that is
manipulated by these functions. The presence of a logical data
model is important for a more precise identification of the data,
but this model is not always present at the moment the project.
Each data function has a complexity that corresponds to an
amount of FPs. However a data function can be used by
transactional functions from different use cases. In this
scenario, the manager can follow two approaches:

 2.1) select an owner Use Case: an owner use case is
the use case that is the most important (from the client
prioritizing point of view) or that uses the data function more.
Then the data function should contribute to the FP size of the
owner use case.

 2.2) divide the contribution of Function Data: each
use cases that manipulate the data function should get a slice of
its size in FP. This slice is decided by the manager.

3) Finding the estimated FP size of the Use Case: the sum
of transactional functions and data functions found in a use case
results in the estimated size FP of the use case.

Step 3: Calculating Estimated Effort of an Iteration

The project manager must, through a history of similar
projects or a historical company base, find the estimated
productivity of the project. This estimated productivity should
take into consideration the particular aspects of the project. The
iterations of the project refer to the estimated productivity of
the project. The productivity of the iteration cannot be far from
the productivity of the project, because it will increase the risk
of non-compliance (time and cost).

To reach the estimated effort, in hours, of an iteration, the
manager should multiply the estimated size of all use cases of
iteration by iteration the estimated productivity.

Step 4: Calculating the Real Productivity of an Iteration

At the end of the iteration the project manager calculates the
total hours of actual effort (final), expended by the iteration
development. Besides calculating the actual effort, the project
manager should make the final FP count of the iteration. These
will allow the manager to calculate the actual productivity of
the iteration (H / FP).

If there is a deviation in the productivity, the project
manager should take actions to adjust the SDP execution.
Otherwise the project will be at the risk of delays and/or
increase costs. These can impact the product quality.

Step 5: Assessing Impacts on the Actual Productivity

At the end of each iteration, the project manager must
answer a checklist of questions to evaluate factors that

impacted the actual productivity of the iteration. In doing so,
the manager will be able to define the actions to be taken in
subsequent iterations, aiming to adjust in real productivity of
the next iterations.

The checklist should include questions that allow the
evaluation of each SDP phase. The organization using the
proposed method can define its own set of questions. Below,
we present a set of aspects that can be used in the checklist. All
of them are related to aspects found in productivity literature [7,
13]:

1. Project complexity;

2. Project type (e.g. real time, distributed);

3. Innovation support;

4. Development infrastructure ;

5. Work environment;

6. Application integration (to other applications);

7. Team experience (analysis, design and programming);

8. Team motivation, communication and cohesion;

9. Client communication issues;

10. SDP maturity;

11. Reuse (design and code);

12. Requirements change frequency;

13. Non-functional requirements complexity;

14. Programming language complexity;

15. Verification (testing and defect removal);

16. Re-work (change management);

17. Quality standards and issues;

18. Client approval issues;

19. Evolution (maintenance aspects, refactoring, etc.);

20. Changes in the team (inclusion, drops, etc.).

The manager should verify if there were positive or
negative impacts of each aspect in the iteration productivity.
These will aid the manager to analyze possible process
improvements.

4 CASE STUDY
This section presents a case study to show the proposed

productivity monitoring approach. The goal is to show that the
method allows the project manager to monitor the productivity
of the project and give indications of the reasons that are
leading to deviations of productivity in phases and iterations.

The example portrayed here refers to a project developed by
the energy organization and its development process was

140 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

divided into three phases, namely: Requirements, Construction
and Testing. The distribution of percentage of effort per phase
was: 21% for Requirements; 53% for Construction, and; 26%
for Testing. These percentages were reported by the project
manager. The project was planned to be done in 9 (nine)
iterations with a total of fifty five use cases and a team of six
persons. At the time of this paper, six iterations have already
been performed.

The iteration analysis should include a set of questions,
such as:

1. Was the productivity of each iteration better or worse
than the initial productivity? Why was that?

2. Has the project manager defined actions to adjust the
SDP after each iteration (if necessary)?

3. Did the actions have any effects in the subsequent
iterations?

Table 1 presents the distribution, by iteration, of the number
of use cases, the FP size and the effort hours for each of the six
iterations already carried out. For the sake of simplicity, this
study did not present the FP count by use case. The size in FP
is presented by iteration. Table 2 shows the actual productivity
per iteration and phase. All phases of the development process
of this project were estimated at 17.92 H / FP.

If at the end of an iteration, the phase of the process had
productivity lower than the estimated productivity, there is a
deviation that can cause higher costs and increased time to
deliver the project. If productivity has been better than planned,
it should be a review to see if there was over estimation of
resources hours, or if all activities of the SDP were properly
executed. This may result in product quality decrease, leading
to user dissatisfaction.

The project manager created a checklist of questions based
on the aspects listed in section 3. The responses to these
questions were used as input to perform the analysis of the
factors impacting positively and negatively on the productivity
of each iteration. Thus it revealed the factors that impact the
productivity of iterations along the development cycle of the
project.

The description of the six iterations in this study is below.

• First iteration (productivity 10.55 H/FP)

o Strengths:

� Team: motivated to learn a new technology and a
new domain, and; trained before the iteration began;

� Functionality: CRUD use cases; reuse.

o Weaknesses:

� Team: only one member on testing team (unfamiliar
with testing tool); requirements team working on
different site.

o Actions taken for second iteration

� Weekly meetings with all members;

� Peer reviewing (done by senior analyst).

• Second iteration (productivity 5.56 H/FP)

o Strengths:

� Team: testing team increased to two members;

� Functionality: continued CRUD use cases; reuse.

o Weaknesses:

� Team: testing team still unfamiliar with testing tool;
weekly meetings did not include requirements
members (as they were in another site).

o Actions taken for third iteration

� Hire analyst familiar with testing tool;

� Space provision to move requirements members.

• Third iteration (productivity 15.26 H/FP)

o Strengths:

� Team: two new requirement analysts added; another
senior analyst added;

� Functionality: other core use cases (three of the
biggest (in size) use cases included).

o Weaknesses:

� Team: changes impacted on communications; part of
the team was idle;

� Workplace: not yet completed for all team members;

� Testing: not automated;

� Functionality: difficulties with the development of
specific functions.

o Actions taken for fourth iteration

� Improve workplace (mainly equipments) for team.

• Fourth iteration (productivity 29.99 H/FP)

o Strengths:

� None in special.

o Weaknesses:

� Team: (workplace impacts related) requirements,
development and testing teams worked on different
sites; project manager shared time with another
project;

� Testing: not automated;

� Functionality: intense internal reworking.

o Actions taken for fifth iteration

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 141

Table 1: Distribution of Use Cases, FP and Effort of each iteration.

Table 2: Productivity Calculation for Phase and Iteration

•

� None in special.

• Fifth iteration (productivity 24.93 H/FP)

o Strengths:

� None in special.

o Weaknesses:

� Team: new members were added (but were not
experienced); project manager still shared time with
another project;

� Testing: not automated; number of defects increased
(including the detection of defects related to
previous iterations).

o Actions taken for sixth iteration

� Team training.

• Sixth iteration (productivity 39.70 H/FP)

o Strengths:

� None in special.

o Weaknesses:

� Team: requirements, development and testing teams
still worked on different sites; project manager
shared time with another project;

� Testing: not automated; defect complexity increased.

Iterations 1 and 2 present a productivity rate above the
project estimation and they deliver the best productivity in the
whole project (iterations 1 through 6). This was mainly because
the functionality comprised CRUD use cases (with more
simple testing), there was a high rate of reuse and the team was
highly motivated.

On the other hand, iterations five and six presented the
worst productivity rate – way below the first estimate. This
increased the risk of deviations from the costs and scheduled
previously planned for the project. This was mainly motivated
due to the development of more complex use cases, higher fault
detection (including faults from previous iterations); higher

142 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

defect complexity; change in the team, and; a somewhat loose
of project management control (the project manager was also
assigned to another project).

Such information allows for the assessment of factors
impacting the project productivity. The checklist was used to
detect these factors. Indeed, the factors were used to devise
actions to improve the productivity. Nonetheless, it is important
to mention that, although the management tried to take actions
in-between the iterations, the productivity did not improve
along the project.

5 CONCLUSION
Knowing the actual (final) productivity is key to evaluate

the process of a development organization. It serves as input
for calibration of the estimated productivity indicator. But
measuring and analyzing the real productivity (final) is
insufficient to monitor a project.

The use of Function Points to calculate the productivity of a
particular project allows it to be compared to other projects. It
parameterizes the size of the functionalities and enables the use
of historical productivity information to better estimate the
schedule and the budget of new projects.

Failure to follow a project can cause serious problems to a
software project. Regarding productivity, problems may occur
to the time and the cost initially established for the project. It
also impacts in the quality of the delivered product. Usually,
the project manager only estimates the productivity at the
beginning of the project and then calculates actual delivered
productivity at the end of the project. If the project manager
awaits the completion of the project to evaluate the actual
productivity, only the next project may benefit from measures
to improve the development process.

When the project manager monitors the productivity of the
project, by iteration, it is possible to detect which process
phases present lower productivity. With such information, the
manager can attempt to take actions to improve the process on-
the-fly in order to increase the project productivity. Even if it is
not possible to take such actions, the management will have
more accurate information about the possible causes of
productivity decrease. This information will have an important
role in estimating and negotiating new projects.

This paper presented a proposal for defining a process for
monitoring the productivity of software projects through the
use of productivity indicator monitoring. This indicator is used
to assess whether the estimated productivity is being fulfilled
during the iterations of the development cycle of the project.
The calculation of this indicator is done using the size of the
use cases performed in function points, and effort in hours for
its completion. This calculation is dismembered by phases,
allowing a detailed analysis of what steps need to be improved.

With the implementation of this monitoring process the
project manager will able to take actions in the process of

adjustment of project development in order to adjust it before it
ends. Analyzing the indicator by use case and phase can be
used to try to identify the pitfalls of a development process
with more accuracy.

6 REFERENCES
[1] A. Albrecht, J. Gaffney. “Software Function, Source

Lines of Code, and Development Effort Prediction: A
Software Science Validation” – IEEE Transactions on
Software Engineering, SE-9, 6, 1983.

[2] A. Abran, P. N. Robillard, “Function Point Analysis: An
Empirical Study of Its Measurement Processes”, IEEE
Transaction on Software Engineering, Vol. 22, Nº. 12,
December 1996.

[3] C. Jones, “Positive and Negative Factors that Influence
Software Productivity”, versão 2.0. Software Productivity
Research, Inc, 1998.

[4] C. Jones, “Software Estimating Rules of Thumb”, version
3, 2007.

[5] D. N. Card, “The Challenge of Productivity
Measurement”. Pacific Northwest Software Quality
Conference, 2006.

[6] G. Karner, “Resource Estimation for Objectory Projects”,
Objective Systems SF AB, 1993.

[7] G. P. Sudhakar, A. Farooq, S. Patnaik, “Measuring
Productivity of Software Development Teams”. Serbian
Journal of Management, 2012.

[8] International Function Point Users Group (IFPUG),
“Counting Practices Manual (CPM)”, versão 4.3.1,
publicado em Janeiro de 2010.

[9] J. T. Joseph, “Role of Function Point as a Reuse Metric in
a Software Asset Reuse Program”, International
Conference on Software Engineering Research and
Practice (SERP) – Las Vegas – Nevada - USA, 2011.

[10] J. Schofield, “The Statistically Unreliable Nature of Lines
of Code”. Sandia National Laboratorie, Albuquerque –
USA, 2005.

[11] PMI - Project Management Institute, “PMBOK – Guia do
Conjunto de Conhecimentos em Gerenciamento de
Projetos – Official Portuguese”. 4ª Edição”. São Paulo:
Project Management, 2008.

[12] S. Han, S. Lee, “Quantified Comparison and Analysis of
Different Productivity Measurements”. Journal of Asian
Architecture and Building Engineering, November 2008.

[13] S. Walt, “Understanding Software Productivity”, Software
Engineering and Knowledge Engineering: Trends for the
Next Decade, D. Hurley (ed.), Vol. 4, World Scientific
Press, 1995.

[14] W. W. Agresti, W. M. Evanco, W. M. Thomas, “Models
for Improving Software System Size Estimates during
Development”. J. Software Engineering & Applications,
2010.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 143

Scaffolding the Software Design Process: Fine-Grained
Specifications from Design Tactics

A. Ejnioui1, C. E. Otero1, and A. A. Qureshi2

1Dept. of Information Technology, University of South Florida, Lakeland, Florida, USA
2Dept. of Mathematics and Computer Science, University of Virginia’s College at Wise, Wise, Virginia, USA

Abstract–Software projects define requirements to describe
what the system does. In some cases, these requirements are
not available. Instead, customers demand that the system
meet specific quality goals. Experience shows that domain
experts use design tactics to meet quality goals for several
application domains. Because most engineers are not domain
experts, they may experience difficulties in understanding and
implementing these tactics as effective solutions to design
problems related to quality attributes. In these situations, a
significant amount of trial-and-error work takes place during
design to ensure a particular goal is met. In some cases, this
valuable knowledge can be lost throughout the life cycle or
hard to reuse in future projects. This paper proposes a two-
step approach in which fine-grained specifications can be
extracted from design tactics. To address this problem, design
tactics are modeled as activity diagrams. The Unified
Modeling Language provides these diagrams as effective
representations for conveying system behavior in terms of
what actions the system performs. Action and control nodes of
these diagrams are examined in order to generate
specifications expressed in natural language based on subject-
verb-object templates.

Keywords: requirements; design tactics; activity diagrams;
natural language; templates

1 Introduction
After a few decades of experience in engineering software,
the software community considers requirements to be the
cornerstone of any software project. Because requirements
express the needs and interests of different stakeholders, they
can impact the success or failure of a software system.
Determining the correct requirements for a software system
can be fraught with pitfalls. This is understandable since
requirements analysis always starts with a project with
unclear vision and scope [1]. Contrary to software
architecture and implementation, determining requirements is
a task that has to be performed in an unconstrained space. In
fact, the attempt to determine the requirements results in a
constrained space in which a design solution can be
elaborated. These difficulties make requirements
determination highly iterative in nature, time-consuming, and
resource-intensive.

Practice on the field shows that requirements are sometimes
not elicited in a systematic fashion. In some cases,
determining requirements becomes urgent only when
architects are about to develop the architecture of the software
system under construction [2]. What is common in practice is
for customers and users to demand that the system meets
specific quality attributes or goals. These quality attributes
can be system, business or architecture-specific qualities [2].
Specifically, system attributes are critical as they can be the
foundation for system requirements. Many times, customers
express a system quality attribute as a goal while leaving the
derivation and specification of requirements related to this
goal for engineers to deal with. For instance, a customer may
require that the software system meet the goal of availability.
In this context, availability can be viewed as the minimization
of system failures and their associated consequences [2].
This goal can be met using several design approaches
depending on the target application domain. In embedded
systems for instance, availability can be met by integrating a
watchdog timer in the system architecture. On the other
hand, this goal can be met by using a server process to
monitor the state of the network and other related protocols
such as HTTP in a web server. In many software
organizations, it is not uncommon to encounter engineers who
are not domain experts as they are not sufficiently
knowledgeable about specific design approaches to meet
specific goals in specific application domains. If an engineer
never worked on an embedded system, he/she will unlikely be
aware of watchdog timers as a possible design approach to
meet the goal of availability. In this case, as long as the
engineer does not see any documented requirements specific
to a watchdog timer, he/she will not integrate it in the system.
In the worst case, customers and management expect the
engineer to generate the requirements to meet their specific
goal and sign up on these requirements as they are being
implemented. Even if the engineer was aware of watchdog
timers as a way to support availability, he/she may not have a
full understanding of the architecture and design of the timer.
In addition, he/she may have difficulty integrating the timer
in the overall design of the system. As a result, there is an
urgent need to (i) make engineers aware of the existence of a
number of design approaches to meet well-defined goals, (ii)
expose engineers to design issues related to these approaches,
and (iii) assist engineers with elaborating the requirements
appropriate to meet a specific quality goal considering the
target application domain.

144 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

In practice, experienced architects and domain experts use
design tactics as a means to meet quality goals. A design
tactic is a design decision intended to control a single quality
attribute [2, 3]. Design tactics are building blocks for design
and analysis during the software architecture activity. They
have been used on the field and shown to produce consistent
results [2, 3, 4]. Design tactics can be refined into other
design tactics that are more specialized for a given target
system. As design artifacts, design tactics may not be easy to
understand by inexperienced engineers and consequently may
not be easy to implement. Although design tactics are
somewhat fine-grain representations when integrated in
software architecture, they are still too abstract at the
conceptual level for engineers to translate from design to
implementation. Through experience, engineers develop a
number of tailored solutions to specific problems that can be
summarized as lists of ready-to-use how to's recipes. In some
instances, these solutions have been tested and proven on the
field in numerous projects. Based on this field experience,
technical leaders are able to develop technical requirements
derived from these tested solutions. From this perspective,
one can easily understand how beneficial it is to capture a
snapshot of a solution model, extract technical requirements
from it, and use the requirements to hold developers
accountable for their implementation. In fact, it is not
unreasonable to see how technical requirements specifying
how to do something, may be sometimes required to build a
high-quality system. This problem has been raised in projects
with stringent security goals. Because there are few security
experts available at this moment, engineers will be relieved to
have a list of how to's technical requirements to help them
with designing solid solutions to meet security goals. In this
context, it would be helpful to inexperienced engineers if
design tactics can be transformed into sets of requirements
intended to meet a quality goal. These requirements are the
foundation on which most engineers will build the system.
Because design tactics have been developed and tested on the
field for some time, several catalogs of these tactics have
been already assembled to meet quality goals such as
availability, modifiability, performance, testability and
usability [2]. These catalogs can be the starting point for
generating sets of requirements for each quality attribute
where these requirements are grouped by design tactics.
However, numerous other design tactics employed in
successful systems may still exist and may be hidden in
design details that have not yet been catalogued to benefit the
rest of the software engineering community.

Considering these difficulties, we propose a method intended
to generate specifications from a design tactic in order to
meet a quality attributes. This method can take as input a
formal model of a design tactic and produces in return a set of
requirements specified in natural language. The modeling of
design tactics into a formal language is necessary in the
method to ensure a systematic and predictable way for
generating requirements in natural language expression. This
method can help in reducing the effort of manually deriving
requirements from design tactics and facilitating traceability
between requirements and formal models of design tactics.

Such a method can be readily integrated in an automated
requirements engineering environment.

2 Related work
One of the earliest attempts to generate natural language
specifications from class diagrams in UML using the
GenLangUML tool has been presented in [5]. The tool relies
on WordNet as ontology to form the phrases in the natural
language text. In this attempt, the authors intended to offer
stakeholders two different views of the same model in class
diagrams and natural language specification. In addition, the
authors tried to provide stakeholders with a reverse
engineering tool that allow them to track changes in natural
language as the system evolves. The authors acknowledge
that it would be far effective to generate natural language
specification if the models include activity, sequence,
collaboration and state diagrams as well as statements in
Object Constrained Language (OCL) [6].

A second attempt in formulating natural language
descriptions from class diagrams is presented in [7]. This
attempt was intended to help students and teachers describe
classroom-scale models using class diagrams and textual
specification for pedagogical purposes. The authors have
developed the m2n tool to generate text descriptions based on
sentence templates by analyzing class diagrams. The authors
recognize that sentence templates are limited in their power to
generate a natural text.

In [8], the authors propose a two-step approach to transform a
class diagram into a natural language specification. The class
diagram follows the semantics of xtUML [9] while the
generation of specification in natural language relies on the
Grammatical Framework [10] to define the linguistic model
of the generated text. In this attempt, the authors intended to
capture the requirements of the Computational Independent
Model to validate the Platform Independent Model (PIM).
The authors acknowledge that dynamic aspects of the PIM
cannot be all captured by class diagrams. To this end, the
Action language code of the diagrams can be translated to
textual comments.

In [11], the author proposes an algorithm to automatically
extract requirements from use case diagrams. This algorithm
focuses rather on extracting a tree representing the hierarchy
of the requirements as well as the project tasks and test cases
that need to be generated for the use cases. In this attempt,
there is less emphasis on natural text generation of the
extracted requirements. The author claims that the extraction
algorithm is fairly robust since it can process models of over
800 use cases.

While these works generate textual descriptions form class or
use case diagrams, they do mostly as an aid to help different
stakeholders link design and implementation. In this regard,
they are intended as reverse engineering tools to help
stakeholders acquire requirements when they are not
available. Our approach goes a step further by assisting
engineers at the behavioral modeling level during the

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 145

elaboration of a non-trivial solution to a specific quality goal.
This requires the use of modeling diagrams such activity
diagrams that offer a process view showing the dynamic
aspects of what the system is intended to do. Because
understanding and integrating well-designed and tested
solutions such as design tactics require extensive domain
knowledge, developing their requirements becomes a tedious
and time-consuming task. These requirements are necessary
for management and engineers to keep track on which parts
of the system have been implemented and tested. Without
such requirements checklists, there is no way to show
progress in implementation. In addition, these requirements
provide an information-rich view of the decisions made about
a specific design tactic, but may have been lost throughout the
design phase.

3 Passive redundancy tactic
In order to transform design tactics into an intermediate form
of representation, it would be convenient if design tactics
were specified in some formalism that is as precise as
possible and easily amenable to analysis. In addition, it
would help if this formalism were widely adopted in the
software engineering community. UML provides different
diagrams for modeling and designing purposes [12]. Most
studies in software engineering using UML diagrams focused
mostly on class diagrams since these diagrams are arguably
the most practical diagrams in UML for object-oriented
software. Although they can play a role in modeling and
designing software systems by capturing structural
relationships between software components, they are widely
preferred because they can be used to support code generators
instead. On the other hand, other behavioral diagrams, such
as activity and sequence diagrams, can provide the behavioral
constructs necessary to model the steps involved in meeting
functional requirements at different levels of abstractions,
which cannot be readily expressed by class diagrams.
Specifically, activity diagrams are considered critical in the
process view because they can illustrate system behavior in
terms of what actions the system must perform as well as the
relationships between these actions [13].

In order to show the importance of deriving requirements
from design tactics, this paper uses the passive redundancy
tactic as an example that can be used to meet the goal of
system availability. Availability refers to a property of
software that is there and ready to carry out its task when it is
needed [2]. As such, availability can be viewed as the ability
of a system to mask or repair faults such that the cumulative
service outage period does not exceed a required value over a
specified time interval [2]. Among the tactics used to repair
faults in a system is the passive redundancy tactic shown in
Fig. 1 [14]. The design of this tactic consists of the following
components:

• The log receives all input coming to the system and
directs them to the primary. In addition, it replays an
input when asked by the manager, which occurs in the
presence of errors.

• The primary receives inputs from the log before
processing them into outputs. In the presence of errors,
this component forwards its state to the storage when
requested by the manager.

• The backup becomes active when an error occurs on
the primary. In that case, the manager instructs the
primary to import the last state from storage and waits
to receive the last input from the log, after which it
processes that input to produce an output, thus taking
over the role of the primary.

• The storage records the state exported by the primary
and the last input received from the log.

• The manager detects errors on the primary. When an
error occurs, the manager activates the backup, then
instructs the storage to forward the last state recorded
to the backup and the log to replay the last input.

This tactic is modeled as a data flow model in the activity
diagram shown in Fig. 2.

Fig. 1. Structure of the passive redundancy tactic.

4 Proposed approach
The method proposed in this paper consists primarily of a
transformation engine, which takes as input a formal
specification of a design tactic and produces the technical
specification of a set of related functional and system
requirements in natural language as shown in Fig. 3. To
simplify the transformation process, it is broken down into
two main steps where the first step converts the specification
of the design tactic into an intermediate format while the
second step translates the intermediate format into simple
statements in natural language. In this paper, focus will be on
the second step.

146 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 2. Activity diagram of the passive redundancy tactic.

Figure 3. Overview of the requirements generation process.

4.1 Appropriate modeling in activity diagrams
In this approach, it is assumed that modeling of a design
tactic using activity diagrams must follow a set of
conventions in order to facilitate the task of requirements
generation as follows:

• Partitions: Each partition or lane in the activity diagram
should be reserved for a principal actor or component

that plays an important role in the tactic. The main
actors in the passive redundancy tactic are the manager,
primary, backup, and log.

• Actions nodes: Actions in action nodes are expressed
as verbs followed by complements. It is implied that
the subject of an action is the owner of the lane in
which the action node is located.

• Decision nodes: Each decision node must have a guard
condition. The outgoing branches of the node must all
be labeled with the evaluation of the condition.

• Data flow: Data flow is generally represented as input
or output pins attached to action nodes. The pins
attached to action nodes must be labeled with input or
output names.

• Object flow: Object flow is represented as object
nodes. Such nodes must be clearly labeled with their
appropriate names.

4.2 Requirements generation
This paper adopts a simple requirements language similar to
the Requirements Specification Language [15]. In essence,
this language keeps a constrained structure in order to express
the derived requirements in a more precise and less
ambiguous way. This constrained structure mandates that
sentences follow the subject-verb-object (SVO) form [16].
Additional types of sentences can be used to address
constrained forms for handling pre-condition and post-
condition scenarios. This paper uses the following steps to
extract requirements from an activity diagram using the SVO
form.

4.2.1 Diagram partitions
This step consists of the following:

Parsing

Intermediate
Format

Partitions

Action Nodes

Control Nodes

Requirements
Specification

Activity Diagram

Interm
ediate Form

at Processing

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 147

• The actor in each diagram partition is identified to
generate the following sentence: “The tactic consists of
<actor_1> <actor_2>…” where <actor_n> represents
the nth partition in the diagram.

• The actions performed by each actor are identified. For
each actor, the following sentence is generated: “The
<actor> performs the following actions: <action_1>
<action_2>…” where <action_n> represents the nth
action performed the actor <actor>.

4.2.2 Action nodes
This step consists of the following for each action node:

• Input pins: If the action node has input pins, the
following sentence is generated: “The action <action>
needs <input_pin_1> <input_pin_2> …” where
<action> represents the action node while
<input_pin_n> represents its nth input pin.

• Output pins: If the action node has output pins, the
following sentence is generated: “The action <action>
produces <output_pin_1> <output_pin_2> …” where
<action> represents the action node while
<output_pin_n> represents its nth output pin.

• Exceptions: If the action node has exception output
pins, the following sentence is generated: “If the action
<action> fails, it produces <exception_1>
<exception_2> …” where <action> represents the
action node while <exception_n> represents its nth
exception output.

• Preceding object nodes: If the action node has
preceding object nodes, the following sentence is
generated: “The action <action> needs <object_1>
<object_2> …” where <action> represents the action
node while <object_n> represents its nth incoming flow
object.

• Succeeding object nodes: If the action node has
succeeding object nodes, the following sentence is
generated: “The action <action> produces <object_1>
<object_2> …” where <action> represents the action
node while <object_n> represents its nth outgoing flow
object.

• Control Flows: If the action node has a preceding
action nodes connected by an control flow edge, the
following sentence is generated: “The action
<action_1> follows the action <action_2>” where
<action_1> represents the action node that follows the
action node <action_2>.

4.2.3 Merge nodes
For each merge node, the following sentence is generated:
“The action <action> starts after <action_1> or <action_2>
or … is completed.“ where <action> represents the action
node succeeding the merge node while <action_n> represents
the nth action node preceding the merge node.

4.2.4 Join nodes
For each join node, the following sentence is generated: “The
action <action> starts after <action_1> and <action_2> and
… “ where <action> represents the action node succeeding
the join node while <action_n> represents the nth action node
preceding the join node.

4.2.5 Fork nodes
For each fork node, the following sentence is generated: “The
actions <action_1> and <action_2> and … cannot start until
the action <action> is complete.” where <action_n>
represents the nth action node preceding the fork node while
<action> represents the action node succeeding the fork node.

4.2.6 Decision nodes
For each simple decision node, the following sentence is
generated for each outcome branch of the node: “If
<outcome>, the action <action> starts.” where <outcome>
represents the outcome of the evaluation of the guard
condition on that branch while <action> represents the action
node succeeding the decision node. Because UML does not
say anything about the order in which the branch of a decision
node should be evaluated, modelers use chained decision
nodes to indicate a specific order in which the outcomes of
the decision should be evaluated. In this case, the following
sentence is generated for each decision path: “If
<outcome_1> and <outcome_2> and …, the action <action>
starts.” where <outcome_n> is the nth decision in the
decision outcome path while <action> represents the action
node at the end of the decision outcome path.

5 Requirements generation from passive
redundancy tactic

By following the modeling conventions described in section
4.1, the passive redundancy tactic can be modeled in an
activity diagram shown in Fig. 3. Also, by following the
rules described in section 4.2, the requirements of this tactic
can be generated as follows:

5.1 Diagram partitions
Processing diagram partitions produces the following
sentences:

• This tactic consists of Log, Primary, Manager and
Backup.

• The Log performs the action “receive input”.

• The Primary performs the actions “process input” and
“checkpoint to Storage”.

• The Manager performs the actions “decide to
checkpoint”, “request primary to checkpoint”, “check
errors”, “activate Backup”, “request last state from
Storage”, and “request last input from Log”.

• The Backup performs the action “process input 2”.

148 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

5.2 Action nodes
Processing action nodes produces the following sentences
related to control flows:

• The action “decide to checkpoint” follows the action
“receive input”.

• The action “check errors” follows the action “process
input”.

• The action “checkpoint to Storage” follows the action
“request Primary to Backup”.

• The action “check errors” follows the action
“checkpoint to Storage”.

• The action “request last state from Storage” follows the
action “activate Backup”.

• The action “request last input from Log” follows the
action “request last state from Storage”.

• The action “process input 2” follows the action
“request last input from Log”.

5.3 Merge nodes
Processing merge nodes produces the following sentences:

• MergeNode1: The action “receive input” starts after
“process input 2” is complete or “error == no”.

• MergeNode2: The action “process input” starts after
“checkpoint == yes” or “error == no”.

• MergeNode3: The action “activate Backup” starts after
“error == yes”.

5.4 Decision nodes
Processing decision nodes produces the following sentences:

• DecisionNode1:

o If “checkpoint == yes”, the action “request Primary
to checkpoint” starts.

o If “checkpoint == no”, the “process input” starts.

• DecisionNode2:

o If “error == yes”, the action “activate Backup”
starts.

o If “error == no”, the action “process input” starts.

• DecisionNode3:

o If “error == yes”, the action “activate Backup”
starts.

o If “error == no”, the action “receive input” starts.

The sentences generated above provide a basic requirement
specification showing what the tactic is intended to do. While
these requirements are listed following the steps in the
requirement generation process, these requirements can be re-
organized along different perspectives related to input-output
and precedence relationships among actions in the activity

diagram. Such re-organization can enhance the structure of
the document containing these requirements specification.
Although templates are used to generate the sentences in the
specification text, the resulting text is sufficiently expressive
to give an idea of what the design tactic accomplishes as a
solution to meet a quality goal.

6 Conclusions
This paper presents an approach to generate requirements
specification from an activity diagram. This approach is
intended to help engineers develop requirements for design
tactics meant to solve specific problems for meeting well-
defined quality goals. This is a significant contribution, since
requirements are the main elements used to hold developers
accountable for meeting desired functionality. This is
perhaps one of the most significant implications of presenting
design tactics as requirements rather than design diagrams.
Moreover, when presented this way, these requirements
checklists can be used by other, non-programmers in the team
to verify that the desired behavior to meet a quality goal is
implemented and that the final solution meets the expected
level of quality, as defined by the design tactic.

This work is by no means complete, and as such a number of
extensions can be considered to make the approach in this
paper very practical and useful. Since activity diagrams are
in essence graphs, special structures such as cycles can appear
in these diagrams. In this perspective, cyclical activity must
be viewed as part of what the modeled tactic does. Hence,
specifications of cyclical actions must be included in the
requirements specification of the modeled tactic. Also, this
approach can be applied to meet specific security goals since
it is widely believed that security is a people problem. In
[17], it is clearly stated that security is a people problem, not
a machine problem, and ultimate responsibility lies with
management. In this context, one can develop security-
oriented design tactics from which technical requirements can
be extracted to assist engineers in building highly secure
systems.

7 References

[1] B. H. C. Cheng and J. M. Atlee, “Research directions in
requirements engineering,” IEEE Future of Software
Engineering, pp. 285-303, 2007.

[2] L. Bass, P. Clements and R. Kazman, Software Architecture in
Practice, Third Edition, Addison-Wesley, 2013.

[3] J. Scott and R. Kazman, “Realizing and refining architectural
tactics: Availability.” Technical Report CMU/SEI-2009-TR-
006, Software Engineering Institute, August 2009.

[4] L. Bass, J. Ivers, M. Klein and P. Merson, “Reasoning
Frameworks,” Technical Report CMU/SEI-2005-TR-007,
Software Engineering Institute, July 2005.

[5] F. Meziane, N. Athanasakis, and S. Anniadou, “Generating
natural language specifications from UML class diagrams,”
Requirements Engineering, vol. 13, no. 1, 2008, pp. 1-18.

[6] Object Management Group, Object Constraint Language
Specification, available at

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 149

http://www.omg.org/technology/documents/modeling_spec_cat
alog.htm#OCL, February 2013.

[7] P. Brosch and A. Randak, “m2n: Translating models to natural
language descriptions,” Proc. 6th Educator’s Symposium:
Software Modeling in Education at MODELS, vol. 34, 2010.

[8] H. Burden and R. Heldal, “Natural language generation from
class diagrams,” Proc. *th International Workshop on Model-
Drive Engineering, Verification and Validation, Wellington,
New Zealand, October 2011.

[9] S. J. Mellor and M. J. Balcer, Exceutable UML: A Foundation
for Model-driven Architecture, Addison-Wesley, 2002.

[10] A. Ranta, Grammatical Framework: Programmign with
Multilingual Grammars, CLSI Publications, Stanford, 2011.

[11] B. Berenbach, “The automated extraction of requirements from
UML models,” Proc. 11th International Conference on
Requirements Engineering, Monterey, California, 2003.

[12] Object Management Group, “Introduction to OMG’s Unified
Modeling Language,” available at
http://www.omg.org/gettingstarted/what_is_uml.htm, February
2013.

[13] C. Bock, “UML 2 activity and action models,” Journal of
Object Technology, vol. 2, no. 4, July-August 2003, pp. 43-53.

[14] T. Saridakis, “A system of patterns for fault tolerance,” Proc. 7th
European Conference on Pattern Languages of Programs,
Irsee, Germany, July 2002, pp. 535-582.

[15] M. Smiatek, A. Ambroziewicz, J. Bojarski, W. Nowakowski,
and T. Straszak, “Introducing a unified requirements
specification language,” Proc. CSEE-SET, Software
Engineering in Progress, Nakom, 2007, pp. 172-183.

[16] K. Wolter, T. Krebs and L. Hotz, “A combined similarity
measure for determining similarity of model-based and
descriptive requirements,” Workshop on Artificial Intelligence
Techniques in Software Engineering, Patras, Greece, July 2008,
pp. 11-15.

[17] M. R. Smith, Commonsence Computer Security, Second
Edition, McGraw-Hill, New York, 1994.

150 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

SESSION

SOFTWARE ARCHITECTURE + DESIGN
PATTERNS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 151

152 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Building Information Technology Based on a Human Behavior-

Oriented Approach to Enterprise Architecture

Dominic M. Mezzanotte, Sr. and Josh Dehlinger

Department of Computer and Information Sciences

Towson University

{dmezzanotte, jdehlinger}@towson.edu

Abstract

Enterprise Architecture (EA) frameworks (EAF)

define a comprehensive step-by-step process with an

expected outcome an EA plan that details the

guidelines for governing and aligning an enterprise’s

strategic business plan with it’s information

technology (IT) capabilities. The process attempts to

simplify the capture and validation of the design

artifacts used to implement new information systems.

Yet, many EA projects fail. In analyzing failure, EA

changes the culture, character, and structure of an

enterprise that often manifests itself in new

stakeholder behavioral patterns (i.e., organizational

transformation). Existing EAFs, though technically

comprehensive, fail to acknowledge non-technical

factors such as stakeholder behavior which may have

more influence on EA than technology. This paper

progresses earlier work assessing the affect of

stakeholder behavior and organizational

transformation on EA. Our approach to EA

encourages a more holistic, humanistic, and

behavior-driven process using Giddens’ Theory of

Structuration as a lens guiding EA design.

Keywords: Enterprise architecture, organizational

change, stakeholder behavior

1. Introduction

In today’s increasingly competitive economic

landscape, many organizations are looking to

improve operational efficiency and effectiveness by

implementing new and/or enhanced technology [13].

Enterprise Architecture (EA) represents the first step

towards this goal using a framework (EAF) and

modeling techniques that specifies high-level, macro-

oriented abstraction of functional and non-functional

requirements that will drive subsequent information

technology (IT) design, development, and

implementation. In its simplest form, EA provides a

layered view of desired enterprise-wide systems

[18][23][27]. Usually tiered as a series of

architectural views of the enterprise’s information

assets and needs, the layers define the business,

application, data, and technology requirements

needed for IT [28][37].

In literature, EA is defined as the alignment of an

enterprise’s strategic business plan and operational

model with its IT capabilities [26][28][37]. In reality,

EA organizes into a single, easy to understand, and

neatly documented plan called an EA plan (EAP) that

contains the guidelines to manage and govern the

alignment process. The EAP thus represents both an

aggregation of design requirements derived from

both explicit and tacit organizational knowledge and

descriptions of the systems, subsystems, resources

and infrastructure needed to progress IT. In effect,

EA defines what IT is to do and IT is doing EA.

Collectively, the requirements input to EA

represent the foundation for guiding, managing,

governing, controlling, and building IT [3][27]. As

can be seen, failure to capture and validate design

requirements not only jeopardizes EA, it can also

doom IT. The EAF, usually under the direction of an

Enterprise Information Architect(s) (EIA), provides a

comprehensive set of techno-centric processes to

elicit and document EA requirements [28][37]. To be

effective, the requirements gathering and analysis

process must capture and analyze both explicit and

tacit organizational knowledge [24][26].

As inclusive as the EAF and modeling processes

appear to be, EA design and implementation remains

difficult and often confronted with obstacles with

many EAs being either partially implemented or

completely abandoned [3][6]. Statistics support this

assertion claiming that between 20-30% of all private

sector EA and IT projects are completely abandoned

with an additional 30-60% ending in partial

implementation [17][33]. Public sector projects, on

the other hand, fare even worse with a success rate of

only 16% [8][9]. The cost for failure is even more

significant with expenditures of money and resources

estimated annually into the billions of dollars [8][33].

Failed EA is often attributed to erroneous

requirements and is commonly referred to as “poor

architecture” [24]. Poor architecture, in this context,

means [8][9][19][31]:

 The requirements do not meet the expectations

of the stakeholder(s)

 The requirements are inconsistent or incomplete

 Changing the requirements is too costly after

they have been agreed upon

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 153

mailto:%7d@towson.edu

With stakeholders responsible for the input to the EA

requirements engineering process, “poor

architecture” might have more to do with their

reaction to and acceptance of EA rather than any

technological concern. In essence, an analysis of

stakeholder behavior can be traced to:

 The impact new technology has on

organizational transformation reflected in both

organizational/stakeholder behavior [1][2] [24]

 The manner in which the EA is being

introduced by management into the enterprise

[7][18][20][29]

 The either covert and/or overt stakeholder

resistance and/or reluctance to change [2][12]

 The intentional and/or unintentional

miscommunication and/or providing misleading

information related to design requirements

needed for the EAP [10][24]

Solving these issues, however, can be difficult,

perhaps requiring a major shift in the way EA is

approached. This may require adopting practices

from the fields of psychology and sociology to

mitigate negative stakeholder behavior and thus

enhance the traditional processes and procedures

found in existing EAFs and modeling schemes. This

paper treats stakeholder behavior as a major factor in

EA design. It focuses on technology and

organizational transformation recognizing

stakeholder behavior and the risks to management

from the inherent uncertainties surrounding projects

such as EA. This paper specifically progresses our

earlier research [22][24][25] by expanding our

knowledge in human behavior and it’s effect on the

design of large, complex, and multi-faceted

system/entities of EA [22][24][25].

This work builds on our earlier communicative

approach to EA proposing, as a first step in

recognizing stakeholder behavior, an Architectural

Design Plan (ADP) that formulates how EA should

be approached. The communicative aspect of the

ADP encourages stakeholder collaboration and

participation by allowing stakeholders an active role

in EA design throughout the EA life-cycle. From this

position, potential EAF and modeling solutions can

be planned for and implemented that facilitate

verification and validation of design requirements.

2. Stakeholder Behavior and Organizational

Transformation

Stakeholder behavior may be influenced by several

factors such as: technology, the cognitive capacity of

stakeholders to contribute to, and the way EA is

introduced into an organization [2][13][24][29]. In

most instances, management expects stakeholders to

learn, accept, adapt to, and use without question new

technology and processes [2][29]. What management

forgets is that today, stakeholders frequently question

the rationale and need for new technology. In the

case of EA, these factors alone can play a significant

role in acceptance or rejection of EA. Given this

perspective, the behavior of project stakeholders,

who have the capacity to act for or at odds with the

enterprise’s desires, must be taken into account

during EA design [2][10][29].

If we analyze the manner in which EA is

introduced into the enterprise, we find many EAs are

unexpectedly initiated without any stakeholder input

[2][29]. This affects EA in several ways. First, this

kind of management behavior works only in

organizations where a tightly controlled and

constrained environment is the norm. Second, in

other organizations, some stakeholders may accept

the new technology and simply move on while others

may resent the way change was introduced and thus

resist EA. Third, stakeholders may actively threaten

and jeopardize EA either overtly or covertly perhaps

even resorting to sabotage. Two factors that influence

this kind of stakeholder behavior are their perception

of and reaction to how EA will affect:

 The environment in which they currently

function [10][35]

 Their future status and their new assigned roles,

duties, and responsibilities [2][12][29]

Stakeholder attitudes towards and use of technology

has long been recognized as a key ingredient to EA

success [4][5]. In fact, stakeholder acceptance is

often considered the pivotal factor in determining the

success or failure of an EA [5]. Thus, stakeholders

may accept, reject, and, in some cases, modify the

technology to suit their own self interests [24][29]. In

the most extreme situations, stakeholders may

intentionally misuse (and/or sabotage) the technology

and thus EA [10][13][20][29]. In most cases,

stakeholder reluctance or resistance to change usually

follows some action that has the potential to affect

the enterprise’s equilibrium/status quo [2][12][16].

Given behavior alone, resistance to change follows

human action caused by stakeholder [1][2][4][10]:

 Parochial self-interests – some stakeholders are

more interested in “what’s in it for them” rather

than the good of the enterprise

 Fear of change – some stakeholders operate

from a personality position that fears change

 Low tolerance for change – some stakeholders

feel more secure maintaining a sense of stability

and security in their work

 Misunderstanding of the situation – some

stakeholders may disagree with the rationale for

change

154 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Table 1. Comparison of Enterprise Architecture Requirements Modeling Schemes

Modeling Approach

Definition Documentation

Ease of Use

Stakeholder Behavior

Unified Modeling

Language (UML)

Well defined, industry-

standard notation lending

itself to several automated

modeling tools.

The present version is

overly complex, though

Version 2.0 may be

addressing this issue. It

does not lend itself alone to

modeling business

requirements as needed in

EA.

UML is not used extensively in

EA development. It does not

take into consideration

stakeholder behavior in its

scheme for modeling

specifications and requirements.

Model-Driven

Architecture (MDA)

Provides guidelines for

structuring system

specifications. Typically

just as much as model-

driven automation as it is

about model-driven

architecture.

Uses XML and UML to

generate and produce

modeling diagrams,

notation, and semantics for

the system. Often used

with other modeling

schema such as EUP and

RUP. Encourages

developers and architects

to work at higher levels of

abstraction.

The primary focuses of MDA

are mapping documents,

transformation, and UML

profiles. A review of various

works published on MDA

methodologies does not

highlight any issues on the

process regarding human or

organizational related to this

approach.

Zachman Framework

(Z|FA)

Uses rows and columns to

define an EA. The notation

used within Z|FA represents

various/ different views of

stakeholders.

The framework consists of

thirty-six cells each of

which supports one or

more artifacts. It can lead

to a personalized biased

approach to an EA

solution.

In Zachman’s EAF , human

behavior is not a part of the

Zachman Modeling Scheme

though each cell is considered a

modeling point.

Enterprise Unified

Process (EUP)

An instantiation of the

Unified Process (UP) and

RUP.

Explicitly brings EA into

the RUP arena.

Human behavior not considered

as part of this approach.

Rational Unified Process

(RUP)

Defined for software

development and follows

the Unified Process (UP). It

reflects business “best

practices” and typically

does not codify approaches

until they are well

established in the field.

IBM’s approach to

software Development, a

well-defined and rigorous

process. Divides the

development process into

phases with each

concluded with a project

milestone.

Provides for agreement with

stakeholders on lifecycle

objectives for the project and

the design and implementation

focusing on a viable marriage of

essential business requirements

and the technical architecture.

In addition, change affects people differently and

may be the product of insecurity brought about by

internal organizational influences. Though all of the

these factors are well known, there are no provisions

for mitigating these negative influences in either

existing EAFs [25] and/or the modeling schemes (see

Table 1). To succeed, EA requires a well-designed

EAP that adequately defines design requirements

produced by the right kind of tool sets, EAFs and

modeling schemes [16][26].

Design requirements elicited from stakeholders

lie at the heart of EA providing the building blocks

that define the system specifications needed for IT

[3][7][16][31][34]. Thus, the capture of design

specifications is critical to EA success and if

incorrect, they can plant the seeds for EA failure.

Supporting this line of reasoning, most EA literature

blames failure on the requirements used describing

the requirements as “poor architecture” [24].

Extending our analysis of “poor architecture” allows

us to take into account stakeholder behavior and

miscommunication. This is most prevalent in eliciting

tacit, undocumented knowledge known only to a

single or group of select stakeholders.

EA design today relies on an EAF and modeling

schemes to capture and validate design requirements

[28][37]. The procedures found in each framework

establish the enterprise’s goals and objectives aiming

to ensure adequate documentation for the EAP

[16][26][37]. However, the organizational goals and

objectives desired of EA are not always those shared

by stakeholders responsible for doing work.

In today’s environment, existing EAFs and

modeling schemes follow generally accepted

software engineering and requirements engineering

principles and practices with the expected outcome a

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 155

documented set of requirements that includes the

resources and infrastructure, necessary for IT

[26][27]. The frameworks and modeling schemes are

comprehensive, disciplined, and designed to handle

large volumes of complex and interdependent system

and subsystem requirements from a purely

technological perspective [26][27][31]. State-of- the-

practice EAFs formulate EA aimed at maintaining

business continuity and the alignment of the

enterprise’s strategic business plans, business

operations with its IT infrastructure and resources

[7][11][26]. These are the strengths of existing EAFs.

Conversely, the inherent weakness of each EAF

centers on the techno-centric and techno-oriented

solutions they prescribe producing only a desired set

of technical deliverables for the EA [7][26]. This

process satisfies the high-level abstraction of design

requirements needed for EA identifying, in detail, the

proposed organizational structure, business

processes, desired information systems, design

requirements, implementation plan, and associated IT

infrastructure. However, the processes discount the

importance of the intersection of technology with

human behavior, the inevitable organizational

transformation that takes place as a result of EA, and

their potential effect on the quality of the work effort

delivered, specifically the design requirements [24].

For example, the key element around which all

design activity takes place in The Open Group

Architecture Framework (TOGAF) Version 9.1, the

Application Development Method (ADM), describes

a purely technical perspective and detailed series of

step-by-step processes and procedures for EA [28].

Stakeholder roles, responsibilities, and contribution

to EA are identified through the ADM based on what

is termed “Stakeholder Management”. This process

consists of four concepts: Stakeholders, Concerns,

Views, and Viewpoints. The process essentially

identifies who will be involved and needed in EA

design [28]. The process analyzes stakeholder role,

decision-making, and resource control. Though these

questions by themselves sound relevant, the process

itself fails to ask questions that would improve good

decision-making and problem-solving such as

“why?” and “why not?” For example, questions not

asked by this and other EAFs are:

 Why is one stakeholder assigned to EA while

another is not?

 What is the cognitive capacity of the

stakeholder to contribute?

 What will be the impact on stakeholder

behavior caused by EA and/or organization

transformation?

In general, little attention or recognition is given to

stakeholder behavior and the consequences of either

positive or negative influence on EA.

There are some modeling approaches with the

inclusion of stakeholder behavior in validating EA

requirements. For example, the i* modeling scheme

[36] recognizes human input and their respective

behavioral patterns to the requirements elicitation

process. We will study i* in more depth in the future.

3. The Theory of Structuration Applied to

Enterprise Architecture

The large-scale development of IT systems planned

for in EA expects change to take place in an orderly

and controlled manner. With the introduction of new

EA technology, a transformation of the enterprise’s

culture, aimed at improving operational effectiveness

and employee productivity is expected by

management [29][30]. This transformation however

affects stakeholder in several ways as the result of

learning new processes and procedures and the

change is their respective roles, duties, and

responsibilities. Thus, an EA initiative that

incorporates psychological and sociological

principles and practices to facilitate a dynamic

behavior-driven view of an enterprise would be

Giddens’ Theory of Structuration [24][29]. The

Theory of Structuration uses the term structuration to

refer to the conditions governing the continuity or

transformation of structures and social systems

indicating that structure represents the codes for

social action. Agency, on the other hand, indicates the

activities of individual members of the system

existing in a recursive manner and relationship [10].

Simply, agents draw on structures during their

processes of interactions, they perform social

activities and continually reproduce the actions that

make these practices possible [10][29][30].

In previous work [22][24][25], we described, in

detail, the concepts and principles underlying

Giddens’ theory describing the sociological aspects

of Giddens’ theory applied to technology. Giddens’

theory in it’s original formulation pays little attention

to technology. However, if we examine the

pervasiveness of IT on everyday life, especially in the

workplace, we can apply Giddens’ theory to any

organization’s everyday operation and the reality of

technology in contemporary organizations.

Given this perspective, the Theory of

Structuration does not merely provide a means to

understand the nature of an organization but can be

applied to gain insight on the impact of the use of

technology [34]. Orlikowski [29] proposed the

Structurational Model of Technology (SMT) based on

Giddens’ theory to provide a more complete model of

understanding of how technology affects

organizations. This theory is predicated on the

perceptions of the Duality of Technology and the

156 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Interpretive Flexibility of technology. The Duality of

Technology posits that the socially created view and

the objective view of technology is intertwined and

are differentiated because of the temporal distance

between the creation and use of technology.

Interpretive Flexibility defines the degree to which

users of a technology are engaged in its constitution

(physically and/or socially) during its development.

SMT has three components – the Human Agents,

Technology and Institutional Properties of

Organization. The model specifies an interactive

recursive relationship between these in that each of

these components influences and is at the same time

influenced by the others. Technology is created by

and exists through ongoing human action. Humans

constitute technology by using it, while at same time

making it an outcome of human actions such as

design, development, appropriation and modification.

However once technology is implemented, it both

facilitates human action through the provision of

interpretive schemes, facilities and norms.

From an organizational perspective, institutional

properties influence humans in their interaction with

technology, through, by constituting: professional

norms; rules of use – design standards and available

resources (time, money and skills). There is a

consequence of the institutional interaction with

technology and are manifested by impacting the

institutional properties of an organization through

reinforcing or transforming Giddens’ structures of

signification, domination and legitimization that

characterize the institutional realm.

In summary, the theoretical premise of the Theory

of Structuration [10] and the SMT [29] is an

acknowledgement that organizational structures,

technology, and human action are not distinct but are

intertwined such that each is continually reinforced

and transformed by the other. We can therefore

conclude that an initiative such as the formulation of

EA remains incomplete if it does not explicitly take

into account human action. The Theory of

Structuration provides a framework which, if

adopted, could form the basis for a more inclusive,

holistic, humanistic, and behavior driven approach to

formulating an EA. Specifically, this theory provides

a lens for the EIA to take advantage of understand the

dynamics of an organization and use that information

to formulate an EA that is contextual to that

enterprise and advocated by the stakeholders.

In this context, stakeholders are recognized as

purposely able to provide reasons for their activities,

including perhaps even lying about them. However,

this behavior can be managed by promoting an

environment that encourages stakeholder

collaboration and participation in the decision-

making process. Successful implementation of new

technology is the product of navigating human

behavior and the resultant influence on organizational

change. In this context, the actions of EIAs leads to

changes in the way people behave and in a business

context, human behavior and organizational factors

contribute more to the success or failure of an EA

than technical factors. Simply stated, stakeholders are

affected by IT change and may be resistant if the

change is forced upon them without warning and

input from them.

4. Building and Modeling Enterprise

Architecture

Stakeholder requirements represent one of the

essential elements for managing, governing, and

controlling the complexity, risk, project magnitude

scope and boundary, and ambiguity associated with

the elicitation of stakeholder requirements. These

requirements form the basis for defining the goals

and objectives of EA and what IT is to do and

therefore are critical to EA success. However in a

typical EA, it is not a matter of choosing which

requirements to meet but of trying to meet all

practical requirements.

In earlier work [22][24][25], several causal

factors leading to EA failure are identified and

addressed. From that work, we propose a solution

and approach where management, the EIA, and key

stakeholders collectively define, establish, and

execute a management system that manages and

governs EA that also includes a reliability plan that

better ensures the quality of EA design requirements.

The solution establishes an Architectural Design

Plan (ADP) put together by all stakeholders, an

analysis of the “as is“ environment, management

style, organizational knowledge base, available skill

sets, and the overall capabilities of the enterprise

from a stakeholder behavior point-of-view. As

currently envisioned, the ADP consists of two

components: a Development Plan (DP) and a Control

Plan (CP). The DP documents and establishes how

the overall conduct of the EA is to be progressed,

stakeholders selected and assigned to the project, the

kinds of procedures to be used in eliciting design

requirements, the communications and feedback

loop(s) needed to verify design requirements, and the

measurement, monitoring, and governance

techniques needed to ensure the validity of the design

requirements. The primary purpose of the plan is

twofold:

 Provide the mechanism for the EIA to learn the

existing organizational environment and

identify areas of potential concern

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 157

 Provide the basic scheme for eliciting

information (i.e., requirements) from which to

design the EA

This process provides an excellent opportunity for the

EIA to learn not only what needs to be done but also

who is to participate along with their personalities,

how the project is to be managed and governed, and

why it needs to be done.

The second step in this process, the CP, defines

and describes the specific design handles and control

processes that are to be used to ensure stakeholder

requirements are met. In this step, factors such as

organizational capabilities, skill sets, organizational

reaction to nonconformance to either the DP or CP,

and the exact critical in-design parameters that

control the quality attributes of the design are

established, documented, assessed, and agreed-upon

to ensure that exact stakeholder expectations are met

focused on the “to be“ state of the enterprise.

Giddens’ Theory of Structuration can be used to

establish and formulate the ADP primarily because it

recognizes stakeholders as individuals that have the

ability to act in ways other than those that support the

existing organization or social structure. Therefore

the ADP must be cognizant, structured, and designed

to identify, and perhaps anticipate, adverse influences

before they can seriously affect EA. A final and

complete definition of the ADP would be made on an

enterprise-to-enterprise situation as each enterprise

has it’s own character, culture, and structure. Finally,

EA should begin only upon completion of the ADP.

5. Discussion, Concluding Remarks, and Future

Directions

Systems of coordinated activities represent work

embedded in complex networks of technology-centric

relations and boundary-spanning exchanges. The by-

product of EA and the introduction of new

technology into the workplace is a transformation of

the organization’s character, culture, and structure as

well as a change in the hierarchical sociological and

political structure of the enterprise. This latter change

should not be discounted but rather expected and

planned for as it manifests itself in new stakeholder

behavioral patterns.

Giddens’ Theory of Structuration [10] recognizes

and addresses how relationships between human

agents and structures can be both beneficial and at

odds with each other. The theory also states that

individuals have the ability to act in ways other than

those that support the existing organization or social

structure. In other words, their actions may be

counterproductive. Orlikowski’s Structurational

Model of Technology (SMT) [29] recognizes the

impact of technology on human behavior and

organizations postulating Giddens’ theory and

providing more insight into the human behavioral

aspects of and new technology in the organization.

The factors contributing to EA failure can be

minimized by providing an environment where

stakeholders become active participants and are

receptive to change. A work atmosphere where

stakeholders are encouraged to share ideas and

information, communicate and collaborate whenever

and however they need to in order to solve problems

and exchange knowhow and knowledge. The

possibility and prospect of EA success becomes more

realizable if an enhanced working environment where

participation in the design and implementation of

new EA technology is welcomed and not perceived

as a threat to stakeholder well–being. As can be

envisioned, the derivable benefits from such an

environment surely would include improved

workforce morale and productivity.

In conclusion, the Theory of Structuration and

it’s relationship to human behavior and

organizational change [10], SMT’s approach to the

effects of technology on human behavior [29]

coupled with a well designed Architectural Design

Plan, conceptualize unique opportunities for

successful EA implementation. Finally, to address

modeling schemes, future research will include an in-

depth analysis of Yu’s i* agent oriented approach to

EA to better ensure the validity of EA design

requirements.

6. References

[1] I. Bakan, M. Tasliyan, I. Eraslan, & M. Coskun, The

Effect of Technology on Organizational Behavior and

the Nature of Work, IAMOT Conference, Washington,

D.C., 2004.

[2] M. Beer. Organizational Behavior and Development.

Harvard Business Review, Harvard University, 1998.

[3] Booz, Allen & Hamilton, Getting IT Right:

Maximizing Efficiency in Government IT Investments

with IT Right,

www.boozallen.com/media/File/GettingITRight-

RightIT-Brochure-2011.pdf.

[4] K. C. Carson, Organization Theory, BookSurge, 2008.

[5] F. D. Davis, User Acceptance of Information

Technology: System Characteristics, User

Perceptions, and Behavioral Impacts, Int. J. Man-

Machine Studies, Academic Press Limited, 1993.

[6] C. Edwards, Is Lack of Enterprise Architecture Partly

to Blame for the Finance Industry Collapsing So

Spectacularly, www.AgileEA.com, Version 0.01, 29th,

February, 2009.

[7] C. Ferreira and J. Cohen. “Agile Systems

Development and Stakeholder Satisfaction: A South

African Empirical Study.” Proceedings 2008

Conference of South African Institute Computer

158 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://www.agileea.com/

Scientists and Information Technologists on IT

Research in Developing Countries, pp. 48-55, 2008.

[8] D. Galoraith. Software Project Failures Costs

Billions: Better Estimation & Planning Can Help.

Filed under Project Management, June 7, 2008.

[9] R. Gauld. “Public Sector Information System Failures:

Lessons from a New Zealand Hospital Organization.”

Government Information Quarterly, 24(1):102-114,

2007.

[10] A. Giddens. The Constitution of Society: Outline of

the Theory of Structuration. University of California

Press, 1984.

[11] H. M. Hanza, Separation of Concerns for Evolving

Systems: A Stability Driven Approach, Workshop on

Modeling and Analysis of Concerns in Software,

(MACS 2005), St. Louis, MO, May, 2005.

[12] Harvard Business Review, On Human Relations,

Harper & Row, Publishers, New York, New York,

1979.

[13] F. Herzberg, B. Mausner, & B. Bloch Synderman, The

Motivation to Work, Wiley Johns & Sons, Inc.,

January, 1959.

[14] B. Iyer and R. Gottlieb. The Four-Domain

Architecture: An Approach to Support Enterprise

Architecture Design. In IBM Systems Journal,

43(4):587-597, 2004.

[15] R. Kaur, J. Sengupta, Software Process Models and

Analysis on Failure of Software development Projects,

International Journal of Scientific & Engineering Research,

Volume 2, Issue 2, February, 2011.

[16] M. Lankhorst & H. von Drunnen. Enterprise

Architecture Development and Modeling, Via Nova

Architecture. March, 2007.

[17] B. Lawhorn. More Software Project Failures. CAI,

March 31, 2010.

[18] R. Lewin and B. Regine. “Enterprise Architecture,

People, Process, Business, Technology.” Institute for

Enterprise Architecture Developments [Online],

Available: http://www.enterprise-

architecture.info/Images/Extended

Enterprise/ExtendedEnterpriseArchitecture3.html.

[19] M. L. Markus, Power, Politics, and MIS

Implementation, Communications of the ACM, Vol.

26, 6, June, 1983.

[20] D. McGregor. The Human Side of Enterprise.

McGraw-Hill, 1960.

[21] N. Melville, K. L. Kraemer, and V. Gurbaxani. 2004

Review: Information Technology and Organizational

Performance: An Integrative Model of IT Business

Value. MIS Quarterly, Volume 28, Number 2, pp.

283-322, June 2004.

[22] D. M. Mezzanotte, Sr., J. Dehlinger, and S.

Chakraborty. “Applying the Theory of Structuration to

Enterprise Architecture Design.” 2011 World

Conference in Computer Science, Computer

Engineering, and Applied Computing,

IEEE/WorldComp 2011, SERP 2011, July, 2011.

[23] D. M. Mezzanotte, Sr., and J. Dehlinger, “Enterprise

Architecture: A Framework Based on Human

Behavior Using the Theory of Structuration.”

International Association of Computer and

Information Science, 2012 IEEE/ACIS 10th

International Conference on Software Engineering

Research, Management, and Applications, 2012.

[24] D. M. Mezzanotte, Sr. and J. Dehlinger, “Enterprise

Architecture and Organizational Transformation: The

Human Side of Information Technology and the

Theory of Structuration,” 2012 World Conference in

Computer Science, Computer Engineering and

Applied Computing, IEEE/WorldComp 2012, SERP

2012. July, 2012.

[25] D. M. Mezzanotte, Sr., J. Dehlinger, and S.

Chakraborty. “On Applying the Theory of

Structuration in Enterprise Architecture.” Computer

and Information Science, 2010 IEEE/ACIS 9th

International Conference on Software Engineering

Research, pp. 859-863, 2010.

[26] D. Minoli, Enterprise Architecture A to Z, CRC Press,

New York, 2008.

[27] F. Molina, J. Pardillo, C. Cachero, A. Toval, An MDE

Modeling Framework for Measureable Goal-Oriented

Requirements, International Journal of Intelligent

Systems (IJIS), Wiley & Co., August, 2010.

[28] The Open Group. TOGAF Version 9.1, 2011.

[29] W. Orlikowski. “The Duality of Technology:

Rethinking the Concept of Technology in

Organizations.” Organization Science, 3(3):398-427,

1992.

[30] M. S. Poole and G. DeSanctis. Structuration Theory in

Information Systems Research: Methods and

Controversies. Handbook for Information Systems

Research, M. E. Whitman and A. B. Wosczcznski

(eds.), Hershey, PA., Idea Group Publishing, 2004.

[31] R. S. Pressman. Software Engineering: A

Practitioner’s Approach. 7th Ed., McGraw-Hill Series

in Computer Science, New York, NY, 2010.

[32] D. Quartel, W. Engelsman, H. Jonkers, ArchitMate

Extension for Modeling and Managing Motivation,

Principles and Requirements in TOGAF, The Open

Group, BiZZdesign, White Paper, October, 2010.

[33] Roeleven, Sven and J. Broer. “Why Two Thirds of

Enterprise Architecture Projects Fail.” ARIS Expert

Paper [Online], Available: http://www.ids-

scheer.com/set/ 6473/EA_-_Roeleven_Broer_-

_Enterprise_Architecture _Projects_Fail_-

_AEP_en.pdf.

[34] N. Rozanski and E. Woods. Software Systems

Architecture. Addison-Wesley Professional, 2006.

[35] C. D. Wickensand J. G. Hollands, Engineering

Psychologyand Human Performance, 3rd Ed., Prentice

Hall, Inc., Upper Saddle River, NJ, 2000.

[36] E. Yu, Agent-Oriented Modeling: Software Versus the

World, Faculty of Information Studies, University of

Toronto, Toronto, Canada, No Date.

[37] J. Zachman, Concepts of the Framework for

Enterprise Architecture. Information Engineering

Services, Pty, Ltd., 1987.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 159

http://www.enterprise-architecture.info/Images/Extended%20Enterprise/ExtendedEnterpriseArchitecture3.html
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/ExtendedEnterpriseArchitecture3.html
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/ExtendedEnterpriseArchitecture3.html
http://www.ids-scheer.com/set/
http://www.ids-scheer.com/set/

Applying Design Patterns in Game Programming

Junfeng Qu1, Yinglei Song2, Yong Wei3
1 Department of Computer Science & Information Technology, Clayton State University, Morrow, GA, 30260
2 Department of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, China, 212001

3Department of Computer Science, North Georgia State University, Dahlonega, GA 30597

Abstract—This paper discussed an object-oriented design for
general game using C# and XNA using design pattern. We
presented application of structural patterns, creational pattern
and behavioral pattern to create game sprite, manage game state
and game sprites, different collision and rewards among sprites
or between sprites and map; we also discussed how to apply
design patterns to handle communications between sprites and
NPC by using observer pattern and mediator patterns. Although
lots of design patterns are discussed, other design patterns might
suitable as well because game programming are so complicated to
separate each pattern independently.

Keywords-Game, Programming, Design Patterns, UML, XNA,
C#

I. INTRODUCTION

A. Computer Game and Development

The video games industry has undergone a complete
transformation in recent years especially after mobile device
and casual game have impact people’s life greatly.

Computer programmers are writing game in the way, that
cow boys are riding on wild west, wild and innovative.
However, as the game is getting bigger, more complex, and
changing during development. A well designed overall game
program design and architecture that modulated and integrated
with software development procedure are very important.
Also, a well- designed game program should be able to extend
easily, portal to other platform easily without deep revision of
source code to minimize deliver time is also important.

A large size of program can be developed and organized
better with Object-oriented Programming(OOP) because of its
significant advances over procedure programming. A series of
new techniques and packages have been proposed to handle
the complexity and organization problems in game
programming, for example, XNA from Microsoft, AndEngine
for android mobile game, etc. These components are usually
context insensitive and can be used to work on most general
game related programming issues and programmers are able to
concentrate on the part of the code that often defines the
functionalities of game.

B. Design Patterns

Design patterns are proven solutions to well-established
software engineering problems. In game programming,
programmers are often tend to make sure the correctness of a
program by evaluating its behavior of character, and

overlooked the design aspect, such as open-close principle,
scalability, maintainability, flexibility, extensibility, and
robustness to changes, therefore, programmer has to rework or
dispose their work complete in order to accommodate changes
of algorithm, level, and game mechanics during the game
development process.

Due to their well-known importance and usefulness, we
proposed some example design pattern solutions to these
commonly problems encountered during game development
with Microsoft XNA such as handle sprite, communication,
control, and collision.

It’s not easy to find patterns that can be used as common
solutions for common problems in game programming. There
are two categories of design patterns in game development.
One category of design pattern was introduced by Bjork[1],
where a set of design pattern is used for describing(employing
a unified vocabulary) the game mechanics(gameplay and game
rules) during game development. It focuses on reoccurring
interaction schemes relevant to game’s story and core
mechanics of game. After interviewed with professional game
programmers, the authors analyzed the existing games and
game mechanics and then proposed those patterns involving
game design process. The authors said ‘The way to recognize
patterns is playing games, thinking games, dreaming games,
designing games and reading about games’. For example
Paper-Rock-Scissor pattern is commonly known in game as
triangularity, and this pattern was used in game when there are
three discrete states, or options as described in figure 1.

Figure 1. Triangularity design pattern in game

These patterns are not related to the software engineering ,
architecture or coding. So these are not discussed in this
paper. The second category of design pattern in game is use of

160 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

object-oriented design patterns in programming games, which
are discussed and analyzed in the following sections.

One of the unique characteristics of game development and
programming is rapidly evolutional modification and goal
changing during game design and development, therefore it’s
very common that game programmers have to dispose their
works that they have been working for months and to restart
again. Once the game has been completed, it is often
transformed into various game platform, such as PC, mobile
devices (Android, iOS, Windows 8 etc), game console (PS3,
Xbox 360 etc.). Therefore a well-designed game program
would spend minimal efforts and changes to migrate. A well
designed game programming that offer great flexibility, code
reusability, extensibility, and low maintenance costs is highly
desired.

 Daniel Toll etc.[2] found that it is difficult to perform unit
testing in computer game. Computer game often involves
poor defined mathematical models, therefore it’s difficult to
produce expected results of unit under testing. On the other
hand, computer game’s rules of play needs to validated based
on player’s inputs, and new functions are unlocked as player
makes progress, which in term makes it’s difficult to perform
testing in the complex interactions of varieties of game objects.
For example, as player is making progress in Angry Birds, new
challenges features are unlocked to entertain and challenge
player, and player is able to perform more options and actions
to overcome challenges presents. As these levels, new game
items, and new features are added into game, even a small
change of codes results a number of test and retest large part of
the game. The difficulties of testing of game are also because
the tight coupling of modules in game programming.

Most research works focus on teaching design patterns
using game programming as examples, and show how
effectively there are represented in case studies, such as
computer game[3], the Game of Life[4], the Game of Set[5]
and [6], which uses a family of games to introduce design
patterns. Some researchers[7] had evaluated the usage of
design patterns in game programming. It has proven that if
design patterns are used properly and in appropriate cases, the
programming maintainability, extensibility, flexibility and
comprehensibility can be extremely beneficial and improved.

In this paper, we discuss some design patterns in the
category of creational patterns, structural patterns and
behavioral patterns, such as builder pattern, strategy pattern,
mediator pattern, and state pattern, and how these are adapted
into game programming info-structure such as C# and XNA.

II. GAME ARCHITECTURE AND LOOP

A. Game Architecture

Most computer games shares a similar architecture in
regardless of languages used in game development. Bishop[8]

etc. described a general software architecture of game as shown
in Figure 2.

The slid-line ovals represent essential component of game
architecture and the dashed-line ovals are modules that can be
found in more complex games. The Even handler and the input
provides player’s action to game. The game logic renders
game’s core mechanics and story if any. The audio and
graphics supplies sounds, images, game objects etc. in the
game world to the player based on the level data module,
where the details about static behaviors are stored. The
dynamic module configures the dynamic behavior of game’s
character and objects. Most official games have all or partial
components of above architecture, such as UnReal, Unity 3D,
RPG Maker etc.

Figure 2. Common Game Architecture[8]

B. Game Loop in Game Programming

In general, most game programming can be viewed as an
game loop. The player’s inputs are process in each iteration,
and the game states and the game world change based on
internal game logics until the game is over. Of course the
rendering and game logic processing can be coded with event
thread, which leads to a simpler code. In small scale or turned-
based game with little or no animation, this approach works
perfectly. Visual C Sharp XNA provides a game loop that is
driven by a control loop that similar to the event-processing
loop described above. The game loop uses active rendering as
shown in figure 3.

Figure 3. Game Loop Template in XNA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 161

Game initialization() include nongraphics initialization.
LoadContent() include graphics initialization, such as reading
game object, sprite, texture etc. After that Run() is called to
initiate game loop, which includes Update() and Draw()
methods.

Update() method updates game objects, checking for
collisions, game AI, game object movement, updating scores,
checking for end-game logic etc. Draw() method is used to
draw game objects on game scene. All logics that effects the
gameplay will be done in the loop of Update() and Draw(). If
game ending logic is satisfied, UnloadContent() is call to
unload resources and memory allocated to game scene. In
Update() and Draw() of the game loop following game related
objects are handled:

� Player’s inputs: The player’s inputs from keyboard,
mouse, game console are process and saved into
system

� Game internal logic: This is a key component of game.
Game rule is implemented in this loop as well. The
new game state is decided once upon player’s inputs
are received and processed based on rule the game
designer’s plan.

� All game objects in the game scene is update at certain
predefined frame-rate based on player’s inputs as well.

In this paper, we have proposed a couple of design patterns
that we have experienced during game development and design
since it’s very apparent in game development the common
elements and mechanics that the games share are often handled
with class abstraction, inheritance, polymorphism in code
refactoring.

 We use Microsoft XNA as a game development platform
and try to integrated creational patterns, structural patterns and
behaviors patterns into XNA game loop described above.
Design patterns can be applied in design and coding of any
game module, what we have illustrated here does not imply
that these patterns are more suitable and applicable than other
patterns or fields since game programming is so complicated to
be included in all scenarios in the discussion, and it also does
not mean no other design patterns can be used.

III. APPLYING DESIGN PATTERNS IN GAME PROGRAMMING

A. Game State Management: State Pattern

Almost every game starts with a state of an introduction,
then move to some kinds of menu such as setting of game
or a learning mode, and then player can start play and
game enters into playing state. During the playing of the
game, the player will be able to jump back to main menu,
set parameters, or pause the game until the player is finally
defeated and the game moves to a game-over state, the

player then may start from main menu again. In general,
each state handles different events differently, from, and
draw something different on the screen. Each state might
handle its own events, update the game world, and draw
the next frame on the screen differently from other game
states. Figure 4 illustrated an example game state change
from main entry to Play State, Pause state and End State
respected to different button that pressed by the player.

Traditionally, the multiple states of game are handled
with a serious of if..else if.. statement, switch..case
statement. Every time through the game loop, the game
program must check current state of the game and display
and draw game objects correspondingly, also, events are
handled and checked to see player’s input will trigger the
change of game state. This programming approach results
a highly coupled codes, therefore it’s difficult to debug,
testing and code maintain.

Figure 4. An Example of Game State Changes

State pattern is a natural solution to above problems as
illustrated in Figure 5. The state pattern allows an object to
alter its behavior when its internal state changes[9].

Figure 5. State Pattern for Game State Management

162 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

GameStateManager maintains a concrete state at any given
time. The abstract GameState class encapsulates the behavior
associated with a particular state of game. The concrete states
of game such as LoadState, MenuState, Pause, EndState, and
Main implement the behaviors associated with each state in
regarding Draw(), Update() respectively.

With the use of state pattern, first, we avoided excessively

and repetitively using of switch .. case or if .. else, therefore
the complexity of the programming is reduced, secondly, the
application of state pattern explained software engineering
principles such as Open-Closed principle and single
responsibility principle. Each game state is a subclass, in case
more states are required during game development, the
programmer simply adds a subclass, e.g. programmer will be
able to create a subclass to manipulate background of game.
In case the state requirements are changed, the programmer
just modifies the corresponding class. Thirdly, the benefit of
use state pattern is that the classes are well encapsulated, the
change of state is implemented within each class, caller does
not to need to know how changes of state and behavior are
implemented internally. Lastly, the state objects can be shared
if they have no instance variables. State objects protect the
context from inconsistent internal states, because state
transitions are atomic (the transition between states happen by
changing only one variable’s value, not several)[9]. Although
state pattern brings so many benefits, the complicated game
might produce too many subclasses quickly to be out of the
control of the programmer and it might be so difficulty to
manage these classes.

B. Creation and Behavior of Game Objects: Factory,
Command , and State Patterns

In Microsoft XNA game programming, all graphics,
sounds, effects, and other items are loaded in XNA thought
content pipeline. A sprite in XNA is a flat, preloaded image
that is used as part of a computer game, such as players,
enemies, and projectiles. To draw a sprite on game world,
programmer needs to specify location information that tells
XNA where to draw the image as well as where the resource is
located in the OS. In XNA, Texture2D is one of most
commonly used sprite to render images in game world. The
Sprite itself lend to object-oriented design: it has states and
exhibits behaviors as well.

Sprites have state and they exhibit behaviors. The state of

a sprite includes information of location, velocity, size and
image. The behavior of sprites usually is based on external or
internal game information and modified itself input for player
sprites, or gameplay.

The program used nested loop with if or switch statements
to explicitly detect the current state and take the appropriate
behavior. This procedural approach carries with it all the
usual baggage: State-dependent logic is distributed throughout
the code and adding new state is error-prone.

Figure 6. Factory, State and Command Patterns in RPG

In RPG game, a character, player or enemy is often

represented by a sprite has to face difference challenges and
act correspondingly with different behaviors, for example
player may work on training to use sword, complete an
mission or submission of a battle, or even adventure to hunt
for treasure. Of course it’s possible to implement above
behaviors within sprite with loop and/or switch, the open-
closed principles is not quite followed in above approach.
Base on GoF, Command design pattern encapsulate a request
as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable
operations. A command object can have a lifetime
independent of the original request, and can specify, queue,
and execute request at different times[9]. The command
pattern encapsulates the player’s behavior as an object to
facilitate extends of player’s behavior. By specifically creating
a behavior class to solve a variety of behaviors a player may
have. We can deal with evaluation of game design easily. If a
now behavior is needed for game development and story, a
new class that inherits from behavior class can be added to
implement concrete actions that player need to work on.

In RPG game, player also often equipped with different

equipment based on game development and player’s
progression. It’s natural to create and equipment superclass
that can be concretely implemented with different equipment
such as sword, armor etc. Factory pattern can have an object
return an instance from a family of related classes[9]. The
player behaves differently based on game development and
game progression, for example, the sword and armor are used
in training, arches is used during adventure, therefore, an
EquipmentFactory class is introduced to determine what
equipment are required according to different scenario, which
is strategy pattern. The strategy patterns defines a family of
algorithms, encapsulates each one, and make them
interchangeable[9]. By employing these patterns, the program
code can be maintained easily and it’s more flexible to

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 163

accommodate changes in game development such as behavior
change, equipment adding and removal based on scenarios.

Of course, the state pattern can be deployed as well as

illustrated in UML of figure 6, where player may experience
walking state, death state, exploring state etc. that can be
extended easily after inherits is superclass State.

C. Game Object Collision and Communication: Visitor,
Observer Pattern and Mediator Pattern

A variety of game objects often collide with each other.
Depends on types of game object, it can be collision between a
sprite to other sprite, or sprite collides with background map.
For example, in games, it’s quite common that player’s object
collides with other different object to receive different credits
based on game rule. To entertain the players better, game
designers often add a variety of game objects to increase play
of fun in game to reward players unexpectedly. The NPC is
often introduced as well to work with player or fight against
player, either case, the state of player is necessary to broadcast
to the teammates or interest game objects based on game
mechanics.

Figure 7. Visitor, Observer and Mediator for
Collision and Communication

Visitor design pattern represents an operation to be

performed on the elements of an object structure. Visitor lets
programmer define a new operation without changing the
classes of the elements on which it operates[9]. Visitor pattern
is suitable when you want to be able to do a variety of
different things to objects that have a stable class structure.
Adding a new kind of visitor requires no change to that class
structure, which is especially important when the class
structure is large. By using of visitor pattern, different
collision algorithms can be implemented and different

rewarding rules of a variety of objects collision can be
implemented while following open-closed principle of
software design. The UML illustrated in figure 7 shows that
CollisonVisitor interface handles different collision among
different sprite in game world.

In RPG game, the character sprite changes states, for

example, ‘Live’ and ‘Dead’, the domain must notify the
graphical user interface to allow it to update itself. Likewise,
when the user clicks on, or collides with other objects, the UI
must notify the domain so that it can record the appropriate
changes to its model.

To communicate among sprites of interests, observer

pattern or mediator patter are illustrated in figure 7. Depends
on communication is one-to-many or many to many,
programmer could choose one or both to pass different subject
to interested game elements. According to GoF, The observer
pattern is applicable and appropriate in many situations
including when (1) The application has two separate aspects
that can be varied independently of one another, or (2)the
application involves objects that when changed require
changing other objects. In observer pattern, a list of
watcher(observers) are notified any time the state of the
subject changes. The observer pattern defines a one-to-many
dependency between objects that when one object changes
state, all its dependents are notified and updated automatically.
The abstracting coupling between subject and observers make
it easier to update notifications to be broadcasted and as a
result the subject is not interested in which observers care
about the changes, since it is their responsibility to react to
it[9]. The observer pattern allows programmer vary subject
and observers independently. The subjects can be reused
without reusing their observers, and vice versa.

Mediator pattern promotes the many-to-many relationships

between interacting peers to “full object status”. The Mediator
pattern defines an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping objects
from referring to each other explicitly, and it lets you vary
their interaction independently[9]. The communications
between objects are encapsulated in mediator, and objects are
no longer directly communicating with each other, but rather
through the mediator. If mediator pattern is used for
communication among game objects, the mediator will be
responsible to update game objects. The mediator handles
communications between all of these objects to reduce
coupling between game objects when the sprite might collide
with one another under certain circumstances as illustrated by
the UML in figure 7.

IV. CONCLUSION

In this paper, we have presented the use of a family of
design patterns in game development that can be integrated
with XNA game development well during game programming.
We have covered design patterns that could be used to create
sprite, separate behaviors from sprite with strategy and

164 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

command patterns, separate states from sprite by using state
patterns, game state management with state design pattern,
communication among sprite with observer or mediator
patterns, and collision detection with the visitor pattern.
Additionally, the applicability of other design patterns in game
development should be also investigated as well.

To evaluate the benefits of object-oriented design patterns
in game, we plan to conduct a software quality metrics analysis
in terms of size, complexity, coupling and cohesion in near
future.

REFERENCES

[1] S. Björk, S. Lundgren, H. Grauers, and S.- Göteborg,
“Game Design Patterns,” Lecture Note of the Game
Design track of Game Developers Conference, 2003.

[2] D. Toll and T. Olsson, “Why is Unit-testing in
Computer Games Difficult?,” in 2012 16th European
Conference on Software Maintenance and
Reengineering, 2012, pp. 373–378.

[3] P. V. Gestwicki, “Computer games as motivation for
design patterns,” ACM SIGCSE Bulletin, vol. 39, no. 1,
p. 233, Mar. 2007.

[4] M. R. Wick, “Teaching Design Patterns in CS1 : a
Closed Laboratory Sequence based on the Game of
Life,” in SIGCSE, 2005, pp. 487–491.

[5] S. Hansen, “The Game of Set – An Ideal Example for
Introducing Polymorphism and Design Patterns,” in
SIGCSE, 2004, pp. 110–114.

[6] M. A. Gómez-Martín, G. Jiménez-Díaz, and J. Arroyo,
“Teaching design patterns using a family of games,”
ACM SIGCSE Bulletin, vol. 41, no. 3, p. 268, Aug.
2009.

[7] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation
of object-oriented design patterns in game
development,” Information and Software Technology,
vol. 49, no. 5, pp. 445–454, May 2007.

[8] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M.
Shantz, “Designing a PC Game Engine,” Computer
Graphics inEntertainment, no. February, pp. 2–9,
1998.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software, 1995.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 165

New Paradigms for Software Application Development:
Software architectures and component-based development

Sergio David Villarreal, Guillermo Villasana, Juan Carlos Lavariega

ITESM, Monterrey, Nuevo León, México

Abstract In recent years several technologies and
programming languages have appeared for developing
software systems. Each one provides advantages and specific
implementations to business applications. However,
traditional approaches are still in use in many software
projects, and therefore the software code was not initially
developed with reuse in mind. This situation leads to delays
in delivery times, production costs above budget, and
possible generation of incomplete/defective software
products. The architectures and the component-based
development emerge as alternatives for traditional software
development. The challenge is software with and for reuse,
and interoperability between different technologies,
platforms and applications. This paper provides a
description of the component-based development and the
uses of software architectures. Also, examples of program
technologies that implement these concepts are given such as
.NET, Web Services, OSGi, ICE, and SCA.

Keywords
Software architecture, component-based development,
CBSD, .NET, Web Services, OSGi, ICE, SCA.

1. Introduction
Software industry is moving away from the giant,
monolithic, and hard development code-based practices.
Software developers now have more variety of tools and
methodologies to choose for building software products. But,
despite the advances and alternatives available, during the
design and development phase the software application may
have several mishaps that can compromise the success of a
software project: incomplete requirement analysis, use of
technologies not suited to the type of problem to be solving,
poor designs, and delays in delivery times, production costs
above budget, or defective end products. Furthermore, the
use of traditional approaches prior to object oriented
programing (OOP) do not take into account concepts such as
modularity, low coupling, information hiding, or
encapsulation. These leads to develop new software projects
from scratch. To overcome the aforementioned problems, the
experts in the software industry have adopted the use of
component-based solutions [19]. The component-oriented
programming approach proposes a paradigm change in the
process of software construction. The software needs to be
conceived for and with reuse in mind to allowing previously
developed components to be assembled and utilized in new
projects. On the other hand, software architectures are useful

to try to meet the necessities and requirements of customers.
Roughly speaking, software architecture is a system design
that includes high-level structures and sets the properties of
interest that the system must meet.
Some actual technologies, like Microsoft .NET, Web
Services, Open Services Gateway initiative (OSGi), Internet
Communications Engine (ICE), and Service Component
Architecture (SCA) are examples of technologies which
implement the concepts above mentioned. SCA is an
outstanding platform that incorporates and extends many of
the features seen in the other technologies, and brings an
easy interoperability implementation among different
platforms/languages.
The use of software architectures and the component-
oriented development approach seeks to provide a
comprehensive solution that favors successful construction
of software applications, with lower development costs and
time, and a higher overall quality.
The organization of this work is as follows: Section 2 is a
description of the concept of software architecture and its
main features, such as high-level structures of a system and
the relationships between them and their properties of
interest (performance, reliability, security, and maintenance).
Section 3 talks about Component-Based Software
Development (CBSD) and its advantages to modify, extend,
reuse and make language independence code. Section 4 gives
a general description of how .NET, Web Services, OSGi,
ICE, and SCA implement the concepts related to component-
oriented development and software architectures. Finally,
Section 5 presents a developed software project using SCA
and software architecture.
2. Software Architecture
The software architecture comprises high-level structures of
a system, the relationships between them and their
environment [8]. An architectural design aims to facilitate
the development of software applications, verifies the correct
evolution of the system, aid in the detection of errors,
contribute to the maintenance actions and help to reduce the
associate costs. A well-designed architecture allows
reasoning about satisfaction of customer´s key requirements
and to make agreements on engineering principles and the
properties of interest, such as performance, reliability,
security, and maintenance. Also provides a clear allocation
of functions to components establishes conceptual integrity
principles and pursues to minimize rework applications
during the life of the system [5].

166 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

A complex software system may comprise several structures
of interest: modules, runtime entities, development teams,
physical devices, and networks, to name a few. Therefore
appropriate architectural design must be described in terms
of different views. Each view represents an architectural
perspective of the system. Each perspective shows certain
structures and characteristics of the system to deal with a
particular set of problems.

When designing software architectures is important to take
into account the following aspects:

Requirements.- Software architectures are generated from
the functional and non-functional requirements. A functional
requirement specifies the actions that a system must meet,
while a non-functional requirement establishes general
limitations in existing solutions, like performance or design’s
constraints [12].

Complexity. - One of the design activities of software
architecture is the decomposition of the system into
subsystems (components). The purpose of decomposition is
to reduce complexity into smaller and more manageable
parts. While the complexity cannot be entirely eliminated,
any reduction facilitates the development of the system [1].

Anticipation of changes. – Changes are very common
during the software development. A single change may lead
to new requirements or consider re-evaluating existing ones.
The architecture should be flexible enough and reusable to
adapt positively to the changes [12].

Performance and scalability. - The performance of a
system is the largest and greatest risk to the success of a
software project. Performance issues are caused generally by
deficient architectures derived from poor design choices in
the initial stages of the software life cycle [3].

Garlan & Schmerl (2006) suggest the use of execution
structures, or views (or graphs) of component and connector
(C & C) to deal with software architectures. The C&C views
express more directly the critical features related to
dependence, such as reliability, safety, performance. The
C&C allows the employing of traditional lines and diagrams
of boxes to represent software architectures. Also, C&C has
a correspondence with the primitive building blocks of most
architectural description languages (ADLs)[5].

3. Component-Based Software Development
(CBSD)
The component-based software development (CBSD) tries to
provide an effective approach for the construction of
software products. Splitting up systems in its binary
components it is possible to achieve a higher level of
reusability, extensibility, and system maintenance compared
to traditional object-oriented approach. An application in
CBSD consists of a collection of one or more components in
conjunction with the link calls to interact between them. The
functionality of each component contributes to implement
and execute the business logic of the application [14].

A component is an auto deployment self-contained entity
that implements a business function and provides a high
level of software reuse. Some components may be general
purpose while other components may be highly specialized
and / or built specifically for the application [21].
Some advantages of CBSD are:
• Modifiability. Components can be added or removed

according to the requests of each application.
• Extensibility. When a new requirement needs to be

implemented, if it can be incorporated using new
components it is not necessary to modify existing ones
that are not related to the implementation.

• The changes, if necessary, will apply only to the
involved components. The components can be updated
even while a client application is running, provided that
the components are not being used.

• Improvements and arrangements made to a component
can be immediately available to all applications that use
the component.

• Component-oriented programming allows customer
applications and components to be developed and evolve
separately.

• The language independence promotes the exchange of
components, their adoption and reuse. Developers using
component-oriented development can focus on the
decomposition of interfaces. The interfaces will be used
as contracts between clients and services provided by
the components.

Component-oriented programing (COP) takes the good
methodologies of the OOP as it base, but it has the
components as its basic programming elements [14]. Some
of the principal characteristics in COP are: It is based in
interfaces. It is a distribution technology and component
packaging. It supports high-level reuse. COP, in principle,
can be written in any language. They are loosely coupled
components. Components have long granularity. Support for
multiple interfaces, and a design-oriented interfaces. Have
mechanisms that enhance the integration of third-party
compositions. It supports multiple ways to link and dynamic
discovery. Provides support higher order services like
security and transactions.
In COP the basic application unit is an interface. An
interface is a logical grouping of method definitions that act
as a contract between the customer and the service provider.
Each provider is free to give their own interpretation of the
interface. The interfaces are implemented by a black box
component that completely encapsulates the interior. To use
the service offered by a component, it is not necessary to
know how an interface is internally implemented. The client
only needs to know the definition of the interface [14].

4. Component-Based Development
Technologies
The current challenge of new technologies is to promote
software reuse and component-based development.
Interoperability and reusability not only represents a long-
term challenge - because software is constantly evolving -,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 167

but also a great opportunity for improvement in terms of time
and quality software development. In the following
subsections we introduce various technologies, such as
.NET, Web Services, OSGi, ICE, and SCA. These
technologies, at different levels, implement the concept of
component-based development and promoting software
reuse.

4.1 Microsoft .NET
. NET is a technology designed to simplify the development
and implementation of components, while providing
interoperability between various programming languages
such as Visual Basic, Visual C + +, C #, among others [14].
The .NET framework is made up of two main parts [21]:
Common Language Runtime (CLR), and a set of unified
libraries like ASP.NET Web Forms, Windows Form and
ADO.NET.
The CLR provides a common context in which all .NET
components are running, regardless of the language they are
written [14]. The CLR consists of: Common Type System
(CTS), Intermediate Language (IL) code, Just-In-Time (JIT)
compiler, an execution unit, and some other management
services. Figure 4.1 shows how the CLR works.
In .NET all compilers generate code in agreement to the
common type system (CTS). Any .NET component is
transformed to an intermediate common language
infrastructure (CLI), also calling Microsoft Intermediate
Language (MSIL), instead of a processor’s specific object or
platform. The MSIL instruction set is platform independent,
and can be run in any environment that supports CLI. The
use of MSIL helps to eliminate the necessity to distribute
different executable for different platforms and CPU types.
The basic unit of packaging in .NET is the assembly. An
assembly gets together multiple physical files into a single
logical unit. The assembly can be a class library (DLL) or a
standalone application (EXE) [14]. An assembly consists
essentially of: MSIL code modules, a manifest, metadata
modules, and several resources. A metadata is a
comprehensive, standard, mandatory, and complete way to
describe the content of the assembly. A manifest describes
the assembly itself; provide the logical attributes shared by
all modules and components within the assembly [14]. In
.NET the component composition can be implemented in
two ways: by aggregation (external exposure of the
interface), or by containment (the process is performed
internally and transparent to the user). .NET allows the use
of code contracts. A code contract sets the preconditions,
post conditions and invariant program objects codes.
Contracts act as documentation for internal and external
APIs, and are used to improve testing via runtime revisions.
The composition of components, property inheritance, and
methods of classes -written in different languages - allow
reuse of components.

Figure 4.1. - CLR in .NET

The basic unit of packaging in .NET is the assembly. An
assembly gets together multiple physical files into a single
logical unit. The assembly can be a class library (DLL) or a
standalone application (EXE) [14]. An assembly consists
essentially of: MSIL code modules, a manifest, metadata
modules, and several resources. A metadata is a
comprehensive, standard, mandatory, and complete way to
describe the content of the assembly. A manifest describes
the assembly itself; provide the logical attributes shared by
all modules and components within the assembly [14]. In
.NET the component composition can be implemented in
two ways: by aggregation (external exposure of the
interface), or by containment (the process is performed
internally and transparent to the user). .NET allows the use
of code contracts. A code contract sets the preconditions,
post conditions and invariant program objects codes.
Contracts act as documentation for internal and external
APIs, and are used to improve testing via runtime revisions.
The composition of components, property inheritance, and
methods of classes -written in different languages - allow
reuse of components.

4.2 Web Services
A Web Service is a software system designed to support
interoperability and interaction machine-to-machine over a
network that has an interface described in a machine-process
able format [16]. Laws et al. (2011) said Web Service is a
term generally used to describe an interface provided by a
software application that can be called via network. More
recently, the term has been used to describe the services
provided in a network using SOAP over HTTP protocol. By
using SOAP a XML format is described for message passing
from the client to server and server to the client. To describe
the interfaces provided by a Web Service a Web Services
Definition Language (WSDL) is used. WSDL is a XML
language that defines the functionality of the interfaces in
terms of the providing operations, and the physical details
about where the Web Service is hosted.
The basic actions performed by a Web Service are [7]:
publish a Web Service, and consume a Web Service. On the
other hand, an application that consumes a Web Service has
two components: a proxy object to interact with the Web

168 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Service, and a client application to consume – by invoking
methods on the proxy object - the Web Service.
The Web Service communication can be functionally made
between two completely different environments by using
standard protocols. The calls in Web Services are translated
into a language and standard protocol that both computers
can understand. Generally, a XML format is used. The XML
language is a text-based format commonly understood
among different applications. Also, the Web Services allows
the calling of remote applications by remote procedure calls
(RPC) [10].
Some characteristics of Web Services that promote software
reuse design [11] are: open infrastructure (usage of widely
documented and accepted protocols like HTTP and XML),
transparency of language (interoperability between clients
written in different programming languages), and modular
design (aggregation services through integration and
layering). These features distinguish Web Services from
other distributed software systems.
There are several methods of Web Services. Some of them
are: Simple Object Access Protocol (SOAP), Universal
Description, Discovery and Integration (UDDI), Web
Services Description Language (WSDL), Representational
State Transfer (REST), and Action Message Format (AMF).
Languages like C / C + +, C #, Java, Perl, Python, and Ruby
provide libraries, utilities, and even frameworks that support
Web Services.
Figure 4.2 shows a Web Service architecture with three
elements: a client, a provider Web Service and UDDI
Registry. The Web Service provider registers/publish its
services in the UDDI register. The services are globally
available to the customers who require them.

4.3 Open Services Gateway initiative (OSGi)
The alliance Open Services Gateway initiative (OSGi)
emerged in 1999. Its purpose was to provide Java embedded
technology to network gateways in households [6].
Currently, OSGi framework is a component specification
that provides modularity to the Java platform. OSGi allows
the creation of highly cohesive and loosely coupled modules
which can be integrated into larger applications. Each
module can even be independently developed, tested,
implemented, updated, and managed with zero or minimal
impact with respect to the other modules [20].
OSGi is built over the Java platform, and is made of several
layers: module definition, lifecycle modules, service
registration, services, and security layers. The OSGi
framework and the Java platform are illustrated in Figure 4.3

Figure 4.2. - Web Service Architecture

Figure 4.3.- OSGi framework

The module part defines a deployment model based on Java.
In OSGi the implementation unit is the bundle. The OSGi
bundles are very similar to JAR files, except that its META-
INF/MANIFEST.MF file contains specific OSGi metadata,
including a final name, version, dependencies, and some
other implementation details. A bundle can be compared to a
Web ARchive (WAR) in the context of a web container, or
an Enterprise ARchive (EAR) in the context of Java
Enterprise Platform[6].
A bundle can be installed, initialized, stopped or uninstalled
from the framework according to the life cycle prescribed by
the OSGi specification. The OSGi framework provides a
service registry, in which bundles can be publish and/or
consume services. However, unlike some interpretations of
service oriented architecture (SOA) using Web Services,
OSGi services are published and consumed within the same
Java virtual machine. OSGi is also described as a "SOA
JVM". OSGi, as well, defines an optional security layer to
authenticate bundles to be deployed in a safe manner.
OSGi provides the following additional modular features to
Java [20]: hiding content, service record (the services are
known by their interfaces), parallel versions of bundles,
dynamic modularity, strong naming (the bundles are
identified by a symbolic name and version number).

4.4 Internet Communications Engine (ICE)
ICE is an object-oriented middleware that allows developers
to build client-server applications in a distributed fashion
with minimal effort. Similar in concept to CORBA, ICE
provides a simpler and more powerful object model. ICE
includes improvements such: user datagram protocol (UDP)
support, sending asynchronous mode, security, automatic
object persistence, and interface aggregation. The object
model is a set of definitions about computational entities
properties, like available types and their semantics, rules for
type compatibility, and behavior in case of error [9].
ICE has tools, APIs, and support libraries to build client-
server object oriented application. ICE can be used in
heterogeneous environments, as clients and servers can be
written in different programming languages. ICE can run on
different operating systems and architectures, using a variety
of network technologies to communicate [17]. ICE currently
supports C++, Java, C #, Objective-C, Python, Ruby, and
PHP languages, on Linux, Mac OS, Windows, Android and
Solaris platforms.
ICE operation is based on RPC using TCP or UDP to invoke
remote objects as if they were local. The objects are called

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 169

ICE objects, which are a local or remote entities responsible
for responding to customer requests. It is necessary to have a
client-side proxy to establish communication with remote
objects hosted on remote servers. The local client needs a
Servant to know the implementations and methods which a
remote object has. The Servant will be responsible for
explaining the behavior of operations.
Slice is the property of ICE that can transform objects
written in different languages supported by the middleware
in ICE objects. Each ICE object has an interface with a
specific number of operations. The Slice language defines
the interfaces, operations, and data types that are exchanged
between the client and the server. Slice allows establishing
the entity contracts between the client and server
independently of the programming language.
The ICE architecture provides several benefits to software
developers [18]: object-oriented semantics, asynchronous,
synchronous messages, multithreading and multiple
interfaces support; machine architecture, implementation,
operating system, and transport independence; location and
server transparency, and security.

4.5 Service Component Architecture (SCA)
SCA was originally created by a group of companies such as
IBM, Oracle, SAP, and BEA. SCA is a programming model
that abstracts standard business functions into software
components [15]. The basic building block in SCA is the
component. The components are then used as building
blocks. The implementation of an SCA component can be
performed in any technology, like Ruby, BPEL, Java, or
even frameworks like Spring, Java EE and OSGi.
A SCA components consist of [2]: services (interfaces),
references (also called interfaces, they are the required
dependences to perform its task), properties (configuration),
and intention policies (component’s behavior). The SCA
component´s parts are illustrated in Figure 4.4.
The unit of deployment in SCA is the composition. A
composition is an aggregation of one or more components. A
composition can provide externally the services and
references provided by its internal components through
promotions[4]. Applications can be built using one or more
compositions. The components within a composition can use
the same technology or be implemented in different
technologies. This feature promotes the reuse of components
[4].

Figure 4.4. - SCA component’s elements

An SCA composition is described in a configuration file with
a .composite extension. The .composite file is build using a
Service Component Definition Language (SCDL) based on
XML. The SCDL describes the existing components within
the composition and the relationships between them. An item
package that is part of the business solution is known as

contribution. A contribution is a unit of deployment, and
may contain compositions, Java classes, and XSD or WSDL
files.
One of the most important concepts in SCA is the bindings.
A binding specifies the communication methods that a client
can use to access a service, and the methods that a service
can use to access other services, either within the same SCA
domain or outside it. Services can be configured to use
different types of bindings without have to change the
component´s code. Therefore multiple bindings can be
associated for the same service. For example, one software
solution should have JMS bindings, Web Services bindings,
Atom bindings, and Corba bindings. Through the use of
bindings it is possible to focus on the business logic of the
components, instead of the problems associated with
communications and management protocols. This feature
allows SCA compositions to be flexible, and grow and adapt
without code changes.

5. Software Project
A software project was developed to illustrate how software
architectures and component-based development contribute
to build and reuse the software. The SCA was selected due is
a component architecture platform that extends many of the
features seen in the other technologies mentioned above.

5.1 Project description
A system with a Web application was built to provide
available billboard information from several movie theaters
within certain particular region. The application offers an
online catalog service where users can query and evaluate
the results according to their preferences.

5.2 Objectives
The main objectives of the project were: collection and
processing of information in different formats, allow the use
of different technologies to communicate components and
services, using software architectural designs according to
the project specifications, development of component-based
software to implement system functionality, and software
development with and for reuse.

5.3 Architecture
The selected pattern was a layered client-server approach.
The server is always active and waiting for connections and
queries from customers. The architecture of the project, seen
from a general point of view, has five main components:
Clients, Cinemas, Intelligent Agents, MovieCatalog, and
Data Access. The five components and their respective
relationships are illustrated in Figure 5.1.

170 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 5.1. - General architecture

The description of each component of Fig 5.1 is as follows:
Customers. - Represent users who will use the service
MoviesSCA.
Cinemas. – The movie theaters that will be recorded in the
system. Each movie theaters will provide movie data from
their billboards.
Intelligent Agents. - Perform search operations over Internet
to collect billboard information. This mechanism is proposed
to automate the data collection process periodically.
MovieCatalog. – This component offers the query and
movie research services.
Data Access Layer. – This component directly
communicates with the database engine to perform query and
update operations. The data access layer component brings
independence to the database from the other components.
Figure 5.2 shows a class diagram from an architectural
perspective. The architectural view adds the interfaces and
classes that compose each one of the components.

5.4 Implementation
For the exchange of information between components a
scheme based on XML was created. The framework Tuscany
was chosen to build the project. Tuscany is a lightweight
infrastructure that implements the following technologies:
Service Component Architecture (SCA), Service Data
Objects (SDO), and Data Access Service (DAS). The My
Structured Query Language (MySQL) was selected to
implement the database of the software project. The MySQL
is an open source relational database management system
(RDBMS) widely used in software projects.

Figure 5.2.- Class Architecture Diagram

5.5 Results
A well-designed architecture provides system decomposition
into several subsystems, specifies the role of each
component, and helps to meet the key project requirements.
The SCA technology offers an excellent component based
solution for software development with reuse in mind. The
SCA diagrams make easier to understand the
communication, dependency, and interaction between
components within a system. The use of bindings allows
interoperability among different technologies outside SCA in

a transparently manner. To add a new communication
protocol only is needed to aggregate a few lines in the
.composite file, leaving the component´s code without any
modification.
Finally, with SCA the reuse of software is feasible due the
SCA components can be ported to other environments and
can run without major complications, although the rest of the
application was developed in a different language.

6. Conclusions
Nowadays, there are several platforms, technologies, and
programming languages to build software systems. Each one
offers different solutions and implementation to client´s
business requirements. Unfortunately, traditional approaches
prevent the reuse of previously developed software -mainly
because of bad software practices -, deriving in the necessity
to build new software from scratch every time.
The architectural designs and the CBSD are some of the
latest tools available for software developers. The use of
architectural designs facilitates the development of software
applications. It provides system decomposition into several
subsystems, specifies the assigned roles to each component,
gives conceptual integrity principles, and tries to minimize
rework applications during the lifetime of the system. Also, a
well-designed architecture allows the verification of the
correct evolution of a system, the satisfaction of key project
requirements, helps to detect system errors, reduce
associated costs, and contribute to the maintenance actions.
The component-oriented programming promotes the
software development with and for reuse. The component-
oriented technologies discussed in this paper bring different
features and capabilities for software reuse. Some are easier
to implement, as the case of Web Services, while others have
a higher learning curve, such as OSGi. .NET is a good option
if you work mostly on Microsoft´s platforms and
programming languages. ICE offers many improvements
over its predecessor, Corba, but it is still under development,
so many of its features are not available. Finally, SCA is a
component architecture that incorporates and extends many
of the features seen in other technologies, thus SCA brings a
more comprehensive and complete software solution.
The SCA’s advantages found with this research are listed
below:
• It is a component-based architecture.
• Using SCA diagrams it is easy to design the component

architecture for the software project. During the
implementation phase, a very close correspondence
exists between the code and the different architectural
elements.

• In SCA services and references can be developed and
connected in a distributed fashion, using a variety of
technologies and languages.

• SCA is a flexible and versatile platform that can interact
with other applications outside SCA through the use of
bindings.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 171

• The bindings enable SCA interoperability with
applications developed in other languages or using
different communication protocols.

• To add a new binding to the SCA service it is not
necessary to make changes to the component’s code.
Only a few lines in the .composite file are required to
implement the communication service.

• The compositions and contributions promote the
programming with and for software reuse.

• Using the SCDL simplifies the description of the
components within a composition.

In general, the software architectures and the component-
based development represents a long-term challenge -
because the software is constantly evolving -, but also
represents a great opportunity for design, time, cost, and
software quality improvements.

7. 7 References

[1] AlSharif, M., Bond, W., & Al-Otaiby, T. (2004),
“Assessing the complexity of software architecture”,
Proceedings of the 42nd annual Southeast regional
conference. (ACM Digital Library).

[2] Apache, S. F. (2010), “SCA Introduction”, Retrieved
October 7, 2011, from
http://tuscany.apache.org/documentation-2x/ sca-
introduction.html

[3] Bondi, A. (2009), “The software architect as the guardian
of system performance and scalability”, Proceedings of the
2009 ICSE Workshop on Leadership and Management in
Software Architecture. (ACM Digital Library).

[4] Chappell, D. (2007), “Introducing SCA”, San Francisco,
California: Chappell & Associates. Retrieved October 11,
2011, from
http://www.davidchappell.com/articles/introducing_sca.pdf

[5] Garlan, D., & Schmerl, B. (2006), “Architecture-driven
modelling and analysis”, Proceedings of the eleventh
Australian workshop on Safety critical systems and
software. (ACM Digital Library).

[6] Gédéon, W. (2010), “OSGi and Apache Felix 3.0”.
Birmingham: Packt Publishing.

[7] Gonzalez, P., & Perez, O. (2011), “Servicios Web”,
Retrieved November 9, 2011 from http://cursos.itesm.mx/

[8] Gorton, I. (2006), “Essential Software Architecture”, New
York: Springer-Verlag.

[9] Henning, M (2004), “A new approach to object-oriented
middleware”. Internet Computing, IEEE, V. 8, I. 9, (IEEE
Digital Library).

[10] James, T. (2010), “Drupal Web Services”. Birmingham:
Packt Publishing Ltd.

[11] Kalin, M. (2009), “Java Web Services: Up and Running”.
Sebastopol, CA: O'Reilly Media.

[12] Lakshminarayanan, V., Liu, W., L Chen, C., Easterbrook,
S., & E Perry, D. (2006), “Software Architects in Practice:
Handling Requirements”, Proceedings of the 2006
conference of the Center for Advanced Studies on
Collaborative research. (ACM Digital Library).

[13] Laws, S., Combellack, M., Feng, R., Mahbod, H., & Nash,
S. (2011), “Tuscany SCA in Action”. Stamford, CT:
Manning

[14] Lowy, J. (2005), “Programming .NET Components”,
Sebastopol, CA: O’Reilly

[15] Marino, J., & Rowley, M. (2010), “Understanding SCA”.
Indiana: Addison-Wesley

[16] Richards, R. (2006), “Pro PHP XML and Web Services”. New
York: Apress©

[17] Spruiell, M. (2011 a), “Ice Architecture”, Retrieved November
12, 2011 from
http://doc.zeroc.com/display/Ice/Ice+Architecture

[18] Spruiell, M. (2011 b), “Architectural Benefits of Ice”,
Retrieved November 12, 2011 from
http://doc.zeroc.com/display/Ice/Architectural+Benefits+of
+Ice

[19] Vitharana, P., Zahedi, F., & Jain, H. (2003), “Design,
retrieval, and assembly in component-based software
development”, Communications of the ACM, Volume 46
Issue 11. (ACM Digital Library).

[20] Walls, C. (2009), “Modular Java: Creating Flexible
Applications with OSGi and Spring”. Dallas: Pragmatic
Bookshelf.

[21] Wang, A., & Qian, K. (2005), “Component-Oriented
Programming”, Hoboken, New Jersey: John Wiley & Sons.

172 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

SESSION

UNIFIED MODELING LANGUAGE / UML,
OBJECT ORIENTED METHODS, AND CASE

STUDIES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 173

174 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

A QoS Driven Web Service Selection Methodology Using
UML and UML Profiles

A. Rashmi Phalnikar1, B. Devesh Jinwala2

1 MIT College Of Engineering , Paud Road, Kothrud ,Pune , India : 411038
2 SV National Institute Of Technology , Ichchanath, ,Surat , India - 395007

Abstract - Business process modeling and execution in SOA
requires a set of methodologies and tools which support
transition from analysis to execution level. Web services
play a significant role in application development in SOA
environment and publishing its functionality on registries to
link their data and operations for different applications.
Web service selection must satisfy not only the functional
requirements but also the Non Functional Requirements
(NFR) of the user. Based on our literature survey, we
observe the need for improvement in current approaches so
as to consider NFR during web service selection. Further, as
number of users and their specific requirements increase,
NFR conflicts are bound to rise and need to be understood.
Detecting them and finding their impact on the system is the
next rational step. Our work proposes to detect these
conflicts using Ontology, Unified Modeling Language
(UML) and UML Profile. The focus is on selecting an
appropriate web service so that the Quality of Service (QoS)
values are maintained. Our contribution is to develop a
model driven approach so as to allow the designer to choose
an appropriate web service. This is expected to greatly
reduce the development and operational time besides
providing transparency.

Keywords: Web Service Selection, QoS, Ontology, UML
Profiles. Non Functional Requirements

1 Introduction
Web services based on ubiquitously adopted internet

standards and supporting interoperability across different
platforms have introduced a new era in application
development. With an ever increasing number of web
services providing similar functionality, Quality of Service
(QoS) is becoming an important criterion for selection of the
best available web service. QoS becomes a significant
concern for service consumers and providers during service
selection. Users need to know QoS information, reliability
of the information and also the performance impact of a
wrongly chosen web service. However, representing, storing
and understanding the interdependency of the QoS values is
an issue and needs due attention.

When discovering web services, clients look for those web
services that meet their functional requirements. The service
descriptions are manually scanned and those services which

satisfy user requirements are selected or composed. With an
increasing number of web services providing similar
functionalities, the discovery process now emphasizes on
how to find the service that best fits the consumer’s NFR.

NFR based service selection is not possible with the
traditional mechanism as they do not consider user
constraints. So the need of the hour is a system that assists
the user to search and incorporate these capabilities that
defines the QoS factors. QoS is defined as a set of quality
requirements present in the collective behavior of one or
more object parameters and are a set of non functional
attributes like service response time, throughput, reliability
and availability. They sometimes refers to the level of
quality of service, i.e. the guaranteed service quality.

Our investigation raised certain issues:
i. What is an appropriate method of description of QoS

values?
ii. After the filtering of web services what method is apt for

non functional requirement based selection?
iii. How will the user know that the shortlisted web service

will meet a distinctive non functional requirement?
iv. What is the best way to judge the extent to which QoS

values of the user and provider agree?
v. How to associate the weights for each of the user’s non

functional requirements?
vi. Do the NFR conflict and if they do to what extent do

they affect the working of the system and its QoS value?

The goal of this research is to investigate how dynamic
web service selection can be realized to satisfy a customer’s
QoS requirements using a new model that can be
accommodated within the existing web service selection
methods. This paper focuses on study of the possibility of
improving the proposed UML profile, including the OCL
(Object Constraints Language) for the representation of user
constraints during selection. This way the developers’ whose
knowledge does not extend beyond UML can develop
applications that use semantic web services. We propose a
method to detect these conflicts using Ontology, Unified
Modeling Language (UML) and UML Profile. Even though
matching of QoS factors have been understood, it is more
important to understand how NFR conflicts and how it can
affect the system.

The remainder of this paper is structured as follows. We
outline the motivation in section 2. Section 3 expresses use

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 175

of Model Driven development in web service selection.
Section 4 describes the method of representing NFR in UML
diagrams. Section 5 overviews verification of class diagram
and OCL and Section 6 concludes the paper.

2 Motivation
The preface makes it evident that the first step for the

support of QoS of web service is to provide a framework
which considers the NFR of service provider and requester.
The idea in the proposed design and implementation is to
maintain all features with the standard web service selection
mechanisms and expand them to support QoS
characteristics. As a result, a web service user can pick
among services the one that suits him/her most and further
refine his options using quality criteria. To be widely
adopted by users and to succeed in real-world applications,
the development must catch up with mainstream software
trends like Model Driven Development.

We can broadly classify web service selection methods
into those discovered by functional requirements and those
by non functional requirements as shown in Fig, 1.

Fig. 1: Web Service Discovery Methods

During design time or static web discovery that
concentrates only on functional description, the application
designer makes use of service registries and service
descriptions to select and test binding to a service.

As number of web services grows they share similar
functionalities, but possess different non-functional
requirements. The web service discovery and selection
methods that use NFR have been investigated and a
backdrop for motivation of our research is created. Solutions
to service selection based on QoS problem can be roughly
divided into three categories:

i. Self Advertising: Web service providers will describe
their expected QoS information. A disadvantage is
that provider may not be neutral in describing its own
QoS information.

ii. Web service consumers experience about service
quality: QoS data are collected by other user’s

feedback or by active monitoring. A drawback of this
approach is its complexity and overhead
implementation.

iii. Third party evaluation of a web service owner. It will
test the web service and it’s published QoS
information. This method is expensive and inflexible
to implement.

Kokash et.al [2] suggested adding QoS values to UDDI by
adding properties to property bag. Use of Quality
Requirements Language (QRL) for QoS information was
described by Ran et.al. [3]. However it does not provide
sufficient information on when and how to control and
manage any specified QoS information. The paper further
suggested the use of a QoS certifier. The new certifier’s role
is to verify service provider’s QoS claims. The proposed
extension to the current UDDI design may not be always
feasible and the verification of QoS properties at the time of
registration may not guarantees up-to-date QoS information.

Maximillen et.al. [4] suggests use of agents based on
distributed reputation metric models. Rajendran et.al. [5]
proposed the Multi-Agent based architecture for both
services registration and service discovery. The architecture
utilizes the services of response agent, certification agent
and query agent. D’Mello et.al [6] presents a repository to
store, retrieve and act with QoS information. Efshani et.al.
[7] uses a QoS broker to manage the interaction of QoS
information between service requester and service provider
and further effort is being placed on how to find the service
that most coordination the consumers’ requirements. Al-
Masri [8] proposes use of Web Service Relevancy Function
used for measuring the relevancy ranking of a particular web
service based on client’s preferences, and QoS metrics.

Another approach suggests use of WS-Policy [9]. WS-
Policy is a specification that allows web services consumers
and producers to advertise their policy requirements. Certain
solutions suggest a conceptual model that is based on web
service reputation and user feedbacks [10][11]. They
however suffer from the fact that service do not provide
guarantee as to the accuracy of QoS values over time or
having up-to-date QoS information. QoS Ontology based
solutions [4] uses a multiagent framework based on ontology
for QoS. The ontology provides a basis for providers to
advertise their offerings, for consumers to express their
preferences, and for ratings of services to be gathered and
shared. Baocai et.al. [12] proposes a framework that
supports the automatic discovery of web services using QoS
ontology. However they suffer from performance problems
due to the use of ontology reasoners.

Where matching of web services is concerned, work by
Baocai et.al [12] and Kritikos et.al [13] draws attention to
semantic similarity, so as to improve the precision of service
discovery. However the interface of web service has

Web Service Discovery and Selection

Functional Requirements Non Functional Requirements

- UDDI Registries
- Other Resources
- Search Engines

Advertise QoS
Values

User
Feedback

Third Party
Evaluation

176 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

difficulty to describe the service correctly. Moreover users
also find it hard to exactly present their requirements.

In general, the widespread understanding and use of web
services should be promoted to enable development of
ubiquitous computing and for widespread adoption of web
services. However, the learning curve for semantically rich
languages can be steep. This fact provides a barrier to
adoption and widespread use. So, development must catch
up with mainstream software trends, as for example, the
Model Driven Architecture.

We propose the use of UML profile and OCL constraints,
to describe the NFR requirements and constraints of web
service with the help of QoS Ontology. Note that the OCL is
language familiar for the average software developer and
such a selection process at design time could improve the
overall performance by reducing conflicts at run time.

3. Model Driven Development for Web
Service Selection

Model Driven Development (MDD) is a style of software
development where the primary software artifacts are models
from which code and other artifacts are generated. A model
is a description of a system from a particular perspective,
omitting irrelevant detail so that the characteristics of
interest are seen more clearly. In MDD a model has to be
machine-readable.

In MDD, models are used not just as sketches or blueprints
but as primary artifacts from which efficient
implementations are generated by the application of
transformations. It has the potential to greatly reduce the
cost of solution development and improve the consistency
and quality of solutions. It does this by automating
implementation patterns with transforms, which eliminates
repetitive low-level development work. Rather than
repeatedly applying technical expertise manually when
building solution artifacts, the expertise is encoded directly
in transformations. This has the advantage of both
consistency and maintainability.

MDD shifts the emphasis of application development away
from the platform allowing developers to design applications
without concern of platform-level concepts. A software
development project needs to produce many non-code
artifacts and many of these are completely or partially
derivable from models. The advantages of an MDD
approach are as follows:

- Increased productivity:
- Maintainability
- Reuse of legacy
- Adaptability
- Consistency

- Repeatability
- Improved stakeholder communication
- Improved design communication

When designing a solution, we must consider non
functional characteristics such as security and performance.
In an MDD approach, it is often possible to capture many
decisions related to non functional characteristics in
transformations. However, it is not always possible or
desirable to completely automate these aspects of a solution.
Solution-specific design may be necessary. In such cases, we
introduce modeling techniques relevant to specifying non
functional characteristics. For example, we might introduce
stereotypes that indicate the kind of traffic that is expected
over a connection (frequent/infrequent, high volume/low
volume). The transformations then use this information to
generate implementation artifacts that are optimized for
these performance characteristics.

4. Representing NFR Using UML
Profiles

UML editors are ubiquitous in the software industry, and
many can be updated to recognize new profiles. UML
documentation of the requirements engineering process will
sit more comfortably with all other UML documentation for
a software project. A domain-oriented design approach that
provides mechanisms for illustrating NFR using UML
classes would facilitate the mapping from one domain to the
other also.

Our work proposes to design a system which can assist in
NFR based web service selection process in Service
Oriented Architecture (SOA) environment. For illustration
purpose, we have created a framework for UML profile
corresponding to a Chronic Obstructive Pulmonary Disease
(COPD) patient. This profile is meant to ease the work of
software developers.

An important part of UML is the Object Constraint
Language (OCL) – a textual language that allows to specify
additional constraints on models in a more precise and
concise way than it is possible to do with diagrams only.
UML Profile contains stereotypes and tagged values.
Stereotypes are attached to model elements to convey the
meaning of those elements. Tagged values are name/value
pairs. They are attached to model elements in order to
supply additional information which is needed in the
transformation process. We suggest the use of a a precise
approach that allows an analysis and validation of UML
models and OCL constraints.

i. Case Study: COPD Patient
In e-health Remote Patient Monitoring (RPM) refers to

variety of technologies designed to manage and monitor
health conditions of a patient. RPM come with many

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 177

advantages like reduced cost, early intervention, integration
of care and increased productivity. Chronic Obstructive
Pulmonary Disease (COPD) is a slowly progressive disease
of the airways characterized by a gradual loss of lung
function. This leads to a limitation of the flow of air to and
from the lungs, causing shortness of breath (dyspnea). The
symptoms of COPD can range from chronic cough and
sputum production to severe disabling shortness of breath.

These are the first signs of complications in the patient’s
condition and the risk associated with it.
Many COPD patients monitor their vital capacities and peak
flow rates at home. This monitoring helps them and their
physician to monitor the patient’s condition. The proposed
model will be helpful to these COPD patients being
monitored remotely to predict the onset of a spasm and alert
the medical professional. Due to the prevalence and
economic burden of hospitalized COPD patient, it is
necessary to seek out methodologies that would facilitate the
prevention, monitoring and treatment of them. Experts and
researchers suggest monitoring and tracking patients’
symptoms on an everyday basis in order to prevent
emergencies.

We consider this setup in a Service Oriented Environment
(SOA) where web services will be used to transfer data
securely. The selection of web services is critical as each
patient’s NFR are unique. However they have to match the
NFR offered by web service, and this is where our model
comes into use. We try to select the most appropriate web
service that delivers the highest QoS by matching the NFR
or unique requirements of the user.

ii. System Design
Fig. 2 shows the data flow of the proposed system.

Fig. 2: Data Flow Diagram

The specifications of the present system are studied to
determine what changes will be needed to incorporate the
user needs. The input will consist of the user specifications,

and the output will be the identity of the web service that can
deliver highest QoS.

iii. Non Functional Requirements Diagram
NFR Diagram is used to understand how NFR are

interrelated. For our discussion we consider two important
NFR: security and response time. Later we will increase the
scope of the NFR under consideration.

The NFR are different from the functional characteristics
in the sense that they are not always completely satisfied.
The set of NFR are interrelated and if they are conflicting,
they affect the working of the system. To understand this, we
draw NFR diagram, a visual representation of the
decomposition of NFR. In this sense, the diagram shows
how various NFR are rationalized. In analyzing NFR, one
does not analyze them independent of each other, but rather
in relation to each other. There can be looser relationships
where one NFR considers, prevents or contributes towards
the fulfillment of another.

a. Security NFR Diagram: The decomposition is shown
in Fig. 3 below.When the patient’s vital data is sent, it is
recognized as normal or abnormal condition. In case it
is abnormal, the login protocols are bypassed and the
vital data validation is done. This is done to avoid any
delays to authentication and authorization.

Fig. 3. Security NFR Diagram

However in normal conditions, the patient’s data is
validated through the Login Process. It consists of
Access Rule validation, identification and data
confidentiality. This figure shows that security NFR
itself can be decomposed into several NFR.

b.Response Time NFR Diagram: Response Time is
defined as the elapsed time between the end of an

Detect NFR Conflicts

Compare Web Service and
Patient’s UML class diagrams

Patient
Vital

Bounds
Evaluate
Bound

Validation

Unpack Patients Vital
Statistics

Shortlisted Web Services
that satisfy FR

Select Web Service that gives
highest QoS

Health
Professional

Transfer data
securely

178 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

inquiry on a computer system and the beginning of a
response. The total response time NFR consists of
response time for validating data, logging in, response
time for alert and then saving data.

All of the goals considered can be termed as soft goals,
that is, they are yet too vague to be formalized. Since
they are not sufficiently defined, it is also not yet clear
what it would take to satisfy one of these goals.
Ordinarily, a “reduces” relationship holds between a
goal and a subgoal if satisfaction of the subgoal is
sufficient for satisfaction of the goal it reduces.
However, where a reduces relationship exists between
goals in which any of the reduced goals are soft, we talk
in terms of partially satisfying rather than satisfying.

Fig. 4. Response Time NFR Diagram

c. Class Diagrams for Patient: Once the NFR
decomposition is complete, it is evident that NFRs
conflict as shown in Fig, 5.

Fig. 5: Class Diagram for Patients NFR
The conflicts are evident and is shown in the the class

diagram for patient which is mapped by traversing step-
by-step through the WSDL file and identifying the most
important UML concepts.To understand how NFR can
conflict and hamper, we begin the process of mapping the
patient’s requirements and web service specifications to
the UML metamodel. We define stereotype to handle
transactions which include Save Vitals, View Vitals and
Send Alerts. Further the NFR Security and Response time
are also elaborated using stereotypes and constraints.

5. Verification of Class Diagrams and
OCL

The idea of verification of web service suitability using
MDD in the case of a COPD patient seems to be a promising
idea. As a result it will be able to detect mismatch or a
reduction in QoS values due to NFR conflicts. The
approaches revolve around satisfiability property of a model,
i.e. deciding whether it is possible to create a well-formed
instantiation of the model.

A general outline for this work would be:
i. Depict the candidate web services in the form of a class

diagram, making use of the WSDL file structure and its
tags.

ii. Understand the input notation/ requirement of the user.
These are the OCL constraints. If an internal formal
notation is used, it should be transparent to the designer.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 179

iii. Analyze the effect of the OCL constraints on the class
diagrams and how they may disagree with the design
without any type of manual annotation.

iv. Provide results in a format meaningful to the designer.
v. Integrate seamlessly into the designer tool chain.

The expressivity of class diagrams is limited to class level
interaction and constraints. The Object Constraint Language
OCL is intended to extend a UML model (mainly class
diagrams) with symbolic constraints[14].There have been
some methods that discuss the idea of UML/OCL constraint.
However its use in the field of web service selection is
innovative.

Cabot et al. [15] describe a CSP-based tool for reasoning
about finite satisfiability of class diagrams that are extended
with OCL constraints. UMLtoCSP is a tool for the automatic
verification of UML models annotated with OCL
constraints. It can check automatically several correctness
properties about the model, such as the satisfiability of the
model or the lack of contradictory constraints. Currently, the
tool works on UML class diagrams only. UML2Alloy plays
an important role to create a bridge between UML and
Alloy.[16]. The tool takes an ArgoUML-generated XMI file
in order to transform the UML model into Alloy code. It
transforms the input into assertions, simulations, or
invariants.

Nevertheless, there are a few obstacles that may prevent
the introduction of WS provision. One of them is the
inability to represent the non-functional features of WSs, i.e.
their quality-of-service. To take care of this we second the
use the formulation of a QoS ontology framework that is
used to support QoS-aware web service selection [14]. A set
of rules defined by Semantic Web Rule Language (SWRL)
can also be described and designed for reasoning to acquire
more advanced knowledge based on simple ones.

6. Conclusion and Future Work
This work elucidates the relevance of QoS during web

service selection for a COPD patient remotely monitored.
Remote monitoring involves critical data handling and data
security keeping in mind the patients unique requirements.
The report discusses the relevance of NFR during web
service selection and the effect of conflicting NFR. The
paper proposes use of Model Driven Development (MDD),
UML Profiles and its extensions for ranking the most
suitable web service from a list of functionally satisfying
web services that are shortlisted. The benefits of MDD
ranges from ease of understanding to its use during design
stage to avoid conflicts during run time. The web service
class diagrams and OCL constraints can be verified using a
UML verification tool in future.

The proposed method is flexible and transparent and can
be used along with any web service selection method. It also

contributes to the improvement of service selection
efficiency when service is retrieved in an automatic way.
The major advantage of this approach is to decrease the
complexity of web service selection to user as it can be
included during design stage.

Our current interest as described in the paper focuses
mainly in two directions:

i.Investigating the NFR conflicts and
ii.Understanding the effect of these conflicts on the

QoS values.
In future, we would want to extend our experimental setup

with additional scenarios. We also plan to extend QoS
parameters to include information such as availability,
reliability etc. Moreover, this approach may be extended to
automatic service selection using multi-dimensional QoS.

7. References
[1] Latha Srinivasan and Jem Treadwell, 2005,“An

Overview of Service-oriented Architecture, Web
Services and Grid Computing” HP Software Global
Business Unit.

[2] Natallia Kokash, Aliaksandr Birukou, and Vincenzo
D'Andrea. 2007. Web service discovery based on past
user experience. In Proceedings of the 10th
international conference on Business information
systems (BIS'07), Witold Abramowicz (Ed.). Springer-
Verlag, Berlin, Heidelberg, 95-107.

[3] Shuping Ran. 2003. A model for web services
discovery with QoS. SIGecom Exch. 4, 1 (March
2003), 1-10. http://doi.acm.org/ 10.1145/
844357.844360.

[4] E. Michael Maximilien and Munindar P. Singh. 2004.
Toward autonomic web services trust and selection. In
Proceedings of the 2nd international conference on
Service oriented computing (ICSOC '04). ACM, New
York, NY, USA, 212-221.
http://doi.acm.org/10.1145/1035167. 035198

[5] T. Rajendran, P. Balasubramanie, “An Efficient Multi-
Agent-Based Architecture for Web Service
Registration and Discovery with QoS”, European
Journal of Scientific Research, Vol.60 No.3 , 2011,
Pgs. 421-432

[6] Demian Antony D'Mello, V. S. Ananthanarayana, and
Santhi Thilagam. 2008. A QoS Broker Based
Architecture for Dynamic Web Service Selection. In
Proceedings of the 2008 Second Asia International
Conference on Modelling \& Simulation (AMS) (AMS
'08). IEEE Computer Society, Washington, DC, USA,
101-106. DOI=10.1109/AMS.2008.94

[7] Reihaneh Khorsand Motlagh Esfahani, Farhad
Mardukhi, Naser Nematbakhsh, “Reputation Improved
Web Services Discovery Based on QoS”, Journal of
Convergence Information Technology Vol. 5, No.9.

180 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

2010 , Pgs. 206-214.
http://www.aicit.org/jcit/ppl/JCIT0509_21.pdf

[8] Al-Masri, E.; Mahmoud, Q.H.; , "QoS-based Discovery
and Ranking of Web Services," Computer
Communications and Networks, 2007. ICCCN 2007.
Proceedings of 16th International Conference on ,
vol., no., pp.529-534, 13-16 Aug. 2007. DOI =:
10.1109/ICCCN.2007.4317873 .

[9] Web Service Policy, Available at: http://www.w3.org/
Submission/ WS-Policy/

[10] Ziqiang Xu; Martin, P.; Powley, W.; Zulkernine, F.; ,
"Reputation-Enhanced QoS-based Web Services
Discovery," Web Services, 2007. ICWS 2007. IEEE
International Conference on , vol., no., pp.249-256, 9-
13 July 2007 DOI = 10.1109/ICWS.2007.152

[11] Youakim Badr, Ajith Abraham, Frrederique Biennier,
and Crina Grosan. 2008. Enhancing Web Service
Selection by User Preferences of Non-functional
Features. In Proceedings of the 2008 4th International
Conference on Next Generation Web Services
Practices (NWESP '08). IEEE Computer Society,
Washington, DC, USA, 60-65. DOI=
http://dx.doi.org/10.1109/NWeSP.2008.39

[12] Yin Baocai; Yang Huirong; Fu Pengbin; Gu Liheng;
Liu Mingli; , "A framework and QoS based web

services discovery," Software Engineering and Service
Sciences (ICSESS), 2010 IEEE International
Conference on , vol., no., pp.755-758, 16-18 July 2010
, DOI = 10.1109/ICSESS.2010.5552261.

[13] Kyriakos Kritikos and Dimitris Plexousakis. 2007. A
Semantic QoS-based Web Service Discovery
Algorithm for Over-Constrained Demands. In
Proceedings of the Third International Conference on
Next Generation Web Services Practices (NWESP
'07). IEEE Computer Society, Washington, DC, USA,
49-54,DOI=http://dx.doi.org/10.1109/NWESP.2007.5

[14] Rashmi Phalnikar, Devesh Jinwala,”Ontology Support
For Detecting NFR Conflicts In SOA”, In Proceedings
Of 2nd Annual International Conference On Software
Engineering & Applications (SEA 2011),Singapore
2011,Pp75-83.

[15] J Cabot, R Clarisó, D Riera, “ UMLtoCSP: a tool for
the formal verification of UML/OCL models using
constraint programming“, In Proceedings of the
twenty-second IEEE/ACM 2007.

.[16] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.
Um12alloy: A challenging model transformation. In
ACM/IEEE 10th International Conference on Model
Driven Engineering Languages and Systems, pages
436-450, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 181

Generation of Efficient Embedded C Code from UML/MARTE
Models

L. Lennis1 and J. Aedo2
12Department of Electronic Engineering, University of Antioquia, ARTICA, Medellín, Colombia

Abstract— Nowadays, the increasing complexity of the em-
bedded software development process, demands design tech-
niques capable of addressing such complexity efficiently. In
this article, a methodology that follows MDA guidelines
for the design of real-time embedded software is presented.
This methodology comprises two fundamental activities:
application modeling and code generation. Our modeling
strategy uses UML and MARTE extensions to elaborate
models where the specification of the application function-
ality is decoupled from the platform execution support. This
modeling approach is complemented by a code generation
strategy that transforms the application model into efficient
C code for execution on embedded systems. A sender-
receiver application is used as a case study to illustrate the
complete methodology workflow.

Keywords: UML, MARTE, SRM, code generation, embedded
systems, FreeRTOS.

1. Introduction
Due to the constantly increasing complexity of micropro-

cessing ICs, the code-centric approach to design embedded,
real-time, software is no longer an effective task. Given
that about 80% of embedded systems development cost is
attributed to software aspects of design [1], the demand
for methods and design techniques that make it possible to
address the complexity of the software design process is
growing every day.

MDA (Model Driven Architecture) [2] is a design vision,
proposed by the Object Management Group (OMG), that
promises to reduce time and effort to develop portable and
high quality software for execution platforms such as real
time embedded systems. Modeling, aids in understanding
software application functionality through the mechanism
of abstraction, while the code that implements such func-
tionality, in a specific platform, is automatically obtained
“generated" from the models. Nonetheless, an effective ap-
proach to the practice of MDA is only possible with the
support of tools that automatically transform the model into
the application code. In MDA, models are constructed using
the Unified Modeling Language (UML). Since UML was
conceived as a general purpose modeling language, it lacks
the expressive power to address the Real Time Embedded
Systems (RTES) domain. This shortcoming was alleviated
with the standardization of the profile for Modeling and

Analysis of Real Time and Embedded systems (MARTE)
[3]. SRM (Software Resource Modeling) is a profile con-
tained within MARTE, that enables the description of real
time operating system and framework APIs via UML model
libraries. The purpose of the article is to illustrate a method-
ology for embedded software application modeling in sensor
monitoring and control applications, using MDA and SRM
guidelines, as well as our proposed code generation strategy
by which C language code for a real time framework is
obtained.

This paper is organized as follows: in section 2 previous
work in this area of study is overviewed; section 3 introduces
the SRM sub profile of MARTE; in section 4 the modeling
and code generation strategies are described; section 5
presents the case study example and its code generation
results and, finally, the article is concluded in section 6.

2. Related Work
Adopting the MDA design vision promises some advan-

tages. One, is minimizing errors and coding effort to im-
plement the application thanks to automatic code generation
[4]. Nevertheless, research is needed to improve the results
of the automatic generation process given that “source code
generation is an immature technique that is either very
restrained or very unoptimized" [5].

Two main approaches are identified in the literature for
code generation in a model based design context: visitor
based and template based code generation [6]. Templates
are code fragments composed of static text (code) and
parameterized text. The parameterized text is later replaced
by expressions in the target language resulting in a source
code file. It is remarked in [6] that the template based
technique has advantages over the visitor based generation,
since templates resemble closely the code to be generated
and, besides, they are understandable and easy to design.

A generalized technique that uses template based code
generation for embedded application design, is described in
[7], [5] and [8]: since UML models are stored in a textual,
standard, format, denominated XMI (XML Metadata Inter-
change) in order to be interchangeable between modeling
tools, this technique uses an XMI to XML mapping through
XSLT1 transformations in order to extract key information

1XSLT (Extensible Style sheet Language Transformations): It is an XML
based language that enables transformations of this kind of documents to
other formats such as different XML schema, HTML and others.

182 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

from the UML models (e.g., variable names, class names,
MARTE stereotypes and others). Then, the resulting XML
file is used to build a tree structure, more precisely a
Document Object Model (DOM), which is later used by
a template engine (e.g., Freemaker) to generate the code
according to pre-established templates for a given language
(e.g., C++/SystemC, Java, etc). “Unfortunately, using XMI
and XSLT has scalability limitations. Manual implementa-
tion of model transformations in XSLT quickly leads to non
maintainable implementations because of the verbosity and
poor readability of XMI and XSLT" [6].

Code generation frameworks that do not use XSLT are
available, most notably Acceleo [9], JET [10] and Xpand
[11] which are all part of the eclipse modeling tools ecosys-
tem. Particularly, Acceleo is an implementation of the MOF
Model to Text transformation language standard issued by
OMG [12] and UML 2.x models built with various modeling
tools are compatible with it. Code generators have been
developed with Acceleo for the generation of Modelica code
[13] from ModelicaML (UML profile for Modelica) and
C++/SystemC from UML/MARTE models [14], however
MARTE::SRM utilization in the models and C code gen-
eration for embedded prototypes using this framework is
scarcely explored.

Commercial tools that provide support for MARTE and
code generation for embedded systems are Rational Rhap-
sody Developer [15] and Artisan Studio [16] but these are
closed source and are not available for most of researchers
due to its high cost.

Compared to prior efforts and tools available, our work
specifically aims to enable the UML modeling of RTES
applications and its automatic transformation into C lan-
guage source code according to MARTE::SRM and MDA
guidelines. Moreover, since standard UML 2.x features and
MARTE stereotypes are used, any tools that support those
standards can be used to construct the models. Full code
generation, for deployment on real embedded prototypes
is achieved using eclipse integrated tools such as Papyrus
[17] for modeling and Acceleo which implements the MOF
Model to text transformation (code generation) standard.

3. SRM Overview
SRM is a sub profile of MARTE that provides facilities

for building UML model libraries that describe software
execution platforms (e.g., Real Time Operating Systems,
RTOS, or real-time frameworks) APIs in a standard way. It
provides standard stereotypes for addressing concerns such
as concurrent execution contexts (e.g., tasks, interrupts),
interaction between concurrent application components for
communication or synchronization (e.g., mutexes, queues,
semaphores, etc.) and hardware/software resource interme-
diation (e.g., driver or memory management) [3].

The SRM profile can be used in processes where platform
modeling is important (e.g., the MDA Y-Chart) and it

covers RTOS concerns with low level of details to enable
generative approaches (code generation) from the models
[18]. A complete review of the SRM profile is beyond the
scope of this article. A thorough description is presented in
[18] and [3].

4. Methodology
This embedded software application design workflow is

based on the MDA Y-Chart process in which “a platform in-
dependent model of the software (PIM) is transformed into a
platform specific model (PSM); given a platform description
model (PDM)" [18]. In this scheme, the SRM sub profile of
MARTE is used in the construction of the execution software
platform model (PDM) in order to describe its resources and
services. The automatically generated code, obtained from
an application model is going to be executed in hardware
platforms with restricted computational resources, i.e., with
a few kilobytes of RAM and FLASH and limited processing
power. For this reason, the target language chosen for the
code generation was C, and the selected software execution
platform was the FreeRTOS [19], which is a real-time and
lightweight micro-kernel also written in C.

4.1 Modeling Strategy
In the rest of the article the PIM will be referred as

the Analysis Model, the PDM as the Platform Model and
the PSM as the Specific Application Model. The following
subsections illustrate our approach for the construction of
the aforementioned models (Analysis, Platform and Appli-
cation models). Papyrus [17] is used as the tool for model
construction, given its support for the MARTE stereotypes
and integration with the Eclipse modeling tools ecosystem.

4.1.1 The Analysis Model
This model contains the functional specification of the em-

bedded software application. It is designed to be independent
of the platform2, i.e., it can be ported between platforms
without change [18]. In our case, the language chosen to
specify the actions in the model was the C language (ANSI
C), so this model remains independent among the platforms
that support such language [4].

This model uses different but complementary UML views
or diagrams. The structural view provides information of
the elements conforming an application and specifies the
relationships between them. The dynamic view defines the
behavior and interaction between structural components. In
our approach, the class diagram is used to specify attributes
and operations for the structural entities of the application,
while the dynamic aspect of the model is specified via the
activity diagram which is used to define the body of class

2A platform is a set of technological resources that provide a specific
functionality. Any application supported by the platform can make use of
such functionality regardless of how it is implemented [2].

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 183

operations (methods) and the state machine diagram is used
to model the behavior of reactive classes.

serial_driver

+m1()

+m2()

Controller

+getVar()

Sensor

<<use>>

(a) Class diagram

action_a();

action_b();[else]

[guard] action_c();

(b) Activity diagram

entry/ action1();

State1

exit/ action2();

State2

EVENT_A

EVENT_B

(c) State Machine diagram

Fig. 1: UML diagrams used in the Analysis Model

Figure 1a depicts an example class diagram. Empty
classes mean that its code is available (legacy code), other-
wise their attributes and operations should be specified as
well. Usage relationships handle class dependencies with
external (existing) libraries or data types. Alternatively,
common association relationships between classes can be
used. Class operation behavior is defined by means of an
associated activity diagram to the operation (Figure 1b shows
an example of an activity diagram). If the class has a
reactive behavior it should be specified in an associated state
machine diagram to the class. Figure 1c shows an example
of a state machine diagram. In state machines, transitions
between states are triggered by event occurrences. Entry
or exit actions can be defined for a state, i.e., actions that
execute at the moment of entering or exiting the state.

4.1.2 The Platform Model

This is the model library where all platform resources
and APIs necessary to construct the application are defined
[20]. In our proposed approach a decision was made to
design a framework that better matches the application
domain (sensor monitoring applications). Lee [21] defines
a framework as a set of constraints on components of
the execution platform such that a set of benefits result
from those constraints. The framework designed is based
on the active object design pattern which combines the
benefits of preemptive multitasking operating systems and
the event driven programming paradigm [22]. “Active objects
are nothing more than individual tasks with their own event
queues” [22]. The designed framework has the following
concurrent components: reactive tasks, interrupts, and al-
gorithmic tasks. The reactive task (a.k.a active object, i.e.,

it owns an event queue) is where state machine, reactive,
behavior executes. Events, if present, are extracted from
the queue in order of arrival (FIFO) and dispatched to
the state machine, otherwise the reactive task enters a
blocking state. There is also an algorithmic task resource
in which periodic, real-time, behavior can be scheduled for
execution. Algorithmic tasks and hardware interrupts can
send asynchronous messages (events) to reactive tasks, and
reactive tasks can communicate between them in a similar
fashion, but not with algorithmic tasks or interrupts given
that they do not own a queue for the reception of event
messages. The benefits of constraining the software platform
with the framework is improving application concurrency
and simplifying synchronization complexity among tasks
by using asynchronous message passing (events) instead
of semaphores and mutexes, besides it also simplifies the
process of code generation. A selection of SRM stereotypes
was made in order to properly characterize the framework’s
resources. Table 1 shows the selected stereotypes and their
semantic.

Table 1: Selected SRM stereotypes

Stereotype Semantic

swSchedulableResource encapsulated sequences of actions
which execute concurrently.

messageComResorce communication resource used to
exchange messages.

interruptResource computing context to execute user
delivered routines.

EntryPoint supplies the routine executed in the
context of a concurrent resource.

Figure 2, depicts the UML model of the framework
created using the SRM profile and the FreeRTOS API.
The SRM stereotypes «swSchedulableResource»,
«messageComResource» and «interruptRe-
source», are used to denote, respectively, concurrent,
communication and interrupt resources of the software,
FreeRTOS based, platform.

4.1.3 The Specific Application Model
In this model, the mapping of the functionality onto the

platform takes place. First, the Platform Model needs to be
imported, then the Specific Application model is constructed
by instantiating and initializing the resources defined in the
Platform Model. Also, the binding of the Application with
the Analysis Model is realized by connecting instances (ob-
jects) of the Platform Model with instances of the Analysis
Model by means of «EntryPoint» stereotyped depen-
dency relationships [20]. The later step, specifies which
function behavior (routine) from an object defined in the
Analysis Model is going to be executed in a concurrent
resource of the framework, i.e., reactive or algorithmic task.
Figure 3 illustrates the process of linking Analysis and
Application models using the «EntryPoint» stereotype.

184 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Fig. 2: Platform Model (Tagged Values not shown due to space limitations).

P
la

tf
o

rm

M
o

d
e

l

App_Model

Analysis_Model

<<import>>

MyController:

Controller

MySensor:

Sensor

<<EntryPoint>>

routine = [m1]<<EntryPoint>>

priority: 5

period: 100 ms

T1: Algorithmic_Task

Fig. 3: Binding the Specific Application Model (bottom)
with the Analysis Model.

4.2 Code Generation Strategy
The code generation strategy follows a template based

approach using Acceleo. All models are transformed into
code by executing a chain of Acceleo template scripts.

Algorithm 1 shows the pseudocode for the trans-
formation of the Analysis Model into C code. The
GenerateStructure template receives the Analysis
Model as input parameter. Then, there is an iteration
over all classes that are present inside the model and if
attributes or associations are defined for that class, the
GenerateHeader template is called with that class as
an argument. Also, if class operations are defined the
GenerateImplementation template is invoked in or-
der to create the corresponding C file implementation of that
class.

The GenHeader template is responsible for generating
the necessary dependencies according to association and
usage relationships for the particular class. It then gener-

ates a structure composed by the attributes and pointers
to associated classes. Also, prototypes for the operations
are generated. If the class has state machine associated
behavior, an enumeration with the sate machine signals
(event names) is created and the includes to auxiliary state
machine libraries are also generated.

Algorithm 1 Analysis Model Transformation
1: template GENERATESTRUCTURE(AnalysisModel)
2: for all Class ∈ AnalysisModel do
3: if attributes or associations not empty then
4: GENHEADER(Class)
5: else if behavior not empty then
6: GENIMPLEMENTATION(Class)
7: end if
8: end for
9: end template

The GenImplementation template generates the in-
clusion of the corresponding header files and the implemen-
tation for class owned operations (methods). The methods
of a class, are generated by transforming a subset of the
associated activity diagram into a sequence of statements
in the C language. For the classes that have state machine
defined behavior, a script is used to transform the associated
state machine diagram into C code conforming to the finite
UML state machine implementation proposed by Samek
[23].

The Specific Application Model transformation, where the
application main file is generated is illustrated by Algo-
rithm 2. First, a file named “main.c” is opened for writing,
then all application dependencies are included by calling
the GenIncludes template, which selects the instantiated
objects belonging to the Analysis Model and includes their
header files. Then, an iteration takes place over all instances
defined in the Application Model in order to ask if its classi-

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 185

fier (the class defined in the Platform Model) has a stereotype
application. This process is done several times and different
actions are taken, depending whether the stereotype cor-
responds to «swSchedulableResource», «message-
ComResource» or «interruptResource».

Algorithm 2 Application Model Transformation
1: template GENERATERTOSMAIN(ApplicationModel)
2: file (‘main.c’)
3: GENINCLUDES(AnalysisModel)
4: for all InstanceSpec.classifier ∈ ApplicationModel do
5: if Stereotype ‘swSchedulableResource’ is applied then
6: GENTASKPROTOCOLS(InstanceSpec)
7: end if
8: end for
9: for all InstanceSpec.classifier ∈ ApplicationModel do

10: if Stereotype ‘MessageComResource’ is applied then
11: GENQUEUEHANDLES(InstanceSpec)
12: end if
13: end for
14: INSTANTIATEOBJECTS(ApplicationModel)
15: void main(void){
16: for all InstanceSpec.classifier ∈ ApplicationModel do
17: if Stereotype ‘MessageComResource’ is applied then
18: GENQUEUECREATION(InstanceSpec)
19: end if
20: end for
21: for all InstanceSpec.classifier ∈ ApplicationModel do
22: if Stereotype ‘swSchedulableResource’ is applied then
23: GENTASKCREATION(InstanceSpec)
24: end if
25: end for
26: }
27: GENALGTASKBODY(ApplicationModel)
28: GENREACTIVETASKBODY(ApplicationModel)
29: for all InstanceSpec.classifier ∈ ApplicationModel do
30: if Stereotype ‘interruptResource’ is applied then
31: GENINTERRUPTS(InstanceSpec)
32: end if
33: end for
34: end file
35: end template

Note, that inside the main function, the creation
of tasks and queues takes place, this is done by
GenQueueCreation and GenTaskCreation, this
templates extract the initialization values from the appli-
cation model instances and generate the C statements that
realize this task with the FreeRTOS APIs. Reactive and al-
gorithmic task bodies are generated by GenAlgTaskBody
and GenReactiveTaskBody respectively. Finally, any
interrupts instantiated in the Application Model are gener-
ated by GenInterrupts.

Since the C language is not object oriented by design, the
resulting code from the generation process was designed in
an object oriented fashion, in the sense that every method of
a class receives as input parameter a pointer to a structure
containing all the attributes defined, for that specific class, in
the class diagram, which results in a natural mapping from
the UML diagrams to the code.

5. Case Study Application

The application used to illustrate the modeling and code
generation strategies consists of two counter and two receiver
concurrent objects. The counting objects keep an internal
count with a different time resolution (10 ms and 100 ms).
Both of them send messages (sender ID and count value) to
receiver objects.

Figure 5 shows the Analysis Model class diagram
for the case study application. Attributes and operations
are defined for the Counter and Receiver classes.
task_intercomm and serial_usb classes are empty
which means that its code is available. Note, that both
classes are connected through a usage relationship with
the CountEvt data type. This means that this type def-
inition is known by both classes. CountEvt represents
the event message that a Counter object will send to
a Receiver object at specific count values, this be-
havior is specified in the Counter_algorithm rou-
tine. The Counter class uses macros defined in the
task_intercomm class to send the events. The Receiver,
that has a reactive behavior specified by means of the
associated state machine diagram illustrated by Figure 4,
changes its state every time the received count value matches
either 100 (the EARLY_COUNT_SIG signal is emitted),
150 (MID_COUNT_SIG) or 250 (LATE_COUNT_SIG). An
entry action defined for every state sends debug information
(Sender_ID and Receiver_ID) through the USB port
using the serial_usb driver.

The Platform Model (see Figure 2) is imported by the
application model in order to instantiate the resources of the
framework. Then, as illustrated by Figure 6, two Counter
and two Receiver objects are instantiated in the Analysis
Model and four tasks are instantiated in the Application
Model; two reactive tasks and two algorithmic tasks. The
Receiver_Dispatch routine (this routine dispatches re-
ceived events to state machines) is linked for execution in-
side reactive tasks and the Counter_Algorithm routine,
that generates and sends count events to reactive tasks, is
linked with both algorithmic tasks.

Fig. 4: Receiver state machine.

186 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Fig. 5: Analysis model class diagram for the case study.

Fig. 6: Linking the Specific Application Model (bottom) with
the Analysis Model for the case study.

5.1 Results
The generated code was compiled with the Code Com-

poser Studio v4.2 compiler for the MSP430F5438A micro-
controller from Texas Instruments, with no optimizations.
The correct execution of the generated application was tested
on the TI MSP-EXP430F5438 evaluation board. Figure 7,
illustrates portions of the generated code, particularly, the
main function, the implementation of algorithmic and reac-
tive tasks and the reception of messages in a PC terminal.

The FLASH memory consumption obtained from analyz-

ing the “.map” file, generated by the linker, reveals that the
complete application takes 8414 bytes of which 1338 bytes
correspond to the generated code and libraries (drivers) that
provide application support while the remaining 7076 bytes
correspond to the FreeRTOS execution support and msp430
support libraries. RAM consumption is 1550 bytes total of
which 59 bytes are used by the main application file, 1026
bytes represent the user configured amount of heap and the
rest is used by the FreeRTOS execution support.

6. Conclusions and Future Work
In this paper a methodology workflow for UML modeling

of embedded systems applications, using SRM and MDA
guidelines, was illustrated. Also, the subsequent process
of automatic model transformation (code generation) into
compilable C code was demonstrated. Both processes, appli-
cation modeling and code generation, were carried out with
open source tools, Papyrus and Acceleo, which are part of
the eclipse modeling tools.

The main advantage of including the SRM profile in
the design methodology is that execution platforms can be
easily described independently of application functionality
and a stereotype guided strategy for code generation can be
implemented.

A framework was designed in order to restrict the platform
model to the active object model of computation, this
decision simplifies synchronization complexity of concurrent
components of the framework but the application domain
is limited to event oriented, reactive embedded applications
such as sensor monitoring and control or sensor network
systems. The memory footprint of the generated code is
appropriate for execution in memory constrained microcon-
trollers generally used in sensor monitoring applications or
wireless sensor nodes.

Future research involves the study of debugging strategies
that can be incorporated into the methodology workflow,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 187

/* Application Includes */
#include "Receiver.h"
#include "Counter.h"

static void prvSetupHardware(void);

/* Task protocols */
static void Reactive1(void* pvParameters);
static void Counter_Task1(void* pvParameters);
static void Reactive2(void* pvParameters);
static void Counter_Task2(void* pvParameters);

/* Queue Handle Creation */
static xQueueHandle xR2Queue = NULL;
static xQueueHandle xR1Queue = NULL;

/*Automatically Generated Task_Queue Look Up Table*/
Task_Queue_LUT TQL[2] = { {&xR1Queue , 2} , {&xR2Queue , 6} };

/* Event(s) and object(s) (Structs) instantiation */
Counter Counter2;
Receiver Receiver1;
Receiver Receiver2;
Counter Counter1;

void main(void)
{
 /* Configure the peripherals used by this application
 * and initialize state machine objects.*/
 prvSetupHardware();

 /* Create the queues used by tasks and interrupts to
 interchange data*/
 xR2Queue = xQueueCreate(5 , sizeof(CountEvt));
 xR1Queue = xQueueCreate(5 , sizeof(CountEvt));

 /* If the queue could not be created then don't
 Create any tasks that might attempt to use the queue. */
 if((xR2Queue != NULL) && (xR1Queue != NULL)){

 /* Create the tasks*/
 xTaskCreate(Reactive1, (signed char *) "R1",
 configMINIMAL_STACK_SIZE, NULL,
 tskIDLE_PRIORITY + 1, NULL);

 xTaskCreate(Counter_Task1, (signed char *) "AlgT1",
 configMINIMAL_STACK_SIZE, NULL,
 tskIDLE_PRIORITY, NULL);

(a) task creation (continues in (b))

 xTaskCreate(Reactive2, (signed char *) "R2",
 configMINIMAL_STACK_SIZE, NULL,
 tskIDLE_PRIORITY + 1, NULL);

 xTaskCreate(Counter_Task2, (signed char *) "AlgT2",
 configMINIMAL_STACK_SIZE, NULL,

 tskIDLE_PRIORITY, NULL);

 /* Start the scheduler. */
 vTaskStartScheduler();
 }

 /*If all is well then this line will never be reached.*/
 for(;;);
}

static void Counter_Task1(void* pvParameters){
 for(;;){
 Counter_algorithm(&Counter1);
 vTaskDelay(10 / portTICK_RATE_MS);
 }
}

static void Counter_Task2(void* pvParameters){
 for(;;){
 Counter_algorithm(&Counter2);
 vTaskDelay(100 / portTICK_RATE_MS);
 }
}

static void Reactive1(void* pvParameters){
 CountEvt ReceivedCountEvt;
 for(;;){
 xQueueReceive(xR1Queue,
 &ReceivedCountEvt,
 portMAX_DELAY);
 Receiver_Dispatch(&Receiver1 , &ReceivedCountEvt);
 }
}

static void Reactive2(void* pvParameters){
 CountEvt ReceivedCountEvt;
 for(;;){
 xQueueReceive(xR2Queue,
 &ReceivedCountEvt,
 portMAX_DELAY);
 Receiver_Dispatch(&Receiver2 , &ReceivedCountEvt);
 }
}

(b) task implementation (c) Terminal RX (Sender (S) and Receiver (R) IDs)

Fig. 7: Sections of the generated main application file and terminal output of the program in execution.

using the sequence diagram, in order to verify, in real-time
the correctness of the generated application. One possible
alternative is to generate instrumented code that can re-
produce a sequence diagram by sending information of the
application execution status to a PC application.

References
[1] ITRS, “International technology roadmap for semiconductors,

design,” ITRS, Tech. Rep., 2011. [Online]. Available: http:
//www.itrs.net/Links/2011ITRS/2011Chapters/2011Design.pdf

[2] OMG. (2003, June) Mda guide version 1.0.1. Object Management
Group. [Online]. Available: http://www.omg.org/cgi-bin/doc?omg/
03-06-01.pdf

[3] UML Profile for MARTE: Modeling and Analysis of Real-Time Em-
bedded Systems, OMG Std. formal/2011-06-02, 2011.

[4] M. Maranzana, J.-F. Ponsignon, J.-L. Sourrouille, and F. Bernier,
“Timing performances of automatically generated code using mda
approaches,” in FDL. ECSI, 2004, pp. 252–12.

[5] L. G. Murillo, “Bridging the Gap Between Model Driven Engineering
and HW/SW Codesign,” Master’s thesis, University of Lugano, ALaRI
Institute, Lugano, Switzerland, 2009.

[6] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-
mation approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645,
2006.

[7] B. Correa, J. Eusse, and J. Vélez, “High level system-on-chip design
using uml and systemc,” in Electronics, Robotics and Automotive
Mechanics Conference, 2007. CERMA 2007. IEEE, 2007, pp. 740–
745.

[8] S. Villa, J. Villa, J. Yepes, and J. Aedo, “Virtual platform generation
tool for embedded systems design.” in Engineering Research and
Practice, The 11th International Conference on, 2012.

[9] (2013) Acceleo. [Online]. Available: http://www.eclipse.org/acceleo/
[10] (2013) Jet. [Online]. Available: http://www.eclipse.org/modeling/m2t/

?project=jet

[11] (2013) Xpand. [Online]. Available: http://wiki.eclipse.org/Xpand
[12] MOF Model to Text Transformation Language, v1.0, OMG Std.

formal/2008-01-16, 2008.
[13] U. Pohlmann, “A uml based modeling language with operational

semantics defined by modelica,” Master’s thesis, University of Pader-
born, Paderborn, Germany, 2010.

[14] P. Penil, F. Herrera, and E. Villar, “Towards systemc code generation
from uml/marte concurrent system-level models,” in W6 M-BED 2011:
2nd Workshop on Model Based Engineering for Embedded System
Design. DATE 2011. IEEE, 2011.

[15] IBM. (2013) Ibm rational rhapsody developer. [Online]. Avail-
able: http://public.dhe.ibm.com/common/ssi/ecm/en/rad14043usen/
RAD14043USEN.PDF

[16] Atego. (2013) Artisan studio. [Online]. Available: http://www.atego.
com/downloads/support/data-sheets/ArtisanStudio.pdf

[17] (2013) Papyrus. [Online]. Available: http://www.eclipse.org/modeling/
mdt/papyrus/

[18] F. Thomas, S. Gérard, J. Delatour, and F. Terrier, “Software real-
time resource modeling,” Embedded Systems Specification and Design
Languages, pp. 169–182, 2008.

[19] R. Barry. (2013) The freertos project. [Online]. Available: http:
//www.freertos.org

[20] F. Thomas, J. Delatour, F. Terrier, and S. Gérard, “Towards a
framework for explicit platform-based transformations,” in Object
Oriented Real-Time Distributed Computing ISORC, 2008 11th IEEE
International Symposium on. IEEE, 2008, pp. 211–218.

[21] E. Lee et al., “Computing for embedded systems,” in IEEE Intrumen-
tation and Measurement Technology Conference Proceedings, vol. 3.
IEEE; 1999, 2001, pp. 1830–1837.

[22] J. Kopjak and J. Kovacs, “Event-driven control program models
running on embedded systems,” in Applied Computational Intelligence
and Informatics (SACI), 2011 6th IEEE International Symposium on.
IEEE, 2011, pp. 323–326.

[23] M. Samek, Practical UML statecharts in C/C++: event-driven pro-
gramming for embedded systems. Newnes, 2008.

188 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

An Object-Oriented Framework for Digital Voting

Patricia Dousseau Cabral
Graduate Program in Computer Science

Federal University of Santa Catarina
 UFSC

Florianópolis, Brazil
dousseau@inf.ufsc.br

Ricardo Pereira e Silva
 Department of Informatics and Statistics

Federal University of Santa Catarina
UFSC

Florianópolis, Brazil
ricardo@inf.ufsc.br

Roberto Silvino da Cunha
 Labsoft

Federal University of Santa Catarina
UFSC

Florianópolis, Brazil
rsc@inf.ufsc.br

Abstract— Voting is a mechanism widely used in decision
making and are commonly employed by governments and
businesses. The confidence in the voting process is
fundamental to the credibility of the result. Increasingly polls
are conducted over the internet due to its practicality and ease
of use. But this practice brings new challenges, such as denial
of service, confidence in the system, and coercion of voters.
Several online voting systems have been proposed, but
implementing and evaluating them is a difficult and complex
task. To facilitate the development and evaluation of these
systems, as well as the idealization of new digital voting
protocols, we developed an object-oriented framework. With it
you can extend systems and protocols in an easier way,
allowing focus on the most important points of development.

Digital voting, object-oriented framework, voting protocols,
voting systems

I.INTRODUCTION

In recent years new vonting alternatives have emerged,
such as online elections. It brings benefits such as a faster and
more efficient tally, making it easier to cast the vote,
eliminating the need of commuting to the polling station,
possibility of process verification and reducing costs. But new
threats can emerge, such as ease of coercion of voters and new
opportunities for fraud. To reduce these risks, there are several
safety requirements that the system must meet [1]:

- Accuracy: ensure that only valid ballots will be counted in
the tally and cannot be changed or duplicated.

- Uniqueness: ensuring that only authorized voters
participate in the voting, only voting once.

- Privacy: not allowing to link the vote to the voter
(anonymity), not allowing knowing the option selected by the
voter (non-coercion) and all ballots must be kept secret until
the end of the tally (impartiality)

- Verifiability: there are two types of verifiability:
individual, that allows the voter to verify that their vote was
correctly determined; and universal, which shows that all the
votes were counted correctly.

There is an inherent difficulty in meeting all these
requirements since some tend to be self-exclusionary, such as
the difficulty in proving that the vote of the voter was properly
counted while not revealing their voting option. Or difficulty in

allowing only authorized voters to cast a ballot without
associating the vote with the voter.

Several voting protocols have been proposed in literature
trying to satisfy the requirements mentioned above. Besides the
difficulty of designing new protocols, there is the difficulty of
implementing a complete system that uses it to be able to
validate and analyze the proposed protocol. To facilitate this
process, we developed an object-oriented framework for
systems and digital voting protocols to simplify the deployment
and management of online voting.

II. COMPARATIVE STUDY

Several of the proposed protocols which are developed for
specific situations did not meet all the requirements that make
an election safe. This is due to the difficulty in meeting all
requirements. An example is the Helios voting system [2],
which is suitable for elections where voting should be secret,
but where coercion is not a major threat. In this line of work we
can cite polls for clubs, software communities and student
communities. The system described by Chuan-Kun Wu and
Ramesh Sankaranarayana [3] is suitable for coercion free
elections, because the system surpasses this threat by allowing
the voter to vote several times. Making it harder to force the
voter to choose a particular option, since they can change it
later. There are several proposed protocols and voting systems,
as can be seen in [2] [7][8] [9] [10].Protocols structures are
well formed and usually small changes in its logic can
compromise system security. It is not an easy task to change a
part of the protocol or extend it without considering the impact
across its logic. Thus, typically they are not configurable, and
neither the systems that use them, since they are dependent. So
we have systems that are inflexible and difficult to reuse if you
want to change their operating logic.

A.Voting primitives

According to Jörg Helbach and Jörg Schwenk [6] voting
systems use different technologies for its implementation, the
most used are:

•Homomorphic encryption: allows the sum of the votes and
decryption of encrypted result as follows E(x1) + E(x2)
= E(x1 + x2) where x1 and x2 are ballots. By way of
this technique is not necessary to decipher each vote
individually, making it more difficult to associate the
voter and their vote, making it easier to proof that all

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 189

ballots were counted correctly, and all ballots received
were counted.

•Mixnet: shuffles the order of arrival of the ballots
guaranteeing anonymity of the voters, making it
impossible to determine the order of voting.

•Blind signature: allows signing documents without
knowing their contents. This is useful in validating
ballots so that the system can validate it without
knowing the choice of the voter.

•Bulletin Board: works like a mural of information,
allowing sensitive data to be safely released. It can be
used to publish the election results, because it ensures
that only authorized entities publish information, and
ensures that the data has not been changed or deleted.
[11]

•Asymmetric encryption: allows encryption and signatures
of the contents in a secure way. To facilitate the use of
asymmetric cryptography, a repository of keys and
digital certificates are used, which are both
implemented in the framework.

•Symmetric encryption: allows secure encryption of
content, using only one key instead of two.

•Hash: generates unique identifiers making it easy to
identify objects and analyzing if changes were made.

In the developed framework these technologies were
considered as different primitives that will be used in the
protocol. You can insert and remove the primitives from the
structure of the framework in specific places without major
impacts.

B. Motivation

Given the fact there is a large number of proposed protocols
and the difficulty to validate them, since a new system is
required to be built whenever you want to validate a specific
change, an object-oriented framework for protocols is a good
idea. Nevertheless, there are not many documented proposals.
David Lundin [4] proposes a digital voting system based on
components that can be interchanged and audited, so that you
can add and remove components without impacting other parts
of the system. Such a system ends up being difficult to use,
since it is necessary to create a new component every time you
want to change something, being necessary to follow all the
conventions of the component during its creation.

Stefan Popoveniuc and Poorvi L. Vora [5] propose a
framework for voting systems using mixnet and paper ballots.
They analyzed four systems whose front-end and back-end can
be interchanged. Such a system is restricted to voting using
paper ballots and mixnet, additionally in being completely
necessary to build the back-end and front-end when you want
something different.

The proposed object-oriented framework is more flexible
than similar proposals, it allows you to implement specific
changes rather than being required to build a component or a
front / back end. Moreover, it is modularized and can make
changes with little impact on other parts of the framework with
a high code reuse, since most of the structure of the voting

process is implemented in the framework, and reused every
time a new voting system is developed. This is ideal for testing
and evaluating new protocols and systems, since minor codes
need to be written.

C.Vulnerabilities

Although there are several proposed protocols for digital
voting that meet all or some of the requirements mentioned,
none is used in a large scale election with high criticality [3].
The reason is that there are several difficulties in making a
voting system reliable. According Chuan-Kun Wu and Ramesh
Sankaranarayana [3] there are several aspects that make digital
voting so complex and vulnerable: reliability in software,
reliability on the internet, reliability of database system,
confidentiality of electronic votes, detection of double voting,
vote buying and internet terrorist attacks.

It is necessary that the authors of protocols and digital voting
systems adhere to the above challenges, so that the system can
be as reliable as possible. With the framework it is possible to
reduce the development cycles and tests, and the maturation of
the software becomes more reliable.

III. FRAMEWORK

For the development of the object-oriented framework was
considered the aspects that must be taken into account when
envisioning the digital voting system: their vulnerabilities,
technologies, potential threats to its integrity and the entire
management of an election. Its structure consists of modules
that interact with each other. One module is responsible for
cryptographic primitives, another for the management of
ballots and voting options, authentication, creating protocols,
managing users and for managing elections (Figure 3).

A.Functionalities

A digital voting system should provide basic
functionalities. Whereas there are in the system administrator,
voter, register agent and auditor profiles, we can list the
following roles associated with the use cases of Figure 1 and
2.

Administrator: The system administrator is responsible for
registering elections and all information about it, such as
voting date, title, voting options, etc. These steps are different
use cases, since it can be performed at different times.

Voter: have the power to obtain a ballot, cast a ballot,
verify that their ballot was counted correctly and check the
result. Receiving the ballot and casting the ballot are parts of
the voting process that are divided into two stages because
they necessarily do not happen together. Checking if the ballot
was properly audited takes place in the final stage of the
voting which depends on the protocol.

Auditor: the system has two types of auditing. The
configuration auditing and result auditing. Every election may
or may not enable them, leaving it to the system administrator.
If at least one is enabled, it is necessary that at least one
auditor is registered in the election. The configuration auditing
concerns the data analysis of the election, that is, if all the
information registered by the administrator is correct: election
title, voting date, voting options, etc. The election can only be
made public after the approval of all auditors. Since the result

190 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

auditing concerns the analysis of the ballot counting and other
evidences that the election may issue depending on the
protocol, such as evidence that the mixnet shuffle was done
correctly. Only after this analysis is that the result can be
revealed. If the auditing is rejected by some problem, the
election should be canceled because it proves that there was
some fault or fraud during the process.

Figure 1. Administrator and register agent use cases

 Register agent: Responsible for the registration of voters
in a particular election. This function can also be assigned to
the administrator, eliminating this role.

Besides the specific use cases for each role, they all have
the ability to log into the system and list all elections that they
are related.

Figure 2. Voter and auditor use cases

B.Development methodology

The domain analysis to develop the framework started with
the identification of similarities between different voting
protocols described in the literature. For this, we selected the
following protocols [2] [7] [8] [9] [10]. These choices have
some characteristics relevant to voting systems and constitute
a sample of the relevant field of voting protocols. In the case
of Helios [2] it has both individual and universal verification.
This allows the voter to verify that his vote was correctly
casted and also allows the analysis of the vote count. In the
case of Three-Ballot-based protocol [7], it was chosen
because it makes use of three ballots for voting and three
ballot boxes, and the most common is to use only one. Sensus

protocol [8] was chosen because it requires three subsystems,
validator, pollster and tallier. The Seas protocol [9] is based on
the Sensus protocol, with minor modifications intended to
eliminate the possibility of authorities voting in the place of
voters who abstained from voting. It was an issue found in the
Sensus protocol. Finally, the protocol proposed by Ray [10]
makes use of three authorities, a ballot distributor, a certifying
authority and a voter compiler.

 From the domain analysis, it is concluded that it is
possible to split a vote in four steps:

•Initialization: optional step, performed if there is need for
some protocol initialization, such as the inclusion of
previous blank ballots in the ballot box or mixnet
creation servers.

•Obtaining a ballot: a step where the voter gets a ballot,
and optionally performs the auditing. It is usually
anticipated by the authentication process of voting,
with some exceptions, as can be seen in [2], where the
voter authenticates just in time to cast the ballot,
allowing anyone to get a ballot and perform the
auditing.

•Casting a ballot: it is the act of voting. A step after the
voter selects their voting option, and then send their
ballot to the system. Some protocols require that the
voter authenticate themselves in this step, for example,
Helios [2].

•Tally: a step started after the end of voting, where all
votes are counted and the results are announced. This
step can also contain the results of the auditing
conducted by the auditors of the election.

All these steps may employ some common mechanisms,
such as authentication, use of ballots, user profiles, etc.

A common factor was the use of ballots containing the
voting options and the definition of roles a user can assume in
the system, normally being voters, administrators, register
agents, auditors and fiscals. Another key aspect is the role of
the authorities. Some systems, such as Helios, use only a
controlling authority, which manages the entire voting
process: voter authentication, receiving the votes, counting
and publishing the results.

Figure 3. Framework modules

While others, such as [10] distributes the intelligence of
the system between three authorities: one to identify the voter
and to issue the ballot, another to verify that the ballot was
cast and ensure that each voter submits only one ballot and the
last for counting the votes and revealing the results.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 191

C. Framework structure

The framework consists of four modules, each responsible
for managing an aspect of the voting system, as shown in
Figure 3. This division reduces the risk of errors in other
modules of the system when performing any change in the
framework.

1)Screen
Contains the screens that will be used by system users and

a layer between the core system and screens. This middle layer
is responsible for identifying which methods are available for
each system profile, and it is through it that the screens will
have access to features implemented.

2)Core
The system core is the main part of the framework. It

manages the operation of the system. It is also responsible for
the election, ballot boxes, disputes, voting options, user
authentication and the management of user roles and ballots.

3)Protocols
Responsible for various implementations of the protocols

that will be used by the elections. They are the heart of the
election, being responsible, in large part, by the security of the
electoral process. The protocol defines the structure of the
ballot and how they will be obtained, how the votes will be
counted, how the ballots will be casted, and which
cryptographic operations the system will perform during the
voting, among other things. You can extend the framework by
adding new protocols.

4)Primitives
The framework contains several primitives already

implemented, and others can be easily added to the system.
They will help you compose a new protocol, and key points of
its implementation. Often primitive structures are quite
complex and its functioning is quite critical. If they do not
work properly, the protocol will not work. An example of this
is the mixnet, which requires several distributed servers
working in a coordinated way. You can extend the framework
by adding new primitives.

D.Electoral System Behavior

There are key stages in the electoral process, such as the
period that is allowed to vote and the voting stage where the
votes will be counted. A poll consists of 13 states, which can
be better visualized in Figure 4. This state machines is
included in the framework structure.

To launch a poll it is first necessary to register it in the
system, an action which is defined in the registered state and
that is usually the responsibility of the election administrator.
While the election is being registered, it will be available only
to the administrator and it is not possible to any other profile
to view it. After completion of this step, there are two options:
waiting for configuration auditing or not.

If it is not awaiting auditing, it can be published
immediately, changing to the state published and becoming
viewable to all profiles related to that election. In case it is
awaiting auditing, after the registration completion the election
will be available to the auditors registered in that election in
order to check whether the registered data is correct. If all
auditors approve its settings, it immediately goes to the state

published. If at least one auditor reject its settings, then it
should return to the state registered and once again become
editable and corrected by the administrator, to then go back to
the state waiting configuration auditing, and become non-
editable again. These first steps concern the election
registration and analysis of its configuration by persons
registered in the system. This ensures that the information
registered is correct when it is disclosed to the users.

When the election goes to the state published, it becomes
visible to the voters of that election, so they can check its
information such as election title, the election date and other
important information. It remains in this state until the start of
the voting period, automatically changing to the started state.
In this new state the election can receive the votes of the
voters, i.e., when the election really starts allowing the voters
to get their ballots, to select their voting options and to send
the ballot to the ballot box. When the voting period ends, the
election goes automatically into state finished, which makes
impossible for voters to vote.

Figure 4. Election state machine

When the election is finished, it is necessary to count the
votes, an operation that is performed at the request of the
administrator, then changing into the state counted. From this
state there are two possibilities depending on whether the
election allows result auditing or not. If it does not allow, the
administrator can publish your result straightaway, making it
available to all users. If the election allows auditing of its
result, it goes to the state waiting configuration auditing and
remains there until all auditors have examined the proofs
issued during the voting phase that prove that the operations
have been performed correctly. This step is important to
ensure that it did not occured any failures or frauds during the

192 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

electoral process, being dependent on the protocol
implemented. For example, a protocol that uses network
mixture can provide evidence that the shuffle of the ballots
took place correctly. If all auditors validate the integrity of the
proofs, the results can be published. If at least one auditor
rejects them, this indicates that there may have been some
error or fraud during the voting, the result will not be
published and the election will be terminated.

E.Core behavior

Besides the logic of the electoral process, there are other
mechanisms in the system that work to make the framework
flexible and reliable. These mechanisms are within the core
package, as well as the election.

1)Authentication
Because there are multiple profiles, each has its own

defined field of action, which is extremely important to know
which events each user is allowed to run. Authentication can
be done in different ways and at different times of the voting
process. For example, the voter can authenticate himself by
using a login and a password, via a valid certificate, a token or
by a unique identifier which has been informed to the user.
This authentication can also take place at different stages:
when the user enters the system, the time they request a ballot
or the time they cast a ballot. In the case of the framework it
was implemented an authentication by login and password, but
is flexible to use other authentication mechanisms.

2)User management
The election process can contain different types of users,

each with different requirements and obligations. The most
common are voters, administrators, auditors, fiscals and
register agents who are responsible for registering voters. This
is useful to delegate responsibilities and restrict the field of
activity of users. You can, for example, create ballot box
fiscals, which will shared a key to decipher the ballots. Thus,
only when all fiscals act in a shared way, the tally can be
initiated. More profiles and its responsibilities can also be
added easily.

3)Ballot management
Ballots facilitate the voting process, because it contains the

disputes and their voting options, and also the options selected
by the voter. You can perform various operations with a ballot,
such as blinding for blind signature, encryption, signing,
storage, etc.

The ballot must be a structure flexible enough to allow its
use in different ways to meet the needs of each protocol.
Hence structure of the ballot is not always trivial, depending
on how the disputes and its options are organized and which
individual information can be added. To facilitate its creation,
a ballot is created and others are copied from the original
ballot. If any additional voter data has to be added, like a
ballot identifier, it is inserted after the copy.

4)Disputes and voting options
The disputes relate to matters which are voted in the

election, and which voting options are available for each
subject. It was determined that there are two types of disputes,
candidates and plebiscite. The framework allows the creation
of new types of disputes and voting options without much
impact on the rest of the system. Disputes like plebiscites are

open questions with simple answers. Another kind of dispute
are candidate ones, that requires a complex structure normally
required for candidates. For example, the relationship between
candidate, party, coalition and slate.

5)Ballot box
The ballot box is responsible for maintaining the ballots of

a specific election, so only those authorized can retrieve them
in the same way as physical ballots. They are kept encrypted
by the ballot box, to prevent others from reading without
permission.

IV. DISCUSSIONS ON EXPERIMENTS RESULTS

This section describes the implementation of three
protocols, showing what was needed to modify and what was
possible to reuse, as well as other aspects of the use of the
framework for the creation of digital voting protocols and
graphical part of the system.

A.Protocols and primitives

Three protocols have been implemented using the
framework. A simplistic protocol, a protocol that makes use of
blind signatures, and a protocol that makes use of mixnet [1].
If the developer wants to change some aspect of the system,
they should override the responsible class and implement it
following the structure of that class. Below is an example of
protocols developed and what classes were necessary to create
or override.

1)Simplistic protocol
For the implementation of the simplistic protocol it was

necessary to override only the Protocol class and two of its
methods. From 306 classes in the system, only one was
overridden and 2 of its 25 methods were overridden and no
new methods were created. Practically all the necessary
infrastructure to implement the simplistic protocol is already
developed. There is already all the basic structure of a digital
voting system, including the administration, voting and
presentation results screens.

2)Protocol with blind signature
The protocol that makes use of blind signature requires

more interaction with the voting system, since it is necessary
to blind and unblind the ballot on the user machine. For this it
was necessary to implement an applet that perform these
operations reliably.

To implement the protocol with blind signatures, it was
necessary to override the Protocol class and two of its
methods, besides being necessary to create three more. It was
also necessary to create an applet to blind the voter ballot
before sending it to the system to sign. In this case it was
necessary to create a different interface with the voter, which
was able to perform certain cryptographic operations on the
users machine before sending it to the authority in order to
increase confidence in the whole process.

The reuse in this case remains quite high. From 306 classes
in the system, only one was overridden, with 4 of its 25
methods overridden and three new ones were created. Besides,
it was necessary to create a new class with three new methods.

3)Protocol with mixnet

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 193

The protocol that uses mixnet was implemented so that the
network servers were distributed between multiple machines.
Before the start of the election, it was necessary to create the
mixnet and start the servers. These actions were not required in
other protocols. It was also necessary to encrypt the votes with
the system key before sending them to the mixnet.

To implement the protocol with mixnet it was needed to
override the protocol class and two of its methods. There was
no need to create new classes or methods.

B.System screens

The screens are important channels of communication
between users and the system. The framework contains the
implementation of the main screens that will be used in the
voting systems developed, and will allows developers to
implement their own when necessary.

One of the main screens of the system is the election
registration screen used by the administrator. It contains all
necessary fields to complete registration for a full election,
separated into different stages, as can be seen in Figure 5.

Figure 5. First screen of election registration

In the first step, the administrator registers the basic
information of an election. After that, you can register disputes,
administrators (if there are others besides him), auditors and
voters. After entering all the data, it is necessary to view and
confirm the inserted information.

Figure 6. Screen where the voter selects its options

Another screen is the one that allows the voter to choose his
voting options, as can be seen in Figure 6 and 7. All disputes
are presented on the same screen, with their respective options.
After the voter has select among the given options, a screen
asking to confirm the vote will be shown, and only then, the
vote will be counted. These screens were used in the three

protocols implemented, but they may be unnecessary if the
protocol requires the voter to download the ballot, check his
voting option, and then upload his ballot in the system.

Apart from these, there is also a results screen that shows
the result of the election and the winner option of each dispute,
as shown in Figure 8.

Figure 7. Voting confirmation screen

There is also an auditing screen, seen in Figure 9, which
allows auditors to examine all configurations of the election
and issue its opinion. This screen is used when the election is
marked as requiring auditing. Every election is liable to have
these options selected, which would require the entire process
of settings election analysis conducted by the auditors and only
then have its information disclosed to the voters.

Figure 8. Election result screen

Besides, there are several others ones used during the
electoral process, such as display screens and screens for users
and roles registration, etc. All the screens mentioned above
were used in the implementation of the three protocols
described.

C.Core

In all protocols implemented it was not necessary to modify
the core of the framework, although this does not impossibility
its alteration if necessary. For example, if it is desirable to
implement another type of dispute that does not fit in the
categories defined in the framework or to implement a different

194 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

ballot that is not available. The framework is flexible in this
regard, being able to implement new protocols easily, but not
preventing changes in its structure if necessary.

Figure 9. Auditing screen

D.Results

Through the implementation of the three protocols, it was
possible to verify the feasibility of the framework to support
the development of electoral systems, as well as to permit a
considerable reuse in the development.

The three protocols implemented showed a reuse greater
than 90%. This does not mean that any new voting system will
have an equivalent reuse, but in any case the framework
provides the infrastructure needed and allows the definition of
new protocols and cryptographic primitives through the
specialization of its classes.

V.CONCLUSION

Because of the importance of digital voting systems and
the difficulty in implementing them and evaluate them, it is

important to have a mechanism that facilitates ideation and
development of new systems. The framework was able to
show its usefulness through the implementation of three
protocols, facilitating the development and evaluation of new
systems, and presenting a high degree of reuse. This allows the
developer to focus on the most important aspects of
development, since the whole structure of a voting system is
implemented in the framework. With respect to similar
proposals, it proved to be more flexible, more comprehensive
and greater reuse.

REFERENCES

[1]R. Samarone, “Protocolos Criptográficos para Votação Digital,”
Unpublished master's thesis for mater's degree, Universidade Federal de
Santa Catarina, Florianópolis, Brazil, 2002

[2]B. Adida, “Helios: web-based open-audit voting,” Proceedings of the 17th
conference on Security symposium (SS'08). USENIX Association, Berkeley,
CA, USA, 2008, pp. 335-348.

[3]C. K. Wu, R. Sankaranarayana, "Internet voting: concerns and solutions,"
Cyber Worlds, 2002. Proceedings. First International Symposium on Cyber
Worlds, 2002, pp. 261 – 266

[4]D. Lundin, “Component Based Electronic Voting Systems”, In Towards
Trustworthy Elections, David Chaum, Markus Jakobsson, Ronald L. Rivest,
Peter A. Ryan, and Josh Benaloh (Eds.). Springer-Verlag, Berlin, Heidelberg
pp. 260-273. 2010

[5]S. Popoveniuc, P. Vora, "A framework for secure electronic voting", In
IAVoSS Workshop On Trustworthy Elections, 2008

[6]J. Helbach, J. Schwenk "Secure internet voting with code sheets," In
Proceedings of the 1st international conference on E-voting and identity
(VOTE-ID'07), Ammar Alkassar and Melanie Volkamer (Eds.). Springer-
Verlag, Berlin, Heidelberg, 2007, pp. 166-177.+

[7]A.O. Santin, R.G. Costa, C.A Maziero, "A Three-Ballot-Based Secure
Electronic Voting System," Security & Privacy, IEEE , vol.6, no.3, May-June
2008, pp.14-21,

[8]L.F. Cranor, R.K. Cytron, "Sensus: a security-conscious electronic polling
system for the Internet," System Sciences, 1997, Proceedings of the Thirtieth
Hawaii International Conference on System Sciences - HICSS '97 , 7-10 Jan
1997, pp.561-570 vol.3

[9]F. Baiardi, A. Falleni, R. Granchi, F. Martinelli, M. Petrocchi, A. Vaccarelli,
"SEAS: A Secure E-Voting Applet System," Lecture Notes in Computer
Science pp. 318-329, January 2004

[10]I. Ray, I. Ray, N. Narasimhamurthi, "An Anonymous Electronic Voting
Protocol for Voting Over The Internet," In Proceedings of the Third
International Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems (WECWIS '01) (WECWIS '01). IEEE Computer Society,
Washington, DC, USA, pp. 188-. 2001

[11]J. Heather, D. Lundin, The Append-Only Web Bulletin Board. Guildford,
Surrey, UK, University of Surrey, 2008.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 195

Towards Improving Object-Oriented Software
Maintenance during Change Impact Analysis

Bassey Isong1 and Obeten Ekabua2

Department of Computer Science, North-West University, Mmabatho, Mafikeng, South Africa
{124073008, 2obeten.ekabua}@nwu.ac.za

Abstract - Today, resources are geared towards modifying
rather than developing new software systems. Changes are
necessary during the system’s lifetime to keep it useful but
the major challenge is how these changes are controlled and
managed. Software systems are complex with large
dependency webs and components that are fault-prone.
Modifying components without regard to its dependencies or
its fault-proneness may have some unpredicted and potential
effects on the quality or increase their risk to fail. Object-
oriented software (OOS) systems are not exception.
Identifying these components early may reduce system failure
risks when implementing changes. Traditional researches on
change impact analysis (CIA) of software code change and
failure prediction are disjointed. Therefore, the main goal is
to propose a change impact analysis framework that
incorporates change and failure prediction while enhancing
software quality and reducing maintenance time, cost and
effort. By way of contribution and extension of existing
knowledge, this research will explore and analyze OOS
component’s relationship for effective change impact
analysis and predicting early, the failure associated with
fault-prone components by utilizing OO metrics.

Keywords: Change, impact analysis, Object-oriented,
Failure, Metrics, Prediction.

1 Introduction
 Software maintenance has been recognized as the most
costly and difficult part of software development, accounting
for at least 50% of the total software production cost in
particular, object-oriented systems [1,2,3]. Software changes
are necessary during software maintenance and software
might need to be changed to fix defects, to change executing
logic, to make the processing more efficient, or to introduce
new features and enhancements [5]. However, when changes
are made, there will unavoidably have some unpredicted and
potential effects on the software and may cause the software
to deteriorate. Though software does not deteriorate or
change with age, it is believed that most software
maintenance involves changes that potentially degrade the
software unless it is proactively controlled [4].

Changing OOS in large software systems today is complex
requiring a good understanding of the dependencies between
software components. This is because a modification to

components with little or no regard to dependencies may
have some unpredicted and potential effects on the quality of
the latter which may increase their risk to fail [6]. Software
change impact analysis (CIA) is a technique used to
understand and identify the potential effects caused by such
changes [2,7]. Given software, the objective is to understand
how a proposed change will affect the software components
in order to allow more effective prioritization of change
requests [1]. An effective CIA can improve the accuracy of
required resource estimates, allow more accurate
development schedules to be set, and reduce the amount of
corrective maintenance by reducing the number of errors
introduced as a by-product of the maintenance effort [3].

In the realm of OO maintenance, OO paradigm unlike the
procedural paradigm introduce new concepts such as
encapsulation, inheritance, polymorphism, and dynamic
binding [3,8]. Such features frequently result to more
complex relationship between classes and attributes, making
it difficult to anticipate and identify the ripple effects of
changes. The more a change affects classes, the more its
realization cost escalate. In addition, empirical evidences in
literature has shown that OO classes are not faults or failures
free [9,10]. A software fault is a defect in a software system
that may cause an executable product to fail. The intuitive
reason is that if a change is implemented on a fault-prone
component, software failure will be inevitable. Hence, the
early identification of these components will allow mitigating
actions to be employed before change can be implemented, if
found desirable.

Though several CIA approaches for OOS and software failure
prediction exist in the literature [3, 8, 11], the two
approaches are disjoint which consequently, can be linked to
failures of some OOS after maintenance. It is believed that
improving the maintenance of OOS requires CIA approach
that is effective at analysis and capturing the complex
dependencies among components as well as predicting the
early failure of the software, if changes are to be
implemented. With this approach, maintenance effort and
costs can be reduced while ensuring the quality of the
software. In addition, good decisions can be taken before
implementing changes. By identifying the potential impact of
a modification and the early identification of potential failure,
the risk to deal with expensive and unpredictable changes
will be reduced. Therefore, the objective of this paper is to

196 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

propose an approach for early failure prediction to support
CIA in order to enhance the maintenance of OOS. The
approach involves dependencies extraction and analysis,
change impact analysis, early failure prediction which will
lead to modification decision.

The rest of the paper is organized as follows: the introduction
is in section 1, section 2 is a description of the related works,
section 3 gives the research goal and approach, and section 4
is work in progress. Accordingly, the research contributions
and conclusions are in given section 5 and 6 respectively.

1.1 Background Information
 Software changes are inevitable in software development
and evolution. Changes occur in every phase of software
development like requirements, design, implementation, and
maintenance. Thus, systems modification should be taken
seriously and the effects of changes must be considered
because changes in any phase will affect the behaviour of the
delivered software product in another phase [4]. (See Fig. 1)

Requirements Development

Design

Implementation

Requirements

Design Elements

Code

S
O
F
T
W
A
R
E

P
H
A
S
E

I
M
P
A
C
T

O
N

P
R
O
D
U
C
T
S

Figure 1: Impacts of change on software life-cycle objects

When changes made to software negatively affects the
software, it may bring inconsistencies to other parts of the
original software and the changed with the affected
components may no longer fit for the rest of the software
product – software deterioration [4,12]. Deterioration occurs
in many ways because changes to software rarely have the
small impact they are believed to have [4]. This stems from
impact overlooking, impact underestimation to impact
overestimation as a result of the complexity and size of
current software applications. CIA is a process for controlling
changes and avoids software deterioration if properly applied.

In today’s software development world, OO approach is
increasingly gaining momentum and widespread use. It is an
approach where systems are described in terms of objects. OO
approach has the benefits of producing a clean, well-
understood design characterized by easier to understand, test,
maintain, extend etc [3]. However, the application of the
technology does not by itself ensure the quality of the
software, guard against developer’s mistakes, nor prevent
faults. OO approach introduces new concepts whose features
often lead to more complex relationships (i.e. use, invoke,
member and inheritance [11]) as shown in Fig. 2. These

complex dependencies frequently make it difficult to
anticipate and identify the ripple-effects of changes [3,8].

METHOD FIELD

CLASS

USEMEMBER USE MEMBER

USE

INHERITANCE, IMPLEMENTATION AND USE

INVOKE USE
Figure 2: Dependencies between object oriented program components
[11]

For instance, encapsulation promotes an intended
functionality to be achieved by invoking several member
functions from some classes and changes to a class may affect
many classes. Inheritance implies that a class can reuse the
data members and member functions of another class.
Therefore, new dependencies are created between two classes
and changes to a class may affect other classes which are
related to it. Polymorphism allows many different
implementations of the same specification. All these features
make it difficult to define a cost-effective test and
maintenance strategy for OOS [3]. With an effective CIA
approach, one can determine for some level of granularity
(e.g. statements, modules, features), whose components in the
software can be affected by changes. In addition, empirical
evidence indicates that most OO application components are
fault-prone or failure-prone [9,10], though, believed to be
found only on few of the system's components. During the
course of maintenance, CIA in particular, if these faulty
components are not known before changes are implemented,
it could compound the risks and may lead to software failure.
Thus, identifying these components prematurely allows
mitigating actions, such as validation and verification
activities to be focused on the high risk components so as to
avoid software failures. Based on this, we intend to evolve a
unique failure prediction model that will be incorporated into
the CIA process for effective decision making during
software changes.

2 Related Works
 In this section, we introduce some related current works on
CIA. Sharafat and Tahvildari [13] propose a probabilistic
approach to predict changes in an OOS system using the
dependencies obtained from UML diagrams, as well as source
code of several releases of a software system using reverse
engineering techniques. Abdi et al. [14] propose the
calculation technique of change impact expressions using a
meta-model approach to analyze and predict changes impacts
in OO systems. Sun et al. [7] propose Object Oriented Class
and Member Dependence Graph (OOCMDG) that represents

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 197

the program to be analyzed based on static CIA. The
objective was on the precision improvement of the impact
sets which depends on the change types and the dependence
types between the modified entity and other entities. Breech
et al. [15] presented coarse-grained impact analysis
algorithms that exploit information about how changes can
actually propagate due to scoping and parameter passing
mechanisms. They present influence mechanisms and
describe both static and dynamic impact analysis algorithms
that take advantage of these influence mechanisms.

In the same vein, Badri et al. [16] presented a new static
technique (CCGImpact) for predictive change impact
analysis based on control call graphs (CCG) which captures
the control related to components calls and generates the
different control flow paths in a program. The generated
paths, in a compacted form are used to identify the potential
set of components that may be affected by a given change.
Oliveira et al. [17] present a hybrid impact analysis technique
based on both static and dynamic analysis of OO source code
to improve resulting impact estimates in terms of recall. Also,
Shao et al. [18] present an approach in which the impact of a
source code change can be analyzed by slicing with the
variable def-use pairs. Data-flow and program slicing are
combined to show data dependencies. Kagdi and Maletic [19]
combined the estimated change sets computed from impact
analysis techniques with the actual change sets that can be
recovered from version histories will result in improved
software-change prediction. In the above studies, different
CIA approaches on OOS have been reported. All the
approaches have been designed for change impact prediction
and none employed failure prediction in any way. Therefore,
in this research, our approach is unique and is aimed at
amalgamating the two approaches in order to effectively
calculate the ripple effects and rid or reduce the risks of
software failures during and after change implementation.

3 Research Goal
One indispensable property of any software is change and is a
key operation for maintenance. These changes are made to
realize various change proposals for OOS. With the available
change proposal, the maintainer responsible have to analyze
and evaluate it in order to predict the impacts in terms of
dependences, and failure-prone components, make a decision
on the outcome, and give some modification advice to reduce
the risk and cost of the change implementation. For in stance,
if a change proposal is known to have significant ripple-
effects over the entire system, or undesirable effects or
affected classes are fault-prone, the best approach will be
either to reject it, or consider an additional change plan, or
redesign the system, or accept the change proposal. These
activities are carefully carried out before the actual change is
implemented and all form parts of the proposed change
analysis framework. This research tries to provide an
effective and comprehensive solution to the activities related

to change analysis in order to improve software maintenance.
Therefore, the overall goal of our research is to develop a
CIA framework and model for early failure prediction of the
impact of changes to OOS to enhance software quality and
reduce the time, cost and effort associated with its
maintenance.

Change
Request

Change
Request Original OO

Software

Original OO
Software

CHANGE
ANALYSIS

Intermediate Representation

Dependency
Extraction

CIA

Early Failure
Prediction

CHANGE
RECOMMENDATION

Dependencies
Ripple Effects

Change Decision

Figure 3: Proposed CIA framework

Fig.3. presents an overview of our proposed framework. The
activities which are the focal points and their corresponding
goals are discussed as follows:
1) Dependencies Analysis and Extraction: With the available
change proposal and the original OO source code, the first
step is to construct a representation for original OOS that is
simple and effectively show all the possible dependencies
among the components of the original software. The
representation is aimed at providing full understanding of
how components relates with each other and to facilitate the
CIA activities in the next stage.

2) Change Impact Analysis: This step is to perform the actual
CIA where the maintainer will have an overview of which
parts in original OOS is truly affected by the change
proposal, and consequently may bring inconsistence to the
software. For effectiveness of this approach, accuracy and
precision are top priorities for its evaluation and
minimization of the predicted numbers of impact sets.

3) Early Failure Prediction: This is the prediction stage
where the change proposal is evaluated from two perspectives
- results of the impact analysis and the values of the OO
design metrics extracted from the original software for a
failure-free change implementation. To predict which of the
classes affected by change proposal are fault-prone which in

198 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

turn may result in system failure if change is implemented,
the extracted OO design metrics and a suitable prediction
model will be used and decision made accordingly.

4) Change Implementation: Implementing a change will
depend on the results obtained from earlier analysis and
evaluation. That is, a change is implemented if the risk is
known to be low or after validation and verification activities
have been performed on the affected faulty parts. Otherwise,
it is rejected if known to have deteriorating effects on the
whole system. The essence of the results is to reduce the
maintenance time, cost, effort, change consequences and
facilitation of regression testing.

4 Research Approach
As stated earlier, our objective is to analyze and predict
changes impacts and failure in OOS before change
implementation. The approach involves choosing an existing
impact model and adjusts it afterward to meet our objective.
The work uses both CIA and failure prediction techniques to
support and enhance the maintenance of OOS. The approach
takes OO components (i.e. field, methods, and classes) and
the relationships that exist between them into account as well
as the structural properties of the classes. The analysis will be
centered on software systems written in Java language which
is essential for computing impact of any possible change with
our model. In addition, tools (such as Analyst4j) will be
utilized to analyze the source code of the system and extract
the design measures of every component (class) used for
predicting the potential failures.

The approach begins with the construction of an intermediate
representation of the original OOS where dependencies
between OOS components are extracted and analyzed, and
the impact sets are computed. With the impact results, OO
design metrics are extracted from the original software and
the values are use to predict which components are fault-
prone that could result in failure if the change is
implemented on such components. With results obtain,
decision is then made if a change will be implemented or
apply verification activities or reject the proposal if is known
to cause huge negative impacts on the entire system.

5 Work in Progress
This section presents how far we have gone with this
research. At this point, discussion is based on the
investigated dependencies analysis and extraction, CIA
techniques and failure prediction approach utilizing the
source code change proposal.

5.1 Dependency Analysis and Extraction
Dependency analysis is a critical activity that is performed
during CIA. It is an integral part of CIA framework as it
assists in understanding how one entity relates to another
through effective representation of the original software.
Various dependency graphs exist which can be generated by
statically extracting the relationships between types (i.e.
classes or interfaces) in the source codes. System dependence
graph (SDG) [3,20] is one of the commonly used
representations for program analysis especially, OO source
code. It represents OOS and analyses its elements as well as
their relationships at very fine level of granularity [3]. The
outcome of the representation is important information about
the program elements and relationships between them.
Nevertheless, constructing this representation requires much
carefulness and good knowledge of OO design because wrong
results can lead to over or under estimation of impact sets.
Hence, understanding the system dependencies is essential
for efficient software change.

Unlike the procedural program, in OO program, emphasis is
placed on what the program does to data and their
relationships, rather than the program’s structure. In
addition, software objects are related to each other by
complex dependencies and constraints [11]. To emphasize on
this, we use the labeled OO components dependency graph
(OOComDG). The OOComDG describes dependencies in
OOS while the software system components are viewed as
classes, methods, and fields. In our OOComDG, the
components are represented as the nodes and the
dependences are represented as the edges. The dependences
types are the label such as inheritance (H)), invocation (V),
uses (U), and member (M) on the edges. Once the original
software has been represented as OOComDG, it is then
transformed two adjacency matrices to ease the correct
identification of the starting impact set (SIS). In our initial
study, we have constructed a representation of the original
system using OOComDG. The dependence between fields
and methods, dependence between methods, dependence
between classes, and dependence between classes and
methods, can be revealed based on the concept analysis.
Though some information may be missing in the
representation, the representation is in line with various
existing activities in the change analysis framework in
literature. The initial investigation results show that
dependencies between classes, methods and field are well
covered, though it is a small sized program. In general, the
representation is reasonable and may be applied to large
programs.

5.2 Change Impact Analysis
 CIA plays an important role in identifying the
consequences or ripple-effects of proposed changes. Among

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 199

other approaches, static and dynamic analysis are the most
commonly used techniques [5,7]. Given the proposed change
entities, the object of CIA technique is to find the parts of the
software that are truly affected by the change. However, the
impact sets produced may be inaccurate due to either
underestimate (false-negatives) or overestimate (false-
positives) change impact as a result of the problems the
maintainer responsible may face in finding the parts affected
by the change.

To guard against these inaccuracies and reduce the predicted
impact sets, our research employed static CIA technique
using concept of OO impact method to compute the potential
impact set from the proposed changed. In view of this, we
will introduce the impact range concept to obtain the
impacted entities in a given change category based on
movement along the program’s OOComDG from the SIS of
the changed entity obtained from the adjacency matrix. In
OOS, different change types often have different impact
methods. For instance, some changes made to programs do
not affect other entities in programs regardless of some
dependencies while some other changes may potentially
impact other entities in programs [11]. The impact method
of a change is based on the code change types of modified
components and the dependencies between them (i.e. the
modified and other components). In our approach, the SIS is
computed using the adjacency matrices, while the potential
impact set (PIS) is computed based on the SIS and impact
range. Two types of adjacency matrices are introduced here:
intra and inter-class member relation matrices. At this point,
we have not validated our techniques on the real-world
program to see its effectiveness. However, we are confident
the technique will produce fewer impact sets with a
reduction in false-positives and false negatives.

5.3 Early Failure Predictions
The early failure prediction is a stage where we evaluate the
probability of failure occurrence if a change proposal is
implemented. It is based on two aspects: results of the impact
analysis and the values of the OO design metrics extracted
from the original software which is then mapped onto the
affected classes. It is true that when changes are made to
software, they will inevitably have some unpredictable and
undesirable ripple-effect on other parts of the software [21].
In the same way, the degree of the ripple-effect is
proportional to the complexities of the structural properties of
the software product which in turn affects the cognitive
complexity of the maintainer. Cognitive complexity is known
to constitute the mental burden of the maintainer who has to
deal with the component [10]. Thus, high cognitive
complexity of a system leads to components exhibiting
undesirable external qualities, such as increased fault-
proneness and reduced maintainability (see Fig. 4).

Structural Class Properties
(e.g. coupling)

Cogni tive
complexi ty

External Attributes
(e.g. fault-proneness,

maintainabil ity)

affect affect

indicate

Figure 4: Effect of product’s structural properties on maintenance

Several empirical evidences have shown that OOS
applications are not fault-free, though found only on few of
the system's components [9]. In addition, our perception in
this research is that when changes are implemented on
components that are fault-prone, they will complicate the
situation and inevitably result in failure. Therefore,
predicting the failure early before implementing change
proposal can help maintainer responsible to answer whether a
change proposal is accepted or to determine which change
schedule is more suitable to employ (i.e. to focus verification
actions on the high risk, failure-prone components) or to
decide on rejecting the change proposal.

 In the sphere of OOS, the construction of prediction models
using OO design metrics is one approach aimed at
discovering faulty classes early in development and
maintenance. Such models usually uses historical data,
design metrics which can used for identifying potentially
faulty classes in future applications or releases [10]. With the
result of such investigation, an organization can take actions
prematurely aimed at alleviating the situation and
consequently avoid costly rework. Several numbers of OO
design metrics have been constructed such as the Chidamber
and Kemerer [22], Li and Henry [23], Abreu and Carapuca
[24], Briand et al. [25], etc. in literature. In addition, there
are several empirical studies that validated and revalidated
the relationship between the different OO design metrics and
fault-proneness and their effect on cognitive complexity as
well as the prediction models that utilize them in the
literature [26,27,28,29].

In this research, we are going to employ the existing OO
design metrics, particularly, the Chidamber and Kemerer
[22]. Emphasis will be on extracting the design metrics that
are positively associated with the fault-proneness of classes.
However, the question is, “which metrics are suitable for OO
failure prediction?” Though several prediction models
associated with fault-proneness exist, the approach of this
research will be unique and two-dimensional. This means
that we will consider failure prediction based on the values of
extracted measures for both pre-release and post-release
OOS. For prediction based on design measures, the intuition
is that higher values of these metrics represent structural
properties that increase the probability that a class will have a
fault that causes a field failure. At this point, we are still at

200 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

the stage of identifying which OO design metrics are
significantly associated with fault or failure-proneness.

6 Research Contributions
Understanding changes during CIA is essential for
understanding the evolution of a software system. With our
proposed approach, given a change proposal, the task is i)
obtain the information about the dependencies in original
system, ii) compute the potential ripple-effects induced by the
change proposal based on the code change type and impact
and dependency types, iii) perform the early failure
prediction based on the design measures extracted from the
original system to identify fault-prone components that could
cause failure if change proposal is implemented, and iv)
make modification based on the results. Consequently, the
expected contributions of the research are as follows:

 Support maintainer in performing static CIA on
OOS through:

 A representation that is simple enough and
reveal all the dependencies between the
elements in the original software

 Capture impact sets that are accurate, not
large enough or difficult for practical use
and with fewer false-negatives and false-
positives to predict the ripple effects
induced by the change proposal.

 To evolve software metrics (i.e. predictors) that is
based on the structural properties of the product and
which can accurately predict failure early enough
that is assumed to occur when certain changes are
made.

 CIA framework that support various change analysis
activities by incorporates impact prediction and
failure prediction in order to identify and reduce the
cost and risks associated with change
implementation.

In all, by identifying the potential impacts and failures before
change implementation during maintenance, the risks
associated with embarking on a costly change can be reduced
drastically.

7 Conclusions
In this paper, we have proposed an approach to support the
maintenance of OOS system during CIA through early failure
prediction. The approach starts with dependencies analysis
and extraction of the original software, impact analysis based
on adjacency matrix analysis and their impact expression and
early failure prediction based on extracted design metrics and
historical data. Although, the research is still at its
preliminary stage, we however conclude that, by identifying
potential impacts and failures before committing a change,
the risks associated with embarking on a costly change will
be drastically reduced. This is because the cost of unforeseen
problems generally increases when there are discovered

lately. Furthermore, it will help management to choose
between alternative changes when undesirable effects are
known. The work is still in progress with emphasis on the
CIA and failure prediction phases.

8 References
[1] P. Grubb and A.A. Takang. Software Maintenance:

Concepts and Practice, 2nd ed. World Scientific
Publishing Co. Pte. Ltd, Singapore, 2003

[2] Turver, R. J. and Malcolm, M. “An early impact

analysis technique for software maintenance”. The
Journal of software Maintenance, Research and
Practice, 18(12):35-52, January-February 1994.

[3] M. Lee et al. “Algorithmic analysis of the impacts of

changes to object-oriented software” 34th
International Conference on Technology of Object
Oriented Languages and Systems. August 2000.
pp. 61-70.

[4] P. Jönsson and M. Lindvall. “Impact Analysis”

Engineering and Managing Software Requirements
Issue: 6, Springer-Verlag, pp. 117-142, 2005

[5] S. A. Bohner. “Extending software change impact

analysis into COTS components” Proceedings of
the 27th Annual NASA Goddard Software
Engineering Workshop, Greenbelt, USA, 2002,
pp.175 -182.

[6] T. Zimmerman, N. Nagappan, K. Herzig, R.

Premraj and L. Williams. “An Empirical Study on
the Relation between Dependency Neighborhoods
and Failures” Proceedings 2011 IEEE Fourth
International Conference on Software Testing,
Verification and Validation (ICST 2011), pp. 347-
56.

[7] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang.

“Change Impact Analysis Based on a Taxonomy of
Change Types” 2010 IEEE Proceedings of 34th
Annual Computer Software and Applications
Conference (COMPSAC 2010), 2010. pp.373-82.

[8] J.K. Jang et al: “Change impact analysis for a class

hierarchy” Proceedings 1998 Asia Pacific Software
Engineering Conference (Cat. No.98EX240), 1998,
pp. 304-11

[9] Fenton, N., Ohlsson, N: Quantitative analysis of

faults and failures in a complex software system.
IEEE Transactions on Software Engineering, 2000

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 201

[10] K.E. Emam, W. Melo and J. C. Machado. “The
prediction of faulty classes using object-oriented
design metrics” The Journal of Systems and
Software. Vol.56, pp. 63-75, 2001

[11] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang.

“Change Impact Analysis Based on a Taxonomy of
Change Types” 2010 IEEE Proceedings of 34th
Annual Computer Software and Applications
Conference (COMPSAC 2010), 2010. pp.373-82.

[12] C. Chen, C. She, and J. Tang. “An object-based,

attribute-oriented approach for software change
impact analysis” IEEE International Conference on
Industrial Engineering and Engineering
Management, 2007, pp. 577-81

[13] A.R. Sharafat and L. Tahvildari. “A Probabilistic

Approach to Predict Changes in Object-Oriented
Software Systems’ 11th European Conference on
Software Maintenance and Reengineering
(CSMR'07) March 2007, pp. 27-38

[14] M. K. Abdi, H. Lounis, and H. Sahraoui.

“Analyzing change impact in object-oriented
systems” Proceedinds of 32nd Euromicro
Conference on Software Engineering and Advanced,
2006, pp.8

[15] B. Breech, M. Tegtmeyer and L. and Pollock,

“Integrating Influence Mechanisms into Impact
Analysis for Increased Precision,” Proceedings of
the 22nd IEEE International Conference on
Software Maintenance (ICSM06), 2006, pp.55-65

[16] Linda Badri, Mourad Badri, Daniel St-Yves,

“Supporting Predictive Change Impact Analysis:A
Control Call Graph Based Technique,” Proceedings
of the 12th Asia-Pacific Software Engineering
Conference (APSEC’05), IEEE Press, 2005, pp.167-
175

[17] M. Oliveira et al: “The Hybrid Technique for

Object-Oriented Software Change Impact, Analysis”
Proceedings of the 14th European Conference on
Software Maintenance and Reengineering (CSMR
2010), IEEE Press, 2010, pp.252-255

[18] S.Danhua , S. Khurshid, and D. E. Perry, “Semantic

Impact and Faults in Source Code Changes: An
Empirical Study,” 2009 Proceedings of Australian
Software Engineering Conference(ASWEC 2009),
IEEE Press, 2009, pp.131-141

[19] H. Kagdi and J. L. Maletic. “Software-Change

Prediction: Estimated+Actual” Second International

IEEE Workshop on Software Evolvability (SE'06) ,
2006.

[20] S. Horwitz, T. Reps, and D. Binkley, “Inter-

procedural slicing using dependence graphs,” ACM
Transactions on Programming Languages and
Systems, vol. 12, no. 1, pp. 27–60, 1990

[21] Arnold, R.S., and Bohner, S.A., “Impact analysis –
towards a framework for comparison”, The Intl
Conf. on Software Maintenance, 1993.

[22] Chidamber, S., Kemerer, C.F.: A metrics suite for

object oriented design. IEEE Trans. Softw. Eng.
1994, 20 (6), 476–493.

[23] Li, W., Henry, S.: Object oriented metrics which

predict maintainability. J. Syst. Softw. 1993, 23 (2),
111–122.

[24] Abreu, F.B., Carapuca, R.: Object-oriented software

engineering: measuring and controlling the
development process. In: Proceedings of the Fourth
International Conference on Software Quality, 1994

[25] Briand, L., Devanbu, P., Melo, W.: An investigation

into coupling measures for C++. In: Proceedings of
the 19th International Conference on Software
Engineering, 1997

[26] Basili, V., Briand, L., Melo, W.: A validation of

object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering. 1996,
22 (10), 751-761.

[27] Chidamber, S., Darcy, D., Kemerer, C.: Managerial

use of metrics for object oriented software: an
exploratory analysis. IEEE Trans. Softw. Eng. 1998,
24 (8), 629–639.

[28] Briand, L., Wuest, J., Daly, J., Porter, V.: Exploring

the relationships between design measures and
software quality in object oriented systems. Journal
of Systems and Software 2000, 51, 245-273.

[29] Cartwright, M., Shepperd, M.: An empirical

investigation of an object-oriented software system.
IEEE Transactions on Software Engineering, to
appear, 2000

202 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

SESSION

USABILITY STUDIES + COST ESTIMATION AND
MANAGEMENT + SOFTWARE TESTING,

ANALYSIS, VALIDATION, AND VERIFICATION +
RFORMANCE STUDIES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 203

204 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Evaluating the Effectiveness of a Collaborative

Requirements Engineering Modeling Notation for

Planning Globally Distributed Projects

P. Laurent
1
, A. Steele

1
, J. Cleland-Huang

1
and P. Mäeder

2

1Systems and Requirements Engineering Center, DePaul University, Chicago, IL, USA
2Technical University of Ilmenau, Ilmenau, Germany

Abstract - In many software projects, stakeholders are

distributed across different time zones, organizations, and

geographical locations. This creates challenges for

conducting people-intensive activities such as requirements

elicitation, analysis, and prioritization. To address these

problems we previously introduced a visual modeling

notation to help project managers plan the collaboration

infrastructures needed to support requirements-related

activities in globally distributed projects. In this paper we

present a refined version of the notation and report on an

observational study we conducted in which project

managers used our notation to plan globally distributed

projects. Results show that the modeling activity and the

resulting diagrams helped the project managers to better

understand the communication needs for the project, to

identify potential communication and collaboration

problems, and to proactively address the infrastructure and

communication needs for the project.

Requirements, global projects, visual notation

1 Introduction

In globally distributed projects stakeholders are often
separated across time-zones and geographical boundaries.
This creates numerous challenges for eliciting, analyzing,
negotiating, specifying, and managing requirements [1],
especially in conducting activities that are typically
performed in face-to-face meetings. Herbsleb’s study on
communication problems identified several impedences in
distributed projects, such as cultural differences,
incompatible support environments, and disparities in
domain expertise across sites [2], while Taweel observed
that communication and coordination challenges resulted in
delayed projects, poorly-defined requirements, and
repetition in the software development effort [3]. Finally,
Damien et al [4, 5] studied the ways in which development
teams coordinated their efforts when working on interrelated
requirements.

Results from a series of interviews we conducted with
requirements engineers from six globally distributed
projects [6] showed that failing to clearly identify critical
stakeholders and their interactions, and to establish the
necessary communication and tooling infrastructures
negatively impacted the success of the project and led to

disorganized stakeholder interactions, data overload,
increased travel requirements, and inefficient processes for
supporting specific requirements engineering tasks [7].
 To address these challenges we developed the
Collaborative Global Requirements Engineering Notation
(CGREN) which equips project managers to plan, analyze,
and optimize their distributed requirements engineering
processes, so that they can better understand their existing
processes, identify weaknesses and problems, and establish
essential processes and infrastructures [6]. As an additional
benefit, CGREN provides a common notation for modeling
distributed requirements projects and activities, and thereby
facilitates comparisons across projects. These comparisons
make it possible to identify recurring patterns of
collaboration, common obstacles, and best practices used for
collaborative requirements engineering activities. Such
observations enable researchers to propose new techniques
or improve existing methods to handle the specific
challenges of global requirements processes.

In this paper we present a refined version of the
CGREN, and also describe a participatory study we
conducted in which requirements analysts were asked to
interactively use the CGREN to plan requirements
engineering activities for distributed projects. The study
was designed to evaluate the effectiveness of the CGREN
taxonomy, notation, and process for supporting stakeholders
in the process of planning distributed requirements
engineering activities. The results of this study led to some
improvements in the model and clearly show the benefits of
using the CGREN.

The remainder of this paper is structured as follows.
Sections 2 and 3 present the taxonomy and notation of the
CGREN. Sections 4 and 5 describe the study we conducted
and the subsequent modifications to CGREN. Section 6
describes related work and section 7 summarizes our
findings.

2 CGREN Taxonomy

The initial CGREN taxonomy focused around entities of:
roles, sites, and artifacts; as well as three general types of
relations: houses, accesses, and communicates, that were
observed between the entities.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 205

• Roles: The Rational Unified Process (RUP) defines a
role, as a “hat” which can be worn either by an individual
or a group of people [8]. Our study results identified a set
of commonly occurring roles including a Subject Matter
Expert (SME), Requirements Analyst (RA), Customer,
Location Spokesperson (LSP), Project Manager (PM),
Developer, Tester, and User. The SMEs took on a number
of domain specific roles such as Artist and Sales Person.
The most commonly identified roles were the SME, RA,
and LSP. Most projects we investigated did not officially
have RAs; however the RA responsibilities were assigned
to a variety of job titles such as project managers and lead
developers. The RA role is responsible for overall
management of the requirements elicitation process.
Several projects also included the LSP role, which was
responsible for coordinating the requirements-related
processes at a specific location. In some cases the LSP also
served as a language translator between local and remote
stakeholders. The LSP role was assumed by personnel
holding a variety of job titles such as technical lead and
designated regional representative.

The role entity has two attributes of subtype and
multiplicity. The subtype attribute can be set to any
predefined role type (i.e. SME, RA etc), while the
multiplicity attribute documents the number of stakeholders
assuming the given role. CGREN adopts the counting
concept used by Amazon’s Pirahã tribe by constraining
multiplicity values to one, few, or many.

• Locations: By definition, a distributed project
includes two or more distinct locations. We refer to each
location as a site, and define it as a place at which at least
one project stakeholder is situated. A site is
characterized by the close proximity of stakeholders,
and their ability to meet together frequently to engage
in face-to-face meetings. Stakeholders at a single site
are normally able to communicate using a shared
primary language. The metamodel shows that a site is
defined by location, (primary) language, and time zone
attributes.

• Artifacts: An artifact is defined as the specification
of a physical piece of information that is used or produced
by a software development process, or by deployment and
operation of a system [8]. The primary goal of the
requirements elicitation process is to discover and
document requirements for the system. These requirements
may be represented textually in structured or unstructured
formats and/or graphically. Documentation can therefore
assume multiple formats including but not limited to:
Word documents, databases, UML models, dataflow
diagrams, and/or spreadsheets. Some artifacts are
associated with a specific location and reside permanently
on a shared drive, online library, or in a repository at a
specific site; while other artifacts are frequently moved
from stakeholder to stakeholder across multiple locations,
primarily via email. A s a r e s u l t , t h e artifact ent-
ity in the meta-model is specialized into Stationary and

Figure 1. Specific Stakeholder Roles

Figure 2. Multiplicity of stakeholder roles

(one, few, many)

Figure 3. Site

Figure 4. Stationary and traveling artifact types

Figure 5. Relationships

Figure 6. Relation types and Communication Media
Stereotype for Distributed Communication

206 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Travelling artifacts. A Stationary artifact belongs to
exactly one site and is accessed at that site by both
local and remote stakeholders, while a travelling artifact
has no persistent site and is passed between distributed
stakeholders using some kind of ownership token.

• Means of Communication: The study also
identified three commonly occurring communication
patterns involving various roles and artifacts. A
communicate distributed relationship represents direct
communication between two specific roles. For example,
in one project, SMEs in North America communicated with
SMEs in Asia primarily using email; while in another
project the RA in North America held regular tele-
conferences with developers in Europe. This type of
communication was characterized by the medium used (i.e.
telephone, web-conference, or email), and also by the
multiplicity of participating roles (i.e. 1:N, N:M etc). The
Communicate distributed relationship is represented in the
meta-model as an association between roles, while the
communication medium is represented in individual models
as a stereotype. The multiplicity of participating roles is
captured through the previously discussed multiplicity
attribute.

 A communicate co-located relationship also connects
two roles; however it represents the case that the associated
roles are co-located and can communicate face-to-face.
Roles can engage in a communicate co-located relationship either
by being situated at the same Site, or when one or more of the
participating stakeholders travel to the other site. For
example, i n o n e p r o j e c t a n RA was responsible for
traveling to two North American sites and a European site
in order to interview SMEs. Finally, the accesses

relationship associates roles with artifacts and means that
stakeholders adopting that role contribute to the
construction or maintenance of the associated artifact.
Access is defined as read (R), write (W), and read/write
(RW). The meta-model depicts the accesses relationship
as an association between role and artifact entities, while
the type of access (R, W, or RW) is modeled as a
stereotype and not visible in Figure 11.

3 Visual Notation

The purpose of our work was to develop a visual
modeling notation that could be used by stakeholders to
plan, evaluate, and manage the requirements process in a
distributed project [6]. We evaluated the icons used to
represent entities and communication in the meta-model
through conducting online surveys of 50 Software
Engineering students from DePaul University. In the first
phase of the study, participants were given a description of
the role or relationship and were presented with 3-5 icon
options. They were then asked to select the most
representative icon and to optionally provide a rationale for
their choice. We conducted this phase of the study in two
rounds, using the second round to present additional icons,
and/or to narrow down choices for controversial elements

of the notation. In a second complimentary study we
presented participants with the entire set of role icons and a
list of the specific stakeholder roles, and asked them to
associate each icon with a role. To increase the readability
of our models we decided to label each role icon with the
specific role. The notation, depicted in Figures 1-6, and
presented throughout the remainder of this paper is the new
notation developed as a result of this series of studies.

A. Basic Elements

 Stakeholder roles are depicted as human shapes (Figure
1) and shown as one, few, or many stakeholders (Figure 2).
Various adornments are used to represent specific roles, for
example the RA is given a pencil, the LSP is assigned a
bullhorn, and the customer is given a paper currency.
Sites are depicted as containers (Figure 3). Artifacts are
represented using well recognized symbols such as a file
folder, spreadsheet, or text document (Figure 4). Finally,
relationships are depicted intuitively using arcs (Figure
5). A solid line represents co-located communication
between roles, a dashed line represents distributed
communication between roles, and a dotted line represents
the relationship between a role and an artifact. Arcs are
adorned by symbols (Figure 6) representing various media
of distributed communication, such as email or phone.

B. Examples

The CGREN notation can be used to model a variety
of concepts at varying levels of abstraction. For example,
a general view of the project may show sites, key roles,
primary communication paths, and artifacts visible at the
global level. In contrast a more concrete view might map
out the specific communication and infrastructure needed
to support the elicitation phase of the requirements

Figure 7. Modeling local collaboration

Figure 8. Modeling remote site communication with a

local spokesperson at the remote site.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 207

process. Figure 7 depicts communication between an RA
and a few SMEs at a single site. Figure 8 depicts
communication between an RA in the USA and a LSP in
Pakistan. The LSP is responsible for internal
communication with SMEs at her site. Inter-site
communication is supported by teleconferencing and
through a document shared via email.

4 A Participatory Study

 Our observatory study was conducted using a tactile
approach in which icons were printed onto small cards, and
the participants utilized a white board to construct their
models (Figures 9-10). The study was designed to address
three research questions (RQ):
• RQ1: To what extent are project managers able to utilize

the CGREN to model distributed requirements
engineering processes in their projects? Are any important
concepts missing or in need of improvement?

• RQ2: Does the CGREN help analysts identify problems
and/or improve the infrastructure of their projects?

• RQ3: What is an effective process model for utilizing
CGREN to model a project?

C. Study Design and Execution

Each observation of a requirements analyst using CGREN
involved a training and enactment phase.
• Participants: Three professional requirements analysts
(RA), from technical consulting, research, and healthcare
fields participated in this study. Their specific job titles were
consultant, business analyst and director, respectively.
Each observation was conducted individually with only the
RA and one researcher present.
• Training: At the start of each session, the researcher
presented several examples of CGREN models and
demonstrated the modeling of a project at the whiteboard.
Each participant was given a notation guide which included
icons depicted in Figures 1-6 and was given the opportunity
to ask clarification questions.
• Design and Procedure: Each participant created a
CGREN model for a specific distributed requirements
elicitation project in which they had recently engaged.
Project meta-data such as domain, size, duration, and
geographical locations, was also collected. The study
involved a ‘think-aloud’ protocol augmented by specific
questions from the researcher, and an exist survey based on
the questions depicted in Table 1.

D. Case Study Example

To illustrate the kind of modeling activities that were
conducted during the participatory study, we describe the
diagrams that were constructed by the first RA.

RA1 worked as a requirements analyst for a technical
consulting company that had been engaged to develop an
epidemiology tracking tool. The consulting company had
leased office space in the same city as their client. RA1 was
one of several RAs who communicated with distributed

SMEs and developers. The group of RAs collectively
authored and managed the requirements using a
commercially available requirements management tool. The
RAs elicited and gathered requirements from the SMEs
using a combination of individual phone calls and through
email exchanges. Each of the RAs was assigned a specific
topic area and interacted with the respective SME to elicit
requirements. The lead developer and a couple of the
managers had read and write access to the requirements
repository. Specific project sites and stakeholder roles are
depicted in Table 2.

E. Evaluation

Our study was qualitative in nature. Research questions
were systematically answered as a result of observing the
participants utilizing CGREN, reviewing transcripts of the
sessions, and through evaluating the answers to the open-
ended exit survey questions.
RQ1: To what extent can project managers use CGREN

to model distributed requirements engineering

processes? All of the participants were able to successfully

Figure 9. The study was conducted using paper icons for

each of the stakeholder roles.

Figure 10. A participant constructs a CGREN model

208 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

model the roles, locations, communication methods, and
artifacts of their selected projects. When asked “were you
able to model all the concepts from your project?” all three
participants responded positively. Furthermore the models
produced during each of the three sessions demonstrated
that all three RAs developed models which they claimed
fully represented their projects, and which were correct with
respect to the metamodel. However, when specifically
asked if any graphical symbols were missing, two of the
participants mentioned the need for the notation to allow
stakeholders to assume multiple roles, sometimes
simultaneously, and sometimes at different phases in the
project. RA2 also pointed out the need to “denote

frequency of communication” in order to differentiate
between varying communication frequencies along different
communication channels. In general, the results of this
study confirmed that CGREN provided the ability to model
most aspects of the distributed requirements engineering
processes that the RAs were engaged in.

RQ2: Does the CGREN help analysts identify problems

and/or improve the infrastructure of their projects?

Each participant in our study was asked “what, if anything,
did you gain from using CGREN?” RA1 stated that she
gained “A better understanding of the project (and a) better

understanding of the stakeholders, the access they had, and

… their reach (impact in the project).” Using the
communication diagram (Figure 10) she identified a specific
problem that occurred because of the distribution of the
major stakeholders. In this case the lead developer was
located in Knoxville, while most of the communication to
establish requirements took place in Atlanta. As a result of
modeling these interactions, the RA commented “Wait a

minute, all this communication is happening here (while) we

have this one person who has to do all of these things, but

they’re doing it remotely.” She stated that if CGREN had
been available to her earlier in the project, this observation
would have led to restructuring of communication patterns.

RA2 noted that for their project “the model is helpful for

showing that … in some of my locations I don’t really have

a Spokesperson. And so there’s (sic) multiple SMEs that I’m

going to… and (it is unclear) to what extent are they truly

the authority.” She also stated that as a result of modeling
the stakeholder roles, this reinforced that it would be helpful
for her to have a designated spokesperson for each site who
would be responsible for identifying SMEs. She further
commented that “there’s multiple SMEs that I’m going to.

And so that’s a lot of people I’m communicating with. … I

feel like it would be helpful to have fewer people and more

people that were kind of designated as Spokespeople,”
which echoes the findings of Turner and Boehm that stress
the importance of finding CRACK (Collaborative,
Representative, Accountable, Committed, Knowledgeable)
people during the requirements elicitation phase of project
planning[9].

Finally, RA3 pointed out that CGREN would “shed some
light on what some of the possible constraints and limitations
could be” with respect to the current project configuration.
In particular she pointed out that in her project all
communication was via email, and that planning in advance
would enable better infrastructure setup that could include
video-conferencing technology and other techniques to
support communication between stakeholders.

One of the key results of the modelling activity for the
RAs was that the method and quantity of communication
during the planning and execution phase of the project was
highlighted. For example, RA1 commented “…I never

really noticed that I didn’t talk to the testers, even though

they definitely wrote their test cases and complained

sometimes about the way we wrote our requirements… after

doing this [exercise] now I notice it.” Both RA1 and RA2
noted that the exercise made them painfully aware of the
complexity of their communication needs.

We noticed the paucity of different elicitation techniques
used in the three projects. All of the RAs relied on
individual interviews and group meetings either conducted in
face-to-face meetings or using phone or video-conferencing
technologies. There were no examples of more creative
elicitation techniques such as Joint Application Design
(JAD) sessions, creativity workshops, or even basic scenario-
writing using storyboarding or other similar techniques [10].

TABLE 1. EXIT SURVEY QUESTIONS

1. How useful was the modeling notation?
a. Were you able to model all of the concepts from

your project?
b. Any problems using the graphical symbols? Any

concepts missing?
c. What was easy to model? What was difficult?
d. Were the stakeholder types and roles sufficient?

Was it helpful to differentiate the roles in this way?
e. Was the one-few-concept effective?

2. What, if anything, did you gain from using CGREN?
3. Did CGREN help you identify any potential issues?
4. Would you use a software version of this tool during

your next project? If so, at what phase?

TABLE 2. RA1’S PROJECT SITES AND STAKEHOLDERS

Site Stakeholder Role
USA0 – Atlanta, GA
Consulting company

1 PM/Lead RA and 5-7 RAs
(from consulting company)
10+ Developers

USA1 – Atlanta, GA
Customer site

1 Higher-level Manager
1 Manager/LSP
10+ SMEs

USA2 – Virginia/D.C
area

1 Manager/executive
10+ Developers

USA3 – California 5+ Developers
10+ Testers

USA4 – Knoxville, TN 1 Lead Developer

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 209

As a result of this observation we noted that if CGREN were
extended to include the notion of meeting types and/or
elicitation techniques, it could serve to inspire and educate
project stakeholders about new techniques, and encourage
them to think beyond their previous planning experiences.

RQ3: What is an effective process model for utilizing
CGREN to model a project? Based on our previous
experiences and our observations during the participatory
study we developed the following guidelines that can be
used in conjunction with CGREN.

1. Identify primary locations and model them as sites.
2. Identify project-level organizational roles and assign

them to specific sites as the organizational plan evolves.
3. For each site, identify key local roles and

communication patterns between roles within the site.
4. Establish basic communication patterns between critical

roles across sites and assign communication
responsibilities to specific roles. In CGREN add
appropriate relationship arcs and attach applicable
communication media to each of the relationship arcs.
Decide how each communication path will be supported
by technology.

5. Determine the key artifacts that are to be created
collaboratively, and model them along with each role’s
access and privileges. Include the applicable
tooling/version control infrastructure.

6. Revisit project-level organizational structures and
ensure that all roles are assigned to specific sites.

7. Model specific elements of the requirements
engineering process by mapping task-specific roles,
artifacts, and communication mechanisms onto the
previously identified sites.

This process can be supported through the use of exemplar
project templates from previous projects. Ideally the
CGREN modeling exercise would be conducted as part of
the kick-off event, but it can also be revisited throughout the

project. One of the RA’s in our study specifically
mentioned that she saw the CGREN models as part of a
“living document.”

5 Refining the Model

As a result of the study we extended the meta-model to
support the notions of communication volume, multiple
hats, and elicitation techniques. Figure 11 presents the new
meta-model uses classes to model access with associated
type and frequency attributes, and the communication class
with frequency and media attributes. The frequency attribute
addresses our study participants’ request to model the
volume of communication between two roles. Three
additional classes are added to the meta-model to depict the
notion of elicitation techniques used with specific
collaborative events. To this end, an event is modeled as a
collaboration between participants. A collaboration is
associated with meeting type (i.e. JAD, Storyboarding, etc),
a meeting name, and an outlook-style schedule depicting
actual meeting times and duration. The associated icons are
shown in Figure 12.

Each participant has a role in the meeting and each
collaboration is assigned to a primary site. Communication

and participation elements are represented as associations in
instantiated models, while the collaboration type is modeled
using one of the meeting type entities in Figure 12. To
support the extended taxonomy, we also added an additional
“many hats” icon, and introduced the visual notation that
the width of the communication arc is approximately
proportional to the estimated communication frequency. In
addition, we introduced the icons shown in Figure 12 to
represent a variety of elicitation techniques.

Figure 13 provides an illustrated example of how the
new taxonomy and related notation could be used to plan a
globally distributed JAD session. In this session the JAD
meeting is being organized at Location-1 by a project
stakeholder wearing dual hats of JAD Facilitator and RA.

Figure 11. Updated CGREN Metamodel reflecting new concepts of communication frequency, roles, and collaboration.

210 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Many participants, including SMEs, a developer, and a
tester all physically participate in the JAD session, while
SMEs from Location 2 and an LSP from Location 3
participate remotely using video-conferencing. The
Location2 LSP communicates with local developers if
issues arise during the JAD session. Finally, a report is sent
to the manager at Location 4 at the end of the session.

6 Related Work

Other techniques exist for modeling stakeholders and
their communication channels within an organization and/or
project. Organizational charts identify project participants
but are rather rigid in nature and often fail to capture the
realities of how information is disseminated in an
organization, and how roles and responsibilities are assigned
in real projects [11]. Damian et al [4] described the
communication paths between stakeholders in distributed
projects using requirements-centered social network (RCSN)
models. CGREN adopts several concepts from the RCSN,
namely identifying stakeholders, and modeling
communication paths between sites. However, the CGREN
provides a more expressive approach for modeling com -
munication media, stakeholder collaborations by role, artifact
types, and other requirements engineering activities. Other
visually oriented methods for describing large projects and
their interactions fall short of capturing the details of a
globally distributed requirements engineering project.

7 Conclusions

This paper describes our observations of the use of
CGREN by requirements analysts to plan distributed
requirements engineering processes. In general, CGREN
helped the analysts to identify important locations, roles and
communication mechanisms. Furthermore, new aspects of
CGREN introduced in this paper, such as the inclusion of
icons for specific elicitation activities, introduce the
potential for stimulating greater creativity and improving
the effectiveness of the requirements elicitation process.
Our future work will involve augmenting our previously
created CGREN tool with the new and modified icons, and
testing CGREN in industrial settings.

8 References

[1] P. Sawyer, “The Context of Software Requirements,” in Software

Engineering, Volume 1: The Development Process, vol. 1, R. H.
Thayer and M. J. Christensen, Eds., 3rd ed:John Wiley & Sons, 2005.

[2] J.D.Herbsleb. Global Software Engineering: The Future of Socio-
technical Coordination. Future of Software Engineering, 2—7.
FOSE’07, 23-25, May 2007, pp. 188-198.

[3] A. Taweel, B. Delaney, T.N.Arvanitis, L. Zhao, “Communication,
Knowledge and Co-ordination Management in Globally Distributed
Software Development: Informed by a Software Engineering Case
Study,” ICGSE, 2009, pp.370-375.

[4] D. Damian, “Stakeholders in Global Requirements Engineering:
Lessons Learned form Practice,” IEEE Software, vol 24, pp. 21-
27,2007.

[5] D. Damian, S. Marczak, and I. Kwan, "Collaboration Patterns and the
Impact of Distance on Awareness in Requirements-Centered Social
Networks," presented at 15th IEEE International Requirements
Engineering Conference (RE 2007), New Delhi, India, 2007.

[6] P.Laurent, P. Mader, J. Cleland Huang, and A. Steele, “A Taxonomy
and Visual Notation for Modeling Globally Distributed Requirements
Engineering Projects” presented at 5th IEEE International Confernece
of Global Software Engineeting, (ICGSE ’10), Princeton, USA, 2010.

[7] P. Laurent and J. Cleland Huang, “Requirements-Gathering
Collaborative Networks in Distributed Software Projects,” presented
at Collaboration and Intercultural Issues on Requirement:
Communication, Understanding and Softskills (CIRCUS ’09),
Atlanta, GA, USA.

[8] P. Kroll and P. Krutchen, The Rational Unified Process Made Easy:
A Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[9] R. Turner and B. Boehm, "Using Risk to Balance Agile and Plan-
Driven Methods," Computer, vol. 36, pp. 57-66, 2003.

[10] Alan M. Davis, Óscar Dieste Tubío, Ann M. Hickey, Natalia Juristo
Juzgado, Ana María Moreno: Effectiveness of Requirements
Elicitation Techniques: Empirical Results Derived from a Systematic
Review. RE 2006: 176-185.

[11] B. Berenbach, “Impact of Organizational Structure on Distributed
Requirements Engineering Processes: Lessons Learned,”
International Workshop on Global Software Development for the
Practitioner, New York, NY, USA, 2006, pp.15-19.

Figure 12. New Icons for multiple roles and Requirements

Elicitation

Figure 13. Utilizing the proposed new taxonomy and icons to

model a Joint Application Design (JAD) session

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 211

 Analysis and Application of Earned Value
 Management in Software Development

 Frank Tsui
 School of Computing and Software Engineering
 Southern Polytechnic State University, Marietta, Georgia, USA 30060

Abstract - Earned Value Management (EVM) is a
well-known cost and schedule management
technique in government and defense industry
projects. Its usage, however, is not as wide spread in
the general software industry. In this paper we
explore some of the shortcomings in EVM and
suggest several improvements in the application of
EVM in software development projects. In particular,
we analyze the nature of software projects and offer
improved ways to approximate Estimate of
Completion for cost of software projects. Another
area of special attention in this paper is
demonstrating that EVM’s metric such as Schedule
Performance Index alone does not alert the project
managers early enough on late task starting date
and that the actual start date itself must be taken
into account.

Keyword: EVM, Cost, Schedule, Software
Projects

1 Introduction

Earned Value Management (EVM) is a cost-schedule
management and control technique. Since its
inception in government financial management
approximately fifty years ago, EVM has been used
for project management in various government and
defense industry related projects [1, 6, 7]. However,
its usage is still relatively new in the software
industry [5]. EVM has been adopted by some Agile
software development projects [8], but it remains
foreign to a large number of software project
managers. In this paper we explore and analyze the
applicability of this technique as it applies to
software project management and to software
engineering. Through this analysis, we will delineate

some of the potential drawbacks in handling
projections and show how one may cope with these
in order to incorporate EVM as a project
management technique for software engineering. In
particular, at the macro level, we offer potential
improvements to Estimate of Completion (EAC) for
cost. We also offer suggestions at the micro level
where examining only the numerical metrics such as
Schedule Performance Index (SPI) and Cost
Performance Index (CPI) of EVM alone may not be
enough. We show that while EVM metrics are mostly
task completion driven, project managers still need
to guard against delay in task start date.

In the next section, Macro Level Definition and
Application of EVM, we quickly review the familiar
terms and the specific metrics employed in EVM. We
then explain the forecasting problem of Estimate at
Completion (EAC) as it is applied to software
development projects. Some possible ways to
improve on the EAC forecasting problem is offered in
the Potential Improvements section. In the Micro
Level Application of EVM section, we discuss ways to
account for and to provide credits to tasks that have
started and have completed part of the tasks. The
need to be mindful of slippage in task start date and
having to look beyond SPI and CPI metrics is
discussed in Task Late Start Problem section. Lastly,
we summarize the analysis of application of EVM to
software projects in the Conclusion section.

2 Macro Level Definitions and
Application of EVM

At the macro level, all large software development
projects have a similar set of major activities:
requirements analysis and specification,

212 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

architectural design, detailed design, code
implementation, build and integration, functional
testing, system testing, and release for deployment.
In a way, one may view this as the work breakdown
structure (WBS) of macro tasks in software
development [9]. For each of these macro tasks one
may assign it an estimated amount of effort, or a
Budgeted Cost (BC), along with an estimated start
date and completion date. The sum of all the
allocated cost of these tasks, or ∑BC, at project
completion is called Budget At Completion (BAC).
The major elements of EVM are composed of
Budgeted Cost of Work Scheduled (BCWS), Budgeted
Cost of Work Performed (BCWP), and Actual Cost of
Work Performed (ACWP). At any project status check
time, t, the sum of BCs of all those tasks that are
scheduled to be completed is BCWS. For those tasks
that are actually completed or performed at time t,
the sum of those tasks’ BCs is the BCWP. Both BCWS
and BCWP use the estimated work effort, BCs, but
they may contain different set of tasks because
scheduled and actually completed tasks at time t
may be different. The sum of the Actual Effort (AC)
expended for those actually completed tasks at time
t is ACWP. Thus, at time t, ACWP is the sum of ACs
for those same tasks accounted for in BCWP.

Furthermore, one may now track and compare the
planned versus the actual project status using a pair
of measurements, Schedule Variance (SV) and Cost
Variance (CV). An alternate, but similar, pair of
Schedule Performance Index (SPI) and Cost
Performance Index (CPI) may be used to monitor the
project status and provide an indicator of how the
project is performing relative to its planned schedule
and cost. Note that SPI = BCWP/BCWS and CPI =
BCWP/ACWP; thus when SPI > 1, we are ahead of
schedule, but when CPI > 1, we are under-running
the cost. When SPI and CPI are both equal to 1, then
we are on target for both schedule and cost. When
SPI < 1, we are behind schedule, but when CPI < 1 we
have a cost over-run situation. As a project manager,
one may ask for guidance on how much smaller than
1 does SPI need to be before one should be alarmed.
Similarly, how much smaller than 1 does CPI needs
to be before one should feel uneasy? These may be
industry or enterprise specific, and there is no
general guidance at this time.

EVM also includes a computational formula for
prognosticating Estimate at Completion (EAC) for
cost and for schedule as follows. Let EACS stand for

EAC for Schedule and EACC stand for EAC for Cost.
Then,

 EACS = ACWP + (BAC - BCWP)/SPI (1)
 EACC = ACWP + (BAC – BCWP)/CPI (2)

These forecasted numbers are based on two
components. One part is the actual cost incurred to-
date, or ACWP, and the other part is the estimated
remaining work, or (BAC - BCWP). A vital part of
estimating the remaining work utilizes a feed-back
mechanism of in-project history, SPI and CPI, for
estimating respectively the new schedule at project
completion and the new cost at project completion.
This method of predicting EAC has been shown to be
relatively accurate for some projects [3]. An earlier
study of differing EAC by varying the CPI and SPI
indices was conducted by Christensen [4] and found
that one still need to be cautious in EAC projection.

2.1 Forecasting Problem for Software
Projects

For software development, especially for large
software projects, the major tasks involving
requirements, design, implementation, etc. are very
different in nature and are often times performed by
different people with varying levels of skills. For
example, requirements solicitation and analysis work
is very different from implementation work. It is also
very different from design or testing tasks. These
macro tasks in software development are each
composed of different activities and thus require
different skills sets. The different tasks of software
development would present at least the following
list of differences that will make productivity and
actual performance information of any one major
task practically non-applicable to another major task
of software development for in-project feedback.

 - Different set of sub-activities and skills required
for any major task
 - Different sets of people performing that major
task
 - Quality effects of one task on later tasks

For example, as we progress from completing the
requirements task to the other tasks, the in-project
history of requirements task for that project may not
be appropriate for estimating the remaining effort,
both cost and schedule, of implementation task or of
testing task of the project. Thus using in-project SPI

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 213

and CPI indices, at the completion of requirements
task may actually be misleading in projecting task
completions for other tasks because the other tasks
are significantly different in nature. Therefore, the
resulting EACS and EACC may create false hope or
false alarm.

The quality effect in software development is an
example that relates to the special situation of
software development that EVM does not account
for. Because software development tasks such as
design, implementation and even testing still include
many creative inventions, the likelihood of errors is
high. The projection of defects from these errors,
which must be corrected prior to release, is not very
accurate. Thus the amount of extra work needed in
down-stream activities, such as different testing and
bug fixing tasks, resulting from these potential errors
in earlier, upstream activities, can not be folded into
the CPI or SPI indices. Thus EAC projections for
schedule and cost, which do not take this quality
effect into consideration, may be off the mark for
software development projects. This notion of
software development often taking longer than
expected is also highlighted in [2].

2.2 Potential Improvements

We propose two categories of approaches to
improve the projection for software projects. First
category is to address the situation via using a
different set of feedback mechanism than the
generic in-project CPI and SPI. We need to recognize
that each type of task in software development is
markedly different from other types of tasks. The
historical information relating to each different type
of remaining task should be used as the new cost
and schedule adjuster. This assumes an organization
that either has historical data or has access to
historical data. Let the remaining major tasks be E1, -
--, En. Corresponding to each Ej, we will define BCj,
and ACj to be the Budgeted Cost and Actual Cost of
those efforts related only to that major task which is
still remaining. Then define a CPIj = BCj/ACj from past
data for each remaining major task j. Note that we
use BC and AC of each task because we are
interested in delineating each specific task. In the
most simplified case, we would just use the average
of these CPIj ‘s as the new CPI’. Thus for the
remaining n tasks, the new CPI’ = (∑CPIj)/ n. The
new Estimate at Completion for Cost will then be the
following.

 EACC’ = ACWP + (BAC – BCWP)/ CPI’ (3)

Such a derived CPI’ may be still too simplified. We
may also look at each CPIj for the remaining tasks
and consider the following:

 CPI’max = maximum (CPIjs) (4)
 CPI’min = minimum (CPIjs) (5)
 CPI’ w = w1xCPIj1 + w2xCPIj2 + ----+ wnCPIjn ,
 where 0<wi < 1 and ∑wi = 1 (6)

CPI’max is the CPI’ derived from the type of task
whose historical BC/AC ratio is the largest among all
the remaining tasks. Thus CPI’max may be considered
for an optimistic prognostication of EAC. CPI’min is
the reverse case and may be considered for a
pessimistic prognostication. Finally, the project
manager may place different weights on each of the
remaining tasks’ CPIs and create a weighted CPI’, or
CPI’w. Using past projects’ information closely
related to the remaining tasks, when picking the
appropriate CPI’, brings an additional level of
accuracy in the projections. The software project
manager may consider each of the following for his
or her Estimate at Completion:

 EACc’1 = ACWP + (BAC-BCWP)/CPI’max (7)
 EACc’2 = ACWP + (BAC-BCWP)/CPI’min (8)
 EACc’3 = ACWP + (BAC-BCWP)/CPI’w (9)

The application of weights utilized in CPI’w may now
take quality results of earlier tasks into consideration
for the yet to finish tasks. Software project managers
may also bring in other risk considerations in
choosing which of the above projections to use.
Aforementioned quality effects may be folded in as
an additional risk consideration. If it is known from
historical data that certain tasks such as design or
implementation is more error prone for the
particular set of developers of the project, then
subsequent testing and fix tasks may require more
effort than projected. Thus the project manager may
choose to be more conservative and use EACc’2 for
estimating the completion cost. EACc’3 may be most
complicated, but it is the most flexible in that it
allows the project manager to allocate different
levels of concern for each of the different types of
remaining tasks. Note that EACc’ is just a special case
of EACc’3 where the weights in CPI’w are all equal.

The above discussion is based on enterprises that
have collected and kept historical data on software
development. Moreover, these enterprises need to

214 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

have monitored projects using EVM and kept the BCs
and ACs for the major software development tasks.
However, most of the enterprises have not used
EVM nor kept such data related to past BC and AC by
major task types. Hence, a different approach is
needed for those enterprises who are new to EVM
and do not have historical data. These organizations
would still need to use the in-project data to
estimate the remaining efforts for EAC.
 A different category of approach to improving the
projection of EAC is to modify the project
management approach and choose the appropriate
projects to fit the measurement, not modifying the
projection formula. When the project is small, we
often times use a small group of people of similar
skills and have these same people involved in all
aspects of the project. This management approach
for small projects is sometimes a result of economic
practicality where specialization by task type is just
not possible. Such an approach will take out one of
the earlier mentioned problems of different
specialists performing different tasks and thus
causing inaccurate prognostication of remaining
tasks based on in-project data. Furthermore, apply
EVM to not only small, but also simpler projects
where less new innovation is required. This will ease
the potential quality variance problem. Limiting the
application of EVM to small, simple software project
and employing the same set of people to perform all
major tasks, should provide more stability to in-
project data for estimating even different tasks. This
approach should provide a partial improvement to
using the original formulae of EACS and EACC.

3 Micro Level Application of EVM

Adoption of EVM for software engineering also
needs some guidance at the micro level. One difficult
area is the computation of BCWP. For project status
analysis and report at time t, we accumulate all the
BC’s of the tasks that are completed by time t. That
becomes the BCWP at time t and is used for CPI and
SPI indices. However, at time t there may be tasks
that are partially complete. Traditionally, these
partially completed tasks are not included in the
computation of BCWP. In other words, a task gets
either 0% or 100% of the BC when computing the
BCWP. In software development many tasks are
performed in parallel, and these partially completed
tasks need to be folded in the computation of BCWP
to gain a more accurate account of the project
status. Consider Figure 1 where multiple tasks are

performed in parallel. The project of status of BCWP
on March 15 would include those tasks that are
completed, namely, requirement and design. Thus
BCWP would be 100 + 76 = 176 person hours, ACWP
would be 105 +65 = 170 person hours and BCWS
would be 100 + 76 = 176 on the March 15 status
report. The schedule performance index, SPI =
BCWP/BCWS = 176/176, would be 1, and cost
performance index, CPI = BCWP/ACWP = 176/170,
would be greater than 1. This says that we are right
on schedule and under-run on cost. But we also need
to account for the other two major tasks,
implementation and testing, that have started and
have already expended some effort in our status
report. Furthermore, we note that the testing
activity actually started later than the estimated
start date.

Several approaches may be taken. If the software
development project is laid out in broad chunks of
requirements, design, implementation, test,
integration and release, we can see that these tasks
will overlap. For example, that part of testing which
addresses test scenario and test case development
may overlap with requirements and design tasks.
Taking a project status at the end of the
requirements phase and not allocate any credit to
some sub-task completions within testing would
create a false impression of the status. To evade this
type of problem, partial task completion credit may
be given with rules such as the following.

- Allocate 0% of the BC of the task if it has
started but not reached 30% of the task BC.

- Allocate 25% of the BC of the task if it is
started and has passed 30% of the task BC.

- Allocate 100% of the BC of the task only
when it is completed.

Including the tasks’ partial BCs and adding that into
the computation of BCWP may provide a more

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 215

accurate account of the project status. The above
suggestion is a relatively conservative approach.
Using this conservative credit allocation scheme, the
new BCWP = 100 + 76 + (.25 x 150) + (.25 x 90) = 236.
The new ACWP = 105 + 65 + 55 + 35 = 260. Utilizing
the new BCWP and ACWP, we can recalculate for
new SPI = 236/176 and new CPI = 236/260. The new
SPI > 1, and the new CPI < 1; thus with partial
credits, our project status on March 15 would be
quite different from what was previously stated. We
are now ahead of schedule, but has a slight cost
over-run.

Clearly, one may vary the 25% to something lesser or
larger, depending on past experiences and history
with the project team and the nature of the current
project. One may also add more increments and
granularities such as allocating only 10% when the
task is started, allocating 25% when the task is
believed to be half way completed, and allocating
50% when it is believed to have past the half way
mark. Since the adoption of EVM in software
development has not been broad enough, no clear
guidance on the percentage can be provided yet.
However, we do know the binary case of 0% or 100%
creates some problems projecting an accurate
project status when there is more than one task that
has already incurred some effort, including those
tasks that started earlier than planned.

3.1 Task Late Start Problem

If a task is started earlier than planned, we can adopt
some variation of the above suggested, partial credit
approach. However, in our Figure 1 example, the
testing activity actually started five days later than
the planned start date of February 10th. While one
can easily see this delay in test starting date in a
tabular form such as Figure 1, there is no clear way
to indicate this delay in task starting if one just
looked at EVM metrics of SPI and CPI. The previously
computed project SPI indicated that the project was
on schedule on March 15. The newly computed SPI,
with partial credits, even indicated that the project
was ahead of schedule. Experienced software
engineers and project managers know that a late
starting task often results in late completion of that
task and/or requires more effort and may even
adversely affect other related tasks. Project
managers may wonder whether they should have
been alarmed on March 15 by the start date delay.
Let us fast forward from March 15 status day to May

1, when the testing task is scheduled to compete. To
keep the discussion focused, we will assume that the
implementation task actually completed on target,
both schedule and cost wise. Let us examine the two
major possibilities for the testing task on May 1: (a)
the testing task is completed and (b) the testing task
is not completed. The amount of actual effort
expended is also a variable. This is shown in Figure 2,
where the completion date of test task is marked
as XXX and the AC for test is marked as NN.

Major
Task

Estimated
Effort (BC)
In person hrs.

Actual Effort
Expended (AC)
In person hrs.

Estimated
Completion
date

Actual
Completion
date

Estimated
Start
date

Actual
Start
date

Figure 2: Project Status on May 1

Requirement

Design

Implement

Test

Integrate

Feb 15Jan 10105

65

8

150 150

90 NN

0

Jan 10100 Feb 15

76 Feb 10 March 10Feb 10 March 5

April 15April 15March 1March 1

May 2

Feb 10 May 1Feb 15

XXX

May 5

Consider the first case where the testing task is
completed on May 1. Then there are three further
sub-divisions: (i) the actual cost is NN= 90 person
hours as planned, (ii) the actual cost is NN > 90
person hours, (iii) the actual cost is NN < 90 person
hours. The best possibility is case (i) that NN = 90 as
planned, in which case the SPI = 416/416 = 1 and CPI
= 416/410 >1. The 5 days delay in test starting day
caused no harm because the project is on schedule
with a slight cost under-run. In case (ii) let us assume
that we expended 100 person hours. Thus NN would
be 100 and SPI = 416/416 = 1 and CPI = 416/420 <1.
The delay caused a slight cost over-run, perhaps to
make up for the schedule delay. For situation (iii),
consider NN to be 80. Then SPI is still 1, but CPI =
416/400 > 1. The delay caused no harm in case (iii).
Perhaps, the estimated BC for testing activity was a
bit high to start with. The three scenarios
demonstrated here show that in two of the three
cases, the five day delay in starting the test task did
not adversely affect the project.

Now consider the second case where the testing task
is not complete on May 1 as planned. While we can
not tell when the task will be complete and what the
actual final effort would be, we can still look at the
situation on May 1. We would have the same three

216 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

sub-divisions of actual effort expended on May 1.
First consider (i) where NN = 90 units expended.
Now follow the strict EVM metric rule. Then BCWP is
really 326 because test task is not complete on May
1, and BCWS is 416. Thus SPI is 326/416 < 1 and CPI =
326/410 <1. This says that the project is behind
schedule with a cost over-run and potentially even
higher cost over-run. This is bad, but it is the correct
status on May 1. For situation (ii), again, assume that
NN = 100 units expended even though the task is still
incomplete. Then SPI = 326/416 <1 and CPI =
326/420 < 1. This says that the project is behind
schedule but has an even higher cost over-run than
case (i). This is also a negative status, but a correct
one. Lastly, consider case (iii) where NN = 80. Again,
SPI is the same less than 1, and CPI = 326/400 < 1.
This project status report is pretty much the same as
case (i) and (ii); that is, the project is behind
schedule and over-run in cost.
When we fast forwarded from March 15 project
status day to May 1, we saw that of the six possible
scenarios four resulted in negative outcomes. For
the three scenarios associated with the test task
missing the May 1 completion date, the project was
both behind schedule and over-budget. EVM, being
a technique that is based mostly on effort at
completion, does not readily provide a view into the
potential problems of missing the task start date.
The earlier a potential problem is squashed, the less
likely will the problem mushroom into some
uncontainable situation as shown in this example of
test task missing the February 10th start date.
Therefore, in using EVM, project managers can not
just depend only on numeric figures such as SPI and
CPI. One must still track not only the end dates, but
also the actual start dates of the tasks and perform
some forward projections when a task start date is
missed.

4 Concluding Remarks

In this paper, we examined EVM as a project
management technique for software development.
In particular, we focused on its capability in
portraying the current status and in projecting the
future. As expected, future prognostication is a
difficult task for most management techniques. We
focused on two levels, macro and micro levels, of
looking beyond just current status. Through this
exploration we have proposed several
improvements. One improvement at the macro level
is a better in-project forecasting mechanism for

Estimate at Completion of Cost (EACc) which allows
one to vary the Cost Performance Index (CPI)
depending on what and the nature of the remaining
tasks. The other, at the micro level, is to look beyond
just the SPI and CPI indices of EVM. Project
managers must be mindful of the actual start and
completion dates of tasks.

5 References

[1] W.F. Abba, “Earned Value Management-
Reconciling Government and commercial Practices,”
Project Management, Special Issue,
January/February 1997, pp 58-67.

[2] P.G. Armour, “The Business of Software - How
We Build Things,” Communications of ACM, January
2013, vol.56, No1, pp 32-33.

[3] I. Attarzadeh and O.S. Hock, “Implementation
and Evaluation of Earned Value Index to Achieve an
Accurate Project Time and Cost Estimation and
Improve Earned Value Management System,”
International Conference on Information
Management and Engineering, Kuala Lumpur,
Malaysia, April, 2009.

[4] D. Christensen, “The Estimate At Completion
Problem: A Review of Three Studies,” Project
Management Journal 24, March 1993, pp 37-42.

[5] H. Erdogums, “Tracking Progress through Earned
Value,” IEEE Software, September/October 2010, pp
2-7.

[6] Office of Secretary of Defense, Earned Value
Management, www.acq.osd.mil/evm, accessed
December, 2012.

[7] Q.W. Fleming and J.M. Koppelman, Earned Value
Project Management, 4th Edition, Project
Management Institute, Inc., 2010.

[8] T. Sulaiman, B. Barton, T. Blackburn, “AgileEVM –
Earned Value Management in Scrum Projects,”
Proceedings of the AGILE 2006 Conference,
Minneapolis, USA, July 2006, pp 7-16.

[9] F. Tsui, Managing Systems and IT Projects, Jones
and Bartlett Learning, 2011.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 217

http://www.acq.osd.mil/evm

On Acceptance Testing

Jean-Pierre Corriveau
School of Computer Science

Carleton University
Ottawa, CANADA

jeanpier@scs.carleton.ca

Wei Shi
Faculty of Business and Information Technology

University of Ontario Institute of Technology
Oshawa, CANADA

Wei.shi@uoit.ca

Abstract— Regardless of which (model-centric or code-centric)
development process is adopted, industrial software
production ultimately and necessarily requires the delivery of
an executable implementation. It is generally accepted that the
quality of such an implementation is of utmost importance. Yet
current verification techniques, including software testing,
remain problematic. In this paper, we focus on acceptance
testing, that is, on the validation of the actual behavior of the
implementation under test against the requirements of
stakeholder(s). This task must be as objective and automated
as possible. Our goal here is to review existing code-based and
model-based tools for testing in light of what such an objective
and automated approach to acceptance testing entails. Our
contention is that the difficulties we identify originate mainly
in a lack of traceability between a testable model of the
requirements of the stakeholder(s) and the test cases used to
validate these requirements.

Keywords— Validation, Acceptance Testing, Model-Based
Testing, Traceability, Scenario Models

Contact author for SERP 2013 paper: J-Pierre Corriveau

I. INTRODUCTION
The use and role of models in the production of

software systems vary considerably across industry.
Whereas some development processes rely extensively
on a diversity of semantic-rich UML models [1],
proponents of Agile methods instead minimize [2], if
not essentially eliminate [3] the need for models.
However, regardless of which model-centric or code-
centric development process is adopted, industrial
software production ultimately and necessarily requires
the delivery of an executable implementation.
Furthermore, it is generally accepted that the quality of
such an implementation is of utmost importance [4].
That is, except for the few who adopt 'hit-and-run'
software production 1 , the importance of software
verification within the software development lifecycle

1 according to which one develops and releases quickly in order to

grab a market share, with little consideration for quality
assurance and no commitment to maintenance and customer
satisfaction!

is widely acknowledged. Yet, despite recent
advancements in program verification, automatic
debugging, assertion deduction and model-based
testing (hereafter MBT), Ralph Johnson [5] and many
others still view software verification as a "catastrophic
computer science failure". Indeed, the recent CISQ
initiative [6] proceeds from such remarks and similar
ones such as: "The current quality of IT application
software exposes businesses and government agencies
to unacceptable levels of risk and loss." [Ibid.]. In
summary, software verification remains problematic. In
particular, software testing, that is evaluating software
by observing its executions on actual valued inputs [7],
is "a widespread validation approach in industry, but it
is still largely ad hoc, expensive, and unpredictably
effective" [8]. Grieskamp [9], the main architect of
Microsoft's MBT tool Spec Explorer [10], indeed
confirms that current testing practices "are not only
laborious and expensive but often unsystematic,
lacking an engineering methodology and discipline and
adequate tool support".

In this paper, we focus on one specific aspect of
software testing, namely the validation [11] of the
actual behavior of an implementation under test
(hereafter IUT) against the requirements of
stakeholder(s) of that system. This task, which
Bertolino refers to as "acceptance testing" [8], must be
as objective and automated as possible [12]. Our goal
here is to survey existing tools for testing in light of
what such an "objective and automated" approach to
acceptance testing entails. To do so, we first discuss in
section 2 existing code-based and, in section 3, existing
model-based approaches to acceptance testing. We
contend that the current challenges inherent to
acceptance testing originate first and foremost in a lack
of traceability between a testable model of the
requirements of the stakeholder(s) and the test cases
(i.e., code artifacts) used to validate the IUT against
these requirements. We conclude by considering
whether Model-Driven Development may offer an
avenue of solution.

218 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

II. CODE-BASED ACCEPTANCE TESTING?
Testing constitutes one of the most expensive

aspects of software development and software is often
not tested as thoroughly as it should be [8, 9, 11, 13].
As mentioned earlier, one possible standpoint is to
view current approaches to testing as belonging to one
of two categories: code-centric and model-centric. In
this section, we briefly discuss the first of these two
categories.

A code-centric approach, such as Test-Driven
Design (TDD) [3] proceeds from the viewpoint that,
for 'true agility', the design must be expressed once and
only once, in code. In other words, there is no
requirements model per se (that is, captured separately
from code). Consequently, there is no traceability [14]
between a requirements model and the test cases
exercising the code. But such traceability is an
essential facet of acceptance testing: without
traceability of a suite of test cases 'back to' an
explicitly-captured requirements model, there is no
objective way of measuring how much of this
requirements model is covered [11] by this test suite.

A further difficulty with TDD and similar
approaches is that tests cases (in contrast to more
abstract tests [11]) are code artifacts that are
implementation-driven and implementation-specific.
Consequently, the reuse potential of such test cases is
quite limited: each change to the IUT may require
several test cases to be updated. The explicit capturing
of a suite of implementation-independent tests
generated from a requirements model offers two
significant advantages:

1) It decouples requirements coverage from the
IUT: a suite of tests is generated from a requirements
model according to some coverage criterion. Then, and
only then, are tests somehow transformed into test
cases proper (i.e., code artifacts specific to the IUT).
Such test cases must be kept in sync with a constantly
evolving IUT, but this can be done totally
independently of requirements coverage.

2) It enables reuse of a suite of tests across several
IUTs, be they versions of a constantly-evolving IUT or,
more interestingly, competing vendor-specific IUTs
having to demonstrate compliance to some
specification (e.g., in the domain of software radios).

Beyond such methodological issues faced by code-
based approaches to acceptance testing, because the
latter requires automation (e.g., [11, 12]), we must also
consider tool support for such approaches.

Put simply, there is a multitude of tools for software
testing (e.g., [15, 16]), even for specific domains such
as Web quality assurance [17]. Bertolino [8] remarks,
in her seminal review of the state-of-the-art in software

testing, that most focus on functional testing, that is,
check "that the observed behavior complies with the
logic of the specifications". From this perspective, it
appears these tools are relevant to acceptance testing. A
closer look reveals most of these tools are code-based
testing tools (e.g., JAVA's JUnit [18] and AutoTest
[19]) that mainly focus on unit testing [11], that is, on
testing individual procedures of an IUT (as opposed to
scenario testing [20]). A few observations are in order:

1) There are many types of code-based verification
tools. They include a plethora of static analyzers, as
well as many other types of tools (see [21] for a short
review). For example, some tackle design-by-contract
[22], some metrics, some different forms of testing
(e.g., regression testing [11]). According to the
commonly accepted definition of software testing as
"the evaluation of software by observing its executions
on actual valued inputs" [7], many such tools (in
particular, static analyzers) are not testing tools per se.

2) As argued previously, acceptance testing requires
an implementation-independent requirements model.
While possibly feasible, it is unlikely this testable
requirements model (hereafter TRM) would be at a
level of details that would enable traceability between
it and unit-level tests and/or test cases. That is,
typically the tests proceeding from a TRM are system-
level ones [11], not unit-level ones.

3) Integration testing tools (such as Fit/Fitness,
EasyMock and jMock, etc.) do not address acceptance
testing proper. In particular, they do not capture a TRM
per se. The same conclusion holds for test automation
frameworks (e.g., IBM's Rational Robot [23]) and test
management tools (such as HP Quality Centre [24] and
Microsoft Team Foundation Server [25]).

One possible avenue to remedy the absence of a
TRM in existing code-based testing tools may consist
in trying to connect such a tool with a requirements
capture tool, that is, with a tool that captures a
requirements model but does not generate tests or test
cases from it. However, our ongoing collaboration with
Blueprint [26] to attempt to link their software to code-
based testing tools has revealed a fundamental hurdle
with such a multi-tool approach: Given there is no
generation of test cases in Blueprint, traceability from
Blueprint requirements2 to test cases (be they generated
or merely captured in some code-based testing tool)
reduces to manual cross-referencing. That is, there is
currently no automated way of connecting
requirements with test cases. But a scalable approach to

2 Blueprint offers user stories (which are a simple form of UML

Use Cases [11, 27]), UI Mockups and free-form text to capture
requirements. The latter are by far the most popular but the
hardest to semantically process in an automated way.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 219

acceptance testing requires such automated traceability.
Without it, the initial manual linking of (e.g., hundred
of) requirements to (e.g., possibly thousands of) test
cases (e.g., in the case of a medium-size system of a
few tens of thousands lines of code) is simply
unfeasible. (From this viewpoint, whether either or
both tools at hand support change impact analysis is
irrelevant as it is the initial connecting of requirements
to test cases that is most problematic.) At this point in
time, the only observation we can add is that current
experimentation with Blueprint suggests an eventual
solution will require that a 'semantic bridge' between
this tool and a code-based testing tool be constructed.
But this is possible only if both requirements and test
cases are captured in such a way that they enable their
own semantic analysis. That is, unless we can first have
algorithms and tools that can 'understand' requirements
and test cases (by accessing and analyzing their
underlying representations), we cannot hope to develop
a semantic bridge between requirements and test cases.
However, such 'understanding' is extremely tool
specific, which leads us to conclude that a multi-tool
approach to acceptance testing is unlikely in the short
term (especially if one also has to 'fight' a frequent
unfavorable bias of users towards multi-tool solutions,
due to their over-specificity, their cost, etc.).

The need for an automated approach to traceability
between requirements and test cases suggests the latter
be somehow generated from the former. And thus we
now turn to model-based approaches to acceptance
testing.

III. MODEL-BASED TESTING
In her review of software testing, Bertolino [8]

remarks: “A great deal of research focuses nowadays
on model-based testing. The leading idea is to use
models defined in software construction to drive the
testing process, in particular to automatically generate
the test cases. The pragmatic approach that testing
research takes is that of following what is the current
trend in modeling: whichever be the notation used, say
e.g., UML or Z, we try to adapt to it a testing technique
as effectively as possible [.]”

Model-Based Testing (MBT) [10, 28, 29] involves
the derivation of tests and/or test cases from a model
that describes at least some of the aspects of the IUT.
More precisely, an MBT method uses various
algorithms and strategies to generate tests (sometimes
equivalently called 'test purposes') and/or test cases
from a behavioral model of the IUT. Such a model is
usually a partial representation of the IUT's behavior,
‘partial’ because the model abstracts away some of the
implementation details.

Several survey papers (e.g., [8, 30, 31) and special
issues (e.g., [29]) have addressed such model-based
approaches, as well as the more specific model driven
ones (e.g., [32, 33]). Some have specifically targeted
MBT tools (e.g., [28]). While some MBT methods use
models other than UML state machines (e.g., [34]),
most rely on test case generation from such state
machines (see [35] for a survey).

Here we will focus on state-based MBT tools that
generate executable test cases. Thus we will not
consider MBT contributions that instead only address
the generation of tests (and thus do not tackle the
difficult issue of transforming such tests into
executable IUT-specific test cases). Nor will we
consider MBT methods that are not supported by a tool
(since, tool support is absolutely required in order to
demonstrate the executability of the generated test
cases).

We start by discussing Conformiq's Tool Suite [36,
37], formerly known as Conformiq Qtronic (as referred
to in [35]). This tool requires that a system's
requirements be captured in UML statecharts (using
Conformiq's Modeler or third party tools). It "generates
software tests [...] without user intervention, complete
with test plan documentation and executable test scripts
in industry standard formats like Python, TCL, TTCN-
3, C, C++, Visual Basic, Java, JUnit, Perl, Excel,
HTML, Word, Shell Scripts and others." [37]. This
includes the automatic generation of test inputs
(including structural data), expected test outputs,
executable test suites, test case dependency information
and traceability matrix, as well as support for boundary
value analysis, atomic condition coverage, and other
black-box test design heuristics" [Ibid.].

While such a description may give the impression
acceptance testing has been successfully completely
automated, extensive experimentation 3 reveals some
significant hurdles:

First, Grieskamp [9], the creator of Spec Explorer
[10], another state-based MBT tool, explains at length
the problems inherent to test case generation from state
machines. In particular, he makes it clear that the state
explosion problem remains a daunting challenge for all
state-based MBT tools (contrary to the impression one
may get from reading the few paragraphs devoted to it
in the 360-page User Manual from Conformiq [37]).
Indeed, even the modeling of a simple game like
Yahtzee (involving throwing 5 dice up to three times
per round, holding some dice between each throw, to

3 by the authors and 100+ senior undergraduate and graduate

students in the context of offerings of a 4th year undergraduate
course in Quality Assurance and a graduate course in Object
Oriented Software Engineering twice over the last two years.

220 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

achieve the highest possible score according to a
specific poker-like scoring algorithm) can require a
huge state space if the 13-rounds of the game are to be
modeled. Both tools offer a simple mechanism to
constrain the state 'exploration' (or search) algorithm by
setting bounds (e.g., on the maximum number of states
to consider, or the "look ahead depth"). But then the
onus is on the user to fix such bounds through trial and
error. And such constraining is likely to hinder the
completeness of the generated test suite. The use of
'slicing' in Spec Explorer [10], via the specification of
a scenario (see Figures 1a and 1b), constitutes a much
better solution (to the problem of state explosion) for it
emphasizes the importance of equivalence partitioning
[11] and rightfully places on the user the onus of
determining which scenarios are equivalent (a task that,
as Binder explains [Ibid.], is unlikely to be fully
automatable).

// score 36 end states with 3, 3, 3 (as last dices)
// then score one end state for 2, 2, 1, 1, 3: must score 0
machine ScoreThreeOfAKind() : RollConstraint
{ (NewGame;
 (RollAll(_, _, 3, 3, 3);
 Score(ScoreType.ThreeOfAKind)
 | RollAll(2, 2, 1, 1, 3);
 Score(ScoreType.ThreeOfAKind)))
 || (construct model program from RollConstraint)
}

Figure 1.a A Spec Explorer scenario for
exploring scoring of three-of-a-kind rolls

//Sample hold test: should vary only 4th and 5th dice
// Gives 36 possible end states
machine hold1() : RollConstraint
{ (NewGame; RollAll(1,1,1,1,1);
 hold(1); hold(2); hold(3); RollAll)
 || (construct model program from RollConstraint)
}
Figure 1.b: A Spec Explorer scenario for holding

the first three dice

Second, in Conformiq, requirements coverage4 is

only possible if states and transitions are manually
associated with requirements (which are thus merely
annotations superimposed on a state machine)! Clearly,
such a task lacks automation and scalability. Also, it
points to an even more fundamental problem:
requirements traceability, that is, the ability to link
requirements to test cases. Shafique and Labiche [35,
table 4.b] equate "requirements traceability" with

4 not to be confused with state machine coverage, nor with test

suite coverage, both of these being directly and quite adequately
addressed by Conformiq and Spec Explorer [35, tables 2 and 3].

"integration with a requirements engineering tool".
Consequently, they consider that both Spec Explorer
and Conformiq offer only "partial" support for this
problem. For example, in Conformiq, the
abovementioned requirements annotations can be
manually connected to requirements captured in a tool
such as IBM RequisitePro or IBM Rational DOORS
[37, chapter 7]. However, we believe this operational
view of requirements traceability downplays a more
fundamental semantic problem identified by
Grieskamp [9]: a system's stakeholders are much more
inclined to associate requirements to scenarios [20]
(such as UML use cases [27]) than to parts of a state
machine... From this viewpoint:

1) Spec Explorer implicitly supports the notion of
scenarios via the use of "sliced machines", as
previously illustrated. But slicing is a sophisticated
technique drawing on semantically complex operators
[10]. Thus, the state space generated by a sliced
machine often may not correspond to the expectations
of the user. This makes it all-the-more difficult to
conceptually and then manually link the requirements
of stakeholder's to such scenarios.

2) Conformiq does support use cases, which can be
linked to requirements and can play a role in test case
generation [37, p.58]. Thus, instead of having the user
manually connect requirements to elements of a state
machine, a scenario-based approach to requirements
traceability could be envisioned. Intuitively this
approach would associated a) requirements with use
cases and b) paths of use cases with series of test cases.
But, unfortunately, this would require a totally different
algorithm for test case generation, one not rooted in
state machines, leading to a totally different tool.

Third, test case executability may not be as readily
available as what the user of an MBT tool expects.
Consider for example, the notion of a "scripting
backend" in Conformiq Designer. For example [37,
p.131]: "The TTCN-3 scripting backend publishes tests
generated by Conformiq Designer automatically in
TTCN-3 and saves them in TTCN-3 files. TTCN-3 test
cases are executed against a real system under test with
a TTCN-3 runtime environment and necessary
adapters." The point to be grasped is (what is often
referred to as) 'glue code' is required to connect the
generated tests to an actual IUT. Though less obvious
from the documentation, the same observation holds
for the other formats (e.g., C++, Perl, etc.) for which
Conformiq offers such backends. For example, we first
read [37, p.136]: "With Perl script backend, Perl test
cases can be derived automatically from a functional
design model and be executed against a real system."
And then find out on the next page that this in fact

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 221

requires "the location of the Perl test harness module,
i.e., the Perl module which contains the implementation
of the routines that the scripting backend generates." In
other words, Conformiq does provide not only test
cases but also offers a (possibly 3rd party) test harness
[Ibid.] that enables their execution against an IUT. But
its user is left to create glue code to bridge between
these test cases and the IUT. This manual task is not
only time-consuming but potentially error-prone [11].
Also, this glue code is implementation-specific and
thus, both its reusability across IUTs and its
maintainability are problematic.

In Spec Explorer [10], each test case corresponds to
a specific path through a generated state machine. One
alternative is to have each test case connected to the
IUT by having the rules of the specification (which are
used to control state exploration, as illustrated shortly)
explicitly refer to procedures of the IUT. Alternatively,
an adapter, that is, glue code, can be written to link
these test cases with the IUT. That is, once again,
traceability to the IUT is a manual task. Furthermore,
in this tool, test case execution (which is completely
neatly integrated into Visual Studio) relies on the IUT
inputting test case specific data (captured as parameter
values of a transition of the generated state machine)
and outputting the expected results (captured in the
model as return values of these transitions). As often
emphasized in the associated tutorial videos
(especially, session 3 part 2), the state variables used in
the Spec Explorer rules are only relevant to state
machine exploration, not to test case execution. Thus
any probing into the state of the IUT must be explicitly
addressed through the use of such parameters and
return values. The challenge of such an approach can
be illustrated by returning to our Yahtzee example.
Consider a rule called RollAll to capture the state
change corresponding to a roll of the dice:

[Rule]
 static void RollAll(int d1, int d2, int d3, int d4, int d5)

{ Condition.IsTrue(numRolls < 3);
 Condition.IsTrue(numRounds < 13);

 if (numRolls == 0) {
 Condition.IsTrue(numHeld == 0); }
 else { Condition.IsTrue(!d1Held || d1 == d1Val);

 Condition.IsTrue(!d2Held || d2 == d2Val);
 Condition.IsTrue(!d3Held || d3 == d3Val);
 Condition.IsTrue(!d4Held || d4 == d4Val);
 Condition.IsTrue(!d5Held || d5 == d5Val);
 }

 /* store values from this roll */
 d1Val = d1; d2Val = d2; d3Val = d3;

 d4Val = d4; d5Val = d5; numRolls += 1;
}

Here numRolls, numRounds, numHeld, diHeld and
diVal are all state variables. Without going in details,

this rule enables all valid rolls (with respect to the
number of rounds, the number of rolls and which dice
are to be held) to be potential next states. So, if before
firing this rules the values for diVal were {1, 2, 3, 4, 5}
and those of the diHeld were {true, true, true, true,
false}, then only rolls that have the first 4 dice (which
are held) as {1, 2, 3, 4} are valid as next rolls. The
problem is that {1, 2, 3, 4, 5} is valid as a next roll.
But, when testing against an IUT, this rule makes it
impossible to verify whether the last dice was held by
mistake or actually rerolled and still gave 5. The
solution attempted by students given this exercise
generally consists in adding 6 more Boolean
parameters to RollAll: each Boolean indicating if a die
is held or not. The problem with such a solution is that
it leads to state explosion (especially if the scenario
under test addresses the 3 throws of a round!). One
alternative, which is far less obvious, is to use the
return value of this rule to indicate for each die if it was
held or not...

The key point to be grasped from this example is
that, beyond issues of scalability and traceability, one
fundamental reality of all MBT tools is that their
semantic intricacies can significantly impact on what
acceptance testing can and cannot address. For
example, in Yahtzee, given a game consists of 13
rounds to be each scored once into one of the 13
categories of the scoring sheet, a tester would ideally
want to see this scoring sheet after each roll in order to
ensure not only that the most recent roll has been
scored correctly but also that previous scores are still
correctly recorded. But achieving this is notoriously
challenging unless it is explicitly programmed into the
glue code that connects the test cases to the IUT; an
approach that is quite distant from the goals of
automated testing.

Finally, on the topic of semantics, it is important to
emphasize the wide spectrum of semantics found in
MBT tools. Consider, for example, Cucumber rooted in
BDD [38], a user-friendly language for expressing
scenarios. But these scenarios are extremely simple
(nay simplistic) compared to the ones expressible using
slicing in Spec Explorer [10]. In fact, most MBT tools
cannot adequately address the semantic complexities
(e.g., temporal scenario inter-relationships [20]) of a
scenario-driven approach to test case derivation
[Ibid.])5. The question then is to ask how relevant to
acceptance testing other semantic approaches may be.
We consider this issue next.

5 despite, we repeat, Grieskamp's [9] crucial observation that the

stakeholders of a software system are much likelier to express
their requirements using scenarios than state machines!

222 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

IV. DISCUSSION
There exists a large body of work on modeling

'specifications' in vacuum, that is, with no connection
to an executable system. From Büschi automata to
Formula [39], researchers have explored formalisms
whose semantics enable objective (and possibly
automated) 'model checking', which consists in
deciding if a model is well-formed or not. The lack of
traceability to an IUT disqualifies such work from
immediate use for acceptance testing. In fact, because
the semantic gap between such approaches and what
can be observed from the execution of a system under
test is so significant, it is unlikely such approaches will
be reconcilable in the short or medium term with the
demands of practical acceptance testing, especially
with respect to traceability from requirements to test
cases.

Because the lack of traceability between models and
code is widely acknowledged as a common problem,
we should consider modeling approaches not
specifically targeted towards acceptance testing but that
address traceability. More to the point, we must now
ask if model-driven design (MDD) [40] may be the
foundations on which to build a scalable traceable
approach to acceptance testing. MDD's philosophy that
"the model is the code" [Ibid.] certainly seems to
eliminate the traceability issue between models and
code: code can be easily regenerated every time the
model changes6. And since, in MDD tools (e.g., [41]),
code generation is based on state machines, there
appears to be an opportunity to reuse these state
machines not just for code generation but also for test
case generation. This is indeed feasible with Conformiq
Designer [36], which allows the reuse of state
machines from third party tools. But there is a major
stumbling block: while both code and test cases can be
generated (albeit by different tools) from the same state
machines, they are totally independent. In other words,
the existence of a full code generator does not readily
help with the problem of traceability from requirements
to test cases. In fact, because the code is generated, it is
extremely difficult to reuse it for the construction of the
scriptends that would allow Conformiq's user to
connect test cases to this generated IUT. Moreover,
such a strategy defeats the intention of full code
generation in MDD, which is to have the users of an
MDD tool never have to deal with code directly

6 As one of the original creators of the ObjecTime toolset, which

has evolved in Rational Rose Technical Developer [41], the first
author of this paper is well aware of the semantic and scalability
issues facing existing MDD tools. But solutions to these issues
are not as relevant to acceptance testing as the problem of
traceability.

(except for defining the actions of transitions in state
machines).

One possible avenue of solution would be to
develop an integrated generator that would use state
machines to generate code and test cases for this code.
But traceability of such test cases back to a
requirements models (especially a scenario-driven one,
as advocated by Grieskamp [9]), still remains
unaddressed by this proposal. Thus, at this point in
time, the traceability offered in MDD tools by virtue of
full code generation does not appear to help with the
issue of traceability between requirements and test
cases for acceptance testing. Furthermore, one must
also acknowledge Selic's [40] concerns about the
relatively low level of adoption of MDD tools in
industry.

In the end, despite the dominant trend in MBT of
adopting state-based test and test case generation, it
may be necessary to consider some sort of scenario-
driven generation of test cases from requirements for
acceptance testing. This seems eventually feasible
given the following concluding observations:

1) There is already work on generating tests out of
use cases [11, 42] and use case maps [43], and
generating test cases out of sequence diagrams [44, 45].
Path sensitization [11] is the key technique typically
used in these proposals. There are still open problems
with path sensitization [Ibid.]. In particular, automating
the identification of the variables to be used for path
selection is problematic. As is the issue of path
coverage (in light of a potential explosion of the
number of possible paths in a scenario model). In other
words, the fundamental problem of equivalence
partitioning [Ibid.] remains and an automated solution
for it appears to be quite unlikely. However, despite all
of this, we remark simple implementations of this
technique already exist (e.g., [43] for use case maps).

2) (Partial if not ideally fully) automated traceability
between these three models can certainly be envisioned
given their semantic closeness, each one in fact
refining the previous one.

3) Traceability between sequence diagrams and an
IUT appears quite straightforward given the low-level
of abstraction of such models.

4) Within the semantic context of path sensitization,
tests can be thought of as paths (i.e., sequences) of
observable responsibilities (i.e., small testable
functional requirements). Thus, because tests from use
cases, use case maps and sequence diagrams are all
essentially paths of responsibilities, and because
responsibilities ultimately map onto procedures of the
IUT, automated traceability between tests and test
cases and between test cases and IUT seems realizable.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 223

REFERENCES
[1] Kruchten, P.: The Rational Unified Process, Addison-Wesley,

Reading, 2003.
[2] Rosemberg, D. and Stephens, M.: Use Case Driven Object

Modeling with UML, APress, New York, 2007.
[3] Beck, K.: Test-Driven Development: By Example. Addison-

Wesley Professional, Reading, 2002.
[4] Jones, C. and Bonsignour, O.: The Economics of Software

Quality, Addison-Wesley Professional, 2011.
[5] Johnson, R.: Avoiding the classic catastrophic computer

science failure mode, 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010,
Santa Fe, NM, USA, November 7-11, 2010.

[6] Surhone, M., Tennoe, M. and Henssonow, S.: Cisq, Betascript
Publishing, 2010.

[7] Ammann P. and Offutt J.: Introduction to Software Testing,
Cambridge University Press, 2008.

[8] Bertolino, A.: Software Testing Research: Achievements,
Challenges and Dreams, Future of Software Engineering
(FOSE '07), pp.85-103, IEEE Press, Minneapolis, May 2007.

[9] Grieskamp, W.: Multi-Paradigmatic Model-Based Testing,
Technical Report, pp.1-20, Microsoft Research, August 2006.

[10] Spec Explorer Visual Studio Power Tool,
http://visualstudiogallery.msdn.microsoft.com/271d0904-
f178-4ce9-956b-d9bfa4902745

[11] Binder, R.: Testing Object-Oriented Systems, Addison-
Wesley Professional, Reading, 2000.

[12] Corriveau, J.-P.: Testable Requirements for Offshore
Outsourcing, SEAFOOD, Zurich, February 2007.

[13] Meyer, B.: The Unspoken Revolution in Software
Engineering, IEEE Computer 39(1), pp.121-123, 2006.

[14] Corriveau, J.-P.: Traceability Process for Large OO Projects,
IEEE Computer 29(9), pp.63-68, 1996.

[15] First list of testing tools:
http://www.info.com/Tools%20Software%20Testing?cb=22&
cmp=316574&gclid=CO7R4eeH1LICFaR9OgodYBsAmw

[16] Second list of testing tools:
http://en.wikipedia.org/wiki/Category:Software_testing_tools

[17] Testing tools for Web QA:
http://www.aptest.com/webresources.html

[18] JUnit, http://www.junit.org/
[19] Meyer, B. et al.: Programs that test themselves, IEEE

Computer 42(9), pp.46-55, 2009.
[20] Ryser, J. and Glinz, M.: SCENT: A Method Employing

Scenarios to Systematically Derive Test Cases for System
Test., Technical Report. University of Zurich, 2003.

[21] Arnold, D., Corriveau, J.-P. and Shi, W.: Validation against
Actual Behavior: Still a Challenge for Testing Tools, SERP,
Las Vegas, July, 2010.

[22] Meyer, B.: Design by Contract. IEEE Computer 25(10), pp.
40-51, 1992.

[23] IBM: Rational Robot, http://www-
01.ibm.com/software/awdtools/tester/robot/

[24] HP Quality Centre http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1172141&jumpid=ex_r11
374_us/en/large/eb/go_qualitycenter#.UTEXSI76TJo

[25] TFS http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx
[26] Blueprint

https://documentation.blueprintcloud.com/Blueprint5.1/Defau
lt.htm#Help/Project%20Administration/Tasks/Managing%20
ALM%20targets/Creating%20ALM%20targets.htm

[27] UML Superstructure Specification, v2.3,

http://www.omg.org/spec/UML/2.3/
[28] Utting, M. and Legeard, B. 2007: Practical Model-Based

Testing: A Tools Approach, Morgan Kauffmann
[29] Testing Experience, Model-Based Testing, March 2012, Díaz

& Hilterscheid GmbH, Germany
[30] Prasanna, M. et al.: A survey on Automatic Test Case

Generation, Academic Open Internet Journal, Volume 15, part
6, 2005

[31] Neto, A. et al.: A survey of Model-based Testing Approaches,
WEASELTech'07, Atlanta, November 2007.

[32] Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I. and
Williams, C.: Model-Driven Testing: Using the UML Profile,
Springer, 2007.

[33] Bukhari, S. and Waheed, T.: Model driven transformation
between design models to system test models using UML: A
survey, Proceedings of the 2010 National S/w Engineering
Conference, article 08, Rawalpindi, Pakistan, October 2010.

[34] http://wiki.eclipse.org/EclipseTestingDay2010_Talk_Seppme
d

[35] Shafique, M. and Labiche, Y.: A Systematic Review of Model
Based Testing Tool Support, Technical Report, SCE-10-04,
Carleton University, 2010

[36] Conformiq Tool Suite,
http://www.verifysoft.com/en_conformiq_automatic_test_gen
eration.html

[37] Conformiq Manual,
http://www.verifysoft.com/ConformiqManual.pdf

[38] Chelimsky, D. et al.: The RSpec Book: Behaviour Driven
Development with Rspec, Cucumber and Friends, Pragmatic
Bookshelf , 2010.

[39] FORMULA, http://research.microsoft.com/en-
us/projects/formula/

[40] Selic, B.: Filling in the Whitespace,
http://lmo08.iro.umontreal.ca/Bran%20Selic.pdf

[41] Rational Technical Developer, http://www-
01.ibm.com/software/awdtools/developer/technical/

[42] Nebut C., Fleury F., Le Traon Y., and Jézéquel J. M.:
Automatic Test Generation: A Use Case Driven Approach.
IEEE Transactions on Software Engineering, Vol. 32, 2006.

[43] A. Miga, Applications of Use Case Maps to System Design
with Tool Support, M.Eng. Thesis, Dept. of Systems and
Computer. Engineering, Carleton University, 1998.

[44] Zander, J. et al: From U2TP Models to Executable Tests with
TTCN-3 - An Approach to Model Driven Testing. 17th
International Conf. on Testing Communicating Systems
TestCom 2005, Montreal, Canada, ISBN: 3-540-26054-4,
May 2005.

[45] Baker, P. and Jervis, C.: Testing UML 2.0 Models using
TTCN-3 and the UML 2.0 Testing Profile. LNCS 4745, pp.
86-100, 2007.

224 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

A Framework for Maturity Assessment in Software Testing for
Small and Medium-Sized Enterprises

Adailton F. Araújo 1, Cássio L. Rodrigues1, Auri M.R. Vincenzi 1, Celso G. Camilo1 and Almir F. Silva 2

1Institute of Informatics, Federal University of Goias, Goiania, Goias, Brazil
2Development Department, Decisão Sistemas, Goiania, Goias, Brazil

Abstract— This paper proposes a framework for a software
maturity assessment model for small and medium-sized en-
terprises (SMEs) based on the TMMi model. Our framework
includes an evaluation questionnaire based on TMMi sub-
practices, support tools with examples of artefacts required
to ensure the questionnaire is thoroughly completed, as well
as an automated tool support for its application, enabling
SMEs to carry out self-assessment. The model was applied
to four SMEs.

Keywords: Maturity Assessment of Test Process, Software Test
Process Improvement, TMMi, TMM

1. Introduction
Small and medium-sized software enterprises play a major

role in world economic development, representing 99,2% of
the world’s software companies [1]. In 2010, computer pro-
grams developed in Brazil had a 35% share in the country’s
software market. This market is explored by about 8,520
companies dedicated to software development, production
and distribution, as well as to services. A total of 94% of
all software development and production companies (2,117)
are classified as SMEs [12]. Moreover, those with less than
ten employees represent 93% of European companies and
56% of American companies [9]. Thus, most of the world’s
software development businesses are classified as SMEs [8],
which shows their importance in the market.

The production of high-quality software is a challenge for
SMEs. In general, they are known to develop good software
quality in limited ways [9]. The software market has become
more demanding and SMEs must continually improve their
products to meet market demands. The quality of a system
or product is usually determined by the quality of the
process used and requires a foundation to maximize people’s
productivity as well as technology to enhance competition
in the market [7]. A good process alone does not help an
organization to develop a successful product, but a good
process is necessary to create a successful one [9].

Considering the importance of the use of processes, the
software industry seeks certifications in various models
which highlight discipline, such as CMMI (Capability Matu-
rity Model Integration) [7] and MPS.BR (Software Process
Improvement in Brazil) [10]. Companies of different sizes
need minimum financial requirements to start a software

process improvement program. Such investment may be
insignificant to a large company’s income, but may not
be feasible to an SME [2]. Furthermore, software process
improvement in small businesses must give special attention
to the applications of models and standards designed by large
organizations [16].

Testing is an important part of the development cycle
which leads to high-quality software production [15]. Test
maturity models such as CMMI and MPS.BR present some
problems in the way that they do not perceive the test as
important, in addition to requiring testing only for high
levels of maturity, which are not usually reached by SMEs.
According to MPS.BR, which focuses on SMEs, only 8%
of registered companies have high level certifications A, B,
C and D [13], which require the verification and validation
process.

The software industry has focused on process improve-
ment to enhance its performance [15]. Therefore, test ma-
turity models were created for such purpose, such as TMM
(Test Maturity Model) [3] and TMMi (Test Maturity Model
Integration) [4]. However, such models are not adequate for
SMEs due to their high costs and the fact that they are
originally created from the standpoint of large organizations.
TMM is one of the most widely used models in the world,
and TMMi is an upgraded version of it [3]. Up to the present,
there are no free assessment questionnaires available for
SMEs to use as a self-evaluation tool.

Thus, our work aims at defining a framework for a soft-
ware maturity assessment model based on TMMi practices
which may be applied by SMEs. Due to financial restrictions,
these companies need a method that enables them to assess
their test maturity process, for the investments required by
a formal assessment are not compatible with the reality
of SMEs. Also, they must deal with low maturity levels
during both test and improvement processes. Therefore,
we offer support by providing resources for companies to
evaluate themselves without advanced knowledge of the
model. Our main contribution is an objective questionnaire
for maturity assessment which follows the TMMi model. For
each question, examples are presented on how the company
may meet the model’s demands. Furthermore, an automated
tool support was developed to help with the assessment and
attainment of results. Such support may reduce assessment
effort because it takes into consideration the relationships

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 225

between the questions, therefore reducing the number of
questions to be answered.

The benefits for SMEs would be numerous. According
to the Tassey report [14], the lack of an appropriate test
process would result in: 1) an increased number of faults
due to its low quality; 2) higher development costs; 3) delay
in production; and 4) rise in tool support costs.

The remaining part of this paper is organized as follows:
Section 2 presents related works; Section 3 shows the steps
taken to create our proposed framework; Section 4 describes
the case study by setting the context in which the framework
was applied; Section 5 exhibits the results and an assessment
of the framework. Finally, the conclusions are shown in
Section 6.

2. Related Works
Various works and tools have been developed to support

the maturity assessment of development and test processes.
Tayamanon et al. [15] propose a supporting tool based
on TMM-AM, which enables each company to make its
own test process evaluation. The first steps taken for its
construction were the analysis of each question in the TMM-
AM questionnaire and the registration of all products based
on IEEE 730 and 829 standards, all of which would be
necessary to answer each question. Tool assessment was
carried out by comparing the standard product to the one
produced by the organization. Ng et al. [11] suggest that the
downside to the use of such approach in SMEs lies on the
fact that most of them do not implement test documentation
requirements and end up creating customized documents.
Partial documentation would frequently be produced by the
companies, a fact not taken into account by the tool, which
would ultimately hinder its assessment as regards SMEs.
This would result in a subjective assessment of the level
of each product, which is not adequate for SMEs.

Appraisal Assistant is an assessment tool that was devel-
oped by Software Quality Institute (SQI) at Griffith Univer-
sity [6]. This support tool is used to assess an organization’s
capacity or maturity process, based on assessment models
such as SCAMPI (CMMI) and ISO/IEC 15504. It uses
multiple reference models, including CMMI V1.1, V1.2 and
V1.3, ISO/IEC 12207 and others. Even though it is used to
assess the maturity of the development process, tests carried
out on it showed it can be used easily.

Höhn [5] shows a framework which aimed at gathering
general knowledge on the test area and making it available
for the community to facilitate its transfer, test process
definition and improvement, also providing more quality.
KITTool is a part of this framework, which carries out
software maturity assessment based on the TMMi model.
It provides two types of test process diagnostic procedures:
one of them is based on TMMi goals and the other on
its practices. In the first case, both the process areas and
goals are identified. Each goal representing the test process

is given a grade (0, 4, 6, 8, 10). The second approach
uses SCAMPI assessment model in CMM and presents the
goals and practices related to each objective. The assessor
then gives a rate (0, 25%, 50%, 75%, 100%) based on a
reference table, which shows how much practice has been
implemented in the assessment process. However, applying
this tool requires a high level of knowledge of the TMMi
model and does not focus on SMEs.

Thus, considering the related works, our framework is
different in the sense that:

• it provides support for SMEs to carry out maturity self
assessment in test process;

• its automated support allows the association of the
evidence provided to check whether each TMMi
goal/practice has been met. It gives an overview on how
the company is making use of the model, facilitating
the process’s reassessment as well as potential external
auditing;

• the automated support promotes direct relationships be-
tween the questions from the assessment questionnaire,
reducing the number of items that need checking and
even revealing inconsistencies during the evaluation
process;

• the framework was applied and assessed in a case study.

3. Creating the Framework
This section presents the steps taken to create the frame-

work for software test maturity assessment based on the
TMMi model.

3.1 Definition of the assessment questionnaire

There are five maturity levels in the TMMi model and
each of them contains a set of process areas. Each process
area has a set of goals, each goal has a set of practices
and each practice has a set of sub-practices. The latter is a
detailed description that provides guidelines for interpreting
and implementing a specific practice [4]. For example, the
first column of Table 1 shows some of the sub-practices
associated with the practice Define Test Goals, the aim
Establish Test Policies, and the process area Test and Policy
Strategies, which is related to maturity level 2.

Table 1: Questions based on TMMi sub-practices
Sub-practice Question
1. Study business needs and objectives; OR
2. Allow feedback to clarify business
needs and objectives, if necessary;

OR

3. Define test goals which trace back to
business needs and objectives;

(3)Are test goals defined
based on business needs
and objectives?

4. Review test goals with the interested
parties;

OR

5. Reassess test goals whenever necessary
e.g. annually.

(5) Are test goals periodi-
cally reviewed?

226 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

This is the structure of all process areas related to levels
2, 3, and 4. Level 5 process areas do not contain practices or
sub-practices; the generic practices, which may be applied to
all process areas, do not have sub-practices. Höhn’s work [5]
provides two forms of assessment: 1) based on the goals; and
2) based on model practices. Assessing the TMMi model
showed that the provision of details of sub-practices would
be crucial for SME’s self-assessment, for in this case the
assessor does not know the detailed information required to
achieve a certain goal/practice. Therefore, a questionnaire
was created to assess the adherence to the TMMi model
based on its sub-practices.

The questionnaire took into account the following criteria:
• Questions were created only for the sub-practices that

represent a given result to be achieved by the model.
The remaining sub-practices that are orientations for
practice implementation did not have related questions.
Table 1 shows examples of questions based on sub-
practices 3 and 5. Sub-practices which did not have
related questions (1, 2, and 4) were named OR (orien-
tation);

• Model traceability among questions and sub-practices
was maintained to facilitate questions’ future improve-
ments and maintenance. As shown in Table 1, the
numbers in parentheses beside each question indicate
such traceability;

• Whenever the model does not provide sub-practices (all
the generic practices and some specific practices), a
question was created based on the practice’s descrip-
tion. For instance, the practice Distribute Test Policy
to Interested Parties, with the description “Test policies
and goals are presented and explained to the interested
parties involved or not involved with the test activity”,
had the following question: Were test policies presented
to the interested parties (that are involved or not with
the test)?; and

• Whenever the model does not provide practices (level
5 process areas), a question was created based on
goal description. For example, the goal Select Test
Process Improvements, with the description “Test pro-
cess improvements are chosen when they contribute to
the achievement of product quality as well as process
development goals”, had the following question: Are
test process improvements selected to achieve product
quality and process development goals?

As a result, a questionnaire was created to cover all
TMMi process areas with 261 questions. Twelve of them
are related to generic model practices, which means they
can be applied to all process areas. As for the questions
based on sub-practices, each was associated to one or more
sub-practices related to the same practice. Furthermore, there
were sub-practices with no associated questions. Regarding
the questions directly linked with the goals and practices,
only one question was associated to each of them due to

their greater specificity.
The maturity level is defined based on the answers given

in the questionnaire, according to the TMM [3] assessment
method. The answers predicted by this method are: Yes, No,
Not Applicable, and Unknown.

3.2 Definition of the support material
In order to help SMEs carry out their self-assessment,

even if the assessor does not have advanced knowledge
of the TMMi model, each question provides examples of
artefacts typical of works that are often used to prove the
organization attends the result expected by the model. The
TMMi model already provides examples for many of its sub-
practices. Therefore, the examples were chosen according to
the following criteria:

• For the practice-related questions, examples provided
by the TMMi model were used. Some of these were
extensive, so, to prevent the support material from
disturbing the assessment, a maximum of five examples
was established per item. All examples were read and
then chosen when clearly related to the item;

• For the practice-related questions without examples in
the TMMi model, examples were taken from other
practices that showed details of model implementation;
and

• For the questions that did not fit into any of the previous
cases, experience and/or other references were used in
the artifact’s proposition.

Consequently, examples were produced for all 261 ques-
tions in the questionnaire, some of which are shown in
Table 2. Questions (3) and (5) derived from Table 1, whereas
the rest were created from other TMMi sub-practices. Ques-
tion (1), “Were test project techniques selected to provide
adequate test coverage regarding the risks of defined prod-
ucts?”, the following examples were indicated: Equivalence
Partitioning, Boundary Value Analysis, Decision Table, State
Transition Testing and Use-Case Testing.

3.3 Definition of the automated support for
assessment

An electronic spreadsheet made it possible to visualize
each question’s support material, attribute an answer (Yes,
No, Not Applicable, or Unknown) and associate evidence
from artefacts produced by the company that support “Yes”
answers.

Results were based on the TMM [3] assessment method,
which is also questionnaire-oriented. We were able to use
this method because TMMi process areas are similar to
TMM goals, and TMMi goals are similar to TMM sub-goals.

To carry out the assessment according to TMMi, each
maturity goal has a set of related questions. The goal is
regarded as achieved when the number of “Yes” answers is
higher than or equal to 50% i.e. if its degree of satisfaction

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 227

Table 2: Some examples based on the TMMi model and on
experience

Question Support Material
(1)Were test project tech-
niques selected to provide
adequate test coverage re-
garding the risks of de-
fined products?

Typical work product: Test Plans with test
project techniques.
Examples of test techniques: Equivalence
Partitioning, Boundary Value Analysis,
Decision Table, State Transition Testing,
Use-Case Testing.

(3)Are test goals defined
based on business needs
and objectives?

Typical work product: Testing goals which
trace back to business goals.Examples of
testing goals: Validate product for use;
Prevent faults during operation; Verify
conformity to external standards; Provide
information on product quality.

(4)Was documentation de-
veloped to support the im-
plementation of the testing
environment?

Typical work product: Support documen-
tation for the implementation of the testing
environment.Examples: Guide for envi-
ronmental setup; Guide for environmental
operation; Guide for environmental main-
tenance.

(5) Are testing goals peri-
odically reviewed?

Typical work product: Review of testing
goals.Examples of reviews: Meeting with
the interested parties to review and discuss
the need to make changes to testing goals
(register in the meeting minute).

is medium, high or very high. Table 3 shows how a goal’s
degree of satisfaction was calculated.

Table 3: Goals’ Degree of Satisfaction [3]
Degree of Satisfaction Criteria
Very high If “yes” answers are above 90%
High If “yes” answers range between 70-90%
Medium If “yes” answers range between 50-69%
Low If “yes” answers range between 30-49%
Very low If “yes” answers are below 30%
Not Applicable If “Not Applicable” answers are 50% or

more
Not Classified If “Unknown” answers are 50% or more

Maturity classification in process areas relies on goal
classification (see Table4). A satisfactory level indicates that
all maturity goals were achieved. A spreadsheet was used
to implement this method. Considering the answers given,
it then automatically produced the results and establishes
a maturity level for the company. Results are displayed
in both summary and detailed versions. In the summary
version, the satisfaction and maturity level of each process
area are determined. The detailed version provides not only
information listed in the summary version but also the degree
of satisfaction of each goal related to the process areas,
stating whether there are questions without any attributed
answer.

3.4 Establishment of dependencies between
questionnaire questions

A questionX is considered dependent ofY when it is only
possible to obtain a positive answer toX if Y was previously
attributed a positive answer. An example that might represent

Table 4: Satisfaction of Process Areas [3]
Satisfaction Criteria
Achieved If achieved goals are 50% or more
Not achieved If achieved goals are below 50%
Not Applicable If not applicable goals are 50% or more
Not Classified If not classified goals are 50% or more

this situation would be to attributeX=“Was the test project
monitored throughout its lifecycle by comparing what was
planned and what was accomplished in relation to potential
risks” andY=“Were test project risks identified and was each
risk analyzed regarding its probability of occurrence, impact
and priority?”. Therefore, it is not possible to monitor the
risks that were not defined previously.

This relationship was established through the assessment
of existing dependencies between questions, which created a
dependency matrix among the questions. Establishing such
dependency has two distinct aims:

1) To detect inconsistencies in assessment answers -
use dependency relationships to find inconsistencies
between questionnaire answers i.e. if there are “Yes”
answers to questions that depend on another question
which has “No” as an answer; and

2) To eliminate dependent questions - use dependency re-
lationships to eliminate questions that depend on other
questions which have a “No” answer, thus reducing the
number of questions to be answered.

Our proposed framework will make both approaches avail-
able. If a company chooses to reduce assessment time by
eliminating some questions, it will not be able to identify
inconsistencies. The selection of the most adequate approach
may be done in accordance with the company’s maturity
level. For example, companies with more mature testing
processes may feel more secure to eliminate some questions.

4. Case Study
Framework analysis was carried out to assess its adapt-

ability in four SMEs, here referred to as A, B, C, and D
for secrecy issues. All of them are involved in a test process
improvement project.

These companies required some feedback on the actual
condition of their test process before implementing any im-
provements. To obtain such information, the first assessment
was thus carried out:

• A TMM [3] questionnaire was applied;
• The questionnaire was answered by 2-3 collaborators

from each company who were members of the devel-
opment/test team;

• No evidence of attainment of model practices was
required.

Results from the first assessment revealed a 67,8% rate of
divergence among the answers given by collaborators from
the same company. It was then concluded that the diagnostic

228 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

results might not show the true level of maturity of the
companies during test process. Also, the final results may
have been affected by a combination of factors, such as the
lack of knowledge of collaborators and lack of clarity in
questions.

The diverging results contributed to the adoption of the
TMMi model. Examples were then provided and evidence of
practices was required. The second assessment was carried
out as follows:

• The proposed framework contained the TMMi ques-
tionnaire and the support material;

• The questionnaire was answered by only one company
collaborator, also a member of the test team;

• With each positive answer in the spreadsheet, evidence
(artefacts) showed how the company puts into practice
what is required by the model;

• Once all answers were concluded and evidence was
associated, company representatives assessed the frame-
work and raised the problems found as well as sug-
gested improvements;

• Auditing was carried out to focus on the evidence
shown on the spreadsheet, in order to check if the
documentation adhered with the practices required by
the model.

5. Results
Table 5 compares maturity level results from the first

assessment, which used the TMM model, to the ones
from the second assessment, which used our framework.
Satisfaction of a certain maturity level by a company is
represented by S and non-satisfaction by NS. Also, differ-
ent results are highlighted in bold. Companies A and C
showed different results, reaching a two-level difference in
relation to company A. Comparison of both software testing
evaluations also revealed a significant difference related to
goal achievement (Table 6). Such difference reached 69% in
company C and 41% in company A. Considering that the
second assessment was audited, its results better represent
the companies’ current situation in software testing.

Table 5: Assessment Results
Company Evaluation Level2 Level3 Level4 Level5

A 1 S S S NS
2 S NS NS NS

B 1 NS NS NS NS
2 NS NS NS NS

C 1 S NS NS NS
2 NS NS NS NS

D
1 NS NS NS NS
2 NS NS NS NS

The questionnaire was used to assess our framework. Each
question had four answer options, of which only one should
be chosen, presented in the form of classification ratings. Ta-
ble 7 shows the relationships between the applied questions

and the options for each question. The company identifier
(A, B, C, and D) represents the answer it attributed to a
given classification range for each question. For example,
company A selected the same range for all questions (76-
100%), except for the third one

Table 6: Metas Satisfeitas
Company Assessment % of goals achieved Variation

A 1 85% 41%
2 44%

B 1 8% 8%
2 0%

C 1 69% 69%2 0%

D
1 0%

0%2 0%

Results revealed that 80% of the answers ranged from 51-
100%, and most of them ranged from 76-100%. Company
A was the one that better assessed the framework and hence
used it more frequently, as it was the only company that
reached at least one maturity level. All answers ranging
from 26-50% were attributed to company D (Table 7). As is
shown in Table 6, the same company did not meet any goals
according to TMMi assessment. The company’s feedback
also revealed that, since the beginning of the assessment,
it had concluded that an ad hoc test was being carried
out. Therefore, there would be no evidence for any of the
questions in the questionnaire i.e. the company did not have
the means to carry out a more detailed assessment of the
framework due to the fact it was rarely used.

Despite being defined as part of the framework, as
described in Section 3.4, the second assessment did not
use the dependency relationship between the questions to
eliminate dependent questions. Table 8 shows the percentage
of questions that each company would not answer due to the
elimination of some questions, based on the “No” answers.
Company D showed a 65% rate, which represents the
maximum reduction obtained by using a certain dependency
relationship, seen that this company answered “No” to all
the questions.

6. Conclusions
The present paper has shown that software development

SMEs are important for world economy. These companies
also have a constant need to improve their product quality
to meet market demands. Considering the importance of
software testing for high-quality software production, we
created a framework to the assess maturity level in software
testing based on the TMMi model, which is suitable to the
reality faced by SMEs.

Results revealed that the objective questionnaire, the sup-
port material related to each question, and the spreadsheet
which automatically processes assessment results contribute
to SMEs’ self-assessment of maturity levels in software

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 229

Table 7: Questionnaire Assessment
Question 0-25% 26-50% 51-75% 76-100%
1-What was the degree of clarity of questions? D C A B
2-What was the degree of clarity of examples? B C D A
3-What was the level of importance of examples in understanding the
questions?

D A B C

4-What was the level of importance of examples in associatingthe evidence
with the questions?

D A B C

5-What was the level of association between the vocabulary used in the
questions and examples and your reality?

D BC A

Table 8: Reduction via Dependencies
Company Reduction

A 26%
B 37%
C 60%
D 65%

testing, despite their low maturity levels. However, in order
to make results more compatible with a company’s reality,
we suggest that: 1) the questionnaire be answered by only
one company representative; 2) this person be a member of
the test team or have a great knowledge of the company’s
test process and 3) the assessment be evidence-based.

Companies positively assessed the questionnaire. A total
of 45% of assessed items was rated 76-100%, the largest
range available, and 80% of all items was classified in the
51-100% range. The main obstacle faced by the companies
was the large number of questions. This aspect may be
improved by the use of better support material to implement
the option to eliminate questions based on previously defined
interdependent relationships between the questions. This
would promote a 65% reduction on the number of questions.

By comparing the results from both assessments, we
observed a 69% variation regarding goal satisfaction. Fur-
thermore, we learned that wrong results may be generated if
low maturity companies carry out a self-assessment without
a material that supports the attribution of answers or without
evidence association. However, our proposed framework
aims at solving these kinds of problems, hence presenting
more realistic results in software testing for SMEs.

The results of this assessment will be used as a basis
for the development of a test process that is adequate for
SMEs, one which considers its maturity level. The process
will be implemented in all four companies through pilot
project applications. Moreover, further assessment will be
carried out using the proposed framework to identify the
companies’ maturity development. Finally, the framework
will be available to the community free of charge.

7. Acknowledge
Grateful thanks are owed to the four enterprises partici-

pants of the survey for their invaluable help in this study.
This work was partially supported by FAPEG.

References
[1] M. Q. A. A., S. Ramachandram, and A. M. A. An evolutionary soft-

ware product development process for small and medium enterprises
(SMEs). pages 298–303. IEEE, Oct. 2008.

[2] J. Brodman and D. Johnson. What small businesses and small
organizations say about the CMM. pages 331–340. IEEE Comput.
Soc. Press, Aug. 2002.

[3] I. Burnstein.Practical Software Testing: a process-oriented approach.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[4] T. Foundation. Test maturity model integration - TMMi version 3.1.
[5] E. Höhn. KITeste - A Framework of Knowledge and Test Process

Improvement. PhD thesis, USP, São Carlos - SP - Brazil, June 2011.
(in Portuguese).

[6] S. Q. Institute. Appraisal assistant, 2007.
[7] S. E. Institute-SEI. Capability maturity model integration - CMMI

version 1.3.
[8] M. Khokhar, K. Zeshan, and J. Aamir. Literature review on the

software process improvement factors in the small organizations.
pages 592 – 598. IEEE Comput. Soc. Press, May 2010.

[9] C. Laporte, S. Alexandre, and A. Renault. Developing international
standards for very small enterprises.Computer, 41(3):98–101, Mar.
2008.

[10] M. A. Montoni, A. R. Rocha, and K. C. Weber. MPS.BR: a successful
program for software process improvement in brazil.Softw. Process,
14(5):289–300, Sept. 2009.

[11] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen. A preliminary
survey on software testing practices in australia. pages 116–125. IEEE,
2004.

[12] B. A. of Software Companies. Brazilian software market - overview
and trends. Technical report, June 2011. (in Portuguese).

[13] Softex. Evaluations published MPS.BR, Mar. 2012. (in Portuguese).
[14] G. Tassey. The economic impacts of inadequate infrastructure for

software testing. May 2002.
[15] T. Tayamanon, T. Suwannasart, N. Wongchingchai, and

A. Methawachananont. TMM appraisal assistant tool. pages
329–333. IEEE, Aug. 2011.

[16] T. Varkoi, T. Makinen, and H. Jaakkola. Process improvement
priorities in small software companies. page 555. Portland Int. Conf.
Manage. Eng. & Technol. PICMET, Aug. 2002.

230 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Constructing Verifiably Correct Java Programs
Using OCL and CleanJava

Yoonsik Cheon and Carmen Avila
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

ycheon@utep.edu; ceavila3@miners.utep.edu

Abstract—A recent trend in software development is building
a precise model that can be used as a basis for the software
development. Such a model may enable an automatic generation
of working code, and more importantly it provides a foundation
for correctness reasoning of code. In this paper we propose a
practical approach for constructing a verifiably correct program
from such a model. The key idea of our approach is (a)
to systematically translate formally-specified design constraints
such as class invariants and operation pre and postconditions
to code-level annotations and (b) to use the annotations for
the correctness proof of code. For this we use the Object
Constraint Language (OCL) and CleanJava. CleanJava is a
formal annotation language for Java and supports Cleanroom-
style functional program verification. The combination of OCL
and CleanJava makes our approach not only practical but
also suitable for its incorporation into existing object-oriented
software development methods. We expect our approach to
provide a practical alternative or complementary technique to
program testing to assure the correctness of software.

Keywords: correctness proof, functional program verification,
intended function, CleanJava, Object Constraint Language.

I. INTRODUCTION

A recent software development trend is a shift of focus
from writing code to building models [1]. The ultimate goal
is to systematically generate an implementation from a model
through a series of transformations. One key requirement of
this model-driven development is the availability of a precise
model to generate working code from it. A formal notation
such as the Object Constraint Language (OCL) [2] can play an
important role to build such a precise model. OCL is a textual,
declarative notation to specify constraints or rules that apply to
models expressed in various UML diagrams [3]. Modeling and
specifying design constraints explicitly is also said to improve
reasoning of software architectures and thus their qualities [4].

A formal design model can also provide a foundation for
correctness reasoning of an implementation. In this paper we
propose one such a method that takes advantage of formal de-
sign models to construct verifiably correct programs. The key
idea of our approach is to derive code-level annotations from
a formal design and to prove the correctness of code using
a Cleanroom-style functional program verification technique.
We use OCL as the notation for formally documenting design
decisions and constraints and CleanJava as the notation for
writing code-level annotations. CleanJava is a formal annota-
tion language for the Java programming language to support

Cleanroom-style functional program verification [5] (see Sec-
tion II-B for an overview of CleanJava). A functional program
verification technique such as Cleanroom [6] [7] views a
program as a mathematical function from one program state
to another and proves its correctness by essentially comparing
two functions, the function computed by the program and its
specification [8] [9] [10]. Since the technique uses equational
reasoning based on sets and functions, it requires a minimal
mathematical background, and unlike Hoare logic [11] it
supports forward reasoning, reflecting the way programmers
informally reason about the correctness of a program.

It is a known fact that software contains defects. Defects are
introduced during software development and are often found
through testing. However, studies indicate that testing can’t
detect more than 90% of defects; 10% of defects are never
detected through testing. As stated by a famous computer
scientist, testing has a fundamental flaw in that it can show
the existence of a defect but not its absence. We expect our
approach to provide a practical alternative or complemen-
tary technique to program testing to assure the correctness
of software. We believe that the combination of OCL and
CleanJava make our approach more practical and approachable
by practitioners.

There has been an approach proposed to combine Clean-
room methodologies and formal methods [12], however there
is no work done on combining OCL and functional program
verification. Stavely described an approach to integrating the Z
specification notation [13] into Cleanroom-style specification
and verification [14]. One interesting aspect of his work is
that a Z specification is converted to a constructive form, ex-
pressing state changes in an assignment notation. In this way,
a Z specification can serve as a specification function for the
program code to be developed, and the development can pro-
ceeds in Cleanroom style by verifying every section of code.
Our approach also takes advantage of OCL constraints written
constructively by translating them automatically to CleanJava
annotations using a set of translation rules. However, we also
learned that such constraints raise some interesting questions
(see Section VI). Another related work is the translation of
OCL to JML [15]. JML is a behavioral interface specification
language for Java [16] [17]. In this work, JML is used as an
assertion language for Java in that a subset of OCL constraints
is translated into JML assertions for both static reasoning and
runtime checks. One important contribution of this work is the

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 231

Square

/isMarked: boolean

1

players
{ordered} 2

1

squares

0..1
player

0..*

Player

+nextMove(): Square

TicTacToe

+play(): void

x: 0..2
y: 0..2

game

inv: squares[*,*].player->forAll(p|players->includes(p))inv: squares[*,*].player->forAll(p|players->includes(p))

pre: game.squares[*,*]->exists(s | not s.isMarked)
post: not result.isMarked and

game.squares[*,*]->includes(result)

pre: game.squares[*,*]->exists(s | not s.isMarked)
post: not result.isMarked and

game.squares[*,*]->includes(result)

markedBy

derive:
player->notEmpty()

derive:
player->notEmpty()

Fig. 1. UML class diagram with OCL constraints

translation rules from OCL to JML. Assertions are said to be
more effective when derived from formal specifications, and
several different techniques have been proposed for translating
OCL constraints to runtime assertion checks [18].

The remainder of this paper is structured as follows. In
Section II we briefly explain OCL and CleanJava using an
example. In the subsequent two sections we first give an
overview of our approach and then apply it to our running
example. In Section V we describe our translation of OCL
constraints to CleanJava annotations, and in Section VI we
discuss some interesting aspects of our translation. In Sec-
tion VII we provide a concluding remark.

II. BACKGROUND

A. Object Constraint Language

The Object Constraint Language (OCL) [2] is a textual,
declarative notation to specify constraints or rules that apply
to UML models. OCL can play an important role in model-
driven software development because UML diagrams lacks
sufficient precision to enable the transformation of a UML
model to complete code. In fact, it is a key component of
OMG’s standard for model transformation for the model-
driven architecture [19].

A UML diagram alone cannot express a rich semantics of
and all relevant information about an application. The diagram
in Figure 1, for example, is a UML class diagram modeling the
game of tic-tac-toe. A tic-tac-toe game consists of 9 places in
a 3×3 grid, and two players take turns to mark the places and
win the game by marking three places in a horizontal, vertical,
or diagonal row. However, the class diagram doesn’t express
the fact that a place can be marked only by the two player
participating in the game. It is very likely that a system built
based only on diagrams alone will be incorrect. OCL allows
one to precisely describe this kind of additional constraints
on the objects and entities present in a UML model. It is
based on mathematical set theory and predicate logic and
supplements UML by providing expressions that have neither
the ambiguities of natural language nor the inherent difficulty
of using complex mathematics. The above-mentioned fact, for
example, can be expressed in OCL as follows.

context TicTacToe
inv: squares[*,*].player->forAll(p|players->includes(p))

//@ f0:[squares := Square[][]->any(sqs| isGameOver(sqs))]
//@ f1:[p := nextPlayer()]
Player p = nextPlayer();

/*@ f2:[squares, p := Square[][]->any(sqs| isGameOver(sqs)
@ && isSubState(squares, sqs)), anything] where
@ isSubState(s1,s2) = (* s1 is substate of s2 *) @*/

while (!isWonBy(p) && hasEmptySquare()) {
/*@ f3:[sq.player, p := p, nextPlayer()]
@ where sq = p.nextMove() @*/
p = nextPlayer();
Square sq = p.nextMove();
sq.setPlayer(p);

}

Fig. 2. Sample CleanJava code

This constraint, called an invariant, states a fact that should
be always true in the model. The invariant is written using
OCL collection operations such as forAll and includes;
the forAll operation tests whether a given condition holds for
every element contained in the collection, and the includes

operation tests whether an object is contained in a collection.
It is also possible to specify the behavior of an operation

in OCL. For example, the following OCL constraints specifies
the behavior of an operation Player::nextMove():Square

using a pair of predicates called pre and postconditions.

context Player::nextMove():Place
pre: game.squares[*,*]->exists(s|not s.isMarked)
post: not result.isMarked and

game.squares[*.*]->includes(result)

The above pre and postconditions states that if invoked in
a state that has at least one unmarked square the operation
returns an unmarked square. In the postcondition, the keyword
result denotes the return value.

B. CleanJava

CleanJava is a formal annotation language for the Java
programming language to support Cleanroom-style functional
program verification [5]. In the functional program verifica-
tion, a program is viewed as a mathematical function from one
program state to another. In essence, functional verification
involves calculating the function computed by code, called a
code function, and comparing it with the intention of the code
written also as a function, called an intended function [8] [9]
[10]. CleanJava provides a notation for writing intended func-
tions. A concurrent assignment notation, [x1, x2, . . . , xn :=
e1, e2, . . . , en], is used to express these functions by only
stating changes that happen. It states that xi’s new value is
ei, evaluated concurrently in the initial state—the state just
before executing the code; the value of a state variable that
doesn’t appear in the left-hand side remains the same. For
example, [x, y := y, x] is a function that swaps the values of
two variables x and y.

Figure 2 shows sample Java code annotated with intended
functions written in CleanJava. It shows partial code of the
play method of the TicTacToe class. Each section of code is
annotated with its intended function. A CleanJava annotation
is written in a special kind of comments either preceded by

232 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

//@ or enclosed in /*@ and @*/, and an intended function
is written in the Java expression syntax with a few CleanJava-
specific extensions. The first annotation labelled f0 states that
the new value of the squares field is an arbitrary value of
a game-over state. In CleanJava, a type such as Square[][]
can be used to denote the set of all values belonging to
it, and any is a collection iterator that denotes an arbitrary
value of a collection that satisfies a given condition; CleanJava
defines several other collection iterators such as forAll and
exists. The intended function labelled f2 is interesting, as
it shows several features of CleanJava. First, the keyword
anything denotes an arbitrary value and its use indicates that
one doesn’t care about the final value of the local variable p.
Second, a where clause introduces local definitions like the
isSubState function. Third, in CleanJava one can escape
from formality and mix a formal text such as a Java expression
with an informal description, any text enclosed in a pair of
(* and *). For example, the notion of substate between two
Square[][] objects—i.e., the isSubState function—is defined
informally. The example also shows that one can omit the
signature of a function introduced for use in annotations. It
is automatically inferred by CleanJava and such a function
typically defines a polymorphic function. The following is
one possible formulation of the isSubState function with
its signature completely specified.

boolean isSubState(Square[][] s1, Square[][] s2) =
s1.length == s2.length &&
CJSet{1..s1.length}->forAll(int i|

s1[i].length == s2[i].length &&
CJSet{1..s1[i].length}->forAll(int j|

s1[i][j] == s2[i][j] &&
(s1[i][j].isMarked ==>

s1[i][j].getPlayer() == s2[i][j].getPlayer())))

If code is annotated with its intended function, its correct-
ness can be proved formally. It would be instructive to sketch
a correctness proof of the code shown in Figure 2. It requires
the following proof obligations.

• Proof that the composition of functions f1 and f2 is
correct with respect to, or a refinement (⊑) of, f0, i.e.,
f1; f2 ⊑ f0, where “;” denotes a functional composition.

• Proof that f1, f2, and f3 are correctly refined by the
corresponding code.

In functional verification, a proof is often trivial or straight-
forward because a code function can be easily calculated and
directly compared with an intended function; for example, f1
and f3 are both code and intended functions. However, one
often need to use different techniques such as a case analysis
for an if statement and an induction for a while statement
as in the proof of f2 [9] [10]. Below we discharge the first
proof obligation, where T is short for Square[][].

f1; f2 ≡ [p := nextPlayer()];
[squares, p := T→any(sqs| isGameOver(sqs) &&
isSubState(squares, sqs)), anything]

≡ [squares, p := T→any(sqs| isGameOver(sqs) &&
isSubState(squares, sqs)), anything]

⊑ [squares := T→any(sqs| isGameOver(sqs) &&

isSubState(squares, sqs)]
⊑ [squares := T→any(sqs| isGameOver(sqs))]
≡ f0

III. OVERVIEW OF OUR APPROACH

The key idea of our approach is (a) to derive code annota-
tions from formal designs and (b) to prove the correctness of
code in Cleanroom-style functional verification by refining the
derived annotations. We use OCL as the notation for formally
documenting design decisions and details and CleanJava as
the notation for writing code annotations. There are several
advantages in using OCL as a formal design notation com-
pared to more traditional formal specification languages such
as Z [13]. It is a textual formal specification language that
provide concise and precise expressions that have neither the
ambiguities of natural language nor the inherent difficulty of
using complex mathematics. As part of the standard modeling
language UML, it allows one to specify and attach constraints
and rules to various design models expressed in diagrams.
From UML dynamic models with OCL constraints, e.g., state
machine diagrams, it is also possible to derive working code
(see Section IV for an example). There are also advantages
in using CleanJava as the annotation notation and verification
technique, compared to Hoare-style assertions. Unlike Hoare
logic based on the first-order predicate logic, the technique
requires a minimal mathematical background by viewing a
program as a mathematical function from one program state
to another and by using equational reasoning based on sets
and functions. The reasoning in Hoare logic is backward in
that one derives (weakest) preconditions from postconditions.
This is similar to reading source code backward from the last
line to the first. The functional program verification technique
supports a forward reasoning by reflecting the way program-
mers reason about the correctness of a program informally. The
combination of OCL and CleanJava will make our approach
more approachable to Java programmers and practitioners.

The main steps of our approach are as follows.
1) Document a design using UML diagrams along with

OCL constraints specifying design decisions and details.
2) Generate skeleton or working code from UML design

models.
3) Translate OCL constraints to CleanJava intended func-

tions to annotate the generated code.
4) Write algorithms to complete the skeleton code by

refining the intended functions.
5) Verify the correctness of the algorithm code with respect

to its intended function.
The last two steps may be performed simultaneously in

a stepwise refinement fashion. In the next section, we will
illustrate these steps in detail by applying them to our tic-tac-
toe example.

IV. ILLUSTRATION

In this section we illustrate our proposed approach by
applying it to the running example. As sketched in the previous

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 233

context TicTacToe
inv: squares[*,*].player->forAll(p|players->includes(p))

context TicTacToe::TicTacToe()
post: squares[*,*]->forAll(s|not s.isMarked)

context TicTacToe::play():void
pre: squares[*,*]->forAll(s|not s.isMarked)
post: isWonBy(players->at(1)) or isWonBy(players->at(2))

or not hasEmptySquare()

context TicTacToe::isWonBy(p: Player): boolean
body: Set{0..2}->exists(i|Set{0..2}->

forAll(j|getSquare(i,j).isMarkedBy(p)))
or Set{0..2}->exists(i|Set{0..2}->

forAll(j|getSquare(i,j).isMarkedBy(p)))
or Set{0..2}->collect(i|getSquare(i,i))->

forAll(s|s.isMarkedBy(p))
or Set{0..2}->collect(i|getSquare(i,2-i))->

forAll(s|s.isMarkedBy(p))

context TicTacToe::hasEmptySquare(): boolean
body: squares[*,*]->exists(s|not s.isMarked)

context TicTacToe::getSquare(i: int, j: int): Square
pre: 0 <= i and i <= 2 and 0 <= j and j <= 2
post: result = squares[i,j]

context Square::isMarked: boolean
derive: player.notEmpty()

context Square::isMarkedBy(p: Player): boolean
body: player = p

context Player::Player(g: TicTacToe)
post: game = g

context Player::nextMove(): Square
pre: game.hasEmptySquare()
post: not result.isMarked and

game.squares[*,*]->includes(result)

Fig. 3. OCL constraints for tic-tac-toe

section, the first step is to document a detailed design using
UML diagrams along with OCL constraints.

1) Detailed design in UML and OCL: We elaborate our
class diagram model by adding OCL constraints to the model
and documenting detailed design decisions. Figure 3 shows
OCL constraints for classes TicTacToe, Square, and Player
along with several new operations introduced. In OCL, we
document class invariants, operation pre and postconditions,
values for derived attributes (e.g., isMarked of class Square),
and return values of query operations (e.g., the isWonBy

operation of class TicTacToe and the isMarkedBy operation
of class Square). In addition to class invariants and oper-
ation pre and postconditions, OCL provides several other
constructs, some of which are used in the example. The body
construct defines the result of a query operation, and the
derive construct specifies the value of a derived attribute
or association end. The collection operation at appearing in
the postcondition of the play operation returns the element
at the given index; OCL uses 1-based index. The notation
Sequence{0..2} denotes a sequence consisting of numbers
from 0 to 2, inclusive.

It is also possible to define detailed algorithms for important
operations using a combination of UML diagrams and OCL.
For example, we can define an algorithm for the play()

operation of the TicTacToe class using a UML state machine
diagram, as shown below.

/p=players.at(2)
Played by p

[not complete()1]/
p = nextPlayer(p)2;
s = p.nextMove();
s.setPlayer(p)

[complete()1]

1complete() ≡ isWonBy(p) or not hasEmptySquare()
2nextPlayer(p) ≡ players->any(q | q <> p)

The state machine is called a behavior state machine and
specifies that each player takes a turn to make a move—i.e.,
mark a square—until a play becomes completed. A play is
complete if it is won by a player or there is no more empty
square left. A behavior state machine can be used to derive
implementation code (see below).

2) Skeleton code: The next step is to derive skeletal code
from UML diagrams such as class diagrams. From a detailed
class diagram, skeletal code such as shown below can be
systematically or automatically generated.

public class TicTacToe {
private Square[][] squares;
private Player[] players;
public TicTacToe() { ... }
public void play() {... }
public boolean isWonBy(Player p) { ... }
public boolean hasEmptySquare() { ... }
public Square getSquare(int i, int j) { ... }

}

public class Square {
private Player player;
public void setPlayer(Player p) { player = p; }
public Player getPlayer() { return player; }
public isMarkedBy(Player p) { ... }
public boolean isMarked() { ... }

}

public class Player {
private TicTacToe game;
public Player(TicTacToe g) { ... }
public Square nextMove() { ... }

}

For an association like markedBy, a pair of getter and setter
methods (e.g., getPlayer and setPlayer) can also be
automatically generated using the role names of the association
ends (e.g., player). A derived attribute such as isMarked of
class Square is translated to a query method.

This step may require making important implementation
decisions such as deciding data structures. For example,
we decided to represent the qualified association between
TicTacToe and Square using a two-dimensional array. Such
decisions often have impacts on the way we translate OCL
constraints to CleanJava annotations in the following step,
as CleanJava annotations are usually expressed in terms of
concrete representation values.

3) OCL-to-CleanJava Translation: We next translate OCL
constraints to CleanJava annotations and add them to the
skeletal code. Figure 4 shows the skeletal code of class
TicTacToe annotated in CleanJava. Most annotations are direct
translations of the corresponding OCL constraints such as

234 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

public class TicTacToe {
/*@ inv: [squares.length == 3 &&

@ squares->forAll(Square[] sqs|sqs.length == 3)] @*/

/*@ inv: [players.length == 2]

/*@ inv: [squares->forAll(Square[] sqs|
@ sqs->forAll(Square sq| !sq.isMarked() ||
@ players->includes(sq.getPlayer()) @*/

private Square[][] squares;
private Player[] players;

/*@ [square := Square[][]->any(Squares[][] sqs|
@ isPristine(sqs))] @*/
public TicTacToe() { ... }

/*@ [isPristine(sqs) ->
@ squares := Square[][]->any(Square[][] sqs|
@ isGameOver(sqs))] @*/

public void play() {... }

/*@ [result : = isWonBy(squares, p)] @*/
public boolean isWonBy(Player p) { ... }

/*@ [result := squares->exists(Square[] sqs|
@ sqs->exists(Square sq| !sq.isMarked())) @*/

public boolean hasEmptySquare() { ... }

/*@ [0 <= i && i <= 2 && 0 <= j && j <= 2 ->
@ result := squares[i][j]] @*/

public Square getSquare(int i, int j) { ... }

/*@ fun boolean isPristine(Square[][] sqs) =
@ sqs->forAll(Square[] sq|
@ sq->forAll(Square s| !s.isMarked())) @*/

/*@ fun boolean isGameOver(Square[][] sqs) =
@ isWonBy(sqs, players[0])
@ || isWonBy(players[1])
@ || sqs->forAll(Square[] sq|
@ sq->forAll(Square s| s.isMarked())) @*/

/*@ fun boolean isWonBy(Square[][] sqs, Player p) =
@ CJSet{0..2}->exists(int i| CJSet{0..2}->
@ forAll(int j|sqs[i][j].isMarkedBy(p)))
@ || CJSet{0..2}->exists(int i|CJSet{0..2}->
@ forAll(int j|sqs[i][j].isMarkedBy(p)))
@ || CJSet{0..2}->collect(int i|sqs[i][i]->
@ forAll(Square s|s.isMarkedBy(p))
@ || CJSet{0..2}->collect(int i|sqs[i][2-i])->
@ forAll(Square s|s.isMarkedBy(p)) @*/

}

Fig. 4. Skeletal code with CleanJava annotations

invariants and pre and postconditions. However, the first two
invariants are specific to the Java language and constraint the
sizes of arrays. This is because the array size is not part of an
array type in Java. As shown, OCL invariants are translated
to CleanJava invariants [20], and pre and postconditions are
translated to CleanJava intended functions. In general, pre and
postconditions of the form pre: P post: Q are translated
to an intended function of the form [P ′ → v1, v2, ..., vn :=
Ei, ..., En], where P ′ is P written in the CleanJava syntax
and vi’s and Ei’s are derived from Q (see Section V for
details). As shown, a concurrent assignment may have an
optional condition or guard followed by an → symbol. This
conditional concurrent assignment statement specifies a partial
function that is defined only when the condition (P ′) holds.
The example also shows that one can introduce mathematical
functions (e.g., isPristine, isGameOver, and isWonBy) for

the purpose of writing annotations.
4) Code Writing: Once a method is annotated with an

intended function, the next step is to come up with working
code—the method body. There are several possibilities here.
It can be developed independently by referring to its pre and
postconditions or the intended function. The intended function
may be refined to working code in a stepwise refinement
fashion. Yet another possibility is—if a detailed algorithm
design was done and documented using a UML diagram such
as a state machine diagram—to derive working code from
a formal design model by systematically translating it. For
example, it is straightforward to derive the following code for
the play() method of the TicTacToe class from the behavior
sate machine that describes its algorithm (see Section IV).

Player p = players[1];
while (!isWonBy(p) && hasEmptySquare()) {

p = p == players[0] ? players[1] : players[0];
Square sq = p.nextMove();
sq.setPlayer(p);

}

5) Formal Verification: We verify the correctness of code
by documenting each section of the code with an intended
function and performing a functional program verification as
described in Section II-B. We prove that the code is correct
with respect to its intended function. If code was derived from
a formally specified algorithm model such as a state machine
and the algorithm was proved to be correct, the code may
be correct by the way it was constructed provided that the
algorithm model was transformed to code by following a set
of transformation rules [21]. If a stepwise refinement was
used to construct the code, the correctness proof may have
already been performed as part of the refinement. In addition
to intended functions and method bodies, we also need to
prove the correctness of class invariants, if any. Essentially,
we need to proved that each class invariant is established by
the constructors of a class and preserved by all other methods
of the class [20].

V. TRANSLATING OCL TO CLEANJAVA

An important component of our approach is translating
OCL constraints to CleanJava annotations. We believe that this
translation can be systematically done and even be automated
by defining transformation rules. As an example, let’s consider
the invariant of the TicTacToe class shown below.

inv: squares[*,*].player->forAll(p|players->includes(p))

The constraint refers to two associations of class TicTacToe
(squares and players) and an attribute of class Square
(player). Remember that squares is the role name of a
qualified association from TicTacToe to Square (see Figure 1
in Section II-A). If we know how these UML elements are
reified in an implementation, we should be able to translate
the OCL invariant to a CleanJava invariant by replacing
UML/OCL elements with the corresponding Java/CleanJava
elements. The following is one possible translation presented
in the previous section.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 235

inv: [squares->forAll(Square[] sqs|
sqs->forAll(Square sq| !sq.isMarked() ||
players->includes(sq.getPlayer())))]

However, a more direct and systematic translation would be
to map each OCL construct to the corresponding CleanJava
constructs. If there is no corresponding CleanJava construct,
we can introduce a user-defined function for it (see below).
inv: [allPlaces(squares)->collect(Squares s| s.getPlayer())

->forAll(Player p|players->includes(p))] where
CJSet<Square> allSquares(Square[][] sqs) = sqs->iterate(

Square[] sq; CJSet<Square> r = new CJSet<Square>()|
r.addAll(CJSet.fromArray(sq)))

In this translation, the reference to the qualified association
end, squares[*,*], is now translated to a user-defined
function allSquares that, given a 2-dimensional array of
squares, returns a set consisting of all the squares contained in
the given array; the function is defined using the iterate col-
lection operator. Also note that the dot notation in OCL when
navigating an association (e.g., squares[*,*].player) is
short for the collect iteration operator. Thus, it is translated
to the CleanJava collect iteration operator.

The translation of pre and postconditions could be more
involved depending on how they are written in OCL. This
is because a functional program verification technique and
notation is fundamentally different from an assertion-based
technique and notation such as Hoare logic [11] and OCL.
It is direct and constructive in that for each state variable such
as a program variable one must state its final value explicitly.
On the other hand, an assertion-based technique is indirect
and constraint-based in that one specifies the condition that
the final state has to satisfy by stating a relationship among
state variables. The final value of a state variable isn’t defined
directly but instead is constrained and given indirectly by the
specified condition.

As described in the previous section, pre and postcon-
ditions are translated to an intended function written using
a conditional concurrent assignment. If there is a precon-
dition, the translation produces a partial function of the
form, [P → v1, v2, ..., vn := Ei, ..., En], where P is the
translation of the OCL precondition and vi’s and Ei’s are
derived from the OCL postcondition. For the translation of
a postcondition, we can think of two different cases. If
it is written in a constructive form, e.g, x1 = E1 and
x2 = E2 and · · · and xn = En, one possible transla-
tion would be [xi, x2, ..., xn := E′

1, E
′
2, ..., E

′
n], where E′

i

is a CleanJava translation of Ei. An example is the post-
condition of the getSquare operation of TicTacToe class,
result = squares[i,j], which is straightforwardly trans-
lated to [result := squares[i][j]]. If a postcondition
is not written constructively, its translation is more involved
and complicate. There are several such postconditions in our
TicTacToe example, including that of the nextMove operation
of class Player, shown below.
context Player::nextMove(): Square

pre: game.hasEmptySquare()
post: not result.isMarked and

game.squares[*,*]->includes(result)

However, it is also possible to translate these postconditions
systematically and perhaps even automatically. One possibility
is to use the any iteration operator that returns an arbitrary
element of a collection that meets a given condition. Con-
sider a postcondition P (x1, x2, · · · , xn), written in terms of
mutable state variables xi’s like class attributes and the return
value. The new values of xi’s collectively have to satisfy the
constraint P . Thus, the postcondition can be translated to:

[x1, x2, · · · , xn :=
T1->any(T1 x′

1|
T2->any(T2 x′

2|
· · ·
Tn->any(Tn x′

2|P ′(x1, x2, · · · , xn))))]

where P ′ is a CleanJava translation of P . For example, the
pre and postconditions of the above nextMove operation can
be translated to the following intended function.

[game.hasEmptySquare() ->
result := Square->any(Square s| !s.isMarked() &&

allSquares()->includes(s)) where
allSquares() = /* ... */

VI. DISCUSSION AND EVALUATION

There are a few interesting questions about translating OCL
constraints to CleanJava annotations. OCL provides a special
treatment for undefinedness of an expression and thus uses a
three-valued (true, false, and undefined) propositional logic.
This leads to an unpleasant consequence not only in correct-
ness proof1 but also in our translation of OCL constraints
to CleanJava annotations. For example, the OCL disjunction
operator (or) cannot be directly translated to the Java logical
disjunction operator (||). In OCL, E1 or E2 is true even if E1

is undefined as long as E2 is true. In Java, however, the result
of E1 || E2 is an exception (i.e., undefined) if the evaluation
of E1 throws an exception. Operationally the equivalent Java
code is:

boolean result = false;
Exception first = null;
try { result = E′

1; }
catch (Exception e) { first = e; }
finally {

if (!result) result = E′
2;

if (!result && e != null) throw first;
}

There seems to be no simple and natural way of translating
this OCL expression to CleanJava that is faithful to the
standard OCL semantics. One possibility is to introduce a
CleanJava-specific conjunction operator with the same seman-
tics as the standard OCL, but its usefulness in general is
questionable.

We said in the previous section that if a postcondition is
written in a constructive form, e.g., x = E, we translate it to
an intended function of the form, [x := E]. But what if E is
also a mutable state variable, say y, to give a postcondition
of the form x = y? The assertion states that x and y have an
equal value in the final state. Thus, in addition to the intended

1For example, a well-known law of propositional logic, A ⇒ B = ¬A∨B,
doesn’t hold in OCL [22].

236 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

function [x := y], [y := x] is also a correct refinement. In
fact, there are numerous correct implementations including
[x, y := 0, 0]. However, we learned that in most cases when
one writes an OCL constraint like x = y the intention was
in fact x = y and y = y@pre. In OCL, y@pre denotes
y’s initial value, and such a conjunct is needed because
OCL doesn’t provide a special construct for stating a frame
axiom or property. Thus, we think our translation scheme is
reasonable. If a postcondition is not written constructively, we
used the any iteration operator to translate it. This allows us
to systematically and possibility automatically translate OCL
constraints. However, the any operator is similar to the µ
operator in Z [13], and the resulting expression is not in a
form that is easy to manipulate in verification using equational
reasoning. Fortunately, however, our empirical study indicates
that a significant fraction of OCL constraints is written con-
structively; e.g., 67% of OCL constraints for our tic-tac-toe
example were written constructively.

We are currently elaborating and refining our approach
as well as formulating the OCL-CleanJava translation rules.
We are also assessing and evaluating our approach using
more realistic case studies. The preliminary result is very
promising in that we were able to systematically translate
OCL constraints to CleanJava annotations and to prove the
correctness of implementation code. In fact we found that an
intended function often times provided a good guidance to a
possible implementation. For example, we coded CleanJava
user-defined functions as (private) helper methods, and an
iteration operator such as forAll triggered an introduction of
a loop in implementation code. The structure and constructs
of a CleanJava annotation are frequently reflected in the
implementation code, providing an additional assurance that
the code conforms to its design.

VII. CONCLUSION

In this paper we proposed a new method that can comple-
ment testing as a practical software verification and validation
technique. Our approach takes advantage of recent empha-
sis and advances on software modeling and systematically
translates formally-specified design constraints such as class
invariants and operation pre and postconditions written in OCL
to code-level annotations written in CleanJava. The translated
CleanJava annotations are refined to correct implementations
in a stepwise refinement fashion or used for the correctness
proof of the implementation code using a Cleanroom-style
functional program verification technique.

We believe that our combination of OCL and CleanJava pro-
vides several advantages. CleanJava supports Cleanroom-style
functional program verification, where a program is viewed as
a mathematical function from one program state to another
and a correctness proof is done by essentially comparing
two functions, the function computed by the program and its
specification. Since the technique uses equational reasoning
based on sets and functions, it requires a minimal mathemat-
ical background, and unlike Hoare logic it supports forward
reasoning, reflecting the way programmers informally reason

about the correctness of a program. Thus, our approach will
be more approachable to Java programmers and practitioners.
Since OCL is part of the standard modeling language UML,
it would be easier to adopt our approach and incorporate or
integrate into existing object-oriented software development
methods.

ACKNOWLEDGMENT

This work was supported in part by DUE-0837567.

REFERENCES

[1] A. W. Brown, “Model driven architecture: Principles and practice,”
Software and System Modeling, vol. 3, no. 4, pp. 314–327, Dec. 2004.

[2] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Addison-Wesley, 2003.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage Reference Manual, 2nd ed. Addison-Wesley, 2004.

[4] A. Tang and H. van Vliet, “Modeling constraints improves software
architecture design reasoning,” in Proceedings of the Joint Working
IEEE/IFIP Conference on Software Architecture 2009 and European
Conference on Software Architecture 2009, 2009, pp. 253–256.

[5] Y. Cheon, C. Yeep, and M. Vela, “The CleanJava language for functional
program verification,” International Journal of Software Engineering,
vol. 5, no. 1, pp. 47–68, Jan. 2012.

[6] H. D. Mills, M. Dyer, and R. Linger, “Cleanroom software engineering,”
IEEE Software, vol. 4, no. 5, pp. 19–25, Sep. 1987.

[7] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore, Cleanroom
Software Engineering. Addison Wesley, Feb. 1999.

[8] A. Stavely, Toward Zero Defect Programming. Addison-Wesley, 1999.
[9] Y. Cheon, “Functional specification and verification of object-oriented

programs,” Department of Computer Science, The University of Texas
at El Paso, 500 West University Ave., El Paso, TX, 79968, Tech. Rep.
10-23, Aug. 2010.

[10] Y. Cheon and M. Vela, “A tutorial on functional program verification,”
Department of Computer Science, The University of Texas at El Paso,
Tech. Rep. 10-26, Sep. 2010.

[11] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of ACM, vol. 12, no. 10, pp. 576–580,583, Oct. 1969.

[12] Z. Langari and A. B. Pidduck, “Quality, cleanroom and formal methods,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May 2005.

[13] J. M. Spivey, Understanding Z: a Specification Language and its Formal
Semantics. New York, NY: Cambridge University Press, 1988.

[14] A. M. Stavely, “Integrating Z and Cleanroom,” in LFM2000: Fifth NASA
Langley Formal Methods Workshop, Jun. 2000, pp. 141–150.

[15] A. Hamie, “Towards verifying java realizations of OCL-constrained
design models using JML,” in 6th IASTED International Conference
on Software Engineering and Applications, 2002.

[16] G. T. Leavens, “Tutorial on JML, the Java Modeling Language,” in ASE
’07: Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2007, p. 573.

[17] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML tools and
applications,” International Journal on Software Tools for Technology
Transfer, vol. 7, no. 3, pp. 212–232, Jun. 2005.

[18] C. Avila, A. Sarcar, Y. Cheon, and C. Yeep, “Runtime constraint check-
ing approaches for OCL, a critical comparison,” in Proceedings of SEKE
2010, The 22-nd International Conference on Software Engineering and
Knowledge Engineering, July 1-3, 2010, San Francisco, CA, 2010, pp.
393–398.

[19] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, Jan. 2003.

[20] C. Avila and Y. Cheon, “Functional verification of class invariants in
CleanJava,” in Innovations and Advances in Computer, Information,
Systems Sciences, and Engineering, ser. Lecture Notes in Electrical
Engineering, vol. 152. Springer-Verlag, Aug. 2012, pp. 1067–1076.

[21] K. Lano, Model-Driven Software Development with UML and Java.
Course Technology, 2009.

[22] R. Hennicker, H. Hussmann, and M. Bidoit, “On the precise meaning
of OCL constraints,” in Object Modeling with the OCL, The Rationale
behind the Object Constraint Language. London, UK, UK: Springer-
Verlag, 2002, pp. 69–84.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 237

An Open Source Platform for
Collaborative Remote Usability Studies

Røder, Daniel L.1 and Frøkjær, Erik.2
1 2Department of Computer Science (DIKU), University of Copenhagen, Denmark.

Abstract—In the field of usability testing, remote evaluation
methods have been suggested as a way to combat the high costs
incurred by traditional laboratory testing. The Distributed Usability
Evaluation (DUE) framework is an asynchronous remote testing
suite which has yielded good results in an industrial case study of
production software. The framework allows users to send video/audio
reports to a centralized server on which evaluators and developers
can collaborate to find their optimal solutions. In this paper we
present the latest development iteration of the framework, which
brings about significant improvements to allow for studies with an
extensive amount (>50) of participants. The updated framework is
submitted to an expert evaluation by acknowledged usability experts
and scientists which concludes that the framework holds a potential
for doing extensive usability studies with minimal effort. Based on the
promising results, the framework is now released as an open source
project in an effort to assist others in conducting long-term studies
involving many users.

Index Terms—Usability evaluation; remote usability testing; in-
strumentation; video/audio reporting; open source; collaboration.

I. INTRODUCTION

THE software industry is becoming increasingly aware of
the benefits of doing usability studies both in terms of

how people perceive their products, and how efficient the
products function. This has however been a long and slow
journey as the methods most commonly used in the industry
have a large demand for both time and person-hours to execute,
leaving it in many cases a luxury of larger companies. As
a response to these challenges, various “discount” usability
methods have been introduced, spreading also to the field of
remote usability testing.

In remote usability testing the test administrator and partic-
ipant can be separated in space and time. According to Dumas
[1] there are several advantages both in the logistics associated
with conducting the test as well as making it easier to recruit
users for studies. Remote methods has been explored since the
mid 90’ies and different tools has since been made available to
assist in the conduction of such studies [2], [3]. In some of the
earlier studies, the technology was reported as a hindrance for
the success of the methods, but with the rapid development in
both hardware and software the boundaries of what is possible
is continually moving [1].

Bruun et al. [4] recently published an article in which
they do an extensive literature review in the field of remote
usability testing. They recognize the distinction in remote
usability studies between synchronous methods in which user

1Email: daniel.lyng.roeder@gmail.com
2Email: erikf@diku.dk

and evaluator are only spatially separated, and asynchronous
methods in which the separation is both spatial and temporal.
While synchronous methods do deliver greater flexibility, it is
just as time consuming as ordinary lab testing as the evalua-
tor still needs to be present throughout the evaluation. The
asynchronous methods are further subdivided into different
categories depending on the technique used for gathering data
from the users. From the overview provided by Bruun et al.
it is apparent that textual data forms are the predominant
technique employed by asynchronous studies, as they span
methods such as automatic log data retrieval, online question-
naires and various collaboration tools.

We present the Distributed Usability Evaluation (DUE)
framework for conducting asynchronous remote usability stud-
ies, which builds on the ideas behind the user-reported critical
incident technique (UCI) [5], but expands this technique. The
framework consists of a process to be followed during the
evaluation as well as an open source toolset based on the
process, which encompasses the full cycle of a usability study.
The framework separates itself from commonly used remote
evaluation techniques by using audio and video recorded from
the users own workstation as basis for the evaluation. These
reports are gathered on a centralized platform which provides
functionality to strengthen communication and collaboration
among different stakeholders. Following the UCI idea, the
initial evaluation is done by the users themselves, thereby
limiting the work load for the evaluator.

II. PROCESS

The DUE framework is designed with the primary intention
of enabling usability studies to be conducted without the exten-
sive physical requirements incurred by traditional laboratory
tests, while also minimizing the needed person-hours.

The process suggested by the framework calls for 4 different
roles to participate in the evaluation:

User: The user is the source of data. They report
usability issues on their own workstations and send
them to the evaluation server.
Evaluator: Evaluates the data received by the users,
categorizes them and assigns a rating based on sever-
ity.
Development Manager: Prioritizes the issues pro-
duced by the evaluator.
Developer: Changes the evaluated program in accor-
dance with the issues, and closes the issue.

238 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

This division helps to clearly define responsibilities within
the process, and also follows the practical approach adopted
by many small to mid size companies. There is no implied
limit or requirement as to how many people are participating
in each role, but the workload will closely follow the number
engaged in the user role. The associated toolset provides a
separate interface for each of the four different roles, to further
support this work process.

As stated in the definition of the roles, the users are alone
responsible for reporting the usability issues. These reports
are done via video and audio recordings from the users own
computer. The user also provides a severity rating before the
collected report is uploaded to an evaluation server. The user is
thus working in his natural environment while the evaluation
is running, which gives some unique advantages: Tests can run
extended periods of time with minimal cost. Prolonged tests
can help mitigate the learning curve effect of users working
with new software. The user is in a stress free environment and
will experience no pressure to perform at a certain level, as
is the case with situated tests. The framework is also flexible
enough to allow for the other roles to report issues, if they gain
valuable insights through the process that the user themselves
does not recognize.

III. TOOLSET

The process is supported by an open source toolset designed
to assist both usability experts and novices in carrying out
successful evaluations. The toolset consists of a client program
to run on the user’s workstation as well as a server to collect
the reports generated, and support the evaluation process.

The clients primary function is to provide the video/audio
reports generated by the user. This is accomplished by con-
tinuously recording all activity on the user’s workstation as
a screencast stored on the local machine. The client itself
has only a minimal UI placed along with the windows of
the application under evaluation. It stays on top of other
windows, but reverts to a semi-transparent view in normal
work situations, to avoid disturbing the user during normal
work functions. The simple UI also serves to keep user training
at a minimum, by providing a simple and intuitive interface
that is easily understood and adopted by the users.

When the user indicates that an issue has been encountered,
he will be prompted to describe the issue to the microphone.
Video material from the last 30 seconds prior to the user
marking an issue will be prepended to the explanation, thus not
requiring the user to recreate the circumstances which brought
fourth the issue. These time limits are based on the results
obtained from a case study, which revealed these parts of the
video to be enough for the evaluators to correctly classify
the issues [6]. The video is then uploaded to the server for
evaluation.

User reports uploaded to the server will be automatically
imported to the evaluation system, and await further classifi-
cation by the Evaluator role. Each role has it’s own interface on
the server which primarily means that the server automatically

finds and promotes the issues ready for that particular role, but
every role has access to the full database. In studies with more
than one evaluator, this helps to mitigate the evaluator effect
[7] as all data and all decisions made are kept on the server
and accessible for everyone. To further support this notion of
collaboration it is possible for every role to mark an issue
as needing review by another role while adding a comment as
well as sending an email with a direct link to an issue to other
stakeholders. Practically this means that if e.g. a development
manager does not agree with the classification assigned by an
evaluator, she can voice her concerns and send the issue back
for reevaluation to allow the evaluator to further explain his
reasoning.

Currently the client program requires a Microsoft Windows
environment to function also relying on Windows Media
Encoder for the encoding of the screencast. The server runs
on a normal AMP stack (Apache, MySQL, PHP) but requires
Microsoft Silverlight for video playback in visiting browser.

IV. RESULTS

The framework has been successfully tested in a case study
with production software under active development, in which
16 people were assigned to the user role. The study showed
that the framework did produce usable issue reports while
keeping the requirements significantly lower than traditional
methods [6]. Since this study, the framework has undergone
an extensive redesign phase, building further on the aspects
of collaboration, rationale capture and a general streamlining
of the toolset to make it even easier to deploy and customize.
These efforts have most notably resulted in a more structured
view of the user reports, a tagging system and generally better
access to issue details.

The updated framework was submitted to an expert eval-
uation among some of the worlds leading usability experts.
All invited experts are established names within the scientific
community within the area of HCI / Usability and most
with ties to the industry as well. 31 invitations was sent,
15 responded positively and 7 evaluations were received.
This low number is largely contributed to time limitations as
evaluators were only given a week to complete the evaluation.
The evaluation was designed to make the experts evaluate
the ideas and concepts of the process rather than the actual
implementation of the toolset. To accomplish this, they had to
base their reviews on a prerecorded video presentation of the
framework1 rather than working directly with the toolset.

Respondents were very optimistic about the framework’s
ease of use as well as it’s ability to be a persistent repository
for all of the aggregated data through a study. A respondent
writes:

[R6] “The strength is that it seems to be easy for
the user to explain a problem”

while another:

[R4] “Traceability of the data captured is the
obvious strength of this framework”

1Available at: http://youtu.be/Cb7ZwNrx-rM

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 239

Figure 1. The four different roles of the process shown with their respective responsibilities, as well as the optional data elements available to each.

and along the same lines:

[R2] “The system also nicely stores the evaluation
history which may be of remarkable value”

The biggest concern being that the initial evaluation and
classification was left to the end users, rather than an experi-
enced evaluator. One respondent notes:

[R2] “The greatest weakness, in my mind, is that
the evaluation is based on analysis made by users:
users decide what usability problems / strengths
are”

This is an entirely valid concern, but is also a generic argument
for all studies in which users are the subjects in the evaluation.
Even for usability studies done in a laboratory environment,
the results will be influenced by how well the user responds
to the method employed. The DUE framework on the other
hand has the advantage of being able to sample large groups
of users, thereby increasing the chance that their combined
reporting efforts are covering their concerns.

Another respondent suggests that the toolset should try to

further capitalize on the users being involved in the process:

[R7] “...possibly it would be good to allow the
user also to send off some comment together with
the recording”

which would further allow the users to act as responsible
stakeholders. The toolset does indeed support letting the user
send a textual comment along with the video, but it is not
the default option. A feature of letting the users annotate the
uploaded video as well as provide more detailed descriptions
are planned for future development.

As a last question the respondents were asked if they
themselves would be interested in using the framework in
their professional work as scientists or business consultants,
to which 5 out of 7 replied positively. Two of the respondents
note that:

[R1] “Yes, I do lots of business usability consult-
ing, I would be interested in getting access to
DUE, and be happy to send you back the feedback
from our work”

240 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 2. The issue details view of the server. At the top are all relevant data entered by any of the roles presented. In the middle the video uploaded by
the user is directly available, and at the bottom all uploaded reports associated with this issue is listed.

[R5] “Yes, I think it might be interesting to
experiment with, especially in relation to our work
on user-reported usability problems”

While the two voicing negative opinions:

[R2] “I find as a too big risk to trust that users
can do valid evaluations (find and report valid
usability problems & strengths) by themselves. I
would do the analysis myself or let some other
usability professional to do it”

[R3] “I am rarely involved in developing the type
of applications for which this was designed - I
mostly work with ’tangible’ products/prototypes
... also, I find it very important to observe users
during their interaction with a system”

This shows that the majority of the responding usability
experts consider the toolset to be a potentially valuable sup-
plement to their method palette when doing usability studies.
As a consequence of this, a decision has been made to release
the framework as an open source project to further develop the

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 241

method and to gather more results from it’s practical use. The
expectation is that the DUE framework can find its place as a
interesting supplement to methods already in use, by providing
evaluations of a full software suite, with a large group of users.
For instance a DUE evaluation can provide an overview of
usability issues in a software suite, identifying areas suited
for e.g. think aloud testing.

V. CONCLUSIONS

We have presented the DUE framework as a method for
conducting asynchronous remote usability studies with auto-
matic audio/video capture of usability issues aggregated from
a large number of users working in their natural environ-
ment. These data are collected on a common repository with
facilities encouraging collaboration among stakeholders. The
framework has previously shown great potential in a case study
of industrial software. With inspiration from this study the
framework’s associated toolset has been further streamlined
and expanded. The revised framework has been submitted
for an expert review among seven usability experts. Their
response further indicates that DUE can be a useful addition
to the usability professionals’ toolbox. In an effort to further
enable large scale usability studies of software systems, the
framework is now being released as an open source project.

ACKNOWLEGMENT

Lars Christensen for formulating the theoretic background
and developing the first version of the framework[6].

REFERENCES

[1] J. S. Dumas and J. E. Fox, The Human Computer Interaction Handbook,
ch. 53, pp. 1221–1241. CRC Press, 3rd ed., 2012.

[2] M. Hammontree, P. Weiler, and N. Nayak, “Remote usability testing,”
Interactions, July 1994.

[3] H. R. Hartson, J. C. Castillo, J. Kelso, and W. C. Neale, “Remote
evaluation: The network as an extension of the usability laboratory,” CHI,
1996.

[4] A. Bruun, P. Gull, L. Hofmeister, and J. Stage, “Let your users do the
testing: A comparison of three remote asynchronous usability testing
methods,” CHI, April 2009.

[5] J. C. Castillo, H. R. Hartson, and D. Hix, “Remote usability evaluation:
Can users report their own critical incidents?,” CHI, April 1998.

[6] L. Christensen and E. Froekjaer, “Distributed usability evaluation: en-
abling large-scale usability evaluation with user-controlled instrumenta-
tion,” NordiCHI, pp. 16–20, 2010.

[7] K. Hornbaek and E. Froekjaer, “A study of the evaluator effect in usability
testing,” HCI, vol. 23, pp. 251–277, 2008.

242 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Study of Data Imputation on the Predictive Value of
Software Attributes in the ISBSG-10 Data Set

Adrian S. Barb
Information Science Department

Penn State University
Malvern, Pennsylvania 19335

Email: adrian@psu.edu

Kailasam Satyamurthy
Engineering and Management Departments

Penn State University
Malvern, Pennsylvania 19335

Email: kxs425@psu.edu

Abstract—With increased attention on reducing software cost,
research has recently focused on developing new methods to
measure software complexity that can be successfully applied for
resource allocation, project complexity, and defect estimation.
To help practitioners, a variety of public data sets were created
and maintained to provide historical data for organizations that
do not possess historical project data. However, due to their
cross-company nature, such data sets contain missing values,
and raise several practical estimation problems. This article
explores the relevance of imputation on the predictive value
of software attributes. We evaluated this on the International
Software Benchmarking Standards Group release 10 (ISBSG-
10) data set which is commonly used for software estimation. We
build linear models for prediction, cluster results by the quality
of prediction, and identify relevant predictors using association
rule mining techniques.

Index Terms—ISBSG, Software estimation, data mining, linear
models, association rules.

I. INTRODUCTION

Building accurate models for software prediction early in
the life cycle of a project is the subject of many recent
researches [1]. Such models are essential to the success of
software projects, but still remain challenging to the software
engineering community. They focus on providing cost esti-
mates as a function of some variables measured early in the
life cycle of the project [2], [3], [4], [5]. Early approaches
were shown to provide low prediction accuracy [6], which in
many cases are comparable to expert judgement methods of
cost estimation [7], [8], especially in the case of un-calibrated
algorithms with an emphasis on the fact that most models
underestimate the time and cost of software development [9].

Many researchers have focused on providing computer-
based algorithmic models for cost estimation, due to the fact
that expert judgement exhibits large estimation variations [7].
To improve accuracy, recent approaches used data mining
techniques [10], [11], [12] to extract knowledge hidden in
historical software databases which are made available for the
software community. Among the used data mining techniques,
linear regression is most widely used in software estimation
[13], [14]. Methods that use linear regression must use a set
of dependent software project variables that can be used to
accurately model the variation of the predicted variable with
emphasis on predicting software attributes at each stage of

a software life cycle. For an in-depth analysis of software
estimation models and their replication, the reader is directed
to [15], [16].

One major factor in prediction is the quality of the in-
formation in the historical data at hand. Many start-ups or
small companies may have little historical project knowledge
gathered to provide reliable effort estimates. To such issues,
several groups have released public domain software devel-
opment data with the purpose of helping companies build
powerful and practical estimation models based on domain
specific historical knowledge. One example is the International
Software Benchmarking Standards Group [17]. This group
defined a set of standards for data collection, and maintains a
data set of cross-industry project data based on these standards.
There are several issues about data completeness and quality
in these data sets. For example, the ISBSG-10 data set has a
large percentage of missing data which may result in smaller,
varying sizes of training data [18]. This issue may lead to low
replication accuracy of experiments [19] with low quality of
the generated prediction models [20].

Techniques to ignore missing data such as list-wise or pair-
wise deletions are the main reasons for training set reduction
and they are shown to be suboptimal for treating missing
values [21]. Similar results are obtained using mean or mode
single imputation methods. Research shows that novel methods
for data imputation may lead to significant improvement pre-
diction. Among these, good results are shown using methods
such as tree-based techniques [21], using maximum-likelihood
or Bayes networks [22], or using hot-deck imputation with
Euclidean distance and z-score standardization [23].

In this article, we describe an empirical study of the effects
of data imputation on the predictive quality of linear models
in software effort prediction. To accomplish our research
goals, we hypothesize that the accuracy of project attributes
using historical data increases with the percentage of imputed
data in the training set. Specifically, we perform an in-depth
evaluation of software attribute prediction using historical data
from the ISBSG-10 data set by using linear models. These
models are trained on imputed versions of the ISBSG-10 data
set at two levels of missing data. We also analyze and compare
the prediction power of the created models on the initial
data using the adjusted R2 statistical measure. This paper is

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 243

Algorithm 1 Predict Software Attributes
INPUT: ISBSG-10 data set
OUTPUT: adj-R2 values for model and test data set

1: D ← preprocess(ISBSG-10)
2: DT ← impute(D)
3: result← {}
4: for EACH set of attributes A← {y, {X}|y∩X = ∅} do
5: TR← subset(DT,A)
6: TR1← normalize(TR)
7: TS ← subset(D,A)
8: TS ← normalize match(subset(D,A))
9: lm← y ∼ X|train1

10: pres ← denormalize(predict(lm, subset(TR1, X)))
11: Rres ←adj-R2(pres, subset(DT,X))
12: ptst ← denormalize(predict(lm, subset(TR,X)))
13: Rtst ←adj-R2(pres, subset(DT,X))
14: result← result ∪ {Rres, Rtst}
15: end for
16: return result

organized as follows: Section II introduces the methodology,
Section III presents our experimental, and we conclude our
research in Section IV.

II. METHODOLOGY

To evaluate the effects of imputation on the predictive
power of attributes in the ISBSG-10 data set we designed
an experimental procedure that is described in Algorithm 1
and which was implemented in R [24]. First, in line 1 of the
algorithm, we apply a preprocessing procedure to remove low
quality and categorical attributes. This procedure is described
in Section II-A. Then, as shown in line 2, we impute missing
data at a predetermined level (30% or 50% in our study) using
a procedure that we describe in-depth in Section II-B. Next,
we exhaustively generate subsets of the imputed data with
different sets of attributes as shown in line 4 of Algorithm 1
and explained in Section II-C. The generated subset is used to
construct a linear model (line 9 of Algorithm 1 and Section
II-D). Finally, we test our model on the original data as shown
in line 10-13 in algorithm 1 and explained in Section II-E.

A. Data Preparation

In the first step of the experiment we preprocess the ISBSG-
10 data set by removing the projects that are considered by the
ISBSG Consortium as unsuitable for statistical analysis (data
quality rating of C or D). We also retain only projects that
report only the development team effort as measured by the
attribute ‘resource level’. Further, we transform some relevant
categorical attributes to a binary representation. The list of
these attributes include Project Activity Scope, Application
Type, Architecture, Development Techniques, and Primary Pro-
gramming Language. For example, the Architecture attribute
was transformed into four binary attributes Client-Server Ar-
chitecture, Multitier Architecture, Standalone Architecture, and
Web Architecture with each generated attribute accepting true

TABLE I
CATEGORIZATION OF PROJECT ATTRIBUTES BY PHASE OF THE PROJECT

LIFE CYCLE

Group Project Attributes Description
1 Defect, Test Effort, Total Effort Post Completion
2 LOC, Project time, Work effort Completion
3 Build and Implementation Effort Mid project 2
4 Design, Plan, and Specify Effort Mid project 1
5 AFP, Functional Size, Team Size Initial Phase
6 All other project attributes Input

or false values. After this preprocessing step, the resulting data
set included 3146 projects with 64 attributes.

B. Imputation of missing data

Missing data is a common issue in the data preprocessing.
For imputation of missing values in the ISBSG-10 data set,
we used the Iterative Robust Model-based Imputation method
[25]. One of its advantages is that can it handle mixtures
of continuous, ordinal, and nominal variables including out-
liers. This method estimates the missing values by fitting a
sequence of regression models and drawing values from the
corresponding predictive distributions. Variables are sorted by
the amount of missing values and their values are imputed in
an iterative process starting with the most complete ones. For
each type of attribute, a different type of imputation method is
applied. For example, continuous variables are imputed using a
robust least square regression, while categorical attributes are
imputed with generalized linear regression and binary ones
are imputed using logistic regression. For each attribute, the
missing values are first initialized using k-nearest neighbor
imputation and missing values are repeatedly imputed until
the variation in values between two consecutive iterations is
less than a threshold. Using this imputation method, we have
constructed two data sets based on the ISBSG-10 data set:
(1) a data set that contains only projects that have less than
30% missing data (TR1) with a size of 285 projects and 60
attributes, and (2) a data set that contains only projects that
have less than 50% missing data (TR2) with a size of 1,245
projects and 60 attributes. Each of these data sets have no
missing values.

C. Training data generation and processing

Once the training data set TR is generated, we scale all
the continuous features into the range [0, 1] using a min-max
normalization formula as shown below. Experiments show that
the application of the min-max normalization procedure results
in better prediction models [26].

TR1[mi,j] =
TR[mi,j]−min (TR[m∗,j])

max (TR[m∗,j])−min (TR[m∗,j])
(1)

In this formula TR is a matrix with the form
TR[mi,j]i=1,...P ;j=1,...Awhere m is the value of attribute j
in project i, A is the number of project attributes, and P is
the number of projects in the data set. Also, TR[m∗,j] refers
to all the project values values of the attribute j.

244 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Fig. 1. Adjusted R2 Scatter Plots for experiments that train models with (a) 30% of data and (b) 50% of data.

Further, we exhaustively generate combinations of at-
tributes {Y,X = {xk}} | size(X) < 3, group(Y) <
max(group(X)) where Y is a dependent attribute and X
is a set of independent attributes from TR to create linear
models for prediction with a maximum size of three inde-
pendent variables. The second filtering condition filters out all
combinations of attributes for which the independent variables
do not appear later in the life cycle of the product. For
example, having a set where AFP is the dependent variable
and LOC is the independent variable may have little meaning
from the practical software prediction perspective since AFP
is determined at the beginning of the project while LOC is the
result of a project. To handle these cases, we assigned project
attributes into six categories based on the time when they can
be assessed over the life cycle of a software project. Using this
grouping, for example, renders irrelevant the case where AFP
is the dependent variable and LOC is the independent variable
because AFP belongs to the fifth group, which is determined
before group two in which LOC belongs. However, the reverse
case where AFP is the independent variable and LOC is the
dependent variable is considered relevant. After this process,
we generated a number of 284,959 unique combinations of
project attributes.

D. Linear Regression Models
For each attribute combination {Y,X = {xk}} we generate

a training data set TR2[mi,j] = TR1[mi,j] | j ∈ Y ∪ X
and we design a linear regression experiment as shown in the
formula below:

Y pred = β0 +

size(X)∑
j=1

βim∗j | m∗j ∈ TR2[mi,j] (2)

In this formula, βo, βi are coefficients of the linear regres-
sion and Y pred is the response variable of the linear model
when trying to predict the variable Y using the dependent
variables X .

E. Model evaluation

Due to the fact that the model response Y pred of the linear
model is computed on min-max normalized data, we first de-
normalize it so it is mapped in the initial attribute variables.
We accomplish this using the equation below.

Y pred
dn = min (TR[m∗,j])

+ Y pred (max (TR[m∗,j])−min (TR[m∗,j])) (3)

After the predicted attributes are de-normalized, we com-
pute the prediction quality using adj-R2 statistical measure as
shown below. The use of the adj-R2 has the advantage that
that it copes better with the addition of irrelevant independent
variables than its unadjusted version.

adj-R2 = R2 −
(
1−R2

) P

A− P − 1
(4)

R2 = 1−

∑(
TR[m∗,Y]− TR[m∗,Y]

)2
∑(

Y pred
dn − TR[m∗,Y]

) (5)

The resulted adj-R2 will be used to compare results of the
experiments across the two levels of data imputation.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 245

TABLE II
RESULTS OF ASSOCIATION MINING TO EVALUATE THE RELEVANCE OF

SOFTWARE ATTRIBUTES TO CLUSTERS.

Attribute type Cluster Confidence Note
Count Changed Dependent 1 100% Irrelevant
Count Deleted Dependent 1 100% Irrelevant
Count Interface Dependent 1 100% Irrelevant
Effort Design Dependent 1 100% Irrelevant

Effort Plan Dependent 1 100% Irrelevant
Effort Specify Dependent 1 100% Irrelevant
Elapsed Time Dependent 1 100% Irrelevant
Inactive Time Dependent 1 100% Irrelevant

Extreme Defects Dependent 1 100% Irrelevant
Major Defects Dependent 1 100% Irrelevant
Minor Defects Dependent 1 100% Irrelevant
Total Defects Dependent 1 100% Irrelevant

Count Enquiry Dependent 1 93.8% Irrelevant
LOC Independent 1 89.83% Irrelevant
LOC Dependent 1 71.31% Irrelevant

Effort Implem. Independent 4 73.01% Relevant
Effort Build Dependent 3 60.03% Unreliable

III. EXPERIMENTAL RESULTS AND ANALYSIS

We statistically evaluated the results of our experiments
using the Wilcoxon paired test. When we compared the adj-
R2 of the generated models, the test shows, with a confidence
of 2 ∗ 10−16 that the experiment that uses 50% imputed
data returns better models than the ones that use only 30%
imputed data. However, this advantage does not translate into
better predictions; the Wilcoxon test shows, with a confidence
of 2.2 ∗ 10−16, that predicting with 50% imputed data in
training returns lower quality models than predicting with 30%
imputed data in training sets. This pattern can be observed in
Figure 1 which shows that, in general, the first experiment
returns models for which both model and prediction adj-R2

exhibit high density of scatter points on the top right of each
plot.

We have further analyzed the patterns in 1 to identify the
behavior of prediction models. To accomplish this, we have
applied a k-means [27] algorithm to cluster the data. Due to
the fact that the pattern of data is not fitted for clustering
with euclidean distance, we have initially used a number of
15 clusters which were later merged using a agglomerative
hierarchical clustering [27] based on the centroid distance. The
result is shown in Figure 1 using different colors. In general,
data was clustered in four clusters: (1) models that return low
adj-R2 for both training and for testing (represented by black
color), (2) models that return good adj-R2 for both training
and testing (blue color), (3) models that return good training
adj-R2 but are not good predictors (red color), and (4) models
with low training adj-R2 which have good predicted power
(cyan color). For training with 30% missing data there is a
fifth cluster of models that have very good adj-R2 in training
but return very poor predictive models (green color).

We further investigated the assignment of models to each
of these groups by evaluating groups of independent variable
inside each group. We have applied the apriori algorithm [28]
to a set of data with two attributes: maximum grouping of the

TABLE III
RELEVANT PROJECT ATTRIBUTES FOR PREDICTION

Independent
Variable

Dependent
Variable

Cluster Confidence Note

AFP Count
Added

2 100% Reliable

AFP Count
Input

2 100% Reliable

Functional
Size

Count
Input

2 100% Reliable

Effort
Implem.

Effort
Total

2 93.71% Reliable

Effort
Implem.

Work
Total

2 73.01% Reliable

Effort
Build

Effort
Total

2 100% Reliable

Functional
Size

Effort
Build

4 100% More study

AFP Effort
Build

4 100% More study

Team
Size

Test Effort 3 78.01% Irrelevant

* Effort
Build

4 60.31 More Study

AFP Effort
Test

1 62.82% Irrelevant

Functional
Size

Effort
Test

1 63.78% Irrelevant

independent variable and cluster number. We have used the
following measures for the quality of generated associations:
(1) support - the proportion of models that contain a pattern,
confidence - the proportion of models that contain a pattern
and belong to the same group, and lift - relevance of an
association as compared with a random process. We have
used the following apriori parameters: 10% level of minimum
support and 90% level of minimum confidence. The result on
the 30% imputed data set showed that using variables in the
grouping 6 (input) for prediction returned models in Cluster 1
(low adj-R2 for both model and prediction) with a confidence
of 99.65% and a lift of 1.0728. The rest of experiments that
used input variables were located in Cluster 5. Similarly,
for the 50% imputed data set we discovered that using the
grouping 6 variables for prediction returned models in Cluster
1 with a confidence of 100% and a lift of 1.0765. This
demonstrate the fact the initial project variables such as Project
Activity Scope, Application Type, Architecture, Development
Techniques, and Primary Programming Language have a low
predictive power of software effort and they are likely to
negatively affect models where they are used as independent
variables.

In the next phase of the analysis, we have removed all of the
experiments that contain independent variables from grouping
1. This reduced the size of the data set to 9,687 models. A
further comparative evaluation of training with 30% vs. 50%
missing data, using the reduced data, showed a similar pattern
as before in which, although it produces lower training adj-
R2, training with the 30% data set returns better predictive
models with a high confidence of 2.2 ∗ 10−16. Similar results
are obtained when applying the Wilcoxon test to subsets of

246 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Fig. 2. Percentage of models associated with each clustering group. In this figure, Group2 displays good models in both training and testing, Group 3
displays good models only in training, while Group 4 displays good models only for prediction

data in each cluster. This leads us to conclude that training
with fewer imputed values has more predictive power than
larger, more synthetic data sets. For this reason, the rest of the
experiments will be performed only on the data set that uses
30% imputed data.

We have further applied the apriori association rule mining
algorithm on the generated subset of data. For this exper-
iment, we constructed the association rule antecedent from
attributes of the linear model and the consequent from the
cluster in which the model was assigned. We flagged each
project attribute as independent or dependent. For example,
the dependent variable LOC was encoded differently from
the independent variable LOC. We were interested mostly in
association rules for which the antecedent contained only one
attribute while the consequent is a cluster, so we are able to
evaluate the influence of each project attribute. The results
are shown in Table II. From these results we learned, with
100% confidence, that defects cannot be predicted successfully
using other software attributes. Similar results were obtained
for predicting design, specify, and plan effort as well as for
project timing values. LOC also returned irrelevant models but
with a lower level of confidence. For example, using LOC as
an independent variable, returned good models (cluster 4) in
5.06% of the cases and similar number of models that return
good models with low prediction power (cluster 2). All of
these models use LOC in conjunction with other attributes,
such as functional points or effort related, which leads us to
conclude that LOC has low predictive power but may improve
the linear models in multivariate regression models. Also,
trying to predict LOC with other software attributes returned

results in cluster 5 which leads us conclude that LOC cannot
be predicted with accuracy either.

With the accumulated knowledge we have repeated the ex-
periment described in the previous paragraph on a 1,907 model
data set that resulted from the removal of all of the irrelevant
variables shown in Table II. In this experiment, we target
the identification of pairs of independent-dependent variables
and their assignment to clusters. For this we have used a
minimum support level of 5% and a minimum confidence level
of 50%. The results of this experiment are shown in Table
III. For example, this table shows a good correlation between
the Count Added and AFP. Predicting project additions and
deletions can be reliably done using AFP (Cluster 2). This may
have less practical relevance since the attributes mentioned
above are constituents of Functional Size measure which is
known to be correlated with AFP. However, since the project
additions and deletions are not predicted but rather measured
values, their intrinsic value is that they measure the validity
of predictions made at the beginning of the project. We also
found that the implementation effort is a good predictor of
the total effort and can be used to allocate resources for the
post completion life cycle of the project. The size of the team
was determined to be a weak predictor of test effort because,
although it returned good training models, its predictive power
was limited (Cluster 3).

The last step of our experiment was targeted to the iden-
tification of attributes with best predictive power. For this,
we have computed the percentage of occurrence of each
independent variable to one of the clusters that promise good
results. These results are shown in Figure 2. For example,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 247

this figure shows that using AFP as independent variable
would return a 80.3% probability similar or better results in
prediction than the value measured in training (Cluster 2 and
Cluster 4). Similar result were obtained when using Functional
Size with a probability of 86.8%. Team Size also returns good
results as independent variable but which is used only in
conjunction with other independent variables. Design Effort
and Build Effort show also good results although it can be
determined only later in the life cycle of a project.

IV. CONCLUSION

In this paper, we conducted an experiment to evaluate
the influence of missing data imputation on the predictive
power of software attributes in the ISBSG-10 data set. We
have imputed the missing data using existing state-of-the-art
techniques using two levels of imputation at 30% and 50%. We
compared and contrasted the resulting models by evaluating
the prediction performance of project attributes using the
adjusted R2 statistical measure. Overall, the experiments that
we have conducted in this article show that attributes in the
ISBSG-10 data set have a weak predictive power using linear
models and the majority of them return models that are unfit
for predictions. Applying imputation to this data is likely to be
unsuccessful, as our experiments show that the more imputed
data is used in training, the less valuable are the models for
prediction. One cause for this may be found in the cross-
industry, cross-platform nature of this data set. This combined
with the large quantity of data may affect the predictions.
If project managers decide to use imputation, they need to
use lower levels of imputed data, although the training results
may show otherwise. Our results also give insight on which
variables can be predicted with good accuracy such as AFP
and Functional Size which reinforces the fact that current
methodologies used for effort prediction are optimal, knowing
the data at hand. Our future work includes the use of other
data sets to increase the validity of the results. We will also
expand our research to other imputation techniques to compare
theirperformance of several methods given missing data.

REFERENCES

[1] B. Boehm, C. Abts, and S. Chulani, “Software development cost estima-
tion approaches - a survey,” tech. rep., Annals of Software Engineering,
2000.

[2] R. Jensen, “An improved macrolevel software development resource
estimation model,” in Proc. Fifth Conf. Int’l Soc. Parametric Analysts
(ISPA), pp. 88–92, Apr. 1983.

[3] R. Park, “The central equations of the price software cost model,” in
Proc. Fourth COCOMO Users Group Meeting, Nov. 1988.

[4] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby, “Cost models for future software life cycle processes: Cocomo
2.0,” in Annals Of Software Engineering, pp. 57–94, 1995.

[5] B. Boehm, “Safe and simple software cost analysis,” IEEE Software,
vol. 17, no. 5, pp. 14–17, 2000.

[6] C. F. Kemerer, “An empirical validation of software cost estimation
models,” Commun. ACM, vol. 30, pp. 416–429, May 1987.

[7] S. Grimstad and M. Jørgensen, “Inconsistency of expert judgment-
based estimates of software development effort,” J. Syst. Softw., vol. 80,
pp. 1770–1777, November 2007.

[8] Y. F. Li, M. Xie, and T. N. Goh, “A study of project selection and
feature weighting for analogy based software cost estimation,” Journal
of Systems and Software, vol. 82, pp. 241–252, Feb. 2009.

[9] M. Jorgensen, “Regression models of software development effort es-
timation accuracy and bias,” Empirical Software Engineering, vol. 9,
no. 4, pp. 297–314, 2004.

[10] P. C. Pendharkar, G. H. Subramanian, and J. A. Rodger, “A probabilistic
model for predicting software development effort,” IEEE T Software
Eng, vol. 31, no. 7, pp. 615–624, 2005.

[11] I. F. de Barcelos Tronto, J. D. S. da Silva, and N. Sant’Anna, “An
investigation of artificial neural networks based prediction systems in
software project management,” J. Syst. Softw., vol. 81, pp. 356–367,
Mar. 2008.

[12] H. Park and S. Baek, “An empirical validation of a neural network model
for software effort estimation,” Expert Syst. Appl., vol. 35, pp. 929–937,
Oct. 2008.

[13] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, “Software productivity
and effort prediction with ordinal regression,” Information and Software
Technology, vol. 47, no. 1, pp. 17 – 29, 2005.

[14] D. Rodrı́guez, J. J. Cuadrado, M. A. Sicilia, and R. Ruiz, “Segmentation
of software engineering datasets using the m5 algorithm,” in Proceedings
of the 6th international conference on Computational Science - Volume
Part IV, ICCS’06, (Berlin, Heidelberg), pp. 789–796, Springer-Verlag,
2006.

[15] R. Jeffery, M. Ruhe, and I. Wieczorek, “Using public domain metrics
to estimate software development effort,” in Proc. Seventh Int. Software
Metrics Symp. METRICS 2001, pp. 16–27, 2001.

[16] E. Mendes and C. Lokan, “Replicating studies on cross- vs single-
company effort models using the ISBSG database,” Empirical Softw.
Engg., vol. 13, pp. 3–37, February 2008.

[17] The International Software Benchmarking Standards Group, “ISBSG
repositories,” 2007.

[18] B. Kitchenham and E. Mendes, “Why comparative effort prediction stud-
ies may be invalid,” in Proceedings of the 5th International Conference
on Predictor Models in Software Engineering, PROMISE ’09, (New
York, NY, USA), pp. 4:1–4:5, 2009.

[19] E. Mendes, C. Lokan, R. Harrison, and C. Triggs, “A replicated
comparison of cross-company and within-company effort estimation
models using the isbsg database,” in Proceedings of the 11th IEEE
International Software Metrics Symposium, (Washington, DC, USA),
p. 36, IEEE Computer Society, 2005.

[20] C. Kirsopp and M. J. Shepperd, “Making inferences with small numbers
of training sets,” IEE Proceedings - Software, vol. 149, no. 5, pp. 123–
130, 2002.

[21] B. Twala, “An empirical ccomparison of techniques for handling incom-
plete ddata using decision trees,” Appl. Artif. Intell., vol. 23, pp. 373–
405, May 2009.

[22] J. L. Schafer and J. W. Graham, “Missing data: our view of the state of
the art.,” Psychological Methods, vol. 7, no. 2, pp. 147–177, 2002.

[23] K. Strike, K. El Emam, and N. Madhavji, “Software cost estimation with
incomplete data,” Software Engineering, IEEE Transactions on, vol. 27,
pp. 890 –908, oct 2001.

[24] R Development Core Team, R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2011. ISBN 3-900051-07-0.

[25] M. Templ, A. Kowarik, and P. Filzmoser, “Iterative stepwise regression
imputation using standard and robust methods,” Comput. Stat. Data
Anal., vol. 55, pp. 2793–2806, Oct. 2011.

[26] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in mul-
timodal biometric systems,” Pattern Recogn., vol. 38, pp. 2270–2285,
Dec. 2005.

[27] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann Series in Data Management
Sys, Morgan Kaufmann, second ed., June 2005.

[28] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and I. A. Verkamo,
“Fast discovery of association rules,” Advances in knowledge discovery
and data mining, pp. 307–328, 1996.

248 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Finding The Relationship Between Software Testing

Effort And Software Quality Metrics

N. Yagci
1
, K. Ayan

2

1
 TUBITAK BILGEM, Gebze, Kocaeli, Turkey

2
 Computer Engineering, Sakarya University, Serdivan,Sakarya,Turkey

Abstract - Software testing has very important role in

Software Development Life Cycle for providing software

quality and its role comes into prominence day by day. One of

the jobs, which software test engineers perform, is executing

the tests according to the test cases. But before the execution

of tests starts, test manager has to schedule and plan and for

this purpose he or she has to estimate the test effort accurate

as possible. The accuracy of the estimation is very important

for project success, because source and time planning is going

to be actualizing according to this estimation. But so far the

methods which have been used to estimate the test effort are

too subjective or required too many efforts. In this article, we

propose a new method for test effort estimation. Proposed

method is about finding the relationship between software

quality metrics and test effort execution then making the

estimation according to this relationship.

Keywords: Testing Effort Estimation, Software Quality

Metric

1 Introduction and Previous Works

 Software testing has growing importance in the software

projects. Software developers used to test their own products

so far, but nowadays many software companies embrace the

independent testing team approach. In this approach, Testing

team reports to the test manager not project manager. [1]. In

this approach, test manager should organize time, source and

budget planning. One of the jobs, which software test

engineers perform, is executing the tests according to the test

cases. [4] Test managers have to estimate the time which

required for executing test cases.

 Test effort estimation is estimation of test time and test

source before the test execution starts. There are lots of

methods for estimation test effort. The followings are

prominent of these methods.

 Taking the percentage of software development effort;

this method is commonly used because of easy. In this method

software effort is taken and test effort is calculated by

dividing this number to a chosen number which project

manager decides. (For example; Testing Effort = software test

effort * ¼). But testing and coding are different professions,

they requires different expertise.

 Functional Point Analysis; this method is improved for

specifying the project size. One of the initial design criteria

for function points was to provide a mechanism that both

software developers and users could utilize to define

functional requirements. [3]

 Test Point Analysis; Test point analysis (TPA)

represents a test estimate preparation technique that can be

used to objectively prepare estimates for system- and

acceptance tests [2] However, it is important to note that TPA

itself only covers black-box testing. Thus, it is often used in

conjunction with FPA, which in return does not cover system-

and acceptance tests. Consequently, FPA and TPA merged

together provide means for estimating both, white- and black-

box testing efforts. [2]

 Use Case Points; Use cases in their most primitive forms

are basically representative of what the user wants from a

system. [9] Each scenario and its exception flows for each use

case are input for a test case. Subsequently, the estimation

calculations can commence. As the requirements become

clearer further downstream, the estimates will also undergo

revision. [9]

 The common point of all these methods, a detailed work

has to be done for estimating test effort. The team, that is

going to make the estimation work, has to know very specific

information about software under test and its documentations

and to work for very long time. Getting the accurate

estimation is only possible under these circumstances. But in

these competitive world conditions, usually it is not possible

to use these methods. There is no enough source and time.

There is a strong need for handling test effort estimation in a

short time without needing lots of input artifacts. Otherwise,

tests seem to be executed in an unorganized way.

2 Proposed Approach For Estimating

Test Effort And Case Study

 Software quality metrics has been using since 1970 for

measuring the software quality. Software quality metrics give

us very important clues about software. [5] We claim that

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 249

these metrics has also very important effect on test effort

estimation. For examining this claim, we exercise a case

study.

 We take the software metrics in two bases.For

description of these metrics; look up Appendix (Table 10 -

Table 11).

Method Based Metrics;

 Branches, Call_Pairs, ed(G), Edge_Count, ev(G), evgb4,

id(G), iv(G), Lines_with_Nodes, MNT_SEV, Norm_v(G),

Param_Count, pv(G), SLOC, vd(G), v(G), vgb10orevgb4

Class Based Metrics

 Avg_v(G), Branches, Depth, ev(G), id(G), iv(G),

Lack_Cohesion, Max_ev(G), Max_v(G), MNT_SEV,

Norm_v(G), Parent_Count, pv(G), RFC, Sum_v(G), vd(G),

v(G)

 Finding the relationship between test effort and software

quality metrics, makes possible to estimate the test effort

easily, fast, reliable and objectively.

 In this study, we have tried to examine the accuracy of

the proposed method. We chose one of our programs which is

developed by our software team. Software under test has

software requirements and test cases which are documented

according the software requirements. Choosing the test cases

independent is important because that makes easy to see the

difference.

 Chosen test cases are; T1, T2, T3, T5, T6, T7, T9, T11,

T13.

 Method based metrics (Branches, Call_Pairs, ed(G),

Edge_Count, ev(G), evgb4, id(G), iv(G), Lines_w_Nodes,

MNT_SEV, Norm_v(G), Param_Count, pv(G), SLOC, vd(G),

v(G), vgb10orevgb4) and class based metrics (Avg_v(G),

Branches, Depth, ev(G), id(G), iv(G), Lack_Cohesion,

Max_ev(G), Max_v(G), MNT_SEV, Norm_v(G),

Parent_Count, pv(G), RFC, Sum_v(G), vd(G), v(G)) are used.

After all test cases are executed, the coverage is saved for all

test cases separately.

 Table 1 shows method based coverage percentage of test

case T1 as an example.

Table 1 Test Case-Method Coverage

Test

Case

No

Method

Name

Coverage

(Percentage)

T1 AdminPanel_

windows.Com

monWorks.arr

angeToolTip(

DataGridView

85.71

,Dictionary,To

olTip,DataGri

dViewCellEve

ntArgs)

T1 AdminPanel_

windows.Form

s.FrmIntroduct

ion.FrmIntrod

uction()

100

T1 AdminPanel_

windows.Form

s.FrmIntroduct

ion.FillCombo

Db()

100

 ………………

……

 After coverage work, Test case metric evaluation tables

(Metric Based and Class Based) are composed.

 An example calculation method metrics for a test case; It

is assumed; Tn test case consists M1, M2, M3 methods and

has the coverage percentage shows on the following table.

Table 2 Test Case-Method Coverage Example

Test Case No Method Name Coverage

(Percentage)

Tn M1 85.71%

Tn M2 100%

Tn M3 76%

 The following table shows the v(G) metric value for M1,

M2, M3 methods.

Table 3 Method-v(G) Metric

Method Name v(G)

M1 5

M2 12

M3 3

250 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

The calculation of v(G) metric for Tn;

 1.. () () *v g i m i v g iTn M C (1)

Mv(g) represents v(G) metric value of Method. C represents the

Coverage Percentage

 According to this formula, the following tables shows

the results for T1, T2, T3, T5, T6, T7, T9, T11, T13 test case

in method based calculation.

Table 4.1 Test Cases – Method Metrics

Table 4.2 Test Cases – Method Metrics

Test

Case

Edge

Count
evgb4 ed(G) ev(G) iv(G) Lines_w_Nodes MNT_SEV

T1 1940.69 0 0 28.28 39.19 775.8 23.12

T2 2102.43 0 0 31.57 47.52 824.83 24.73

T3 2028.9 0 0 29.69 43.29 798.51 23.47

T5 1833.59 0 0 33.08 47.92 746.46 26.66

T6 1875.88 0 0 32.45 48.71 756.35 25.72

T7 1889.5 0 0 33.31 49.95 760.45 26.07

T9 2637.53 0.88 1.28 49.3 78.29 1024.65 33.78

T11 1575.69 0 0 26.41 42.96 645.05 20.54

T13 2663.86 0.44 0.73 44.34 63.78 1026.9 33.54

Table 4.3 Test Cases – Method Metrics

Test Case Norm_v(G) Param_Count pv(G)

T1 5.04 27.77 28.28

T2 5.71 31.26 31.57

T3 5.39 27.63 29.69

T5 6.12 38.01 33.08

T6 5.89 33.56 32.45

T7 6.22 34.56 33.31

T9 8.39 54.65 44.94

T11 4.89 36.2 26.41

T13 7.78 52.09 41.7

 An example calculation class metrics for a test case; It is assumed; Tn test case consists C1, C2, C3 classes and has

the coverage percentage shows on the following table.

Test

Case
Branches Call_Pairs v(G) SLOC

vgb10or

evgb4
vd(G) id(G)

T1 59 144.54 43.73 779.01 0 6.26 26.64

T2 76 165.26 54.02 830.04 0 7.01 29.46

T3 69 156.46 49.51 802.61 0 6.62 27.61

T5 74 156.29 53.64 750.87 0 7.62 31.06

T6 77 162.31 54.93 762.83 0 7.29 30.27

T7 80 164.19 56.83 767.53 0 7.68 30.89

T9 130 221.78 87.63 1034.59 1.25 10.31 41.79

T11 67 127.1 46.72 648.48 0 6.03 25.35

T13 97 211.58 69.54 1031.33 0.44 9.61 39.56

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 251

Table 5 Test Cases-Class Coverage Example

Test Case

No

Class Name Coverage

(Percentage)

Tn Cl1 15.71%

Tn Cl2 40%

Tn Cl3 36%

 The following table shows the v(G) metric value for Cl1,

Cl2, Cl3 classes.

Table 6 Class-v(G) metric

Class Name v(G)

Cl1 14

Cl2 12

Cl3 13

The calculation of v(G) metric for Tn;

 1..) () (*v g i n i v g iTn Cl C (2)

Clv(g) represents v(G) value of Class and C represents the

Coverage Percentage

 11,6794vgTn (3)

 According to this formula, the following tables shows

the results for T1, T2, T3, T5, T6, T7, T9, T11, T13 test case

in class based calculation.

Table 7.1 Test Cases-Class Metrics

Test

Case
Avg_v(G) Branches vd(G) Depth id(G) ev(G)

T1 53.48 78.13 7.45 54.69 25.31 28.84

T2 60.19 88.1 8.2 61.26 28.37 32.13

T3 56.48 82.6 7.78 57.49 26.57 30.24

T5 61.5 89.37 8.7 64.16 29.77 33.75

T6 60.51 87.93 8.57 63.02 29.1 33.02

T7 62.19 90.37 8.8 64.74 29.86 33.88

T9 92.74 139.94 11.35 85.95 41.07 49.8

T11 51.12 75.83 6.38 48.82 24.5 28.42

T13 84.7 126.81 10.74 80.08 37.92 45

Table 7.2 Test Cases-Class Metrics

Test

Case
iv(G)

Lack_

Cohesion
MNT_SEV Max_ev(G)

Norm_

v(G)
Max_v(G)

T1 45.14 2727.15 20.39 31.7 6.01 119.94

T2 51.02 3055.72 22.74 34.99 6.63 140.22

T3 47.68 2867.14 21.35 33.1 6.29 129.71

T5 52.24 3208.11 24.28 37.08 7.02 136.31

T6 51.15 3143.82 23.77 35.88 6.91 136.79

T7 52.5 3230 24.38 36.74 7.1 141.69

T9 81.18 4292.54 32.13 86.49 9.2 220.82

T11 45.25 2540.94 19.4 38.41 5.22 100.04

T13 73.7 4069.21 29.61 75.76 8.76 198.66

Table 7-3 Test Cases-Class Metrics

Test

Case
Parent_Count pv(G) RFC Sum_v(G) v(G)

252 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

T1 26.41 28.27 481.38 736.66 53.48

T2 29.7 31.56 546.3 839 60.19

T3 27.81 29.67 495.5 765.56 56.48

T5 31.08 33.08 657.52 954.11 61.5

T6 30.59 32.45 609.79 894.64 60.51

T7 31.45 33.31 620.19 912 62.19

T9 41.02 44.92 943 1425.19 92.74

T11 22.41 26.41 663.74 929.05 51.12

T13 38.4 41.7 818.45 1262.06 84.76

 Meanwhile, a test team including four test engineers has

involved to this study. While all of test cases are executed by

all test engineers, test efforts are saved on test case based.

Arithmetic average is calculated by using these efforts.

Intention of using arithmetic average is minimizing human

factor.

A calculation shows the following table.

Table 8 Test Cases-Test Execute Duration

 Test Case Tester1 Tester2 Tester3 Tester4

Arithmetic

Average

T1 60 54 60 63 59.25

T2 31 25 29 44 32.25

T3 71 69 55 57 63

T5 26 67 53 64 52.5

T6 34 30 22 52 34.5

T7 48 49 56 66 54.75

T9 90 98 101 143 108

T11 31 22 34 36 30.75

T13 65 81 67 72 71.25

Sum 456 495 477 597 506.25

3 Results

All the results of the calculation normalized and ordered

on method based, class based and test effort based.

Table 9 Test Cases Order Comparison

Method Based

Metric Order

Class Based

Metric Order

Test Effort

Based

T9 T9 T9

T13 T13 T13

T7 T7 T3

T5 T5 T1

T6 T6 T7

T3 T3 T5

T2 T2 T6

T1 T1 T2

T11 T11 T11

 As it can be seen from Table 9; the result of the first and

last orders are the same for all the bases. The middle part of

the table shows test cases that not have too many different

results, so the order of them can be ignored.

4 Conclusion And Future Work

 In this study, the relationship between software quality

metrics and test effort is researched. Firstly test cases are

chosen independently. Then chosen test cases are executed for

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 253

the coverage calculation. At the same time, measurements for

chosen metrics are taken for every method and class in the

software under test. For showing the accuracy of proposed

approach, chosen test cases are executed by a test team and

test cases’ execution times are saved. Then the order of test

execution times and metric results are compared. In this

comparison, it can be seen, software product metrics has very

important effect at test execution time. The purpose of this

study is showing test effort estimation can done by using test

coverage and software quality metrics information. Estimation

of test effort for a program can be very fast and objective by

using this relationship.

For future work, we will try this method for more large scale

projects and compare their results.

5 APPENDIX

a. Method-Based Metric Name;

 Following metrics are calculated by method-based.

Table 10 Method Metrics Description

Metric Name Description

Branches An initial edge into a flow

graph and coming out of any

decision.

Call Pairs Executable calls

between methods

ed(G) (ev(G)-1)/(v(G)-1)

Edge_Count Edges represent the flow of

control from one node to

another on a flow graph.

ev(G) Essential Complexity

(unstructuredness

indicator) [8]

evgb4 If ev(G)>4, value is True

id(G) iv(G)/v(G)

iv(G) Module Design

Complexity [8]

Lines_with_Nodes Lines of code with flow graph

nodes

MNT_SEV ev(G)/v(G)

Norm_v(G) Normalized cyclomatic

complexity (v(G) / nl) [7]

nl= Number of lines for the

module (physical count from

start line to end line)

Param_Count Formal parameter count of a

method

pv(G) All unstructured constructs

except multiple entries into

loops are treated as straight-

line code in the module’s flow

graph. Pathological

complexity is equal to the

cyclomatic complexity of the

reduced flow graph. [7]

SLOC Line of Code contains only

code

vd(G) v(G)/(SLOC+MLOC)MLOC=

Line of Code contains both

code ad comment

vgb10orevgb4 if v(G)>10 or ev(G)>4 true

b. Class-Based Metric Name

 Following metrics are calculated by class-based.

Table 11 Class Metrics

DescriptionMetricName Description

Avg_v(G) Average v(G)

Branches An initial edge into a

flow graph and

coming out of any

decision.

Depth Depth (the level for a

class) [6]

ev(G) Essential Complexity

254 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

(unstructuredness

indicator) [8]

id(G) iv(G)/v(G)

iv(G) Module Design

Complexity [8]

Lack_Cohesion Lack of Cohesion of

Methods [6]

Max_ev(G) Maximum Essential

Complexity [6]

Max_v(G) Maximum

Cyclomatic

Complexity

MNT_SEV ev(G)/v(G)

Norm_v(G) Normalized

cyclomatic

complexity (v(G) / nl)

[7]

nl= Number of lines

for the module

(physical count from

start line to end line)

Parent_Count Formal parent count

of a method

pv(G) All unstructured

constructs except

multiple entries into

loops are treated as

straight-line code in

the module’s flow

graph. Pathological

complexity is equal to

the cyclomatic

complexity of the

reduced flow graph.

[7]

RFC Response for a class

[6]

Sum_v(G) Sum of the v(G)

vd(G) v(G)/(SLOC+MLOC)

MLOC= Line of

Code contains both

code ad comment

6 Acknowledgement

The authors would like to thank Software Testing and Quality

Evaluation Center (YTKDM in Turkish) of Scientific and

Technological Research Council of Turkey (TUBITAK in

Turkish) for funding this study.

7 References

[1] Cem Kaner, J. F. (1999). Testing Computer

Software. In J. F. Cem Kaner, Testing Computer

Software (p. 344). Wiley Computer Publishing.

[2] CISA, D. E., & Dekkers, T. (1999).

Testpointanalysis: a method for test estimation.

[3] Heller, R. (2003). An introduction to function point

analysis. Q/P Management Group .

[4] IEEE Std 829-1998, IEEE Standard for Software

Test Documentation . (1998).

[5] Karl S. Mathias, J. H. (1999). The Role of Software

Measures and Metrics in Studies of Program

Comprehension. ACM SE .

[6] Kemerer, S. R. (1994). A Metrics Suite for Object

Oriented Design. IEEE Transactions on Software

Engineering, VOL. 20, No:6 .

[7] McCABE, T. J. (1976). A Complexity Measure.

[8] McCabe, T. J., & Butler, C. W. (1989). Design

Complexity Measurement and Testing.

[9] Nageswaran, S. (2001). Test Effort Estimation

Using Use Case Points.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 255

ABSTRACT

Static Analysis refers to the analysis of computer
programs prior to executing them to reveal potential
problems that need to be fixed before executing the
programs. In this paper, five static analyzers for Java
programs will be examined and compared using three
Java programs, which are randomly selected from a
collection available on the Internet.

Keywords

Static Analyzer, Java, Evaluation, Software Engineering

I. INTRODUCTION

Static analysis is becoming a critical component for
software development. Currently, many software
developers are appreciating the advantages of using
static analyzers to improve software. Static analyzers
function through using techniques from program
analysis, model checking, and automated deduction [3].
Static analysis tools can also be used to automate the
process of identifying violations of security rules [12].

Despite the popularity of static analysis tools for
software flaws discovery, experimental assessments of
the correctness and merits of the output of these tools
are lacking. Ayewah et al. [2] examined the types of
warnings generated and the classification of warnings
into false positives, trivial bugs and serious bugs for
FindBugs, a static analysis tool for Java programs.
They stipulated some perception into why static analysis

tools often uncover true but trivial bugs and some
details about violations throughout the development
lifecycle of software. They further added that there is
little published information regarding the evaluation of
these tools to verify their claims. It is understandable
that companies may prohibit the publication of any
experimental data for commercial tools. However,
publishing such data for open source tools should not be
a problem.

During software development, it is valuable to obtain
early estimates of the defect density of software
components to further improve the quality of software.
Such estimates identify fault-prone areas of code
requiring further testing. It is valuable to collect early
estimates of fault density for software components
throughout the process of software development.
Nagappan et al. [13] presented an empirical
methodology for the early projection of pre-release
defect density based on the outcomes of static analysis
tools. With the aid of two different static analysis tools,
the discovered defects were used to predict the actual
pre-release defect density for Windows Server 2003.
They concluded that there was a strong positive
correlation between the static analysis list of defects and
the pre-release defect density list obtained through
actual testing. There are a number of approaches for
static analysis. Static analysis by Abstract Interpretation
[15] is one such approach. The authors indicated that
this approach offers a considerable assurance and
evidence needed for supporting its findings. They
demonstrated that static analysis must be able to scale
and report few false positives without calling for expert
interference.

Examining the Performance of Java Static
Analyzers

Kevin Daimi and Shadi Banitaan
Department of Mathematics, Computer Science and Software Engineering

University of Detroit Mercy,
4001 McNichols Road, Detroit, MI 48221

{daimikj, banitash}@udmercy.edu

Kathy Liszka
Department of Computer Science

The University of Akron
Akron, Ohio 44325-4003

liszka@uakron.edu

256 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

As mentioned above, public information on evaluating
static analyzers is scarce. An interesting study by Ware
et al. [17] focused on evaluating the degree to which
eight static analysis tools can isolate violations of a
broad set of coding heuristics for increasing the quality
and security of Java SE code. They revealed that a
significant number of security violations were not
detected by any tool. The resulting vulnerabilities can
easily lead to various attacks. Note that three of the
tools used in this study; CheckStyle, Findbugs, and
PMD are further analyzed in our study below.
In this paper, four open source and one commercial
static analysis tools are evaluated. Three levels of
evaluation including general features, performance, and
capabilities are exercised. For this purpose, three
random programs available online, are used. To study
the performance of each tool on unearthing various
fault/violations categories and sub-categories, violations
were temporarily inserted into these programs.
Outcomes of these evaluations are summarized in
various tables.

II. STATIC ANALYSIS TOOLS OVERVIEW

The static analysis tools for Java studied in this paper
are briefly described below.

A. FindBugs

FindBugs is an open source static analysis tool that digs
into class or JAR files looking for potential problems
through matching Java bytecodes against a list of known
bug patterns [9]. The current version of FindBugs
(2.0.2) requires JRE (or JDK) 1.5.0 or later to operate.
However, it can analyze programs compiled for any
version of Java, from 1.0 to 1.8. It is capable of
identifying over 250 potential types of errors. FindBugs
uses real bugs in software, extracts a bug pattern from
those bugs, and develops possible detectors that can
efficiently pinpoint that bug pattern. In other words, it
is based on the concept of bug patterns [5]. The process
is evaluated by trying the recommended detector on
various test cases for that bug pattern [11]. In FindBugs,
bugs are ranked from 1-20, and grouped into the
following categories: scariest (rank 1-4), scary (rank 5-
9), troubling (rank 10-14), and of concern (rank 15-20).
It provides a flexible way for developers to share
information and define and install plugins. It can be
integrated with Eclipse, Maven, NetBeans, Hudson, and
IntelliJ.

B. PMD

PMD is an open-source, rule-based, static source code
analyzer that analyzes Java source code based on

evaluative rules that have been extracted during a given
execution [15]. This tool is equipped with a default set
of rules which can be used to reveal common
development bugs. PMD also supports custom
analyses by allowing users the opportunity to develop
their own (new) evaluative rules. It scans Java source
code looking for potential problems including empty
try, catch, finally, and switch statements, dead code,
suboptimal code, overcomplicated expressions, and
duplicate code. It can be integrated with JDeveloper,
Eclipse, JEdit, JBuilder, BlueJ, CodeGuide,
NetBeans/Sun Java Studio Enterprise/Creator, IntelliJ
IDEA, TextPad, Maven, Ant, Gel, JCreator, and
Emacs. Copeland [6] indicated that Junit tests can be
kept in good order by using PMD].

C. ESC/Java2

The Extended Static Checker for Java version 2
(ESC/Java2) is a programming tool that endeavors to
discover common run-time errors in JML-annotated
Java programs by static analysis of the program code
and its formal annotations. It allows users the flexibility
to control the extent and types of checking that
ESC/Java2 implements by annotating Java programs
with specifically formatted comments called pragmas
[8]. This implies that the ESC/Java2 tool tries to
unearth common run-time errors in Java programs at
compile time [10]. The approach used in ESC/Java2
comprises a range of techniques for statically checking
the correctness of various program constraints.
Extended static checking usually deploys an automated
theorem prover [7]. ESC/Java2 can be integrated with
the Mobius Program Verification Environment, used as
a command-line tool with a simple Swing GUI front-
end, or added as an Eclipse plugin.

D. CheckStyle

Checkstyle is an open source development tool, which
aims to help programmers write Java code that follows
some coding standard [4]. It automates the process of
checking Java code resulting in coding standard
enforcement. Checkstyle is highly configurable and can
support many coding standards. A number of sample
configuration files are supplied for well-known
conventions, such as Sun Code Conventions.
Historically, Checkstyle’s main functionality evolved
around checking code layout concerns, but since its
internal architecture was modified starting in version 3,
more checks for other purposes have been added.
Currently, Checkstyle provides checks that uncover a
number of issues including class design problems,
duplicate code, or bug patterns like double checked
locking. It supports loading a configuration from URL
reference and can be integrated with Eclipse, IntelliJ

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 257

IDEA, NetBeans, BlueJ, tIDE, Emacs JDE, Jedit, Vim
Editor, Maven, and QALab.

E. AppPerfect Java Code Test (AppPerfect)

AppPerfect Java Code Test is a commercial static Java
code analysis tool aimed at automating Java code
review and enforcing good Java coding practices [1].
AppPerfect Code Test analyzes both Java and Java
Server Pages (JSP) source code using a large set of Java
coding rules extracted from experts in the Java
programming field. These rules are grouped into a
number of functional areas such as security,
optimization, and portability. AppPerfect analyzes Java
code and furnishes detailed information about diverse
metrics for the source code, such as number of code
lines, comments lines, complexities of methods, and
number of methods. It provides a number of reports to
describe problems in the source code about through its
user interface. These reports can be exported into
various formats, such as HTML, PDF, CSV, XLS, and
XML. AppPerfect Java Code Test supports IDE
integration with most commonly used IDEs including
Eclipse, NetBeans, IntelliJ, JBuilder and JDeveloper.

III. GENERAL FEATURES COMPARISON

In this section, the five tools are compared using
Eclipse. The criteria used include the total number of
violations found, run time, and memory usage. To this
extent, three randomly selected large high complexity
Java programs from PlanetSourceCode [14] are used.
These programs include the following: 1. A Pong Game,
2. A Basic Calculator Application, and 3. Gtroids
Arcade Shooter [14]. Other programs available on
PlanetSourceCode can be included if needed. The aim
of this random selection was to conclude unbiased
comparison, and provide a set of programs for interested
readers to look at when verifying the outcomes of this
study. The results of the features comparison for the
five tools based on the three programs are summarized
in Tables 1-3. A blank row indicates the tool did not
check the program for some reason. For the Checkstyle
tool, violations refer to warnings.

By observing the tables 1-3 below, we conclude that
AppPerfect is more optimized in terms of run-time and
memory usage than the other tools. This should not
cause any surprise as AppPerfect is a commercial tool.
However, PMD was able to discover more violations
than AppPerfect in two of the programs. Furthermore,
Checkstyle was able to find many warnings and
ESC/JAVA2 found more violations than AppPerfect in
one of the programs.

IV. TOOLS RFORMANCE EVALUATION

Having analyzed the five tools based on the three
criterions; violations, run-time, and memory, a deep-
rooted evaluation will be carried out to reveal the actual
performance of each tool with regards to various fault
categories. For this purpose, various faulty codes are
temporary injected in the three programs. The fault
categories that will be used for this evaluation involves
data faults, control faults, interface faults, measurement
faults, duplicate code, and code convention violations.
Each of these categories is further divided into
subcategories. Detailed analysis is provided in tables 4-
9 below. In these tables, “Y” indicates that the tool is
able to catch such a fault. The performance of these
tools and their analysis are based the examples that were
selected. As the tables reveals, only the stated
violations were investigated. It is possible that the
performance will be different should other violations are
exercised. It is worth noting that most of these
faults/violations were flagged out immediately by
Eclipse IDE for Java even before the tools were applied.
This implies that, for these violations/examples, the
Eclipse IDE for Java behaved as good as the tools
above.

By examining tables 4-9 below, it is obvious that the
commercial tool, AppPerfect, has the best capabilities.
However, it failed to catch the “Variable assigned twice
but never used between assignments” and “long variable
name” faults. As it could be seen, PMD was able to
catch them. Furthermore, both PMD and CheckStyle
were able to find the “Variables/method/class/interface
names have dollar signs” fault when AppPerfect failed
to.

The evaluation of the tools presented in tables 4-9 is
based on the number of faults discovered for each fault
category. For the data faults, PMD performed the best
among the reaming four tools followed by ESC/Java.
With regards to control faults, CheckStyle and PMD
were the best. However, CheckStyle did better. With
regards to catching interface faults, PMD performed
better than ESC.Java. Using “Classes with high
Cyclomatic Complexity” as a criterion, only PMD was
able to detect such a fault. None of the open source
tools was able to uncover the duplicate code faults.
Finally, PMD was superior with regards to code
convention violations.

V. TOOL CAPABILITY ANALYSIS

The third evaluation deals with investigating the
capabilities of each tool. The following five
capabilities are employed for this purpose: test support,

258 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

rule configuration, violation classification, auto fixing,
and metrics analysis. Test support indicates whether the
tool can provide test cases to test the program. Rule
configuration implies that users can add, remove and
modify rules. Violation classification deals with
allocating faults to classes/types. Auto fixing refers to
the automatic correction of some faults. Finally, Metrics

analysis concentrates on extracting simple
measurements (metrics). Table 10 summarizes the
results of this evaluation. Using this table, it is evident
that FindBugs and PMD satisfied three out of five
capabilities. The two open source tools only lacked two
capabilities as compared to the commercial tool.

TABLE I

TOOLS COMPARISON USING PROGRAM-1
Tool Violations Run Time (Sec.) Memory (MB)

FindBugs 12 4 123
PMD 71 3 139
Checkstyle 982* 3 99
ESC/JAVA2
AppPerfect 25 1 44

TABLE II
TOOLS COMPARISON USING PROGRAM-2

Tool Violations Run Time (Sec.) Memory (MB)
FindBugs
PMD 12 4 123
Checkstyle 2049* 2 105
ESC/JAVA2 498 3 194
AppPerfect 93 2 60

TABLE III
TOOLS COMPARISON USING PROGRAM-3

Tool Violations Run Time (Sec.) Memory (MB)
FindBugs
PMD 1593 6 226
Checkstyle 10495* 2 150
ESC/JAVA2 94 8 239
AppPerfect 564 5 108

TABLE IV
ANALYSIS USING DATA FAULTS

Violation Tool Performance
 PMD FindBugs Checkstyle AppPerfect ECS/Java2
Uninitialized local variable N N N Y N
Variable declared but never used Y N N Y N
Variable assigned twice but never used
between assignments Y N N N N

Undeclared variable N N N Y Y
Assigning a variable to itself Y N N Y N

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 259

TABLE V
ANALYSIS USING CONTROL FAULTS

Violation Tool Performance
 PMD FindBugs Checkstyle AppPerfect ECS/Java2
Unreachable code N N N Y N
Empty try/catch/finally/switch blocks Y N Y Y N
Empty if/while statements Y N Y Y N
Method calls in loop N N N Y N
Switch case does not cover all cases N N N Y N
Array length in loop condition N N N Y N
Empty for statement N N Y Y N
Unnecessary do while loop N N N Y N

TABLE VI
ANALYSIS USING INTERFACE FAULTS

Violation Tool Performance
 PMD FindBugs Checkstyle AppPerfect ECS/Java2

Mismatched parameter type N N N Y Y
Mismatched parameter number N N N Y Y
Unused parameter Y N N Y N
Uncalled methods N N N Y N
Unnecessary return Y N N Y N
Unused imports Y N N Y N
Unused public classes N N N Y N
Unused public field N N N Y N

TABLE VII
ANALYSIS USING MEASUREMENT FAULTS

Violation Tool Performance
 PMD FindBugs Checkstyle AppPerfect ECS/Java2

Classes with high Cyclomatic
Complexity Y N N Y N

TABLE VIII
ANALYSIS USING DUPLICATE CODE FAULTS

Violation Tool Performance
 PMD FindBugs Checkstyle AppPerfect ECS/Java2

Copied/pasted code (could imply
copied/pasted bugs) N N N Y N

Methods have same name N N N Y N

260 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

TABLE IX
ANALYSIS USING CODE CONVENTION FAULTS

Violation Tool Performance
 PMD FindBugs Checkstyle AppPerfect ECS/Java2

Method names start with capital letter Y Y Y Y N
Short method name Y N N Y N
Long variable name Y N N N N
Class name starting with lower case
character Y N Y Y N

Variable/method/class/interface names
have dollar signs Y N Y N N

For loops that could be while loops Y N N Y N
If statement without curly braces Y N Y Y N
Incomplete parts of for N Y N Y N

TABLE X
TOOLS CAPABILITY ANALYSIS

Tool Capability
 Test Support Rule Configuration Violation

classification
Auto Fixing Metrics Analysis

PMD Y

 Y

 Y

 N

 N

FindBugs Y

 Y

 N

 N

 N

Checkstyle Y Y

 Y

 Y

 Y

AppPerfect Y

 N

 N

 N

 N

ESC/Java2 Y

 Y

 Y

 N

 N

\

TABLE XI
VIOLATION COVERAGE STATISTICS

Violation Category Tool
 PMD FindBugs Checkstyle AppPerfect ECS/Java2

Data Faults 3/5 0/5 0/5 4/5 1/5
Control Faults 2/8 0/8 3/8 8/8 0/8
Interface Faults 3/8 0/8 0/8 8/8 2/8
Measurement Faults 1/1 0/1 0/1 1/1 0/1
Duplicate Code Faults 0/2 0/2 0/2 2/2 0/0
Code Convention faults 7/8 1/8 4/8 6/8 0/8
Total Coverage 20/32 1/32 7/32 29/32 3/32

VI. VIOLATION COVERAGE STATISTICS
Statistics are very important for the analysis and
presentation of the collected data. Table 11
demonstrates the fault coverage statistics based on the
data collected from tables 4-9. The denominator
represents the number of subcategories for the category
in question and the numerator refers to how many fault
subcategories the tool was able to successfully detect.
Note that in Table 11, “32” represents the total number

of violations/faults (total number of fault subcategories).
Once again, PMD proved to be reasonable with regards
to the total number of violations sub-categories. By
excluding the commercial tool, it is clear PMD is the
best and Checkstyle is second best.

VII. CONCLUSIONS
Static analyzers can locate potential problems in
software code and facilitate good practices among

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 261

software designers. In an attempt to assist software
developers in selecting suitable static analyzers for their
projects, five static analyzers were evaluated and
compared. The result of this evaluation indicated that
some of the open source tools can be good enough in
discovering problems and are comparable to
commercial ones. Based on the Java programs used and
examples of faults introduced, it is concluded that
PMD’s performance proved to be the best. It is possible
that different results might be produced when using
more programs and introducing additional examples on

further fault categories. Furthermore, it was interesting
to discover that the Eclipse IDE for Java was able to
unearth almost all the fault sub-categories immediately
after typing the statements in prior to using any of the
static analyzers.

Future improvements will concentrate on including
more open source tools, expanding the fault categories,
deploying more Java programs, and checking Java
coding security.

ACKNOWLEDGEMENT

The authors would like to thank Xiaodan Lu and
Xiaochen Zhang for their help.

REFERENCES

[1] AppPerfect Java Code test, AppPerfect
Corporation, Available:
http://www.appperfect.com/products/java-code-
test.html.

[2] N. Ayawah, and W. Pugh, Evaluating Static
Analysis Defect Warnings on Production Software,
in proc. 7th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and
Engineering (PASTE’07), San Diego, California,
USA, 2007, pp. 1-7.

[3] T. Ball, and S. K. Rajamani, The SLAM Project:
Debugging System Software via Static Analysis, in
Proc. the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages
(POPL’02), Portland, OR, USA, 2008, pp. 1-3.

[4] Checkstyle 5.6, Available:
http://checkstyle.sourceforge.net, September 2012.

[5] B Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W.
Pugh, and K. Stephens, Improving Your Software
Using Static Analysis to Find Bugs, in proc. ACM
SIGPLAN International Conference on Objected
Oriented Programming, Systems, Languages, and
Applications (OOPSLA’06), Portland, Oregon,
USA, 2006, pp. 637-674.

[6] T. Copeland, PMD Applied: An Easy-to-Use Guide
for Developers, Centennial Books, 2005.

[7] ESC/Java, Wikipedia, Available:
http://en.wikipedia.org/wiki/ESC/Java, December
2012.

[8] ESC/Java2 Summary, Available:
http://kindsoftware.com/products/opensource/ESCJ
ava2, May 2012.

[9] FindBugsTM – Finds Bugs in Java programs,
Available: http://findbugs.sourceforge.net , 2012.

[10] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J.
B. Saxe and R. Stata. "Extended Static Checking
for Java," in Proc. the Conference on Programming
Language Design and Implementation, Berlin,
Germany, pages 234--245, 2002.

[11] D. Hovemeyer and W. Pugh. Finding Bugs is Easy,
ACM SIGPLAN Notices, Vol. 39, No. 12, pp. 92-
106, 2004.

[12] R. Krishnan, M. Nadworny, and N. Bharill, “Static
Analysis Tools for Security Checking in Code at
Motorola,” Ada Letters, Vol. 28, No. 1, pp. 76-82,
2008.

[13] N. Nagappan, and T. Ball, Static Analysis Tools as
early Indicators of Pre-Release Defect Density, in
Proc. the 27th International Conference on Software
Engineering (ICSE ’05), St. Louis, MO, USA,
2005, pp. 580-586.

[14] PlanetSourceCode, Available: http://www.planet-
source-code.com.

[15] PMD, Available: http://pmd.sourceforge.net, May,
2012.

[16] A. Venet, and M. Lowry, Static Analysis for
Software Assurance: Soundness, Scalability, and
Adaptiveness, in proc. Workshop on Future of
Software Engineering Research (FoSER 2010),
Santa Fe, New Mexico, USA, 2010, pp. 393-396.

[17] M. Ware, and C. Fox, Securing Java Code:
Heuristics and an Evaluation of Static Analysis
Tools, in proc. SAW ’08, Tucson, Arizona, USA,
2008, pp.12-21.

262 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Verification and Validation Experience of Safety-grade
Optical Modem for Core Protection Calculator (CPC)

Jang Yeol Kim1, Kwang Seop Son1 , Young Jun Lee1 , Se Woo Cheon1, Kyoung Ho Cha1,

Jang Soo Lee1, Kee Choon Kwon1

1Instrumentation and Control / Human Factors Division, Korea Atomic Energy Research Institute,
989-111 Daedeok-daero, Yuseong-gu, Daejeon, Republic of Korea 305-353

Abstract - In general, an optical modem used in industry is
composed of an integral system for the Transmitter/Receiver.
However, a safety-grade optical communication modem in a
nuclear safety system is composed of send-only service or
receive-only service. A send-only optical modem of the
control rod signal transmission is in charge of the
transmitting function in the form of frequency-converted
optical signals to the receive-only optical modem as
frequency-converted optical signals in the range of an input
voltage of 0V to 10V. The receive-only optical modem of the
control rod signal receiving is in charge of the receiving
function toward the Analog Input (AI) Gate through the Core
Element Assembly Computer (CEAC) Analog Input (AI) Surge
card in the form of frequency-converted optical signals to the
sending-only optical modem as frequency-converted optical
signals in the range of an input voltage of 0V to 10V. This
paper describes the results of a software verification and
validation for a send-only optical modem and receive-only
optical modem, respectively. All tests were performed
according to the test plan and test procedures. Functional
testing, performance testing, event testing, and scenario-based
testing for a safety-grade optical modem of a Core Protection
Calculator in a Korea Standard Nuclear Power Plant as a
thirty-party verifier was performed successfully.

Keywords : Software, Qualification, Verification and
Validation, System Test, Safety-grade Optical Modem, Core
Protection Calculator

1 Introduction
 A Plant Protection System mainly consists of a Reactor
Protection System, Engineered Safety feature-Component
Control System, and Core Protection Calculator. An optical
modem is a communication modem. It’s major function
sending and receiving the control rod signal between the Core
Protection Calculator (CPC) and Core Element Assembly
Computer (CEAC), as shown in Figure 1.

In addition, the following items are among their functions as a
convenience facility.

- A display the driving voltage status

- Failure status display function by a self-diagnosis

- Real-time monitoring function

- Console port for real-time monitoring

- Providing data storage for certain amount of time

- Display the input and output voltage

To distinguish between an optical modem for sending and
receiving, respectively, the aim is to satisfy the licensing
requirements of a unidirectional link and deterministic
communication.

This paper describes the results of software verification and
validation for a send-only optical modem and receive-only
optical modem, respectively. This paper also describes the test
environment, test components and items, a traceability
analysis, and system tests as a result of system verification and
validation based on Software Requirement Specification
(SRS) for a safety-grade optical modem of a Core Protection
Calculator (CPC) in a Korea Standard Nuclear Power Plant
(KSNP), and Software Design Specification (SDS) for a
safety-grade optical modem of a CPC in KSNP.

 Following sections that detail each category of qualification,
i.e. we will mainly focus on how the verification and
validation of the optical modem software was conducted on a
Core Protection Calculator (CPC).

Figure 1. An overview of optical modem for sending and
receiving of control rod signal.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 263

2 Review of the licensing suitability
 Largely, there are two regulatory frameworks USNRC
based on the IEEE standard and IAEA-based IEC standard.
In the process of developing this system, we met the USNRC
based Code and Standard criteria. The criteria of safety-
critical software qualification are based on the following Code
& Standard framework where the most recent edition is used
for each design output and verification. The thick line box in
figure 2 is closely related to software qualification criteria [1].

Figure 2. Code and standard framework for qualification of

safety-critical system.

3 Well-structured qualification
organization

 The purpose of the licensing suitability review confirms
whether the software requirements that coincide with the
criteria of the software, performance and safety requirements
defined in the safety-grade software requirement statement are
suitable from a Code & Standard and technological viewpoint.
According to the NUREG-0800 : SRP/BTP-14 criteria
(USNRC, 1997), they must satisfy all the functionality and
process characteristics.

Whether the contents described in the requirement
specifications from the viewpoint of the functional and
process characteristics are correct, consistent and complete is
determined in the software requirement phase. It also verifies
whether the formula, unidirectional link, and deterministic
communication exist in the algorithm and control logic, etc.
This licensing suitability has also been applied to the software
design phase using the same approach.

Techniques applicable to digital instrumentation and control
software are as follows.

In fact, in the case of a large system, 11 plan documents
should be made in the planning phase. However, in the case of
a small embedded system such as safety-grade optical modem,
four planning documents are enough, such as a Software

Quality Assurance Plan (SQAP), Software Safety Plan
Description (SSPD), Software Verification and Validation
Plan (SVVP), and Software Configuration Management Plan
(SCMP), as shown in Figure 3.

To qualify for safety-critical software, the defined
responsibilities among the assurance organizations are very
important. The Development team is responsible for
producing design output during the software life cycle. The
Software Verification & Validation (SVV) and Software
Safety Analysis (SSA) are responsible for a safety evaluation
on the produced design output by the development team. First,
prior to use a Commercial Off-The Shelf (COTS) software
tool should be dedicated by quality assurance organization
which is called COTS software dedication. The Software
Configuration Management under Software Quality Assurance
is responsible for configuration identification, status
accounting, revision control, and version control on all of the
design output and its verification results, respectively. The
well-structured organization suggested in this paper is as
shown in Figure 3 [1][2].

(SPM : Software Program Manual, SDP: Software Development Plan, SQAP:
Software Quality Assurance Plan, SVVP: Software Verification and
Validation Plan, SCMP : Software Configuration Management Plan,
SO&MP : Software Operation and Maintenance Plan, SSPD : Software
Safety Plan Description, CDP: Commercial Off the Shelf Dedication Plan,
COTS: Commercial Off The Shelf Software, SQA: Software Quality
Assurance, SVV: Software Verification and Validation, SCM: Software
Configuration Management), SR: Software Review, SA: Safety Analysis,
FCA: Functional Configuration Audit, PCA: Physical Configuration Audit)

Figure 3. Division of Responsibility of Well-structured

qualification for safety-grade system

All of the designs and verifications were reviewed and
evaluated to determine whether they meet the international
standard criteria from licensing to compiling.

264 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

4 Methods and Results
 In this section, the test methods and test results are
described. Above all, in the case of embedded systems, it is
important whether the system test results on the host
environment are satisfied with target board. Functional tests,
performance tests, event tests and scenario tests for a safety-
grade optical modem have been performed. Coverage of the
range value, boundary value, and equivalent value were also
measured.

4.1 Verification test environment
 Application firmware was developed under GNU /Linux
Ubuntu 11.10 of AMD64 environments. To build a system
test with the host environment, firmware was ported on a
target board of an optical modem using USBISP. To measure
the embedded software of a safety-grade optical modem, an
AVR USBISP V3.0 and avrdude 5.10 utility were used as
shown in Figure 4.

 Figure 4. Verification test environments of safety-grade optical

modem

4.2 Test components and test items
 The methods for testing are shown here. An integration
Test and System Test were carried out in order. We checked
the coverage measurement for the statement coverage, and
PATH coverage. The generations of test cases were made for
the range value, boundary value, equivalent value, and error-
injection value.

In the case of an embedded system, because it was difficult to
set up a target testing environment, (for example,
commercially available tools such as Cantata ++ and LDRA
etc.), commercially available testing tools were partially used
and the software quality evaluation function of LDRA was
applied to the source code quality measurements mostly.

The test components and items are as shown in Table 1.

Table 1 Test components and test items for safety-grade optical
modem of CPC

NO Category Test
Components

Test Items

1. Functional
test

Initial setup Variable of Hardware and Software
- Optical Modem
- LED
- Timer
- WDT etc.

Optical signal
translation

Voltage-Optical signal

Optical signal - Voltage
Data
communication

Sending Only (Unidirectional)
Receiving Only (Unidirectional)

Status
indication

POWER
TX
RX
FAULT

Setup Gain, Offset
Protocol Protocol Analysis (Packet)

CRC8
2. Performance

test
Accuracy Accuracy ±0.05%
Communication
speed

- 4ms
- 57600bps

3. Event test Fault injection Power Fail, Abnormal State
- Signal short
- CRC
- Timeout
- Frame Error
- Buffer overflow

4. Scenario test Continuous
operation test

About three month burn-in test

In particular, the performance requirements listed above

should satisfy the purchase order requirements of Korea
Hydro and Nuclear Power Co. Ltd (KHNP), as follows.
- Response time should be less than 4ms.
- Full Range Accuracy within ± 0.05% or better should be
satisfied.
- Unidirectional buffering and deterministic communication
should be satisfied.

4.3 Test results

For the initialization setup, the optical signal conversion
capabilities, communication capabilities and accuracy, display
status indication, parameter setup, and protocol was carried
out in functional tests.

The Performance tests were carried out as follows;
- Response time : 4ms
- Accuracy of ± 0.05%
- 57600 bps transfer rate
- Communication time between ADC (Analog Digital

Converter) and MCU (Main Control Unit)
- Communication time between MCU and DAC (Digital to

Analog Converter)
- Optical modem transmitter Offset
- Gain adjustment between MCU and DAC
- TWI (Two Wire Interface) communication as an optical

transmitter
- TWI communication as an optical receiver
- Communication between MCU of optical modem sender

and external clock

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 265

- Communication between MCU of optical modem receiver
and external clock

- Status of communication tracking between MCU of
optical modem receiver and optical receiver component

The verification results of the performance test of a 57600
bps transfer rate and response time (4ms) among several
performance tests are shown in Figure 5 and Figure 6,
respectively.

To summarize the main points here, for all the software life
cycles, V&V PASS/FAIL criteria were established as were
V&V input criteria, and V&V Tasks and V&V exit criteria.

Figure 5 Verification result on transfer rate of 57600bps

Figure 6. Verification result of 4ms response time

Figure 7 Continuous tests by triangular wave

Event tests were performed based on the error injection, and
in particular, a signal short-circuit among several error
injections has been tested successfully.

Signal source of triangular wave under the verification test
oracle equipment were used, as shown in Figure 7. A scenario-
based burn-in test was carried out for three month and two
weeks continuously.

A test case generation, test procedure, and test execution
were done, and finally, all the results from the testing were
documented and reported.
 The picture here demonstrates the integration and system test.
Mainly, a functional test, performance test and, error-injection
test were conducted.

5 Conclusions
 All tests were performed according to the test plan and
test procedures. Functional testing, performance testing, event
testing, and scenario based testing for safety-grade optical
modem of Core Protection Calculator in Korea Standard
Nuclear Power Plant as a thirty-party verifier were
successfully performed. We confirmed that the coverage
criteria for a safety-grade optical modem of a Core Protection
Calculator are satisfied using a traceability analysis matrix
between the high-level requirements and lower-level system
test case data set. To recap our points, we have completed
verification for all software life cycles from the planning
phase to system test phase. Unfortunately, we had some
trouble in the beginning, and faced some difficult situations.
However, we are thankful that communication and unification
between the developers and verifiers helped us finish our
project successfully.

6 References
[1] Jang-Yeol Kim, Soon-Gohn Kim, “Software
Qualification Approach for Safety-critical Software of the
Embedded System”, The 2012 International Conference on
Future Generation Communication and Networking (FGCN),
Kangwondo Korea, December 16-19, 2012

[2] J. Y. Kim, Kee-Choon Kwon, “The Commercial Off
The Shelf(COTS) Dedication of QNX Real Time Operating
System(RTOS),” International Conference on Reliability,
Safety and Hazard-2010, Mumbai India, December 14-16,
2010.

[3] J.Y. Kim, S.W. Cheon, J.S. Lee, Y.J. Lee, K.H. Cha,
and Kee-Choon Kwon, “Software V&V Methods for a Safety
Grade Programmable Logic Controller,” International
Conference on Reliability, Safety and Hazard-2005, Mumbai
India, December. 1-3, 2005.

[4] K.H. Cha , J.Y. Kim, S.W. Cheon, J.S. Lee, Y.J. Lee,
and Kee-Choon Kwon, “Software Qualificaiton of a
Programmable Logic Controller for Nuclear Instrumentation

266 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

and Control Applications,” 2006 WSEAS International
Conferences(ISCGAV’06), Crete, August 2006.

[5] 10CFR 50 Appendix A,4/94, “General Design Criteria”

[6] ASME NQA-1-1997 “Quality Assurance Requirements
for Nuclear Facility Applications”

[7] USNRC Reg. Guide 1.152, Rev. 02, 2006, “Criteria for
Programmable Digital Computers System Software in Safety
Related Systems of Nuclear Power Plants”

[8] USNRC Reg. Guide 1.172, Rev. 00, Jul. 1997,
“Software Requirements Specifications for Digital Computer
Software Used in Systems of Nuclear Power Plants”

[9] IEEE Std. 7-4.3.2-2003, “Standard Criteria for Digital
Computers in Safety System of Nuclear Power Generating
Stations”

[10] IEEE Std. 829-1998, “IEEE Standard for Software Test
Documentation”

[11] IEEE Std. 1008-1987, “IEEE Standard for Software
Unit Testing”

[12] IEEE Std. 1012-1998, “IEEE Standard for Software
verification and validation”

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 267

Findings of Expert Validation and Review of the

Technology Enhanced Interaction Framework

K. Angkananon
1
, M. Wald

2
, and L. Gilbert

2

Electronic and Computer Science, University of Southampton, Southampton, UK

Abstract - A Technology Enhanced Interaction Framework

has been developed to support designers and developers

designing and developing technology enhanced interactions

for complex scenarios involving disabled people. Issues of

motivation, time, and understanding when validating and

evaluating the Technology Enhanced Interaction Framework

were identified through a literature review and questionnaires

and interviews with experts. Changes to content, system, and

approach were made in order to address issues identified. A

detailed analysis of the expert review and validation findings

supported the view that the TEIF could help

designers/developers design technology solutions in complex

situations when disabled people are involved. The next step

will be to run a motivating experiment to evaluate how and in

what ways the framework helps designers/developers.

Keywords: validation; expert review; user evaluation;

framework; interaction

1 Introduction

 This paper focuses on the findings of expert validation

and review of the Technology Enhanced Interaction

Framework (TEIF) adapted from and extending the work of

Dix [1] and Gaines [2] to support technology developers and

designers designing and developing technology enhanced

interactions for complex scenarios involving disabled people.

Previous papers have explained: the detailed rationale behind

the TEIF and a comparison with existing Frameworks [3]; the

development of a seven step prototype method and process

[4] to help technology designers/developers understand and

apply the TEIF; and an example of how the TEIF could be

used to develop a mobile web solution [5]. An expert

validation and review was designed and involved a renowned

professor in Human Computer Interaction (HCI), three

technology designer/ developer experts and three accessibility

experts to confirm that the TEIF could help technology

designers/developers design technology solutions in complex

situations when disabled people are involved. The ways in

which the TEIF helps technology designers/developers will

be investigated in future work through user evaluations using

modifications to the TEIF and its associated method and

process based on the expert review. Section 2 explains the

TEIF. Section 3 describes the example scenario. Section 4

presents part of the explanation of the technology solution.

Section 5 explains the research methodology. Section 6

discusses the findings and Section 7 summarises conclusions

and describes future work.

Figure 1 The Technology Enhanced Interaction Framework

2 Technology Enhanced Interaction

Framework

 The TEIF supports technology developers and designers

designing and developing Technology Enhanced Interactions

involving people, technology, and objects, and has seven

main components as shown in Table 1 and an architecture

shown in Figure 1. The seven step prototype method and

process consists of: a scenario; requirement questions,

answers, and explanation to gather requirements; technology

suggestions based on the answers from the requirement

questions; a scenario technology solution; interaction

diagram; use case diagram and the seventh and last step is the

explanation of the technology solution. The requirement

question numbers are shown next to the relevant

subcomponents in Table 1.

3 Technology Suggestion Table

 Technology suggestions are provided to help design a

technology solution to a scenario. Some of the technology

suggestions for the example scenario are shown in Table 2.

The technology suggestions are based upon an analysis of

answers to the requirement questions. Note that the column

furthest to the right (Total score) shows the number of

scenario requirements met by each technology suggestion.

4 Example Scenario

 The following scenario describes some problems faced

by hearing impaired visitors at a museum and is used to

provide experts and users with requirements for a technology

solution to be developed using the Framework.

People

direct

communication

Technology

Objects

control

 inform
ation retrieval

co
nt

ro
l,

in
fo

rm
at

io
n

tra
ns

m
is
si
on

 &
 s
to

ra
ge

te
ch

no
lo

gy
-m

ed
ia

te
d-

in
fo

rm
at

io
n

re
tri

ev
al

control, information transmission & storage

Information retrieval, technology-mediated-

communication

deixis

deixis

direct

interaction

direct

interaction

technology-mediated-

interaction

268 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Table 1 Technology Enhanced Interaction Framework

Main

Component

Main Component of Technology Enhanced Interaction Framework

Sub-component Example

People

Role (3, 4, 11)

A person has a role when communicating with others (e.g. presenter, audience, peer). Roles normally

come in pairs (e.g. speaker and audience, teacher and student or owner and visitor) and peer to peer

(e.g. student and student or visitor and visitor).

Ability/

Disability (5, 6, 7,

8, 9, 10)

People have abilities and disabilities which can affect their use of technology or understanding of

language and which can lead to communication breakdown (e.g. physical, sensory, language, culture,

communication, Information Technology (IT)).

Objects

Dimension Objects have 2 dimensions (2D) or 3 dimensions (3D), and a 3D object may have a 2D representation.

Property Objects have colour, shape and size.

Content (15)

Objects have content which is human readable (text, pictures, audio, video) and machine readable (QR

code, AR tag, barcode, RFID tag, NFC).

Technology

Electronic (12,13,

19)

Electronic technology has stored information, is online (e.g. internet, phone network) or offline (e.g.

not connected to the internet or phone network), and is mobile (e.g. smartphone) or non-mobile (e.g.

desktop computer).

Non-electronic
Non-electronic technology is used to store information in objects (e.g. writing with a pen on paper)

and is mobile (e.g. pen) or non-mobile (e.g. full-size desktop typewriter).

User Interface People interact with technology through its user interface (e.g. touch screen, keyboard).

Application

or Service (14)
Electronic technology is an application (e.g. dictionary) or a service (e.g. weather forecast).

Cost Technology has cost (e.g. of hardware, software, maintenance).

Interactions

and

Communication

People-People

(P-P) (11)

People communicate verbally (speak, listen, ask, answer) and non-verbally (lip-read, smile, touch,

sign, gesture, nod). When communicating, people may refer (speak or point) to particular objects or

technology – this is known as deixis.

People-Objects

(P-O) (11)

People interact with objects for two main purposes: controlling (e.g. touch, hold or move), and

retrieving information (e.g. look, listen, read, in order to get information or construct personal

understanding and knowledge).

People-Technology

(P-T) (11)

People control technology (e.g. hold, move, use, type, scan, make image, press, swipe) and transmit

and store information (e.g. send, save, store, search, retrieve).

People-Technology

-People (P-T-P) (2)

People use technology to transmit information to assist communication with (e.g. send sms, mms,

email, chat, instant message) other people.

People-Technology

-Objects (P-T-O)

(2)

People use technology (e.g. point, move, hold, scan QR codes, scan AR tag, use camera, use compass)

to transmit, store, and retrieve information (send, save, store, search, retrieve) to, in, and from objects.

Time/Place
Place Same and different time and place yield four categories: same time (ST) and same place (SP),

different time (DT) and same place (SP), different time (DT) and different place (DP), same time (ST)

but different place (DP). Time

Context

Location (16)
Location affects the use of technology (e.g. indoors, outdoors). For example GPS does not work well

indoors.

Weather

Condition (17)

Weather condition may affect the use of technology (e.g. rainy, cloudy, sunny, windy, hot, cold, dry,

wet). For example, the mobile phone screen doesn’t work well in sunshine.

Signal Type

and Quality
Signal type can affect the quality of electronic technology (e.g. broadband, GPS, 3G, 4G).

Background

Noise (17)

Background noise can affect the communication particularly for hearing impaired people (e.g.

background music, crowded situation).

Lighting (17) Light can affect the interaction (e.g. Inadequate light, too bright).

Interaction

Layer

Culture (6, 7)
Cultural layer includes countries, traditional, language and gesture (e.g. “hello” is a normal greeting

used in the culture).

Intentionality (1) Intention layer involves understanding, purpose and benefit (e.g. the intent is a greeting).

Knowledge
Knowledge layer involves facts, concepts, procedures, and principles (e.g. how to spell the word

“hello”).

Action
Action layer involves actions and behaviours (e.g. pressing the correct key and not hitting

neighbouring keys).

Expression
Expression layer describes how actions are carried out (e.g. whether action is correct, accurate,

prompt).

Physical
Physical layer is the lowest layer at which people interact with the physical world (e.g. the button is

depressed and so sends the electronic code for the letter to the application).

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 269

 Suchat Trapsin allocated some parts of his house to

become the Museum of Folk Art and Shadow Puppets, in

Thailand. There are exhibits of shadow puppets inside the

museum, but there is no information provided in text format

because Suchat normally explains the history and tradition in

Thai by talking to visitors. He presents the same information

in the same order every time. Chuty (who has been hearing

impaired since birth) and her parents (who have some

hearing loss due to their age) are local people who visit the

museum. Suchat starts the talk by explaining about the

exhibits. During the talk, Chuty and her parents find it very

difficult to hear Suchat clearly. Chuty asks Suchat some

questions about the exhibits. Suchat answers the questions,

but Chuty misses some of the words. While Chuty and her

parents are watching the shadow puppet show, they cannot

hear the conversation clearly because of the background

music which is part of the show. It is also fairly dark which

makes lip-reading very difficult for them. Suchat would like to

have a technology solution that makes it easier for Chuty and

her parents to understand him. There is good Wi-Fi at the

museum so he would like to use Chuty’s and her parents’

smartphones to keep his costs low.

5 Explanation of Technology Solution

The explantation of the technology solution is:

From the Scenario Technology Solution, Suchat has a role

in the communication which is important because he can

control technology to send an instant message to Chuty and

her parents’ phones to make them vibrate to let Chuty and her

parents know when the conversation starts. The technology

solution selected to enable this is instant messaging which

was chosen over SMS. Instant messaging is suggested because

it is free of cost using wireless and smartphones. Moreover, it

can also vibrate Chuty’s and her parents’ smartphones which

is better than turning lights in the room on and off to notify

them as this may not be noticeable in sunlight. Captions can

be of value to everybody, especially people with no useful

hearing, and were selected as the solution of choice. Thai

speech recognition is not very accurate for spontaneous

speech and therefore as Suchat already knows what he plans

to say the best solution is pre-prepared summary captions. As

he presents his talk Suchat controls the changing pre-

prepared captions on the mobile website using his

smartphone. He has an application on his phone that can send

a message to the webserver to display the next caption on the

webpage that Chuty and her parents are looking at. This

solution was chosen over using a pre-prepared captioned

video as that would not have supported live face to face

communication and interaction between Suchat and his

visitors. Chuty and her parents ask spontaneous questions

about some of the exhibits in the museum. Suchat will not

have been able to pre-prepare the order of the captions. In

this case, Suchat can introduce machine readable QR codes.

QR codes were selected rather than other possible

approaches (e.g. barcodes, RFID tags, image recognition,

typing a code number) because they are simple, cheap, quick

and work with smartphones using free software to provide a

link to information on a mobile website.

6 Explanation of Technology Solution

6.1 Pilot Study

 Validation and review of the framework by experts was

undertaken using an online system before the next step of

engaging with the users (technology designers/developers).

The combination of online questionnaire on the system and

interviewing were chosen because the experts need some time

to complete the questionnaire, they can choose their preferred

Table 2 Technology Suggestions

Technology

suggestions

Which scenario requirements the technology meets

1
a.

im
p
ro

v
e

co
m

m
u
n

ic
at

io
n

2
a.

sa
m

e
ti

m
e/

 s
am

e
p
la

ce

3
a.

p
re

se
n

te
r-

au
d

ie
n
ce

6
b

.
sp

ea
k
er

 s
p

ea
k
s

T
h
ai

7
b

.
p
re

se
n

te
r

sp
ea

k
s

T
h
ai

9
a.

 h
ea

ri
n

g
 i

m
p
ai

re
d

1
1
a.

 p
eo

p
le

 –
 p

eo
p

le

1
1
b

.
p

eo
p

le
 -

 o
b

je
ct

s

1
2
a.

o
n

li
n
e

te
ch

n
o
lo

g
y

1
3
a.

m
o
b

il
e

d
ev

ic
es

1
4
a.

p
re

-p
re

p
ar

ed

sp

ee
ch

1
6
a.

 i
n
d

o
o

r

1
7
a.

 n
o
is

e

1
7
e.

in
ad

eq
u

at
e

li
g

h
ti

n
g

1
8
a.

 l
o

w
 c

o
st

 s
o

lu
ti

o
n

1
9
a.

 w
o

rk
 w

it
h

 s
m

ar
t

p
h
o
n

es

T
o

ta
l

S
co

re

Mobile web site 16

Pre-prepared caption/subtitle 16

Quick Response Code 16

Instant messaging × 15

Vibrating alert × 15

Speech recognition × × × × 12

270 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

time and place and also can stop and return to the

questionnaire whenever they want. Using the online

questionnaire helps experts to see a prototype of the system

so they can give more suggestions or comments about how to

design the layout of the system. However, it might result in

confusion between validating or reviewing the questionnaire

and the system.

 Therefore, in the analysis of the results it was important

to note whether the comments were about the system or the

framework. For example, in the pilot test respondents gave

comments about the slow response of the online system,

which is not an issue about the content. The online

questionnaire makes it easy to analyse the data and read the

comments compared to the paper based system but doesn’t

help when the expert requires clarification of the questions or

misunderstands some points. Therefore, the study also used

the interview methods to discuss with the experts about any

unclear information. Having constructed the questionnaire, it

is important to pilot it before giving it to experts to validate

and review as it is difficult even for an experienced

questionnaire designer to get a questionnaire completely right

at the first time. To pilot the validation and review, one

experienced accessibility expert and two experienced

technology designers/developers took the online

questionnaire through the system. Based on their responses

changes were made to improve the questions, response times

and layout as summarised in Table 3. The pilot study

participants were shown all these changes and confirmed that

they were satisfied with them.

6.2 Triangulation

Triangulation is a technique used to ensure the validity

and credibility of the results [6-8] and methodological

triangulation was used based on theory of existing

frameworks, expert validation and review, and user

evaluation. Validation is an important process particularly

when an instrument is being developed to measure the

construct in the context of the concepts being studied [6].

Without validation, untested data may need revision in a

future study [9]. Checking reliability normally comes at the

question wording and piloting stage as if an item is unreliable,

then it must also lack validity [9, 10]. An expert review is a

process asking the opinions, suggestions, feedback or

comments from experts. For example, subject matter experts

are asked to check content of questionnaires or

appropriateness of wording and terminology of items [11].

The validation of the Technology Enhanced Interaction

Framework was considered by two groups of experts:

technology designer/developer experts and accessibility

experts. The technology design experts focused on the main

and sub-components while accessibility experts focused on

checking the accessibility aspects. In addition the opportunity

arose to discuss the TEIF with a professor who is world

renowned in the HCI field. After the expert review and

validation user evaluation involving real users (technology

designers/developers) will be used to evaluate the Technology

Enhanced Interaction Framework.

An important issue that can arise when users evaluate a

new idea or concept using a prototype system is that they

evaluate the system rather than the idea. Using a low fidelity

prototype (e.g. paper) rather than a high fidelity prototype

(e.g. a functioning website) can sometimes help the user focus

on the idea rather than the system. However some users may

find it more difficult to evaluate the potential of an abstract

concept or idea than a concrete product [12].

7 Expert Validation and Review Findings

and Discussion

If the majority of experts answer “Yes” to the questions

this will be considered as a successful validation. The

following sections describe the seven steps in validating and

reviewing the Framework (section 7.1), method (section 7.2

and 7.3) and examples how to apply the Framework (section

7.4 - 7.7):

Table 3 Pilot Study Findings

Category of changes Result of changes

Content

Spelling and grammar mistakes Correct and more understandable

Rewrite instructions Clearer

Rewrite descriptions Clearer

Add explanation of the technology

suggestion tables

Help respondents understand why technologies have ticks or crosses in cells corresponding to

requirements

Improve content Make it clear and understandable without assuming knowledge

Change the image tables to html tables Make the table accessible, now can copy the content in order to make change, can link to the

websites were provided, can provide explanations in tooltip

System

Remove the logic and always display

comment box and question

System processing was slow therefore logic didn’t display question before user moved on to next

question and processing icon at the top of page which was out of view unless scroll up

Choice, force entry to move on or just

reminder

remind the respondents to provide the answer but allow blank entry

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 271

7.1 Validation and Review Technology

Enhanced Interaction Framework (TEIF)

Table 4 Experts Validating TEIF

Questions % of experts

answering

“Yes”

Successful

validation

1. Are the instructions clear? 67% Yes

3. Are the examples and

explanations clear?

100% Yes

5. Do you agree with the main and

sub-components of the framework?

100% Yes

The TEIF table was successfully validated by the experts

(Table 4) but as a result of the comments from the three

designer experts and the expert professor the following

changes to the framework components are planned.

7.1.1 The “Objects” component

One expert suggested finding a better word than objects

but it has not been possible to find a better word and so the

definition and meaning of the word in the TEIF context will

be explained in more detail. The TEIF has a consistent and

clearly defined meaning of the word “Objects” but only a

brief explanation was provided for the experts because of

time limitation.

7.1.2 The “Weather Condition” sub-component

One expert found this “Oddly specific” and so more

examples of how weather condition could affect technology

interactions will be provided.

7.1.3 The “Examples” sub-heading

An expert suggested it was unclear what the examples

were and what were the explanations and so the sub-heading

will be changed to “Explanations and examples”.

7.1.4 People being aware of other interactions

This aspect will be added as a sub-component to the

context component as the professor suggested this might be

something worth considering in the TEIF (e.g. between other

people or between other people and technology or other

people and objects).

7.1.5 Identity of an object

The identity of an object will be added to the sub-

component “Property” as an example as suggested by the

professor.

7.1.6 User Perception

An explanation will be provided that as pointed out by the

professor, users may have the perception that technology (e.g.

a robotic device triggered by the person walking past it)

talking to them is a “Technology to People” interaction (T-P)

whereas the TEIF categorises it as a “People – Technology-

People” interaction (P-T-P).

7.1.7 Framework components as index for case based

solutions

The Professor agreed that the framework components

could be useful as an index for case based solutions. This

aspect will be considered for the user evaluation.

7.1.8 Instructions

The majority of experts suggested proving more

information about the purpose of the Framework. This

participant information was provided through the email but

some of the experts appear to have not read this carefully and

so the information will be also provided in the start page of

the online survey.

7.2 Validation and Review Scenario,

Questions, and Answers

Experts wanted more detail in order to be able to answer

requirement questions. This detail will be added into the

scenario.

7.2.1 Part 1: Instructions in The Scenario, Questions,

and Answers section

Two accessibility experts were unclear what “instructions”

referred to (Table 5). Therefore, the wording will be changed

to clarify this.

Table 5 Experts Validating Instructions part 1

Questions % of experts

answering

“Yes”

Successful

validation

1. Are the instructions clear? 67% Yes

7.2.2 Part 2: Requirement questions and multiple

choices Answers, and Explanations

7.2.2.1 Grammar/spelling/re-wording

There were many suggestions for improving the wording

of the questions, multiple choices, answers and explanations

and these will be used to improve this section.

7.2.2.2 Change multiple choices options and answers

Some experts found it unclear why choice ‘f’ was not also

a correct answer to requirement Question 1 and so choice ‘f’

will be removed because this is not related to the component

of the framework.

Question 1: what is the main purpose of technology solution?

(Means can select more than 1 choice)

a. improve communication and interaction

b. make the service more interesting and exciting

c. improve the service efficiency in term of time and

easy to use

d. improve the storage and retrieval information

e. make the service more realistic and authentic

f. improve users’ experiences in using the service

272 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

One expert suggested another choice ‘d’ “mobile and non-

mobile devices” to requirement question 13 even though the

scenario stated a mobile was required and therefore the

scenario wording will be improved to make this even clearer.

Question 13: what type of technology devices would be

appropriate for the solution to the scenario? (means can

select only 1 choice)

a. mobile devices

b. non-mobile devices

c. I don't know

Regarding requirement question 18 one expert stated there

is no explanation why the low cost solution is required and

another expert suggested there might be a lower cost

technology than smartphones. To address this more

explanation will be added into the scenario.

Question 18: does the customer require a low cost solution?

a. yes

b. no

7.2.3 Part 3: Questions, associated questions and

multiple choices answers, and explanations

There were no questions, requirements, components or

sub-components missing that would be relevant to the

scenario (Table 6). Having the requirement numbers next to

the sub-components did not help the majority of experts

(Table 6). The framework is used to inform the method and

processes but knowing the relationship between the

requirements and the sub-components is not necessary to

follow the method and processes. It is also difficult to move

between the sections on an online survey to refer to the

requirement numbers. One expert suggested putting the

requirement numbers in the scenario but this would interrupt

the flow of the scenario narrative. To address this issue the

relationship will be explained more clearly and a way to make

it easier to move between sections will be investigated.

Table 6 Experts validating instruction of part 3

Questions % of

experts

answering

“Yes”

Successful

validation

60. Was it helpful to have the

requirement numbers next to the sub-

components in the Technology

Enhanced Interaction Framework table

shown in the previous section?

33% No

62. Are there any questions,

requirements, components or sub-

components missing that would be

relevant to the scenario?

0% Yes

7.3 Validation and Review Technology

Suggestion Tables

The technology suggestion tables were successfully

validated (Table 7). The problem the experts had with the time

required to validate all the information will not be a problem

with the future user evaluation because they will only refer to

a few technologies. The required grammar/spelling/re-

wording changes will be made. Links to sources other than

Wikipedia will be investigated. The problem one expert had

understanding the “People to objects” column should be

removed by the more detailed explanations that will be

provided in the framework.

Table 7 Experts validating instructions of technology

suggestion tables

Questions % of

experts

answering

“Yes”

Successful

validation

1. Are the descriptions in the

technologies tables clear?

67% Yes

3. Do you agree that the ticks correctly

identify the requirements met

60% Yes

The professor’s idea of the Technology Suggestions Table

rating how well a technology meets the requirement rather

than just showing a tick or cross had been considered when

the framework was being developed but it was decided that

this could be a refinement for future work.

7.4 Validation and Review Scenario

Technology Solution

The Scenario Technology Solution was successfully

validated (Table 8). The required grammar/spelling/re-

wording changes will be made and the solution improved

following the suggestions made. For example, it will be made

clear that Chuty does not speak using Thai speech recognition

at the same time as Suchat is talking.

Table 8 Expert validating scenario Technology Solution

Questions % of

experts

answering

“Yes”

Successful

validation

1. Is the scenario solution clearly

described?

83% Yes

3. Does the solution meet the scenario

requirements?

67% Yes

7.5 Validation and Review Mobile Web

Internet Diagram

The Mobile Web Interaction Diagram was successfully

validated (Table 9). The numbering and re-ordering of actions

will be improved following the suggestions made. For

example, presenting concurrent as well as sequential actions.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 273

Table 9 Experts validating Mobile Web Interaction Diagram

7.6 Validation and Review Use Case Diagram

The Use Case Diagram was successfully validated (Table

10). The login and logout functions will be added as

suggested.

Table 10 Experts validating Use Case Diagram

7.7 Validation and Review Chosen Solution

and Explanations

The Chosen Solution and Explanations was successfully

validated (Table 11). As suggested by the experts more

information will be provided, the layout/presentation will be

improved and the framework method and process will be

broken down into easier smaller steps.

Table 11 Experts validating chosen solution and explanations

Questions % of

experts

answering

“Yes”

Successful

validation

1. Is the explanation of how the solution

was derived from the suggestions easy to

understand?

100% Yes

3. Do you agree that the framework with

its associated questions and suggestions

can help designers design technology to

enhance interactions particularly in

complex situations involving disabled

people?

83% Yes

8 Conclusions and Future Work

Issues of motivation, time and understanding when

validating and evaluating the TEIF were identified through a

literature review and piloting questionnaires and interviews.

Changes to content, system and approach were made in order

to address these issues. Future work will involve the

implementation of a motivating user evaluation approach. The

work undertaken so far confirms such a TEIF be developed

based on existing frameworks, theories and principles. The

results of the expert validation and review by the Professor,

three technology designer/developer experts, and three

accessibility experts following the methodology explained in

section 6 supported the view that the TEIF could help

technology designers/developers design technology solutions

in complex situations when disabled people are involved.

Future Work will be to run an experiment to determine how

and in what ways the framework helps designers/developers

using evaluation with designers using a motivating approach.

9 References

[1] A. J. Dix, "Computer supported cooperative work - a framework," In

Design Issues in CSCW Eds. D. Rosenburg and C. Hutchison. , vol.

Springer Verlag, pp. 23-37, 1994.

[2] B. R. Gaines, "A conceptual framework for person-computer interaction

in complex systems," Systems, Man and Cybernetics, IEEE

Transactions on, vol. 18, pp. 532-541, 1988.

[3] K. Angkananon, M. Wald, and L. Gilbert, "Technology Enhanced

Interaction Framework," in 6TH Annual International Conference,

Singapore, 2013.(in press)

[4] K. Angkananon, M. Wald, and L. Gilbert, "Using the Technology

Enhanced Interaction Framework for Interaction Scenarios involving

Disabled People," in 2nd International Conference on Advances in

Information Technology., Bangkok, 2013. (in press)

[5] K. Angkananon, M. Wald, and L. Gilbert, "Designing Mobile Web

Solutions for Interaction Scenarios Involving Disabled People," in

Advances in Computer Science, Phuket, 2013.

[6] L. Cohen, & Manion, L., Research methods in education: Routledge,

2000.

[7] H. Altrichter, A. Feldman, and P. S. Posch, B., Teachers investigate

their work; An introduction to action research across the professions:

Routledge, 2008.

[8] T. O'Donoghue and P. K., Qualitative Educational Research in Action:

Doing and Reflecting: Routledge, 2003.

[9] H. Coombes, Research Using IT. New York: PALGRAVE, 2001.

[10] J. Bell, Doing Your Reserch Project A guide for first-time researchers in

education, health and social science. England: Open University Press,

2010.

[11] C. Ramirez, "Strategies for subject matter expert review in questionnaire

design.," presented at the the Questionnaire Design, Evaluation, and

Testing Conference, Charleston, 2002.

[12] Y.-k. Lim, A. Pangam, S. Periyasami, and S. Aneja, "Comparative

analysis of high- and low-fidelity prototypes for more valid usability

evaluations of mobile devices," presented at the Proceedings of the 4th

Nordic conference on Human-computer interaction: changing roles,

Oslo, Norway, 2006.

Questions % of experts

answering

“Yes”

Successful

validation

1. Does the Mobile Web

Interactions diagram help

understand the scenario solution?

100% Yes

Questions % of experts

answering

“Yes”

Successful

validation

1. Does the Use Case Diagram help

understand the scenario solution?

100% Yes

274 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

An Approach to Configuration-based Generation of

Validation Rules for Shipdex

Youhee Choi, Jeong-Ho Park, and Byungtae Jang

Industries IT Convergence Research Department

Electronics and Telecommunications Research Institute, Daejeon, KOREA

Abstract - Shipdex protocol defines all technical documents

including the ship equipment manuals in XML according to

Shipdex document format. Data module, the smallest

information unit of the Shipdex protocol shall be prepared

based on S1000D XML schema and shall satisfy the

fundamental S1000D XML schema rules and Shipdex

standard as well. There are commercial tools that support

validating whether these rules are met. However, when

S1000D standard or Shipdex standard is modified, update by

the validation tool developer and continuous maintenance as

well are required as the tool has Shipdex rules inherent in it.

In order to minimize such inconvenience, a scheme is

proposed with which the Shipdex tool user can modify and

add Shipdex rules easily.

Keywords: Shipdex, S1000D, XML, validation

1 Introduction

 These days, the shipbuilding industry requires ways to

efficiently manage a vast amount of technical documents

about various ship equipments mounted on the ship. In this

respect, in aerospace and military field, the “S1000D

International Specification for technical publication utilizing a

common source database” is used for the procurement and

production of technical publications[1]. Accordingly, some

European shipping companies agreed to develop the Shipdex

protocol that is a common and shared data exchange protocol

based on ASD S1000D issue 2.3[2]. Both Shipdex and

S1000D define a data module in XML format as the smallest

independent information unit. Depending on the content to be

described, various types of data modules are defined and each

type has its own rules for defining data module. Some of these

definition rules may be reflected in S1000D XML schema

since Shipdex is based on S1000D XML schema. These rules

can be easily verified using any schema-based verification

tools. However, some of Shipdex authoring rules are different

with the S1000D XML schema. In addition, there are rules

that cannot be expressed with schema due to the limitations of

XML schema expression. Because of this, in order to verify

whether a data module has been generated in accordance with

Shipdex protocol, it is necessary to verify the data module

separately S1000D XML schema-based validation or using a

Shipdex data module verification tool. From this perspective,

there are many commercial tools to support S1000D authoring

and verification, such as PTC's Arbotext CSDB for S1000D,

CORENA S1000D solutions of CORENA and UltraCSDB

S1000D suite of WebX Systems[4, 5, 6]. In comparison to

S1000D, there are only a limited number of commercial tools

specializing in Shipdex, such as Shipdex CSDB of CORENA

and AMOS Shipdex Suite of SpecTec Group[7]. The tools,

specializing in Shipdex, include Shipdex-specific rules that

are different from S1000D. As these Shipdex rules are based

on S1000D, any modifications to S1000D rules need to be

reflected and Shipdex rules may also need to be modified

accordingly or may be modified regardless of S1000D.

However, as such modifications to the rules involve Shipdex

rules inherent in the tool, update by the verification tool

developer and continuous maintenance as well are required. In

order to minimize such inconvenience, a scheme is proposed

with which the Shipdex tool user can modify and/or add

Shipdex rules easily. The proposed scheme can define a

configuration file format for Shipdex rules, based on which

tool-verifiable Shipdex rules can be automatically created and

Shipdex data module can be verified by the user-defined

Shipdex rules.

2 Related Studies

2.1 Shipdex

 Shipdex defines technical documents of all equipment

mounted on ship to be expressed on the basis of S1000D 2.3

XML schema. The data module types that the Shipdex

protocol uses are Descriptive, Procedural, and Illustrated parts

data (IPD). Descriptive data module is to represent

descriptive information; Procedural data module represent

procedural information; and IPD data module represent parts

list and illustrated parts data. S1000D XML schema is defined

for each data module type and different rules are applied to

each type. Types of major rules defined in Shipdex are

classified as follows:

 Rule for the number of digits of XML element value

 Rule for the format of XML element values

 Rule for the fixed values of XML elements

 Rule for the default values of XML elements

 Rule for the list of XML element values

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 275

 Rule for the condition for specific values of XML
elements

 Rule for the occurrence (required/optional) of XML
elements

 Rule for the subelements of XML elements

2.2 Classification of XML Validation Rules

 XML validation rules can be divided into those that can

be expressed on XML schema and those that cannot be[8]. In

order to classify those that can be expressed on XML schema,

it is necessary to analyze the syntax of XML schema. In XML

schema, a data element can be declared either as a simple type

or a complex type. According to the syntax that defines the

simple type in the schema, Restriction element, among those

that can be child elements of the simple type, is the element

used for restricting the range of a value, which describes in

the facet element the content to be restricted. Using the facet

element, it is possible to express the rules for preparing XML

data.

 First of all, the rule for listing the items available for

XML element values can be expressed according to the

following syntax:

1) Expression that uses enumeration type for the facet element

- As the enumeration type should express the list of items that

can be used as values, the rule should be configured to

express these values as XML element values.

2) Expression that uses multiple pattern types with fixed

values, for the facet element

- Pattern type can be used to define the format of XML value

as well as fixed value. So, if several patterns with fixed values

are defined, a rule for the list of possible XML element values

can be configured.

3) When XML data value is a number, minExclusive,

minInclusive, maxExclusive, maxInclusive types represent

respectively the minimum value excluded, minimum value

included, maximum value excluded and minimum value

excluded. Therefore, these can form a rule for the list of

values within the corresponding range.

 Second, the rule for defining the format of XML element

values can be expressed with various types of facet element.

1) Expression that uses pattern type for the facet element

- Basically, pattern type is used for defining the format of

XML value, so it is applicable to the rule for defining the

format of XML element value.

2) When XML data value is a number, the facet elements

related to the format of digit expression such as totalDigits

and fractionDigits can be used

- As totalDigits designates the total number of digits of a

number, while fractionDigits designates the number of digits

in the fractional part, they can be used to define the number of

digits in numeric expression and thus can be included in the

rule for defining the format of XML element value.

3) When XML data value is a character string, length,

minLength, and maxLength indicate the total length, minimum

length and maximum length of the character string

respectively. Thus, they restrict the expression of the

character string and can be included in the rule for defining

the format of XML element value.

 Third, the rule for defining the range of XML element

value can be expressed as follows:

1) When XML data value is a number, minExclusive,

minInclusive, maxExclusive, maxInclusive values designate

respectively the minimum value excluded, minimum value

included, maximum value excluded and minimum value

excluded. Therefore, these can form a rule for defining the

range of the element value.

 Next, according to complexType definition syntax in the

schema, elements that have properties or child elements can

be declared. As complexType can have child elements, it is

possible to express the rule about the relationship among

XML elements. The rule for defining what elements and

attributes can be included as XML subelements, can be

extracted using minOccurs and maxOccurs attributes that

indicate the frequency of occurrence of each element in XML

document. Also, in case of the rule defining whether a XML

element is required or optional, an XML element of which

minOccurs is 0 that can be omitted as 0 indicates that it is

optional. But, when minOccurs is 1 or higher, it indicates the

XML element should be expressed at least once or more, the

element can be considered as a required element. For an

attribute of which ‘use’ value is ‘required’, it indicates that the

corresponding attribute is a required attribute. Therefore,

minOccurs and maxOccurs can be used for the rule for

defining required attributes and optional ones.

3 Configuration-based Generation of

Validation Rules for Shipdex

3.1 Configuration-based generation of

validation rules for Shipdex

 Figure 1 shows a conceptual diagram for automatically

generating XML validation rules for Shipdex based on

configuration files and then validating Shipdex XML data

modules. The scheme shown in Figure 1 consists of Shipdex

Rule Generation part where Shipdex rules are generated and

Shipdex Rule Validation part where a data module XML file

is validated based on the generated Shipdex rules. Schema

Rule Generation part generates a XML schema file that

represents Shipdex rules that can be expressed in XML

schema based on the configuration file in which XML

validation rules are defined. Non-Schema Rule Generation

part where Shipdex rules that cannot be expressed in XML

schema are generated as Shipdex rule objects. In the Shipdex

Rule Validation part, XML files are validated based on the

276 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

XML schema generated based on Shipdex rules and according

to the generated Shipdex rule objects, and the validation

results are provided.

Shipdex Rule Validation

Schema based
Validation

Non-Schema
Rule Validation

Shipdex Rule Generation

Non-Schema
Rule Generation

Schema Rule
Generation

Shipdex Rule
Object

Validation
Result Object

Configuration
file

Figure 1. Conceptual Diagram of Configuration-based

Shipdex Rule Generation and Validation

3.2 Definition of Configuration File Format

for Defining Shipdex Rules

 In order to generate Shipdex rules based on the

configuration file, the rules need to be classified as schema-

rules and non-schema rules. For Shipdex rules that can be

expressed in XML schema, the content of S1000D xml

schema file can be modified, when they are different from

S1000D. In this case, if simpleType declaration needs to be

added/modified and the corresponding element is not

simpleType, an arbitary simpleType can be declared and

defined. Also, if there is any pre-defined S1000D rule and it is

not in violation of Shipdex rules, Shipdex rules can be added

without deleting the existing rule. Shipdex rules that can be

expressed in XML schema are classified as follows:

 First, if the list of values that can be set for XML

elements in Shipdex is different from the one in S1000D, the

values can be expressed using enumeration type among facet

elements of the restriction element on XML schema. In order

to express this rule using configuration file, the following

syntax is defined:

 Rule-Expr1 := Schema-Elem1 Sep Flag Sep Value-List

 Schema-Elem1 := <element-name> | [attribute-name] |
<element-name>-[attribute-name]

 Sep := ;

 Flag := R | A

 Value-List := Value1, … , Value1

 Value1 := words

 ‘Rule-Expr1’ is expressed with ‘Schema-Eleme1’ to

express XML element which the rule is to be applied, ‘Sep’

the separator, ‘Flag’ to indicate whether to replace the content

of the existing XML schema or to add new content, and

‘Value-List’ to define the list of values of XML elements.

 Second, the rule for XML elements with fixed values

can be expressed in XML schema using the pattern type of the

facet element, one of restriction elements. In order to express

such rule based on configuration file, the following syntax is

defined:

 Rule-Expr2 := Schema-Elem1 Sep Flag Sep Value

 Schema-Elem1 := <element-name> | [attribute-name] |
<element-name>-[attribute-name]

 Sep := ;

 Flag := R | A

 Value := Programming-Language regular expression

 ‘Rule-Expr2’ differs from ‘Rule-Expr1’ in that it

defines the value of XML element with ‘Value’.

 Third, in order to express the rule for Shipdex elements

whose value boundaries are different from those of S1000D,

the following syntax is defined:

 Rule-Expr3 := Schema-Elem1 Sep Flag Sep Value-Bound

 Value-Bound := minBound | maxBound | min-max-Bound

 minBound := >value2 | >=value2

 maxBound := <value2 | <=value2

 min-max-Bound := minBound & maxBound

 ‘Rule-Expr3’ has ‘Value-Bound’ to express the range of

values, such as ‘minBound’ for the boundary of minimum

value, ‘maxBound’ for the boundary of maximum value, and

‘min-max-Bound’ for the form in which minimum and

maximum values are combined.

 Fourth, those that are required elements or attributes in

Shipdex but not in S1000D can be declared to have ‘1’ for

minOccurs value in the element declaration part or declared

without minOccurs as its default value of 1 is applied when it

is omitted. On the other hand, for the elements that are

required in S1000D but optional in Shipdex, if minOccurs

value set as 1 in S1000D schema is kept, it may be identified

as an error at the time of schema validation. In order to

prevent this, those elements should be declared with 0 for

minOccurs value. In order to express this rule using the

configuration file, the following syntax is defined:

 Rule-Expr4 := XML-Elem2,…,XML-Elem2

 XML-Elem1 := <element-name> | [attribute-name]

 ‘Rule-Expr4’ can express each required/optional XML

elements or attributes regardless whether it is included in

other XML elements or not.

 Next, the rules that cannot be expressed in XML schema

shall be classified:

 First of all, the rules that cannot be expressed in XML

schema are those with condition part. Depending on whether

the condition is met or not, rules are classified into two types

that occurrence characteristics of other XML elements can be

changed and conditions about values of other XML elements

can be applied. To expresses these types of rules, the

following syntax is defined:

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 277

 Rule-Expr5 := Conditional-Part1 Sep Dependent-Part1

 Conditional-Part1 := Conditional-Expr1 | Conditional-
Expr1 Logic-Op Conditional-Expr1

 Conditional-Expr1 := Conditional-Item1 | Conditional-
Item1 Logic-Op Conditional-Item1

 Conditional-Item1 := Schema-Elem1 Op Value

 Dependent-Part1 := Conditional-Part1 | Dependent-List

 Dependent-List := Schema-Elem1, … , Schema-Elem1

 Schema-Elem1 := <element-name> | [attribute-name] |
<element-name>-[attribute-name]

 Sep := ;

 Logic-Op := And-Op | Or-Op

 And-Op := &&

 Or-Op := ||

 Op := != | == | < | > | <= | >=

 Value := Programming-Language regular expression

 In order to express XML validation rules that include a

condition(s), ‘Rule-Expr5’ consists of ‘Conditional-Part1’ to

define the conditional part, ‘Sep’ the separator, and

‘Dependent-Part1’ to express the part dependent on the

conditional part. ‘Conditional-Part1’ is defined to be capable

of expressing the rules with one conditional formula

separately from those with multiple conditions identified by

logical And/Or condition (‘Logic-Op’). ‘Conditional-Item1’ is

expressed with ‘Schema-Elem1’ to express XML element

which a condition is to be applied, ‘Op’ the operator for

comparison with the condition value, and ‘Value’ to express

the value of the condition. ‘Schema-Elem1’ is defined to

express XML element, XML attribute, and XML attribute

specific to certain XML element. ‘Value’ is expressed in

regular expression for the programming language of XML

validation rule generation program. ‘Dependent-Part1’ is

defined with ‘Conditional-Part1’ to express the rule that

contains a condition about the value of other XML element

that is affected by ‘Conditional-Part1’ of ‘Rule-Expr5’ or

‘Dependent-List1’ to express XML elements which

occurrence characteristics can be changed. ‘Dependent-List1’

is defined to express the list of dependents as one or more

‘Schema-Elem1’ list.

 Second, when each XML element includes different

subelements in Shipdex from those in S1000D, it is difficult

to apply the hierarchical structure of XML elements to XML

schema if the definition of the hierarchical structure is

complicated. In order to express such type of rule, the

following syntax is defined:
 Rule-Expr6 := XML-Elem2 Sep1 XML-Elem1,…,XML-

Elem1

 Sep1 := :

 XML-Elem2 := <element-name>

 ‘Rule-Expr6’ is expressed with the list of ‘XML-Elem1’

to express the rule for the list of elements to be or not to be

included as subelements of ‘XML-Elem2’. Each XML

validation rule is defined using these syntaxes and, for its

automatic generation, names of variables pre-defined for each

rule are defined in the configuration file. For example,

‘%RULE1%’ can be defined as the rule for Shipdex elements

whose value boundaries are different from those of S1000D.

4 Example

 This chapter describes an example of a configuration file

for Shipdex and the generated XML schema file for Shipdex

based on the configuration file and the validation result of an

example Shipdex data based on the generated XML validation

rule.

4.1 Example of Configuration File

 Table 1 shows some of Shipdex rules that are not in

compliance with the fundamental S1000D XML schema but

can be expressed in XML schema.

Table 1. Some of Shipdex rules that can be expressed in XML

Schema

XML

element

Shipdex rule

<chapnum> Shipdex™ protocol allocates the following

fixed value for MICC:

“H” - General sea vehicles SNS

3 (1+2) alphanumeric characters

<itemloc> Shipdex™ allows the use of the following

values:

• “A” Information related to items installed

on the Product.

• “B” Information related to items installed

on a major assembly removed from the

Product

• “D” Information related to both locations

A and B. No other combinations are

allowed.

<orig> The element <orig> is required for ASD

S1000D™ but for the Shipdex™ Protocol

Projects this element is optional and can

be empty.

 According to Table 1, the rule about the format of value

can be applied to ‘<chapnum>’. The rule about items that can

be used as values can be applied to ‘<itemloc>’. The rule

about required elements in Shipdex but not in S1000D can be

applied to ‘<orig’>.

 Figure 2 shows an example of a configuration file

defined based on the rule in Table 1, which is required by

Shipdex and can be expressed in XML schema.

278 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

#The following values allowed:
{
%RULE1%
<itemloc>;R;A,B,D
}

#The allocated fixed values for tags
{
%RULE2%
<chapnum>;R;H[A-Za-z0-9]{2}
}

#optional elements, attributes
{
%RULE4%
<orig>
}

Figure 2. Example of configuration file defined for the rule

that can be expressed in XML schema

 Table 2 shows some of Shipdex rules that are not in

compliance with the fundamental S1000D XML schema and

cannot be expressed in XML schema.

Table 2. Some of Shipdex rules that cannot be expressed in

XML Schema

XML element Shipdex Rule

<warning> The content of the element <warning> is

given by a combination of the following

subelements

• element <para>

• element <randlist>

• element <symbol>

<note> The content of the element <note> is given

by a combination of the same subelements

and attributes as used by element Warning

except for the absence of the element

<randlist> and <symbol>.

<refdm> The elements <issno> and <dmtitle> in the

<refdm> element shall not be used.

[issno] The initial issue of a DM shall always be

issue “001” and its issue status “new”.

 According to Table 2, The rule that each XML element

includes different subelements in Shipdex from those in

S1000D can be applied to ‘<warning>’, <note> and <refdm>.

The rule that is applied to ‘[issno]’ is the rule that include a

condition.
#unused elements
#owner element:unused element pairs
{
%RULE5%
<warning>:<seqlist>,<deflist>
<note>:<symbol>,<seqlist>,<deflist>,<randlist>
<refdm>:<issno>,<dmtitle>
}

#conditional values
{
%RULE1%
[issno]==001;[type]==new
}

Figure 3. Example of a configuration file defined for the rule

that cannot be expressed in XML schema

 Figure 3 shows an example of a configuration file

defined based on the rule in Table 2 for the Shipdex rule that

cannot be expressed in XML schema.

4.2 Example of XML Schema File Generation

for Shipdex

 The following is an example of XML schema generation

for Shipdex. Figure 4 is an example of XML schema file

generated for Shipdex, based on the rule for the case where

XML element values of Shipdex are different from those of

S1000D.

<xs:element name="itemloc" type="itemlocType"/>
<xs:simpleType name="itemlocType">

<xs:restriction base="xs:string">
<xs:pattern value="[A-Za-z0-9]{1}"/>
<xs:enumeration value="A"/>
<xs:enumeration value="B"/>
<xs:enumeration value="D"/>

</xs:restriction>
</xs:simpleType>

#The following values allowed:
{
%RULE1%
<itemloc>;A;A,B,D
}

<xs:element name="itemloc" type="itemlocType"/>
<xs:simpleType name="itemlocType">

<xs:restriction base="xs:string">
<xs:pattern value="[A-Za-z0-9]{1}"/>

</xs:restriction>
</xs:simpleType>

S1000D XML Schema:

[Config File Rules]

Modified XML Schema
for Shipdex:

Figure 4. Example of XML schema generated for the rule

about a list of XML element values

 Figure 5 shows an example of XML schema file

modified based on the rule for the case where XML elements

have fixed values in pre-defined formats.

<xs:element name="chapnum" type="chapnumType"/>
<xs:simpleType name="chapnumType">

<xs:restriction base="xs:string">
<xs:pattern value="H[A-Za-z0-9]{2}"/>
</xs:restriction>

</xs:simpleType>

#The allocated fixed values for tags
{
%RULE2%
<chapnum>;R;H[A-Za-z0-9]{2}
}

<xs:element name="chapnum" type="chapnumType"/>
<xs:simpleType name="chapnumType">

<xs:restriction base="xs:string">
<xs:pattern value="[A-Za-z0-9]{2,3}"/>
</xs:restriction>

</xs:simpleType>

S1000D XML Schema:

[Config File Rules]

Modified XML Schema
for Shipdex:

Figure 5. Example of XML schema generated for the rule for

the format of XML element values

 Figure 6 shows an example of XML schema file

modified based on the rule for the case where an XML

element which is required for S1000D but optional in Shipdex.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 279

<xs:group name="STATUS">
<xs:sequence>

....
<xs:element minOccurs="0" ref="dmsize"/>
<xs:element ref="rpc"/>
<xs:element ref="orig"/>
<xs:element ref="applic"/>
…….

</xs:sequence>
</xs:group>

S1000D XML Schema:

#optional elements, attributes
{
%RULE4%
<orig>
}

[Config File Rules]

<xs:group name="STATUS">
<xs:sequence>

....
<xs:element minOccurs="0" ref="dmsize"/>
<xs:element ref="rpc"/>
<xs:element minOccurs=“0” ref="orig"/>
<xs:element ref="applic"/>
…….

</xs:sequence>
</xs:group>

Modified XML Schema
for Shipdex:

Figure 6. Example of XML schema generated for the

occurrence (Required/Optional) rule for XML elements

4.3 Example of Validation of Shipdex data based

on the Generated XML Validation Rule

 This section explains an example of validating a Shipdex

data module XML file based on the Shipdex rule generated

according to the proposed scheme.

<idstatus>
<dmaddres><dmc><avee><modelic>JHS182</modelic>
<sdc>AAAA</sdc>
<chapnum>FD4</chapnum>
<section>1</section>
…..
<infoname>Introduction</infoname>
</dmtitle>
<issno issno="001" type="changed"/>
<issdate year="2012" month="03" day="29"/>
<language country="GB" language="en"/>

</dmaddres>
<status>
……

Figure 7. Example of Shipdex data module validation result

 Figure 7 is a screen output that shows part of a Shipdex

data module example that includes an error and the result of

validating the data module using the proposed scheme.

5 Conclusions

 In this paper, a scheme is proposed, in which the format

of configuration file is defined to express Shipdex rules which

are different from S1000D, Shipdex validation rules are

automatically generated based on the configuration file, and

Shipdex data modules can be validated through the user-

defined Shipdex rules. This scheme supports the users to

easily apply any changes in Shipdex rules and/or S1000D

standards to validation of Shipdex data modules. It is needed

in the future to devise a method for the user to easily generate

configuration files, to implement this method, and to verify its

effect as a CASE tool.

6 ACKNOWLEDGMENT

 This work was supported by the IT R&D program of

MKE/KEIT.[KI10038619, Development of Solution for Ship

Safety Navigation based Maritime Ad-hoc Network].

7 References

[1] ATA, ASD, AIA, “S1000D: International Specification

for Technical Publications Utilizing A Common Source

Database”, Issue 2.3, Air Transport Association, AeroSpace

and Defence Industries Association of Europe, AeroSpace

Industries Association[S], 2007.

[2] Shipdex Organization, http://www.shipdex.com

[3]W3C, “XML Tutorial”,

 http://www.w3schools.com/xml/default.asp

[4] PTC, Arbotext CSDB for S1000D, Available:

http://www.ptc.com/product/arbortext/csdb-for-

s1000d/[retrieved: Apr., 2013]

[5] CORENA, CORENA S1000D solutions,

Available:http://www.corena.com/what_we_offer/products/co

rena_s1000d/ [retrieved: Apr., 2013]

[6] Web-x, UltraCSDB S1000D suite,

Available:http://www.webxsystems.com/. [retrieved: Apr.,

2013]

[7] SpecTec, “How to implement and use Shipdex datasets”,

Sep., 2009. Available: http;//www.thedigitalship.com/.

[retrieved: Apr., 2013]

[8] W3C, “XML Schema 1.1”, Available:

http://www.w3.org/XML/Schema/. [retrieved: Apr., 2013]

280 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Experimental Evaluation of Static Source Code
Analysis tools

Khalid Alemerien

Department of Computer Science
North Dakota State University

Fargo, ND, USA
Khalid.alemerien@my.ndsu.edu

Kenneth Magel

Department of Computer Science
North Dakota State University

Fargo, ND, USA
Kenneth.Magel@my.ndsu.edu

 Abstract - Code analysis is a substantial process to understand
the source code. This needs effective, reliable, and accurate code
analysis tools, but these tools may mislead the software
developers because they might provide inaccurate measures.
Therefore, there is a need to investigate empirically the features
of these tools. This paper highlights the serious need to improve
understanding of source code to support the development of
reliable software in addition to achieve better understanding of
how code analysis tools work. For this purpose, this paper
presents an experiment, which is comparing between two static
code metrics analysis tools. This paper provides significant
evidence about the inconsistent values of metrics that are
calculated by two code analysis tools for a given program. In
addition, our paper shows how the tools are significantly
different in terms of speed. Then, this paper discusses numerous
of issues and causes of this difference such as unclear definition
of code metrics.

Keywords: static source code analysis, software metrics,
code analysis tools, reliability, Measurement.

I. INTRODUCTION
 The levels of quality, testability, and maintainability of
software programs can be improved and measured through
utilization of code analysis tools throughout the software
development process. In the software development process
[1][2][3], code metrics provide appropriate quantitative
information about various aspects of software. Therefore, this
information supports decision-making in different situations
e.g. we can estimate how many test cases we need to cover
each piece of code or whether a particular method is complex
or not. In both situations, we need to measure the complexity
of each method to determine if we need to divide that method
to simple methods … and so forth. Therefore, the code
analysis tools help to collect metrics from source code or
during program runtime.
 Basically, there are two kinds of code analysis: Static
analysis and dynamic analysis [4]. On one hand, the static
code analysis calculates the metrics based on source code
without execution, such as the number of lines of code,
number of classes, cyclomatic complexity, and so forth, but
on the other hand, the dynamic code analysis calculates the

metrics during the run-time of the program such as code
coverage metrics. In this experiment, we focus on the static
code analysis for Java and C++ programming languages.
Moreover, a variety of static analysis approaches have been
incorporated into open source and commercial tools.
Nowadays, there are many static code analysis tools, which
are available as open source, freeware, and commercial such
as Understand (commercial) [5] and SourceMonitor
(freeware) [6]. This pool of tools makes a challenge for
developers to decide which tool is better in terms of
efficiency, comprehensibility, consistency, and accuracy.
Since inadequate data have been published on the actual
performance of these tools, there is no certainty that the
output of the analysis process, using these tools, is accurate
and precise. This leads us to ask the following question: To
which degree code analysis tools are reliable to use during
the software development process?
 Mainly, these tools are widely used to improve overall the
quality of decision making, but these decisions might be
made based on unreliable or inaccurate data that are provided
by code analysis tools. For that reason, there is a need to find
evidence or proof to determine whether these tools are
reliable or not, as well as explain why this difference exists.
 In order to answer these inquiries and illustrate why there
are differences between code analysis tools, we designed and
performed a controlled experiment examining whether the
metrics values collected by code metrics analysis tools are
consistent, reliable, and accurate for Java and C++ programs
or not. Moreover, we examine the efficiency of code analysis
tools in terms of completion time needed to perform the code
analysis process. In our experiment, we used Understand and
SourceMonitor tools to analyze six object programs with two
versions for each one.
 Our findings show that software developers must be very
careful when choosing any tool to help them comprehend the
source code through understanding of how these tools
calculate the metrics and grasp the metric definitions
accurately. Moreover, our study assists developers with
gaining insight into the static source code analysis tools
through detailed quantitative evaluation. To our knowledge,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 281

mailto:Khalid.alemerien@my.ndsu.edu
mailto:Kenneth.Magel@my.ndsu.edu

we can say that this paper is the first to discuss this issue,
which provides very important information to prove there is a
difference between the results of these tools.
 The rest of this paper is organized as the following. Section
2 presents related work. Section 3 describes the code metrics
analysis tools. Section 4 presents our experiment design and
results. Section 5 shows our results, and Section 6 presents
conclusions.

II. RELATED WORK
 Static code analysis is analysis of the source code, which is
performed without actual code execution. Manually, it is a
hard and time-consuming process to analyze the source code.
Thus, we need automatic approaches to make the static
analysis easier and less costly. In addition, the static analysis
could be used during the software development process to
improve the quality of code. Basically, a number of research
studies have attempted to investigate the benefits, features,
and performance of code analysis tools. Gomez et al. [4]
evaluated the features of five static analysis tools in terms of
buffer overflow. This study found that it is important to
present the results in understandable manner as well as to
provide data about the rules set that the tool enforces.
Moreover, Zitser et al. [7, 8] evaluated five static analysis
tools, presenting how to effectively detect buffer overflow in
C programs. It is important to note that the Hoper’s
evaluation [9] focused on security aspects for 30 static
analysis tools. Moreover, Emanuelsson and Nilsson [10]
surveyed research articles, tools’ manuals, and defect reports
in order to identify the functionality provided by these tools.
Furthermore, Ernst [11] compared, theoretically, static and
dynamic techniques and he observed that there is a need for
hybrid technique which incorporates the dynamic and static
techniques in single tool.
 There are research studies that evaluated the static analysis
tools, but unfortunately they do not study the consistency and
accuracy of results of the static analysis tools for specific
object programs. To this end, we conducted a controlled
experiment to evaluate the consistency and accuracy of
metrics results of different static analysis tools for the same
object programs. Therefore, the principle goal of our
experiment is to apply different static code analysis tools to a
set of open source programs. And then, we analyzed
statistically the results, with focusing on our findings that
provide software developers evidence whether the static
analysis tools are accurate and consistent or not.

III. DESCRIPTION OF CODE ANALYSIS TOOLS
 In order to be able to use the static analysis tools in
effective way, we basically performed a comprehensive
analysis of static analysis tools. Therefore, among various
static code analysis tools [12], we have selected two tools to
perform the static code analysis. These tools are Understand

and SourceMonitor. Briefly, the main reasons behind
choosing these tools are:
- These tools are used for analyzing the source code for both

C++ and Java programming languages.
- These tools, basically, follow the same steps for

performing the code analysis process.
- These tools are stand-alone applications, which mean you

do not need the programming environment to make the
code analysis process.

- Understand tool is a commercial tool and SourceMonitor is
a freeware tool, which represents different development
environments commercial and freeware.

- These tools can be used for analyzing different sizes of
code.

A. Understand Tool
 We have used Understand version 3.1. It is a commercial
code analysis tool. It has many features such as: First, it is a
cross-platform, which is used for different operating systems.
Second, it supports 17 programming languages in different
versions and or compilers. Third, it measures more than 50
metrics for statement, function/method, class, file, and
project level. Fourth, it provides over 20 different graphs.
Fifth, it shows the dependencies of code pieces. Finally, it
generates a variety of output reports.

B. SourceMonitor Tool
 We have used SourceMonitor version 3.3. It a freeware
application, which is used to measure code metrics in terms
of the number of lines of code, number of files, number of
classes, number of functions, and methods. In addition, it
helps to identify the relative complexity of methods/functions
based on Cyclomatic Complexity (CC) and modified version
of CC. Moreover, it measures the code metrics for source
code written in Java, C, C++, C#, VB.NET, and others.

IV. THE EXPERIMENT
 We wish to address the following research questions:
RQ1: Is the SourceMonitor tool more efficient than
Understand tool in terms of completion time of the code
analysis process.
RQ2: Are the values of metrics measured by Understand tool
inconsistent with the values of metrics measured by
SourceMonitor tool for a given program.
In order to address our research questions, we designed a
controlled experiment. The following subtitles present, our
object programs, independent variables, dependent variables
and measures, experiment design, threats to validity, and data
and analysis.

A. Object Programs
 In our experiment, we used two programming languages,
Java and C++ to investigate the features of code analysis
tools such as pointing out the impact of programming

282 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

language on the effectiveness of code analysis tools. We
conducted our experiment on a variety of object programs in
order to make our findings as generally representative as
possible. The following existing software projects were used
in our experiment. The C++ programs are 3Depict, CppCMS,
and Thunderbird while the Java programs are Jtopas,
Apatche_Ivy, and ApatcheMeter. We have chosen these to
represent diversity of development contexts, programming
languages, and code source size.
Apache_Ivy – is a popular dependency manager as well as it
is a sub-project of the Apache Ant Project [13].
ApacheJmeter – is an open source software, which is
developed to load functional tests behavior and measure the
performance of static and dynamic resources [14].
Jtopas – is a Java library, which is used for the common
problems of parsing text data [15].
Thnuderbird – is a free open source email and news client
application developed by the Mozilla Foundation [16].
CppCMS – is an open source web application framework for
the C++ programming language. It is used for Rapid Web
Application Development [17].
3Depict – is an open source software for analysis of
scientific datasets as well as a visualization application [18].
 Table 1 shows, for each object program, a “Version” (the
version numbers), “Programming Language” which is used
for developing the program, “Size” (Number of Classes).

 Basically, we classified our objects based on the number
classes into three categories Large (>=1001 classes), Medium
(501-1000 classes), and Small (<=500 classes).

B. Variables and Measures

1. Independent Variables
 Our experiment manipulated one independent variable: A
code metric tool. We used two code analysis tools,
Understand (Commercial) and SourceMonitor (Freeware)

tools, which represent two different software development
environments.

2. Dependent Variables and measures
• Completion time of the code analysis process

 To investigate our research questions we need to measure
the efficiency of code analysis tools in terms of speed.
Therefore, we use a metric, time of completion for the code
analysis process for a given program.

• Variance in Metrics values
For each version of program, we collected the following
metrics using both Understand and SourceMonitor tools:
First, the number of lines of code, number of statements,
number of functions (for C++), and number of methods (for
Java), Second, percentage of comments to lines of code,
Third, the maximum complexity and maximum depth of
inheritance for overall functions/methods, Finally, the
average complexity of functions for C++ or methods for
Java.

C. Experiment Design
 There were two types of data to be collected among this
experiment: Time of completion the code analysis process
and code metrics. Therefore, we obtained completion time of
the code analysis process by running six object programs
with two different versions for each program on both static
analysis tools, Understand and SourceMonitor. Thus, we ran
each version of program two times, one with Understand and
another with SourceMonitor. For each version of program,
we collected the following metrics using both Understand
and SourceMonitor tools: First, the number of lines of code,
number of statements, and number of functions (for C++)and
methods (for Java), Second, percentage of comments to lines
of code, Third, the maximum

TABLE 1

LIST OF OBJECT PROGRAMS USED IN THE EXPERIMENT

Subjects Version Programming
Language

Size

Jtopas 7.0 Java Small (~ 90)
8.0

Apache_Ivy 2.0.0 Java Medium (~ 642)
2.3.0

ApacheJmeter 2.8 Java Large (~ 1270)
2.9

3Depict 0.0.11 C++ Small (~ 113)
0.0.12

CppCMS 1.0.2 C++ Medium (~ 953)
1.0.3

Thunderbird 2.0.0.4 C++ Large (~ 5920)
2.0.0.6

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 283

complexity and maximum depth of inheritance for overall
functions/methods, and finally, the average complexity of
functions/methods. These metrics help us to investigate the
impact of programming language, size of program, and the
code analysis tools on the consistency of the output of code
analysis tools.
 The following steps demonstrate the overview of our
experimental procedure:
1 – Run the code analysis tool
2 – Upload the object program.
3- Configure the tool settings for the object program.
4 – Choose the metrics that we need to measure.
5 - Repeat the steps 1-4 for all versions.
 After the completion these steps that we described above,
we obtained 24 log files which contains both completion time
of the analysis process and the values of static metrics from
both Understand and SourceMonitor tools for all program
versions.

D. Threats to Validity

1. Internal Validity
 First, the findings that we have obtained about the
efficiency of code metrics analysis tools could be affected by
potential faults in completion time calculations in our
experiment tools. We addressed this threat by executing the
tools on various sizes of C++ and Java programs. Second, the
conclusions about the consistency of the values of code
metric could be affected by unclear definition of each metric
that was collected by analysis tools. To control this threat we
reviewed carefully the definitions provided by the developers
of tools for metrics and, moreover, we specified only the
metrics which have the same definition in both analysis tools.

2. External Validity
 The conclusions about the efficiency of code metrics
analysis tools could be effected by this factor: Time
calculation by the tools might be affected by execution of
other system processes on the same machine that we used in
our experiment. To address this threat we executed the
analysis process more than one time in addition to we
recorded the time manually.

E. Data Analysis
 At the first, our hypothesis associated with RQ1 is: (H1)
the SourceMonitor analysis tool is faster than Understand
analysis tool. Also, the hypothesis associated with RQ2 is:
(H2) the code metrics that are measured by both Understand
and SourceMonitor tools are different.
 We used ANOVA test to calculate the significance p. We
used the R, it is a programming language, to perform
statistical analysis and we used the BoxPlotter [19], it is an
online tool, for drawing the Boxplots.

 This section presents the collected data for all programs.
We used Boxplots to show the results of the eight code
metrics. Each boxplot contains two boxes showing the
distribution of measurement scores for each of the two tools,
across each of the versions of the object programs. The above
box represents the scores of Understand tool while the lower
box represents the scores of SourceMonitor tool.
 So, we used the completion time of the code analysis
process to accept/reject our hypotheses associated with RQ1
as well as we used the rest of metrics to accept/reject our
hypothesis associated with RQ2. For each metric, this paper
provides a Boxplot, which shows an overview of the
collected data. Therefore, we present our research questions
with their analysis granularity as the following.

1. RQ1: Efficiency of Code Analysis Tools
 Our first research question assumes that the SourceMonitor
tool is more efficient than Understand tool. For evaluating
the efficiency of code analysis tools, we used the speed of
tools in terms completion time as a measure of tool’s
efficiency. To test this hypothesis, we performed ANOVA
test (df=1) for each tool per program, at a significance level
(<0.001). Our findings show a significant difference between
the tools with (p=0.0004547). Therefore, our hypothesis (H1)
is supported. Fig. 1 shows the difference between the
mediums of completion time of the two tools. To sum up, the
SourceMonitor is more efficient than the Understand, as we
previously assumed.

2. RQ2: Output Consistency of Code Analysis
Tools

 Our second research question assumes that there are
differences between the values of metrics that are measured
by SourceMonitor and Understand. For evaluating the

Fig.1. Completion Time of the Code Analysis Process in Seconds

consistency of values of the code metrics, we used seven
metrics as the measures of output tools’ consistency. To test
this hypothesis, we performed ANOVA test (df=1) for each

284 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

tool per program, at a significance level (<0.001). Our results
are shown in the following subsections:

Number of lines
 It is a code metric, which is used as a measure of program
size. Boxplot in Fig. 2 shows the difference between the
mediums of the two tools in terms of the number of lines for
all programs. Statistically, from the ANOVA test, there is a
significant difference between two tools with (p=2.2e-16).
Therefore, our hypothesis (H2) is supported in terms of
number of lines. To sum up, the results for each
SourceMonitor and Understand are significantly different in
terms of number of lines, as we previously assumed.

Fig. 2. Total number of lines for all programs

Number of statements
 It is a code metric, which is used as a measure of program
size as well. Boxplot in Fig. 3 shows the difference between
the mediums of the two tools in terms of the number of
statements for all programs. Statistically, from the ANOVA
test, there is a significant difference between two tools with
(p=1.2e-16). So, our hypothesis (H2) is supported in terms of
number of statements. To sum up, the results for each
SourceMonitor and Understand are different in terms of
number of statements, as we previously assumed.

Fig. 3. Total number of statements for all programs

Number of functions (for C++) and methods (for Java)
 It is a code metric, which is used as a measure of program
size as well. Boxplot in Fig. 4 shows the difference between
the mediums of the two tools in terms of the number of
functions for all programs. Statistically, from the ANOVA
test, there is a significant difference between two tools with
(p=0.009386) at significant level (<0.01). Therefore, our
hypothesis (H2) is supported in terms of number of functions.
To sum up, the results for each SourceMonitor and
Understand are significantly different in terms of number of
functions, as we previously assumed.

Fig. 4. Total number of functions for all programs

Percentage of comments to lines of code
 It is a code metric, which is used as a measure of program
size and readability as well. Boxplot in Fig. 5 shows the
difference between the mediums of the two tools in terms of
the percentage of comments to lines of code for all programs.
Statistically, from the ANOVA test, there is a significant
difference between two tools with (p=8.066e-07). Therefore,
our hypothesis (H2) is supported in terms of percentage of
comments to lines code. To sum up, the results for each
SourceMonitor and Understand are significantly different in
terms of percentage of comments to lines of code, as we
previously assumed.

Fig. 5. Percentage of comments to lines of code for all programs

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 285

Maximum complexity
 It is a code metric, which is used as a measure of the
complexity of program. Boxplot in Fig. 6 shows the
difference between the mediums of the two tools in terms of
the maximum complexity for all programs. Statistically, from
the ANOVA test, there is a significant difference between
two tools with (p=4.92e-07). Therefore, our hypothesis (H2)
is supported in terms of maximum complexity. To sum up,
the results for each SourceMonitor and Understand are
significantly different in terms of maximum complexity, as
we previously assumed.

Fig. 6. The maximum complexity of functions/methods for all programs

Maximum depth of inheritance for overall functions/methods
 It is a code metric, which is used as a measure of program
complexity as well. Boxplot in Fig. 7 shows the difference
between the mediums of the two tools in terms of the
maximum depth of inheritance for each function or method
cross programs. Statistically, from the ANOVA test, there is
a significant difference between two tools with
(p=0.0003803). Therefore, our hypothesis (H2) is supported
in terms of maximum depth of inheritance. To sum up, the
results for each SourceMonitor and Understand are
significantly different in terms of maximum depth of
inheritance, as we previously assumed.

Fig. 7. The maximum depth of inheritance for all programs

Average complexity of functions/methods
 It is a code metric, which is used as a measure the
complexity of program as well. Boxplot in Fig. 8 shows the
difference between the mediums of the two tools in terms of
the average complexity of functions/methods for all
programs. Statistically, from the ANOVA test, there is a
significant difference between two tools with (p=0.000149).
Therefore, our hypothesis (H2) is supported in terms of the
average complexity of functions /methods. To sum up, the
results for each SourceMonitor and Understand are
significantly different in terms of the average complexity of
functions/methods, as we previously assumed.

Fig. 8. The average complexity for all programs

 To summarize this, all the observations for the seven code
metrics in this experiment support our second hypothesis,
which assumes that the values of metrics are significantly
different.

V. DISCUSSION
 Our results strongly support the conclusion that the values
of code metric, were calculated by the code analysis tools, are
different. This means some or all these values might be
calculated in wrong way. Moreover, we attempt to
demonstrate causes of these differences between the two
tools as the following:
- Unclear definition of metrics: For some metrics, there are

trivial differences in definition of metrics. Therefore, this
kind of difference might cause different calculations,
which leads the difference of metrics values between the
two tools. For example, SourceMonitor [6] defines number
of statements as “In C++, computational statements are
terminated with a semicolon character. Branches such as
if, for, while and goto are also counted as statements. The
exception control statements try and catch are also
counted as statements. Preprocessor directives #include,
#define, and #undef are counted as statements. All other
preprocessor directives are ignored. In addition all
statements between each #else or #elif statement and its

286 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

closing #endif statement are ignored, to eliminate
fractured block structures.” By contrast, Understand [5]
defines number of statements as “Number of declarative
plus executable statements.”

- Errors in calculation of metrics: It might be exist in any of
them. Consequently, we may not be able to say that, but we
expect that. For example, the value of maximum depth of
inheritance metric that was calculated by SourceMonitor is
9+ for all Java and C++ programs. By contrast, the values
of maximum depth of inheritance metric using Understand
are varying for object programs (1, 2, 5, 6, 9, and 10).

- Programming language: We noticed that the metrics were
calculated for Java programs; have slight differences
comparing with metrics of C++ programs for both tools.
For example, the number of functions is significant
different using both tools for any given C++ program in
our experiment. By contrast, the number of functions is
slight different using both tools for any given Java program
in our experiment

- Structure organization of program: The analysis process
may depend on how much the object program structurally
organized.

- Different preprocessing steps: These steps might be
varying from tool to another. For that, it might effect on the
effectiveness of tool as well as the calculations.
Moreover, the SourceMonitor tool is more efficient than

Understand tool.
Consequently, this difference among the results makes the

code analysis tools unreliable enough. Therefore, the decision
making under uncertainty, it needs more investigation about
which tool is better. Moreover, decision makers have to
specify the circumstances needed to choose the accurate tool.

VI. CONCLUSIONS
 We have presented our study of two code analysis tools,
which were used to analyze the source code of six programs
in both C++ and Java programming languages. Furthermore,
we used two versions per program. We found that there is a
strong significant difference among the values of code
metrics between two tools. Also we found that the
SourceMonitor tool is more efficient than the Understand
tool. Through the results are reported in this paper, we hope
to provide valuable findings for practitioners, especially the
developers of code analysis tools as well as the software
developers in general.
For future work, we plan to conduct wider study that involves
more tools and object programs. Also, we will attempt to
examine the effectiveness of using various visualization
techniques with code analysis tools. Furthermore, we plan to
perform further studies to investigate analysis tools with
different versions in order to examine the stability of these
tools.

REFERENCES
[1] H.F. Li, W.K. Cheung, "An Empirical Study of Software
Metrics," IEEE Transactions on Software Engineering, vol. 13, no.
6, pp. 697-708, June 1987, doi:10.1109/TSE.1987.233475
[2] H. B. Klasky, “A Study Of Software Metrics”, issued by
Graduate School-New Brunswick Rutgers, The State University of
New Jersey, 2003.
[3] Q. Zoubi, I. Alsmadi, and B. Abul-Huda, "Study the impact of
improving source code on software metrics," Computer, Information
and Telecommunication Systems (CITS), 2012 International
Conference on May 2012.
[4] I. Gomez, P. Morgado, T. Gomes, and R. Moreira, An overview
on the Static Code Analysis approach in Software Development,
Faculdade de Engenharia da Universidade do Porto, Portugal, 2009.
[5] (2013) Understand tool. [Online]. Available: http://www.scitools
.com/
[6] (2013) SourceMonitor tool. [Online]. Available: http://www.cam
pwoodsw.com/sourcemonitor.html
[7] M. Zitser, Securing Software: An Evaluation of Static Source
Code Analyzers, Master’s Thesis, Massachusetts Institute of
Technology, Cambridge, MA, 130 pages, 2003.
[8] M. Zitser, R. Lippmann, and T. Leek, Testing static analysis
tools using exploitable buffer overflows from open-source code,
Proceedings of the 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, Newport Beach, CA, 97—
106, 2004.
[9] T. Hofer, Evaluating Static Source Code Analysis Tools,
Master’s Thesis, Ecole Polytechnique Federale de Lausanne,
Switzerland, 66 pages, 2010
[10] P. Emanuelsson, and N. Ulf, A Comparative Study of Industrial
Static Analysis Tools (Extended Version), Linkoping University,
Tech. Rep. 08-3, 2008.
[11] M. Ernst, Static and dynamic analysis: synergy and duality.
MIT Lab for Computer Science, Cambridge, Workshop on
Dynamic Analysis, ICSE’03 International Conference on Software
Engineering Portland, Oregon 2003.
[12] (2013) List of code analysis tools. [Online]. Available:
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
C.2FC.2B.2B
[13] (2013) Apache_Ivy. [Online]. Available:
http://ant.apache.org/i vy/
[14] (2013) Jmeter Apache. [Online]. Available: http://jmeter.apac
he.org/
[15] (2013) Jtopas. [Online]. Available:
http://jtopas.sourceforge.net /jtopas/index.html
[16] (2013) Thunderbird. [Online]. Available: http://www.mozilla.
org/en-US/thunderbird/
[17] (2013) CppCMS. [Online]. Available: http://cppcms.com/wik
ipp/en/page/main
[18] (2013) ThreeDepict. [Online]. Available: http://threedepict.so
urceforge.net/
[19] (2013) BoxPlotter. [Online]. Available: http://illuminations.nc
tm.org/ActivityDetail.aspx?ID=77

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 287

http://en/
http://ant.apache.org/i%20vy/
http://cppcms.com/wik%20ipp/en/page/main
http://cppcms.com/wik%20ipp/en/page/main

An Efficient Regression Testing Technique For Test Case

Prioritization

 Mr.T.Prem Jacob
1

, Dr.T.Ravi
2

1
 CSE, Sathyabama University, Chennai, Tamil Nadu, India

2
CSE, Srinivasa Institute of Engineering & Technology, Chennai, Tamil Nadu, India

Abstract - Regression testing which is an expensive activity.

Regression testing is used to verify the program correctness

once it is modified. To ensure that the changes made to that

program are correct and due to that change that has been

made it should not affect the remaining portions in the

program. If we execute all regression tests it will take more

time to execute the excessive regression tests. Retest-all reruns

all the test, consumes excess time. In regression testing

selection technique selects the subset of test case from the test

suite which reduces the time taken to retest the modified

program .Since to make the regression testing to a cost

effective manner the test cases are prioritized. We define an

algorithm which provides maximum code coverage for a

regression test suite.

Keywords: Test case prioritization, regression testing,

software testing, test suite reduction.

1 Introduction

 Regression testing may be one way to improve the

efficiency of the software development. Changes in the

software happen continuously as the software product evolves

overtime. Whenever the software gets some modifications

testing must be done again to ensure all the features of the

software are working properly [1].

 As early as possible the Software developers try to

detect the faults that occur in the system. We have to ensure

that no bugs have been introduced in the software product due

to the changes made. More time is required if all the test cases

are executed from a test suite.

 Researchers will be following different techniques for

test suite minimization. The cost and the coverage of the code

can be maintained according to some testing criteria.

 By prioritizing the test cases the testing can be

improved. Prioritization can also increase the fault detection

rate [2]. We use code coverage prioritization techniques

which treats all the faults equally.

2 Test Case Prioritization

 The test cases can be prioritized in such a way that it

should increase the effectiveness to meet certain performance

goal. In the test process of regression testing the testers can

prioritize the test case that has the highest priority which are

executed earlier.

Two ways for prioritizing the test case

2.1 General

 For a program P and T be the test suite. Test case in T

are prioritized without having any knowledge of the

modifications made to the program, so that P gets modified to

the program P`[3].

2.2 Version specific

 Test cases are prioritized by having the knowledge to the

changes made to the program P.

 Here in our work we use version specific technique. We

proposed a technique here which achieves the code coverage

for the modified code at a fastest rate as possible.

3 Problem Statement

Let the program be P.

Modified version of the program P be P`.

T be the test suite.

Test suite T is used for testing P.

 When P gets modified to program P`we need to find T`,

where test case T` is subset of T Which achieves the

determined coverage of the code as earlier as possible and is

given the highest priority in regression testing.

 For this we need to identify the test that can able to

execute the modified codes in the program earlier. At least

once we have to execute the lines of code that gets modified

as earlier as possible.

288 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

4 Regression test case selection algorithm

The regression test case selection algorithm we proposed

here is version specific, we execute only the, modified lines.

Our objective is to execute the modified code with minimum

number of test case.

For selecting the test case used for performing regression

testing we should require some knowledge on how a bug

affects the system and how to fix it, the areas where frequent

defects may occur like the area that undergone some code

changes [4]. Due to some minor defect which can cause some

major side effects.

For a sensitive defect that have been fixed which has no

side effects. So the software tester has to balance all those

aspects for creating an algorithm for selection of the test case

for regression testing [6][7]. From the history of each test

cases which tells the lines of code that are covered by the test

case [15].

4.1 Algorithm

Step 1: Input to the algorithm is the number of test case.

Step 2: Store the line numbers covered by the test case and the

modified lines.

Step 3: For each test case find the number of matches.

Step 4: Sort it in descending order.

Step 5: Select highest matched test case and execute.

Step 6: Repeat step 3 to 5 with modified lines of code.

Step 7: If all modified lines of code are covered STOP.

Table 1: Execution History

Test Case Lines of code covered by the Test Case

T1 2,3,28,32,41,57,68,72

T2 1,8,28,30,48,58,67,70

T3 3,4,6,20,31,60

T4 1,2,3,7,18,31,38,42,55,67,71

T5 1,3,17,18,30,51

T6 2,4,15,31,41,59,60,76,79

T7 1,3,4,8,20,31,46

T8 1,3,7,17,20,55,61,76,78

Consider the test case T1 which covers the LOC 2, 3, 28,

32, 41, 57. The modified LOC are 2, 4, 8, 17, 31, 46, 55, 67,

and 76. We need to identify the LOC modified in the test case

and are executed which ensures the optimal code coverage

[12].

In our problem we have six test case T1, T2, T4, T6, T7,

T8 that have modified LOC. All the modified LOC has to be

covered only if each test case gets executed, which is not

provide the optimal solution for our problem.

In our proposed model which provide 100% coverage of

code with minimum number of test case. T1 has one modified

LOC which is 2. Similarly T2 test case has two modified LOC

i.e. 8, 67.

 Test cases T1 to T8 which are computed as in Table 1.

Table 2: Modified LOC

Test Case ID Lines matched
Number of

matches

T1 2 1

T2 8,67 2

T3 - 0

T4 2,31,55,67 4

T5 - 0

T6 2,4,31,76 4

T7 4,8,31,46 4

T8 17,55,76 3

From table 2 if there is any match found sort it by

descending order .

Once sorted in descending order test case which has the

maximum match are selected and executed which is shown in

the table 2.

Table 3: Selected Test Case

Test

Case ID

Number of

matches

Matches

found
Candidate

T4 4 2,31,55,67 1

T6 4 2,4,31,76 0

T7 4 4,8,31,46 0

T8 3 17,55,76 0

T2 2 8,67 0

T1 1 2 0

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 289

Set the value of the candidate be 1 for the selected test

case.

Still now only T4 is selected, which covers 2,31,55,67.

Lines of code [2, 4, 8, 17, 31, 46, 55, 67, 76] – [2, 31, 55, 67]

= [4, 8, 17, 46, 76].

We need to implement only 4, 8, 17, 46, 76 LOC and T4

covers the LOC 2, 31, 55, 67.

Repeat the same procedure until all the modified LOC

are covered.

Table 4: Select test case

Test Case ID
Number of

matches
Matches found

T6 2 4,76

T7 3 4,8,46

T8 2 17,76

T2 1 8

After sorting in descending order, assign the candidate

value as 1 for the selected test case as in table below.

Table 5: Rearrange and assign candidate

value

Test Case

ID

Number of

matches

Matches

found
Candidate

T7 3 4,8,46 1

T6 2 4,76 0

T8 2 17,76 0

T2 1 8 0

Since T7 covers these lines of code we need to

implement only 17, 76.

i.e., [4, 8, 17, 46, 76] – [4, 8, 46] = [17, 76]

Table 6: Select Test Case and assign

candidate value

Test Case

ID

Number of

matches

Matches

found
Candidate

T6 1 76 1

T8 2 17,76 0

Since T6 covers these lines of code we need to

implement only 17.

i.e., [17, 76] - [76] = [17]

Table 7: Assign candidate value

Test Case

ID

Number of

matches

Matches

found
Candidate

T8 2 17 1

Since T8 covers these lines of code we have

implemented all the lines of code.

 i.e., [17] - [17] =0

5 Results and Conclusions

We have executed the test case T4, T6, T7, T8 out of six

number of test case that have the modified lines of code.

Simply if we run all the six test case which does not provides

the optimal solution. So from our proposed model we have

proved that by running only four test case we achieve

maximum code coverage.

Hence we have achieved 60% saving of test cases by the

proposed prioritization method. Since the cost for

implementing this algorithm is less it will save the effort and

cost to run the test cases.

6 References

[1] Adam M. Smith and Gregory M. Kapfhammer. “An

empirical study of incorporating cost into test suite reduction

and prioritization”. In Proceedings of the 24th Symposium on

Applied Computing, 2009.

290 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

[2] GregoryM. Kapfhammer. “A Comprehensive Framework

for Testing Database-Centric Applications”. PhD thesis,

University of Pittsburgh, Pittsburgh, Pennsylvania, 2007.

[3] Hao Zhong, Lu Zhang, and Hong Mei. “An experimental

study of four typical test suite reduction techniques”.

Information and Software Technology, 50(6), 2008.

[4] Sreedevi Sampath, Renee C. Bryce, Gokulanand

Viswanath, Vani Kandimalla, and A. Gunes Koru.

“Prioritizing user-session-based test cases for web applications

testing”. In Proceedings of the 2
nd

 International Conference on

Software Testing, Verification, and Validation, 2008.

[5] Boris Beizer , “Software Testing Techniques”,2
nd

 edition,

Dreamtech publisher, New Delhi.

[6] Antoniol, G., Penta, M.D., and Harman, M., “Search-

Based Techniques Applied to Optimization of Project

Planning for a Massive Maintenance Project”, Proc. 21st

IEEE Int’l Conf. Software Maintenance ,2000.

[7] Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. , “A

Fast Elitist Non-Dominated Sorting Genetic Algorithm for

Multi-Objective Optimization: NSGA-II”, Proceedings of the

Parallel Problem Solving from Nature VI Conference,2000.

`

[8] Elbaum, S., Rothermel, G., Kanduri, S., and Malishevsky,

A., “Selecting a Cost-Effective Test Case Prioritization

Technique”, Software Quality Control, vol. 12, no. 3, pp. 185-

210,2004.

[9] Glover, F., and Kochenberger, G., “Handbook of

Metaheuristics”, Springer, 1st edition, 2003.

[10] Harman, M. (2007), “The Current State and Future of

Search Based Software Engineering”, International

Conference on Software Engineering - Future of Software

Engineering.

[11] Scott McMaster and Atif Memon. “Call stack coverage

for GUI test-suite reduction”. In Proceedings of the 17th

International Symposium on Software Reliability Engineering,

2006.

[12] Zheng Li, Mark Harman, and Robert M. Hierons.

“Search algorithms for regression test case prioritization”.

IEEE Transactions on Software Engineering, 33(4), 2007.

[13] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg

Rothermel. “Test case prioritization: A family of empirical

studies”. IEEE Transactions on Software Engineering, 28(2),

2002.

[14] David S. Rosenblum and Elaine J. Weyuker. “Using

coverage information to predict the costeffectiveness of

regression testing strategies”. IEEE Transactions on Software

Engineering, 23(3),1997.

[15] Kristen R. Walcott, Mary Lou Soffa, Gregory M.

Kapfhammer, and Robert S. Roos. “Time-aware test suite

prioritization”. In Proceedings of the International Symposium

on Software Testing and Analysis, 2006.

[16] Christian Murphy, Kuang Shen, and Gail Kaiser.

“Automatic system testing of programs without test oracles”.

In Proceedings of the International Symposium on Software

Testing and Analysis, 2009.

[17] JeffreyM. Voas. “PIE: a dynamic failure-based

technique”. IEEE Transactions on Software Engineering,

18(8):717–735, 1992.

[18] Monica Hutchins, Herb Foster, Tarak Goradia, and

Thomas Ostrand. “Experiments on the effectiveness of

dataflow- and controlflow-based test adequacy criteria”. In

Proceedings of the 16th International Conference on Software

Engineering, 1994.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 291

Security Requirements Engineering: Analysis and

Prioritization

A. Daya Gupta
1
, B. Shruti Jaiswal

2
, and C. Anupriya Tewari

3

1,2,3
Computer Engineering Department, Delhi Technological University, Delhi, India

Abstract - with the increase in the use of software system,

security requirement engineering becomes an emergent area

of study. Security requirements are constraints to a system

which must be satisfied for consistent system. Most of the

software engineering processes deals with security

constraints during the design or implementation phases

which may result into unnecessary constrained system. So the

need for a new process arises which deals with security issues

in requirement engineering phase and then take appropriate

design decisions so that security mechanism used are optimal

to some extent resulting in efficient secure system. Therefore

the requirement engineers must discover security requirement

along with functional and non functional requirement, so that

security requirement can be dealt effectively. In this paper,

we present a method for security requirement analysis and

prioritization along with the other activities of security

requirement engineering. Analysis is based on the technique

of ontology that will automate the process and prioritization

is based on risk analysis. The resultant system will be a cost

effective in nature as well as it lay a foundation for further

activities so that designer will adopt the most efficient

technique for the implementation of security requirements.

Keywords: Security Engineering, Security Requirements

Analysis, Security Requirements Prioritization, Ontology,

Risk Analysis

1 Introduction

 Security engineering is a field of engineering which

focuses on the security aspect of a system here we are talking

about software systems. The security goals are traditionally

classified into confidentiality, integrity and availability of

information in an organization [24]. In early approaches, the

security measures are taken during design phase, which

could result in unseen constraints which can affect the cost

and availability of the system and sometime failure of

system. In response to this Software engineering community

has proposed different methodology to elicit security

requirements and then enforce measures to meet these

requirements. Some of the proposals for eliciting security

requirements are abuse case [4], misuse case [1, 2, 10, 11],

common criteria [3, 14] and attack trees [5]. Also,

methodologies like secure tropos extension of tropos

methodology [19], intentional anti model extension of KAOS

methodology with security requirement oriented construct

[22] are also discussed. Also, there are proposals for security

engineering which takes the risk and threats into

consideration and then apply measures to enforce security on

threats like OCTAVE [17], CORAS [16], and CRAMM [18].

Firesmith [6, 7] has given proposal to classify security

requirements and identify them to mitigate threats that

causes risk for a system. Methods like EBIOS [20], MEHARI

[21], etc. are proposed for risk assessment and management.

In our previous work, we have proposed software

engineering framework that integrates security engineering

activities [15, 26] in SDLC. The process starts with the

process of elicitation of security requirements along with

functional and non functional requirements. These elicited

requirements must be analyzed and prioritized so that proper

design decisions can be taken [26]. This paper will focus on

techniques for analysis and prioritization of security

requirement. Process of analysis is based on Ontology and

prioritization will be done using risk analysis.

Ontology is a formal, explicit specification of a shared

conceptualization. Ontology consists of various domain

specific concepts, their properties and relationships between

them. Ontology is a hierarchical arrangement of knowledge

related to a domain which can be used as a centralized

dictionary. The domain relevant to our discussion is security.

The advantage of using ontology as a tool for requirements

analysis is that it allows the requirements engineers to

analyze the requirements with respect to the semantics of the

domain. The requirements are generally discovered and

documented in natural language. Natural language

statements may have different interpretations by different

human engineers trying to analyze them, hence making the

analysis difficult. Our approach of using ontology will

overcome this problem as it helps in semantic analysis of the

requirements. Our approach will also provide automation of

the analysis process and will save human effort.

Risk analysis is important as it would tell what could

possibly go wrong? What is the likelihood of it happening?

How will it affect the project? So risk analysis is considered

as an important factor. Further paper is organized as follows

section 2 provides activities of security requirements

292 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

engineering. Section 3 provides proposed framework for

analysis and prioritization of security requirements; next

section will provide a case study for illustration of proposed

technique; and finally section 5 concludes the paper and

provides the future scope for research.

2 Activities of Security Requirement

Engineering

 Security engineering framework proposed in our

previous work consists of four main phase that are security

requirements engineering, security design engineering,

security implementation and security testing. Framework

representing the overall procedure for Security Requirement

Engineering is shown in Fig 1. Different activities in security

requirement engineering are:

2.1 Requirements Discovery and Definition

Here our aim is to discover first the functional, non

functional requirements and then security requirements

which mitigates threats that affects the assets used by

functional requirements. We have considered twelve types of

security requirements as defined by Firesmith [6] and

extended view point oriented method of Sommerville [12, 13]

to define security requirements which are associated with

functional requirements.

Different steps in this activity are:

 Identify various stakeholders of the system using view-

point analysis [12, 13]. We have identified the various

abstract classes of actors as direct and indirect actors. Direct

actors are those who directly interact with the system such as

human, software system and hardware devices. Indirect

actors refer to Engineering personals who develop software

and people who regulate application domain. For this paper

our interest is in direct actor.

 Identify the functionality of each actor conceptualized in

above step and also determine associated non – functional

requirements, with assets on which the functional

requirements are based.

 Identify the threats associated with each of the functional

requirements or data which is used by the functionality.

Threats are identified corresponding to functionality based on

common criteria approach [3, 14] by filling the stakeholders

profile which contains seven fields that define the whole

function and actor relationship.

 Identify the security requirements to mitigate these threats

using the threat database accessed by actor profile. For details

refer [15].

2.2 Analysis and Validation of the

Requirements

 Analysis is not an easy task it comes with lot of

problems as said by sommerville [13] due to change of

requirements, stakeholder don’t know what they really want,

etc. If requirements will change, it will in turn affect

everything. So analysis and validation needs special attention

in security requirement engineering.

Analyze the identified security requirements for

consistency and completeness. If any conflict occurs it must

be resolved and must reach to an agreement to avoid any

further conflicts.

Completeness Checking ensures inclusion of all

necessary security requirements identified to protect the

assets of an organization that are affected by threats. Here we

check whether all the identified threats are mitigated by

security requirements or not.

Fig 1. Framework for Security Requirements Engineering

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 293

Consistency Checking ensures that there are no

contradictory security requirements. The two security

requirements should not conflict. It ensures that two security

requirements never conflict. Example, customer wants to

authorize more number of customers to access the

confidential data but want the cost incurred in providing

privacy for individual and organizational data will get

decreased. So, both of the requirements can’t be satisfied

simultaneously.

The steps involved in analysis of security requirements

are discussed in the next section.

2.3 Prioritization of Security Requirements

Prioritize the security requirements so that it help the

designers and other members involved in later phases to take

design decisions. It tells about which security requiurement is

more critical and need to be dealt first over other. The

proposal devised for prioritization of security requirements is

given in the next section

2.4 Management of the Requirements

Keep trace of each security requirements and its

associated attributes such as requirement identity, view point

identity, functional requirement, nonfunctional requirements,

threats design constraint, other security requirement, design

constraints. The techniques for requirement management

presented in [12, 13] can be used for this activity. Details of

this work will be dealt in the future.

3 Proposed Techniques for analysis and

Prioritization

This section will be divided into two sub sections. The

first part will cover the approach for security requirements

analysis using ontology. And the next part deals with the

steps involved in prioritization of security requirements using

the concept of risk analysis.

3.1 Security Requirements Analysis Framework

We propose a framework for the analysis of security

requirements that are discovered during security

requirements elicitation. The framework is represented in Fig

2. Now various steps involved in the framework will be

discussed.

Steps Involved in Analysis:

 Creation of the Domain Ontology: This is a major task, as

it will serve as the main knowledge base for analysis.

Ontology can be created using any of the various approaches

available at present such as Methontology [26], OTK (On-

To-Knowledge) [27], etc. Ontology will be constructed in

hybrid fashion out of top down, bottom up and hybrid

approaches because in the hybrid fashion, initially the

ontology is constructed by a domain expert and further

modifications can be made in it when needed. Protégé [30] is

used for ontology development. Reason for using Protégé as a

tool is that it is intuitive, easy to use, interactive, easily

scalable and extensible due to plug-ins. And OWL (Web

Ontology Language) is used for creation of our ontology.

 Creation of the Application Ontology: Application

ontology will represent the elicited security requirements and

their relationships. From the given set of elicited security

requirements, application ontology can be created through

following steps :

Fig 2: Ontology Based Security Requirements Analysis Freamework

294 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

i. Now classes will be converted into concepts of the

ontology. As class consists of a class name, properties

and relationships to other classes.

ii. Next properties of a class will become properties of

corresponding concepts in ontology.

iii. The Subclass and Superclass inheritance relation

will be maintained in the ontology, using Subclass and

Superclass concepts.

iv. Other relations in the class diagram will be

converted into properties in the ontology. For example:

aggregation relation becomes PartOf property.

Various tools are available to automate the above task

such as AToM3 [31], ATL [32], etc. tools can be used.

 Mapping Application Ontology with Domain Ontology:

Ontology mapping module maps the classes and relationships

in the application ontology with the corresponding classes

and relationships of the domain ontology. The knowledge

obtained through this mapping will serve as a knowledge

base for the inference engine. The mapping process can be

performed using existing ontology mapping algorithms [33].

The above tasks can be automated by tools such as OMEN

[34], CROSI [35], etc.

 Knowledge Extraction by the Inference Engine: We can

select any inference engine for querying and drawing out

useful conclusions from the security requirements analysis

process. In our proposal we are using the Prolog inference

engine. Prolog Queries will be used to extract useful

knowledge from the knowledge base. Here the knowledge

base is the mapping result of the above step. For example, a

Prolog query can be generated to obtain from the knowledge

base, all the threats that can be mitigated by a particular

security requirement.

 Application of Completeness Checking Rules: The

following rules can be applied on the knowledge extracted by

the inference engine for checking completeness of the

security requirements:

i. If a concept c1 is related to concept c2 by relation R

and the same concept c1 is related to concept c3 by the

same relationship R in the domain ontology, then add the

concept c3 to the given set of defined requirements and

relate it to c1 by relation R (if it is not already in

application ontology.)

ii. If c3 is already in the application ontology then just

relate c3 and c1 with relation R.

iii. Repeat the above check for all the concepts of the

application ontology.

For example, if we have identification and privacy as security

requirements and snooping as threat concept in the

application ontology and snooping is related to

authentication in the domain ontology with relation “is

mitigated by”. Then authentication is added to our security

requirements and it is related with snooping by “is mitigated

by” relation.

 Merging Application Ontology and Domain Ontology:

To merge the Application ontology with the Domain ontology

we can use any existing ontology merging algorithm. The

description of the algorithm is not given here because of the

space constraints. Interested users can refer to [36].Various

tools such as Chimaera [37] and PROMPT [29] are available

for automated merging of ontologies.

 Consistency Checking : The above merging process

makes consistency checking very easy for the analyst. To

check consistency of the security requirements we run the

merged ontology on the Protégé plateform. The recent

versions of Protégé include Jese Inference Engine and Pellet

reasoner[38]. The Jese Inference Engine automatically

checks all the concepts for consistency and the Pellet reasoner

automatically checks all the rules for consistency. The output

of this step is the result phrase “consistent security

requirements” or “inconsistent security requirements”.

3.2 Security Requirements Prioritization Framework

As we have the list of security requirements, it’s better

to prioritize them. As prioritized list of security requirement

would be helpful for designers and other members involved

in later phases to take decisions. As it tells us about which

security requirement is more critical and need to be dealt first

over other.

The steps followed in security requirement

prioritization are discussed in this section. Prioritization of

security requirements will be done with the help of risk

analysis. Risk is normally defined as the chance or likelihood

of damage or loss [25, 39]. That is, it is a function of two

separate components, the likelihood that an unwanted

incident will occur and the impact that could result from the

incident.

So risk can be calculated as :

Risk = (Probability of Occurrence of Threat * Impact of

Threat Occurrence on Assets) (1)

Probability of Occurrence of Threat = Threat Rating and

is represented by TR

Impact of Threat Occurrence on Assets = Summation of

importance level of assets affected by threat, as one threat

may affect more than one asset.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 295

Represented by where n is the maximum number

of assets affected. Hence (1) will become

Risk = TR * (2)

Steps involved in Security Requirement Prioritization

 Assign threat rating to each threats identified. Threat

rating is the number which represent occurrence frequency of

a threat in a system. The scale for threat rating is 1- 10.

Assign lower value to threat whose occurrence frequency is

low and higher to higher frequency threat.

 Assign assets a value in range of 1- 10, representing its

importance to the organization. This importance level will

show how much cost and resources are required to protect a

praticular asset.

 List various assets affected by each threat.

 Calculate the risk value using (2).

 Now the threats will be prioritized based on risk value

calculated in step4. Higher the risk value higher will be the

priority of threat.

 Finally prioritize security requirements based on threats

priority. For prioritization of security requirement following

rules will be used:

i. If the security requirement is mitigating single threat

then in that case threat priority is simply assigned to

security requirement and it acts as its priority.

ii. If the security requirement is mitigating more than

one threat in that case we add up all the corresponding

threat priorities and assign the calculated value to the

security requirement as its priority.

4 Case Study

The whole process of security requirement engineering

is explained here with the help of a case study of “Railway

Reservation System”. It covers the full detail of the whole

procedure that is from the identification of stakeholders to the

final prioritization of security requirements.

 Various direct stakeholders or viewpoints involved are:

i. Traveler

ii. Railway Management

iii. Database

 List of functional and non functional requirements is listed

in Table1. And, various assets involved are:

i. Traveler Information

ii. Ticket Information

iii. Credit Card/ Bank Details

iv. IT Infrastructure (Communication Channel, System

Information, etc)

v. Employee and its Details

Various threats involved are identified using the

concept of common criteria [3, 14]. We will be developing

the repository of the threats. For extraction of threats from

repository, one need to fill Actor Profiles that contains the

seven fields as defined in [15]. All the threats identified are

listed in Table1.

Various security requirements to mitigate threats are

shown in Table 1.

Assigned asset importance level on the scale of 1- 10

are shown in Table 2.

Table 2 Asset Importance Level

ASSET IMPORTANCE LEVEL (1- 10)

Traveller Information

7

Ticket Information

5

Credit Card

9

IT Infrastructure

4

Employee Details

6

Table 1. An Example “Railway Reservation System” Explaining our Process

296 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 Assigned threat rating values on the scale of 1 – 10 to

various threats is given in Table 3.

Table 3 Threats with Threat Rating

THREAT THREAT RATING (1 – 10)

Change Data 9

Repudiate

Receive

5

Spoofing 5

Insider 3

Privacy Violated 7

Outsider 6

Disclose Data 4

Social Engineer 6

Impersonate 8

 Identify the assets affected by each threat. The identified

assets corresponding to each threat is given in Table 4.

Table 4 Assets Affected by Threat

THREAT ASSET THAT CAN BE AFFECTED

Change Data Traveler Information, Ticket Information, Employee

Details

Repudiate Receive Credit Card Information

Spoofing Credit Card Information

Insider IT Infrastructure

Privacy Violated Ticket Information, Credit Card Information, Traveler

Information

Outsider IT Infrastructure, Traveler Information, Employee

Details

Disclose Data Traveler Information, Ticket Information, Employee

Details

Social Engineer Traveler Information, Employee Details

Impersonate Traveler Information, Employee Details

Once threats and assets affected are identified and

valuated, risk valuation will be done and for above case study

and computation of risk value is shown in Table 5.

Various security requirements to mitigate threats are

already identified. Now the main part of our work comes into

picture that is to prioritize these security requirements.

Table 5 Threat Priority

Threat TR * Risk Threat Priority

Change Data 9 * ∑ (7 + 5 + 6) 162 8

Repudiate

Receive

5 * 9 45 2

Spoofing 5 * 9 45 2

Insider 3 * 4 12 1

Privacy Violated 7 * ∑ (5 + 9 + 7) 147 7

Outsider 6 * ∑ (4 + 7 + 6) 102 6

Disclose Data 4* ∑ (7 + 5 + 6) 72 3

Social Engineer 6 * ∑ (7 + 6) 78 4

Impersonate 8 * ∑ (5 + 6) 88 5

Final computation of priorities is given in Table 6. As

Security Requirement Authorization is mitigating three

threats so for its priority we add the priority value of

corresponding threats. And, in case of Privacy Security

Requirement it is mitigating only one threat so whatever will

be the priority value of threat it is directly assigned to security

requirement.

Table 6 Priority of Security Requirements

Security

Requirement

Threats

Mitigated

Threat

Priority

Security

Requirement

Priority

Authorization Change Data

Disclose Data

Insider

8

3

1

12

 Privacy

Privacy

Violated

7 7

Non

repudiation

Repudiate

Receive

Spoofing

2

2

4

Integrity Social

Engineer

4 4

Identification Change Data

Outsider

8

6

14

Authentication Privacy

Violated

Outsider

7

6

13

Security

Auditing

Impersonate

5 5

Intrusion

Detection

Outsider

6 6

If in case two Security Requirements has same priority

in that case designer will have to take decision which one to

deal first. Throughout the computation higher number

represent higher priority or higher value.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 297

5 Conclusions and Future Work

 In this paper we have presented techniques for analysis and

prioritization of security requirement based on ontology and

threat analysis respectively. This method is improvement

over the method presented in [23], as it tries to quantify the

value of risk value so that will get correct and consistent

result. Further complexities in risk analysis are under

processing which covers other factors then threat rating. Here

analysis is done using the manual method of our previous

paper [23] and will provide a detailed framework for it with

proper example in our next paper. We are also developing a

computer based tool to incorporate these techniques. Method

block presented in [9] will be extended to incorporate the

security characteristics also the CAME tool MERU [8] will

be initiated in the construction of method which includes the

security engineering.

6 References

[1] Alexander IF, “Modelling the interplay of conflicting goals with use and

misuse cases”. In: Proceedings of the 8
th
 international workshop on requirements

engineering: foundation for software quality (REFSQ’02), Essen, Germany,

2002.

[2] Alexander IF, “Misuse cases, use cases with hostile intent”. IEEE

Software, 2003, pp. 58– 66

[3] Common criteria for information technology security evaluation. Technical

report CCIMB 99–031, Common Criteria Implementation Board, 1999.

[4] John Mc Dermott, Chris Fox, “Using abuse case models for security

requirements analysis.” Department of Computer Science, James Madison

University, 1999.

[5] Robert J. Ellison, "Attack Trees”, Software Engineering Institute, Carnegie

Mellon University, 2005.

[6] Donald G. Firesmith, “Engineering Security Requirements”, Journal of

object technology, 2003, vol 2, no.1, pp.53-68.

[7] Donald G. Firesmith, “Security Use cases”, Journal of object technology,

2003, vol 2, no.3, pp.53-64.

[8] Gupta D. and Prakash N., “Engineering Methods from their Requirements

Specification”, Requirements Engineering Journal 2006, 3, pp.133 – 160.

[9] Prakash N., “On generic Method Models”, Requirements Engineering

Journal 2006, pp. 221 – 237.

[10] Sindre G, Opdahl AL, “Eliciting security requirements by misuse cases”. In

proceeding 37
th
 Conference Techniques of Object-Oriented Languages and

Systems, TOOLS Pacific 2000, pp 120-131.

[11] Sindre G, Opdahl AL, “Eliciting security requirements with misuse cases”.

Requirements Engineering 10, Springer-Verlag London Ltd, January 2005, pp.

34-44.

[12] Kotonya G., Sommerville I., “Requirement Engineering with viewpoints”,

1995.

[13] Sommerville, I., “Software Engineering”. Seventh edition 2003. ISBN -

8129708671. Pearson Education.

[14] M. Ware, J. Bowles, C. Eastman, “Using the common criteria to Elicit

security Requirements with use cases”, IEEE Computer Society, 2006.

[15] Agarwal A, Gupta D, “Security Requirement Elicitation Using View Points

for online System”, IEEE Computer Society, 2008.

[16] CORAS - http://www2.nr.no/coras.

[17] Alberts, Christopher and Dorofee, Audrey. OCTAVE Method

Implementation Guide v2.0. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2001. http://www.cert.org/octave.

[18] The Logic behind CRAMM’s Assessment of Measures of Risk and

Determination of Appropriate Countermeasures available at www.cramm.com

[19] a) Paolo Giorgini, G.Manson, Haralambos Mouratidis. I.Philip, “A Natural

Extension of Tropos Methodology for Modelling Security”. In the workshop on

Agent-oriented methodologies, at OOPSLA 2002.

 b) Paolo Giorgini, G.Manson, Haralambos Mouratidis. I.Philip, “Modelling

Secure Multi agent System”. AAMAS - 2003.

[20] EBIOS- Expression of need and identification of security objectives,

DCSSI, France, February, 2004.

[21] MEHARI- “Information Risk Analysis and management Methodology”, V-

3, Concepts and Mechanism, CLUSIF, October, 2004.

[22] A. van Lamsweerde, ”Elaborating security requirements by construction of

intentional anti-models”, Proceedings of the 26
th
 International Conference on

software engineering (ICSE’04), IEEE Computer Society, Washington DC

USA, 2004, pp. 148-157.

[23] Jaiswal S., Gupta D., “Security Requirement Prioritization”, in the

proceeding of SERP’09, pp. 673- 679.

[24] F. Benjamin, G. Seda, H. Maritta, S. Holger, “A comparision of

security requirements engineering methods”, in requirement engineering,

2010.

[25] Yogesh Singh, “Software Testing”, Cambridge University Press, 2011,

ISBN 1107012961, 9781107012967.

[26] Chatterjee K., Gupta D., De A., “A Framework for Security Design

Engineering Process”, in ICIP 2011, CCIS 157, pp. 287- 293.

[27] Fernandez M., Gomez-Perez A., Juristo N., “METHONTOLOGY: From

Ontological Art Towards Ontological Engineering”, AAAI Spring Symposium

on Ontological Engineering, Stanford University, March 24-26th, 1997, pp 33-

40.

[28] Sure Y., Tempich C., Vrandecic D., 2006. “Ontology Engineering

Methodologies,” in Semantic Web Technologies: Trends and Research in

Ontology-based Systems, Wiley, 2006, pp. 171-187.

[29] Fridman N., Musen M., “ PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment “, Stanford Medical Informatics, Stanford

University, Stanford,2000.

[30]Protégé: http://www.protege.stanford.edu

[31] AToM3 tool Home page: http://atom3.cs.mcgill.ca.2002.

[32] Frédéric J., Allilaire F., Bézivin J., Kurtev I., “ ATL: a model

transformation tool”, in Science of Computer Programming, 72, 2008. pp. 31-

39.

[33] Falconer S.,Noy N.,Storey1 M., “Ontology Mapping - A User Survey”,

Stanford University, 2007..

[34] Mitra P., Noy N., Jaiswal A., “OMEN: A Probabilistic Ontology

Mapping Tool”, Workshop on Meaning coordination and negotiation at the

Third International Conference on the Semantic Web (ISWC-2004),

Hisroshima, Japan,2004.

[35]CROSI tool: http://www.aktors.org/crosi/

[36] Noy N., Musen M., “An Algorithm for Merging and Aligning Ontologies:

Automation and Tool Support” , Sixteenth National Conference on Artificial

Intelligence , 1999.

[37] McGuinness D., Fikes R., Rice J., Wilder S., “The Chimaera Ontology

Environment”, American Association for Artificial Intelligence, 2000.

[38] Evren Sirin a , Bijan Parsia a , Bernardo Cuenca Grau a,b ,Aditya

Kalyanpur a , Yarden Katz Pellet: A Practical OWL-DL Reasoner.

[39] Aven, T.,” Risk analysis and risk management. Basic concepts and

principles” Reliability & Risk Analysis: Theory & Applications, 2009, vol 2, pp.

57-73.

298 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://doc.utwente.nl/view/author/281496188.html

Empirical evaluation of software development

methodology selection consistency: A case study using

Analytical Hierarchy Process

Benson Moyo
1
, Gonde, Peeps

2
, Ndabezinhle Soganile

1
, Gilbert Dzawo

1
, Kudakwashe Madzima

1

1
Computer Science and Information Systems Department, University of Venda, Thohoyandou, Limpopo,

South Africa;

{benson.moyo, ndabezinhle.soganile, gilbert.dzawo, kudakwashe.madzima} @univen.ac.za
2
Computer Science Department, National University of Science and Technology, Bulawayo, Zimbabwe

peeps.gonde@nust.ac.zw

Abstract -When developing software, the selection of an

appropriate software development methodology is an

essential decision. The experience, knowledge, expertise, of

the software developer and organizational development

context are assumed to have a great influence in selecting a

methodology. In this research, we examine factors affecting

the selection of software development methodologies and the

consistency in which the methodology selection process is

carried out. Based on Analytical Hierarchy Process (AHP),

we evaluate the consistency in software development

methodology selection in a particular software development

company. We investigate the importance of a number of

factors by first soliciting the criteria from practitioners before

methodology selection and then later observing the actual

implementation of a software development methodology. The

paper identifies the predictor variables for development

methodology selection and the dynamics triggered by

situational variables. The results of our findings as well as

recommendations for further work are presented in this

paper.

Keywords: Software development methodology, methodology

selection consistency, AHP

1 Introduction

 One of the most critical decisions when developing

software is the selection of an appropriate software systems

development methodology. It is believed that a rich repository

of systems development methodology exists [1]. Conversely,

there is no universally accepted documented guide on how to

select software systems development methodologies from a

myriad of systems development methodologies in existence.

Some empirical studies indicate that systems development

methodologies are selected and used in practice [2]. It is

possible to select, tailor and adapt systems development

methodologies and/or methodology segments to specific

systems development context [3],[4],[5]. The amount of

expertise and time needed to select, tailor and match

methodologies may present stumbling blocks. The experience,

knowledge and expertise of the systems developer is assumed

to have a great influence in selecting a methodology [6].

Naumann and Palvia[7] and Hughes[8] note that selection is

biased towards experience and familiarity with the

methodology.
 Selecting systems development methodologies or a

system development methodology from many available

options is not only demanding, but also confusing as often

selection criteria or guidelines might neither be clearly stated

nor justified [3],[6]. Naumann and Palvia[7] posit that

selecting a systems development methodology from the

numerous existing methodology classes is a challenge with

technical, social and financial consequences. Not only is the

difficulty presented on the selection among methodology

classes, but also on the instances of these methodology

classes. Iivari et al.[9] presents a classification of

methodologies in an effort to demystify the tenet of

“methodology jungle” identified by Avison and

Fitzgerald[10], however, the suitable methodology search

space is a nondeterministic polynomial hard problem. Despite

the complexity of selecting a suitable systems development

methodology, it is prospected that an appropriate

methodology should standardise the development process,

organise work and resources and direct appropriately the

perception of each member of the development team [11],[3].

2 Related work

 This section overviews methodology models and

frameworks proposed in literature.

2.1 Software development methodology

selection

 There is a growing literature on development of

methodology selection theory, frameworks and models. It has

been shown that a single systems development methodology is

not sufficient to address the requirements and demands of all

existing scenarios of systems development [11],[12],[13].

Avison and Fitzgerald [14] express the basis for methodology

selection as the target problem domain. Yaghini et al. [15]

propose a methodology selection framework based on a multi-

faceted approach. Methodologies are first classified as hard or

soft and then compared according to six basic features; the

philosophy, systems development model, systems

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 299

development scope, systems development tools, systems

development background and participants. This model has

limitations for example, it compares Soft Systems

Methodology [16], and Structured Systems Analysis and

Design Methodology (SSADM) which are methodology

instances grounded on different paradigms [9], therefore they

may not be viewed as competing as they have different

philosophical assumptions. The criteria for determining the

scope of each systems development phase is not precisely and

explicitly stated in this model. Scope problems are inherent in

a methodology as one of the dimensions of inconsistency [17];

therefore the selection framework might suffer from

objectively scoping the phases. This model introduces only a

set of six methodologies and it would be challenging to

include any methodology not included in the list provided.

 Naumann and Palvia[7] present a selection model

centred on quantitative scoring method called Delphi to

collaboratively evaluate and recommend essential

methodology functions. The candidate methodology is

selected based on the scores awarded to it. The drawback of

this model is the subjectivity of the methodology function

definition and the concentration on the system development

techniques and neglecting the other methodology components.

Cockburn [18] put forward a decision model based on

evaluating appropriateness of each member of the Crystal

methodology family instances to a target systems development

problem domain. The stumbling block of this model is its

being restricted to a limited methodology instances. Rashmi

and Anithashree [13] recommend a selection framework for

Rapid System Development (RSD) Methodologies built on a

comparative analysis of a set of essential aspects of rapid

development methodology instances under consideration.

However, this selection is limited to Rapid System

Development (RSD) Methodology family. Burns and Dennis

[19] advocate for a two-dimensional framework for selecting

the most suitable systems development methodology. This

contingency strategy classifies projects in terms of project

complexity and uncertainty factors [19]. The project

complexity is determined by four aspects; the project size, the

number of system users, the quantity of new generated

information, and the complexity of generating new

information [19]. On the other hand project uncertainty

consist of three characteristics; the level of structure, the

extent of users’ knowledge on their duties and system

developer’s experience and expertise. The methodology

selection process in this strategy involves a straightforward

reading of the two dimensional array contents based on the

level of complexity and uncertainty of the project. However,

the drawback of this selection strategy is that it considers only

two methodology instances. Yusof et al. [6] present yet

another variation of selection criteria based on complexity and

uncertainty, quality criteria and scope of methodology phases

as key factors. The researchers select eight methodologies and

state that they are the most common ones and in addition they

give a formula for calculating the score for each methodology.

Perhaps the drawback of this model is the determination of

methodology scores. The approaches mentioned so far have a

large likelihood of subjectivity when selecting a software

development methodology.

 Zhu [20] suggests three contingency approaches to

software systems development methodology selection

grounded on the dynamics of situational variables. The first

strategy is “contingency at the outset” [20] and assumes

contextual variables as static and thereby allows the selection

of a methodology or methodologies prior to the development

process and when chosen, a methodology or methodologies

remain(s) invariant up to systems development project

completion. The methodology and the contingency variables

achieve a state of equilibrium throughout the development

process.

 The second strategy is “contingency with a fixed

pattern” [20] which permits deterministic selection of systems

development methodology or methodologies as the

development process progresses. The possible future

adjustments, variations and reconfiguration of the situational

variables are considered predictable and follow some known

archetype. The strategy assumes specific predictable

expectations in different phases of a systems development life

cycle. Systems development phases form decision points and

allow the systems development methodology to be changed at

each stage of systems development [21].

 “Contingency along development dynamics” [20] is the

third strategy which relies on selecting methodologies, or/and

methodology fragments, tools and techniques into the

development process as dictated by the dynamics of the

evolving software systems development context. The strategy

suggests a high level of uncertainty in the development

process and therefore does not prescribe any set of systems

development methodologies prior to any confrontation with

particular contingency variable configurations at any point in

time. This strategy allows multiple-decision points throughout

the systems development process. In each stage, therefore it is

assumed that new contextual features emerge that demand

appropriate methodologies, or/and methodology fragments,

tools and techniques to be employed. The suitability of

systems development methodology is viewed as the

achievement of equilibrium between the methodology and the

situational variables. Therefore systems development

methodology has to be adjusted from time to time in order to

maintain development variables equilibrium.

2.2 Software systems development contingency

variables

 Systems development problem situations are different,

some development environment are well-understood while

some are ill-understood. These different systems development

circumstances demand different methodologies to handle

them if predictable results are expected. Even in single

organisational settings the contingency variables configuration

may differ on a software project to project basis. Carroll [3]

found in a particular case study, that contingency factors

affected the selection of methodologies throughout the

development process. The contingent factors strategy suggests

300 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

that each development situation demands an appropriately

selected methodology from a portfolio of methodologies.

However, the challenge is that there is no single repository

with all the methodologies compared and contrasted,

classified and analysed on their normative principles,

strengths, weaknesses, and contextual appropriateness.

Methodology engineering goes a step further to suggest

selection of methodology fragments from a repository and

construct an appropriate framework or adapt, configure or

tailor methodologies to fit the specific systems development

projects. However, experience and a high degree of expertise

may be needed to apply this strategy. The derivations are

more biased on theoretical deductions than empirical evidence

which make them more of pieces of advice on what should be

done.

 Systems development contingency factors may be

considered at both micro and macro levels. Micro-context

level deals with specific localised and bounded systems

development problem situation. The micro-context level

dynamics may include how the methodology deals with the

social, technical, management, and economic factors confined

to a same development environment or a similar development

environment. Organisational structure and culture, each

systems development team member’s previous experiences,

existing knowledge, tacit knowledge, skills, culture, roles,

rights and level of expertise constitute part of both social and

technical contextual factors.

 The macro-context level tends to be universal and may

impact on micro-context level dynamics [22]. Ghaffarian [22]

explains one of the reasons for the failure of the Effective

Technical & Human Implementation of Computer-based

Systems (ETHICS) methodology to propagate as probably the

development context level dynamics. It is our contention that

the development context is imperative when selecting a

systems development methodology. Each methodology

selection should be based on project to project specifics and

the choice should be consistent and rigorous.

 It is assumed that organisations should be able to select a

systems development methodology that is best suited for a

specific systems development project. Unfortunately, not

much research has been performed to guide organisations in

this regard. Research into contingent use of systems

development methodology is relevant to organizations aiming

at selecting suitable methodologies for specific projects, in

specific organisations, with specific organisational cultures

and political structures. The appropriate selection of a

methodology is purported to reduce failure probability. It is

also expected to increase systems development process

efficiency, improve quality of developed systems, and deliver

systems on schedule and within budgetary constraints.

Organisations are aware of the software crisis and the

implications of project failure on reputation, employee

morale, costs and business continuity. This is probably one of

the reasons of sticking to one proven and tested methodology

to avoid uncertainty associated with a new methodology.

 All illustrations, drawings, and photographic images will

be printed in black and white. We recommend that you

examine a printed copy of your paper (in black and white) and

make the final adjustments before submission. All illustrations

must be numbered consecutively

3 Methodology

 In this work we endeavour to investigate consistency

between what the practitioners say they do and what they

really do. We aim to explore software systems development

methodology selection consistency. Therefore we use the

Analytic Hierarchy Process (AHP) as a rigorous subjective

multi-criteria decision evaluation tool.

 Given a set of software systems development

methodologies, preference of one from the other can be

established through knowledge solicitation techniques like

observations, questionnaires or interviews and subjecting the

data collected to a thorough statistical analysis. Selecting a

software development methodology is a multi-criteria

decision making process. AHP converts a multi-criteria

decision making process into the solution of an Eigen value

problem. Eigen values have their greatest significance in that

dynamic problems tend towards a steady state under some

mathematical operations. The appeal of AHP in the selection

process is on its ability to verify consistency of subjective

measures. Ratio scales are derived from paired comparisons

and both quantitative and qualitative measures can be

scientifically verified and validated. The ability to detect

inconsistent judgements makes it a good candidate for

selecting a software systems development methodology. New

ideas and methodologies are viewed as prone to failure and

risky. Learning from failures is not acceptable to

organisations as failure may have a serious negative impact on

reputation, employee morale, and continuity of business. The

essence of AHP involves the construction of a square matrix

expressing the relative values of a set of attributes. For

example: What is the relative importance to the developers the

market window of a software system as opposed to quality of

the software system? What is more important responding to

change over sticking to a plan? The fact that the human mind

is capable of making a single pairwise comparison at any

given time is taken advantage of in AHP. Each selection made

is mapped onto a numerical value.

 The structure of a problem is comprised of a hierarchy

of components in terms of a goal, criteria, and alternatives.

The priority setting of the criteria based on pairwise

comparison allows the determination of the relative

importance of the criteria within each level. The typical

question is “How important is social issues interaction relative

to technical issues?” The respondent selects from descriptive

comparisons. The selection is then mapped into a numerical

scale that expresses the intensity of importance. The values

range from 1(Equal importance-when two activities contribute

equally to the objective) to 9(Extreme importance-when

evidence favouring one activity over another is of the highest

possible order of affirmation). The numbers 2,4,6,8 represent

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 301

intermediate values where a compromise has to be met. The

reciprocal of each of these values is assigned to the other

criterion in the pair. The weightings are then normalized and

averaged in order to obtain an average weight for each

criterion.

 The case study was conducted in one registered Software

Development Company in Zimbabwe from 2010 to 2012. The

Company’s core competency is in application software

development and it permitted one of the research

collaborators to participate. Within this period a total of four

new software systems development projects are carried out

and other activities involved client support services to already

deployed systems. In the start of each project the researcher

presents a questionnaire on the selection of development

methodology. It solicits a simple pairwise comparison of

organisational, project and systems development methodology

characteristics. The interpretation of the responses is done

using the AHP Fundamental Scale [24]. In case of group

selection, a geometric mean is used to aggregate the

individual choices into a single representative judgment [24].

 The software methodology complex decision problem is

structured as a hierarchy as shown in Figure 1. We assume

three-tier architecture in decision making. The first layer

entails the main goal (select the most appropriate software

development methodology); second level has criteria and sub-

criteria, and alternatives at the bottom layer. The stakeholders

at criteria layer include the analysts (who are leading the

proposals for development), management (who have to buy

into the project for support), the programmers, and users (the

clients of the system).

 In Figure 2 we indicate the priority vector to guide the

decision. At second layer the project team is the most

significant factor in the selection of a software development

methodology. It comes slightly ahead of stakeholders. During

the study, resignations of a member of the team lead to

change of software development methodology. Again

expertise is relatively valued highest among experience, team

size, and team distribution by location. The values may vary

but fundamentally the importance of project team will show

some strong intensity. Project complexity is relatively more

significant than project uncertainty, however at one decimal

place precision these have equal importance.

Figure 1: Problem decomposition

302 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 Alternatives are evaluated against each criterion. It is

observed that structured methodologies may deal well with

maintainability, organizational politics, and expertise;

however, the stumbling block would be on handling

requirements volatility. Object oriented handles well

organizational politics, maintainability, expertise, moderate

on requirements volatility. Agile methodologies deal well with

organisational politics, team size, moderate on

maintainability, and excellent on requirements dynamics.

Lastly agile methodology is slightly more preferred than

neither structured nor object oriented methodologies.

However, expressing the decision values correct to one

decimal place there is no difference in the appropriateness of

these methodologies.

4 Discussion

 The methodology selection is a fundamental exercise in

and of itself. The use of AHP may expose consistency or

inconsistency in the selection process of a software

development methodology. The selection originates from the

goal, trickles down to criteria, sub-criteria, and finally to the

alternatives. There seem to be a praxis gap in the selection of

a software development methodology due to the fact that a

practitioner may strongly evaluate one alternative

theoretically superior over another, however, practically

recommends another.

5 Results and conclusions

 An interesting observation is made during the

implementation of a selected systems development

methodology. An expert who is one of the well experienced

members of the project team resigns from the company. The

methodology initially selected is re-evaluated and dropped as

part of response to contextual dynamics in systems

development. Change in project characteristics may result in

change or modification of a systems development

methodology.

 The AHP was applied to systematically and consistently

evaluate the selection consistency of systems analysts who are

basically tasked to select the most appropriate systems

development methodologies amongst a myriad of existing

alternative classes and instances of methodologies.

 The study shows that there is need to investigate

existence, adoption and use of systems development

methodology selection frameworks. Our study contributes to

the pool of knowledge in systems development in the

following ways. Firstly, the conducted critical analysis of the

prior literature on systems development methodology

selection helps confirm the knowledge gap in this area. The

Figure 2: Priority vectors for goal, criteria and sub-criteria and alternatives

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 303

important features for selecting a methodology are identified

and the dynamics of the development process observed.

Second, we investigated consistency in selecting

methodology by the relevant actors. The suggested attributes

can be used to understand the impact of systems development

contextual variables on methodology selection.

 One of the possible limitations in the study is that a

single organization was considered. Generalization of the

results of the study is limited as the study is based on a case

study. Case studies are powerful to get the deeper

understanding of a particular phenomenon in its actual

settings but not for providing general predictor variables for

the phenomenon. The findings are considered as a trigger to

explore more in the area of systems development

methodologies selection.

 Further research work can be done on how the selection

criteria are used. What are the criteria to select a software

development methodology and change it or modify it during

the development process? In the first place what is the

threshold to change, tailor a selected software development

methodology?

6 Acknowledgements

 Although it is impossible to give credit individually to

all those who participated and supported the project on

software methodology selection consistency, the authors

would like to express their gratitude and appreciation to all.

This research is supported by the University of Venda.

7 References

[1] Jayaratna, N. “Understanding and evaluating

methodologies, A systemic Framework”, McGraw

Hill, UK, 1994.

[2] Saeki, M. “A meta-model for method integration”,

Information and Software Technology, Vol. 39, pp.

925-932, 1998.

[3] Carroll. J. “The process of ISD methodology selection

and use: a case study”, in Claudio U. C., Riccardo.

M., Marco de Marco, Marcello. M., Andrea C.(Eds.)

Proceedings of the 11
th

 European Conference on

Information Systems, ECIS 2003, Italy 16-21 June,

pp. 379-392, 2003.

[4] Goulielmos, M. “Systems development approach:

transcending methodology”, Information Systems

Journal, Vol. 14, pp. 363-386, 2004.

[5] Barrow, R., Frampton, K., Hamilton, M., Crossman, B.

“A Study of the In-Practice Application of a

Commercial Software Architecture”, IEEE,

Proceedings of the 2005 Australian Software

Engineering Conference, 2005

[6] Yusof, M.M., Shukur, Z., Abdullah, A.L. “CuQuP: A

hybrid approach for selecting suitable systems

development methodology”, Information Technology

Journal, Vol. 10, pp. 1031-1037, 2011.

[7] Naumann, J. D., and Palvia, S. “Selection Model for

Systems Development Tools”, MIS Quarterly, Vol. 6,

No. 1, pp. 39-48, 1982.

[8] Hughes, J. “Selection and evaluation of information

systems methodologies: The gap between theory and

practice”, IEEE Proc., Vol. 145, pp. 100-104, 1998.

[9] Iivari, J., Hirschheim, R., and Klein, H.K. “A Dynamic

Framework for Classifying Information Systems

Development Methodologies and Approaches”, Journal

of Management Information Systems, Vol. 17, No. 3,

pp. 179-218, 2001.

[10] Avison, D.E. and Fitzgerald, G. “Information Systems

Development Methodologies: Techniques and Tools”,

Blackwell, Oxford, 1988.

[11] Fitzgerald, B. “An Empirical Investigation into the

adoption of systems development methodologies”,

Information & Management, Vol. 34, No. 6, pp. 317-

328, 1998.

[12] Srivannaboon, S. “Toward a Contingency Approach:

Tailoring Project Management to Achieve a

Competitive Advantage”, Proceedings PICMET, 9-13

July, Istanbul, Turkey, July 2006 .

[13] Rashmi, J., and Anithashree, C. “Rapid System

Development (RSD) Methodologies: Proposing a

Selection Framework”, Engineering Management

Journal, Vol. 21, No. 4, pp. 30-35, 2009.

[14] Avison, D.E., Fitzgerald, G. “Information Systems

Development: Methodologies, techniques and tools”,

4
th

edn, McGraw-Hill, London, 2006.

[15] Yaghini, M., Bourouni, A., Amiri, R.H. “A framework

for selection of information systems development

methodologies”, Computer and Information Systems,

Vol. 2, No. 1, pp. 1-9, 2009.

[16] Checkland, P.B. “Systems Thinking, Systems

Practice”, John Wiley, Chichester, England, 1981.

[17] Iivari J. and Maansaari J. “The usage of systems

development methods: are we stuck to old practices?”,

Information and Software Technology, Vol. 40, pp.

501-510, 1998.

[18] Cockburn, A. “Agile software development, Agile

software series”, Addison-Wesley, Boston, 2002.

[19] Burns, R.N., Dennis, A.R. “Selecting the appropriate

application development methodology”, ACM SIGMIS

Database, Vol. 17, No. 1, pp. 19-23, 1985.

[20] Zhu, Z. “Evaluating contingency approaches to

information systems design”, International Journal of

Information Management Vol. 22, pp. 343–356, 2002.

[21] Khalifa, M., and Verner, J.M. “Drivers for Software

Development Method Usage”, IEEE Transactions on

Engineering Management, Vol. 47, No. 3, pp. 360-

369, 2000.

[22] Ghaffarian, V. “The new stream of socio-technical

approach and main stream information systems

research”, Procedia Computer Science, Vol. 3, pp.

1499–1511, 2011.

304 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

[23] Saaty, T. L. “Decision making with the analytic

hierarchy process”, Int. J. Services Sciences, Vol. 1,

No. 1 pp. 83-98, 2008.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 305

The Impact of Non-Functional Attributes on the Analysis

Operations of Feature Models

I. Achour
1
, L. Labed

2
, and H. Ben Ghazela

1

1
Computer Science Departement, Manouba University/ ENSI/ Lab. RIADI-GDL, Manouba, Tunisia

2
Computer Science Departement, Tunis University/ ISG/ Lab. RIADI-GDL, Tunis, Tunisia

Abstract - The functional aspect of a system is very

important. In fact, it defines different features of the system,

but it does not negate the reality of the non-functional aspects

of it and that has an impact on this functional aspect. This

aspect has been largely treated with classical systems but not

enough with the product lines.

So we had the idea to study the impact of non-functional

attributes on the analysis operations of feature models.

In this work, we have resumed analysis operations of feature

models listed in the literature. Moreover, we studied the effect

of adding the non-functional attributes on these operations by

giving examples. So this has enabled us to emphasize the

presence of three types of constraints namely constraint

value, constraint attribute-attribute and constraint feature-

attribute.

Finally, we have deduced that some operations are not

affected, others are affected and there is also the emergence

of new one(s).

Keywords: Non-functional attributes, analysis operations,

extended feature models.

1 Introduction

The consideration of non-functional attributes is crucial

in features models. In fact, this models are the basis of our

reference architecture. This is why we are interested in

studying the impact of adding non-functional attributes (NFA)

on analysis operations of features models. We based our work

on the first challenge of Benavides [1] "Include feature

attribute relationships for analyses on feature models and

propose new operations of analysis leveraging extended

feature models".

In this work, we will resume analysis operations described by

Benavides [1] and we will present the effect of non-functional

attributes on this operation and an example.

Section 2 concerns a short descriptive of the Extended

Feature Model (EFM). In Section 3, we present the constraint

on the attributes of the extended feature models. Section 4,

deals with detailing the impact of non-functional attributes on

the analysis operations of the feature models. Finally, Section

5 summarizes our work and outlines our prospects for future

work.

2 Extended feature model

This model is a feature model (see figure 1). Each

feature can be enriched by attributes. Each attribute has a type

and a domain. Each feature can have three types of relations

with their son (mandatory, optional, relation group that can be

expressed by an alternative or an or-relationship). In addition,

features can be connected by a relation of necessity (requires)

or of exclusion (excludes) [1, 4].

3 Constraints on the attributes of the

extended feature models

The NFA of the extended feature model may present

constraints. These constraints are either attribute values or

relations attribute-attribute or relations feature-attribute. And

the presence of these constraints can influence the analysis

operations of the extended feature models.

To explain these constraints, we present the following

examples for each case:

-Value constraint: a feature with attribute run time must have

value <= 10ms or belonging to the interval [10ms 5ms ..].

-Attribute-attribute constraint: a feature F1 with attribute

accessibility (requires) a run time > 15ms of another feature

F2.

-Feature-attribute constraint: a feature registration request

(requires) a storage capacity >= 50 Mega Byte of feature

archiving.

4 The impact on non-functional attributes

on analysis operations of an extended

feature models

Studying the impact of NFA on the analysis operations

of feature model, we noticed that some operations are

affected, others are not and there is also the emergence of new

one(s). We list below the various operations [1] while quoting

for each one its input, its output, its role, the effect of NFA

and an example.

306 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 1: A sample of An Extended Feature Model

4.1 Void feature model

Input: Feature model

Output: Empty or not

Role: To see if the feature model present at least one product.

Impact of NFA: The presence of one of the three types of

constraints can influence this operation in the sense that a

constraint may omit the presence of a product. This is valid if

the product that has the constraint is the only product in the

model and its omission will cause the empty model.

Example: a1 is an attribute of a feature F1 connected by an

exclude relation with an attribute a2 of a feature F2. Exclusion

relationship between the two attributes is propagated to

features F1 and F2 where a product P cannot present F1 and

F2 at the same time.

4.2 Valid product

Input: Feature model and a product

Output: A product belong or not to the feature model.

Role: To see if the product belong or not to the list of all

products representing the feature model.

Impact of NFA: The presence of one of the three constraints

mentioned in section 3 may affect the validity of the product.

Example: In the feature model, the value of an attribute a1

should belong to the interval [min .. max]. If a product P1 has

the attribute a1 with value less than min so the product P1 is

invalid.

4.3 Valid partial configuration
1

Input: Feature model and partial configuration

Output: Configuration invalid or not

Role: Check the validity of a partial configuration is to verify

that the configuration has no contradiction as the presence of a

requires relation between a feature in the set S and a feature in

the set R (for the meaning of S and R refer to the explanation

of the term configuration).

Impact of NFA: Configuration can have features with NFA.

These are connected by constraints of type attribute-attribute

or type feature-attribute and that causing contradictions.

Example: Let F1 a feature belonging to the set S connected by

a relation requires to an attribute a2 of a feature F2 belonging

to the set R. The requires relationship present a contradiction.

4.4 All products

Input: feature model

Output: All products are represented by the feature model

1
 Configuration: Given a feature model with a set of features

F, a configuration is the pair (S, R), where S, R C F, where S

is the set of features that can be selected and R the features

that should not be presented with S ∩ R = Ǿ. Full

configuration is represented by S U R = F and Partial

configuration represented by (S U R) C F.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 307

Role: This operation generates all products that the feature

model can represent.

Impact of NFA: The presence of one of the three constraints

mentioned in section 3 can vary the list of products generated

and that by omitting products that do not meet these

constraints.

Example: Let an attribute a1 of feature F1 connected by a

relation of exclusion to an attribute a2 of feature F2. The

relation of exclusion has spread to the features F1 and F2 and

the product with both F1 and F2 is omitted.

4.5 Number of products

Input: Feature model

Output: The number of products represented by the model

Role: This operation counts the number of all the products that

can represent the feature model.

Impact of NFA: The presence of one of this three constraints

which are mentioned in section 3 affects this process in the

same way as its influence on the previous operation. Indeed, it

has the same behavior as the operation All products except

that instead of listing all the products, the operation gives their

total number.

Example: In the feature model, the value of an attribute a1 of

a feature F1 should belong to the interval [min .. max]. If a

product P1 with an attribute a1 with value greater than max

then the product P1 is not counted.

4.6 Filter

Input: Feature model and configuration

Output: The set of derivatives of the feature model including

the initial configuration

Role: From the feature model, this operation generates

products that meet the initial configuration.

Impact of NFA: The presence of one of the three constraints

mentioned in section 3 may affect this operation. In fact, some

products including the feature model and the configuration

can be excluded because of the constraints of their attributes.

In fact, this has the same principle that operations All products

and Number of products.

Example: We can adopt the same examples that the operations

All products and Number of products.

4.7 Anomalies detection

The literature [1] postponed five analysis operations to

detect anomalies in the feature model such as redundancies or

contradictions.

Input: feature model

Output: information about the detected anomaly

4.7.1 Dead feature

This is a feature that does not appear in any product of

the line products. This anomaly is caused by misuse of the

requires and the excludes constraints of features.

Impact of NFA: The constraints of type attribute-attribute or

type feature-attribute can make a dead feature.

Example: Whether a mandatory feature F1 connected by a

relationship excludes with an attribute of an optional feature

F2. So, F2 is necessarily a dead feature.

4.7.2 Conditionally dead features

This is a feature that becomes dead under certain

circumstances such as the selection of another feature.

Impact of NFA: Here also, the constraints of type attribute-

attribute or type feature-attribute can make a conditionally

dead feature.

Example: Considering a feature F1 connected by a

relationship excludes with an attribute of a feature F2.

Assuming we always select the feature F1, the relationship of

the exclusion will be propagated to feature F2. So, F2 will be

conditionally dead feature.

4.7.3 False optional features

This is a feature that is included in all products of the

product line.

Impact of NFA: Here also, the constraints of type attribute-

attribute or type feature-attribute can make a false optional

feature.

Example: Whether a mandatory feature F1 connected by a

relationship requires with an attribute of an optional feature

F2. The inclusion relation will be propagated to feature F2

that is always present. So, F2 is a false optional feature.

4.7.4 Wrong cardinalities

A group of features described as wrong cardinalities, is a

group of cardinality that can not be instantiated. For example,

we have an alternative of three features: A, B, and C. Which

two are mutually exclusive and we have a cardinality <1..3>.

So, the selection of three features is not possible.

Impact of NFA: Here also, the constraints attribute and

attribute-relationship-attribute feature can present a wrong

cardinalities.

Example: Considering an alternative of three features F1, F2

and F3, that has a cardinality <1 .. 3> and whose feature F1 is

connected by a relationship excludes with an attribute of a

feature F3. The exclusion Relationship will be propagated to

the feature F3 and we cannot select both the three features F1,

F2 and F3.

4.7.5 Redundancies

A feature model that contains redundancies is a feature

model that represents the same information in many ways.

Impact of NFA: Here also, the constraints of type attribute-

attribute or type feature-attribute may cause duplication.

Example: Considering a mandatory feature F1 connected by a

relationship requires with an attribute of a mandatory feature

F2. The inclusion relation is propagated to feature F2 which is

already mandatory.

4.8 Explanations

Input: Feature model and an analysis operation

Output: An explanation of the operation answer

308 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Role: Explanations are generally related to anomalies and are

explanations of the cause of these anomalies.

Impact of NFA: Here also, the constraints of type attribute-

attribute or of type feature-attribute may be the cause of the

problem. Such as causing a dead feature.

Example: The cause of a dead feature may be an exclusion

relation of the constraint of type attribute-attribute or of type

feature-attribute.

4.9 Corrective explanations

Input: Feature model and an analysis operation

Output: A list of corrections to explanations

Role: This operation suggests a list of corrections to the

anomalies identified.

Impact of NFA: Assuming that the constraints of type

attribute-attribute or of type feature-attribute may be the cause

of the problem, their removal may be a correction.

Example: Correcting a dead feature may be the deleting of the

exclusion relation of the constraints of type attribute-attribute

or of type feature-attribute.

4.10 Feature model relationships

Thum and al. [6] classifie the relationship between two

feature models in four types: refactoring, generalization,

specialization and arbitrary edit.

Input: Two feature models

Output: Information on how these two models are linked

4.10.1 Refactoring

A feature model is a refactoring of another, if they

represent the same set of products even though they have

different structures.

Impact of NFA: Here also, the constraints of type attribute-

attribute or of type feature-attribute can influence the

refactoring relationship between two feature models and that

by altering or enhancing this relation

Example 1: an exclusion constraint of type attribute-attribute

or of type feature-attribute of a feature model FM1 which has

no equivalent in another feature model FM2. This varies the

list of products of FM1.

Example 2: an exclusion constraint of type attribute-attribute

or of type feature-attribute of a feature model FM1 has the

same effect on the list of products as a relation of exclusion of

two features.

4.10.2 Generalization

A feature model FM1 is a generalization of another

feature model FM2, if all products of FM1 maintain and

extend all products of FM2.

Impact of NFA: Here also, the constraints of type attribute-

attribute or of type feature-attribute may affect the

generalization of two feature models.

Example: Considering two identical feature models FM1 and

FM2. Adding an exclusion constraint of type attribute-

attribute or of type feature-attribute on feature model FM2, we

will vary the list of products of FM2 by eliminating at least

two products. Thus, FM1 is a generalization of FM2.

4.10.3 Specialization

A feature model FM1 is a specialization of another

feature model FM2, if all products of FM1 is a subset of

products of FM2.

Impact of NFA: Here also, the constraints of type attribute-

attribute or of type feature-attribute can influence the

specialization of two feature models.

Example: Considering two identical feature models FM1 and

FM2. Adding an exclusion constraint of type attribute-

attribute or of type feature-attribute on feature model FM1, we

will vary the list of products of FM1 by eliminating at least

two products. Thus, FM1 is a specialization of FM2.

4.10.4 Arbitrary edit

There is no relationship between the two feature models.

Impact of NFA: we believe that the constraints of the NFA did

not affect this relationship. Indeed, the constraints alone can

not make two feature models as arbitrary edit.

4.11 Optimization

Input: Feature model and objective function

Output: The product that meets the best to the criteria

established by the objective function

Role: This suggests for a product a set of features that

maximize or minimize the value of an attribute of a given

feature.

Impact of NFA: this operation is only useful in the context of

an extended feature model. Indeed, it is according to the

values of the attributes and within both the constraints on

features and constraints on the attributes that we select or omit

some feature.

Example: Assuming that we have a cost minimization function

we must choose the features with minimum cost: having an

attribute with a minimum cost.

4.12 Core features

Input: Feature model

Output: The set of features present in all products of the

product line.

Role: For a given feature model, this operation list all features

that appear in all products of the product line. This is useful

for determining the features that will be developed in the first

place and which will form the reference architecture.

Impact of NFA: Here also, the constraints of type attribute-

attribute or of type feature-attribute can make a feature as core

feature and this by forcing its publication in all the products of

the product line by the presence of a relationship requires.

Example: a mandatory feature F1 connected by a relationship

requires to an attribute of an optional feature F2. The

inclusion relation is propagated to feature F2 that is always

present and belong to the list of core features.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 309

4.13 Variant features

Input: Feature model

Output: The set of features not present in all products of the

product line.

Role: For a given feature model, this operation list all features

that do not appear in all products of the product line.

Impact of NFA: We think that the constraints of the NFA had

no effect on this type of operation.

4.14 Atomic sets

Input: Feature model

Output: List of atomic sets.

Role: Giving a feature model, this operation lists the atomic

sets. A set is a group of atomic features (at least one)

considered as a single unit in some analysis. Intuitively, the

mandatory features and their parents are grouped in an atomic

set. This operation provides a lightweight version of the

feature model that will make more efficient use of other

analysis operations.

Impact of NFA : Here also, the constraints of type attribute-

attribute or of type feature-attribute may influence the

membership or not of a feature in an atomic set.

Example Giving a mandatory feature F1 connected by a

requires relationship with an attribute of an optional feature

F2. The inclusion relation is propagated to feature F2. So, F2

will be present in the same atomic set of F1.

4.15 Dependency analysis

Input: Feature model and a partial configuration

Output: New configuration

Role: From the feature model and the partial configuration,

this operation generates a new configuration highlighting the

features to include and exclude and taking into account the

constraints of the feature model.

Impact of NFA: Here also, the constraints of type attribute-

attribute or of type feature-attribute can influence the structure

of the new configuration.

Example: Let a feature model FM, a partial configuration PC

of FM and a feature F1 belonging to the set S. If F1 is

connected by a requires relationship with an attribute of a

feature F2. The inclusion relation is propagated to feature F2.

So, F2 will belong to the set S of the new configuration.

4.16 Multi-step configurations

Input: Feature model, an initial configuration, a final

configuration, a K step configurations to meet a global

constraint and a function determining the cost of transition to

a configuration from step T to step U.

Output: An ordered list of K configurations representing the

different stages of transition from initial configuration to the

final configuration.

Role: Based on various inputs, this operation offers an ordered

list of K configurations representing the different stages of

transition from initial configuration to the final configuration.

Impact of NFA: The constraint value influence the global

constraint. Also, the constraints of type attribute-attribute or

of type feature-attribute may influence the structure of

intermediate configurations.

Example: If the feature model includes constraints related to

attribute-attribute and to attribute-feature must be respected

and this affects the list of configurations presented as a result.

4.17 Other operations

In this section, we include operations that have

calculations based on the values of previous operations.

4.17.1 Homogeneity

Input: Feature model

Output: Homogeneity degree of of the feature model

Role: This is the complement of the ratio between the number

of unique features (a feature is unique if it appears only in one

product) in a product by the total number of products in the

feature model. A feature model is more homogeneous than the

number of unique features in a product is minimal.

Impact of NFA: The presence of attributes and their

constraints affects indirectly the result of this operation since

it affects the operation of calculating the number of products:

Number of products.

4.17.2 Commonality

Input: Feature model and configuration

Output: The products percentage represented by the feature

model and including the input configuration.

Role: This is the ratio of product including the input

configuration by the total number of products of the feature

model. This transaction enables us to classify the features that

will be developed in the first place and decide who will be

part of the basic architecture.

Impact of NFA: The presence of attributes and constraints

affect indirectly the result of this operation since it affects the

operation of calculating the number of products: Number of

products and also the operation that gives the products of

feature model including the initial configuration: Filter.

4.17.3 Variability factor

Input: Feature model

Output: The ratio of the number of products by 2
n
 which n is

the number of features considered

Role: This is the ratio of the number of products by 2
n
 which n

is the number of features considered. In particular, 2
n
 indicates

the potential number of products represented by the feature

model and assuming that any combination of features is

allowed. Generally, the root and the features that are not

leaves are not considered. A small factor indicates that the

number of combinations is very limited compared to the total

number of potential products.

Impact of NFA: The presence of attributes and constraints

affecting indirectly the result of this operation since it affects

the operation of calculating the number of products: Number

of products.

310 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

4.17.4 Degree of orthogonality

Input: Feature model and a sub-tree

Output: Degree of orthogonality

Role: According to Czarnecki and al. [2], the degree of

orthogonality is the ratio of the total number of products of the

feature model by the number of products of the sub-tree

knowing that only local constraints of the sub-tree are

considered.

Impact of NFA: The presence of attributes and constraints

affects indirectly the result of this operation because it affects

the operation of calculating the number of products: Number

of products.

4.17.5 Extra constraint representativeness (ECR)

Input: Feature model

Output: Degree of representativeness of the constraints of the

tree

Role: This determines the degree of representativeness of the

constraints of the tree. Mendonça and al. [5] defines Extra

Constraint Representativeness (ECR) as the ratio of the

number of features involved in the constraint (the repeated

features are only counted once) by the number of features of

the feature model.

Impact of NFA: The presence of attributes and constraints

affects the result of this operation. En fact, it affects the

operation of calculating the number of products: Number of

products and also the number of features involved within the

constraints (constraint of features and attributes).

4.17.6 Lowest common ancestor (LCA)

Input: Feature model and a set of features

Output: The feature being the lowest common ancestor of

input features

Role: This determines the lowest common ancestor of input

features. Mendonça. and al. [5] defines the lowest common

ancestor (LCA) of a set of features as the common ancestor

which is farthest from the root: LCA (FM {f1, ..., fn}).

Impact of NFA: We think that the attributes have no effect on

this operation.

4.17.7 Root features

Input: Feature model and a set of features

Output: The set of features that are roots in the feature model.

Role: This determines the set of features which are the roots

of the feature model. Considering l = LCA (FM {f1, ..., fn})

Mendonça. and al. [5] define the roots of all the features roots

(FM,{f1,...,fn}) as the subset of the features of the son of l and

ancestor of the set {f1,...,fn}.

Impact of NFA: We believe that the attributes have no effect

on this type of operation.

4.18 Attribute values

Input: a product and attribute

Output: Values list of the attribute

Role: This is a new operation that lists all values of the

attribute. This operation is useful if we want to do calculations

on the values of an attribute for a given product.

Example: We can for a given product need the list values of

the attribute cost to calculate the total cost.

5 Conclusion

In this work, we resumed analysis operations of feature

models founded in the literature and we studied for each

operation the impact of adding a NFA and basing ourselves on

an example.

In fact, this work is only in its infancy and we are testing this

impact on the Flame tool (FAMA Formal Framework) [3].

This will allow us to analyze the EFM and to add operations

not yet taken into account.

Also, we plan to work more on the representation of NFA

oriented quality.

6 References

[1] Benavides, D., Segure, S., and Ruiz-Cortés, A. 2010.

Automated Analysis of Feature Models 20 years Later: a

Literature Review. Information Systems. Elsevier. 2010.

35(6), (615-636). (Sept 2010). DOI=

http://dx.doi.org/10.1016/j.is.2010.01.001

[2] Czarnecki, K. and Kim, P. 2005. Cardinality-based

feature modeling and constraints: A progress report. In

Proceedings of the International Workshop on Software

Factories At OOPSLA 2005, 2005.

[3] Durán, A., Benavides, D., Segura, S., Trinidad, P., Ruiz-

Cortés, A. 2012. FLAME: FAMA Formal Framework (v 1.0).

Technical Report. Applied Software Engineering Research

Group. ISA-12-TR-02. (March 2012). Seville, Spain.

[4] Gürses, Ö. 2010. Non-functional variability management

by complementary quality modeling. Doctoral Thesis. Middle

East Technical University.

[5] Mendonça, M., Wasowski, A., Czarnecki, k. and

Cowan. D. 2008. Efficient compilation techniques for large

scale feature models. In Proceedings of 7th International

Conference of GPCE : the Generative Programming and

Component Engineering, 13–22, 2008.

[6] Thüm, T., Batory, D. and Kästner, C. 2009. Reasoning

about edits to feature models. In International Conference on

Software Engineering, 254–264, 2009.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 311

http://dx.doi.org/10.1016/j.is.2010.01.001
http://labs.isa.us.es/publications/author/22
http://labs.isa.us.es/publications/author/22
http://labs.isa.us.es/publications/author/22
http://labs.isa.us.es/publications/author/22
http://labs.isa.us.es/publications/author/22
http://labs.isa.us.es/publications/author/2
http://labs.isa.us.es/publications/author/188
http://labs.isa.us.es/publications/author/4
http://labs.isa.us.es/publications/author/184
http://labs.isa.us.es/publications/author/184
http://labs.isa.us.es/publications/type/tech-report/2012/flame-fama-formal-framework-v-1.0

Determining Software System Type from Software

Requirement Specification

A. Mrs Suneeta H Angadi
1
, B. Dr Mohan S

2
, and C. Dr G T Raju

2

1
Computer Science and Engineering, Anna University RNSIT, Bangalore, Karnataka, India

2
Computer Science and Engineering, NGPIT, Coimbatore, Tamilnadu, India

2
Computer Science and Engineering, RNSIT, Bangalore, Karnataka, India

Abstract - Deciding type of software system appropriately

helps in proactive software performance engineering with

graph transformation approach. Further this task can be

useful in performance analysis of software systems. Analysis

carried out in requirement and design phases add value to

implementation. In this paper idea of determining software

system type based on software requirement specification is

proposed.

Keywords: Software Performance, Graph Transformation,

Software Requirement Specification, Modeling

1 Introduction

 Software Performance Engineering (SPE) deals with

quantitative approach in constructing software systems [9].

Performance analysis can be considered as step in proactive

performance engineering of SPE. Graph transformation

approach for proactive performance analysis can reduce

development time. With this reasoning in this paper the idea

of software system type decision is given. This idea is result

of study in graph transformation field. Also output of

implementation is parameter of graph transformation process.

In this section description of graph transformation, graph

representations, graph transformation approaches, and graph

transformation tools has been given.

1.1 Graph Transformation

 Graph transformation defines rule based manipulation of

graphs. It is the process of transforming one form of the graph

into another form algorithmically. Graph is a pair (V(G),

E(G)), where V(G) finite set of vertices and E(G) proper

subset of { {V, V’} | V, V’ Є V(G) , V’≠V } is set of edges.

Number of vertices in a graph G is called size of G. All

graphs are finite undirected with no multiple edges and self

loops. Graphs describe complex data and object structures.

And graph transformation defines dynamic evolution of

structures. Process of graph transformation maps platform

independent model to platform specific model, and this

mapping will help developer with detailed implementation

details possibly with constraint specification as well. This aids

in through understanding of the system being developed.

Graph transformations define rule based manipulation of

graphs.

1.2 Graph Representations

Graphical notations are entity relationship diagrams, control

flows, message sequence charts, petri nets, automata, state

charts as shown in figure below.

Figure 1.

Entity-relationship diagrams are metalanguages that describe

entity types [1].

Control flow graphs or program graphs represent the control

flow of programs used in the analysis of software [3]. The

nodes of a control flow graph are statements of the program

and the edges represent the control flow between the

statements.

Different representations for graph notations

Entity-Relationship Diagrams

Petri Nets

Message Sequence Charts

Control Flows

State Charts

Process Algebra

312 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

A Petri net is an abstract, formal model of information flow.

Petri nets, mathematical modeling language for description of

distributed systems [2]. Automata are simple mathematical

and expressive formalism that allows one to model

cooperation and synchronization between sub systems.

In state chart a state is represented by a rectangle and a

transition between states is shown by a labeled arc [4].

Purpose of using state charts is to specify behavior of

complex reactive systems. Other notations include type

hierarchies, process algebras, data flow diagrams, parse trees,

flow charts. Knowledge of different graphical representations

is essential since it helps in transformation. Software system

type must be known to decide type of the representation to

adapt,. Towards this goal an attempt is made to check the type

of software system to be developed from software

requirements specification.

1.3 Graph Transformation Approaches

Approach can be for describing classes of graphs. Declarative

approach for describing class of graph will check correctness

of graph [5]. Computing by graph transformation can be used

for visual modeling and specification, model transformation,

concurrency and distribution, software development.

Graph transformation approaches include Node label

replacement approach, Hyperedge replacement approach,

Algebraic approach-Double Pushout, Single Pushout, High

Level Replacement, Logical approach,Theory of 2-structures,

Programmed graph replacement approach [7].

1.4 Automated Graph Transformation

Graph transformation systems, like PROGRES and Fujaba,

support the automatic generation of executable code [8].

 Rest of the paper is organized as section 2 gives

information of related work, section 3 discusses

implementation details, section 4 gives results details,

conclusion of the work is done in section 5 and finally

references are given in section 6.

2 Related work

 Researchers have worked on various streams of graph

transformations. Starting from identification of different

notations, approaches, and tool design for transformation.

Early traces of Graph theory area Contribution, towards

transformation for software engineering was found around

1890’s [6]. Then onward there are significant achievements in

the field and graph representations have been adopted as

software modeling notations. Graph transformation

approaches have been used for giving mathematical reasons

behind computation which is core of software being

developed. Different approaches have been proposed. Then

tools like Fujaba, Viatra, VMTS have been proposed for

automating the task of graph transformations. But for all of

these activities to be continued identifying type of software

system is starting point. Hence we have come with a proposal

of software, for identifying software system type from SRS.

3 Implementation details

Figure 2.

Graph transformation helps in model transformation, and

model transformation conveys idea of analyst and design

specialist appropriately to developer. Hence graph

transformation may reduce development time since model of

system being developed is properly analyzed by means of

theory of graphs. In order to adopt graph transformation

approach deciding software system type is essential; because

it helps in choosing graph representation from prominent

graph representations. In this direction common software

system types are system software and application software

systems. Application software systems can be web

applications, GUI based applications, object oriented

applications, multiplatform applications, secure applications,

distributed applications, mission critical applications, and

distributed networking applications. A hint for identifying

software system type can be software requirement document

(srs). Software requirement document states expected features

of software being developed, from this we can derive possible

graphical representation, and this representation will be

mapped to conceptual graph [1]. Conceptual graph takes close

to implementation details which give complete picture to the

developer, and developer can accordingly develop the system.

We have studied some Sample SRS, from them following

factors were identified for software system identification,

Title of the software system being developed is one of the

parameter for deciding software system type.

Detailed description of the software system in Scope section

is another parameter for deciding the software system type.

Initially purpose of the srs was considered but it states

purpose of srs itself, gist of software and intended user. This

information will not help for system type decision, then

hardware software requirement section was thoroughly

analyzed but it cannot be generalized for system type

determination. Then scope section as proper parameter for

Srs

docume

nt

Determine

Software

System Type

Map to

Graphical

Representatio

n

Determine

Software

System type

Graph

Representation

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 313

system type identification conclusion was derived. Sometimes

in srs title itself system details will be present, this factor is

also taken care in implementation. Dataflow diagram of our

approach is as shown in figure 2,

After determining system type, for model transformation with

graph transformation approach system type will be mapped to

appropriate graph representation like entity relationship

diagrams, control flows, message sequence charts, petri nets,

automata, state charts with all the involved system

components. Mapping guidelines- if system type is database

oriented type representation is Entity Relationship graph, for

parser software system use automata representation and if the

task is modeling and analysis of concurrent systems use petri

nets. Here mapping does not refer only to software modeling

activity rather conceptual graph is also formed, that will help

in development.

4 Results

The idea of software system type is implemented in Model

View Controller with C# programming language.

Implementation started with parsing of document, with the

constraint that srs will be in document form.

Srs in document form was taken as input and parsing for

scope keyword was logic, but appearance of scope keyword is

not unique, it varies from one srs to another. Hence scope

section itself is given as input. Then title of srs was considered

as parameter for system determination. Also all srs may not be

in document form they may be pdf form as well.

In the title of srs if words like web/e/E

based/online/hospital/hotel are present then software system

type will be data base oriented system.

If it is not possible to determine from the title system type

then scope section details having keywords controller, safe

and efficient operation of all the components was considered.

If these words are present then it will be controller system.

Some sample srs were given as input and system type was

identified. Still implementation for large set of srs is in

process.

5 Conclusion

Graph transformation helps in proactive software performance

engineering since graph transformation oriented analysis

decisions will correct design defects. Towards this goal choice

of graphical representation is utmost important. An approach

is proposed in this paper for identifying software system type.

From that graphical representation is decided. Future work in

this direction can be analysis of different representations,

graph transformation approach analysis and tool/system

analysis for model transformation in the form of framework.

6 References

[1] John F.Sowa,. “Relating Diagrams to Logic”.

http://staff.um.edu.mt/cabe2/lectures/webscience/docs/sowa_9

3.pdf

[2] James L Peterson “Petri Nets”

[3] Robert Gold “ Control flow graphs and code coverage”,

Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 4, 739–

749.
.[4] Chris Fox and Arthorn Luangsodsai ”And-Or

Dependence Graphs for slicing State Charts” Dagstuhl

Seminar Proceedings 05451 Beyond Program Slicing

http://drops.dagstuhl.de/opus/volltexte/2006/493
[5] ”A Declarative Approach to Graph Based Modeling”,

Jurgen Ebert, Angelika Franzke.

[6] Handbook of Graph Grammars and Computing by Graph

Transformation,

Vol. 1 and Vol 2, H Ehrig, G Engles, H-J Kreowski and G

Rozenberg

[7] Tutorial on Fundamentals of Algebraic Graph

Transformation, Hartmut Ehrig, Ulrike Prange : TU Berlin

Karsten Ehrig : U. Leicester

[8] “Search Trees for Distributed Graph Transformation

Systems”, Ulrike Ranger and Mathias L¨ ustraeten,

Proceedings of the

Second International Workshop on Graph and Model

Transformation

[9] “Response Time Estimation: a Study of Hospital

Information Management System”, Suneeta H. Angadi,

Narasimha H Ayachit, Prakash. R.Patil, 2009 International

Symposium on Computing, Communication, and Control

(ISCCC 2009) Proc .of CSIT vol.1 (2011) © (2011) IACSIT

Press, Singapore.

314 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://staff.um.edu.mt/cabe2/lectures/webscience/docs/sowa_93.pdf
http://staff.um.edu.mt/cabe2/lectures/webscience/docs/sowa_93.pdf
http://drops.dagstuhl.de/opus/volltexte/2006/493

SESSION

SOFTWARE ENGINEERING AND MANAGEMENT
+ CODE REUSE + SOFTWARE MAINTENANCE

METHODS + RELEASE PLANNING + SOFTWARE
PRODUCTIVITY AND QUALITY

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 315

316 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

On-Demand Source Code Generation & Scheduling Optimised Parallel
Applications on Heterogeneous Platforms

K.A. Hawick and D.P.Playne
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: { k.a.hawick, d.p.playne }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

March 2013

ABSTRACT

Scheduling applications tasks across heterogeneous clusters
is a growing problem, particularly when new upgraded com-
ponents are added to a parallel computing system that may
have originally been homogeneous. We describe how auto-
matic and just-in-time source code generation techniques can
be used to make the best parallel decomposition for whatever
resource is available in a heterogeneous system consisting of
graphical processing unit accelerators and multi-cored con-
ventional CPUs. We show how a high level domain specific
language approach to our set of target simulation applications
can be used to cater for a variety of different GPU and CPU
models and scheduling circumstances. We present some per-
formance and resource utilisation data illustrating the schedul-
ing issue for heterogeneous systems in computational science.
We discuss the future outlook for this code generation ap-
proach in software engineering.

KEY WORDS
software engineering; on-demand code generation; code
reuse; computational science; simulation; GPUs.

1 Introduction
Scheduling application jobs [2,7] across heterogeneous paral-
lel computing systems is a long standing problem in compu-
tational science, with renewed efforts and work reported for
distributed systems [1, 3, 20, 21] and grid systems. Cluster
computing has also attracted a lot of scheduling research ef-
forts [10,12,17,18]. As soon as it is given its first upgrade any
computer cluster or systems typically becomes heterogeneous
unless great care and planning moves are made to obtain exact
replacement or upgrade components. Clocks speeds move on,
memory speeds and capacities improve in performance and
price performance and so do disk capacities. As nodes are
added to any existing compute cluster there is firstly a strong
temptation to upgrade with improved price performance or
improved performance components. Secondly, as a system
ages it may become effectively impossible to source the older

Figure 1: An illustration of a master node distributing a con-
figuration file to four different nodes, each of which will gen-
erate code optimised to run it’s specific hardware.

components, even if there is an intention to maintain the orig-
inal systems’ homogeneity.

This problem of managing a resource that inevitably becomes
less homogeneous in nature with time is therefore common. In
this paper we consider the particular issues concerning GPU-
accelerated clusters that are growing in heterogeneity [26].
We describe how software engineering techniques such as au-
tomated code generation from a higher-level problem specifi-
cation can improve code reuse and extend its lifetime.

Hybrid systems of multi-cored conventional CPUs as well as
GPU-accelerated systems are also quite common and schedul-
ing for highly heterogeneous environments is a particular
challenge [4]. At the time of writing GPU systems are becom-
ing widespread but we believe this issue of growing hetero-
geneity and other legacy system effects are still relatively new
for GPU system owner/operators. The heterogeneous system
effect will not go away and cannot be simply addressed as an
economic issue. The pragmatic approach is to consider what
ideas, terminologies, and software technologies and solutions
are available to help quantify the scheduling inefficiencies and
aid us to make better and effective use of heterogeneous re-
sources as part of a managed process.

Many groups, like our own, will be working with a mix of
optimisation goals. We are interested in parallel computing
systems from an experimental computer science systems per-
spective as well as a computational science one. That means
we actively collect disparate systems with different proces-
sors, CPU models, memory configurations and so forth as that
gives us a wide range of experimental system data points with
which to explore parallel algorithms, system capabilities, ef-

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 317

ficiencies, speed ups, cache effects and similar experimental
systems effects. However, to make good use of the capital
investment in such equipment we also like to keep our sys-
tems busy doing number crunching and running simulations
and other science applications – when we are not deliberately
reconfiguring them.

In this paper we discuss our ongoing work on scheduling
dynamically generated applications codes on various parallel
computing platform configurations. We are exploring the idea
of applications software that is (re)compiled at run time for the
particular platform that the scheduler deems appropriate and
available. This is not new idea in general, and OpenCL [27]
contains the notion of just-in-time compilation, particularly
aimed towards heterogeneous systems [13]. Similarly, many
attempts have been made over recent years to come up with
compilation transformation tools based around compiler di-
rective for example, that will allow the relatively straightfor-
ward re-targeting of source code to a specific platform or con-
figuration such as a GPU [9].

We go a step further in the work we report here and show how
some of the emerging domain-specific programming language
technologies and ideas [8, 11, 14–16] can be used to tackle
this issue. We show how numerical simulations - admittedly
in a very specific applications domain - can be written in a
high level language that can be used to generate highly opti-
mised implementations for parallel paradigms and platforms.
Specifically, we discuss how a set of field equation-based sim-
ulations that have been formulated in this way can be used to
explore the idea of dynamically generating optimised parallel
versions for different models or families of models of GPU
devices or for multi-cored CPUs.

In this present paper we consider the new notion of dynami-
cally interrogating the heterogeneous components of the clus-
ter to determine which node or nodes best satisfy the paral-
lelism capabilities that match the task as well as scheduling
availability of the hardware resource in question. This model
has restricted utility - it obviously involves an overhead to
generate and compile the application code and the latency of
carrying this out has to be weighed against the time to execute
the task that is being optimised. Nevertheless we believe that
for departmental resources in scenarios like ours, this model
has great value.

The heterogeneity of GPU devices is hard to overcome due
to the drastic change in architecture between different gener-
ations. To get the maximum performance out of a GPU, code
must be specifically tuned to make best use of the device’s
specialized memory. Even a small change in memory patterns
or problem decomposition can have a large impact on perfor-
mance. While it is possible to write general GPU implementa-
tions that work on devices of all generations, these codes tend
to be large, complex and still cannot fully utilize the device.

The novelty of our system comes from the software archi-
tectural notions shown in Figure 1. The assumption is that
complex equation based code has been formulated in a high
level form that is input to a source code generator. The out-

put of the generator is conventional C/C++ source code that
might have: embedded compiler directives; generated mes-
sage passing calls; generated multi-threading management; or
of most recent interest – specialist GPU kernel calls in CUDA
or a similar language, also generated automatically. The re-
sulting (human-readable) source code is then compiled in the
usual way by the vendor or platform-specific tools and the job
appropriately launched and run.

Dynamical source-to-source code generation is still a rela-
tively unusual approach, with most reported work on gener-
ated code on-demand appearing in the mobile computing lit-
erature [6, 22]. In this paper we add to its novelty by doing
it on-demand – effectively at run time, but with a high-level
application-specific language specification of the core algo-
rithmic aspects.

Our present article is structured as follows: In Section 2 we
summarise the general problem of scheduling and lay out a
notation for performance timing. We summarise the particu-
lar class of numerical simulations applications we use for our
benchmarks and performance analysis in Section 3 and give a
description of our prototype just-in-time source code genera-
tor in Section 4 and present some performance timing results
in Section 5. We discuss the implications for scheduling appli-
cations on heterogeneous systems in Section 6 and offer some
conclusions and areas for further work in Section 7.

2 Scheduling Systems
Scheduling jobs has been an important area of research
throughout the history of computing. It is usual to split the
subject from two usually different perspectives: firstly indi-
vidual users or programmers aim to get a particular job to
complete in the shortest time possible - either by having it
start running as soon as possible in any given queue system
and/or having it run on the fastest and most appropriate re-
source available. The organisation that owns and operates the
resources usually has the possibly conflicting goal of having
the resource be as well utilised as possible. Economic consid-
erations can provide another axis of interest but in our discus-
sion we focus only on the first two points.

We have realised that as a computer science research group
we need to combine the two goals. Much of our “computer
science” systems oriented research work involves experiment-
ing with our systems, often deliberately reconfiguring them to
try different combinations of processors, memory, accelera-
tors, and communications system. When we are not doing
this however we want to make it as easy as possible to deploy
number crunching applications that will soak up as many com-
pute cycles and other resources as possible while producing
“computational science” outcomes in the form of completed
numerical experiments and analysis and so forth. These two
complementary aspects of computational science need to co
exist and this present paper is a manifestation of some proto-
typical software management and scheduling analysis.

318 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

There are many good software systems for managing jobs on
cluster computers. We focus here on the latency overhead is-
sues concerned with giving a scheduler the additional capa-
bility of generating applications source code and compiling it
“just in time” before running it in the usual way.

Suppose we have a number of compute jobs labelled by index
j that are to be scheduled to run on the most appropriate of a
set or resources index by r. Generally a scheduler or job man-
agement system will have one or more queues that are usually
managed as first in first out streams of jobs. They need not
of course be executed in the order of submission as there may
be any number of economic and socio-political priority con-
siderations in effect. The goals are either: to minimise the
time to completion of all or some jobs; or to maximise the re-
source utilisation efficiency. Scheduling a homogeneous col-
lection of resources is a relatively well known problem and
often modern resources have the capability of running more
than one job at once, with some degree of process level par-
allelism managed straightforwardly by the operating system
software.

In the scenarios we consider in this paper, we are often inter-
ested in jobs that are being timed or benchmarked as part of
an exploration of a resource configuration or as part of par-
allel algorithmic development work. Consequently we often
want exactly one job running per resource at any given time,
to minimise job-job interference through resource contention
and so forth.

However in the heterogeneous systems we are interested in
there is some extra information is available to the scheduler
concerning the resources and their capabilities. They can be
queries or polled dynamically to determine what their avail-
ability is, but they can (and need to) have a much richer and
more detailed capability specification that would a plain ordi-
nary CPU. These include floating point capability, number of
GPU devices, number of low level cores per device and other
parameters which as we find in our results can make an order
of magnitude in difference in run time if not properly catered
for.

Our approach to this problem has been to consider how much
information can be made available to the scheduler about the
application properties as well as the compute resources, and
to consider how this information needs to be expressed and
how it can best be matched by a smart scheduler.

3 Field Equation Examples
To focus on specific applications for which we can measure
and demonstrate improved performance, we report on some
simulation model calculations based upon a field equation for-
mulation.

Three example field equations are used to evaluate the on-
demand code generation system - the Heat (1), Ginzburg-
Landau (2) and Cahn-Hilliard (3) equations. These equa-
tions were chosen for several reasons. First of all the

Figure 2: Code generator process to select a suitable process-
ing device and generate code for the simulation.

code generation system used in this research is designed
for field-equations that can be numerically simulated on N-
dimensional regular lattices, using finite-difference methods
and explicit Runge-Kutta integration methods [24]. These
three equations all fit into this category and can be automati-
cally generated.

∂u

∂t
= α∇2u (1)

∂ψ

∂t
= −p

i
∇2ψ − q

i
|ψ|2 ψ + γψ (2)

∂φ

∂t
= m∇2

(
−bφ+ uφ3 −K∇2φ

)
(3)

The three equations also have different computation intensi-
ties and memory halos. The the Heat equation is a very simple
equation with a small memory halo and can be represented by
a scalar field. The Ginzburg-Landau equation also has a small
memory halo but requires a field of complex numbers to rep-
resent the field. Finally the Cahn-Hilliard equation is repre-
sented by a scalar field but requires the use of the biharmonic
operator resulting in a larger memory halo. These equations
are provided to the generator as ASCII representations in an
equation file. An example ASCII representation of the Heat
equation can be written as follows:

floating a;
floating[] u;
d/dt u = a * Laplacian{u};

The generator will then parse this file and combine it with the
appropriate stencil and integration method as defined by the
configuration file. This process is shown in Figure 3.

More details on the workings of our code generator and
domain-specific field equation language are described in [19,
23] from the perspective of the applications domain. In what
follows, we focus on the aspects of generation for different
accelerator devices and capabilities.

4 Code Generation On-Demand
The Code Generation component of this system does not con-
sider the problem of scheduling but will simply run the simu-
lation on it’s hardware as it sees fit. It assumes all scheduling

To launch a simulation on a machine, the master node sends
the configuration file to the node and launches the code gen-

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 319

Figure 3: A diagram of the structure of the code generator.
The generator take information on the equations, stencils and
integration method to construct an abstract tree representation
of the simulation. This tree and configuration is given to the
output generator that produces code for a specific target lan-
guage.

erator. This configuration file contains the details of the simu-
lation, model parameters, numerical methods, time scale etc.
When the code generator is launched it will first query the de-
vice to determine what computing resources it has available.
First it will determine whether or not there is a suitable Graph-
ical Processing Unit available.

If no GPU device exists the simulation must be run on the
CPU in which case it will query the CPU to determine if it is
a single- or multi-core CPU. The generator will then create a
C implementation for a single-core or an implementation us-
ing Thread Building Blocks (TBB) [25] for a multi-core CPU.
This is not a restriction of the generator, C and TBB were cho-
sen simply due to previous experience with this language and
library. Generators could easily be written for other languages
or multi-threading libraries.

Listing 1: Code snippet of the Tesla implementation allocat-
ing texture memory and fetching values from texture memory
for the point (ix,iy).

/ / Cr ea t e t e x t u r e
t e x t u r e <f l o a t , 2 , cudaReadModeElementType> t e x t u r e u ;

/ / Cr ea t e and b ind a r r a y
t e x t u r e u . n o r m a l i z e d = f a l s e ;
t e x t u r e u . f i l t e r M o d e = c u d a F i l t e r M o d e P o i n t ;
cudaArray ∗ a r r a y u ;
cudaChanne lFormatDesc u d e s c r i p t o r =

cudaCrea teChanne lDesc<f l o a t > () ;
cudaMal locAr ray (& a r r a y u , &u d e s c r i p t o r , X, Y) ;
cudaBindTex tu reToAr ray (t e x t u r e u , a r r a y u) ;

/ / Fe tch v a l u e s from t e x t u r e memory
f l o a t u0ym1x = tex2D (t e x t u r e u , ix , ym1) ;
f l o a t u0yxm1 = tex2D (t e x t u r e u , xm1 , i y) ;
f l o a t u0yx = tex2D (t e x t u r e u , ix , i y) ;
f l o a t u0yxp1 = tex2D (t e x t u r e u , xp1 , i y) ;
f l o a t u0yp1x = tex2D (t e x t u r e u , ix , yp1) ;

If a suitable NVIDIA GPU is available on the machine, the
generator will run a small program to query the device(s) to
determine their capabilities. The generator can be configured
to find a suitable device to run the simulation. This includes
selecting a device with sufficient memory for the simulation
etc. If no suitable device is found to run the simulation, the
generator will fall-back to using the CPU. If there is more
than one suitable device, the generator will select the latest

generation device. This process of querying the machine and
generating code is shown in Figure 2.

The major difference in code generation lies between the Tesla
and Fermi/Kepler generation cards. This is due to the intro-
duction of L1/L2 cache in the Fermi and subsequent gener-
ation devices. Prior to this change in memory architecture,
texture memory provided the best performance for the type of
access pattern used by these simulation. The use of texture
memory to fetch values from the field is shown in Listing 1.
However, in later generations the higher bandwidth of L1/L2
cache provides the best performance (See Listing 2). This
change in memory type requires some significant changes to
simulation code. The difference between Fermi and Kepler
devices is less as they are more similar architectures.

Listing 2: Code snippet of the Fermi/Kepler implementation
fetching values from global memory through L1/L2 cache and
calculating the heat equation for the point (ix,iy).

/ / Cr ea t e g l o b a l memory a r r a y
f l o a t ∗u0 ;
cudaMal loc ((void ∗∗) &u0 , X∗Y∗ s i z e o f (f l o a t)) ;

/ / Fe tch v a l u e s from g l o b a l memory
f l o a t u0ym1x = u0 [ym1∗X + i x] ;
f l o a t u0yxm1 = u0 [i y ∗X + xm1] ;
f l o a t u0yx = u0 [i y ∗X + i x] ;
f l o a t u0yxp1 = u0 [i y ∗X + xp1] ;
f l o a t u0yp1x = u0 [yp1∗X + i x] ;

Once the generator has determined the device it is going to run
the simulation on. It can produce code tailored specifically
for that device. This includes using different memory types,
grid/block sizes based on the number and type of multipro-
cessors in that GPU etc. Currently this system only makes use
of a single GPU however it can be extended to utilize mGPU
machines including systems with multiple GPUs of different
architectures.

The details of this code generation system is described in [24]
but the general structure of the generator is shown in Figure 3.

There will be a slight overhead when running simulations us-
ing this code generation method. Obviously there will be
some communication required to send the configuration file
to the compute node, the configuration is a small file and the
time to send it to the node is negligible. Copying the results
back from the simulation may require more communication
but this is dependent on the simulation not the code generator
and thus is not considered.

The overhead comes about from the fact that rather than dis-
tributing and running a program, the nodes must read the con-
figuration file and generate the code for the simulation. The
exact generation time will vary based on the hardware and
computational load of the node, the complexity of the equa-
tion and numerical methods and implementation of the gener-
ator. For the most part this generation completes in the order
of seconds and generally much less than the run-time of the
simulation. This generation time is discussed further in Sec-
tion 5 below.

320 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

5 Results
The best way to assess the feasibility of the just-in-time code
generation approach is to measure the performance attainable
on different system configurations. Although one is normally
interested in the scalability and how the performance of an ap-
plication changes with the number of parallel components or
with some measure of the problem size, in this paper we are
especially interested in determining accurately the latency or
overhead that arises from the code generation and recompila-
tion. A reliable way to determine the “zero sized job” time
is to plot run times with increasing job size and use a least-
squares fit, weighted by the standard deviation on the comple-
tion times. the slope of such a fit gives us the normal indica-
tions of speed scaling, but more usefully here, the intercept -
accurately extrapolates back to zero job size and gives us the
latency overhead.

Figure 4 shows the compute time vs number of simulations
steps run for a 1024x1024 cell sized Cahn Hilliard simulation,
integrated using the RK2 integration method on four different
nodes. These four nodes all have different compute devices
- a Tesla GPU (GTX260), a Fermi GPU (GTX580), a Kepler
GPU (GTX680) and a multi-core Xeon (X5675). Analysing
the intercepts of these plots shows that the overhead of code
generation is ≈ 1...6 seconds depending on the node.

Figure 4: Plot of simulation time vs compute time for a
Cahn-Hilliard simulation using RK2 numerical integration on
a 1024x1024 field. Results shown for a GTX260, GTX 580,
GTX680 and a four-core Xeon X5675.

Another comparison can be drawn between generic CUDA
code and code that has been specifically targeted for a certain
type of card. Obviously if all GPU cards were of the same
generation, it would be much easier to create a general imple-
mentation that could run reasonably efficiently on all of them.
However, to be able to run a simulation on all generations of
card, the implementation must be built for the most general
case. In this case we compare a Cahn-Hilliard simulation that
can be run on any CUDA capable card and the implementa-

tions created by the code generator (Gen). It can be seen from
Figure 5 that the generated code provides significant perfor-
mance benefits over the general version.

Figure 5: Comparison between code generated for specific
devices (Gen) and device independent code. The simu-
lation used to compare these implementations is a Cahn-
Hilliard Simulation using RK2 (h=0.01) and system size of
L={128...1024} run for a simulation time of 100.

Table 1 shows the performance variations of different devices
computing the three example simulations using float and dou-
ble data types.

Table 1: Performance variations (in seconds) across different
devices. Accurate to ±0.5s

Precn. Eqn. TBB Tesla Fermi Kepler
float Heat 224s 57s 22s 18s

TDGL 720s 114s 41s 32s
CH 920s 133s 46s 30s

double Heat 339s 119s 33s 44s
TDGL 984s 305s 93s 129s

CH 1161s 358s 106s 171s

As can be seen from the table, computing simulations with
double precision requires more compute time. This increase
in compute time is especially noticeable in the old (Tesla) and
new (Kepler) generations of GPU.

6 Discussion
The code generation overhead times as shown in Figure 4 and
from Table 1 are significant in absolute terms, but in relative
terms and for the sort of numerical simulation job that might
typically take more than a few minutes at least, and more
likely take more than an hour, the overheads are not signifi-
cant. The application codes were have focused one are have
been shown to be good representative benchmark codes based

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 321

on past work. The data suggest therefore that the dynamical
code generation approach is quite feasible an practicable.

The different GPU models show quite significant variations in
performance. These models are all still relatively recent - they
are still commercially available and are only separated by a
year or so. This is indicative of advances in the field for accel-
erator technologies like GPUs. It underlines the importance of
planning for heterogeneous systems. Our University plans its
computer depreciation on a four year cycles, and arguably for
supercomputer cluster equipment one might even expect com-
ponents to have a usable life-cycle of 5-6 years. It there are
component performance changes as significant as nearly an
order of magnitude still occurring within a single year, then it
is vital to plan for heterogeneity in the system.

At the time of writing we still believe that GPU and similar
accelerator devices are especially prone to this effect. Con-
ventional multi-cored CPUs may well exhibit it too as devel-
opments in their technology are accelerating. It is entirely
feasible to build 4, 6, 8, 16 cored CPU nodes in 2012, and its
is likely that 32-cored CPUs will be commonplace and com-
modity priced by 2014. This same heterogeneity effect will
quite likely influence even conventional cluster computer pur-
chases and plans over that time-scale.

In this short present paper we have focused on a small class
of numerical simulations that we already understand well and
for which the code generation approach works well. Our code
generation system obviously has greater scope than the issues
discussed here. It allows relatively simple use of quite com-
plex higher order numerical integration schemes with all the
boilerplate communications and data structures management
code generated automatically. This is useful to be able to ex-
periment with different algorithms, but is beyond the scope of
this present paper. Here we have just experimented with dif-
ferent GPU and multi-core tuning aspects rather than major
algorithmic aspects.

We have seen in Figure 5 that we can obtain very good per-
formance on GPU-accelerated nodes for this class of numeri-
cal simulation, but also that we can improve further by nearly
an order of magnitude by tuning for the right device with the
right properties. Furthermore as table 1 shows, the overheads
accrued are insignificant next to the typical run times of pro-
duction level jobs. There are a myriad of different GPU model
available and this “horse for courses” approach is likely a
good vendor strategy and will certainly persist to serve dif-
ferent market segments well. The area of floating point preci-
sion and precision capability available to each core will likely
continue to be a major market segmentation aspect.

We believe the dynamic code generation approach could be
incorporated into a more conventional scheduler software
framework. What appears to need more work however is to
develop a constraint specification language so that the user
or the code generator can impart impart further information
about the sort of compute resource that best suits the simula-
tion. As we have commented, OpenCL encourages this no-
tion within a limited scope at run time, but the notion of a

domain-specific high level application language opens up this
idea further to a greater range of device preferences.

We have not reported in the various scheduling heuristics [5]
and other queue parameter tuning that could be done to op-
timise resource utilisation efficiency. The main point arising
from our present work is that a scheduler with the extra in-
formation we have described about device specifics and the
means to recompile a tuned application will be able to apply
economic and other heuristics even more.

7 Conclusion
We have described how source code generation technologies
can be used to schedule performance tuned parallel simulation
applications on heterogeneous clusters of GPU-accelerated
nodes and conventional multi-cored CPUs. Our data indi-
cates that very significant performance enhancement comes
from using specially tuned GPU-model specific codes instead
of general versions.

We have been able to demonstrate these effects since we have
focused on a well-defined set of field-equation based numer-
ical simulation applications. The domain-specific high-level
problem formulation works well on this class of problems
and we believe could be extended to other application domain
families that share common algorithmic and data structural el-
ements

We have shown effects relating to the presence or absence of
floating point units; floating vs double precision equipped de-
vices; as well as devices with varying numbers of low level
cores. We have also shown effects related to some problems
that have greater computational intensities than others.

This notion of custom compilation for an available device is
a powerful one. OpenCL environments aim towards having
some capabilities for low level device optimisation but since
our application domain specific language allows more control
at the different levels of the software stack, we have been able
to demonstrate quite high benefits with just source to source
transformations.

We conclude that while GPUs are already known to greatly
accelerate some problems, it is important to consider the par-
ticular device model and its availability in scheduling runs
to give best turn-around run time and/or best resource util-
isation. Allowing a scheduler access to the extra informa-
tion available in a stack of automatically generated applica-
tion source code opens up new scheduler optimisation poten-
tial especially for heterogeneous clusters. We believe there
is scope for further work in incorporating these code genera-
tion and management ideas within the framework of existing
cluster computing scheduler software systems and that this
approach will be useful for improving utilisation of compu-
tational resources, particular for research groups like our own
with mixed computer systems science and applied computa-
tional science goals.

322 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

References
[1] Abramson, D., Giddy, J.: Scheduling large parameteric mod-

elling experiments on a distributed meta-computer. In: Proc.
PCW ’97 (September 1997)

[2] Adam, T.L., Chandy, K.M., Dickson, J.R.: A comparison of list
schedules for parallel processing systems. Communications of
the ACM 17(12), 685–690 (December 1974)

[3] Berman, F., Wolski, R., Figueira, S., Schopf, J., Shao, G.:
Application-level scheduling on distributed heterogeneous net-
works. In: Supercomputing ’96 (November 1996)

[4] Blazewicz, M., Brandt, S.R., Diener, P., Koppelman, D.M.,
Kurowski, K., Loffler, F., Schnetter, E.: A massive data par-
allel computational framework for petascale/exascale hybrid
computer systems. arXiv 1201.2118v1, Poznan Supercomput-
ing and Networking Center, poland (10 January 2012)

[5] Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L., Maheswaran,
M., Reuther, A.I., Robertson, J.P., Theys, M.D., BinYao, Hens-
gen, D., Freund, R.F.: A comparison of eleven static heuris-
tics for mapping a class of independent taks onto hetero-
geneous distributed computing systems. J. Parallel and Dis-
tributed Computing 61, 810–837 (2001)

[6] Carzaniga, A., Picco, G.P., Vigna, G.: Is code still moving
around? looking back at a decade of code mobility. In: 29th
IEEE Int. Conf. on Software Engineering (ICSE’07). pp. 9–20.
Minneapolis, USA (20-26 May 2007)

[7] Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in
general-purpose distributed computing systems (May 1986)

[8] Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R.,
Olukotun, K.: A domain-specific approach to heterogeneous
parallelism. In: Proceedings of the 16th ACM symposium
on Principles and practice of parallel programming. pp. 35–
46. PPoPP ’11, ACM, New York, NY, USA (2011), http:
//doi.acm.org/10.1145/1941553.1941561

[9] Chen, L., Liu, L., Tang, S., Huang, L., Jing, Z., Xu, S., Zhang,
D., Shou, B.: Unified parallel c for gpu clusters: Language
extensions and compiler implementation. In: Proc. 23rd Int.
Workshop on Languages and Compilers for Parallel Computing
(LCPC2010). pp. 151–165. No. 6548 in LNCS, Springer (2010)

[10] Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: Gpu clus-
ter for high performance computing. In: Proc. Supercomputing
(SC’04). p. 47. Pittsburgh, USA (6-12 November 2004)

[11] Fowler, M.: Domain-Specific Languages. No. ISBN 0-321-
71294-3, Addison Wesley (2011)

[12] Gan-El, M., Hawick, K.A.: Parallel containers - a tool for ap-
plying parallel computing applications on clusters. In: Proc.
Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA’06). pp. 764–767. No. PDP3889,
CSREA, Las Vegas, USA (26-29 June 2006), iSBN 1-932415-
86-6

[13] Gaster, B., Howes, L., Kaeli, D.R., Mistry, P., Schaa, D.: Het-
erogeneous Computing with OpenCL. Elsevier (2012), iSBN
978-0-12-387766-6

[14] Ghosh, D.: Dsl for the uninitiated - domain-specific languages
bridge the semantic gap in programming. Communications of
the ACM 54(7), 44–50 (2011)

[15] Hawick, K.A.: Engineering internal domain-specific language
software for lattice-based simulations. In: Proc. Int. Conf. on
Software Engineering and Applications. IASTED, Las Vegas,
USA (12-14 November 2012)

[16] Hawick, K.A.: Fluent interfaces and domain-specific languages
for graph generation and network analysis calculations. In:

Proc. Int. Conf. on Software Engineering (SE’13). IASTED,
Innsbruck, Austria (11-13 February 2013)

[17] Hawick, K.A., James, H.A.: Trends in cluster computing
scheduling and the missing cycles. In: Proc. Int. Conf on Par-
allel and Distributed Processing Techniques and Applications
(PDPTA’05). pp. 732–738. CSREA, Las Vegas, USA. (27-30
June 2005)

[18] Hawick, K.A., James, H.A., Scogings, C.J.: 64-bit archi-
tectures and compute clusters for high performance simu-
lations. Tech. Rep. CSTN-024, Computer Science, Massey
University, Albany, North Shore 102-904, Auckland, New
Zealand (April 2006), http://www.massey.ac.nz/

˜kahawick/cstn/024/cstn-024.pdf
[19] Hawick, K.A., Playne, D.P.: Automatically Generating Ef-

ficient Simulation Codes on GPUs from Partial Differen-
tial Equations. Tech. Rep. CSTN-087, Computer Science,
Massey University, Albany, North Shore 102-904, Auckland,
New Zealand (July 2010), http://www.massey.ac.nz/
˜kahawick/cstn/087/cstn-087.pdf

[20] James, H.A.: Scheduling in Metacomputing Systems. Ph.D.
thesis, The University of Adelaide (1999), forthcoming

[21] Krueger, P., Chawla, R.: The stealth distributed scheduler. Proc.
IEEE 11th Int. Conf. Distributed Computing Systems pp. 336–
343 (1991)

[22] Lau, F.C.M., Belaramini, N., Kwan, V.W.M., Siu, P.P.L., Wing,
W.K., Wang, C.L.: Code-on-demand and code adaptation for
mobile computing. In: The Handbook of Mobile Middleware.
Auerbach (2006)

[23] Playne, D.P., Hawick, K.A.: Auto-generation of parallel finite-
differencing code for mpi, tbb and cuda. In: Proc. International
Parallel and Distributed Processing Symposium (IPDPS);
Workshop on High-Level Parallel Programming Models and
Supportive - HIPS 2011. pp. 1163–1170. IEEE, Anchorage,
Alaska, USA (16-20 May 2011), in conjunction with IPDPS
2011, the 25th IEEE International Parallel & Distributed Pro-
cessing Symposium

[24] Playne, D.P.: Generative Programming Methods for Parallel
Partial Differential Field Equation Solvers. Ph.D. thesis, Com-
puter Science, Massey University (2011)

[25] Reinders, J.: Intel Threading Building Blocks: outfitting
C++ for multi-core processor parallelism. No. ISBN 978-
0596514808, O’Reilly, 1st edn. (2007)

[26] Samuel, T.K., Baer, T., Brook, R.G., Ezell, M., Kovatch, P.:
Scheduling diverse high performance computing systems with
the goal of maximizing utilization. In: Proc. 18th International
Conf on High Performance Computing (HiPC). pp. 1–6. Ban-
galore, India (18-21 December 2011)

[27] Stone, J.E., Gohara, D., Guochun, S.: Opencl: A parallel
programming standard for heterogeneous computing systems.
Computing in Science & Engineering 12(3), 66–73 (May-June
2010)

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 323

Lights on the Impact of Requirements
Interdependencies on Priorities during Release

Planning Decisions

Bassey Isong1, Obeten Ekabua2, and Ifeoma Ohaeri2
1Department of Computer Science, University of Venda, Thohoyandou, Limpopo, South Africa
2Department of Computer Science, North-West University, Mmabatho, Mafikeng, South Africa

Abstract - In market-driven software development, software
release planning is both crucial and complex activity with a
significant impact on the success or failure of software
product development. However, the task of scheduling an
optimal set of requirements for a particular release is not as
easy as expected. This is because requirements prioritization
is crippled by interdependencies. Consequently, release
planning decisions are thwarted, prioritization is difficult,
and interdependencies are complex and fuzzy. Furthermore,
not much has been known about the nature of requirements
interdependencies in release planning perspective in
literature. Therefore, our objective in this paper is to bring
into light the impact of interdependencies on priority of
requirement and their complexity nature. In addition, an
approach for intermediate representation of
interdependencies is proposed.

Keywords: market-driven, prioritization, interdependencies,
requirements, release planning

1 Introduction
In market-driven software development, products are
developed in several successive releases and planning the
contents of the resultant product releases constitutes one of
the most critical activities that determine a company’s
product success or failure [1]. During product planning and
road-mapping, requirements evaluation and selection process
is seen as a complex activity involving trade-offs between
requirements from different origins and stakeholders. This is
because market-driven development does not have specific
identifiable customers and the requirements often need to be
invented based on the ‘assume’ needs of several potential
users [2]. Consequently, the software company bear all risk
related to product development.

The goal of market-driven development is to achieve a
competitive advantage by taking a reasonable market share,
attract wide range of customers and amassing profits [3].
However, achieving favorable levels of revenue under
conditions of scarce resources is a great challenge for
software production intended for mass markets. The
challenge is mainly dealt with product release planning – the

process of planning for the next release, what should be and
delivered when. The objective of release planning has been
selecting subset of requirements that can yield optimal
realization of products in a certain release within the
constraints of fixed release date and resources available [4,5].
Achieving such an objective has been found to be particularly
critical in the software product development [4].During the
course of a project, many different decisions regarding
product release plan has to be made. Release planning is
considered a challenging and complex decision-making
activity due to its size, the number of involved stakeholders,
the variety of variables need to be taken into consideration for
next releases (such as available resources, milestones,
conflicting stakeholder views, available market opportunity,
risks, product strategies, requirements interdependencies and
costs) and so on [4]. Consequently, the problem of release
planning has been described as “wicked” [6] and in
particular, many of the identified challenges are stakeholder
related [7]. When requirements originate from several
stakeholders it often yields more requirements than can be
implemented at once. This requires requirements to be
prioritized so that the most significant ones are met by the
earliest product releases.

Prioritization, a sub-problem of release planning is a crucial
activity involving assigning priorities according to a set of
criteria reflecting the views of a set of stakeholders,
scheduling, resource planning and requirements
interdependencies [8]. However, determining priorities for
requirements has proved to be difficult and most
requirements cannot be treated independently since they are
related to and affect each other in complex ways [4]. This
however makes it difficult, if not impossible for requirements
to be planned based on priority only [9]. With the nature of
the relationship, decisions made on one or many
requirements may affect other requirements in ways not
anticipated for during development [1]. In fact, the challenge
with requirements interdependencies tends to grow in time.
As such, requirements interdependencies have to be taken
seriously in order to make good decisions about the
importance of requirements during the process of
prioritization which in turn facilitates quality product release
plan.

324 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Planning a product release inevitably involves dealing with
all categories of interdependencies. With the complex nature
of release planning, requirements interdependencies is seen
as an important research area since little attention has so far
been gained in existing literature. Research in this area has
been focused mostly on specific problem or a development
activity which does not specifically address release planning
problems [9]. Thus, our objective in this paper is to bring into
light, the nature of prioritization and interdependencies
challenges during product release planning. In addition, this
paper tries to propose an approach to represent
interdependencies between requirements that will add to the
facilitation of the selection of optimal subset or requirements
that add values to customer needs within the constraints of
fixed release date and available resources.

The remaining part of the paper is organized as follows:
section 1 is the introduction, section 2 gives a description of
requirements prioritizations and its challenges, section 3
describes requirements interdependencies and their fuzziness
nature. Accordingly, section 4 presents the impact of
interdependencies on priority, section 5 gives the details of
the proposed interdependencies representation while section
6 is the paper conclusion..

2 Requirements Prioritization
 With the proliferation of markets for packaged software,
market-driven software development is gaining increased
momentum against bespoke software development [3]. Stated
by [10], the difference between them is characterized by
stake-holding and schedule constraints. This means market-
driven software development involves wide markets with
large potential customer based outside the company and more
stakeholders within the company [10]. Consequently, large
volume of requirements is produced which are continuous
and often cannot be implemented at once. However, the
challenge is often how to select the correct set of
requirements that are valuable for the customers, and can be
implemented within budget for an organization to become
more successful in the market in upcoming releases. If a
subset of the requirements should be selected, the decision
makers must understand the relative priorities of the
requested requirements.

Sommerville [11] defined requirements prioritization as the
activity during which the most important requirements for
the system are discovered. This activity is a vital step towards
making good decisions concerning product planning for
multiple releases as it help to establish the importance of
requirements and their implementation and testing order
throughout the development lifecycle. With requirements
prioritization, software engineers can focus on a subset of all
the requirements, and implement them in the earliest product
releases [12]. Generally, the process of selecting the right set
of requirements for a product release is dependent on how

well the organization succeeds in prioritizing the
requirements candidates. In market-driven software
development, how to prioritize large number of requirements
is one of the greatest challenges which negatively affect
release planning decisions.

Requirements prioritization is an important requirements
engineering activity that originates from limited product
development resources. It is triggered when customer
expectations are high, timelines short, and resources limited,
prompting a limited set of requirements with most critical
functionality to be implemented and delivered as early as
possible in one product release while meeting the needs of the
customers and reach the markets in time [12].

Unfortunately, requirements prioritization has been
recognized as a very challenging activity. In existing
literature, it has been described as an easy task, of medium
difficulty, while some authors considered it one of the most
complex requirements activities, with no effective and
systematic methods to perform in most software
organizations [13]. Accordingly, Karlsson et al [14] stated
that requirements prioritization requires domain knowledge
and estimation skills in order to be successful. In practice,
determining the priorities for requirements has proved to be
difficult and not easy to define the aspects on the basis of
which prioritization decisions should be based [8]. This is
because priority itself is a term that is ambiguous and a
complex amalgam of different aspects such as importance,
penalty, cost, time and risk where each aspect is an extremely
multifaceted concept [21]. For instance, importance could be
combination of implementation urgency, requirement
importance for the product architecture, strategic importance
for the company, etc. [8, 21].

In addition, it has been found that decision-makers ought to
consider multiple aspects before deciding the implementation
scheduling of the requirements [21]. However, dealing with
these multiple aspects of priority is difficult in practice and is
challenging for decision makers to determine which aspects
are important in making prioritization decisions [4]. Also, it
is sometimes difficult to get real information on those aspects
and not only do prioritization depends on the chosen aspects,
but also on the selected stakeholders [8]. To make the issues
more complicated, priorities may vary as a function of time
[7]. Requirements depend on each other and priorities are
always complex in relative where the importance in one
release or to a certain customer may not be as important in
the next release or to another customer – fuzziness nature [4].

There are several techniques of requirements prioritization
that exist in the literature which are categorized based on
determining the absolute importance of the candidate
requirements while others are based on relative and require a
person to determine which requirement is more important. In
other words, they are methods based on giving values to

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 325

different factors of requirements and negotiation approaches
[14].These include the analytic hierarchy process (AHP),
binary search tree creation, greedy-type algorithms,
cumulative voting, the 100-dollar Test, numerical
assignment (grouping), Theory-W, requirements triage,
Wiegers' Method, ranking, top-Ten requirements, planning
games, other common sorting methods [12, 15]. The pitfalls
with these approaches include not scalable, do not takes into
account different stakeholder view points and release
planning with effort constraints [15]. Lastly, their basic
model is fixed and does not permit any requirements
changes, complete priorities or constraints. Other techniques
aimed at supporting release planning, in particular when
several stakeholders are involved are EVOLVE [16] and
Quantitative WinWin [17]. More information about the list
of techniques that supports release planning refer to
Svahnberg et al [18].

3 Requirements Interdependencies
Like a system, requirements do not exist in isolation

instead they are related to and affect each other in complex
ways. Requirements interdependency is a special aspect of
requirements traceability with a specific interest on the
relationships between individual requirements. Studies have
shown that during the RE process, most developed individual
requirements cannot be treated separately during software
development due to the cost and value relationship between
them [19]. This however, affects several other development
activities in an uneven manner such as release planning. For
instance, requirements may affect each other by either:
constrains how other requirements can be implemented,
affects the cost of implementing other requirements, or
increases or decreases the customer satisfaction of other
requirements [19]. Moreover, a study by [9] has shown that
only roughly 20% of the requirements are responsible for
75% of the interdependencies out of which a few
requirements are singular where bespoke development has
more feature-related dependencies and market-driven product
development have more value-related dependencies.

Though, less work has been done in the area of requirements
interdependencies, few strategies for identifying and
managing interdependencies exist. Dahlstedt and Persson
[19] in their studies identified three types of requirements
dependencies: structural, constraints, and cost-value
interdependencies. The classification was aimed at
understanding the relationship between requirements. Each
interdependency type is categorized into: Structural
(Refined_to, Change_to, and Similar_to), Constraining
(Requires, and Conflicts_with) and lastly, Cost/Value
(Increases/Decreases_cost_of and Increases /
Decreases_value_of) dependencies. The study recommends
that requires, similar_to, conflicts_with, and the entire
cost/value category should be used to group requirements in
order to avoid costly mistakes during release planning.

In another study, Carlshamre et al [9] discussed several
alternatives aimed at minimizing the time required in
carrying out the analysis and proposed a classification
scheme for interdependencies: functional related (AND,
REQUIRES) and value related (ICOST, CVALUE) for
bespoke and MDRE respectively. Others are OR and
TEMPORAL dependencies. In addition, to facilitate release
planning a simple visualization method was applied for the
ease of interdependencies identification. In a similar study,
Johan et al [20], also work on automated similarity analysis
which uses language tools to analyze sets of requirements.
The technique was aimed at supporting requirement
engineers to identify requirements duplicates and
interdependencies and was evaluated based on Carlshamre et
al [9]. Results obtained shown that the technique only
identified similarities between requirements with a correct
classification of up to 16% of the actual interdependencies.

4 Requirements Interdependencies Impacts

on Prioritization
It is clear that most individual requirements cannot be

treated in isolation during software development due to the
complex relationships between them. However, though
requirements interdependencies tends not to be problematic
as such, the manner they affects a number of other
development activities and decisions, makes them
problematic and complex [9,19]. These activities include
release planning, testing, change management, requirements
design and implementation, etc [19]. In market-driven
development, interdependencies among requirements are
value-related which affects prioritization negatively which in
turn affects release planning decisions in an unintended
manner. For instance, the selection process during release
planning is achieved through prioritization and its
implementation cost estimation. Nonetheless, the selection is
not always possible as expected due to the fact that
requirements are related to and affect one another in a
complex way. In essence, choosing one requirement may
involve selecting many other requirements as well. For
example, selecting a highly prioritized requirement R1 may
require that a costly but lowly prioritized requirement R2 be
chosen as well. Consequently, R1 cannot be implemented
without implementing R2 first.

All this poses a serious challenge to many organizations
where requirements are treated by bundling related
requirements without considering the cost-value complexity
relationships among them. In the release planning point of
view, interdependencies play a major role but they are hardly
ever identified clearly due to issues relating to multiple
stakeholding [9]. In literature, interdependencies have been
described as complex and fuzzy in nature [9]. Therefore,
knowledge and the comprehension of these relationships are

326 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

indispensable to avoid selecting a set of requirements that can
lead to costly mistakes. One approach is the intermediate
representation of these dependencies using the graph theory
approach of impact analysis.

5 Requirements Interdependencies

Identification Approach
The priority of requirements is a major determinant in release
planning but is often crippled by requirements
interdependencies. In release planning, interdependencies
between requirements play a vital role though ignoredv by
most software engineers. This lack of explicitness makes
them complex to identify and managed coupled with their
fuzziness nature [9]. Therefore, in order to identify explicitly
the nature of interdependencies and support human decisions
during the course of release planning, an intermediate
representation is indispensable. We propose an approach
based on [9], utilizing dependency graph theory which we
referred to as requirements dependency graph (RDG). The
representation is simplified by the computation of both in-
degrees and out-degrees for each requirement, R. With this
representation, reasoning about possible and good ways of
partitioning or scheduling a set of requirements in a release
plan can be supported. This will go a long way to offer clear
and fast identification of all forms of dependencies (such as
singular, clusters or highly dependent requirements [9]) at a
quick glance. These are discussed as follows:

Definition 1: [Dependency Type (DT)]
Based on Carlshamre et al [9], we therefore classify these
interdependences into six types: AND, REQUIRES,
TEMPORAL, IVALUE, ICOST and OR. And r is defined in
the following way:

Definition 2: [RDG] Given set of requirements for selection
in the next release, RP and let G < V, D, DT > represent the
RDG, where V is a finite set of nodes representing the
requirements R and D = V × V × DT represents the set of
various edges with dependency types: DT ={AND,
REQUIRES, TEMPORAL, IVALUE, ICOST, OR}.
Computation of the numbers of DT is described as follows:

Definition 3: [Out-degree]
The out-degree of R є v is the number of DT emanating
from that node. The out-degree of v is computed by |A(v)|.

Definition 4: [In-degree]
The in-degree of R є v is the number of DT incident on that
node. The in-degree of v is computed by |I(v)|.

A typical example is illustrated in Fig.1 and the
corresponding in-degrees and out-degrees for each R are
presented in Table 1. The representation in Fig.1 is simple
and easy to understand how requirements relate with one

another. The nodes are the requirements while the edges are
the dependencies types. By representing requirements in this
manner, it is possible to draw important conclusions
associated with release planning from just a glance at the
graph. Based on the representation on Table 1, singular
requirements (e.g. R8), clustered (e.g. R6) and heavily
depended requirements (e.g. R9) can be easily identified.

Fig. 1. Requirements dependency graph

Table 1: RDG In-degrees and Out-degrees

R ε v A(v) I(v)
R1 2 2
R2 - 1
R3 2 2
R4 3 -
R5 1 1
R6 - 3
R7 3 2
R8 - -
R9 4 2
R10 1 3

With these representation and based on the recommendations
in [9], requirements having no relationship with any other
requirements (i.e. singular requirements) can be scheduled
for any release as “top-off” depending on the amount of
available development resources from an interdependencies
perspective. Accordingly, requirements having many
relationships to many other requirements should be scheduled

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 327

for early release, in order to reduce risk. Lastly, clustered
requirements can be scheduled for any release as long as all
involved requirements are scheduled for the same release.

Unfortunately, one of the issues with the representation is
how to represent large volume of requirements. Market-
driven development often has large requirements and it will
be challenging representing them this way. This however
calls for automation of the dependencies. We however
recommend more research in this area in order to explore
more possibilities of identifying interdependencies in
requirements. This is important because knowing how
requirements are affected will make a whole lot of differences
in speeding up more accurate cost and schedule analysis
during product release planning.

6 Conclusions
Release planning is one of the most severe challenges faced
by organizations where incremental systems development
strategies are common practices. It is the determinant factor
of the success or failure of a company’s product in the
market. In this paper, we have explored some of the
challenges faced by release planning in the perspective of
requirements prioritization and interdependencies. Literature
has shown that priority and requirements interdependencies
play major role in release planning, but the fact that
requirements are related to each other makes it difficult, if
not impossible to select optimal set of requirements based on
priority. This makes prioritization a difficult task and
interdependencies fuzzy in nature. In addition, much has not
been known about the nature of requirements
interdependencies. As a contribution of this paper, we have
proposed the intermediate representation of requirements
using a directed graph. With this representation,
requirements relationships can easily be identified. This will
assist decision makers in deciding on which requirements to
be scheduled in the next release that is capable of achieving
higher business value.

7 References

[1] Regnell, B. and Brinkkemper, S. "Market-Driven

Requirements Engineering for Software Products,"
in Engineering and Managing Software
Requirements, Berlin Heidelberg: Springer, 2005,
pp. 287-308.

 [2] Sawyer, P.: Packaged software: Challenges for RE.

In Proceedings of the Fifth International Workshop
on Requirements Engineering: Foundations for
Software Quality(REFSQ 2000), Stockholm,
Sweden, 137–142, 2000

[3] Karlsson, L., Dahlstedt, A.G., Natt, J., Regnell, B.
and Persson, A.: Challenges in Market-Driven
Requirements Engineering - an Industrial Interview
Study, Proceedings of Eighth International
Workshop on Requirements Engineering:
Foundation for Software Quality, 2003, pp. 101-112.

[4] Carlshamre, P. “Release Planning in Market- Driven

Software Product Development: Provoking an
Understanding”, Springer, pp. 139-151, 2002

[5] Ruhe, G. “Software Release Planning” University of
Calgary 2500 University Drive NW Calgary, AB
T2N 1N4, Canada, 2004.

[6] A. Ngo-The and G. Ruhe, "A systematic approach

for solving the wicked problem of software release
planning," Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol.
12, pp. 95-108, 2008.

[7] Lehtola, L. and Kauppinen, M."Suitability of

Requirements Prioritization Methods for Market-
driven Software Product Development," Software
Process Improvement and Practice, vol. 11, pp. 7-19,
2006

[8] Lehtola, L. Kauppinen, M. and Kujala, S.

Requirements Prioritization Challenges in Practice,
Springer, 2004, pp. 497–508

[9] Carlshamre, P. et al.: An industrial survey of

requirements interdependencies in software product
release planning. In: Proceedings of the 5th
International Symposium on Requirements
Engineering, Toronto, Canada, 2001, pp. 84-91

[10] Sawyer, P., Sommerville, I. and Kotonya, G.

Improving Market-Driven RE Processes. Proc
International Conference on Product Focused
Software Process Improvement, 1999

[11] Sommerville, I. Software Engineering, 5th edn.

Addison-Wesley: Wokingham, England. 1996
[12] Wiegers, KE. Software Requirements. Microsoft

Press: Redmont, DC. 1999

[13] Lehtola, L. and Kauppinen, M. Suitability of

Requirements PrioritizationMethods for Market-
driven Software Product Development, Softw.
Process Improvement Practices, 2006

[14] Karlsson L, Berander P, Regnell B, Wohlin C.

Requirements prioritisation: An experiment on
exhaustive pair-wise comparisons versus planning
game partitioning. In Proceedings of Empirical

328 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Assessment in Software Engineering (EASE2004),
Edinburgh, Scotland, 2004

[15] Karlsson, J., Wohlin, C and Regnell, B.,”An

Evaluation of Methods for Prioritising Software
Requirements”, Information and Software
Technology 39 (1998), pp. 939-947

[16] Greer, D. and Ruhe, G. Software release planning:

an evolutionary and iterative approach, Information
and Software Technology 46 (2004) 243–253

[17] Ruhe G., Eberlein, A., and Pfal, D. Quantitative
WinWin: a new method for decision support in
requirements negotiation. Proc of the Int Conf on
Software Engineering and Knowledge Engineering,
pp 159–166. 2002

[18] Svahnberg, M. et al. “A systematic review on

strategic release planning models”. Journal of
Information and Software Technology 52, 2010, pp.
237–248

[19] Dahlstedt, Å.G., Persson, A.: Requirements

Interdependencies: State of the Art and Future
Challenges, Proceedings of the 9th International
Workshop on Requirements Engineering:
Foundation for Software Quality, 2003, pp. 71-80

[20] Natt och Dag, J. Regnell, B., Carlshamre, P.;

Andersson, M. and Karlsson, J., A feasibility study
of Automated Natural Language Requirements
Analysis in Market-driven Development,
Requirements Engineering, 2002, p 20-33

[21] Berander, P. and Andrews, A.: "Requirements

Prioritization," in Engineering and Managing
Software Requirements, A. Aurumand C. Wohlin,
Eds. Berlin: Springer, 2005, pp. 69-94..

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 329

Towards a Software Domain Metric based on Semantic Web Techniques

F. Edgar Castillo-Barrera1, Héctor G. Pérez-González1, and S. Masoud Sadjadi2
1School of Engineering, Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, México

2School of Computing and Information Sciences, Florida International University (FIU), Miami, USA

Abstract

The reuse of software remains a major objective in the
software industry. An important task in order to accom-
plish this goal is to classify the software based on the ap-
plication domain for which it was done. This action facil-
itates their possible assembly with other programs based
on the same vocabulary and domain. In this paper we de-
scribe a software domain metric which is measured based
on semantic web techniques. This metric is independent of
lines of code, binary and executable code of the software,
and the programming language. Our approach is based
on a lightweight ontology of CORBAL-IDL language and
SPARQL queries. The ontology captures the vocabulary
and its relation. This is encoded using OWL DL, supported
by the Pellet reasoner to check the ontology component con-
sistency. The populated ontology is queried using SPARQL.
These queries look for matching words based on a vocab-
ulary which describes a domain. We use an example and
a prototype (a semantic framework called Chichen-Itza) to
show the feasibility of our approach.

1. Introduction

The IEEE Standard 610.12-1990, Standard Glossary of
Software Engineering, defines a Metric as: ”A quantita-
tive measure of the degree to which a system, component,
or process possesses a given attribute”. This quantitative
measure is not always possible to apply based on lines of
code. For example, Software Components are sold with-
out source code. Another example is the concept of ab-
stract attributes, for which there are not direct ways of mea-
suring them or to quantify them. In this work we focus
on attributes based on ”the domain or context” which al-
lows us to determine if a software component or applica-
tion was done for a specific domain. Information about the
domain can be used to determine if it is possible to assem-
ble two software componentes, for example. Crnkovic and
Larsson [8] define Component-Based Software Engineering
(CBSE) ”as an approach to software development that relies

on software reuse”. The goal of CBSE is the rapid assembly
of complex software systems using pre-fabricated software
components. In order to achieve this aim, methods for veri-
fying the matching among components based on its domain
are necessary.
In this work, we propose a software metric based on se-
mantic web techniques (Ontologies, Reasoners and Seman-
tic queries) in conjunction with the Chichen-Itza framework
to mitigate this problem. We propose an approach for mea-
suring such indicators. This approach looks for matching
words in a CORBA-IDL++ file using and Ontology popu-
lated with words based on a vocabulary for a specific do-
main. For each application, artifact or software component
it is neccesary to make a file in CORBA-IDL++ and a file
with the vocabulary of the domain. CORBA-IDL++ is an
extension of CORBA-IDL language which we made it for
this purpose. Our method for measuring is able to check
matching words in differente languages and it can recog-
nize a word within another.
Our method for measuring, can only be applied if the appli-
cation, artifact or software components can be described as
methods and parameters. Binary, Executable, and Source
Code are not required. In this work, we consider the fol-
lowing definition: ”A component is a reusable unit of de-
ployment and composition that is accessed through an inter-
face”[8]. In practice, we have noted that problems related to
interface incompatibility are frequent. In particular, incom-
patibility with the semantics of operation parameters and
interface operations (behavioral contracts [4]). We consider
that the use of a semantic matching approach (a software
component ontology) could help to detect domain based on
the vocabulary of the domain before the component-based
system is deployed. The rest of the paper is structured as
follows. In Section 2 we present our proposal to measure
the vocabulary in a specific domain. In Section 3 we explain
the Semantic Web Framework called Chichen Itza and se-
mantic web techniques (Ontologies and SPARQL queries).
Section 4 shows an example about our semantic approach
in the ATM domain. In Section 5 we draw some concluding
remarks. Finally, acknowledgments are given in Section 6.

330 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 1. Process to measure the Vocabulary Domain.

2. A Metric based on Semantic Web Tech-
niques

2.1 How to measure?

The measurement process takes place in five steps as
shown in Figure 1. In the first step, the user must create
an input file written using the language of CORBA-IDL++
(which is an extension of the language of CORBAL-IDL)
where it must specify the methods or instructions with its
parameters. It is also necessary to have a file with the vo-
cabulary of the domain to check, which must be as complete
as possible.

In the second step it is necessary to translate the input
file written in CORBA-IDL++ into the language RDF. On
having applied the translator, a file with extension n3 is gen-
erated.

Phase 3 will need to join the generator file by the trans-
lator in n3 with the file the vocabulary of the domain and
the ontology of CORBA-IDL developed to the prototype of
Chichen-Itza in just one project (which will be called le on-
tological project).

In phase 4, we have to apply the Pellet Reasoner to the
ontological project created in the previous phase.

It is at this stage where the reasoner verifies the consis-
tency of the ontology. If the consistency is right we can

ensure that the ontology does not have problems of incon-
sistencies, so we can apply Semantic queries without prob-
lems of computability and decidability [13].

Finally, in phase 5 the user has to apply a query made in
SPARQL to search the vocabulary in the ontological project
and thus with this to have how many words matched with
the language used in the application. With this information,
we can apply the semantic metric.

2.2 What is the Metric?

The most common definition of Metric is: ”quantitative
measure of degree to which a system, component or
process possesses a given attribute”. The metric proposed
tries to give a quantitative measure of degree to which a
system possesses an attribute based on a specific domain
or context. The formula that appears below calculates
the percentage to which a program belongs in a specific
domain:

MDom = #matching words input vocabulary
#identifiers (#methods+#parameters) * 100

In order to calculate this, we have to know the number
of matching words, the number of methods and parameters.
We want to point out that the words defined in the input
vocabulary file have to be as complete as possible. In table
1 we have calculated the metric for 6 applications, 3 of

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 331

Table 1. The results obtained after we have applied the semantic metric

Application In ATM Number of Number of Number of Words Matching Semantic Approved
Domain Methods Parameters Vocabulary domain Words Metric

A Yes 7 5 15 8 66 Yes
B Yes 25 46 15 60 84 Yes
C Yes 50 92 15 121 85 Yes
D No 60 127 15 4 2 No
E No 70 140 15 1 0.5 No
F No 80 204 15 6 2 No

them are in the ATM domain and the others are not. For
example in application A:

MDom = 8
(7+5) * 100= 66

2.3 Ontologies

An ontology [10] is a knowledge representation which
defines the basic terms and relations comprising the vocabu-
lary of a topic area, as well as the rules for combining terms
and relationships used to define extensions to the vocabu-
lary. In our case, the domain area is CORBA-IDL language.

2.4 SPARQL Query Language

SPARQL is a query language for the Resource Descrip-
tion Framework (RDF). We have selected it because this is
a W3C Recommendation [18]. We use Web Ontology Lan-
guage (OWL-DL) [19] which extends RDF and RDFS. We
selected OWL DL language because we can assure that all
conclusions given by the Reasoner are computable and de-
cidable.

3 Chichen Itza: a Semantic Web Framework

Chichen Itza 1 is a Semantic Web Framework which al-
lows the management of semantic models (Ontologies) in
memory, verify its consistency (Reasoners) and execute se-
mantic queries in SPARQL language. Chichen Itza consists
of a friendly visual editor where the users can edit, save
and load their ontologies and queries. This framework was
programmed in Java language [11] and is portable to other
plataforms. The Chichen Itza framework is shown in 2

3.1 A CORBA-IDL Ontology

A CORBA-IDL Ontology was created for verifying in-
formation about the input domain models. This ontology

1Chichen Itza is the name of a large city built by the Maya civilization

consisted of 20 classes, 28 Object Properties, 36 Data
Properties and it was written using n3 notation [3] because
it is easier to understand than RDF in its XML syntax.
The main classes are: ComponentType, Interface, Method,
DataType, Parameter, ComponentModel, PreCondition and
PostCondition. The Ontology is built by means of classes
and relations among concepts. These concepts and classes
correspond to the specification of an abstract data type and a
set of methods that operate on that abstract data type. Each
method is specified by an interface, type declarations, a
pre-condition, and post-condition [8]. The interface of a
method describes the syntactic specification of the method.
Interfaces define the methods used in contracts. The typing
information describes the types of input and output or both
parameters and internal (local) variables. All of the above
is represented in our ontology (class Type, class Parame-
ter, etc.). The most important part to consider in our ontol-
ogy are the Conditions (Pre and Post). The Pre-condition
describes the condition of the variables prior to the execu-
tion of the method whose behavior is described by the Post-
condition.

3.1.1 Evaluating the ontology created

The ontology developed has been evaluated in an infor-
mal and formal way. Regarding the former, the ontology
was evaluated by the developers using the Pellet reasoner
[14] to check the consistency of the ontology. The sec-
ond evaluation applied to the ontology is based on the work
of Gómez-Pérez [2] who establishes five criteria: (consis-
tency, completeness, conciseness, expandability and sen-
sitiveness). The number of concepts and their relations
among them, allow us to check the ontology consistency
with less steps than other kind of ontologies.

3.2 Domain Verification based on Vocabulary

Our approach about matching words is based on inter-
faces as contracts by Szyperski [16]. Interface specifica-
tions are contracts between a client of an interface and a

332 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

provider of an implementation of the interface. A contract
states what the client needs to use the interface. It also states
what the provider requires to implement to meet the services
promised by the interface. Such a match is validated for
sytactic and functional semantic aspects. In the first case, it
is checked whether the provided interface includes at least
the same list of methods defined in the required interface.
We follow a structural approach whereby the names of the
interface operations can be different but the types of the pa-
rameters and the order of the paramenters must be compli-
ant. Conditions defined for each method have to be matched
with the same variable, logic operator and value. We ver-
ify restrictions and assumptions at construction time, in a
completely static manner, prior to the testing stages. Se-
mantic verification is the process which uses Semantic Web
Techniques (Ontologies and SPARQL queries) to guarantee
compliance with contractual agreements. The semantics of
an operation are described in an interface (contract). The
only task for the user before applying our model is to de-
fine the vocabulary of his domain and semantics. He in-
troduces his model into the framework by means of a file
or by the menus that allows to do an automatic evaluation
by using the Pellet reasoner [14] which checks inconsisten-
cies. Chichen Itza transforms his vocabulary from a text file
into an ontology instances and its relations. The instances
are created from classes defined in the software component
ontology.

3.3 Extending CORBAL-IDL vocabulary with
Semantics

CORBA(Common Object Request Broker
Architecture)[17] is a standard created by the Object
Management Group (OMG)[7] that enables software com-
ponents written in different computer languages to work
among them by means of their interfaces. These interfaces
are described using the Interface Definition Language
(IDL). In our semantic model, we need to receive the
interface written using the concepts and properties defined
in the CORBA-IDL ontology. For the reasons above, we
have decided to use the keywords of the CORBA-IDL
with elements of the ontology and supported with Chichen
Itza framework. For example, ComponentType, Interface,
Method, Parameter and hasNumParameters are keywords.
Part of the semantic ATM-IDL vocabulary. It is showed
below.

:Atm a :ComponentType .
:Bank a :ComponentType .
:IAtmClient a :Interface .
:IAtmClient :hasMethod :deposit .
:IBank a :Interface .
:IBank :hasMethod :withdrawal .
:deposit a :Method .

:withdrawal a :Method .
:amout a :Parameter .
:idClient a :Parameter .
:deposit :hasNumParameters 2 .
:withdrawal :hasNumParameters 3 .

In the code above we would like to emphazise that there
are some instaces of clases (Atm and Bank), some classes
(ComponentType, Parameter, Interface and Method), object
property hasMethod and just one data type property (has-
NumParameter). In particular, the notation :deposit :has-
NumParameters 2 means that the method deposit has ex-
actly 2 parameters.

3.4 The Pellet Reasoner

Pellet [14] is an open-source Java based OWL DL rea-
soner. In our verification process we use Pellet for checking
the consistency of the ontology. We have selected the Pellet
reasoner because it gives an explanation when an inconsis-
tency is found. It is also possible to check for restrictions.

3.5 Domain verification using SPARQL queries

For more complex checking we can apply other actions
such as: production rules [9]. We decided to explore seman-
tic queries in SPARQL [15] instead of production rules. The
second step after the reasoner has checked the ontology con-
sistency is to apply a SPARQL query. We defined specific
queries that evaluate matching words in methods and pa-
rameters identifiers. Such queries are completely transpar-
ent to the user who only needs to provide the file produced
in n3 by the translator. We have used Jena API [12] and
Java language [6] for programming and NetBeans IDE 7.0
[1]. SPARQL is similar to the database SQL but for ontolo-
gies. Besides, we can use variables in the queries, filtering
information, and if statements. Lines are linked by variables
which begin with a question mark. The same name of vari-
able implies the same value to look for in the query. The
Jena API allowed us to use SPARQL queries in our frame-
work programmed in Java language. The query which ver-
ifies the matching words with the name of the methods is
showed below.

PREFIX : <http://www.ejemplo.org/#>
PREFIX rdf: <http://www.w3.org/1999/02/

22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?Vocabulary ?MatchMethod WHERE
{

?Vocabulary rdf:type :Vocabulary .
?Interface :hasMethod ?Method .
BIND(if(regex(str(?Method),

str(?Vocabulary), "i"),

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 333

Figure 2. Chichen Itza Framework: two queries in SPARQL were used by looking for matching words

?Method, " ") AS ?MatchMethod)
FILTER (?MatchMethod != " ")

}

An additional benefit of using ontologies and SPARQL
queries has been the extra information (metadata) to offer
support for writing the CORABA-IDL++ file.

4 Example: Automated Teller Machine

ATM is a machine at a bank branch or other location
which enables customers to perform basic banking activi-
ties. The component model used for describing the ATM
was written using UML 2 notation [5], and is shown in fig-
ure 3. The vocabulary of the input file is created by the user
or expert in the domain of ATM. He selects which words are
used in that domain. In our example, for each component is
neccesary to create an input file written in CORBA-IDL++.

:bank a :Vocabulary .
:Atm a :Vocabulary .
:cashier a :Vocabulary .
:client a :Vocabulary .
:bankbranch a :Vocabulary .
:teller a :Vocabulary .
:card a :Vocabulary .
:money a :Vocabulary .

Figure 3. UML ATM Component-based system

:amount a :Vocabulary .
:password a :Vocabulary .
:balance a :Vocabulary .
:deposit a :Vocabulary .
:withdrawal a :Vocabulary .
:credit a :Vocabulary .

module ATM{
domain Bank;
subdomain Atm;

334 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

provided interface IAtmService{
oneway void locateBank();

long createSession();
long balance();
long creditLimit();

};
required interface IAtmClient{

long deposit(in short amount,
in short numclient);

void withdrawal(in short cardnumber,
in char password,
in short amount);

void locateNetwork();
};

};

5. Conclusions

In this paper we have presented and described a soft-
ware metric for measuring the percentage that belongs to
an application of a specific domain based on a vocabulary
used in that domain. In comparision with other metrics,
this metric tries to measure an abstract attribute based on
the vocabulary of a specific domain. This measure is based
on an Ontology, a Reasoner, and a set of SPARQL queries
which allow us an easy way to check matching words. This
model can be extended and enriched with more attributes
that rely on semantics. The Ontology was expressed in a
logic-based language (OWL DL). Using this language we
can assure the query will not have problems of computabil-
ity and decidability. The OWL DL ontology proposed is
checked with the Pellet reasoner. The use of a domain on-
tology allows us to search for specific words using intelli-
gent techniques such as SPARQL queries. Extending the
ontology with no functional properties (Quality of Services
attributes), Design Patterns and Object properties (hasIn-
voke, hasResponse, etc.) for measuring the behaviour are
key points for our future work.

6 Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. OISE-0730065.

References

[1] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans,
K. Ganfield, D. Green, K. Haase, E. Jendrock, J. Jullion-
ceccarelli, and G. Wielenga. The j2ee TM(tm) 1.4 tutorial
for netbeans TM(tm) ide 4.1 for sun java system application
server platform edition 8.1.

[2] S. Bechhofer, C. A. Goble, and I. Horrocks. Daml+oil is not
enough. In SWWS, pages 151–159, 2001.

[3] T. Berners-Lee, D. Connolly, and S. Hawke. Semantic web
tutorial using n3. In Twelfth International World Wide Web
Conference, 2003.

[4] A. Beugnard, J. Jézéquel, N. Plouzeau, and D. Watkins.
Making components contract aware. Computer, 32(7):38–
45, 1999.

[5] M. Bjerkander and C. Kobryn. Architecting systems with
uml 2.0. Software, IEEE, 20(4):57–61, 2003.

[6] P. J. Clarke, D. Babich, T. M. King, and B. M. G. Kibria.
Model checking and abstraction. ACM Transactions on Pro-
gramming Languages and Systems, 16:1512–1542, 1994.

[7] O. CORBA and I. Specification. Object management group,
1999.

[8] I. Crnkovic and M. Larsson. Building reliable component-
based software systems. Artech House computing library,
Norwood, MA, 2002.

[9] A. C. del Rı́o, J. E. L. Gayo, and J. M. C. Lovelle. A model
for integrating knowledge into component-based software
development. KM - SOCO, pages 26–29, 2001.

[10] T. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. pages 907–928. 1995.

[11] Java.net. Flamingo. http://java.net/projects/flamingo/, 2010.
[12] Jena. Jena a semantic web framework for java. 2000.
[13] J. Z. Pan and E. Thomas. Approximating owl-dl ontologies.

In Proceedings of the National Conference on Artificial In-
telligence, volume 22, page 1434. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[14] B. Parsia and E. Sirin. Pellet: An owl dl reasoner. In In
Proceedings of the International Workshop on Description
Logics, 2004.

[15] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of sparql. The Semantic Web-ISWC 2006, pages 30–
43, 2006.

[16] C. Szyperski, D. Gruntz, and S. Murer. Component soft-
ware: beyond object-oriented programming. Addison-
Wesley Professional, 2002.

[17] S. Vinoski. Distributed object computing with corba. C++
Report, 5(6):32–38, 1993.

[18] W3C. http://www.w3.org/consortium/. 1994.
[19] W3C. Owl web ontology language, 1994.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 335

A Template-Based Approach to Modeling Variability
Soheila Bashardoust Tajali, Jean-Pierre Corriveau and Wei Shi

School of Computer Science, Carleton University
Colonel By Drive
Ottawa, CANADA
1-613-520-2600

{sbtajali, jeanpier, wei_shi}@scs.carleton.ca

ABSTRACT
Arnold and Corriveau have recently described ACL/VF, a non-
state-based quality-driven approach to software specification that
enables the requirements of stakeholders to be validated against
the actual behavior of an implementation under test.
Simultaneously, in recent years, the software product line (SPL)
approach, initiated by Parnas back in the 1970s, has emerged as a
promising way to improve software productivity and quality. The
problem we address here can be summarized in one question: how
can ACL/VF support product lines? The solution we propose
adopts Cleaveland's template-based general approach to
variability. We first explain how to go from the traditional feature
diagram and feature grammar used in SPL to a) ACL domain
contracts capturing commonalities between the requirements
contracts of a domain and b) variability contracts capturing how
features and their relationships (captured in a feature grammar)
can affect these domain contracts. Domain and variability
contracts are then captured in XML files and we rely on XSLT to
specify how variability is to be resolved in order to generate a
specific member contract.

Keywords— Variability, XSLT Template, Generators, Feature
Diagrams

Contact author for SERP 2013 paper: J-Pierre Corriveau

1. ON GENERATIVE APPROACHES TO
VARIABILITY

In recent years, the software product line (SPL) approach
[7, 8, 9] initiated by Parnas back in the 1970s [17] has
emerged as a promising way to improving software
productivity and quality. A product line, which corresponds
to a domain, arises from situations when we need to
develop multiple similar products. A commonality is a
property held across this domain, whereas a variant (or
variability) is a property specific to certain members of this
domain. Most importantly, Zhang and Jarzabek [20] remark
that “the explosion of possible variant combinations and
complicated variant relationships make the manual, ad hoc
accommodation and configuration of variants difficult.”
Thus, it is generally agreed that a variability mechanism
that supports automated customization and assembly of
product line assets is required. Consequently, a significant
amount of work has focused on the creation of generators
to automate going from a model of variability to a specific
member of a family of products. Let us elaborate.

With respect to terminology, we will adopt the one of
Czarnecki and Eisenecker [9]: In System Family
Engineering (or equivalently, Software Product Lines),
members of a domain share a set of common features, as
well as possibly possessing their specific ones.
Commonalities, we repeat, refer to the characteristics that
are common to all family members, while variabilities
distinguish the members of a family from each other and
need to be explicitly modeled and separated from the
common parts. Conceptually, a feature is a variation point
in a space of requirements (the domain) and has several
variants (also called feature values) associated with it. The
two main processes of SPL engineering are a) domain
engineering (for analyzing the commonality and variability
between members) and application engineering (for
generating individual members of the domain).

Domain engineering rests on the creation of a domain
model via feature modeling [9]. Conceptually, application
engineering then consists in defining a specific
configuration of feature values and generating from the
domain model and from this configuration the
corresponding member (of the domain). Thus, SPL
engineering is a model-driven activity involving both the
modeling of commonalities and variabilities of a domain,
and the generation of a member of this domain from this
model. Many languages and approaches have been
proposed for modeling variability (see [4] and [18] for
recent in-depth reviews). As for approaches to generation,
they can be separated into two categories, each including
many proposals:

• transformational methods, which define explicit
mappings between semantic elements of a source model
and those of a target model.

• generative approaches, which build a target model from
what amounts to a parameterized source model and a
configuration list (that supplies specific values for these
parameters).

It has been argued that generative approaches correspond
to a more powerful semantic approach to the production of
a target model than transformations [7, 9]. This paper
focuses on the creation of a particular generator. We first
introduce the specific problem we address, then overview
the solution we propose for it.

336 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

2. PREMISES
A quality-driven approach to software development and

testing demands that, ultimately, the requirements of
stakeholders be validated against the actual behavior of an
Implementation Under Test (hereafter IUT). That is, there
needs to be a systematic (ideally objective and automated)
approach to the validation of the requirements of the
stakeholder against the actual behavior of an IUT [3].
Unfortunately, such systematic approach to validation
remains problematic [5, 11] and, in practice, testers mostly
carry out only extensive unit testing [6, 16].

In order to validate the requirements of a stakeholder
against the actual behavior of an IUT, it is necessary to
have a specification language from which tests can be
generated and executed 'against' an actual IUT (as opposed
to a model of the latter). Arnold and Corriveau have
described at length elsewhere [1] such an approach and its
corresponding tool, the Validation Framework (hereafter
VF [2]).

The VF operates on three input elements. The first
element is the Testable Requirements Model (hereafter
TRM). This model is expressed in ACL, a high-level
general-purpose requirements contract language. We use
here the word ‘contract’ because a TRM is formed of a set
of contracts, as illustrated shortly. ACL is closely tied to
requirements by defining syntax/semantics for the
representation of scenarios, and design-by-contract
constructs [15] such as pre and post-conditions, and
invariants (rooted in [12, 13]).

The second input element is the candidate IUT against
which the TRM will be executed. This IUT is a .NET
executable (for which no source code is required).

Bindings represent the third and final input element
required by the VF. Before a TRM can be executed, the
types, responsibilities, and observability requirements of
the TRM (see example below) must be bound to concrete
implementation artifacts located within the IUT. A
structural representation of the IUT is first obtained
automatically. The binding tool, which is part of the VF,
uses this structural representation to map elements from the
TRM to types and procedures defined within the candidate
IUT. In particular, this binding tool is able to automatically
infer most of the bindings required between a TRM and an
IUT [1, 2, 3]. Such bindings are crucial for three reasons.
First, they allow the TRM to be independent of
implementation details, as specific type and procedure
names used with the candidate IUT do not have to exist
within the TRM. Second, because each IUT has its own
bindings to a TRM, several candidate IUTs can be tested
against a single TRM. Finally, bindings provide explicit
traceability between a TRM and IUT.

Once the TRM has been specified and bound to a
candidate IUT, the TRM is compiled. Upon a successful

compilation, all elements of the TRM have been bound to
IUT artifacts. The result of such a compilation is a single
file that contains all information required to execute the
TRM against a candidate IUT. The validation of a TRM
begins with a structural analysis of the candidate IUT, and
with the execution of any static checks (e.g., a type inherits
from another). Following execution of the static checks,
the VF starts and monitors the execution of the IUT. The
VF is able to track and record the execution paths generated
by the IUT, as well as execute any dynamic checks, and
gather user-specified metrics specified in the TRM. The
execution paths are used to determine if each scenario
execution matches the grammar of responsibilities
corresponding to it within the TRM.

The key point of this overview is that once a TRM is
automatically bound to an IUT, all checks are automatically
instrumented in the IUT whose execution is also controlled
by the VF. This enables verifying that actual sequences of
procedures occurring during an execution of an IUT 'obey'
the grammar of valid sequences defined in ACL scenarios.
Most importantly, no glue code (that is, code to bridge
between test specifications and actual tests coded to use the
IUT) is required.

The problem we address in this paper can be summarized
in one question: how can ACL/VF support domain
engineering and application engineering? In the specific
context of ACL/VF, this question can be broken down into
two more immediate ones:

1) how can ACL (i.e., the requirements modeling
language) be 'augmented' to support some modeling of
variability?

2) how can such augmented ACL models be used,
together with some specification of a configuration of
feature values, to generate a domain member contract, that
is, the set of contracts associated with a specific member of
a domain?

An answer to these questions requires that the reader first
get a basic understanding of the syntax and semantics of
ACL. To this end, we give below a short self-explanatory
example:
Namespace My.Examples

{

/*Each ACL contract is bound to one or more
types of the IUT. An ACL contract may define
variables, which will be stored and updated
by the VF. */

Contract ContainerBase<Type T>

/* The variable size tracks the number of
elements in a container according to the ACL
model. It is NOT associated or dependent on
any similar variable(s) in the IUT. */

{ Scalar Integer size;

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 337

/*An observability is a query-method that is
used to request state information from the
IUT. That is, they are read-only methods
that acquire and return a value stored by
the IUT. An observability thus defines some
data that the IUT MUST be able to supply to
the VF for the VF to properly monitor the
IUT.*/

 Observability Boolean IsFull();

 Observability Boolean IsEmpty();

 Observability T ItemAt(Integer index);

 Observability Integer Size();

Responsibility new()

{ size = 0; Post(IsEmpty() == true)
 }

Responsibility finalize()

{ Pre(IsEmpty() == true); }

Invariant SizeCheck

{ Check(context.size >= 0);

 Check(context.size == Size()) }

/* The next responsibility defines pre- and
post- conditions for addition. It is not to
be bound but rather to be extended by actual
responsibilities. The keyword ‘Execute’
indicates where execution occurs. */

Responsibility Add(T aItem)

{ Pre(aItem not= null);

 Pre(IsFull() == false); Execute();

 size = size + 1;

 Post(HasItem(aItem)); }

/*This responsibility extends Add. It
therefore reuses its pre- and post-
conditions of Add. */

Responsibility InsertAt(Integer index, T
aItem)

 extends Add(aItem)

{ Pre(index >= 0); Execute();

 Post(ItemAt(index) == aItem); }

/* other responsibilties for adding,
removing, searching, etc. are ommitted here.
/*

Scenario AddAndRemove

{ once Scalar T x;

 Trigger(Add(x) | Insert(dontcare, x)),

 Terminate((x == Remove()) |
(RemoveElement(x))); }

}

/* The Export section defines the types used
in this contract, as well as their
constraints. */

Exports

{ Type tItem conforms Item

{ not context; not derived context;
 } } }

} //end of contract ContainerBase

This single TRM has been applied to several simple data
structures (e.g., different kinds of arrays and linked lists)
implemented in C# and C++/CLI, with and without coding
errors, in order to verify that ACL/VF indeed detects
responsibility and scenario violations. This ability to bind
the same TRM against several distinct IUTs may mislead
some readers to believe ACL/VF already handles some
form of variability. In fact, it does not: all the IUTs that can
bind to this TRM can do so specifically because there is no
variablity in the TRM they must conform with. In other
words, regardless of their differences at the level of code,
all the IUTs that can bind to this TRM can do so because
they have been adapted to support the observabilities
required by this TRM.

So the question remains: how can ACL/VF be augmented
to support variability? As previously mentioned, many
languages and approaches have been proposed for
modeling variability. But few are relevant to this work due
to a fundamental restriction we are faced with: neither the
ACL nor the VF can be modified. That is, given the
ACL/VF is an experimental tool of over 250,000 lines of
code, which is still undergoing testing, we decided to
support variability in ACL contracts without altering the
syntax or semantics of ACL, or the working of the ACL
compiler, or the modus operandi of the VF.

To achieve this goal, we adopt Cleaveland's [7] template-
based general approach to variability, captured in Figure 1.

Figure 1: Cleaveland's Generative Approach

In a nutshell, following this approach, modeling
variability is a task that ultimately must produce an XML
representation of variabilities and commonalities of the
domain. It is this representation that is used to generate a
specific member of the domain. The advantage of choosing
XML is that it makes available the much wider world of
XML technologies and tools. In particular, XSLT is a
standard transformation language for transforming between
XML languages or to other text-based languages. That is,
XSLT is readily usable for creating a generator. Czarnecki
[10] explains (in the specific context of code generation):

Browse/Edit/Storage
Modeling Tools

XML Representation

of the Models

Generator Tools

338 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

"In a template-based generative approach (a) an arbitrary
text file such as a source program file in any programming
language or a documentation file is instrumented with code
selection and iterative code expansion constructs. The
instrumented file called template needs a template
processor. A template processor takes a template file and a
set of configuration parameters as inputs and generates a
concrete instance of that template as output”.

Figure 2: Overview of our Generative Approach

In contrast, a programming language based generative
approach, such as Czarnecki and Eisenecker's [9] C++
metaprogramming, typically uses advanced programming
techniques (such as partial template specialization in C++)
that are not only hard to master and problematic to debug
(leading to complex generators), but also do not offer as

much semantic flexibility as an XML based approach. For
these reasons, the generative approach we propose (see
Figure 2) for tackling variability in ACL adopts a template-
based approach rooted in XML. In the rest of this paper, we
overview the different steps identified in Figure 2 (in which
the white arrows show the evolution from one artifact to
another, and the blue arrows on the right of the figure
indicate where user input is required, in contrast to those on
the left that show where the configuration list is used).

3. DETAILS
In Phase I of our approach, the domain engineer first

identifies commonality and variability in the domain at
hand. This analysis of the domain leads to the production of
a feature model [9]. The syntax and semantics of this model
are that of FODA [14] and similar notations [see 9 for a
review]. A feature diagram captures variation points and
their variants. Here, for example, variation point VP1,
“Length Type”, has two variants VP1-1 “Variable” and
VP1-2 “Fixed”. It captures the fact that containers can have
a variable length or fixed length, where length is number of
elements.1

While a feature diagram is a good starting point for
domain analysis, it is crucial to understand that the
complexity of a generative approach lies first and foremost
in its handling of interactions between features and feature
values, which are captured in a feature grammar [9].
Consequently, it is unfortunately often the case that the
processing of such a feature grammar is entirely manual
(e.g., [18]). In contrast, in our solution, the feature
interactions identified by the domain engineer are captured
in a table whose use is automated. We call such a table a
feature grammar table, or equivalently a feature relational
table (RT). Table 1 (next page) presents a few of the rows
of the large RT developed for one of our case studies. Rows
1 and 11 of the complete table [4] are examples of how to
define the exact relationship between a variation point and
its variants. For example, row 1 below states that VP0 has
two mutually exclusive variants VP0-1 and VP0-2. It also
states that if the configuration list (defining a specific
member of the domain through a specific set of variants)
includes one of the variants of VP-0, there are no
conditions to verify and this variant can be taken as the
value of VP0 (for further verification of the feature
grammar, as well as subsequent generation). Rows 13 to 21
in the complete table [4] deal with feature interactions
proper. Row 13 below, for example, states that if VP31 is
assigned any one of its valid variants in the configuration
list, then VP30 must also appear in this configuration and
must be set to variant LC-Type. VP30 is an optional feature

1 We also refer to VP0 (whether a container is key-based or not),

VP4 (whether a container is circular, VP4-1 or not, VP4-2), and
VP5 (whether a container allows 2-way, VP5-1, or 1-way
traversal, VP5-2).

Phase II

Phase I

Phase III

Phase IV

VF

Specifying

Variability

Contracts

Specifying

Domain

Contracts

Executing MC

for IUT Validation

Compiling & Binding MC

Integrating

Domain Contracts with

Variability Contracts

Analyzing Domain Requirements & Creating
a Relational Table (RT)

Creating

Variability

Selection Templates

Creating a

Variability

Contracts Repository

Automatically Instrumenting

a Member Contract (MC)

Configuration
List

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 339

capturing whether or not the container keeps track, via a
counter, of the number of its elements. VP31 merely
captures the type of this counter.

Rows 18 and 19 illustrate how multiple valid
combinations of variants are handled: one action is
associated with a circular container supporting two-way
traversal (row 18) and another action is used for a circular
container supporting only one-way traversal (row 19). The
key point to be grasped is that all such valid combinations
of features and variants must be explicitly captured in this
feature grammar (according to specific syntax and
semantics defined in [4] and similar to FODA).

In Phase II of our approach, first, the commonalities of
the domain at hand are captured in ACL contracts forming
the domain contracts. These contracts are merely ACL
contracts augmented in Phase III with plugIn labels (see
Figure 3) marking where variability (and thus the
generator) may modify such contracts. In Figure 3, we are
simply indicating that IsFull may be affected by the variant
chosen for VP1. (Several variation points may affect the
same element of an ACL contract.)

The feature diagram and relationship table of phase I also
lead, in Phase II, to variability contracts (via algorithms we
have developed for this specific purpose [4]). The idea is to
capture how each variant of a variation point affects the
domain contract. Without going into (syntactic and
semantic) details (given in [4]), a portion of such a
variability contract is shown in Figure 4. Intuitively, if
length is variable (VP1-1), then the IsFull observability
necessarily returns false, otherwise (VP1-2), it returns
whether the actual size of the container has reached the
maximum size.
Observability Boolean IsFull()

 { //plugin_VP1(); }

Figure 3: Variability in a Domain Contract

Variation VP1 <Length-Type> [1..1] outof 2

{case "Variable":

 plug-in: VP1-1 //Container has variable length

 Refine-a: Observability

 Boolean IsFull(){ value = false; }

 case "Fixed":

 plug-in: VP1-2 //Container has fixed length

 Refine-a: Observability

 Boolean IsFull() { value = (size() == max_size()); }
}

Figure 4: A Variability Contract

It must be emphasized that there is a direct
correspondence between the features and variants identified
in the feature diagram and relational table of Phase I, and
these variability contracts (as well as the plugIn labels of
domain contracts). Conceptually, variability contracts
define the actions to be performed (by the generator) on the
template (i.e., the domain contracts in our work) when a
particular feature value is present in a configuration list
input to generate a specific member of the domain. A
template processor (i.e., our chosen kind of generator) can
carry out such actions only if the domain contracts define
where these actions are to take place (and thus the need for
the plugIn labels we introduced). That is, as in other
template-based generative approaches, the artifact
capturing the domain model must be instrumented (to use
Czarnecki's terminology) to indicate where in it template
manipulations can occur. Then, both the domain and the
variability contracts must be transformed into their XML
equivalents in order to be made usable by the template
processor. This is what Phase III of our approach tackles:.

Table 1: A portion of a Relation Table for Sequential Containers
No Related

VP(s)
Var(s)

Related
VP & Var
Types

Related
VP & Var
Names

Relation:
Rule#
Constraints &
Actions

Relation: <depends>,
<requires>,<excludes>
Constraints and Actions in
Contracts

1 VP0
VP0-1
VP0-2

Var. point
Variant
Variant

“Is-key-based”
”True”
“False”

Rule 1, 2:
VP0 X VP0-1
VP0 X VP0-2

VP0 <depends>VP0-1, VP0-2
Cond = -
Action = variant

11 VP31
VP31-1
VP31-2
VP32-3

Var. point
Variant
Variant
Variant

“LC-Type”
“int”
“short”
“long”

Rule 1, 2:
VP31 X VP31-1
VP31 X VP31-2
VP31 X VP31-3

VP31<depends>VP31-1,
VP31-2, VP31-3
Cond = -
Action = variant

13 VP31
VP31-1
VP31-2

Var. point
Variant
Variant

_ Rule 7:
If(VP31 !=null &&
VP31 ==VP31-1 ||

VP31 <requires>VP30? = VP31

Cond1 = (VP30? == LC-Type)

340 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

VP31-3
VP30

Variant
Var. point

VP31 ==VP31-2 ||
VP31 ==VP31-3)
IMPLIES
VP30?==LC-Type

Action = variant1

18 VP4
VP4-1
VP5
VP5-1

Var. point
Variant
Var. point
Variant

_ Rule 5:
If(VP4==VP4-1)
IMPLIES
VP5 == VP5-1

VP4-1<requires>VP5-1
Cond1=“VP5==Twoway”
Action= variant1

19 VP4
VP4-1
VP5
VP5-2

Var. point
Variant
Var. point
Variant

_ Rule 5:
If(VP4==VP4-1)
IMPLIES
VP5 == VP5-2

VP4-1<requires>VP5-2
Cond2=“VP5==Oneway”
Action= variant2

a) The variability contracts of Phase II are transformed
(again according to specific algorithms) into an XML-
ready repository of these contracts.

b) Everywhere in the domain contracts where a plugIn
label is used, a variability selection template is inserted.
Given our specific approach to template processing, in
our work these variability selection templates take the
form of XSLT style sheets as explained at length in [4].

Finally, in order for these selection templates to be able
to use the information of the variability contract
repository, we still need to augment the domain contracts
with XSLT code to bridge to the variability contract
repository. At the end of phase III, both the variability
contracts and the domain model have been transformed
into XML-based artifacts that serve as input to the
template-based generator, which also requires a
configuration list specifying the exact list of feature
values (i.e., the configuration) to be used to generate a
specific member of the domain. Phase IV of our approach
deals with the generation of such a member contract, that
is, of an ACL contract corresponding to the specific input
configuration list at hand. In a nutshell, the configuration
list, as well as the variability contracts and selection
templates (compiled using both an XML and an XSLT
compiler) are integrated. The resulting ACL contract can
then serve as input to ACL/VF so that it can be compiled
and tested.

4. CONCLUSION
The main contribution of this work is a domain-

independent generative process we propose for obtaining
ACL member contracts from ACL-based domain and
variability contracts. It is worth repeating that this process
is comprehensive inasmuch as it addresses how the two
traditional artifacts of domain engineering, namely a
feature diagram and a feature grammar, can be evolved
into domain and variability contracts whose XML
equivalents serve as inputs (along with a configuration
list) to the proposed generative process, which generates a
member's contract (that can be compiled and run in
ACL/VF).

ACL/VF is still an experimental model-based testing
tool at this point in time, with advantages and drawbacks
that its creators have discussed elsewhere [3]. We chose it
to illustrate the power and generality of the template-
based approach to generation advocated by Cleaveland
[7]) for two main reasons:

1) It's a textual requirements language and ACL/VF
already produced an XML equivalent of the ACL
contracts specified by a user [1]. (Dealing with a visual
language is somewhat more complex.)

2) The semantics of ACL are sufficiently
comprehensive to tackle domain modeling and yet, most
importantly, almost all of ACL's semantic elements (e.g.,
responsibilities, scenarios, observabilities, etc.) are
relevant to variability.

Furthermore, we stress that, in contrast to many existing
generative approaches, we have not only defined the
artifacts relevant to the generative process but, most
importantly, we also specified elsewhere [4] detailed
algorithms to go from the more abstracts artifacts to those
directly used by the generator. In fact, these algorithms
inherently define traceability between the different
artifacts of Figure 2. In turn, such traceability is essential
to support an iterative approach to domain and application
engineering. We also emphasize that, in contrast to many
existing approaches (e.g., [18]), these algorithms do not
assume that the user only inputs valid configurations.
Such an assumption is a gross oversimplification: in our
opinion, 'enforcing' that a configuration does respect the
rules of a feature grammar must be automated, as is the
case in our solution. Similarly, our work does not depend
on any notion of the 'semantic correctness' of a feature
diagram, feature grammar or domain contract supplied by
a user. Such notion appears quite problematic [1].

Finally, the validation of our solution for the generation
of an ACL member contract from domain contracts,
variability contracts and a configuration specific to that
member rests two extensive case studies. Both case
studies [4] pertain to containers, reflecting the fact that the
use of off-the-shelf component (COTS) libraries is
pervasive in current software development processes. The

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 341

first case study focuses specifically on sequential
containers (such as arrays, lists, stacks and queues). This
choice was straightforward given existing work [9, 19] on
feature modeling across a large set of such container
libraries (including those found in the Standard Template
Library of C++). In other words, we wanted to avoid the
all-too-frequent 'toy' example in favor of a realistic
example based on public domain libraries. For our second
case study, our focus was specifically on exercising more
of the mechanisms we had developed for variability
contracts. To do so we decided to tackle another facet of
the STL, namely associated containers (such as

dictionaries, multisets, etc.). The point we want to
emphasize is that having an actual code base to take
inspiration from for domain modeling eliminated the risk
of creating an artificial domain conveniently scoped to
work with our proposal. But this choice also meant
tackling the modeling of some of the complexities of
actual industrial code.

We have now turned our attention to the modeling of
variability in design patterns, a radically different domain,
in order to demonstrate that our proposal is not domain
dependent.

5. REFERENCES

[1] Arnold, D.: “Supporting Generative Contracts in .Net”,
Doctoral dissertation, School of Computer Science, Carleton
University, April 2009.

[2] Arnold, D.: “Validation Framework and Another Contract
Language”, http://vf.davearnold.ca/, last accessed in October
2012.

[3] Arnold, D., Corriveau, J.-P., Shi, W.: “Modeling and
Validating Requirements using Executable Contracts and
Scenarios", SERA 2010: 311-320.

[4] Bashardout-Tajali, S., Generative Contracts, Doctoral
Dissertation, School of Computer Science, Carleton
University, December 2012.

[5] Bertolino, A.: “Software Testing Research: Achievements,
Challenges and Dreams”, In IEEE – Future of Software
Engineering (FOSE ’07), Minneapolis, pp. 85-103, May
2007

[6] Binder, R.: Testing Object-Oriented Systems, Addison-
Wesley Professional, Reading, MA, 2000.

[7] Cleaveland, C.: “Program Generators with XML and Java”,
Prentice-Hall, Upper Saddle River, NJ, ISBN-10:
0130258784, Jan. 2001.

[8] Coplien, J., Hoffman, D., Weiss, D.: “Commonality and
Variability in Software Engineering”, Bell Labs, IEEE
Software, pp.37-45, Dec. 1998.

[9] Czarnecki, K., Eisenecker, U.W.: “Generative Programming:
Methods, Tools, and Applications”, Addison-wesley, Boston,
MA, 2000.

[10] Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.:
“Generative Programming for Embedded Software: An
Industrial Experience Report”, In Don Batory et al., editors,
Generative Programming and Component Engineering:
ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, LNCS
2487, Pittsburgh, PA, USA, pp. 156-172, October 2002.

[11] Grieskamp, W.: “Multi-Paradigmatic Model-Based Testing”,
Technical Report #MSR-TR-2006-111, Microsoft Research,
August 2006.

[12] Helm, R., Holland, I. M., Gangopadhyay, D.: “Contracts:
Specifying Behavioural Compositions in Object-Oriented
Systems”, In Proceedings of the ACM European conference
on object-oriented programming systems, languages, and
applications, Conference (OOPSLA'90), pp. 169-180,
October 1990.

[13] Holland, I. M.: “Specifying reusable components using
Contracts”, In Proceedings of the 6th European Conference
on Object-oriented Programming (ECOOP ’92), pp. 287-308,
1992, LNCS/615.

[14] Kang K., Cohen S., Hess J., Novak W., Peterson A.:
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”, Technical report, CMU/SEI-90-TR-021, November
1990.

[15] Meyer, B.: “Design by Contract”, In IEEE Computer, vol.
25, no. 10, pp. 40-51, IEEE Press, New York, October 1992.

[16] Meszaros, G.: “xUnit Test Patterns: Refactoring Test Code”,
Addison-Wesley Professional, ISBN-10: 0131495054, 2007.

[17] Parnas, D.L.: “On the Design and Development of Program
Families”, IEEE Trans. Software Engineering, vol. 2, no, 1,
pp. 1-9, March 1976.

[18] Tawhid, R.: “Integrating Performance Analysis in Model
Driven Software Product Line Engineering”, Doctoral
dissertation, School of Computer Science, Carleton
University, May 2012.

[19] Tian, B., Corriveau, J.-P.: “On Facilitating the Reuse of C++
Graph Libraries”, In Proceedings of the IASTED
International Conference on Software Engineering, part of
the 23rd Multi-Conference on Applied Informatics,
Innsbruck, Austria, pp. 7-12, February 2005.

[20] Zhang, H., Jarzabek, S.: “XVCL: A Mechanism for Handling
Variants in Software Product Lines”, Special issue on
Software Variability Management of Science of Computer
Programming, Vol. 53, No. 3, pp. 381–407, December 2004.

342 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Software Maintenance Risk Management Process – A

Case Study

Vinicius Miana
1
, Calebe Bianchini

1
, Selma Melnikoff

2
 and Marcelo Martins

2

1
FCI, Mackenzie University, São Paulo, SP, Brasil

2
POLI, Universidade de São Paulo, São Paulo, SP, Brasil

Abstract - Software Maintenance risk management differs in

many aspects from software development risk management.

Although it is the longest and the riskier phase on the software

life cycle, differently from software development where many

processes and models were established, very few processes

have been developed to deal with software maintenance.

Because it deals with systems that are already in production,

software maintenance presents much more sources of risks. In

this paper, we go through the software maintenance process

identifying the main sources of risks and defining a process

that can help mitigate those risks. Finally, we present a case

study where this process was applied and some of the results

are shown.

Keywords: software evolution, risk management

1 Introduction

 Software maintenance encompasses all activities enacted

after software deployment that aim to modify it [1]. Many

studies have shown that the costs associated with software

maintenance have grown as time goes by [2]. Since it is not as

attractive as new software development, software maintenance

was not studied and researched in the same depth as

development and therefore very few models were developed

to deal with it [3].

 In this work a software maintenance risk management

model is developed using the following work as reference:

Bennet [1], Polo [2] and Webster [3]. This paper is divided in

6 sections. The first one introduces the subject. On the second

section software maintenance and its state of the art is

presented. The third section presents software risk

management and its existing models. On the fourth section a

proposal for software maintenance risk management is

presented. The fifth section presents a case study and finally

the sixth section presents the conclusions of this work.

2 Software Maintenance

 Software maintenance is the modification of a software

product after its deployment with the objective of correcting

errors, enhancing performance and other attributes or adapting

the product to changes in the environment IEEE [4]. Pressman

[5] categorized software maintenance into four types:

 Adaptive: changes in software environment;

 Perfective: new user requirements;

 Corrective: error correction;

 Preventive: to prevent problems in the future.

 Pressman [5] also believes that software maintenance

should be viewed from 3 main perspectives:

 The activities involved in software maintenance and

software engineering impact on the efficacy these

activities;

 The costs related to software maintenance;

 Problems that usually happen during software

maintenance.

 Regarding software maintenance activities, Pressman [5]

distinguishes structured software maintenance and

unstructured software maintenance and highlights the

following activities on structured software maintenance:

 Design evaluation;

 Maintenance approach planning;

 Design change;

 Re-coding;

 Revision: which may imply on re-changing the design

and re-coding depending on whether the desired results are

met or not.

 Regarding software maintenance costs, there is a

concern with growing costs in various studies [2], however it

was observed that intangible costs are often not taken into

account. These are the main intangible costs in software

maintenance [5]:

 Customer dissatisfaction with unmet requirements or

on the delay on meeting them;

 Quality reduction as result of some changes

introducing latent errors;

 Problems caused in a development effort when

programmers are forced to stop what they were doing

to work on software maintenance activities.

 Regarding usually found problems in software

maintenance, the following arises [5]:

 Impossibility to trace software evolution: changes

not documented;

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 343

 Impossibility to trace the process in which the

software was created;

 Difficulty to understand code written by someone

else;

 Difficulty in finding the code’s author for clearing

doubts;

 Inexistent or bad quality documentation;

 Difficulty in changing the software: software design

does not take into account possible future changes.

 The considerations mentioned earlier are very important

when we are defining maintainability, which is the easiness

that software can be understood, corrected, adapted and/or

enhanced, and it is influenced by the following factors [5]:

 Skilled personnel availability;

 Capacity to understand system structure;

 Easiness to manipulate the system;

 Use of standard programming languages;

 Test case availability;

 Code debugging mechanisms availability;

 Availability of adequate environment for conducting

maintenance.

 Bennett [1] introduces a software maintenance life cycle

model, which allows distinguishing software regarding its age

and maintainability. This model is called a software-staged

model and it divides software product life cycle into 5

different stages counted from its deployment:

 Initial Development: in this stage software is exactly

as it was and it was deployed. Software will be in

this staged until its first maintenance is executed;

 Evolution: in this stage the application is adapted to

constant changes in user requirements and

operational environment;

 Service: as time goes by, changes in software

corrupts the initial architecture and members of the

original development team leave until you get to a

point where making changes becomes so hard, either

due to lack of knowledge in the current team or due

to the need of large architectural changes, that is no

longer possible to evolve the software. In this stage

only small tactical changes are undertaken;

 Phase-Out: in this stage no changes are made in the

software. Users must work around software

problems;

 Close-Down: in this stage, the software is

disconnected and users are directed to a substitute.

3 Software Risk Management

 Before starting with software risk management, we shall

define software risk: Software Risk is a measure of the

probability of loss and its impact related to a software project,

process or product [6].

 Risk Management is a general procedure for resolving

risk and has two main components [7]:

 Risk Assessment defines risk by identifying hazards,

evaluating their potential effects and the likelihood

of their occurrence.

 Risk Control is the process of developing risk

resolution plans, monitoring risk status,

implementing risk resolution plan and correcting

deviations from the plan [6].

 The risk management process can be divided into 6

elements, three related to risk assessment: identification,

analysis and prioritization and three related to the control:

planning, monitoring and resolution of risks [6]. According to

Boehm [7], risk management can be classified in the

following way:

 Risk assessment

◦ Risk identification

◦ Risk analysis

◦ Risk prioritization

 Risk Control

◦ Risk Management Planning

◦ Risk resolution

◦ Risk monitoring

 The risk identification process encompasses activities

that lead to the identification of the hazards that may threat

the software product, process or project. Software Risk

Identification may use methods involving one or more of the

listed below [6]:

 Checklists – use of lists as a reminder of possible

risk areas;

 Interviews – use of group interview session where

people may talk about their concerns, doubts,

problems and uncertainties related to the software;

 Meetings – use of periodic meetings to discuss

project risks;

 Revision – use of plan, procedure and work products

review;

 Forms – use of standard risk management form to

input routinely found risks;

 Survey – use of questionnaires as a faster way than

interviewing people about their perceived risks;

 Working Group – use of brainstorming, meditation,

modeling, simulation and other group activities.

 The risk analysis process consists on quantify each

hazard identified on the Risk Identification Process by

calculating its occurrence probability and impact. By using a

probability/impact matrix, risks can be classified as critical,

high, moderate, low or negligible [3]. This process

encompasses the following activities: grouping similar and

related hazards, determining which may have an impact on

risk, determining sources of risk, using risk analysis

techniques and tools, estimating risk exposure, evaluating risk

against criteria, ranking risk according to its severity [6].

344 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 The risk planning process consists of all activities and

methods used to develop risk resolution alternatives [8]. This

process encompasses the following activities: development of

risk scenarios for high-severity risks, development of risk

resolution alternatives, selection of risk resolution approach,

development of risk resolution action plan, and establishment

of variables to be monitored with threshold values for warning

[6].

 The risk monitoring process consists of activities of risk

measurement and indicator tracking, which may indicate that

a risk resolution plan must be executed. Tracking indicators

may anticipate the loss occurrence, giving more alternatives to

mitigation [6].

 The risk resolution process consists of activities that aim

to reduce risk to an acceptable level. The activities in this

process include: response to a notification of triggering event,

execution of a risk resolution plan, report of progress against

the plan, and correction of deviations from the plan [6].

4 Software Maintenance Risk

Management

 Using software maintenance and software risk

management concepts, we developed a software maintenance

risk management model. As stated in many references

([1],[2].[3], [7], [8], [9], [10]), most of software maintenance

environments present some factors that increase risks in

software maintenance. These factors were used as premises

when developing this model and are listed below:

 The deployment of risk management process will be

in a environment with no previous risk management

culture;

 The software to be maintained were developed by

other people;

 Documentation either does not exist or is outdated or

has bad quality;

 Languages and platforms used in many modules are

old.

 Given these premises, we used Hall [6] risk

management model and added activities proposed by

Charette [8] for cultural adjustment of personnel and good

software maintenance practices proposed by Weber [11]. The

use of the premises was important to create a process that can

be applied in an organization that already performs software

maintenance activities and needs to have its software

maintenance risk management process improved. The work

of Hall [6], Charette [8] and Weber [11] was integrated into

one single model after a careful review of their proposal.

Additional elements were added based on author’s experience

and redundancies eliminated. Finally, the proposed model

was checked against the IEEE Std 1219-1998 Standard [4]

which defines software maintenance, to make sure that

correct naming was used and that the process would conform

to the standard.

 Software Maintenance Risk Management should fit into

the Software Maintenance Process [4], with the following

changes:

 Team preparation: through training and mentoring,

the team will be better prepared to find and

communicate risk found in their activities;

 Communication: risk communication strategies

should be established and periodic meetings should

take place to evaluate those risks;

 Problem Classification: the process of receiving new

functionality and bug fixing requests should be

redesigned to take into consideration that the risk

involved in these activities when prioritizing them;

 Documentation: a task-force should be defined to

produce, enhance and update all maintained software

documentation. The documentation activities should

be prioritized according to the degree of changes

made in each software and/or module. Also, when

modifying any part of the code, the maintenance

team should enhance and correct/update its existing

documentation;

 Tests: an automated test policy should be

established, this tests would expedite the

maintenance process and ensure that any corrections

and changes made on the software did not cause an

error somewhere else.

 The changes mentioned earlier were implemented first,

by adding extra activities in the following IEEE Std 1219-

1998 [4] Process:

4.1 Problem/modification identification,

classification, and prioritization

 For every problem/modification identified, the risks

associated to them should be evaluated. It should be

considered the risk of doing the change against the

risk of not doing it. When not performing a

modification or fixing a problem, we have a risk of

loosing customer base by not attending some

desired/expected requirements. On the other hand,

some modifications may bring distortions to the

system architecture making it more difficult to

perform future maintenance and reducing system life.

Another risk that must be taken into consideration is

an excessive maintenance cost that must be

compared with the cost of replacing the solution.

When prioritizing modifications, the risk involved in

each one of them must be used as reference when

defining what must be done immediately, what will

be postponed and what will not be done;

 A mitigation plan must be established and the team

should be prepared to act if a loss occurs;

 To identify risks, we suggest using the taxonomy

proposed by Webster [3].

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 345

4.2 Analysis, Design, Implementation

 When performing analysis, design and

implementation activities, the team must pay

attention to the risks already listed in previous

activities and also to new ones not previously

identified. All identified risks should be entered in

the risk matrix and monitored by the team that is

performing the maintenance;

 During these activities, updating and enhancing

documentation should be done as a measure to

reduce future maintenance risk.

 System Test and Acceptance Test:

 Tests should be automated for faster and more

reliable execution.

 Then there were few activities that would not fit into the

IEEE Std 1219-1998 [4] proposed phases and they should be

executed as specified below:

4.3 Team Preparation

 This phase prepares the team to changes in their

daily activities, introducing them to risk management

paradigms;

 In this phase, training in risk and in the proposed

process should be given to the whole team.

4.4 Documentation

 Documentation can be the most important ally or enemy

when maintaining a legacy system. Due to that, the proposed

process has documentation activities in the analysis, design

and implementation, but also a documentation taskforce. This

taskforce should perform search, organization, consolidation,

complementation and correction activities on the existing

documentation. These activities even though not directly

related to risk management they are verify important for

providing resources that will allow a more precise assessment

of maintenance risks.

5 Case Study

 In order to test the proposed model, a case study was

developed. It was chosen to apply it in an legacy university

crm system that has a web interface and as it was complex

enough to have maintenance issues and simple enough to

have results easily monitored.

 The application was developed using the JAVA

language and was very recent. As it had tough deadlines and

integration requirements with other systems, some developed

in Natural/Adabas which are old and have many

documentation issues, the project was deployed very fast and

faced constantly changing requirements moving it fast to the

Evolution stage. Complying with the activities proposed in

the process was very time consuming and we face challenges

both from user expectations and developer hastiness. With

weekly deployments, sometimes more problems emerged

when a simple change was performed. It was hard convincing

developers to apply the process and we decided to count new

bugs per week and use it as metric to show progress. Since

the system was recently developed, we did not face any

challenges with use of old technologies or corruption of

architecture coherence. With bug tracking system in place

and version control using cvs, we could easily recover the

statistics before the process was implemented and be able to

show a reduction in new bugs per week with few weeks of

implementation.

 Regarding the implementation of the proposed activities,

we made the following findings:

5.1 Problem/modification identification,

classification, and prioritization

 Associating risk for every problem/modification

identified was easy in most cases. At the end of the week, all

problems and changes requests were discussed and

maintenance team evaluated the risk. Webster’s taxonomy

was used and helped raising the right issues and making the

meeting more productive [3]. This extra task didn’t make the

meeting much longer than usual and helped bringing

consciousness of the impact of changes to the development

team, making them more careful. In general terms, we could

also say that better decision were made in the

Problem/modification identification, classification, and

prioritization activities.

 Before, starting working on a new release, the code was

tagged in the source control software, allowing going back as

a mitigation step. Also, to prevent problems when larger

architecture changes were made, the whole cvs tree was

backed up. During this study, sometimes it was necessary to

move back to the previous compiled version; however we

didn’t face situations where we had to roll back source code.

5.2 Analysis, Design, Implementation

 Finding risks during analysis, design and

implementation activities was not very successful in the

beginning, as the team was not used to do that and differently

than in a meeting there is no driver of the discussion,

developers are working on the own. We perceived that they

were afraid to present the risks as they felt as showing

weakness on their work. It took strong persuasion to improve

that and we still feel it is not working as well as it should.

 Documentation activities also were hard to implement,

developers didn’t like doing that and were always in a hurry,

not having time to document. Regular documentation

activities during Analysis, Design and Implementation were

only made after few weeks of micro-managing this topic.

 Choosing correct tools and environments could help the

team not only writing down analysis, design and

implementation documents, but also could generate

automatically some architecture design and source-code [12].

Furthermore, these tools could help finding and reusing

346 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

components already developed and available in a common

repository [13].

5.3 System Test and Acceptance Test

 Slowly, Junit tests were developed and helped a lot

during System tests.

5.4 Team Preparation

 A PowerPoint presenting this process and some

literature regarding risk was presented to the maintenance

team to prepare them to the changes in the process. After that,

these changes were discussed individually with each member

of the maintenance team to make sure they really understood

how the team would perform from that point.

5.5 Documentation

 Due to lack of resources, we were not able to implement

the documentation taskforce.

 After analysing the data, we found that the quantitative

results were inconclusive. Many variables may have had an

effect on bug reduction, including that as time passed,

requirements became better known and more stable.

Nevertheless, the experience of implementing this process

gave to the developer team a greater level of conciousness

regarding maintainance risks. That led to more carefully

designed, documented and coded software. The weekly

release meetings after risk was brought to the table made

developers more careful before making bold movements of,

for instance, changing a database structure.

 From that experience, we perceive the following

challenges, when implementing the proposed process:

 Change resistance:

 In many cases, the additional activities proposed by

the process may be seen as bureaucratic and

pointless, making necessary a strong convincing

work to make people adopt this new way of working;

 Aiming to make this argument stronger, metrics that

allow monitoring the progress and seeing the benefits

to clients, team and company when adopting the

process should be implemented;

 Management must be convinced before anyone else

to adopt risk management as a priority. An

implementation of risk management process should

not be started without total support from

management.

 Lack of skills in the team:

 The adoption of risk management demands higher

skills than what is usually found in maintenance

teams. In most cases, this problem can be reduced by

the proposed training, however many times it

involves more basic education in software

engineering matters;

 The adoption of a process implies in discipline and

skills. When there are no previous processes in place,

this may mean a big leap in skills needed;

 As it is not as attractive as new software

development, maintenance most often has less

experienced professionals.

Difficulties to access information:

 Documentation activities present a enormous
challenge, since, in many cases, there is no
documentation or it is outdated and the team that
developed the system is no long available;

 To gather this information it is often necessary to
read source-code which is often obscured by many
patches brought by the changes in the software;

 Users themselves could be a great source of
information, since they supposedly know well the
business rules that were automated by the system.

To face to those challenges, many measures must be adopted,

the study of those measures is the objective of future work in

this area. One approach to deal with this problem with lower

overhead might be documenting directly in the source-code

using annotations [14].

6 Conclusions

 During the development of this work we came across

significant differences between software maintenance and

software development. These differences make risk

management also very distinct when dealing with software

maintenance versus software development. Even though

maintenance is responsible for 90% of software costs in its

life cycle, very few studies were developed on software

maintenance risk management. Maintenance process and

practices were studied as way of analyzing its risk factors,

which helped adding risk management practices in the

process. Similarly current software development risk

management work and software maintenance work were

studied. All this information was compiled and helped

generating the proposed software maintenance risk

management process.

 During the development of this process and on its trial

in the case study, many challenges were found and they were

highlighted in this paper. It was verified that the most

impacting risk factors in software maintenance are the lack of

skills in maintenance personnel and the lack of

documentation. The proposed process aims to mitigate, at

least partially, these risks. Specific risk mitigating measures

that should be taken still rely on management experiences and

can not be defined in a generic risk management process, as

the one we proposed.

 As we verified in our case study and on the literature,

the implementation of risk management process as this has a

great impact on diminishing problems related to schedule,

costs and meeting customer needs in software maintenance

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 347

activities. However, for better results, it is required to start

taking maintenance in consideration from the first conceptual

sketch of a new system and during the software entire life-

cycle.

 As future work, we hope to enhance the software risk

management process, identify most common risks, metrics to

help identifying them as soon as possible and include in the

maintenance process activities that help mitigating those risks.

On another research line, a very interesting research subject

would be the definition of characteristics and metrics that

could be used to evaluate software regarding its

maintainability and its maintenance risk.

7 References

[1] BENNETT , K; RAJLICH, V. Software maintenance

and evolution: a roadmap. Proceedings of the Conference on

The Future of Software Engineering table of contents.

Limerick, Ireland. p. 73 – 87. ISBN:1-58113-253-0. Publisher

ACM Press New York, NY, USA, 2000.

[2] POLO, M. Advances in Software Maintenance

Management: Technologies and Solutions. Idea Group

Publishing. Loughborough, UK. 2002.

[3] WEBSTER, K. et al. A Risk Taxonomy Proposal for

Software Maintenance. 21st IEEE International Conference

on Software Maintenance (ICSM'05). p. 453-461, Budapest,

2005.

[4] IEEE. IEEE Std 1219-1998: Standard for Software

Maintenance. Los Alamitos, CA USA. IEEE Computer

Society Press, 1998.

[5] PRESSMAN, Roger. Software Engineering – A

Practicioner’s Approach. London, England. Mc-Graw Hill

Book Company, 6th Edition. 2004.

[6] HALL, E. M. Managing risk : methods for software

systems development. Addison-Wesley , 5th Edition, ISBN

0201255928. Boston, 2002.

[7] BOEHM, B. IEEE Tutorial on Software Risk

Management. New York, NY USA. IEEE Computer Society

Press, 1989

[8] CHARETTE, R.N; ADAMS, K.M; WHITE, M.B.

Managing risk in software maintenance. IEEE – Software. V.

14 N. 3, p. 43-50. May/June, 1997.

[9] BUCLEY, J. et al. Towards a taxonomy of software

change. Journal of Software Maintenance: Research and

Practice. V. 1 – 389. John Wiley & Sons, Ltd., 2003.

[10] RUIZ, F. et al. Utilización de Investigación-Acción en la

Definición de un Entorno para la Gestión del Proceso de

Mantenimiento del Software. In: 1er. Workshop en: Métodos

de Investigación y Fundamentos Filosóficos en Ingeniería del

Software y Sistemas de Información. (MIFISIS'2002).

Madrid, 2002.

[11] WEBER, R. et al. Fit for Change: Steps towards

Effective Software Maintenance. 21st IEEE International

Conference on Software Maintenance (ICSM'05). p. 26-33,

Budapest, 2005.

[12] BEZERRA, V. et al. Designing object oriented systems

using stereotypes and patterns. Proceeding of IADIS

WWW/Internet 2006. 1ed.Murcia: IADIS, 2006, v. 1, p. 162-

166. 2006.

[13] LUCRÉDIO, D. et al. ORION – A Component-Based

Software Engineering Environment. The Journal of Object

Technology (JOT), v. 3, n.4, p. 51, 2004. URL :

http://dx.doi.org/10.5381/jot.2004.3.4.a4

[14] BEZERRA, V. et al. Requirements oriented

programming in a web- service architecture. IADIS

www/Internet Proceedings. Lisboa: IADIS, 2010. v. 1. p. 287-

292.

348 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://dx.doi.org/10.5381/jot.2004.3.4.a4

Test Case Prioritization

Related to Code Quality

Savas Ozturk1, Nurhan Yagci1, Mehmet Aktas2, Mehmet Ozbek1, Furkan Paligu1
1
 TUBITAK BILGEM, Gebze, Kocaeli, Turkey

2
 Computer Engineering, Yildiz Technical University, Davutpasa, Istanbul, Turkey

Abstract - Regression testing, which is a type of testing that

determines whether a change in one part of the software

affects other parts of that software, can effectively be done

when the execution of test case scenarios are scheduled based

on pre-defined priorities. Test case prioritization, one of the

regression test methods, deals with scheduling the execution

of test case scenarios so that the testing can be done quickly

and efficiently. In this paper, we investigate methodologies to

find high-risk test case scenarios based on software metric

measurements. We introduce a novel metric named Quality

Risk Ratio (QRR), which denotes the amount of risk for a

module. The key idea of our approach is the evaluation of

testing importance for each module covered by test cases.

Experimental results show that our fast and practical

approach gives approximately the same prioritization results

as risk-based analysis, which is a conventional and subjective

method.

Keywords: Test Case Prioritization, Regression Testing,

Software Metrics

1 Introduction

 When the test execution phase starts, there usually is a

time constraint for the test engineers. As a result, the test

engineers frequently do not have enough time to run all the

test cases for all the test life cycles. Regression testing is a

way of testing software to find new (functional and non-

functional) faults after changes have been made in software.

Because a change made in one part of the software may cause

new faults in the other parts of the software, the test engineer

retests the unchanged parts of the software and checks the

software to see whether it works as it previously did and

whether the new features caused new faults. Regression

testing is important, albeit an expensive process.

There are four methodologies that are available for regression

testing [1]:

• Retest All: In this technique, the test cases that are

no longer applied to the modified version of the

program are discarded and all the remaining sets of

test cases are used to test the modified program.

• Regression Test Selection: The retest all

technique takes time and effort as all test cases are

used to test the software again, so it may be quite

expensive. This technique is much better as it uses

information about the program, the modified

program, and the test cases to select a subset of test

cases for testing.

• Test Suite Reduction: This technique uses

information about the program and the test suite to

remove the test cases which have become redundant

with time as new functionality is added.

• Test Case Prioritization: In this technique, test

cases are assigned a priority. The priority is set

according to some criterion and test cases with the

highest priority are scheduled first.

 Regression testing usually takes place under very tight

time constraints and high stress factors. The retest all

methodology may become impossible to apply in these

circumstances. Therefore, prioritizing test case scenarios has

become a feasible way to manage. Today, test case

prioritization studies carry out analysis based on the errors

caught in previous tests. However, it may not be sufficient to

test the modules that have the mistakes. We argue that the

fixing done to correct such mistakes may possibly affect

another module. Recent studies have shown that the resulting

number of errors encountered in the testing phase is

associated with the quality of the software code [2,3,4]. This

indicates that better quality code will ease the burden on

software testing.

 In this paper, we investigate test case prioritization

techniques prior to any testing based on the static code

analysis that can be done without having to run the code. In

this approach, we have determined 20 different software

metrics and the most critical code module of an enterprise

software project. Then, we associated the test case scenarios

with this code module and investigated the benefits that will

be provided as a result of an improvement in the code quality

(such as a reduction in the number of errors). We have

compared the results of the proposed approach against a risk-

based test case prioritization, which is a technique that

requires certain specialized work experience.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 349

2 Related Work

 Among the several studies in the literature, coverage-

based prioritization techniques come one step to the fore [5].

There exist four different techniques towards coverage-based

test case prioritization in Software Engineering literature: 1)

Total function coverage prioritization, 2) Additional function

coverage prioritization, 3) Total binary-diff function coverage

prioritization, and 4) Additional binary-diff function coverage

prioritization [6,7,8].

 The total function coverage prioritization sorts the test

case scenarios by function coverage. If multiple test case

scenarios cover the same number of functions, they are sorted

randomly.

 Additional function coverage prioritization combines

feedback with coverage information. This technique

iteratively selects a test case scenario that yields the greatest

function coverage. Then, it adjusts the coverage information

on subsequent test case scenarios to evaluate them considering

the functions that are not yet covered. This process is repeated

until all functions are covered by at least one test case

scenario. If multiple test cases cover the same number of

functions that have not yet been covered, they are ordered

randomly. When all functions have been covered, this process

is repeated on remaining test case scenarios until all have

been sorted.

 Total binary-diff function coverage prioritization uses

modification information, but without feedback. It sorts test

case scenarios in the order of their coverage of functions that

differ textually. If multiple test cases cover the same number

of differing functions, they are ordered randomly. When all

test case scenarios that cover differing functions have been

ordered, the remaining test case scenarios are ordered using

total function coverage prioritization.

 Additional binary-diff function coverage prioritization

uses both feedback and modification information. It iteratively

selects a test case scenario that yields the greatest coverage of

functions that differ, then adjusts the coverage information on

subsequent test cases to indicate their coverage of functions

not yet covered, and then repeats this process until all

functions that differ and that have been covered by at least

one test case have been covered. If multiple test cases cover

the same number of differing functions that have not yet been

covered, they are ordered randomly. Then, additional binary-

diff function coverage prioritization is applied to the

remaining test cases.

One potential goal of test case prioritization is increasing a

test suite's rate of fault detection. To formally illustrate how

rapidly a prioritized test suite detects faults, the Average

Percentage of Faults Detected (APFD) metric is introduced in

order to measure how quickly a test suite detects faults during

the testing process [6]. An increased rate of fault detection

can provide earlier feedback on the system under a regression

test and let developers begin locating and correcting faults

earlier. This metric, however, assumes that all test cases and

fault costs are uniform. In practice, test cases and fault costs

can vary, and in such cases, the previous APFD metric and

techniques designed to improve APFD can be unsatisfactory.

So, this metric is updated for assessing the rate of fault

detection of prioritized test cases, APFDC, that incorporates

varying test cases and fault costs [9].

 APFD studies require the gathered fault information for

each test case. Inputs, outputs and artifacts of the selected

prioritization method is dependent on the project or program

structure. There exist different inputs of the test case

prioritizing. Some of these include the length of the code, the

complexity of the code, the number of functions, the

complexity of the functions, the number of errors, and the test

execution history [10,11]. Srivastava et al. [12] and Srikanth

et al. [13] presented requirement-based test case prioritization.

One potential weakness of these approaches is the fact that

requirement properties are often estimated and are subjective

values [5]. Ma and Zhao investigate the change in the fault

proneness and complexity of the modules when code is

updated [14]. Although they attempt to derive a result from

program structure, it still requires fault information from the

previous tests. The focus of this study lays on obtaining

prioritization without requiring fault information of previous

tests, requirements, and risks.

 A major percentage of software projects suffer from

quality problems. Software testing provides visibility into

product and process quality. Software projects are usually

developed in an undisciplined way such that there may exist a

gap in requirements, such as a formal fault database, design

documents, or technical solution documents. In this case, code

quality may be used to derive an opinion about the most

critical sections of the code. There is a strong correlation

between complexity, which is one of the most important

indicators of software quality and the number of faults,

security bugs, and the amount of untested portions. All of the

faults cannot be removed completely as methods are needed

to at least ensure the quality of the software, but the costs for

fault handling should at least be possible to be decreased

considerably by obtaining early estimates of the fault content

that can be expected in a particular software system [16].

 Software metrics are key “facts” that project managers

use to understand their current position and to prioritize their

activities in order to reduce the risk of schedule over-runs on

software releases. To this end, software metrics help us to

control our software projects. They enable us to better

estimate and predict the quality of our projects in the future.

This study can be said to be first among existing studies at

employing code quality metrics for test case prioritization

without needing the list of previous faults detected.

350 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

3 Proposed Work

 Defects cause high costs when detected at acceptance

tests and they often cause unaffordable costs when they are

observed after products are delivered to the customer. One of

the main concerns of software engineering is to prevent

defects before delivering to the customer, before acceptance,

and even before system tests.

 A well-managed project ensures measurements on code

and watches trends whenever the project is underway.

However, for many projects measurement has been

considered a luxury. This study proposes a model that

combines metric measurements and coverage rates of each

method and class in order to reach a priority idea. We assume

we are informed about the relationship between modules and

test cases; in other words, we query which method or class is

tested by which test and the amount of coverage as well. If it

is lacking, test case definitions may be helpful for collecting

coverage information by testing all the software, but it is

expensive and may be time consuming.

 Fig.1 summarizes our approach using an example. First,

the coverage matrix is constructed. Second, the Quality Risk

Ratio (QRR) is calculated for each method and class. Next,

the Priority Factor (PF) for each test case for methods and

classes is found, respectively. Finally, we sort PF values in

descending order and get an updated test case list.

Fig. 1 Proposed Prioritization Steps

 QRR is the percentage quality risk for a method or class

and calculated according to Eq. (1) and Eq.(2).

 ()
j ij j

Td MV Thr= ∑ − (1)

 ()() / * 100 *
i ij j j j

QRR MV Thr Td C=∑ − (2)

 For Eq. (1) and Eq. (2); i is the method or class

numerator, j is the metric type, Tdj is the raw risk value of

the method or class, MVij is the measured metric value, Thrj is

the threshold value of the selected metric, and Cj is the

defined weight coefficient for the selected metric. MVij - Thrj

is assumed as zero if Thrj is bigger than MVij.

 Selected metrics, preferred thresholds, and the defined

weighting coefficients are listed in Table 1. The metrics are

split into two groups according to the level: Method-level

metrics and class-level metrics(a.k.a. Object Oriented

Metrics). The sum of weighting coefficients of the both

groups is 1(one). The coefficients can be set according to the

project type or according to the preferences of the evaluator.

In this study, the coefficients are balanced due to their

importance and previous skills.

Table 1 Selected Software Metrics [17]

Metric Metric

Code

Metric Level Threshold Coefficient

Cyclomatic Complexity v(G) Method 10 0.20

Essential Complexity ev(G) Method 4 0.20

Module Design Complexity Metric iv(G) Method 7 0.10

Global Data Complexity Metric gdv(G) Method 4 0

Lines of Code Code Method 30 0.20

Lines of Comment Comment Method 10 0.10

Lines Left Blank Blank Method 10 0.05

Lines of Mixed Code and Comments mixed Method 10 0.05

Maximum v(G) MAXV Class 10 0.20

Maximum ev(G) MAXEV Class 4 0.20

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 351

Average v(G) AVGV Class 10 0.10

Sum v(G) SUMV Class 70 0.05

Depth of Inheritance DIT Class 7 0.10

Lack of Cohesion of Methods LOCM Class 75 0.05

Number of Children NOC Class 3 0.05

Response for a Class RFC Class 100 0.05

Weighted Methods per Class WMC Class 14 0.05

Coupling Between Objects CBO Class 2 0.05

Fan-in fanin Class 1 0.05

Public Data pubdata Class 0 0.05

 Table 2 shows an example calculation for QRR in detail.

There are three methods in the example and the effect of

cyclomatic complexity is calculated. MethodB is the most

critical method to be improved because it handles

approximately 10% of the risk of all of the projects, taking

only v(G) into consideration. These calculations are repeated

for other method-level metrics. The totals of the weighted

values for each method give the QRR value of the method.

Table 2 An Example for QRR Calculation Based On v(G)

v(G) Threshold 10

v(G) Coefficient 0.125

 MethodA MethodB MethodC TOTAL

Measured v(G) 15 23 7

Difference = Measured - Threshold 5 13 0 18

Normalized Diff. = (Difference / Total Difference) 27.8 72.2 0 100%

Weighted = Normalized Diff. * Coefficient 3.48 9.02 0 12.5%

 QRRi is related to the amount of metrics exceeding

thresholds and how far the method is from the threshold when

it exceeds the threshold. Three example methods are listed in

Table 3. When considering the relationship between MethodD

and MethodE, only the Line of Code (LOC) metric

measurement exceeds the threshold for both, and the QRR

value is affected according to the amount of LOC only. The

metric measurements of MethodF seem on the border, but the

QRR is calculated as 0 because of no excess. Although

MethodF seems worse than MethodD when looking at the

overall, exceeding the threshold at one of the metrics is

penalized. Defining the thresholds is an important decision

point for a project.

Table 3 An Example Of QRR Comparison

 LOC ev(G) v(G) iv(G) QRRi

Thresholds 30 4 10 7 7

MethodD 32 3 3 3 11.5

MethodE 45 3 3 3 25.4

MethodF 30 4 10 7 0

After calculating the QRR for each method and class and

sorting them in descending order, we have two groups of risky

sections of the code, one for methods and one for classes. The

QRR value represents the percentage of quality risk load of

the pointed method or class. For example, if the QRR of a

class is 20, then we can reduce quality problems of the project

20% by reducing the metric values under the thresholds for

that class. The sum of the QRRs for each group will always be

100, but the most hazardous parts of the code will be viewed

more clearly by this technique. Efficient usage scenarios for

the QRRs can be developed. For example, a development

team may have a goal to handle QRRs below 10, which means

that quality will remain almost equally balanced.

QRRs and coverage are combined by multiplication. For

each test case, the PF is a product of QRR and coverage (Eq.

(3))

 *

m i i
PF QRR PC= ∑

 (3)

For Eq. (3); i is the method or class numerator, m is the

test case numerator, PC is the Percentage Coverage of method

or class i , QRRi is the QRR value of method or class i, and

PFm is the Prioritization Factor of test case m.

Finally, we have a numeric value for each test case. The

more PF a test case has, the more risky it is. Sorted PF values

give the prioritization order of the test cases.

Calculation of the QRRs is automatically performed in

seconds as soon as code is checked in. This operation ensures

instantaneous code quality as soon as any change in the

software is caught and warns the team against potential

damage. Combining coverage and QRRs is also easily

352 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

obtained. As in other related work, there are numerous ways

for prioritization, but it when time matters this model seems to

be the fastest among the conventional methods although a

subjective step for coverage calculation remains.

4 Experiments and Discussion

4.1 Selected Application

 We selected a 4 KLOC desktop application for

comparing the proposed model and a risk based prioritization

written in C# which contains file operations, database

operations, windows services, and GUI operations.

4.2 Coverage Matrix

 In this study, test team has written 14 test cases that

cover the main functionalities of the application. While tests

are executed, coverage ratios (the amount of code covered

when a test case is run) are noted using McCabe IQ test

utility. Coverage values are normalized in that the method

which is covered completely by executing a test is marked as

100 whereas if it is not hit at any time coverage is noted as 0

and partially covered methods have a coverage value between

0 and 100. Coverage of a class is calculated by addition of all

the methods' coverage values of the class. Coverage

computation is performed once while testing. We assume that

test cases-methods matrix and test cases-classes matrix will be

provided for future studies.

4.3 QRR Calculation

 Metric measurements are collected and the QRR values

are calculated according to Eq.(2) as stated in the previous

section. Calculated QRR values of methods are listed in

descending order in Table 4. As the selected project is small

in size and as it is a well-managed project, the list has become

short. It can be seen that by refactoring with only a few

methods will make this project perfectly qualified. Almost

half of the quality risk is collected using only one method and

this method does not seem complex.

Table 4 Sorted List of Method-Based QRRs

Method Name QRR

Size Complexity

LOC ev(G) v(G) iv(G)

Forms.FrmMeasurement.SaveButton() 45.79 86 1 13 10

CommonWorks.createCheckBox(CheckedListBox,AdminPanel_windows.ToolType) 10.00 13 5 5 5

Forms.FrmMeasurement.btnSave_Click(object,EventArgs) 10.00 22 5 5 5

MeasurementTool.Understand.WriteFile() 3.95 46 1 6 2

Forms.FrmProject.Save(AdminPanel_windows.Project) 2.11 38 1 8 6

Forms.FrmConfigurationItem.Save(AdminPanel_windows.ConfigurationItem) 1.58 37 1 8 6

Forms.FrmPcfCreator.CreatePcf(string) 1.58 41 1 6 5

 Calculated QRR values of classes are listed in

descending order in Table 5. Although most metric values of

Service1Client seem normal, it is third in order because of

fan-in threshold excess. This is the only class which exceeded

fan-in threshold.

Table 5 Sorted List of Class-Level QRRs

Class Name QRR
sum

v(G)

Avg

v(G)

max

v(G)

max

ev(G)
NOC DIT RFC WMC CBO LOCM

Fan-

in

Pub

Data

FrmMeasurement 31 46 3.3 13 5 0 2 22 22 2 100 1 0

CommonWorks 10 18 3 5 5 0 1 8 8 0 100 0 0

Service1Client 5 8 1 1 1 0 2 9 8 0 0 2 0

ProjectSummary 1.5 43 2.2 3 1 0 2 46 46 0 100 1 0

Measurement 1.3 40 2.2 3 1 0 2 40 40 0 100 1 0

MainForm 1.1 48 1.8 4 1 0 2 36 36 1 100 1 0

Result 0.8 23 2.1 3 1 0 2 27 27 0 100 1 0

4.4 Prioritization Ordering

The method and class QRR tables give us information

about the most critical methods and classes. After combining

QRR and coverage information, the PF table was constructed

as Table 6. Prioritization orders are listed in two categories:

Method-based and Class-based.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 353

Table 6 Prioritization Factors and Prioritized Test Case

Orders

Method-based Class-based

PF Ordered PF Ordered

TC1 45 TC12

TC10

TC9

TC14

TC13

TC4

TC2

TC8

TC3

TC6

TC7

TC1

TC5

TC11

2158 TC12

TC10

TC9

TC14

TC13

TC11

TC5

TC8

TC2

TC7

TC6

TC4

TC3

TC1

TC2 105 2608

TC3 75 2174

TC4 120 2476

TC5 33 2860

TC6 67 2546

TC7 56 2564

TC8 90 2675

TC9 260 2543

TC10 390 2791

TC11 0 5070

TC12 406 3017

TC13 507 1580

TC14 523 1580

8

4.5 Risk-Based Evaluation

 In order to see the benefits of this work, we have

compared the proposed approach with a legacy prioritization

method. Risk based test case prioritization is a widely used

technique, but it requires skill and domain expertise for a

specific project. Risk is the product of damage and probability

for damage to occur (see Fig. 2). Risk analysis assesses

damage during use, usage frequency, and determines the

probability of failure by looking at defect introduction [18].

Fig. 2 Intentional task allocation; a) auction-based b) market-

based

We have evaluated the risk analysis by brainstorming

with three domain experts in a meeting.. We used risk-based

testing, but in an ad hoc fashion based on experts' personal

judgment. The experts asked some questions and noted the

estimations on the impact of failure of the test cases and the

probabilities of test case failures. The impact and probability

is graded as numbers from 1 to 5 and the product of impact

and probability gives the risk factor of the selected test case as

seen in Table 7.

Fig. 3 summarizes the prioritization results by grouping test

cases in three categories. Grouping is done according to the

similarity of the scores of test cases for each category. For

example, in the method-based category, TC12, TC10 and TC9

have values of 4060, 3901 and 2605 respectively and are

grouped together where there is a big difference with the

second group (TC14:523 and TC13:507). It may be possible

to split risk-based results into three groups and other results

into four groups according to the neighborhood of the values.

When test suite reduction is needed, the last group of test

cases can be eliminated.

Table 7 Risk-based Prioritization

Impact

(Damage)

Probabilit

y

Product of

Impact and

Probability

Ord.

Pri.

TC1 2 5 10

TC12

TC10

TC9

TC4

TC13

TC1

TC3

TC14

TC5

TC8

TC2

TC6

TC7

TC11

TC2 3 2 6

TC3 3 3 9

TC4 3 5 15

TC5 2 4 8

TC6 2 2 4

TC7 2 2 4

TC8 2 4 8

TC9 4 4 16

TC10 4 4 16

TC11 3 1 3

TC12 4 4 16

TC13 4 3 12

TC14 3 3 9

Fig. 3 Comparison of Risk-Based Prioritization and Proposed

Model

It can be clearly seen that first three test cases in the orders are

the same. TC11 has the least importance according to the

risk-based and method-based sorting because of Main class

which has auto-generated code we can't eject from the code.

For method-based calculation, we don't make calculations for

auto-generated code, so it gives better results. Consequently, it

can be said that our model is reliable at finding the most and

the least important test cases. This approach can be applied to

either test case prioritization or test suite minimization.

Reliability of method-based prioritization is better than a

class-based one as well because it may contain some auto-

generated code which affects code quality in a negative way.

Also, some discussions on object oriented metrics bring

uncertainty to a class-based approach. Another advantage of

the method-based approach is its more sensitive nature. As

soon as code is changed, the prioritization order is updated.

Maybe the need for the coverage matrix can be seen as a

limitation here, but it is enough to provide it at the beginning

354 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

regression tests. We ignore the changes in the coverage matrix

once it is created, because updating the matrix may become an

unworthy task due to its sustaining very few changes.

Metric selection is another issue to be well thought out. It

depends on the type of project, the culture of the organization,

the programming language, etc. For example, if the code is

developed in Cobol or Fortran, Halstead metrics can be taken

into account [17]. Metric coefficients should be set according

to the project’s requirements as well.

5 Conclusion

Test case prioritization is one of the most used techniques in

regression testing. This study proposes a test case

prioritization model which is based on quality metrics such as

size, complexity, and object orientation. The model uses the

measurements of approximately 20 metrics of code and

creates a novel metric named QRR, which clearly shows

methods and classes which should be refactored. After

combining QRR results with the test cases' code coverage, two

alternative prioritization orders are taken: Method-based and

Class-based. In order to validate our model, we compared

results with well-known, risk-based analysis results which are

based on domain expertise. Comparisons show that our model,

which does not require any prior knowledge about the code or

application, and which does not require any expertise about

domain or requirement information, gives approximate results

with legacy techniques in seconds. This model not only

prioritizes the test cases, but also prioritizes the problematic

methods and classes for refactoring as well. Future work will

be based on extending the metric set and including factors like

test duration to the prioritization problem.

6 Acknowledgement

The authors would like to thank Software Testing and Quality

Evaluation Center (YTKDM in Turkish) of Scientific and

Technological Research Council of Turkey (TUBITAK in

Turkish) for funding this study.

7 References

[1] Rothermel, G., Elbaum, s., Malishevsky, A., Kallakuri, P.

and Xuemei Qiu, "On test suite composition and cost-effective

regression testing", ACM Transactions on Software

Engineering and Methodology (TOSEM) Volume 13 Issue 3,

July 2004, Pages 277 – 331

[2] K. Bogdan,Al-Yami, A., "Automated Regression Test

Generation", Proceedings of the ACM SIGSOFT

International Symposium on Software Testing and Analysis

ISSTA98, 1998.

[3] Kaner, C., "Exploratory Testing", Florida Institute of

Technology, Quality Assurance Institute Worldwide Annual

Software Testing Conference,Orlando, FL, 2006.

[4] Chhillar, U., Bhasin, S., "Establishing Relationship

between Complexity and Faults for Object-Oriented Software

Systems", IJCSI International Journal of Computer Science

Issues, Vol. 8, Issue 5, No 2, September 2011

[5] Yoo, S., Harman, M., "Regression testing minimization,

selection and prioritization: a survey", Journal of Software

Testing, Verification and Reliability, 2012; 22: 67–120

[6] Elbaum, S., Rothermel, G., Kanduri, S., Malishevsky, A.,

"Selecting a Cost-Effective Test Case Prioritization

Technique", Journal of Software Quality Control, Volume 12,

Issue 3, September 2004, Pages 185-210

[7] Malishevsky, A.,Rothermel, G. and Elbaum, S., "Modeling

the Cost-Benefits Tradeoffs for Regression Testing

Techniques" ,Proceedings of the International Conference on

Software Maintenance (ICSM’02), 2002.

[8] Catal, C., Mishra, D., "Test case prioritization: a

systematic mapping study", Software Quality Journal, July

2012

[9] Malishevsky, A.,Ruthruff, J.,Rothermel, G., and Elbaum,

S., "Cost-cognizant Test Case Prioritization", Technical

Report TRUNL-CSE-2006-0004, Department of Computer

Science and Engineering, University of Nebraska –Lincoln,

2006.

[10]Do, H.,Rothermel, G., "A Controlled Experiment

Assessing Test Case Prioritization Techniques via Mutation

Faults", Proceedings of the IEEE International Conference on

Software Maintenance, pages 411-420, 2005.

[11] Jones, J., Harrold, M., "Test-Suite Reduction and

Prioritization for Modified Condition/Decision Coverage", In

Proceedings of the International Conference on Software

Maintenance, 2001.

[12] Srivastava, P.R., Kumar, K., Raghurama,G., "Test case

prioritization based on requirements and risk factors", ACM

SIGSOFT Software Engineering Notes 33(4) (2008)

[13] Srikanth H, Williams L, Osborne J., "System test case

prioritization of new and regression test cases", Proceedings

of the International Symposium on Empirical Software

Engineering. IEEE Computer Society Press: Silver Spring,

MD, 2005; 64–73.

[14] Ma, Z., Zhao, J., "Test Case Prioritization based on

Analysis of Program Structure", 2008 15th Asia-Pacific

Software Engineering Conference

[15] Schneier, B., "Testimony of Bruce Schneier", Committee

of Homeland Security, U.S. House of Representatives - Jun

25, 2003

[16] Wohlin, C., Xie, M., "Fault Content Estimations:A

Pragmatic Approach using Design Metrics", Proceedings

International Workshop on Empirical Studies of Software

Maintenance", pp. 43-47, Bari, Italy, 1997.

[17] McCabe Software, "All Metrics Thresholds in McCabe

IQ",

http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf

[18]Schaefer, H., "Test Management is Risk management:Risk

Based Testing", White Paper, http://pi.informatik.uni-

siegen.de/stt/25_1/01_Fachgruppenberichte/TAV/TAV22P3S

chaefer.pdf

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 355

An Eclipse Plug-In for Generating Database Access
Documentation in Java Code

Paul L. Bergstein and Aditya Gade

Dept. of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, MA, USA
pbergstein@umassd.edu, agade@umassd.edu

Abstract – Enterprise applications typically consist of a web
layer, the business logic layer, and a relational database.
However, the interaction between these various layers is not
sufficiently captured by the current generation of IDE
(Integrated Development Environment). For example,
current Java IDE's do not evaluate the relationship of
classes with the database, or how a particular java method
interacts with database tables and columns. We report here
our progress in developing an Eclipse plug-in that helps the
programmer document the interactions between Java code
and relational databases. A primary motivation is to
facilitate code maintenance in the face of database
modifications.

Keywords: Software maintenance, software documentation,
CASE tools.

1 Introduction
Modern tools have simplified the development of

enterprise applications by bridging gaps across various
technologies like file systems, relational databases,
messaging, and web services. However, this has also
led to challenges in maintenance and enhancement of
enterprise applications. An enterprise application
usually consists of a web layer, the business logic and
relational database, often enhanced with frameworks
like Struts and Hibernate for web and persistence.
However, the interaction between these various layers
is not sufficiently captured by the current generation of
IDE (Integrated Development Environment). For
example, the Eclipse IDE provides support for syntax
and debugging of java classes, but it does not evaluate
the relationship with the database, or how a particular
java method interacts with database tables and
columns. For example, it does not flag a warning
where an SQL query might be formed incorrectly.
Similarly, the Visual Studio .NET would not flag a
warning if an XPath applied on an XML document
does not correspond to a valid value according to the
schema. This makes it very difficult to maintain and
enhance applications written by a third party, since a

change in code may break some other layer, and the
problem will become known only after extensive
testing.

Our goal is to develop a framework that will help
programmers in bridging the gap between different
technologies used in an enterprise application.
However, this is very substantial initiative and we have
so far focused our efforts on developing a suite of tools
to support development and maintenance of database
applications using Java in the Eclipse environment. We
report here our recent progress in developing a plug-in
tool for generating documentation of the interactions
between Java code and relational databases.

The obvious benefit of the documentation is to
facilitate code maintenance in the face of requirement
changes or database modifications. Certain database
accesses may be fairly well self-documenting, e.g. by a
simple statically defined SQL statement. However,
there are many other situations where additional
documentation can greatly enhance understanding the
code dependencies on a database. Consider for
example a query string that is built dynamically from
SQL fragments which may be taken from user input,
stored in variables, or passed as parameters from other
methods. Furthermore, the point in the code where the
query is executed may be far removed from the place
where the query string is built. Even in a situation
where a query is statically defined and used
immediately, it may take some effort to determine
which database elements are being read or written if
the query is complex.

With our tool, the developer may use our “find
and document” interface to locate each database access
of interest in their Java source code and selectively
generate documentation where desired, in a manner
similar to the familiar “find and replace” function of a
word processor. Alternatively, they may choose to
automatically generate documentation of all database

356 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

access with a single click on the “Document All”
button. Our tool also provides considerable flexibility
in specifying search criteria and scope as well as
documentation style.

2 Background
We have previously reported [1-3] our

development of tools to provide a visual mapping of
java code-to-database and code-to-code (via database)
couplings. We have implemented our tool as a fully
integrated plug-in to the popular Eclipse development
environment. Developers can view the database and
the project at various levels of granularity and easily
find the types of coupling they are most interested in.
For example, users can choose to view couplings of
code to anywhere in the database, to a particular table
in the database, or to a specific column in a table.
Similarly, they can adjust the granularity of their
project view between the project, class, and method
levels. Search facilities enable users to quickly identify
important dependencies. For example, when a method
that stores information in the database is modified, it is
easy to find all of the methods (or classes or projects)
that retrieve the same information and might be
affected.

The database access of an application is
discovered by our visualization tool through a
combination of static and dynamic code analysis, or by
processing user supplied java annotations. The static
and dynamic code analysis approaches each have their
relative advantages and disadvantages, but share some
common characteristics. Both approaches have the
advantage of automatic discovery that makes them
suitable for maintaining legacy applications where the
database access is not well documented. However,
neither is 100% effective in finding all possible
interactions between the application and the database.

The static code analyzer uses the Sun java
compiler API [4] and the Compiler Tree API [5] to
parse the java source and walk the abstract syntax tree.
It looks for string literals that are included either
directly or after assignment to String variables in calls
to the execute, executeQuery, and executeUpdate
methods of the JDBC Statement class. The analyzer
attempts to identify column and table names occurring
in select, from and where clauses and record these
dependencies in the coupling repository.

The code analyzer considers certain string
concatenations including some concatenations that are

built from a combination of string literals and variables
to detect simple cases of dynamic SQL generation in
the code. However, static analysis in general is a hard
problem and it will never be possible to detect all
couplings to the database that may occur at runtime,
possibly dependent on user input.

The main component of the dynamic analyzer is a
JDBC bridge driver that logs the database accesses to
the coupling data repository. Our driver acts as a
bridge between the application and the "real" driver
that communicates with the user's database. The
implementation is conceptually simple. Most of the
methods in our driver classes simply pass requests on
to the underlying "real" driver and return whatever data
is returned from the real driver. The main exception is
in the Statement class methods (e.g. execute,
executeQuery, executeUpdate) that take SQL
statements as arguments. These methods receive only
complete, valid, fully formed SQL statements as
arguments (unless there are errors in the application)
even if they have been built dynamically. The SQL
statements processed in the JDBC driver are parsed to
determine the database elements that are being
accessed and the coupling information is recorded in
the repository.

The main drawback to the dynamic analysis
approach is that it will only find database accesses that
occur during testing with the bridge driver in place.
Therefore the success of this technique is highly
dependent on the developer’s ability to generate
adequate test cases.

In [3], we describe an extension of our previous
work to allow the developer to explicitly supply the
database access information in the form of java
annotations to replace or supplement the code analysis
tools. We chose annotations rather than comments
since they are easier to process by machine. For legacy
projects, or when the developer hasn't completely
documented the database access, code analysis is still
extensively used to obtain the necessary information.
Our plan was to further enhance the system by adding
a tool to inject the access information obtained through
static and dynamic code analysis into the source code
in the form of java annotations in order to
automatically document the code. We realized,
however, that annotations are more verbose and harder
to read than ordinary comments, and decided to use
comments for generated documentation. In the future,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 357

we plan to add an option to generate documentation in
the form of annotations.

3 Results
Figure 1 shows the overall architecture of the

system. The system uses annotation processing as well
as both static and dynamic analysis of the java code to
find database couplings. The results of all analysis
methods are combined in the coupling data repository.
For every code-to-database coupling that is detected,
there is an entry in the repository. Each coupling entry
in the repository includes the code location (class,
method, file, and line number), the database element
(database, table, and column), the SQL statement type
(select, insert, update, etc.) and the type of access
(read, write, or read/write). The statement type does
not necessarily determine the access type. For example,
a field occurring in the set clause of an update
statement indicates a write access, but a field occurring
in the where clause of the same statement indicates a
read access.

In order to detect changes over time, the
repository also records the first time and last time that

a coupling is detected. Also, each time the tool is run,
the structure of the database is checked using the JDBC
metadata API, and any structural changes are recorded
in the repository.

The user interface, implemented as an Eclipse
plug-in, displays the results to the user, allows easy
navigation to code based on its database coupling, and
allows the user to generate documentation using the
“Find and Document” feature. Figure 2 shows the
details of the Find and Document interface, with all the
option nodes expanded. The simplest form of the Find
and Document interface is shown in the screenshot of
Figure 3, where all option nodes are collapsed.

The user can select the scope of the search from
the drop down menu under the search node. Available
options are to search the current file, the current
project, or the entire workspace. In the Data Elements
section, the user can choose to search only for code
that accesses a particular database, column, or table, or
they can choose all databases, all tables, or all
columns. The dropdown menus are populated with the
names of databases, tables, and columns that appear in
the repository.

Figure 1

Coupling
Data

Repository

Coupling Visualizer
and Code Navigator

Documentation
Generator

Annotation
Processor

Static Code
Analyzer

Dynamic Code
Analyzer

358 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

The user may also choose to find and document
database access only of a certain type (read, write, or
read/write) or by a particular type of SQL statement
(select, insert, update, or delete). Note that the tool will
find the place where an SQL statement is executed,
which may be far removed from the place where the
SQL string is declared or built.

Several options are available to customize the
generated documentation, including comment style, a
prefix to be included in comments, and if the dynamic
code analyzer was employed, the option to include
recently executed SQL statements.

Listing 1 contains a fragment of code from a web
application for managing stock portfolios that has been
documented by the documentation generator. The
generated documentation is highlighted in bold font. In
this case, the documented code that executes the query
is only removed from the code where the query string is
built by a few lines. Even so, the documentation makes
it easier to see which database elements are accessed,
and the included sample query is much easier to read
than the code used to build the query string.

Figure 2

Figure 3

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 359

String dateCondition;
 if (sale.getTerm() == Sale.SHORT_TERM)
 dateCondition = " and purchase_date > '" + cutOffDate + "' ";
 else
 dateCondition = " and purchase_date <= '" + cutOffDate + "' ";

 String query = "select purchase_date, shares, round(adjusted_basis/shares, 2), +
 "lot from purchases p, lots l where p.pnum = l.pnum" +
 " and ticker = '" + ticker + "' and snum = 0" + dateCondition +
 "order by purchase_date";

 Connection dbConnection = null;
 try {
 PrintWriter out = res.getWriter();

 dbConnection = Database.getConnection();
 Statement statement = dbConnection.createStatement();

 /* Auto-generated Documentation
 *
 * Read access to funds.purchases: purchase_date, pnum, ticker
 * Read access to funds.lots: shares, adjusted_basis, lot, pnum, snum
 *
 * Examples:
 * select purchase_date, shares, round(adjusted_basis/shares, 2), lot
 * from purchases p, lots l
 * where p.pnum = l.pnum and ticker = 'FB' and snum = 0
 * and purchase_date <= ‘2012-03-01’
 * order by purchase_date
 */
 ResultSet rs = statement.executeQuery(query);

 out.println("<html>");
 out.println("<body>");

Listing 1

4 Related Work
There is a large body of work on software

visualization [6-10] and also on database visualization.
There is also a good deal of work on reverse
engineering of databases and CASE tools that support
reverse engineering with visualization techniques.
However, we are not aware of any other system
designed to support the development and maintenance
of software through the visualization or automated
documentation of program code dependencies on the
database.

5 Conclusions

Many researchers have investigated to resolve the
dependencies between different technologies involved

in an enterprise application. Our tool significantly
enhances understanding of dependencies between java
code and relational databases. The principal benefit is
the ability to more easily maintain application code in
the face of structural changes to the database, changes
in the format of data stored in the database, or changes
to application requirements. We have tested our
documentation generator by generating documentation
for each of the five tools in our system (see Figure 1),
including the documentation generator itself, and our
team has found the results to be very useful.

Static and dynamic analysis of java code to
discover database couplings each have their advantages
and disadvantages. Dynamic analysis is easier to
implement and will find all couplings that occur during
testing. Static analysis is harder to implement and
cannot identify couplings that only occur dynamically

360 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

(e.g. based on user input). However, static analysis
may identify couplings that are missed during the
testing phase. By combining the results of static and
dynamic analysis in a coupling data repository, we get
the combined benefits of each. The repository also
allows for tracking of changes over time so that areas
of code that may be affected by a change could be
flagged for the developer.

6 Future Work

In the near term, we intend to continue testing our
system on a wider range of database applications,
particularly other projects under development by our
team, and student projects developed in our database
courses. We will continue to refine the functionality
and user interface based on feedback from our users.

In the long term, we plan to extend this tool to
handle additional languages and technologies. For
example, we plan to extend our java code analyzers to
support JSP by analyzing the java snippets embedded
in JSP pages, so that we can document couplings of
JSP code to the database. This would also allow the
visualization tool to display couplings between the
presentation layer (JSP) and business logic code that
occur through the database in a typical J2EE
environment. If all these dependencies between the
various layers of a J2EE application can be
documented and visualized, the task of maintaining
and enhancing such applications would be greatly
facilitated. Eventually, we would also like to support
additional programming languages such as C# and
C++ and add support for ODBC applications.

7 References
[1] Paul L. Bergstein, Priyanka Gariba, Vaibhavi

Pisolkar, and Sheetal Subbanwad. An Eclipse
Plug-In for Visualizing Java Code Dependencies
on Relational Databases. In Proceedings of the
2009 International Conference on Software
Engineering Research and Practice (SERP’09),
Pages 64-69, July 13-16, 2009, Las Vegas,
Nevada. CSREA Press ISBN 1-60132-129-5.

[2] Paul L. Bergstein and Ashwin Buchipudi.
Coupling Detection to Facilitate Maintenance of
Database Applications. In Proceedings of the
2011 International Conference on Software

Engineering Research and Practice (SERP’11),
Pages 289-94, July 18-21, 2011, Las Vegas,
Nevada. CSREA Press ISBN 1-60132-201-1.

[3] Paul L. Bergstein. Documenting Java Database
Access with Type Annotations. In Proceedings
of the 2012 International Conference on software
Engineering Research and Practice (SERP ’12),
Pages 459-465, July 16-19, 2012, Las Vegas,
Nevada. CSREA Press ISBN 1-60132-231-3.

[4] Java 6 Compiler API
http://today.java.net/pub/a/today/2008/04/10/sou
rce-code-analysis-using-java-6-compiler-
apis.html

[5] Compiler Tree API
http://java.sun.com/javase/6/docs/jdk/api/javac/tr
ee/index.html

[6] G. C. Roman and K. C. Cox. A taxonomy of
program visualization systems. IEEE Computer,
Vol. 26(12), Pages 11-24, 1993.

[7] Blaine A. Price, Ian S. Small, and Ronald M.
Baecker. A Principled Taxonomy of Software
Visualization. Journal of Visual Languages and
Computing, Vol. 4, Pages 211-266, 1993.

[8] Jonathan I. Maletic, Andrian Marcus, and Michael
L. Collard. A task oriented view of software
visualization. In Proceedings of the First
International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), Pages
32-40, 2002.

[9] Christian Collberg, Stephen Kobourov, Jasvir
Nagra, Jacob Pitts, and Kevin Wampler. A system
for graph-based visualization of the evolution of
software. In Proceedings of the 2003 ACM
symposium on Software visualization, Pages 77-86,
2003. ACM Press.

[10] M. D. Storey, K. Wong, F. D. Fracchia, and H. A.
Müller. On Integrating Visualization Techniques
for Effective Software Exploration. In Proceedings
of IEEE Symposium on Information Visualization,
Pages 38-45, 1997.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 361

A Decision Model for Monitoring Project Status with
Earned Value Management Indicators.

Maria Teresa Baldassarre, Nicola Boffoli, Danilo Caivano, Giuseppe Visaggio
Department of Informatics, University of Bari

SER&Practices Spin Off
Bari, Italy

{baldassarre, boffoli, caivano, visaggio}@di.uniba.it

Abstract— Project management is the discipline of planning,
organizing, motivating, and controlling resources in order to
fulfill specific goals. Project managers are required to monitor
and control project execution, i.e. verify actual progress and
performance of the project with respect to the project plan and
timely identify areas in which changes may be required. Earned
Value Management (EVM) is a valuable technique for
determining and monitoring project status. It indicates
performance variances based on measures related to work
progress, schedule and cost information. The technique involves
systematically collecting a set of indicators during project
execution. As so, a manger may strive to systematically use all the
indicators during a project, and, without an appropriate
guideline, correctly interpret the values collected. In this paper
we propose a classification of the EVM indicators in five
conceptual classes and present an interpretation model that
managers can adopt as checklist for monitoring EVM values and
predict project status. The model has been applied in an
industrial case study to monitor project status and guide project
manager decisions.

Index Terms—Earned Value Management, decision model,
project monitoring

I. INTRODUCTION
In the last decade project management has always more

been recognized as primary competence by several sectors,
including software engineering. Project management is the
discipline of planning, organizing, motivating, and controlling
resources in order to fulfill specific goals, whereas a project is a
temporary effort with a defined start and end point, usually
time and budget constrained, carried out to meet unique goals
and objectives and deliver results that provide added value and
innovations to current practices on time and within budget [1,
2] conforming to certain quality expectations.

A project management lifecycle includes five process
groups known as: initiating, planning, executing, monitoring
and controlling, closing (Fig.1) [2]. Planning is an essential
component of the lifecycle as project managers are called to
define project plans where they estimate how acceptable results
will be delivered within time, budget and other resource
constraints. Since plans are made based upon assumptions
(effort for tasks, productivity of teams, learning effect on staff)
that are especially variable in immaterial domains such as
software engineering, successful project completion requires

that managers continuously monitor and control the execution
and progress of the activities with respect to the plan and adopt
corrective actions whenever necessary. This is mostly true in
software contexts where, being human-centered it is difficult to
predict factors such as productivity and performances, and
therefore project duration and costs. Studies in literature have
reported that 18% of software projects are prematurely
canceled, while up to 53% turn out to be over budget and take
longer time than expected [8]. As so, monitoring and
controlling processes are critical activities. For this reason,
when carrying out a project it is crucial for a project manager to
be able to determine the project status with respect to each
milestone.

Fig.1: Project Management Lifecycle Processes

Questions a manager is expected to answer during project
execution are: what is the real status of the project? How far
along is the project? What part of the budget has been spent?
How much work has been done and what is left to do? In
monitoring a project it is also necessary to accurately relate
cost to performances, so questions to answer may be: if you
spent 30% of the budget does that mean that you are 30%
complete? If you are 30% complete, have you spent 30% of the
budget? What % is complete with respect to the forecast?
Without a proper and formal approach or technique for
answering such questions, determining the status of a project,
monitoring its costs and performances at any point in time can
be quite difficult and risk to be error prone and not reflect the
actual state.

One of the most accredited techniques for project
monitoring and control is Earned Value Management (EVM)
[3]. It has been adopted in past on behalf of organizations like
NASA and DoD [4, 5, 6, 7] as means for assuring an effective
risk analysis and correct execution of a project in accordance
with budget and time restrictions. In recent years it has become

362 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

an integrated part of the PMBOK [2]. There are also several
evidences of the success of this technique for project
monitoring and control [9, 10, 11].

The approach consists in collecting a set of indicators that
capture information on cost, schedule, technical performance
and scope related to the work done up to a point in time (i.e. the
earned value) and comparing them to the project plan, i.e. what
the project manager had estimated would have been the
progress of the project at that time. This comparison gives the
manager an idea of how far or near the project execution is to
the project plan, and whether it is deviating or not. Depending
on the results of the indicators the manager must decide on
which actions to undertake, if any, on the remaining activities
to get the project back on track, i.e. on schedule and within
budget before its conclusion. Although the concept of EVM is
quite easy and straightforward to understand, from a practical
point of view its adoption may turn out to be trivial for a
manager as he is called to collect and interpret indicator values
in order to readily make decisions and take action before its too
late. In this sense there is little support in literature on decision
support tools that guide data collection and interpretation as
pointed out in other studies as well [12, 13, 14, 15].

Given this gap, our intention in this paper is to clarify the
meaning of EVM indicators and provide guidance for their
interpretation. Our contribution is therefore twofold:

- organize the EVM indicators in conceptual categories
each with a specific meaning and scope;

- provide a decision model able to guide project
managers in interpreting EVM indicator values and
making the most appropriate decisions on the project
execution.

The proposed solutions have been validated in a real
industrial case study. Here, the conceptual classes and decision
model have been used to apply and interpret the EVM
indicators during monitoring and control activities of the entire
project, in order to support decision making.

The rest of the paper is organized as follows: in the next
section a classification of EVM indicators in conceptual classes
is provided, as well as the decision model we propose for
interpreting EVM values. Section 3 presents the application of
our model in an industrial case study where managers adopted
the model for monitoring project performances. Finally
conclusions are drawn.

II. OUR PROPOSAL: CLASSIFICATION OF EVM INDICATORS
AND DECISION MODEL

Execution of any project requires going through three
essential phases (Fig.2) that can be identified as: (i) define
work; (ii) schedule & budget; (iii) measure performance. In
“define work”, the activities of the project are identified and a
work breakdown structure (or similar) is developed. It is a
hierarchical outline that breaks the project down into a list of
tasks, used to manage the project's price, estimation, scheduling
and performance. WBSs determine the resources (i.e. materials,
labor, costs and contracts) needed to complete project phases.
This structure should be detailed so the work can be
categorized into individual elements of work.

Next, in the “schedule and budget” phase, the project
manager defines how the activities of the WBS are organized,
he defines the project plan, schedules the activities and fixes
the milestone checkpoints. In this phase techniques such as Pert
or Gantt diagrams, as well as critical path method (CPM) are
most likely to be used to define the project plan and obtain
execution plan based on project restrictions like resources, time
and budget. Furthermore, work responsibility is assigned to the
owners who are accountable for managing resource allocation
and cost baselines, which allow to spread the budget across the
project's length. Scheduling also consists of arranging work
packages into logical frameworks that define the project
milestones.

As the project is executed, performances must be constantly
measured, controlled and monitored. So, this is where
“monitoring and controlling processes” are called into action.
Performance measurement is the process of identifying specific
means by which any given performance could be improved,
then setting goals and modifying processes to reach those
goals. In short, performance measurement is about increasing
efficiency and streamlining existing processes. To do so, a full
and accurate assessment of the present level of performance
must first be made. In particular, monitoring and control are the
set of processes necessary to track and review the work carried
out, manage the project progress and performances; control
changes and carry out actions able to mitigate risks, verify
aspects related to project execution, identify the state of the
project and identify areas that require particular attention and
supervision.

Fig.2: Essential phases for project execution

Literature offers several approaches for measuring project

performances such as: GQM-QIP [16], Plan Do Check Act
(PDCA) [17], TQM [18], and EVM. While the first four
approaches are more specific for measuring performances in
terms of project goals, EVM is more appropriate for
monitoring and controlling activities as it allows to check the
progress state of the project, i.e. the amount of work done up to
a point in time (milestone) compared to the planned value.
Performance measurement defines how success or failure is
determined on a project. In the case of Earned Value
Management, performance measurements focus on cost and
schedule management.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 363

The idea behind EVM is that it prevents rather than cures
by identifying and solving problems early, as soon as they
arise. It acts as an early alarm for signaling trends and detours
from the original project plan, allowing the manager to readily
take action, make corrections and get the project back on track,
in line with schedule and budget restrictions. It is important to
adopt the technique constantly throughout the project in order
to detect variances when they are small and easy to correct,
instead of discovering unpleasant surprises at the end of the
project, when the situation is unrecoverable and the project is
bound to fail or be canceled. The technique is made up of
several indicators that may generate confusion for a project
manager having to systematically collect, measure, analyze and
interpret them during the project lifecycle. As so, we have
proposed a classification of the indicators and organized them
in conceptual categories.

A. EVM Conceptual Categories
The categories identified reflect the general meaning of the

indicators and their application with respect to project progress.
The classification consists of five categories:

1) Project Constraints
When defining the project plan the project manager must

take into account the project constraints such as budget
available, resources that can be assigned to the project
activities, and time restrictions. In this sense, two relevant
indicators that represent this information are:

- Budget At Completion (BAC), expresses an initial
estimation of budget allocated to the project;

- Time At Completion (TAC), expresses the initial
estimation of time required to complete all the project
activities.

TAC Startup

% Budget Costs
(K€)

100%

50%

0%

BAC

 0
Time

BCWS
ACWP

BCWP CV
SV

Fig.3: EVM indicators

Both these indicators (Fig.3) are fixed and established when the
project plan is defined.

2) Basic Indicators
This category is made up of three indicators that express the

earned value of the project at a certain point in time, generally
in correspondence to a milestone established in the project
plan. A graphical representation is provided in Fig.3, more
precisely:

- Budgeted Cost of Work Scheduled (BCWS): also
referred to as planned value, is the amount of money
budgeted to complete the scheduled work of the data

date. It is the monetary value of all the work
scheduled. This value is determined early in the plan
and establishes the baseline against which
performance is measured;

- Budgeted Cost of Work Performed (BCWP): also
referred to as earned value, is the budgeted cost of
work that has actually been performed in carrying out
a scheduled task at a certain time point, usually
related to a milestone;

- Actual Cost of Work Performed (ACWP): represents
the actual cost sustained for carrying out the project
up to a specific milestone. This is a final data value,
usually provide by a management/accounting system
to keep track of the production.

3) Derived Indicators
This category comprises two indicators that are obtained

from the basic ones. They express variances between planned
values and actual ones collected with respect to the milestone
check points, in absolute values:

- Cost Variance (CV = BCWP-ACWP): expresses the
difference between the cost of the work performed in
accordance to the project plan carried out to a point in
time (BCWP) and the actual cost sustained.
Depending on whether the variance is positive,
negative, or zero, the project is interpreted as being
under, over, or in line with the forecasted budget;

- Schedule Variance (SV= BCWP-BCWS): expresses
the difference between the cost of the work carried
out up to a certain point in time and the cost of work
that should have been done according to the project
plan (BCWS). Based on the value of this indicator,
project managers have an idea of whether it is early
on schedule (SV>0), late (SV<0), or on time (SV=0).

4) Synthesis Indicators
These indicators are indexes that express synthetic

information in percentages. More precisely, Cost Performance
Index (CPI) and Schedule Performance Index (SPI) are
indicators of how closely accomplished work is on budget and
on schedule.

- Cost Performance Indicator (CPI=BCWP/ACWP) is
an index showing the efficiency of the utilization of
the resources on the project. It shows how many
dollars (or other type of currency) worth of work is
being accomplished for every dollar spent. If CPI is
less than 1.0, means that the project is overspending
as the budgeted costs are lower than the actual ones; if
CPI is more than 1.0, the project is actually saving
money.

- Schedule Performance Indicator (SPI=BCWP/BCWS)
shows how the work is progressing compared to the
original schedule. If SPI is more than 1.0, the work
performed is more than the work that was scheduled,
making the project ahead of schedule; if SPI is less
than 1.0, the project is lagging and needs to catch up;
SPI ratio of 1 means everything is proceeding
precisely as per schedule.

Both of these formulas begin with the Earned Value (BCWP),
which is the value of the work already accomplished. SPI and
CPI ratios help managers evaluate the project at any point and
make changes. For instance, if the SPI is tending towards 1 and
higher, it indicates that the current time and plan is now more
favorable for the project than the time and plan were when the
project was initiated. The management may want to study the
changed scenario and re-evaluate the project goals and
objectives in the light of the new environment. CPI ratio
provides a uniform platform on which to compare projects
irrespective of their size. If a company has multiple projects
going on simultaneously, and would like an update on the
status of the various projects, the CPI ratio is one of the best
means available to provide that information.

Operatively, it is recommended for a manager to first
calculate these two synthesis indicators to have an idea of the
project status and whether there is a deviation (either positive
or negative) from the baseline and then go into detail by
considering the derived indicators (SV and CV) which provide
a quantitative (absolute value) evaluation of the deviation.

5) Predictive Indicators
This category includes two indicators that express the

estimate at completion (EAC) which forecasts the value of the
project with respect to time and cost when the project is
complete. It should be noted that the EAC can be calculated in
a number of different ways and is only an indicator of what the
project’s cost/time will be at the end of the project. Each
project needs to be evaluated to determine which EAC formula
best fits the project’s size and complexity. Studies show that
EACs based on CPI and SPI values tend to be significantly
higher and are also more accurate [19, 20], as so we have
adopted the following formulas for calculating these indicators:

- Estimate At Completion – Cost (EACC = BAC/CPI):
expresses the amount of money estimated to be spend
at the end of the project given its progress;

- Estimate At Completion – Time (EACT = TAC/SPI):
estimates the end time of the project given the current
state of progress of the project.

It is clear that although BAC and TAC are fixed at the
beginning of the project, the EAC values most likely change
compatibly and conformingly as the synthesis indicators
change during project execution.

B. Decision Model
The concept of granularity is very important in the

application of EVM and interpretation of the collected values.
Indeed, SPI, CPI, SV and CV measured at a project level (high
granularity) are useful for top management, portfolio/program
managers, but turn out to be almost insignificant for a project
manager who, without any other information, is not able to
make any considerations or valuable interpretations. On the
other hand, if the indicators are calculated with respect to an
individual sub-project, phase, task (low granularity), rather than
the overall project, it is possible to: monitor the actual state of
the sub-project, phase, task compared to the project plan;
designate budget/resources saved on an activity to mitigate
risks related to other late or over budget activities, allowing to

optimize project performances. The level of granularity as well
as milestone checkpoints, with respect to which entity and how
often EVM indicators are to be collected, should be defined at
project start, taking into account the critical points and risk
factors and eventually, if necessary, can be varied during
execution.

Since the amount of data collected at each milestone
checkpoint during the entire project is considerable, its
interpretation can in turn become quite challenging for a
project manager and for the entire management team involved
in analyzing the data, identifying weaknesses, avoiding
problems from occurring and promptly acting when they arise.
For this reason, as practical support to the EVM technique we
have provided a decision model (Fig. 4) to use at each
milestone checkpoint. The model basically guides monitoring
activities step by step as collected values are reported in the
form and compared to baseline values. Secondly, interpretation
guidance is provided allowing to optimize project management
by using/re-allocating available resources at their best,
verifying critical points and mitigating delays or over budget
risks.

Figure 4: Decision model for interpreting EVM indicators

This data is used by those who are responsible of managing

work in order to understand cost and schedule performances
throughout the project lifecycle. The main goal is to point out
(cost and schedule) issues early providing the maximum time
to minimize their impact and provide an effective manner for
developing recovery plans and improvement actions where
necessary.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 365

II. CASE STUDY
The classification and decision model have been applied in

an industrial case study. The project was a nationally funded
project that involved the University of Bari and a large Italian
IT company. The project is called E-MARK. It focused on
designing and developing a solution able to automate
marketing processes through use of technologies that make use
of traceable information on the internet. In practice, the project
developed innovative models and techniques supported by
tools able to guide: Internet search of information to
characterize the target market of a product/service and define
the placement of its competitors; identification of the desirable
properties of a product/service that are a source of attraction for
consumers/users; definition of the user profile of a product/
service; identification of correlations between product/service
properties and consumer/user profile; promotion of a product/
service

Project monitoring and control was carried out with EVM
indicators. In particular, project managers used the proposed
classification of conceptual classes as reference to
systematically collect the values during project execution.
Furthermore, they adopted the decision model illustrated in the
previous section to guide interpretation of collected values. in
the next paragraphs we will provide detail of the project
monitoring progress

The project was organized in four work packages and nine
activities. The granularity selected for applying the indicators
related to each activity at fixed milestones.

In Fig.5 the planned effort and costs with respect to each
project activity are reported. They are compared to the actual
values collected during the project. Furthermore, Fig.6 shows
the values of EVM indicators for every activity. In the
following we report the results of the interpretations carried
out, after applying the decision model to the EVM indicators
collected.

WP ACTIVITIES PERSON/DAYS COST SOLAR DAYS
PLANNED ACTUAL

PERSON/DAYS COST SOLAR DAYS
ACTUAL

A1
A2
A3
A4
A5
A6
A6
A7
A7
A8
A8
A9WP4

WP1

WP2

WP3

48 8.151,60€ 18
9,6 1.630,32€ 3,6

81,6 13.857,72€ 30,6
14,4 2.445,48€ 5,4

48 8.151,60€ 18
91,2 15.488,04€ 34,2

144 24.454,80€ 54

33,6 5.706,12€ 12,6

9,6 1.630,32€ 3,6
480 81.516,00€ 180

40,07 8.005,36€ 18
8,01 1.601,07€ 3,6
60,1 12.008,04€ 27

12,02 2.401,61€ 5,4
20,03 4.002,68€ 9
76,13 15.210,18€ 34,2
16,03 3.202,14€ 7,2

120,20625 24.016,08€ 54
12,02 2.401,61€ 5,4
28,05 5.603,75€ 12,6

4,01 800,54€ 1,8
4,01 800,54€ 1,8

400,68 80.053,60€ 180
Figure 5: descriptive statistics of planned and actual values for E-MARK

ACTIVITY
% of

progress
A1 10%
A2 12%
A3 27%
A4 30%
A5 35%
A6 54%
A6 58%
A7 88%
A7 91%
A8 98%
A8 99%
A9 100%

BCWP BCWS SV ACWP CV SPI CPI EACC EACT
8.151,60 8.151,60 0,00 8.005,36 146,24 1,00 1,02 80.053,60 6,00
9.781,92 9.781,92 0,00 9.606,43 175,49 1,00 1,02 80.053,58 6,00
23.639,64 22.009,32 1.630,32 21.614,47 2.025,17 1,07 1,09 74.532,66 5,59
26.085,12 24.454,80 1.630,32 24.016,08 2.069,04 1,07 1,09 75.050,25 5,63
34.236,72 28.530,60 5.706,12 28.018,76 6.217,96 1,20 1,22 66.711,33 5,00
41.980,74 44.018,64 -2.037,90 43.228,94 -1.248,20 0,95 0,97 83.939,70 6,29
49.724,76 47.279,28 2.445,48 46.431,09 3.293,67 1,05 1,07 76.116,54 5,70
61.952,16 71.734,08 -9.781,92 70.447,17 -8.495,01 0,86 0,88 92.693,64 6,95
74.179,56 74.179,56 0,00 72.848,77 1.330,79 1,00 1,02 80.053,60 6,00
77.032,62 79.885,68 -2.853,06 78.452,52 -1.419,90 0,96 0,98 83.018,54 6,22
79.885,68 80.700,84 -815,16 79.253,06 632,62 0,99 1,01 80.870,47 6,06
81.516,00 81.516,00 0,00 80.053,60 1.462,40 1,00 1,02 80.053,60 6,00

EVM INDICATOR VALUES

Figure 6: EVM indicator values for the entire project

The TAC (initial estimation of project duration) is 6

months, while BAC (initial estimation of project cost) is
€81.516,00. The first activity (A1) required 18 solar days,
according to the plan, and a total of 40 person/days (p/d)

compared to 48 planned with a lower cost. This data is
confirmed by the EVM indicators for this activity. From the
collected data, consulting the decision model it can be seen that
the conditions are: CV > 0, under budget, so the project is
spending less than planned; SV=0, schedule according to plan;
CPI>1, project costs are lower than planned; SPI = 1, execution
times are according to plan.
In 18 solar days, the first activity requested a lower budget than
expected to be completed. As so the expected project duration
remains the same (EACT <= TAC) while the expected costs
are lower, €80.053,60 (EACC).

In A2, descriptive statistics show that actual values are lower
than planned ones. Indeed, the EVM indicators show that the
trend in A1 is confirmed in A2 as well. As so, the project was
proceeding correctly and project managers decided to designate
the extra budget to future activities, if necessary, that may have
been late on schedule.

In A3, the activities were carried out in less time wrt planned
(27 solar days, and 60 p/d, compared to 30 solar days and 81
p/d planned). The conditions and interpretation of the decision
model are as follows: CV > 0, under budget, so the project is
spending less than planned; SV>0, activities ahead of plan;
CPI>1, project costs are lower than planned; SPI > 1, activities
are executed in less time than planned. In accordance to the
interpretation of the decision model, project managers decided
to designate part of the budget not spent and the resources
assigned to this task to make up for the delays in the execution
of other project task that may have occurred in the following
milestone control points of the project.

In A4 the trend of EVM indicators confirms the results of
the previous phases as they satisfy the baseline values of the
decision model.

As it appears from both the descriptive statistics and from
the EVM values, A5 was carried out with a significant less
effort and cost than planned, i.e. 20 p/d and €4.002,68 instead
of 48 p/d and a planned cost of €8.151,60. So up to this point,
the project was ahead of schedule and certainly below
estimated costs.

In A6, when the milestone checkpoint was carried out, the
project was behind schedule and not yet completed. At this
point the EVM indicators pointed out a situation where CV<0,
over budget as more than expected was being spent; also,
SPI<1 and CPI<1, i.e. project cost and effort were higher than
planned. Furthermore this situation impacted the overall
estimated project cost and budget (EACT > TAC and
EACC>BAC). Managers decided to adopt as improvement
action that of designating part of the resources that had been
saved in the previous phases and placing them on this one. As
so, staff that had terminated activities in advance and had the
required skills were placed in this activity. Also, part of the
budget saved in the previous phases was also shifted onto this
one. This improvement action had positive effects, as at the
next milestone checkpoint the EVM indicators were within
baseline values. More precisely, as it can be seen from the
descriptive statistics (highlighted row) an extra 16 p/d were
necessary with an extra budget of € 3.202,14 to complete the
activity. Nonetheless, having recovered both budget and

366 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

resources from previous activities, the overall budget and effort
for the project were not impacted. Indeed, the EVM indicators
related to A6 are inline with the baseline values. This was
possible because manager decisions in previous checkpoints
were taken in order to prevent difficulties in further activities.

In A7 another delay occurred. After a period of 54 days, the
activity was not completed. This situation is confirmed by the
EVM indicators for A7 (Fig.6 first row) which are below the
threshold values. Once again, managers acted promptly
reallocating resources from previous activities or from
activities that were ahead of schedule and below budget, and
shifted them to A7. This choice impacted positively on the
EVM indicators collected and the next milestone checkpoint.
Indeed, as it can be seen from Fig.6, the second row of A7
shows positive values, that satisfy the baselines (CV>0, under
budget; SV=0, in line with the plan; CPI>1 and SPI=1).
Overall, the delay accumulated in this activity was
compensated by the effort and budget saved in some of the
other project activities. Furthermore, since the delay (extra
effort and cost needed) for A7 was not higher than the effort
and costs saved in previous activities, the overall project
indicators of EACC and EACT returned to be congruent with
the threshold values.

For what concerns A8, as it can be seen in Fig.5, after 12.6
days it was not completed. Further 1.8 days were necessary to
conclude. Consequently, the activity requested more effort and
cost than planned, i.e. 32 p/d and a total cost of €6.404,00. The
EVM indicators have been reported for both milestone
checkpoints (at the planned termination of the activity, first
row, and at its actual termination, second row). The trend
appears to be similar to that of A6 and A7 as there was a
further delay in the execution of the activity turning out in a
request for further resources (effort and cost) than planned.
After having carried out improvement actions, the indicators
show that: CV >0, under budget so the project until this point is
spending less than planned; SV < 0, the project is still behind
schedule, in spite of the improvements made; CPI >1, project
costs are less than planned; SPI < 1, execution times are higher
than expected. So, although the activity was completed
spending less budget, it requested more effort because the
resources recuperated in the previous activities had all been
spent to face critical situations that arose in previous
checkpoints. This impacted the EACT prevision indicator as it
consequently turned out to be slightly higher than the expected
threshold.

A9 requested less resources in terms of performances and
cost to be carried out, and consequently indicators SPI and CPI
returned to satisfy the baselines. Consequently, following to the
improvements made in the previous activities and milestone
checkpoints, indicators EACC and especially EACT returned
to be within the thresholds and the project finished on time.

Having collected EVM values during milestones with a
granularity related to activities rather than work packages or
entire project, allowed the project managers to appropriately
monitor and control the general trend of performance indicators
and readily act to recuperate delays accumulated during the
project. Indeed, the resources saved in on-schedule/budget

activities were allocated on other critical off-schedule/budget
ones. As so, delays were mitigated by improvement actions
without impacting on the overall final project cost and effort,
which by the end of the project turned out to be within the
expected thresholds. Deviations from the plan in some
activities were successfully recovered in other ones by readily
reallocating budget and effort to face problematic situations
pointed out during monitoring checks. Having adopted a
decision model to guide the interpretation of indicators turned
out to be helpful as it simplified the entire monitoring and
control process during project execution.

III. DISCUSSION AND CONCLUSIONS
Earned Value Management technique is easy to understand,

and, in theory, also to apply. Nonetheless, there are several
critical factors that should be taken into account: collecting cost
values at a low level of granularity requires ad advanced level
of management control, as costs must be broken down
conformingly to the level of detail chosen; determining the
percentage of completion of an activity requires “structured
processes” and careful evaluations. Consequently several
applications of EVM are done at project termination when it is
obviously no longer productive or useful. Furthermore, it is
difficult to apply EVM in distributed project due to the
common problems related to monitoring and control processes
in distributed/dislocated sites. Finally, it is not appropriate for
monitoring costs other than personnel/consultancy ones such as
equipment costs, determining only a partial control of the
project status.

EVM allows to achieve an objective evaluation of risk and
project status and, at the same time, provides useful indicators
that allow to change management strategies, increasing or
decreasing resources assigned to activities based on
performances, in order to improve and optimize the general
progress of the project in terms of cost and time.

Tracking earned value is of little value if the estimating and
analysis capability that it provides is not used to operatively
manage the project. Furthermore, reporting real project status
systematically, at regular intervals provides an opportunity to
serve as early alarm and address potential problems readily,
before it is too late and avoid cost overrun and schedule
slippage. For this reason it is important that project managers
adopt this approach and use the decision model for conducting
project monitoring and interpreting the indicators collected in
specific milestones and granularity entities, fixed at the
beginning of the project, in order to prevent problems from
occurring and promptly act when they arise.

EVM is not the silver bullet for project monitoring and
control, however it surely provides a higher level of control on
the project execution. Moreover, the use of the decision model
provided supports its application and systematic adoption
during the entire project. This technique, given its features is
more appropriate for medium to large structured contexts rather
than small and agile ones.

We are currently refining the decision model so it can be
better tailored to any task, activity, phase, of a project and
therefore be adapted to any desired level of granularity

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 367

according to the project needs. It is also being implemented in a
decision support system tool, as the model has been formalized
in decision tables. This solution will provide automated support
to project managers allowing them to monitor and control
EVM values with less effort.

Our future work will therefore include validation of the
decision support system, as well as application of the
automated decision model in real project case studies for
collecting further evidence.

REFERENCES
[1] A.B. Pyster, R.H.Thayer, “Software engineering project

management 20 years later”, IEEE Software, 22(5), pp.18-21,
2005

[2] PMI, A Guide to the Project Management Body of Knowledge
(PMBOK® Guide) - Fifth Edition, Project Management
Institute, ISBN: 9781935589679, 2013.

[3] PMI, Practice Standard for Earned Value Management,
Pensylvania, 2005.

[4] NASA, Earned Value Management Web Site -
http://evm.nasa.gov/

[5] DoD 5000.2-R, “Mandatory Procedures for Major Defense
Acquisition Programs (MDAPS) and Major Automated
Information System (MAIS) Acquisition Programs”, April 2002

[6] “The Earned Value Management Maturity Model”, Version 0.0,
Initial Public Draft, Management Technologies”, September
2000. http://www.mgmt-technologies.com/evmtech.html

[7] The Program Manager’s Guide to Software Acquisition Best
Practices, Version 2.1, DoD Software Program Manager’s
Network, April, 1998.

[8] R.A.Marshall, “The contribution of earned value management to
project success on contracted efforts: a quantitative statistics
approach within the population of experienced practitioners”,
Project Management Institute, 2006.

[9] A. Jaafari, “Time and priority allocation scheduling technique
for projects”, International journal for project management,
14(5), pp.289-299.

[10] E. KimW.Wells, M.Duffey, “A model for effective
implementation of earned value management methodology”.
International journal for project management, 21(5), pp.375-382

[11] M.Raby, “Project management via earned value”, Work study
49(1), 2000, pp6-10.

[12] P.Donzelli, “A decision support system for software project
management”, IEEE Software, 23(4), 2006, pp.65-75

[13] M.N.Garcia, L.A Quintales, F.J.Penalvo, M.J.Martin, “Building
knowledge discovery-driven models for decision support in
project maangement”, Decision Support Systems, 38(2), 2004

[14] M.M.Nkasu, K.H.Leung, “A resources scheduling decision
support system for concurrent project management”, Int.Journal
of production research, 35(11), 1997, pp.3107-3132

[15] M.Plaza, O.Turetken, “A model based DSS for integrating the
impact of learning in project control”, Decision Support
Systems, 47(2009), pp.488-488.

[16] V.R.Basili, F.E.McGarry, R.Pajerski, MV.Zelkowitz, “Lessons
learned from 25 years of process improvement: the rise and fall
of the NASA software engineering laboratory”, Proceedings 24th
ICSE 2002, pp.69-79.

[17] N.R.Tague, The Quality Toolbox, Second Edition, ASQ Quality
Press, 2004, pp. 390-392.

[18] C.R.Matthews, “Linking the supply chain to TQM”, Quality
Progress, November 2006.

[19] D.S.Christensen, “Project advocacy and the estimate at
completion problem”, Journal of Cost Analysis, Spring 1996.

[20] M.J Christensen, H.R.Thayer, The project managers guide to
software engineering best practices“, IEEE Computer Soc, 2001,
ISBN:0-7695-1199-

368 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Software Engineering Practices for Minimizing Technical

Debt

Vinay Krishna
1
, Dr. Anirban Basu

2

1
Product Development, Cegedim Software India Pvt Ltd, Bangalore, India

2
Department of CSE R&D, East Point College of Engineering & Technology, Bangalore, India

Abstract - Often we find it difficult to incorporate any changes in

a software project during later phases of its development, or during

post-delivery maintenance. Primary reason for this is inflexibility in

design and code which makes it difficult for changes to be

incorporated. This inflexibility substantially increases the cost of

making changes and this metaphor has been termed as Technical

Debt [1]. While Technical Debt cannot be eliminated completely,

its burden needs to be reduced. Many practitioners, especially from

agile community, have suggested some practices to avoid or

eliminate Technical Debt. This paper discusses methods for relief

from Technical Debt and proposes seven software engineering

practices that a developer can follow to minimize Technical Debt.

These practices have been used and found to be effective when

implemented in projects as discussed here.

Keywords: Technical Debt, Code improvement, Refactoring,

Technical Credit, Living Budget

1 Introduction

 Most software projects suffer from one major technical

challenge [1]: introduction of unnecessary complexity in

design and code, knowingly or unknowingly [2]. System

requirements mature with time, business requirements change

with market dynamics and evolution of technology warrants

complete requirements development. Incorporating desired

changes at a late stage of software development require

modification to the design and code. For meeting customer’s

expectations without any disruption in the schedule,

developers make quick and dirty changes in design and code.

Such unplanned changes done by the developer add

complexity to the code. There are also situations when

developers unknowingly make the code messy by not abiding

to the prescribed coding standards, by incorporating changes

in a hurry and by making over commitments without

understanding the ramifications. Whether it is inadvertent or

deliberate, such changes cause stiffness in code and gradually

a situation is reached when making further changes in the code

becomes extremely difficult. This state of dogmatism in code

is named as Technical Debt [1].

Although, IT community understand the ill effects of

Technical Debt little has been done to minimize it. Software

engineers, who are key players in software development, can

play an important role in minimizing it. This paper discusses

ways of reducing the burden of Technical Debt by introducing

robust software engineering practices and discipline. The

practices proposed in this paper have been implemented in

real life software projects and data collected shows that the

proposed techniques can substantially reduce the Technical

Debt. An earlier version of the work was presented in

ICSEMA 2012 [3].

2 Background

 According to James Higgs [4], “All projects incur

Technical Debt, and that’s not a bad thing”. He has explained

different grades of Technical Debt and how we can overcome

it. As per Gartner [5] total Technical Debt in the global IT

industry in 2010 was $500 billion and it is expected to grow to

$1 trillion in 2015. This is not only alarming but appalling.

Practitioners from the software development community

have suggested many good practices to reduce Technical Debt

[2] [4] [6] [7]. As described in Table 1 these practices can be

classified into 3 groups: Practices to Identify, Practices to

Classify and Practices to Reduce.

TABLE 1

Category Description

Identification [2][4][7]

Contains practices to identify

Poor code quality

Insufficient code coverage

Inadequate documentation

Classification

[2][4][6][7]

Contains practices to Classify

Knowingly/Unknowingly

Short term/Long Term

Prudent and Reckless Debt

Strategic/Non-strategic

4 grades of debt

Reduction [2][7]

 Contains practices to Reduce by

Refactoring

Test Driven Development

Code reviews/ Audit

Pair programming

Continuous Integration

Best Practices/ Coding Standard

Evolutionary design

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 369

Practices related to Identification provide the developer

ways to identify Technical Debt in the code whereas the

practices in the Classification category help in understanding

the reason. Reduction practices are used to reduce the debt

identified. However, we find that although the practices

suggested to identify, classify and reduce Technical Debt are

effective to some extent but not enough to reduce Technical

Debt in real life software projects. This paper proposes

software engineering practices which have been found to be

more effective in practical situations.

3 Software Engineering Practices for

Reducing Technical Debt

Although the benefits of Test Driven Development and

other good practices [8] are well established, developers feel

that effective methods [9] are still missing to reduce Technical

Debt. With experience on working on several projects, we

were able to identify seven software engineering practices

discussed below that can be used to reduce the Technical

Debt. These practices are discussed along with situations

where it can be applied.

3.1 Practice1: Determine one’s living budget

 Description: One must know his/her living budget. A

minimal output in a day that needs to be produced to meet the

deadlines is defined here as “living budget” and needs to

introduced in Work Management Plan. The concept of

“Living Budget” is clarified as follows. When one plans

his/her development work, one must estimate and plan for

self-code review and refactoring. So if one plans for z hours of

work in a day (normally z=8) one should plan to spend x hours

for development and y hours for review and refactoring the

code. The value of x and y should be determined by the

developer as below,

1 day = z hrs
1 day development = x hrs development + y hrs review and refactoring

 LivingBudget

where x hrs + y hrs = z hrs

Recommendation: One should include time for code review

and refactoring in work plan. Sprint planning practice of

Scrum have been found to be useful as team availability is

planned in advance including daily hours available for each

team member. Besides, we suggest following approaches:

i) Efficiently utilize extra/free time

In some projects we get extra time either due to early

completion of assigned tasks or due to some other reasons. In

such situations, this time should be used for Technical Debt

reduction and extra time used efficiently without ignoring

steps suggested in Practice 1.

ii) Self-organize

One must be able to manage his living budget, and keep track

of all time and delivery commitments. We should update code

regularly and keep monitoring so that undesirable practices do

not recur, Team members should be empowered in task

selection, estimation etc. There are many Scrum practices such

as Daily standup and retrospective which help to achieve

these.

3.2 Practice 2: Smell one’s own code

Description: Code should be reviewed to find out where it has

defects and unwanted code exists. Steps should be taken to

reduce/remove unwanted code in these areas, even if it means

avoiding certain situations due to over anticipation. This is

well understood and easy to do, but very hard to follow.

Normally developer finds very less time or no time to

review/smell his own code since he always struggles to meet

the deadlines. Following Practice 1, i.e., “Determine one’s

living budget”, helps to plan for this activity.

Recommendation: For following this practice, first define

coding standards and best practices and make the team aware

of these. A check list should be created and developer should

use it to make sure that defined coding standard and best

practices have not been ignored. As it is a manual process and

hard to follow it is advisable to identify some code analysis

tool that can be used to find out deviation from standards and

best practices. However we still need to apply manual effort to

review the code in order to refactor it.

3.3 Practice3: Make optimal use of Technical

Credit

Description: Introducing anticipated inflexibility in design

and code is termed here as Technical Credit. This adds

complexity to design and code which may not be required

eventually. This is very important aspect in coding and unless

one is sure about future needs, one should not introduce

flexibility by mere anticipation

Recommendation: We need to encourage all members in the

development team to discuss all issues in order to avoid

guessing customer requirements and over anticipation. The

following approach is recommended:

i) Start Refactoring the Technical Credit portions

The portions of the code having Technical Credit are to be

found. Refactoring to improve the code should start after that.

More attention should be given to the portions where

additional code has been written due to anticipation. These are

portions with Technical Credit

We should refactor only one part at a time until it is improved

and look for reduction in Technical Debt. Refactoring on one

part will show this better than refactoring on several parts of

the code at the same time.

370 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

3.4 Practice 4: Find the causes for un-

necessary complexity in design and code

Description: If one introduces additional complexity in the

code to cover some un-practical scenarios, it is necessary to

deal with these and get to the causes. Introducing unnecessary

complexity makes the code more complex and rigid and

increases Technical Debt. It is better to remove such

additional complexity as early as possible. Such inadvertent

additions in code complexity can happen due to several

reasons as discussed below.

Recommendation: We suggest the following two approaches:

i) Take help from others in design and coding related

obstacles

We have found that frequently we spend time on issues which

have already been solved by someone else or can be done

quickly by a person with the necessary expertise but we avoid

seeking help from them. Pair programming is the best option

to avoid such situation. However if we cannot practice pair

programming, we need to encourage open communication

ii) Stop Keeping up with Joneses

Avoid blindly following others’ designs, patterns, codes and

libraries unless one really needs them. Ask suggestions from

all but accept the best one suitable.

3.5 Practice5: Follow Best Practices and

Coding Standards

Description: Use recommended Coding

Standards/Guidelines. This is the best way to get code back

on track. If one portion of the code e does not adhere to the

standards/guidelines, one needs to modify it.

Recommendation: Define the best practices and Coding

Standards and share them with the team. Check if any third

party tool can be used for review and to quickly find out

deviations or shortcuts.

3.6 Practice6: Increase productivity with

Quality in mind

Description: Always focus on quality and not on speed. Never

measure productivity in terms of quantity but in terms of

quality and importance.

Recommendation: Test driven development is one of best

practices to increase the code quality. Maintaining product

backlog with proper order is also a good practice to get

important items done first. Continuous integration is another

good practice, as we make changes in our code apart from unit

testing. Always do an integration testing to make sure it didn’t

break others code.

3.7 Practice7: Learn continuosly

Description: Learn techniques continuously and apply it to

improve code. Plenty of resources are available to enhance

one’s knowledge.

Recommendation: Impart proper training to the team on code

refactoring and share good resources with them. Encourage

continuous learning and experience sharing within the team.

There is always scope for improvement and continuous

learning helps. Never give up on learning emerging coding

standards, best practices, refactoring techniques etc.

Discuss in the team technical updates, any new special defect

or fix that has been encountered or used by anyone and keep

the meetings less formal and encourage team member to share

his/her experience/learning.

4 Application on Projects

Although SQALE method [10] has been proposed,

measurement of Technical Debt is not easy. We have chosen

the following metrics for the purpose of measuring Technical

Debt:

 Number. of defects found in production

 Mean time taken for enhancement

 Mean time taken to fix production defects

We compared the values of these metrics on internal projects

which are part of customer support system for one payroll

product. We analyzed projects which were showing increase

in Technical Debts and came out with the practices proposed

in this paper. The proposed practices were applied in

subsequent projects and the results clearly brought out the

advantages of the proposed practices.

We chose projects which are in same category, of same size

(approx. 1500 Man-hours) and were related to IT service

management for one payroll product. This was done to have

better control on any new change requested by the customer

requiring some complex workflow to implement. We were

experiencing lots of difficulties due to severe defects during

all phases of development and even post-production. Defects

were of various types: wrong interpretation/assumption by

developer, in-adequate unit testing, hurry-burry approach, lack

of self-planning etc. The projects chosen for analysis were:

CR001: This is used to create and manage request for new

column creation and analyzing the impact and contain

workflow that it require to pass along with SLA.

SW01: This is used to create and manage request for new

worksheet creation. This also contains workflow that it

requires to pass along with SLA.

4.1 Observations

 The above seven practices were applied along with the

prevalent practices mentioned in Table 1.The results are

summarized below in three sub sections.

4.1.1 Results without applying Technical Debt

reduction techniques

 In project CR001, we observed large number of defects

reported and number of changes that came during release and

production. We also found that effort was high in both for

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 371

fixing defects and for implementing the new changes, see

Figure 1.

Figure 1. Defects in CR001 without applying technical debt techniques

Figure 2. Defects in SW01 after applying practices in Table 1

 Do not end a page with a section or subsection heading.

Keep footnotes to a minimum. Proper usage of the English

language is expected of all Camera-Ready papers.

4.1.2 Results with application of techniques mentioned

in Table 1

 We analyzed the situation in CR001 and we decided to

apply identification and reduction methods mentioned in

Table 1 in project SW01. We used Test-Driven Development

approach without any automation tool [7]. On comparing

CR001 data with SW01 data (see Figure1 and Figure 2), we

observed rise in number of defects found prior to Post-Release

phase especially during development, Unit testing and

Integration testing phases. Nevertheless, during Post-Release

phase, we found increase in number of “Not an Issue”

(potential candidate for new change due to wrong

interpretation/assumption) by 182% and slight decrease by 6%

in number of defects found There were signs of improvement

as shown in Figure 2 but not to our expectations for the

number of defects found in Post-Release phase.

4.1.3 Results with application of Technical Debt

reduction practices of Table 1 and seven practices

proposed here

It was therefore decided to apply the proposed seven practices

in subsequent projects: JTC001 and LTC001.

JTC001 is used to create and manage request for new type of

leave creation and for analyzing the impact and contain

workflow that it requires to pass along with SLA.

The results of application of the practices on projects JTC001

and LTC001 are shown in Figure 3 and Figure 4.

Figure 3. Defects in JTC001 after apllying proposed practices

Figure 4. Defects in LTC001 after applying proposed practices

On comparing the parameters obtained in JTC001 and

LTC001 with that for CR001 and SW01, we found significant

reduction in defects count and number of “Not an Issue” in

post-production phase while we observed significant rise in

defects count during Unit testing and Integration testing

phases.

In case of JTC001 and LTC001 we also observed

significant reduction in total number of defects and in changes

required in production as shown in Figure 5.

372 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 5. Improvement at production after applying proposed practices

We saw improvement, as in Figure 6, in terms of time

taken to adopt new changes as well as the time for fixing the

defects.

These observations clearly brought out the advantages of

applying the seven practices proposed here in reducing

Technical Debt. The proposed practices are being applied in

more number of projects.

Figure 6. Improvement at production (meantime) after applying proposed

practices

5 Conclusions

 It is really hard to eliminate Technical Debt completely

and it is not easy. It is abundantly clear that large amount of

debt can lead to failure or substantial loss in terms of extra

effort and rework needed to make changes to meet customer

expectations. As a developer we should minimize Technical

Debt as much as possible. This paper suggests software

engineering practices to reduce Technical Debt. The practices

have been found to be effective based on the authors’

practical experience on application on real life projects. The

seven software engineering practices proposed in this paper

are being applied on more projects of different categories and

sizes to check their robustness.

6 References

[1] W. Cunningham, The WyCash Portfolio Management

System, OOPSLA, 1992;http://c2.com/doc/oopsla92.html

[2] S. McConnell, Technical Debt, 2007;

http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/

technical-debt-2.aspx

[3] V. Krishna and A. Basu, “Minimizing Technical Debt:

Developer’s Viewpoint”, in Proc ICSEMA 2012, Chennai,

Dec 2012

[4] J. Higgs, The Four Grades of Technical Debt, 2011;

http://madebymany.com/blog/the-four-grades-of-technical-

debt

[5] Gartner, Press Release, 2010 ;

http://www.gartner.com/it/page.jsp?id=1439513

[6] M. Fowler, Technical Debt Quadrant, 2009;

http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.ht

ml

[7] T. Theodoropoulos, Technical Debt Part1-4, 2012;

http://blog.acrowire.com/technical-debt/technical-debt-part-1-

definition

[8] V. Krishna, My Experiments with TDD, ScrumAlliance,

2010; http://www.scrumalliance.org/articles/357-my-

experiments-with-tdd

[9] D. Laribee, Using Agile Techniques to Pay Back

Technical Debt, MSDN Magazine, December 2009;

http://msdn.microsoft.com/en-us/magazine/ee819135.aspx

[10] J. Letouzey, The SQALE Method, January 2012;

http://www.sqale.org/wp-content/uploads/2010/08/SQALE-

Method-EN-V1-0.pdf

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 373

374 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

SESSION

AGILE SOFTWARE METHODS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 375

376 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Agile Project-Based Teaching and Learning

Dagmar Monett
Computer Science Dept.

Faculty of Cooperative Studies
Berlin School of Economics and Law, Germany

Dagmar.Monett-Diaz@hwr-berlin.de

Abstract—Agile courses in university settings aim to prepare
students to face the ever increasing demands from the software
industry, where Agile has become mainstream. This proves the
teaching and understanding of Agile in such settings is of the
utmost importance. This is why Agile is no longer just a part
of the software engineering curriculum in Computer Science
but a standalone course in most cases, though with increasing
challenges for both faculty and students. This article presents
yet another example case of the design, planning, development
and evaluation of an agile project-based course. The reason for
addressing the Agile teaching is twofold: not only are the Agile
theory and practice taught and experienced in class, but also the
teaching itself, and consequently the learning, has been adapted
to changing requirements and priorities in each edition of the
course. Making it project-based allows students to work with
realistic projects through which they learn Agile more effectively,
in collaborative and self-organizing teams. These insights, as well
as settings and experiences over a total of 4 years, are addressed
in this article.

Keywords—Agile, eXtreme Programming, teaching, project-
based learning.

I. INTRODUCTION

There are lots of strong reasons for including Agile princi-
ples in CS education [1]. Positive experiences that go from
project-based Computer Science (CS) courses using Agile
[2, 3] over Agile teaching [4] to Agile instructional design [5]
have had a common denominator: the practices, the values and
the methods of the agile software development are essential;
Agile is a current mainstream in the software industry [6]
and educational environments are profiting from this, too.
Meanwhile, project-based learning has proven to be very
attractive in tertiary teaching: students learn the discipline via
a realistic project, they pursue questions and connect them to
activities that are part of the project, they construct knowledge
and autonomously work towards a final product, as well as
they master the curriculum standards with academic rigor [7].

The module Project Management is part of the CS ed-
ucation during the third semester at the Berlin School of
Economics and Law (BSEL). By successfully passing this
module, dual studies CS students can obtain 14 ECTS-credits,1
which are assigned by considering the following proportion:
a 20% of them goes to the sub-module Project and Quality
Management, a 30% goes to the sub-module Multidisciplinary
Lab using Agile techniques, and a 50% goes to the sub-module
Practice Transfer, where students are at their enterprises
and where they should apply gained knowledge in software

1European Credit Transfer and Accumulation System. One credit point is
equivalent to 30 hours of study.

engineering in general and in Agile and project management
in particular. Credit hours, however, were never intended to be
a measure of student learning, as Laitinen argues in [8]. She
brings forward the argument that there should be found “what
students are expected to –and actually do– learn”, as well as the
measurements to meaningfully assess what they have learned,
not only concerning time-based units. By introducing Agile
project-based techniques in CS assignments and by accurately
defining both the learning goals and their evaluation forms,
as it is further presented in this article, a positive step in this
direction is achieved.

Much of the Agile courses in university settings have a
common goal: to prepare students to face the ever increasing
challenges in the software industry. Jaccheri and Morasca
define in [9] five main roles that industry can play in software
engineering education from the point of view of the university
teacher: industry as students, as teachers, as researchers, as
customers, and as former students. Three of these roles are
well-identified in the mentioned module Project Management:

• Industry as teachers: the sub-module Project and
Quality Management runs parallel to the sub-module
Multidisciplinary Lab using Agile techniques. The first
sub-module is taught by an industry specialist in close
collaboration with the latter’s teacher.

• Industry as customers: a real customer, who presents
a problem to the students and who is available for
consulting, is simulated in the Lab, if it is not possible
to invite “a real” one. The concrete problem that
is selected and the algorithm for solving it are also
present in many industrial applications.

• Industry as former students: there are a Faculty Tech-
nical Commission and a Faculty Commission for
Cooperative Studies at the BSEL both integrated by
several industry partners, former dual studies students
some of them, that discuss and approve the curriculum
and other teaching and learning issues. Part of the
faculty is composed of former BSEL students as well.

Two of the most important advantages of the program that
prepare CS students for their further professional life are:
firstly, students from the Faculty of Cooperative Studies are
dual studies students and work in German companies from
their first career’s semester on. This means, they gain practical
experience in real industry scenarios from the beginning of
their studies on. Second, the sub-module Multidisciplinary Lab
using Agile techniques (Lab using Agile, for short) provides
them with several hard skills like specifying, designing, im-
plementing and testing software, as well as communicating,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 377

presenting, and working in a team, to name a few soft
skills. Furthermore, both advantages successfully minimize
new hires’ common frustrations, as addressed in [10].

The Lab using Agile uses an interdisciplinary approach
from the viewpoint of different cross-disciplinary topics ad-
dressed there. Perhaps these are reasons why the course has
been favorably received by both faculty and students. Its
careful design and planning, as well as its constant adaption
to changing teaching and learning requirements has proven
extremely effective in project-based courses. The remainder of
this paper describes aspects for the Lab using Agile in detail.

II. AGILE AND XP TECHNIQUES

One of Agile’s most used methodologies is eXtreme Pro-
gramming (XP), which has also been very popular in CS
teaching [11–15]. For example, Stapel and colleagues propose
in [15] a XP lab design property system for teaching a project-
based XP course to CS master students, emphasizing in XP
practices as part of a closed block course. Their work inspired
the study summarized in this paper, which recommends a
change from a weekly course to a blocked one. However,
not only the course design, its type and the students’ level,
but also the blocks’ duration, the XP iteration lengths, the
team sizes, and the project content, among others indicators,
differentiate their research from the one presented in this
paper. Valuable insights from other works evaluating Agile in
education environments also influence the findings presented
here.

Pair programming is no longer extrinsic to CS education. In
[16], for example, a case study concludes that pair program-
ming is an effective approach for mastering computer pro-
gramming together with cooperative learning principles. The
authors extensively review the literature about the advantages
and disadvantages of pair programming as a teaching-learning
strategy, too. In [17], the authors additionally comment about
the benefits of pair programming when practicing it in grad-
uate software engineering class projects. Furthermore, several
works have been published concerning both the strengths and
weaknesses of pair programming but from the perspective of
the Agile community.

The rest of the XP techniques are also introduced to
the students in the Lab using Agile, both theoretical and
practically. The students are, however, undergraduate students
with little programming experience. In fact, they have only
attended a few semesters at the university. Nevertheless, they
learn quickly how to develop software with the aid of Agile,
they solve a concrete real problem working in teams and they
gain experiences by simulating a working day at an enterprise
as part of the course project.

Differentiated supervision and guidance allow for better
reactions to problems that might arise when introducing Agile
or simply when working with others. In the Lab using Agile,
individual and general coaching is offered as well. The faculty
coaches individuals and teams in the course and is able to
monitor progress and development anytime. Thus, continuous
feedback can be provided to the students, to the teams and
to the entire group. In reciprocation, students should be capa-
ble of presenting different stages of working software, and
they should discuss with faculty in the role of (simulated)

TABLE I. COURSE SCHEDULE: TEACHING BLOCKS AND SEMESTER
CREDIT HOURS.

Block 1 Block 2 Block 3 Block 4
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

8 SCH 8 SCH 8 SCH 8 SCH
6 SCH (PC Lab) (PC Lab) (PC Lab) (PC Lab) 6 SCH

16 SCH 16 SCH

44 SCH

TABLE II. COURSE SCHEDULE: TEACHING BLOCKS AND AGILE
CYCLES.

Block 1 Block 2 Block 3 Block 4
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Intro II Release 1
Syllabus Planing game 1 Planing game 2 Release 2
Intro I Iteration 1 Iteration 2 Conclusion

(Incremental teamwork) (Incremental teamwork)

customers, acceptance criteria for their software products. In
the coaching sections, it is expected that students come with
concrete questions they have prepared in advance about any
topic they need advice on.

III. COURSE SCHEDULE

Table I shows the course schedule for the Lab using Agile
in teaching blocks and semester credit hours (SCH, 1 SCH
meaning what follows 45 minutes of teaching time). The
course is divided into four teaching blocks for a total of
44 SCH. Blocks 2 and 3 take place in a PC Lab. They are
mainly intended for teamwork. In the Fall 2009 and 2010
editions of the course, three XP iterations were programmed
for respective three product releases. However, in the Fall 2011
and 2012, only two XP iterations and their respective releases
were planned, in response to the course appraisals administered
at the end of the previous terms. More on this respect can be
found in Section VI-B.

Table II shows the same course schedule but in teaching
blocks and Agile cycles. Both Syllabus and Intro I at Day 1
conform Block 1 and refer to an introductory section, which
states the purpose and goals of the course, as well as the theory
about the algorithms selected to solve the customer problem.
Intro II at Day 2 refers to an introduction to Agile and to XP.
Days 2 and 3 are two continuous calendar days from Block 2,
as well as days 4 and 5 are from Block 3. Iteration 1 starts
with Planing game 1 and takes between three and four weeks
until Release 1 is accomplished, with only the first two days
at the university. This similarly occurs for Iteration 2, whose
Release 2 takes place at the end of the course, at Day 6. The
Conclusions are mainly based on the presentations of the final
product releases and on the teacher’s feedback concerning the
projects as a whole. In [15], to name one crucial difference
to this work, the block course has no interruption at all: the
(very short) iterations are continuously located in the course
time frame.

Incremental teamwork in blocks 2 and 3 means students
become more independent while working in a team. Students
not only do work incrementally on different tasks without
interruption while planning and developing software: they also
apply Agile techniques that make them more independent.

378 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

They progressively need lesser coaching from faculty for mas-
tering activities that are more complex with time. In order to
cope with these challenges, the course schedule includes more
time for programming and less for other didactic exercises,
also in a progressive way.

IV. LEARNING AND TEACHING GOALS

Faculty should be aware of both the coarse and the fine-
grained learning goals for a course, in order to break down
those goals and to focus on the content to be taught. The
former, the coarse-grained learning goals, are often defined in
the curriculum in a general way. The latter ones help faculty
to plan and to draw up in detail what students need to master
and the ways of achieving and evaluating that. By defining
thoroughly the fine-grained learning goals of the Lab using
Agile, faculty creates the course syllabus without difficulty,
and individual blocks and days are planed easier. This does not
require a straightforward, additional effort for the conception
of all these teaching materials, but the time saved later pays
dearly the invested one.

The second block of the Lab using Agile is dedicated to
the first experiences with the XP practice, especially at Day 2.
The fine-grained learning goals of the second block (B2) for
the firsts double credit hours (2 SCH each, i.e., 11

2 hours) are:

After completion of the second block, the students will be
able. . .

B2.1 (2 SCH): . . . to identify and to describe software
requirements using story cards; to assess their priorities;
to coordinate and to discuss their inclusion in the current
iteration; and to plan and to schedule related activities for
the first XP iteration.

B2.2 (2 SCH): . . . to meet and to participate in “stand-
ups” or daily meetings; to develop software programming in
pairs.

B2.3 (2 SCH): . . . to discuss and to formulate rules for
working in a team; to discuss and to formulate rules for the
work of several teams in a room.

B2.4 (2 SCH): . . . to develop software working in teams.

Didactic exercises worked out in this block include organi-
zational aspects that allow for better collaborative work when
applying XP, since this is essential to Agile [18]. Rules for
working in a team are then to be discussed by the students,
for example, and each project group could present its set of
rules using a flip chart in one of the sessions.

Teaching screenplays were used to better schedule the
sequence of concrete teaching and learning activities to be
included into a class, as well as the time required to complete
them. They were planned using a sandwich structure, i.e.,
by combining passive and active learning units, and are like
lesson plans or teaching worksheets that describe the teaching
roadmap for a class or for part of a class in detail. For example,
the teaching screenplay for the first double credit hour from
block B2 is shown in Table III. It corresponds to the fine-
grained learning goals defined above for the first double credit
hour of that block, i.e., for B2.1.

TABLE III. EXAMPLE TEACHING SCREENPLAY FOR THE DOUBLE
CREDIT HOUR B2.1.

5 Start – passive unit
Entry min. Welcoming (oral)

Contents and time schedule (flip chart)
Content 1 – passive unit

20 Motivation (oral)
min. Learning goals (flip chart)

Planning game (flip chart, blackboard)
Story cards (blackboard)

3 Brainstorming – active unit
min. Collect examples (plenum)

Content 2 – passive unit
90 Working 20 Project description (hand outs)

min. phase min. Project goals (blackboard)
Project requirements (hand outs)
Requirements for 1st release (blackboard)

2 Introduce exercise – passive unit
min. Planning game: method, time management (oral)

Knowledge transfer – active unit
35 Planning game 1st iteration (teamwork, coaching)

min. Define story cards
Set priorities
Discuss realization

End – active and passive unit
Exit 5 Questions, feedback (oral)

min. Conclusions (oral)
Short about the next double SCH, i.e., B2.2 (oral)

TABLE IV. EXAMPLE TEACHING SCREENPLAY FOR A DOUBLE CREDIT
HOUR WITH TEAMWORK.

2 Start – passive unit
Entry min. Welcoming (oral)

Goals and time schedule (flip chart)
Teamwork and coaching – active unit

90 Working 83 Incremental software development (by students)
min. phase min. Individual team coaching (by faculty)

Questions, feedback (team-oriented)
5 End – passive unit

Exit min. Conclusions (oral)
Short about the next double SCH (oral)

19 such teaching screenplays are needed for blocks 1 to 3,
i.e., one screenplay as in Table III for each double SCH. How-
ever, much of them are only an outline like the one presented in
Table IV. All teaching screenplays can be adjusted and adapted
depending on the concrete class’ rhythm when developing
the course projects, which is just an expression of the Agile
project-based teaching. An extra column could be added to
the screenplays, too, for comments on self reflection and on
self assessment after completing the scheduled exercises and
activities.

V. PROJECT REQUIREMENTS

The general project description was formulated as follows:
Solve the traveling salesman problem (TSP) using a meta-
heuristic algorithm in the context of an XP project. Wanted
is a software product with a graphical user interface (GUI)
that includes menus and controls to define settings and that
visualize results, as well as with a graphical window to show
both the cities and the optimization process in real time.

Students should use metaheuristics algorithms, like genetic

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 379

algorithms (GA) and ant colony systems (ACO), to solve
instances of the TSP. They should test their programs using 2-
dimensional, symmetric TSP instances of geographical prob-
lems from TSPLIB [19], as well as they should report both
their findings and the software development using Agile in a
research paper of at least five pages, following the guidelines
for two-column conference proceeding in IEEE style.

Software requirements are defined by the customer (real
or simulated) at the beginning of each XP iteration, depend-
ing on the focus the software development in that phase is
centered around. Only those requirements related to the GUI
development, for instance, are defined, specified, planned, and
prioritized in the same planning game. Those requirements
concerning the data and the algorithms to process them are
defined in another planning game. Whether to start with the
GUI or with the logic was discussed with the students. For
many of them it was more important and attractive to have a
working product with options and other components to present
to the customer in the different releases, into which other
functionalities could be added onto.

In Fall 2012, the first release, at the beginning of the third
block (see Table II), was an “individual” meeting of each
team with faculty playing the roles of customer and coach.
The second release, in the last course’s block, was a “public”
meeting (all teams, in plenum), where faculty played both
the customer and the evaluator roles. Each team presented
a software prototype in the former, as well as it addressed the
main aspects related to other Agile methods and techniques.
In the latter, the final release, a formal oral presentation of
about 35 minutes gave insights about the final product, about
the project development, and about the experiences and lessons
learned during the project completion.

Emphasis was also put on project management tools for
collaborative work. The students had the opportunity, at least
in the last two editions of the Lab using Agile, to test and to
use several new tools (for them), like Redmine2 and Trello3,
for instance.

VI. COURSE EVALUATION

The composition and the size of the class, together with
other information related to the last four editions of the course,
are presented in Table V. The number of students answering
a customized, anonymous questionnaire at the end of the
semester is given in parenthesis for each course edition.

In the Falls 2009 and 2010, the course was offered weekly
and there were a total of three XP iterations (and therefore,
a total of three releases). No special didactic methods were
applied at that time. In each of both editions, a different
algorithm was considered to solve the TSP problems, i.e.,
ACO in Fall 2009 and GA in 2010. Students had difficulties
especially when programming in the class, since the time
available each week was minimal. They also had problems
that prevented them completing their projects on time.

In the Falls 2011 and 2012, however, the course was
divided in four presence blocks, as it is presented in Table I.
Both editions of the course scheduled only two XP iterations,

2Redmine (at http://redmine.org) is a project management web application.
3Trello is a board-based collaboration tool. See more at http://trello.com/.

TABLE V. CHARACTERISTICS OF THE LAST FOUR COURSE EDITIONS.

Group Female Weekly/ Agile Algo- Special Special
Fall size prop. Blocks iter. rithm didactic coaching

2009 30(30) 1 w 3 ACO – –
2010 30(30) 2 w 3 GA – –
2011 24(24) – b 2 ACO ++ +
2012 28(19) 2 b 2 ACO ++ ++

as derived from students’ feedback in the former courses. The
algorithm used for solving TSP was the same in both cases
(i.e., ACO). Both editions included several special didactic
methods not applied before, as well as a close team coaching
by the professor, more intensive in Fall 2012. Additionally,
the faculty was coached in Fall 2012 by an external training
coach, expert in didactic in higher education.

A. Evaluating Learning

Each student can earn at most 100 points, which are then
converted to a grade-point system in the German grading scale,
as usual. A final student’s grade is the team grade to which they
belong. It is determined using a percentage system with 20%
for each of the following areas: first release, second release,
research paper, software program, and project management.

For assessing the releases and the team presentations, an
evaluation form was designed by the faculty. It considers key
components like presentation skills, content, timing, confi-
dence, quality, and so on. The research paper was evaluated
according to guidelines for scientific events. What to consider
for both its content and structure was previously discussed with
the students. Last but not least, the software program should
satisfy all requirements, the teams should submit an executable
version out of bugs, and the main software features and their
functioning should be shown in the final presentation, without
forgetting the project management aspects related to the project
as a whole.

B. Evaluating (not only) Teaching

By the term’s end, a questionnaire independent of formal
faculty evaluations was administered to students. The questions
catalogue with their descriptive scale values is shown in Table
VI. The questions are grouped in four major topics, these
corresponding to the course requirements in particular, to
teaching in general, to how students learned, and to Agile.

Students could also provide an overall evaluation of the
course, including what they liked the most, what they did not
like at all, as well as further suggestions and comments.

VII. RESULTS AND DISCUSSION

Figure 1 shows a polar line chart with an area layer divided
in four sectors that depend on the four general questionnaire
topics mentioned so far. The question P is not included since
it refers to different scenarios (two or three releases).

The plotted data are computed using the following formula,

380 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

TABLE VI. QUESTIONS CATALOGUE WITH DESCRIPTIVE SCALE VALUES.

Descriptive scale values and index
Id. Question 4 3 2 1a

A What do you think about the required time for the course too high normal too low abstention
B How were the requirements concerning the course assignments/tasks? too high realistic too low abstention
C How did you find the problem that was selected to be solved (i.e. TSP)? motivating neutral dissuasive abstention
D How did you find the algorithm that was selected to solve the user problem? motivating neutral dissuasive abstention

E How was the introduction on the course goals and topics? very good normal very bad abstention
F How did the teacher/on-site customer respond to the questions, how was her feedback? very good normal very bad abstention

G Do you feel as if you would have learned something during the course? very much normal very little abstention
H How did the course form your interest on the working field? motivating neutral dissuasive abstention

I Did you enjoy Agile practices, especially XP? very much normal very little abstention
J Do you think you have improved your programming skills when participating in the XP project? very much normal very little abstention
K And how about your social skills? Did you improve them? very much normal very little abstention
L Do you think that using XP improves the productivity of small teams? very much normal very little abstention
M Do you think that using XP improves the quality of the code? very much normal very little abstention
N Do you think that Pair Programming speeds up the developing process? very much normal very little abstention
O How did you find the planning game at the beginning of each iteration? very helpful normal irritating abstention

P How was the division in two (Fall 2011, Fall SS2012) / three (Fall 2009, Fall 2010) releases? excessive adequate insufficient abstention
a The scale index with value 1 is reserved for abstentions, for each question, so that students can leave questions unanswered.

Fig. 1. Questionnaire results averaged for the four editions of the course.

which represents a weighted average for each question i:

y =

4∑
j=1

(5− j) · vij

N

=
4 · vi1 + 3 · vi2 + 2 · vi3 + vi4

103

N being the total number of students responses over the four
years (N = 103) and vij being the sum of all responses
multiplied by a scaling of the descriptive scale value j, for each
question. For example, question A refers to the required time
for the course and it has the descriptive scale values too high,
normal, too low, and abstention (see Table VI). The number
of total responses were 13, 70, 18, and 2 for each descriptive
value, respectively. Thus, y = 2.9126 in the polar line chart
for question A, which means that a substantial number of all
students considered the required time as normal.

The rest of the plotted data can be read in a similar way:
most students found the requirements concerning the course
assignments (question B) to be realistic, the TSP and solving
it with the selected metaheuristic (questions C and D) were
motivating, and so on. All in all, the students’ feedback was
very positive in general, particularly regarding Agile.

Fig. 2. Questionnaire results comparing Fall 2011 and Fall 2012 in detail.

Figure 2 shows a polar line chart with a polar area layer and
a polar line layer comparing in detail some data for the Fall
2011 and for the Fall 2012, respectively. Only the questionnaire
topics “how students learned” and “Agile techniques” are
considered. In the figure, Learning refers to the question with
identifier G, Interest in the field to H, Enjoy Agile to I,
Programming skills to J, Social skills to K, Productivity small
teams to L, Code quality to M, Development to N, Planning
game to O, and Two releases to P, respectively, as specified
in Table VI. The corresponding values are listed in Table
VII, which includes the relative percentage of responses for
each descriptive scale value, for each question, not including
the abstentions for being irrelevant. Such details give more
information than the weighted average when comparing both
courses.

The main differences between the settings for Falls 2011
and 2012 concern the presence of female students (none in
2011) and the team coaching (more intensive in 2012), as it is
presented in Table V. The questionnaire results, however, differ
strongly in several aspects: almost all results for questions G to
P show remarkable changes from Fall 2011 to Fall 2012. In the

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 381

TABLE VII. FALL 2011 AND 2012 COMPARED FOR GENERAL
LEARNING AND AGILE DATA.

Question Fall 2011 Fall 2012
Id. rel. % glb. % rel. % glb. %

G 45,8 50 4,2 3,4 62,5 16,7 0 3,8
H 33,3 62,5 4,2 3,3 50 29,2 0 3,7
I 54,2 29,2 12,5 3,3 29,2 45,8 4,2 3,3
J 29,2 50 16,7 3,0 50 25 4,2 3,6
K 25 58,3 16,7 3,1 29,2 33,3 16,7 3,2
L 58,3 33,3 8,3 3,5 54,2 25 0 3,7
M 45,8 33,3 20,8 3,2 58,3 20,8 0 3,7
N 33,3 33,3 33,3 3,0 29,2 45,8 4,2 3,3
O 33,3 58,3 8,3 3,2 16,7 54,2 4,2 3,0
P 16,7 37,5 41,7 2,7 12,5 62,5 4,2 3,1

latter, for example, most students feel they learned very much
during the course (62.5%). One year before, more than half
(54.2%) of the students considered learning between normal
and very little. Similarly, for students in Fall 2012 the course
is much more motivating than for their peers in 2011, they
think their programming skills and the quality of the code are
improved very much with XP, and two thirds find adequate
the division in two releases (insufficient for 41.7% of the
students in 2011). However, students from Fall 2011 enjoy
Agile more (54.2%) despite more respondents selecting very
little to describe the following Agile characteristics: speeding
up the developing process with pair programming (33.3%),
improvement of code’s quality (20.8%), improvement of so-
cial skills (16.7%), as well as improvement of small teams’
productivity (8.3%). These values were much more smaller or
absent for responses from Fall 2012 and with descriptive scale
very little.

Figure 3 shows the ten most positive impressions from the
students, i.e., what they liked the most, from more to less
frequent and after considering all four courses. Much of them
refer to both Agile and XP. Pair programming was the most
mentioned with a total of 12 occurrences. Both its benefits
and practice were well accepted by the students. Working in
a team and applying XP to implement a motivating algorithm
was also very important for the students, as well as the chance
to improve their programming skills in such a course project.

The students also had the possibility to mention what they
did not like at all, as well as the opportunity to suggest changes
to be considered in new editions of the course. Some typical
responses were the following ones: it is too much work that
has to be done for too few credits (there should be assigned
more credits points for such a lab), the time pressure is too
high (more time should be allocated for both programming and
teamwork in the class), it is difficult to work in a room with
too many teams at the same time (fewer teams should work
in the same room).

The overall evaluation of the course in the four editions was
as follows: About 80% of all students evaluated the course
as very positive (18,45%) and positive (61,16%). A neutral
evaluation was given by 18,45% of the students, mainly from
the Fall 2011. Two students from the same year evaluated
the course as negative, for a 1,94%. No student evaluated the
course as very negative.

A subjective explanation of the negative results could be

Fig. 3. Most mentioned positive comments.

related to gender aspects, although no factual evidence is
available. For years, usual comments between faculty staff,
not only from Computer Science but also from the other three
technical carriers at the BSEL, connect students’ attention,
participation and discipline in class to the presence or lack of
female students. They argue that courses with female students
have a better balanced classroom dynamic. The group attend-
ing Fall 2011 had no female students. A direct intervention
was necessary several times to control both teamwork in the
classroom and the discipline of few students. For that group,
these aspects were the worst of all four editions of the course.
It should be mentioned, in addition to this, that the teaching
professor is female which is also infrequent in CS, at least
in Germany. Furthermore, all female students from the other
three years got the better grades, and this was also the case in
other courses taught by the same female faculty. It is also
worth pointing out that all females chose to do their two
student research projects with this female teacher and their
final grades were the highest possible scores. This supports
Shaikh’s conclusion in [20]: “the presence of female faculty
in CS is also an important source of mentoring”.

Another possible reason is the observed students’ behavior
during the course assignments and exercises. Most students
were somehow resistant to participate in didactic exercises
involving traditional methods other than the ones they use
to work with while frontal teaching. Open feedback asked at
the end of some blocks confirmed the argument that, when
exercises were not directly related to programming activities
for their projects, students were wasting their time. They
could not see the potential advantages class games or student
debates or think-pair-share might have on long-term learning.
In Fall 2012, already knowing the difficult situations that
arose in Fall 2011, students were instructed in advance about
the goals and benefits of such kind of supporting exercises.
Appropriate advise was also given by an expert coach. The
working environment and the relations student–faculty were
more relaxing and productive in 2012, in general.

The final grade in the module considers 30 points (from
100) for the Lab using Agile. The averaged final grades from
all four editions of the course were:4 Fall 2009, 27.82 (6);
Fall 2010, 26.79 (7); Fall 2011, 28.92 (5); and Fall 2012,

4The number of teams is given in parenthesis. Each team is composed of
4 to 5 students, as a rule.

382 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

29.43 (7) points from 30. All in all, the grades were more
than satisfactory: all students earned the required credits and
the final grades were good despite the students’ lack of
participation and the difficult situations from the Fall of 2011.
Most of the lost points were on scientific writing and not on the
programs. The developed software programs were successful
working products that satisfied the defined requirements and
they were finished on time. Furthermore, the most XP values
and practices were well understood by the students and were
consequent applied during the project realization.

VIII. CONCLUSIONS

In this paper, the most significant differences between
Agile weekly and block courses at the BSEL were presented.
The combined use of all XP practices is very effective when
developing Agile based-projects in these courses. Pair pro-
gramming and whole team proved the most enjoyed by the
students. However, students’ engagement is higher in block
courses because they have more time to concentrate and to
participate in active learning tasks that need more time to
complete. Students exploit the XP practices better when they
work without interruption and when the teaching process is
adapted accordingly. They are more able to improve their skills
in planning and discussing, in analyzing and creating software,
in evaluating and presenting results, as well as in working in
teams in block courses than in weekly ones.

Since Agile’s success in the software industry, it has been
a constant in the CS curriculum at educational environments.
Yet it is of utter importance not only how students learn
Agile, but also how to teach it effectively. Teaching screenplays
could help faculty in alleviating the conception and use of
teaching materials. These roadmaps could describe the fine-
grained learning goals of Agile teaching in detail. They proved
to be very useful when used in Agile block courses.

Future work will be related to the introduction of other
practices and techniques, for example from Scrum. The use of
more tools to support the Agile development in the classroom
is planned too. They should value individuals and interactions,
working software, customer collaboration, and response to
change, as Agile software development encourages.

REFERENCES

[1] O. Hazzan and Y. Dubinsky, “Why software engineering
programs should teach agile software development,” SIG-
SOFT Softw. Eng. Notes, vol. 32, no. 2, pp. 1–3, March
2007.

[2] G. Perera, “Impact of using agile practice for student
software projects in computer science education,” Inter-
national Journal of Education and Development using
ICT, vol. 5, no. 3, pp. 85–100, 2009.

[3] A. Schroeder, A. Klarl, P. Mayer, and C. Kroiß, “Teaching
Agile Software Development through Lab Courses,” in
Proceedings of the IEEE Global Engineering Education
Conference, EDUCON’2012, Marrakesh, Morocco, April
2012, pp. 1–10.

[4] V. Razmov and R. J. Anderson, “Experiences with Agile
Teaching in Project-Based Courses,” in Proceedings of
the American Society for Engineering Education, ASEE
Annual Conference & Exposition, Chicago, Illinois, USA,
2006.

[5] D. Lembo and M. Vacca, “Project Based Learning +
Agile Instructional Design = EXtreme Programming
based Instructional Design Methodology for Collabo-
rative Teaching,” Dipartimento di Informatica e Sis-
temistica Antonio Ruberti, Sapienza Università di Roma,
Italy, Tech. Rep. 8, 2012.

[6] , “7th Annual State of Agile Development Survey,”
VersionOne, Inc., Atlanta, GA, USA, Tech. Rep., 2013.

[7] J. Thomas, “A Review of Project Based Learning,” Pre-
pared for The Autodesk Foundation, San Rafael, CA,
USA, Tech. Rep., 2000.

[8] A. Laitinen, “The Curious Birth and Harmful Legacy
of the Credit Hour,” The Chronicle of Higher
Education, January 21 2013, available online at
http://www.scoop.it/t/higher-education-and-more/curate.

[9] L. Jaccheri and S. Morasca, “On the Importance of Dia-
logue with Industry about Software Engineering Educa-
tion,” in Proceedings of the 3rd Intl. Summit on Software
Engineering Education, SSEE’2006. New York, NY,
USA: ACM, 2006, pp. 5–8.

[10] R. Conn, “Developing Software Engineers at the C-130J
Software Factory,” IEEE Software, vol. 19, no. 5, pp. 25–
29, September/October 2002.

[11] A. Goldman et al., “Being Extreme in the Classroom:
Experiences Teaching XP,” Journal of the Brazilian Com-
puter Society, vol. 10, no. 2, pp. 4–20, 2004.

[12] K. Keefe and M. Dick, “Using Extreme Programming in
a capstone project,” in Proceedings of the 6th Confer-
ence on Australasian Computing Education, ACE’2004.
Australian Computer Society, Inc., 2004, pp. 151–160.

[13] M. Müller and W. Tichy, “Case Study: Extreme Program-
ming in a University Environment,” in Proceedings of the
23rd International Conference on Software Engineering,
ICSE’2001. IEEE Computer Society, 2001, pp. 537–544.

[14] A. Shukla and L. Williams, “Adapting extreme program-
ming for a core software engineering course,” in Pro-
ceedings of the 15th Conference on Software Engineering
Education and Training, CSEE&T’2002. Covington,
Kentucky, USA: IEEE Computer Society, 2002, pp. 184–
191.

[15] K. Stapel, D. Lübke, and E. Knauss, “Best practices in
extreme programming course design,” in Proceedings of
the 30th International Conference on Software Engineer-
ing, ICSE’2008. New York, NY, USA: ACM, 2008, pp.
769–776.

[16] E. Mentz, J. van der Walt, and L. Goosen, “The effect
of incorporating cooperative learning principles in pair
programming for student teachers,” Computer Science
Education, vol. 18, no. 4, pp. 247–260, December 2008.

[17] S. Xu and V. Rajlich, “Pair Programming in Graduate
Software Engineering Course Projects,” in Proceedings of
the 35th ASEE/IEEE Frontiers in Education Conference,
ICSE’2008. IEEE, October 2005, pp. 7–12.

[18] K. Beck et al., “The Agile Manifesto,” The Agile Al-
liance, Tech. Rep., 2001.

[19] G. Reinelt, “TSPLIB - A Traveling Salesman Problem
Library,” RSA Journal on Computing, vol. 3, pp. 376–
384, 1991.

[20] S. A. Shaikh, “Participation of Female Students in Com-
puter Science Education,” Learning and Teaching in
Higher Education (LATHE): Scholarship of Inclusive
Curricula, vol. 3, pp. 93–96, 2008.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 383

Study of Agility in Mobile Application Development
Vanessa N. Cooper and Hisham M. Haddad

Department of Computer Science
Kennesaw State University

Building 11, MD# 1101
Kennesaw, GA 30144

Abstract - Not only has Agility infiltrated enterprise
and consumer mobile application development, but it
has also become an integral part of most IT
departments and the standard for younger generation
developers. Despite the numerous benefits of Agile
development, software developers often find out that
there are also several pitfalls to avoid during mobile
application development. In this study, we explore the
potential pitfalls of incorporating agility into the
development of mobile applications. The motivation
behind this work stems from professional and personal
experience of the primary author. As a junior software
developer in the mobile application age, the primary
author has experienced first-hand the demands of a
“we want it now” market.

Keywords: agile development effects, mobile computing.

I. INTRODUCTION
The year is 2013. Mobile development is the hottest

software skill for the youth. Social media is how everyone
communicates; people now have the option to digitally
share photos and daily schedules with their friends and
family. Almost all software requires substantial consumer
interactivity. The entire world now revolves around how
quickly consumers have access to what they want. We are
living in the “We Want It Now” era.

Smart, mobile devices are the fastest growing

computing platform with an estimated 1.6 billion device
users by the end of 2013 (compared to only 2 billion PC
users) [7]. Even though the mobile industry is a massive,
mobile computing is still relatively new. Since there are
not many open-source mobile examples to follow many
developers must quickly adapt to the environment and the
ever-changing list of mobile devices and their respective
operating systems. Developers have scrambled to find a
suitable development methodology to accommodate for
the fast-growing craze, and the Agile methodology has
quickly become an industry-standard.

So why has Agility been adapted, and what exactly is

agile development? Agile software development is a
group of methods, which surround the idea of flexible,
iterative, and incremental development with the intent to
develop high quality applications. Agile development
places great emphasis on scope creep and change control

where changing requirements is the most faced challenge
in the software industry. Furthermore, frequent and
rigorous testing ensures that a high-quality product will be
delivered to the consumer coupled with heavy customer
involvement and short-term feedback. Ideally, Agile
software development methods are good practice,
allowing the construction of a highly collaborative product,
and accommodate fast development with short-term
feedback. That’s the primary reason that many developers
are now embracing agile development, especially for
mobile application development.

Other reasons why most customers obsess over the

constant tweaks of their mobile apps lie within the profit
margin and popularity of this new craze. Figure-1 [17]
shows the total number of applications and downloads
over a 2-year period between June 2008 and June 2010.
The growth appears to be almost exponential. Figure 2
[16] outlines some estimated figures of mobile application
sales and revenue. With these statistics, it’s easy to
understand why businesses are rushing to brand
themselves in the mobile application industry.

Figure-1: Growth of Mobile Applications.

The case against incorporating agile development into
mobile computing does not lie within the pros and good
practices but within the cons and loopholes that many
consumers manipulate. When we combine the interactive
nature of mobile applications, our situation becomes very
slippery. Because of heavy customer involvement
throughout the development process, there are often
frequent changes to business needs, especially when
increment results showcase unintended results. Those

384 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

disappointments are quickly uncovered when customers
review a demo of their increments. The idea of short
cycles to complete use cases leads some to rush through
development. This in turn leads to low quality software,
which will require multiple sprints to complete. In
addition, business investors sometimes mistake the
iterative and incremental process of Agility as an
opportunity to alter and negotiate new business needs. In
this study, we will explore the potential pitfalls of
incorporating agility into the development of mobile
application.

Figure-2: Sale and Revenue from Mobile Applications.

II. AGILITY IN MOBILE COMPUTING
The problem with Agile development is the lack of

quality results and experience in mobile application
development despite being driven by a software
development methodology. There are two main talking
points related to the effects of agility in mobile computing:
social issues and the development environment factors.

A. SOCIAL ISSUES
Social issues, integral part of all teams, often dictate

the flow of a development environment through
instruction, production, and efficiency. The immersion of
technology into our daily lives has broken many culture
and communication barriers among civilization, and many
companies are globalizing for maximum profits. Figure-3
shows how these factors easily blend together on a social
front. Here, we address the impact of social issues on
mobile development.

A.1 Globalization

The integration of outsourcing into Agile is another
hazard that seems to affect mostly all corporate IT
departments. The primary author has interned at a few
corporate companies, and each company had development
teams in India. Those teams were also responsible for
daily stand-ups and sprint tracking. There is a great effort
on management to coordinate development teams across

multiple time zones and continents. What makes project
management easier across continents is the designation of
project leaders for Quality Assurance (QA) and
development per site. Having a project manager per site
also decreases the lack of information from superiors but
it also likely increases the costs dramatically. However, it
is important to point out that it is still possible for a lack
of information whenever you have project managers and
development leads at other sites.

Figure-3: Social Issues.

The ability of an organization to adapt to unexpected
changes is critical to achieving and maintaining a
competitive advantage [15]. Outsourcing does not
particularly benefit from the Agile process because of
difficulties in relationship building and coordination
through communication. Poor work dynamics in the
workplace often lead to lower levels of trust and a lack of
team effort [10]. Lower levels of trust often mean that US
developers are constantly double-checking source code
from other sites, and offshore sites are constantly
questioning or clarifying why something is being done a
certain way. Furthermore, offsite testers may attempt to
test a product that caters to their own culture even when
they are a very small percentage of the mobile
application’s users. The primary author has experienced
this constant push and pull in the workplace, and it seems
to be unanimous in all of the companies.

In the US, onsite location is normally seen as the main

branch and the offsite location is normally known as the
supplementary branch. What happens in most cases is that
US developers are responsible for the bulk of software
development, whereas the offsite employees perform the
testing on development. This opens a multitude of issues.
For one, the process of playing catch-up and getting
familiar with different parts of the system can be quite
time consuming and labour intensive for both onsite and
offsite locations. The “training period” ends up attributing
to even more meetings, which further takes away from
development time. In addition, onsite and offsite
employees typically use a mobile device differently.
When we also consider the distance to servers and
download speeds, it is easy to see how testing the mobile

Globalization	

Communication	

Culture	

application can become very tedious and lacklustre in
performance.

There have also been constant complaints of more

thorough code reviews for source code developed by the
teams in offsite locations. If this were a common
occurrence, one would ask why companies continue to
endure this painstaking task. Despite the high demand of
software developers in the US, there is still a large
shortage of supply within the US. On the other hand, there
is an ample supply within countries like India and China.
Whereas in earlier years, outsourcing was practiced for
economical means, it is now practiced because of the
necessity of resources. It is very important to point out the
poor work dynamics because it is not true that onsite
teams are more talented than offsite teams. However, that
seems to be a general consensus considering that most of
the widely successful apps are developed within the US.
We believe that an improvement of work dynamics
improves the general perception and the effectiveness of
quality development, and that will ultimately contribute to
all sites in a very positive way.

A.2 Culture
Culture is also another underestimated factor in the

corporate world. In this study we focus on two subcultures:
organizational culture and personal culture.
Organizational culture is especially important because it
lays the foundation of unspoken rules and business laws
within an organization. Though some unspoken rules are
not strictly enforced, it does play into the work dynamics
of a group. For example, Company A may expect all
software developer employees to eat lunch together on
Fridays; however, this could be problematic to a software
developer whom works remotely on Fridays. This affects
team and relationship building within a mobile
development team. Fitting into the work culture is
increasing becoming just as important as the mobile
software developer’s skills.

Most job postings have began to list details about

regular company events and desired personality traits of
potential employees. These factors often dilute the options
of available software developers seeking employment.
Some developers also feel the pressure to fit into a
particular work culture, which could ultimately negatively
affect their overall work performance. By definition, Agile
is a culture and approach to software development. With
increasing flexibility for the customer, more restrictions
and difficulties are often placed on the mobile application
developers. The combination of the Agile methodology
and the company dynamics often overcomplicates the
simplicity of a software developer’s primary function in
an organization.

In discussing personal culture, one must also consider

language, subcultures, and religious backgrounds. Some

sites celebrated holidays that the other teams at different
sites did not and this could affect the sprint in either
planning or development. Though these days can be
substituted, it is a clear indication of different values and
customs. Cultural members always socially construct the
meanings and purposes of their activities. Enculturation
thus refers to gaining an implicit sense of those meanings
and purposes [11]. Therefore it is very important to have a
unified approach to development and the understanding of
how business operations should take place within a certain
environment. When you compare developers from
different countries such as China, India, and the US, you
must also take into account their educational systems,
uniquely similar personality traits, and development
experience and preferences. “One size does not fit all”
when you consider the types of culture, and organizational
or enterprise agility in this framework represents the
developmental culture [11]. Therefore, if the development
culture is not stable, the development process will surely
operate along the same lines.

A.3 Communication
In efforts to create a more unified information source,

companies have started to create company Wikis and
SharePoint sites set aside solely for its IT departments.
This helped to ensure consistency and structure
throughout communication as well as the mobile
application development process. Software changes, story
specifications, and other guidelines could be added for
quick reference. In Agile, development is done in
increments and those short increments are quickly out-
dated. This is very useful because the information can be
easily changed, and information becomes irrelevant rather
quickly. In addition to that, operating systems, standards,
and features change daily in the mobile world.
Incidentally, software developers are often spending a lot
of their time updating Wiki’s, Sharepoint sites, and other
information mediums in order to keep some sense of
consistency for the development team.. When you
compound this with the Agile structure of daily stand-up
meetings, sprint planning, and other meetings, the
development is left with significantly less time for
actually completing development. So, what does that
mean for those whom create the services and products for
consumers in a “We Want It Now” era? This means that
there should be very little time between asking and
receiving. This also means that consumer complaints and
feedback should be quickly addressed and fixed without
much delay or contemplation. Agile greatly impedes this.

B. DEVELOPMENT FACTORS

Most of us understand how a finished product or
current service must be maintained by the producer in
order to keep the consumer happy. However, let us also
apply this same logic to a stakeholder and a software
developer during the beginning stages of planning new
software. Now, let’s picture that the stakeholder is the

386 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

consumer, and the software developer is the producer. Is it
smart to handle this consumer the same as we would with
a finished product? Is our decision dependent on the idea
of how a service should be planned and developed, or is it
based on the idea of ensuring that we also satisfy the
consumer within the best of our means? Figure-4 displays
the factors that must be considered when understanding
how to create business agreements if Agility is a
requirement.

Figure-4: Development Environment.

B.1 Project Management
In the primary author’s internships, she has discovered

that each company also used VersionOne, which is a type
of project management software catering to Agile
software development. We believe that VersionOne is an
excellent software utility; however, it should be noted that
it is also new software that employees must learn to use
properly for accurate use. It is unclear if there is a general
consensus as to how that learning curve is built into the
software developer’s schedule. She also notes that
software training is normally completed during the
software developer’s own desk time.

The reason we point this out is that each company

normally uses a daily, 6-hour capacity rule under the
Agile methodology. All of this information is tracked in
VersionOne and reviewed by product management during
sprint closing and retrospectives. These 6 hours are for
development, testing, and documentation tasks; it does not
include meetings or product training. This also means that
a two-week (or 10 day work week) sprint would actually
involve 1 day set aside for previous sprint closing and the
current sprint planning, and the remaining 9 days would
be available for actual development at 6-hours per day. A
developer would then enter 54 hours for availability in
their capacity for the sprint. If we consider the fact that
developers are actually in office for 80 hours during that
2-week period, is it economically feasible for the company
to afford the 26-hour net loss per mobile developer per
week in the name of Agile?

B.2 Enterprise vs. Consumer
Most mobile applications tend to be enterprise or

consumer applications. There is a huge difference between

these types of applications. Consumer applications are
geared toward the general public and do not have huge list
of documentation; this is because developers determine
which features are very valuable in the consumer market
and implement those features due to the response from
software releases. Great examples of mobile consumer
applications would be Facebook, Twitter, and LinkedIn.
All of these sites started as web interfaces and were
migrated to mobile because it has become a key device for
consumers. Most of these companies quickly took the
corporate approach to incorporating mobile apps by
attempting to brand themselves and build more personal
relationships with their customers through its presence on
mobile [15]. Consumer applications use a lot of
prototyping procedures to ensure that the look and feel of
the application flows well for the average consumer.
Under Agile, the design team will complete the
prototyping process before major development is began
and that leaves developers with the simple task of coding
all functionality for the those exposed features in the
interface. In this case, agile is a great choice because of
the less general development process.

On the other hand, mobile enterprise applications

target businesses and corporations and require very
specific user requirements. Most of these applications are
related to information security, monitoring, and constant
contact. Customer feedback is initiated throughout the
development process rather than post-release. These types
of applications are great under the Waterfall model
because of its thorough documentation and unchanging
requirements. Under Agile, there is a much longer
development process because of constant changes made
from customer feedback and many meetings despite the
specifics of the documentation. For an enterprise-scale
application, this could extend the development process to
several years before a final product is completed. In
addition, Agile can have devastating affects on the team
morale and focus. Some software developers often find
more excitement in working on various projects in shorter
time intervals. The Agile approach leads architects to plan
for the quickest solution rather than a long-term, more
sustainable approach. Though code may be developed
quicker, it is also more prone to security issues and
inconsistent results and will hence require more changes
over the life of the product as well as development.

B.3 Native vs. Web
When you consider all of these factors, companies

must consider how much they are willing to invest in
third-party software as well as the learning curve for new
mobile application developers in a native platform
environment. Even though most companies expect for
developers to “hit the ground running”, they must be very
realistic about skill level, the number of available software
developers, and the overall budget of a mobile application.
In addition, with third party software, features are less

Development	

Project	
Management	

Enterprise	 vs.	
Consumer	

Native	 vs.	
Web	

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 387

likely to change per release of the native OS, and this can
often quickly outdate a mobile application. Table-1
outlines the development and social issues which occur
during the use of Agility in mobile computing.

Social Issues

• Personal culture impact on
development

• Poor work dynamics in the workplace
• Consistent and unified information

Development
Factors

• Very restrictive project management
• Lack of fixed user requirements
• Lack of available software developers
• Choosing the wrong development

platform

Table-1: Social Issues and Development Factors.

Another important concept is to understand the
importance of the chosen platform when considering
Agile. During the rush to create mobile applications, most
companies also have begun to realize the huge shortage of
mobile application developers well versed in object-
oriented programming languages such as C++, Java, and
Objective-C. For native mobile applications, iOS uses
Objective-C, Android uses Java, and Windows Phone uses
C++. Native platform development allows for better
performance, seamless user interfaces, and it is great for
branding. However, with more options and being free of a
standard cross-platform API, it means that developers are
option expected to do more but in the same amount of
time. For very experienced mobile application developers,
this may not be a huge problem. The key thing to
remember is that there is a very large shortage of
experienced developers, and there is also much more
demand than available supply for mobile application
developers overall.

However, there are certainly several web developers

available to increase their skill sets in order to remain
valuable in this sifting market. Since the third party
software normally requires JavaScript or HTML, it
doesn’t does require much of a learning curve for web
developers delving into the software development world.
This has sparked a large market for web-based, cross-
platform software kits. The names PhoneGap and
Titanium Studio are very familiar to companies whom
want a quick and dirty mobile application to get their
mobile branding kicking. Though there is a higher cost of
the software and tools for development through third party
software, it also offers a quicker turnover rate for
development for most companies. Mobile applications,
developed under a web-based platform, work great with
the Agile development process, mainly because of the
limited amount of choices. With cross-platform software,
you don’t have as many options and the mobile
applications tend to be very simple. From a developer
standpoint, it could be viewed as a relief because it
reduces the likelihood of “changing requirements” under
Agile development.

III. MATHEMATICAL MODEL
The main factors to consider in the mathematical

model are the social and development issues. Both of
these impact the timeline and budget of a mobile
application development project. My formula uses money
and time to determine if Agile is worthwhile pursuit for
project management and developers. If the total result is
negative, then Agile should be avoided; however, if the
final result is positive, then Agile should not have any
detrimental effects on the project and the development
phase.

In Figure-5 below, t denotes a sprint in a particular

project. N denotes the total number of projected sprints
required for successful completion. X denotes the number
of available software developers while c represents the
current developers time, which is being accessed. P
represents the total time that the developer can contribute
to the project within the current sprint. represents the
total budget for the software development project.

Figure-5: Determining Agility feasibility.

Though this formula seems simple and straightforward,
it is often ignored for the sake of creating a highly
customizable, customer friendly type application. Even
though that it is the ultimate goal of delivery satisfaction,
it ignores the necessity for standards and documentation to
guide project managers and software developers.

IV. DISCUSSION
Since we cannot operate without some type of

structure, we must also consider if there is a more suitable
methodology for software development. Surprising,
Agility is not a new approach to software development;
it’s just that newer programming generations are being
rapidly exposed to the methodology. Another thing to
consider is the difference in the business world. Simply
put, most companies have ‘learned their lessons’ from the
old way of doing things and are desperately seeking for a
better way of doing things. “Early software projects were
late, over budget, and had low quality”. [8]. So naturally,
companies have diverted their focus to on-time, under
budget, and higher quality software. In order for them to
determine if a product meets all of the above, then heavy
involvement is necessary throughout the entire planning
and development of their software.

A. Waterfall vs Agile
There are two other priorities that can wreak havoc for

a mobile development team: the second principle on
welcome changing and the agile manifesto statement on
“Responding to change over following a plan”. Business

388 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

investors sometimes mistake the iterative and incremental
process of Agile development as an opportunity to alter
and negotiate new business needs. This is a problem if the
new business need is drastically different from the original
plan. Before Agile development, there was primarily the
Waterfall Model. In the Waterfall model, there were
“well-defined phases” [3]. Since the Waterfall Model was
a sequential, the “requirements were expected to be clear
before going to the next phase of design” [2]. Under the
Waterfall method, most consumers felt trapped and were
forced to commit to the documentation before
development. Under Agile, the consumer now has the
option to change requirements and documentation, even if
it occurred in the last stages. In the Waterfall model, the
“rigid structure” ensured that the “quality of the project
was maintained” [2]. Though Agile claims, “working
software is the primary measure of progress”, it does not
address the need for high-quality software.

B. Globalization
Unfortunately, more problems arise when more people

are involved. Multiple working styles, work schedules,
and opinions weigh into this fact; the complexity of
satisfying every single person becomes a constant struggle.
In mobile application development, one person may swipe
the screen for a specific function, whereas another
individual may quickly tap. Incorporating more
functionalities and options dependent upon user touch
quickly adds to the mountain of problems already
persistent in any software development project.

C. Continuously Changing Requirements
Another significant argument is that the lack of

commitment during planning will ultimately disrupt the
development process through numerous changes.
Overhead and continuous changes will always be
prominent problems when using Agile methodology in
mobile computing. This is definitely a problem when
stakeholders favour flexible and ever-changing
requirements, whereas the developer requires a more
structured and detailed approach. When developers are
required to constantly tweak or re-design a use case
requirement, they may never proceed to the next
requirement. When stakeholders fail to see progress, the
developer may appear to be wasting time versus actually
spending unnecessary time on changed requirements that
should have finalized beforehand. Using Figure-5’s
formula, one can calculate the project failure caused by
the addition of sprints caused by continuous changes.

D. Lack of Documentation
Agility also requires short development cycles; this is

mandated through the priority of “working software over
comprehensive documentation”. Unfortunately, this also
causes most to rush through development by producing
modules of the system rather than focusing on the system
as a whole according to the missing comprehensive

documentation. Ultimately, this also increases the
likelihood of low quality software. If this is the case, then
why is there a need to rush in adopting the Agile
methodology into software development? The answer to
that question can be further explored by reviewing the
Twelve Principles of Agile Software shown in Table-2 [1].

1. Our highest priority is to satisfy the consumer through

early and continuous delivery of valuable software.
2. Welcome changing requirements, even late in

development. Agile processes harness change for the
consumer's competitive advantage.

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

4. Business people and
5. The most efficient and effective method of developers

must work together daily throughout the project.
6. Build projects around motivated individuals. Give them

the environment and support they need, and trust them to
get the job done.

7. conveying information to and within a development team
is face-to-face conversation.

8. Working software is the primary measure of progress.
9. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

10. Continuous attention to technical excellence and good
design enhances agility.

11. Simplicity--the art of maximizing the amount of work not
done--is essential.

12. The best architectures, requirements, and designs emerge
from self-organizing teams.

13. At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behaviour
accordingly.

Table-2: Agile Principles.

E. Prototyping vs. Development
Understanding the difference between prototyping

and development is also essential for determining if Agile
should be used for mobile application development. Since
prototyping is technically apart of the planning process,
then it should definitely be done beforehand to
appropriately distribute the workload for developers and
allow focus on actual requirements. Some customers have
taken it upon themselves to focus more on the “look and
feel” rather than the core functionality. Though both are
very important, one must understand the actual process of
prototyping so that it does not delay actual software
development. During most mobile application
development projects, a developer will attempt to
demonstrate a core function of the application through
incremental development. Most customers respond to
these changes as rapid throwaway prototyping results
because of the relatively short two to three week
increment cycles. Prototypes are “instruments” [9], and

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 389

they are not products or components of the software
product.

F. General Consensus
Without sounding negative, the authors think of Agile

software development as being the parent that desperately
seeks to win over their children by not teaching them
about delayed gratification. The explanation may be
somewhat exaggerated, but many software developers are
now being forced to accept these realities. The main
argument against Agile methods is the asserted lacks of
scientific validation for associated activities and practices,
as well as the difficulty of integrating plan-based practices
with Agile ones [6]. Table-3 outlines the discussed pitfalls
of using Agility in mobile application development.

Agile Pitfalls:
• Lack of fixed user requirements lead to constant

changes and tweaks during development.
• Confusion between mobile app prototyping and

development.
• Globalization introduces many culture and

communication problems during development.
• Project management tends to micromanage

development time

Table-3: Issues with Agility in Mobile Computing.

V. CONCLUSION
Despite the numerous downloads and high profits

made in the mobile industry, we must also ask ourselves if
Agile-driven software is better software. We must also ask
if the standard of quality software has also changed with
the change in generation. Sturdy code functionality is
being replaced every day by user-friendly, pretty
functionality. The usability factor seems to be the only
extreme positive in favour of incorporating Agility into
mobile application software development. As we have
discussed in our findings, using Agility in mobile
computing is a very slippery slope. The fast-paced
development is definitely desired for the “we want it now”
era, but the pitfalls greatly outweigh the long-term effects
on the development process.

REFERENCES
[1] T. Way, S. Chandrasekhar, and A. Murthy. The Agile

Research Penultimatum. Software Engineering
Research and Practice, CSREA Press, (2009), page
530-536.

[2] S. Balaji and M. Murugaiyan, Waterfall Vs V-Model
Vs Agile: A Comparative Study. International Journal
of Information Technology and Business Management,
June 2012, Volume 2, Number 1, page 26-30

[3] B. Madhu, M. Jigalur, and V. Lokesha, A Study on
Agile Software Testing: Emergence and techniques.
African Journal of Mathematics and Computer Science
Research. Volume 3 Number 11, page 288 - 289

[4] P. Maher and J. Kourik, Agile Software Development
in Evolving Business Environments: Integrating
Modern Techniques into Computer Science Curricula.
ASBBS Annual Conference: Las Vegas. February
2011, Volume 18 Number 1, page 248-254

[5] G. Galal-Edeen and M. Seyam, Traditional versus
Agile: The Tragile Framework for Information
Systems Development.

[6] A. Spataur. Agile Development Methods for Mobile
Applications. (2010).

[7] J. Dehlinger and J. Dixon, Mobile Application
Software Engineering: Challenges and Research
Directions. (2011).

[8] R. Shriver and D. Birckhead, Delivery Business Value
with Lean and Agile. Dominion Digital.

[9] B. Boehm, T. Gray, and T. Seewaldt, T. Prototyping vs.
Specifying: A Multi-Project Experiment. IEEE
Transactions on Software Engineering Volume 10
Issue 3, May 1984, page 290-302

[10] S. Chinbat and A. Agahi, Lessons Learned in Virtual
Teams from Global Software Development. (2010).

[11] J. Iivari and N. Iivari, The relationship between
organizational culture and the deployment of agile
methods. In Special Section on Best Papers from
XP2010, Information and Software Technology.
Volume 53 Issue 5, page 509-520

[12] D. Batra. Modified Agile Practices for Outsourced
Software Projects. Communications of the ACM.
Sep2009, Volume 52 Issue 9, page 143-148.

[13] A. Ganguly, R. Nilchiani, and J. Farr, Evaluating
agility in corporate enterprises. International Journal of
Production Economics. Volume 118 Issue 2, page 410-
423.

[14] D. Fernandez and J. Fernandez, Agile Project
Management – Agilism versus Traditional Approaches.
Journal of Computer Information Systems.
Winter2008/2009, Volume 49 Issue 2, page 10-17.

[15] V. Jyothi and R. Nageswara Rao, Effective
Implementation of Agile Practices – Incoordination
with Lean Kanban. International Journal on Computer
Science & Engineering. Jan2012, Volume 4 Issue 1,
page 87-91.

[16] C. Foresman. Apple responsible for 99.4$ of mobile
app sales in 2009.
http://arstechnica.com/apple/2010/01/apple-
responsible-for-994-of-mobile-app-sales-in-2009/

[17] AB Mobile Apps. Developing a Mobile Application
for Small Business.
http://www.abmobileapps.com/developing-a-custom-
mobile-application-for-a-small-business/

390 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

	

A Model-Based Agile Process for DO-178C Certification
David J. Coe and Jeffrey H. Kulick

Department of Electrical and Computer Engineering
University of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract - Increasing complexity has driven aerospace
companies to consider the use of Agile processes for
development of safety-critical systems. For other domains,
Agile processes have been shown to improve cost, schedule,
and quality metrics. Airworthiness certification under the
Federal Aviation Administration (FAA) guidelines imposes
unique challenges that require adaptation of Agile
processes. The FAA’s mission is maintaining safety within
the National Air Space, and the certification process that
the FAA has adopted is a process-oriented standard RTCA
DO-178C. Here we present a Model-Based Agile Process
(MBA process) that will allow companies to benefit from
some of the efficiencies inherent in Agile methods while
maintaining compliance with airworthiness certification
requirements. Model-based requirements capture using the
Unified Modeling Language (UML) facilitates iterative and
incremental capture, refinement, and verification of
requirements using executable requirements models,
maintaining the Agility of the requirements elicitation
process.

Keywords: RTCA DO-178C, RTCA DO-331, Model-
Based Agile Process, MBA Process, safety critical systems
	
1 Motivation
Modern aircraft have become increasingly dependent
upon computers for control of critical functions
including engines, brakes, flight controls, navigation,
and communications. The F-35 Joint Strike Fighter
has approximately 9.5 million lines of code on board
and a total of 24 millions lines of code for this system
[1]. Late software releases for the F-35 have resulted
in delays in testing, training, and delivery, and they
have contributed to cost overruns. While delays and
overruns have been common in the development of
complex military systems, increased hardware and
software complexity is also appearing in civilian
aircraft systems.

The Boeing 787 Dreamliner is an example of a civilian
aircraft that is projected to have over 6 million lines of
code with major subsystems such as engines, flaps,
and landing gear all incorporating network

connections that will allow engineers to log half a
terabyte of data per flight [2-3]. The added
capabilities and complexity have resulted in significant
cost with software development and integration issues
resulting in delivery delays and reports of over
200,000 hours expended during the Federal Aviation
Administration (FAA) airworthiness certification
effort not counting the recent battery fire issues [4-5].

To cope with cost, schedule, and quality issues, the
aerospace industry has started to explore the use of
Agile methodologies for the development of safety-
critical aerospace software systems. Agile processes
offer a number of advantages in comparison to
traditional Waterfall-based methods including higher
quality, lower cost, higher productivity, and improved
schedule performance [6]. An open question has been
the compatibility of Agile methods with the FAA
airworthiness certification process. Below we discuss
the airworthiness certification process, principles of
Agile development and the potential conflicts with the
certification process, and our modified Agile process
that addresses the areas of concern.

2 Airworthiness Certification
The FAA currently utilizes the RTCA DO-178C
standard for certification of airborne software [7].
Rather than mandating a particular process, DO-178C
requires that any development process used for
airborne software satisfy a list of process-oriented
objectives, with the specific subset of required process
objectives dictated by the criticality of the software to
safe operation of the aircraft. Some examples of DO-
178C process objectives include end-to-end
traceability, change control and configuration
management, and requirements-based testing.

A safety analysis process is used to determine the
criticality of the software’s function in the context of
the overall system. It is important to note that safety is
an emergent property of the system as whole, and that

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 391

	

Table 1 – Design Assurance Levels and DO-178C Process Objectives [7,10]

Category Failure Condition Description Design
Assurance

Level (DAL)

Number of
Required

DO-178C Process
Objectives

Catastrophic Failure condition results in multiple fatalities
with probable loss of aircraft

A 71/30

Severe Failure condition would significantly reduce the
ability of the crew and/or aircraft capabilities
required to compensate for adverse operating
conditions

B 69/18

Major Failure condition would reduce the ability of the
crew and/or aircraft capabilities needed to
compensate for adverse operating conditions

C 62/5

Minor Failure condition has no significant impact on
safety margins or crew workload

D 26/2

No Safety Effect Failure condition has no impact on safety E 0/0

the safety of a component cannot be established
outside of the context of its use [8]. Thus, system-
level requirements are an input to the safety analysis
process. While no particular safety process is
mandated, SAE ARP4761 is an example of a
commonly used safety process that includes
Functional Hazard Analysis (FHA), Fault Tree
Analysis (FTA), Failure Modes and Effects Analysis
(FMEA), and Common Cause Analysis (CCA) [9].

Two key results emerge from the safety analysis
process. First, the safety analysis establishes the
Design Assurance Level (DAL), which dictates the
specific DO-178C process objectives that must be
satisfied by the software development process and the
level of rigor that must be demonstrated for each
objective. The safety analysis also identifies safety
requirements that the software product itself must
demonstrably satisfy as part of the verification
process. As summarized in Table 1, the number of
required process objectives that must be demonstrated
dramatically increases from DAL E up to DAL A as
does the number of the objectives requiring
independence. In Table 1, xx/yy indicates that xx

objectives must be satisfied with yy of them satisfied
with independence.

Designated Engineering Representatives (DERs) are
the FAA’s embedded representatives within the
development teams. DERs are in a unique position in
that they represent the FAA while being paid by the
company developing the product. The role of the DER
is to use their engineering background and aviation
safety certification experience to provide feedback to
the team regarding the team’s compliance with DO-
178C. The DER also interacts directly with the FAA
to facilitate the certification process.

3 Agile Development Principles and
Airworthiness Certification
As shown in Table 2, the term Agile development
encompasses a family of processes that embrace a
common set of core principles enumerated by the
Agile Manifesto [11]. Examples of commonly used
Agile processes include Scrum and Extreme
Programming. Below we briefly examine potential
sources of conflict between the principles of Agile
development and DO-178C certification requirement

392 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

	

Table 2 – Guiding principles of Agile development versus DO-178C principles [11].

Agile principle DO-178C principle
Individuals and Interactions Processes and Tools

Working Software Comprehensive Documentation
Evolving Requirements via

Customer Collaboration
Rigorous Requirements

Specification
Responding to Change Following a Plan

3.1 Individuals and Interactions versus
Processes and Tools
Agile processes emphasize face-to-face
communication as the best way to convey information.
No rigorous process is outlined for the method of
communication nor are there any requirements to
capture the result of the communication. Components
may be added or deleted at any time without an impact
analysis as to what the addition or deletion will have to
already existing software.

DO-178C, however, requires clear commitments to
processes and tools. The very first step in a DO-178C
project is the PSAC – Plan for Software Aspects of
Certification. This detailed plan outlines the roles of
other plans and processes in the certification process.
For each tool used the level of quality of the tool must
be examined, particularly if the output will not be
subsequently inspected such as by peer review [12].
For example, a tool that verifies the output is correct
and agrees with regression runs, must itself be
developed to the same level of rigor as the system
itself. In other words, a DAL A product requires a
DAL A tool if the outputs of the tool are trusted
without verification.

3.2 Working Software versus Comprehensive
Documentation
Proponents of Agile processes believe that working
software is the best documentation of product
requirements and design, and that it is also the best
measure of progress. Alternatively, in Waterfall
development, artifacts such as Software Requirements
Specification and Software Design Documents must
be maintained throughout the development lifecycle
otherwise the information contained within such
artifacts may begin to diverge significantly from the
actual product, thereby reducing the end value of the

documentation artifacts to future maintenance and
enhancement efforts. For certification under DO-
178C, however, the development team must
demonstrate that the required subset of process
objectives has been satisfied.

Failure to maintain adequate documentation of
compliance with process objectives can lead to costly
delays, even when the software is working error free.
For example, the FAA requires documentation that
shows end-to-end traceability for DAL A through
DAL D software. End-to-end traceability means that a
requirement must be forwards/backwards traceable
through the design, the source code, the object code,
and the associated requirements-derived tests.
Delivery of the Airbus A400M military transport was
delayed due to a subcontractor’s inability to
demonstrate artifact traceability for the aircraft’s full
authority digital engine controller to the European
Aviation Safety Agency (EASA) [13]. While the
EASA aircraft certification process is different than
the FAA process, both agencies require traceability.

3.3 Evolving Requirements via Customer
Collaboration versus Rigorous Requirements
Specification
Agile methods emphasize customer collaboration as
the best means of eliciting product requirements.
Requirements documents do a poor job of capturing
product requirements in no small part because the
majority of customer requirements knowledge is
internal, never documented information that may
emerge in the form of new requirements when a
customer gets to see and interact with an
implementation of the product [14]. In addition,
requirements specifications for complex systems may
entail thousands of potentially conflicting
requirements that are elicited over extended periods of

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 393

	

time, in some cases years. In an ideal Agile
development scenario, the customer works closely
with the development team in an iterative fashion to
identify, prioritize, and refine product requirements
and to develop a set of acceptance tests that will be
used to verify successful implementation of those
requirements by the end of each increment. By
delivering working, tested software frequently, Agile
processes have a tremendous advantage with their
ability to elicit early feedback from the customer.

For applications subject to DO-178C certification, the
iterative nature of Agile requirements elicitation
impacts the safety analysis process. The safety
analysis process requires as an input a rigorous
requirements specification. Early and accurate
determination of the DAL is critical since it
determines the process objectives that must be
satisfied for airworthiness certification. For example,
Modified Condition/Decision Coverage (MC/DC)
testing using requirements-derived tests is required
only for DAL A software. Late determination that the
software must be developed to DAL A standards may
mean that insufficient schedule and budget remain to
satisfy the additional process objectives associated
with DAL A.

3.4 Responding to Change versus Following a
Plan
Planning activities are part of Agile processes with the
most detailed plans constructed just for the next
increment. This is necessary because of the iterative
nature of Agile requirements elicitation. It allows for
great adaptability since the periodic re-planning
activity gives the customer the opportunity to add,
delete, modify, or reprioritize requirements.

Extensive planning, however, is a key element
required for DO-178C certification. Project planning
begins with completion of the Plan for Software
Aspects of Certification (PSAC). The PSAC
document is a comprehensive plan that states in detail
how the development teams plans to approach
development of the product to achieve all required
process objectives. In addition to the PSAC, more
detailed supporting planning artifacts are required
including a Software Development Plan, a Software
Verification Plan, a Software Configuration
Management Plan, and a Software Quality Assurance
Plan.

4 Model-Based Engineering and DO-
178C Airworthiness Certification
The FAA recently adopted several new supplements to
DO-178C to address certification issues related to
model-based engineering, object-oriented
technologies, formal methods and tool qualification.
Model-based methodologies are of great concern to the
FAA because it is unclear what role any simulation
results derived from the models should play in the
determination of airworthiness. The believability of
the simulation results is in part a function of the
fidelity of the model to the actual system. Models,
however, can be constructed at different levels of
abstraction to capture high-level requirements or
various aspects of the architectural design, for
example.

The certification of products developed using model-
based methodologies is discussed extensively in
RTCA DO-331, the recently released model-based
development supplement to RTCA DO-178C [15].
DO-331 does provide some flexibility in how model-
based methodologies may be used. A specification
model may be used to explore the consistency and
correctness of the modeled requirements. A design
model may be used to verify various architectural
details. It is acceptable to include a specification
model with no design model, a design model with no
specification model, both a specification model and a
design model, or neither type of model (i.e. use no
model-based methods).

DO-331 does provides a substantial opportunity to
introduce Agile methods by distinctly separating the
requirements processes and artifacts from the design
process and artifacts by mandating that any
specification model be distinct from any design model
that is used for certification. As a result of this
separation, any model from which delivered code was
synthesized is considered a design model, not a
specification model. DO-331 also stipulates that all
top-level requirements must be in textual form.

5 The Model-Based Agile Process
(MBA)
We propose a new software development process that
combines key advantages of both agile development
processes and model-based engineering methodologies

394 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

	

to produce a Model-Based Agile (MBA) process
capable of satisfying FAA-mandated process
objectives for software of all Design Assurance
Levels. A key element of the MBA Process is the use
of an Agile-style iterative and incremental approach to
requirements elicitation, capture, and verification.
Provided that an appropriate modeling tool is used that
admits executable specification models (again, DO-
331 forbids synthesizing deliverable code from
specification models), one can start by developing use
cases and iteratively refine them into executable
models. These executable models will bring to bear
the advantages of agile requirements elicitation while
facilitating the complete capture of a set of
requirements for a system before the detailed design
and testing is begun.

As with a traditional agile process, the development
team works closely with the customer to identify
requirements and to develop acceptance tests that will
be used to verify the correctness of the requirements as
captured in the specification model. The acceptance
tests are executed on the specification model, and the
results used to verify correctness, completeness, and
consistency of the specifications. It should be
understood that the test cases used to exercise and test
the requirements model would most likely not be
directly applicable to any subsequent design model
without substantial refinement due to their lack of
detail. For example, messages might only contain
message types for exercising the specification model
while design model messages will require detailed
values in the message body for exercising any design
model.

For the MBA Process, we propose the use of a Unified
Modeling Language (UML) tool such as IBM’s
Rhapsody to capture these requirements as they
emerge from face-to-face interactions with the
customer. Requirements capture via UML has been
shown to be an effective means of communicating
requirements information among stakeholders.
Moreover, the Rhapsody tool allows the construction
of executable UML models using non-synthesizable
components of UML such as sequence diagrams.
Commercial UML tools such as Rhapsody also
provide interfaces to industry standard textual
requirements management tools such as IBM’s
DOORS. This allows the developers to maintain
traceability from the top-level textual requirements to
the specification model as mandated by the FAA.

In our MBA process, the initial iterations are focused
only on eliciting, capturing, and refining requirements
for input into the safety analysis process. Once the
customer and the team are satisfied that all
requirements have been identified and verified, the
safety analysis is performed to determine the DAL and
identify any safety requirements. The safety
requirements are integrated into the UML specification
model and verified during the next iteration. A test
coverage analysis on the model can be performed to
ensure adequate testing of the specification model to
the required DAL. Since only design models can be
used for code generation, future iterations will focus
primarily on implementation of the captured
requirements.

As with our previous modifications to the
requirements elicitation process to enable agile
development of safety critical systems, the design
process may be similarly modified to accommodate
construction of the optional design model, if desired.
The forced separation of specification models and
design models permits the use a different modeling
tool for the design model including one that is more
amenable to code synthesis and formal verification, if
desired. Once the textural requirements and
specification model are completed, then the
implementation of the requirements can proceed
piecemeal with testing and verification of each unit,
component, subsystem, and system in turn.

6 Impacts of the MBA Process on
Certification
The first part of the safety process, which occurs
primarily during the requirements phase, is the
functional hazard analysis. This process is applied to
the aircraft functions, not to the components design,
which has not taken place at this time. The proposed
agile requirements process can be extended to permit
incremental functional hazard analysis as subsystem
components are elicited. Since no design is taking
place at this time, the safety processes that follow
design processes, such as FEMA, will not be done
prematurely.

Concomitantly, if the design proceeds using agile
processes, it is possible, but not as clear, that
incremental FMEA and FTA analysis will be possible.
The problem is that analysis at this level is intended to
generate additional safety requirements, if necessary,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 395

	

and these probably should not be developed
piecemeal. However, development within a given
component or subsystem may be made small enough
so that incremental FMEA and FTA analysis is
possible.

One must also keep in mind that DO-331 also
stipulates additional required process objectives
specific to model-based methodologies that include
verification of simulation cases (scenarios), simulation
procedures, and simulation results with explanation of
any discrepancies for both specification models and
design models if present. The decision to use model-
based methodologies impacts other process objectives
as well. For example, if both a specification model
and a design model are developed, one must establish
forwards/backwards traceability starting with the top-
level text requirement through the specification model,
design model, source code, object code, and
requirements derived tests. Configuration
management and change control must be extended to
include the modeling and simulation tools themselves
and the set of tool configuration options selected.

7 Conclusions
The proposed Model-Based Agile process should
facilitate the use of agile methodologies in the
development of safety-critical systems. Moreover, the
MBA process was developed specifically to be
compatible with the FAA-accepted RTCA DO-178C
airworthiness certification standard for airborne
software and the RTCA DO-331 model-based
engineering supplement. Given the relatively recent
release of DO-178C and DO-331, it remains to be seen
what consensus will emerge among practicing DERs
as to what evidence will be considered an acceptable
demonstration of satisfying the model-based
engineering process objectives when it comes to
certification of an actual aircraft.

To validate the MBA process, the authors are currently
planning on developing a small safety critical system,
such as an Unmanned Aerial System and ground
controller, using this Model-Based Agile process to
produce the artifacts necessary for FAA certification.
This work will be conducted in collaboration with
local DERs to ensure that acceptability of the process
and process artifacts to a practicing DER.

8 References

[1] Michael J. Sullivan, “JOINT STRIKE FIGHTER:
Restructuring Added Resources and Reduced Risk, but
Concurrency Is Still a Major Concern”, GAO-12-525T,
Tuesday, March 20, 2012.
[2] Robert N. Charette, “This Car Runs on Code”, IEEE
Spectrum online, posted February 2009,
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-
runs-on-code
[3] Matthew Finnegan, “Boeing 787s to Create Half a
Terabyte of Data per Flight, Says Virgin Atlantic”,
Computerworld UK, Published 14:27, 06 March 13,
http://www.computerworlduk.com/news/infrastructure/3433
595/boeing-787s-create-half-terabyte-of-data-per-flight-
says-virgin-atlantic/
[4] Bloomberg Business Magazine, “The 787 Encounters
Turbulence”, posted June 18, 2006,
http://www.businessweek.com/stories/2006-06-18/the-787-
encounters-turbulence
[5] W.J. Hennigan, “Boeing Dreamliner to undergo federal
safety review”, Los Angeles Times, 11 Jan. 2013,
http://articles.latimes.com/2013/jan/12/business/la-fi-
boeing-dreamliner-review-20130112
[6] David F. Rico, “What is the ROI of Agile vs. Traditional
Methods? An analysis of XP, TDD, Pair Programming, and
Scrum (Using Real Options)”,
http://davidfrico.com/rico08gpdf.htm
[7] RTCA DO-178C, “Software Considerations in Airborne
Systems and Equipment Certification”, December 13, 2011.
[8] Nancy G. Leveson, Safeware: System Safety and
Computers, Addison-Wesley, Boston, 1995, p. 151.
[9] SAE ARP4761, “Guidelines and Methods for
Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment”, Issued 1996-12.
[10] SAE ARP4754, “Certification Considerations for
Highly-Integrated or Complex Aircraft Systems”, Issued
1996-11
[11] Agile Manifesto, viewed March 14, 2013,
http://agilemanifesto.org
[12] RTCA DO-330, “Software Tool Qualification
Considerations”, Issued December 13, 2011.
[13] Craig Hoyle, Flight International, 8 May 2009,
http://www.flightglobal.com/news/articles/europrop-boss-
reveals-origins-of-a400m-engine-crisis-326189/
[14] David F. Rico, “Why Agile Methods Work in Lieu of
Big Up Front Requirements, Architectures, and Designs”,
http://davidfrico.com/agile-requirementspdf.htm
[15] RTCA DO-331, “Model-Based Development and
Verification Supplement to DO-178C and DO-278A”,
December 13, 2011.

396 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

IEEE std 829-2008 and Agile Process– Can They Work

Together?

Ning Chen

Department of Computer Science, California State University, Fullerton, California, USA

Abstract - IEEE Standard for software and system test

documentation (i.e., IEEE std 829-2008) is a comprehensive

guide that specifies a common framework for planning the

testing activities. The agile process is known for its promotion

of frequent delivery of working software over comprehensive

documentation and responding to change over following a

plan. Although the IEEE std 829-2008 has strong association

with the traditional waterfall development process, it does

offer flexibility that allows user to combine or eliminate some

of the test documentation content topics. Furthermore, it does

not prohibit short-term and incremental planning. The

underlining philosophies of the test standard and agile process

are not at odd. This paper attempts to investigate whether they

can be married and work together to great effect.

Keywords: IEEE std 829-2008, Agile

1 Introduction

 One measurement of the importance of testing is the cost

associated with it. Some industry survey reveals that between

30 and 50 percent of the cost of development is spent on

testing [1]. Since any modification of the software, even a

simple change, may inadvertently break the whole software,

testing will not stop even after the end of the development.

For this reason alone, having quality test documents during

and after the development phase to support testing activities

becomes essential. Instead of inventing quality test documents,

one can easily find templates from IEEE std 829-2008 [2] that

offers a general framework for needed test documents.

Professionals coming from traditional waterfall development

camp embrace IEEE std 829-2008 wholeheartedly due to the

fact that the standard indeed has a deep root in the waterfall

community. Time moves on and nowadays, agile process with

a philosophy of working software over extensive

documentation comes into the picture [3]. The arrival of agile

stirs up two important questions. The first question is that do

we still need to have standard test documents when using agile

as the development and testing process? If the answer for the

first question is affirmative, we have a follow-up question on

hand– can IEEE std 829-2008 and agile development/testing

process work together? This paper starts with a review of

IEEE std 829-2008 and agile development and testing process.

An analysis and comparison of IEEE std 829-2008 and Agile

is followed. Our answer to the question we raised is

affirmative. We, then, propose a way of integrating IEEE std

829-2008 to a variant of agile (Scrum) with some insights we

contemplated. The paper ends with a conclusion section that

summaries with our findings, insights and suggestions.

2 What is IEEE 829-2008?

 We start our discussion on IEEE829-2008 with one of its

main goals of “establish(ing) a common framework for test

processes, activities, and tasks in support of all software life

cycle processes, including acquisition, supply, development,

operation, and maintenance Processes.” [2] As we noted in the

introduction, the goal of establishing a common framework for

test processes, activities, and tasks is the key that motives us to

see whether this common framework can work with the agile

development and testing process. The standard comes with

132 pages in length and is not that easy to comprehend. We

feel that the entry point of unwrapping this not-so-small

document is the understanding of the consequence-based

integrity level scheme promoted by the standard. The standard

says that there are four integrity levels:

Level 4⎯Catastrophic

Level 3⎯Critical

Level 2⎯Marginal

Level 1⎯Negligible

The descriptions of level are:

Level 4 (Catastrophic) -Software must execute correctly or

grave consequences (loss of life, loss of system, environmental

damage, economic or social loss) will occur. No mitigation is

possible.

Level 3 (Critical) - Software must execute correctly or the

intended use (mission) of system/software will not be realized

causing serious consequences (permanent injury, major system

degradation, environmental damage, economic or social

impact). Partial-to-complete mitigation is possible.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 397

Level 2 (Marginal) – Software must execute correctly or an

intended function will not be realized causing minor

consequences. Complete mitigation possible.

Level 1 (Negligible) - Software must execute correctly or

intended function will not be realized causing negligible

consequences. Mitigation not required.

 Most readers will not have any difficulty on accepting this

consequence-based integrity level scheme, after all, the

descriptions are very easy to understand and they are quite

reasonable and acceptable. In terms of what documents are

required at each level, the standard says that:

Level 4: 10 test documents

Level 3: 10 test documents

Level 2: 8 test documents

Level 1: 7 test documents

 It is a bit surprising to see that there is not too huge

difference between levels. No difference (counting number of

documents) between Level 4 and Level 3. The main difference

between Level 3 and Level 2 is the adding of two so-called

Master Test Plan and Master Test Report. The adding of the

master plan and report probably is due to the desire to give

stakeholders some long-term (in the context of time) and

global (in the context of scope) view and awareness of what’s

going on. The difference between Level 2 and Level 1 is the

adding of a so-called Level Interim Test Status Report. The

adding of the interim report most likely is driven by the idea

that the stakeholders may need to know the status of the

project more frequently (shorter time period). Although the

small difference as the level goes up is a bit unusual, the

increased frequency of reporting and the more long-term

planning and broader view as level goes up are quite expected.

What are those 10 documents (maximum number for Level 3

and 4)? The standard specifies the following:

Master Test Plan (MTP)

Level Test Plan (LTP)

Level Test Design (LTD)

Level Test Case (LTC)

Level Test Procedure (LTPr)

Level Test Log (LTL)

Anomaly Report (AR)

Level Interim Test Status Report (LITSR)

Level Test Report (LTR)

Master Test Report (MTR).

All users of the standard have no problem on forming an

intuitive understanding of the term “plan, design, case,

procedure, log, and report.” The term “master” is also quite

straightforward. The only curiosity one may have is on the

definition of “level.” What is the definition of the term

“level”? Is it related to the term “integrity level” in some way?

A careful reader of the standard may soon find the following:

(T)he word “Level” is replaced by the organization’s name

for the particular level being documented by the plan (e.g.,

Component Test Plan, Component Integration Test Plan,

System Test Plan, and Acceptance Test Plan).

After further readings, a reader may encounter the following:

Other possible examples of levels include operations,

installation, maintenance, regression, and nonfunctional

levels such as security, usability, performance, stress, and

recovery. Any one of the example levels may be more than one

level for an organization; e.g., Acceptance testing may be two

levels: Supplier’s System and User’s Acceptance test levels.

 At this point, most of the readers of the standard can easily

come to the following realizations:

1. We are not talking about 10 documents – it actually is

10 different kinds of documents. Depending on the

actual project (and the replacement of the term Level

by other terms such as Component, Integration,

System, and Acceptance), the total number of

documents may easily explodes.

2. For those who are familiar with the V model shown in

Fig. 1 [4], they may immediately feel that IEEE829-

2008 maps to the V model almost perfectly. For

example, in the V-model, it talks about Unit

(component) testing, Integration testing, System

testing and Acceptance testing that mirror to the

Level Test Plan/Design/Case/Procedure/Log/Report

mentioned in the IEEE 829-2008 directly.

Figure 1. The V-Model [4]

 To end our discussion on IEEE 829-2008 in this section

(and to provide convenience to the readers of this paper), we

decide to include a brief description of those 10 different

kinds of documents as follows:

Master Test Plan (MTP) - There can be only one

MTP for a project. The MTP identifies how many

levels of test are required

398 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Level Test Plan (LTP) - it covers scope, approach,

resources and schedule of the testing activities and

identifies the items being tested, the features to be

tested, the testing tasks to be performed, the

personnel responsible for each task, and the

associated risks.

Level Test Design (LTD) - it specifies features to be

tested, approach refinements, test identification,

feature pass/fail criteria and test deliverables.

Level Tests Case (LTC) - it identifies inputs/outputs

for each test.

Level Test Procedure (LTPr) - it covers the

description of the steps to be taken to execute the test

cases.

Level Test Log (LTL) - it provides a chronological

record of relevant details about the execution of tests.

Anomaly Report (AR) - it documents any event that

occurs during the testing process that requires

investigation.

Level Interim Test Status (LITSR) - it summarizes

the results of the designated testing activities and

optionally to provide evaluations and

recommendations based on these results.

Level Test Report (LTR) - it summaries the results

of the designated testing activities and to provide

evaluations and recommendations based on these

results.

Master Test Report (MTR) - it summarizes the

results of the levels of the designated testing

activities and to provide evaluations based on these

results.

3 What is Agile?

 Like most researchers in software engineering, we start our

discussion on Agile by quoting the Agile Manifesto [2]:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 The Agile method of software development is built on a

series of iterative development cycles where a set of features

or user requirements are the basis for each iteration. The

process is repeated until all requirements are delivered in the

released software. The Agile framework is based upon the

Value and Principles of the Agile Manifesto

We also would like to quote the Twelve Principles of Agile

[5]:

1. Our highest priority is to satisfy the customer

through early and continuous delivery of valuable

software.

2. Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

3. Deliver working software frequently, from a couple

of weeks to a couple of months, with a preference to

the shorter timescale.

4. Business people and developers must work together

daily throughout the project.

5. Build projects around motivated individuals. Give

them the environment and support they need, and

trust them to get the job done.

6. The most efficient and effective method of conveying

information to and within a development team is

face-to-face conversation.

7. Working software is the primary measure of

progress.

8. Agile processes promote sustainable development.

The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and

good design enhances agility.

10. Simplicity--the art of maximizing the amount of work

not done--is essential.

11. The best architectures, requirements, and designs

emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly.

 Next we would like to summarize some insights reported in

literatures on the agile process from several aspects:

From the aspect of Test Documentation [6]:

• Agile is not an excuse to not providing test

documentation.

• Agile does say that huge volume of test

documentation most likely is counter-productive.

• From the Manifesto – “Valuing working software

over documentation” does not mean that test

documentation is not valuable.

• Agile encourages test documenting early and often.

From the aspect of testing [1]:

• To get working software, it must be tested.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 399

• To know if it was tested properly, there should be

some test documentation.

From the aspect of processes and plans [7]:

• Agile means that individuals should make conscious

decisions that react to changing situations. They

should not just follow rigid plans.

From the aspect of timing of the documentation [7]:

• In agile we write test case for each iteration. We get

feedback from stakeholders and then write test cases

for the next iteration.

4 Is it possible integrating IEEE

829-2008 to Agile Process?

 At a first glance, we may conclude that IEEE 829-2008 is an

alternative expression of the V-model and demands great

number of documents. Since the V-model follows purely the

waterfall process, integrating a waterfall model to an agile

process is, of course, futile. This first glance, in our opinion, is

a fallacy. A careful analysis reveals that there is a time-line

expression embedded in the V-model. The left leg of the V

implies a sequence of events that happened at a sequenced

time line. The bottom of the V indicates the midpoint of the

process and the right leg, again, shows a sequence of events in

a time-line manner. Does the IEEE 829-2008 dictate any time-

line fashion? The answer is no. The IEEE 829-2008 does tell

us what documents to produce [8][9][10]. Nonetheless, it

never tells us when to produce those documents, nor it tells us

how to produce those documents. One may still argue that

IEEE 829-2008 is so heavily documentation oriented. There is

no hope of integrating it into the agile process in which we

value simple or even no test documents. Again, we believe

this argument is a fallacy too. Clearly, a careful reader can

find the following description that shows the flexibility of the

standard [2]:

Users of this standard may choose to add, combine, or

eliminate whole documents and/or documentation content

topics based on the needs (and integrity level) of their

individual systems.

 As for the argument that agile tends to end up with simple or

even no test document, our counter argument goes as follows:

Since any software project eventually ends up with spending

30 to 50% of its resource and budget on testing, a decision to

produce (using any process) simple or even no test documents

does not make business sense. Lastly we wish to argue that

the IEEE 829-2008 focuses mainly on what to produce, not on

when to produce, and not on how (in the context of process) to

produce test documents. On the other hand, the Agile Process

focuses mainly on how to produce, for sure, not on what to

produce. We really don’t see any inherent barriers in

integrating what and how together to achieve a greater effect.

Our answer to the question asked in the title of this paper –

“IEEE std 829-2008 and Agile Process– can they work

together?” therefore is affirmative.

5 Our attempt on integrating IEEE

829-2008 to Agile Process

 Of course, the devil is in the details. As a reader of this

paper, you may demand to see the details on integrating IEEE

829-2008 to an agile process. We present our attempt as

follows. For simplicity, in this paper we focus our attempt on

one variant of agile process (i.e., Scrum) only. Figure 2

[11][12][13] shows a typical Scrum process.

Figure 2 Scrum Process [13]

 First we would like to briefly describe the Scrum Process.

The main difference between Scrum and traditional waterfall

or V model is that the Scrum development is done in time-

boxed efforts called Scrum sprints. At the beginning of each

Scrum sprint, the team conducts a sprint planning on the goal

of the sprint driven by some user stories or requirements. The

duration of the Scrum sprint typically varies from two weeks

to a month. The important rule is that the team keeps a very

close interaction at a 24-hour cycle called daily Scrum

meeting and stand up. The goal of each Scrum sprint is to

produce some working software. The desire of producing

working software at the end of every Scrum sprint implies that

each Scrum sprint needs to go through all phases of the

software development life cycle. Since the testing is part of the

software development life cycle, it becomes clear that testing

must be one of the activities performed in each Scrum sprint.

Agile promotes the iterative code development. Can test and

test documentation also be iteratively done? We think the

answer is affirmative. We argue that iterative test activities (in

which planning and developing test documents are

continuously refined and logging and reporting are

continuously performed) can tag along with iterative code

development seamlessly. Even after accepting the iterative test

activities, a critic may still complain the excess number of

documents required by IEEE 829-2008. How about the 10

400 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

different kinds of test documents (shown below again for

convenience) specified in IEEE 829-2008?

Master Test Plan (MTP)

Level Test Plan (LTP)

Level Test Design (LTD)

Level Test Case (LTC)

Level Test Procedure (LTPr)

Level Test Log (LTL)

Anomaly Report (AR)

Level Interim Test Status Report (LITSR)

Level Test Report (LTR)

Master Test Report (MTR).

 How do you weave those 10 kinds of test document

development into Scrum sprints? Our attempt starts at the

Level Test related documents first and address the Master Test

Plan and Report later.

Level Test Plan (LTP)

Initially LTP can be roughly drafted at the first sprint planning

meeting. In most sprints, level test plans may include unit test

plans, integration test plans, system test plan and acceptance

test plan. The main reason for having a complete set of level

test plans (unit, integration, system, acceptance) in most

sprints is that the goal of each sprint is to deliver a potentially

shippable product by the end of each sprint. A shippable

product indeed needs to go through, at least, unit test,

integration test, system test and acceptance test [14]. Will a

complete set of level test documents bogs down the sprint?

We don't think so. In early sprints, although we need to work

on a complete set of level test plans, every one of them, in

fact, is very simple to begin with. Again, the rationale is that

development plans are iterative and test plans will be

developed iteratively as well. Those level plans are reviewed

at every sprint retrospective meeting and revised as necessary.

Level Test Design (LTD)

Level test designs include unit test designs, integration test

designs, system test design and acceptance test design.

Level Test Case (LTC) and Level Test Procedure (LTPr)

Level test designs include unit test cases and procedures,

integration test cases and test procedures, system test cases

and test procedures and acceptance test cases and test

procedures.

Level Test Log (LTL) and Anomaly Report (AR)

Level test logs and anomaly reports may include unit test logs

and anomaly reports, integration test logs and anomaly

reports, system test logs and anomaly reports and acceptance

test logs and anomaly reports. LTL and AR are continuously

created, reviewed, and revised as needed during sprint.

Level Interim Test Status Report (LITSR)

Created and updated daily following daily scrum.

Level Test Report (LTR)

Level test reports may include unit test reports, integration test

reports, system test reports and acceptance test reports. Most

of those reports can be created and revised prior to sprint

review meeting.

 How about the Master Test Plan (MTP)? We propose that

a Master Test Plan can be produced early in the project at

sprint 0 to start the process. Later on, we could use the Master

Test Plan to tie the Level Test Plans generated from each

sprint together to create a final version of the Master Test Plan

and Report. Sure enough, some of our readers may point out

that what we have attempted is just to compress the whole

testing life cycle into one individual Scrum sprint. Doing so

will simply bog down each Scrum sprint and is totally against

the sprite of Agile. There are two arguments to respond to

such a criticism. First, if iterative code planning and

development can be accepted/tolerated why not iterative test

planning, design, and reporting? Second, if it becomes

apparent that resources need to be reserved for other high

priority tasks, we may also consider to combine some type of

test documents which is certainly allowed by IEEE 829-2008.

For example, in some small-size projects, one may combine

Level Test Plan (LTP), Level Test Design (LTD) and Level

Test Procedure (LTPr) into one document. Level Test Log

(LTL) and Anomaly Report (AR) also can be merged.

6 Conclusions

 In this paper our main goal is to convince our readers that

integrating a testing standard such as IEEE 829-2008 to an

agile process should be done and can be done. First, why it

should be done? Our premise on “should be done” is purely

based on business reasoning and is not related to what

development process used (waterfall or agile). Any modern

software product development requires, at the minimum, some

testers’ participation. In some large organizations, having a

separate department or team that works on software quality

assurance is also not that uncommon. Furthermore, it is an

industry consensus that testing eventually may consume 30 to

50% of all resources spent. Having spent and committed such

a large portion of resources and personnel on testing but not

demanding the ultimate fruit of testing (i.e., test documents) is

simply beyond any business sense. If the premise on

demanding quality test documents is valid, the desire to have

standardized test documents (such as documents specified in

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 401

IEEE 829-2008) becomes not that to understand. In this

globalization era insisting on one-of-kind, ad-hoc approach, in

most business scenarios, proves fatal. The argument on “can

be done” is a bit challenging due to some ill perceptions from

both agile and waterfall communities. Our main defense is to

point out that IEEE 829-2008 is NOT a mirror image of the V

model. The standard does not have embedded time-line as in

the V model and it mainly focuses on the notion of “what to

produce.” The agile process, on the other hand, mainly focuses

on “how to produce.” Integrating “what to produce” and

“how to produce” is actually natural and logical. We further

support our argument by providing an attempt in which we

integrated IEEE 829-2008 documents to Scum agile process.

The corner stone of this integration is hinged on the fact that at

the end of each Scrum sprint a potentially shippable product is

created. This fact implies that we should start a complete set

of level test documents at the beginning of each sprint and

incrementally improve them very similar to what we have

done on the iterative development of source code.

7 Acknowledgement

 The author would like to thank

1.the class of cpsc545 of the Master of science in Software

Engineering (MSE) program at California State University,

Fullerton for contributing some of insights mentioned in this

paper.

2. the MSE research and development fund for partial

supports.

8 References

[1] Burnstein, Ilene. “Practical Software Testing”. NY:

Springer-Verlag, 2003

[2] IEEE 829-2008 IEEE Standard for Software and

System Test documentation

[3] Agile manifesto. Retrieved from

http://agilemanifesto.org/

[4] The V-Model (Software Development). Retrieved

from

http://en.wikipedia.org/wiki/VModel_%28software_developm

ent%29

[5] 12 Principles of Agile software Development.

Retrieved from

http://www.agilityspeaks.com/capabilities/aboutus/agile-

development/

[6] Lisa Crispin, article titled “Agile Documentation”,

03/02/2011. Retrieved from

http://www.stickyminds.com/sitewide.asp?Function=edetail&

ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail

&iDyn=2

[7] Janet Gregory, Lisa Crispin, Book - Agile Testing: A

Practical Guide for Testers and Agile Teams, Jan. 2009,

Addison-Wesley Professional

[8] Glazer, H., J. Dalton, D. Anderson, M. Konrad, S.

Shrum. “CMMI or Agile: Why Not Embrace Both!” Software

Engineering Institute. November 2008.

[9] Curran, C. “Are Agile and CMMI Compatible?” CIO

Dashboard. 25 June 2010. Retrieved from

http://www.ciodashboard.com/it-processes-and-

methodologies/agile-cmmi-compatible

[10] Shelton, C. “Agile and CMMI: Better Together”.

ScrumAlliance. 9 July 2008. Retrieved from

http://www.scrumalliance.org/articles/100-agile-and-cmmi-

better-together

[11] Agile Scrum. Retrieved from

http://en.wikipedia.org/wiki/Scrum_(development)

[12] “Inside the Inbox”. Retrieved from

http://www.ecircle.com/blog/2011/08/04/enare-effectively-

integrating-marketing-tools/

[13] Scrum (Development). Retrieved from

http://en.wikipedia.org/wiki/Scrum_%28development%29

[14] Ship it! - Scrum’s “Potentially Shippable” Product

Increment. Retrieved from

http://agilemakingprogress.blogspot.tw/2011/03/ship-it-

scrums-potentially-shippable.html

402 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://agilemanifesto.org/
http://www.agilityspeaks.com/capabilities/aboutus/agile-development/
http://www.agilityspeaks.com/capabilities/aboutus/agile-development/
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail&iDyn=2
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail&iDyn=2
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail&iDyn=2
http://www.ciodashboard.com/it-processes-and-methodologies/agile-cmmi-compatible
http://www.ciodashboard.com/it-processes-and-methodologies/agile-cmmi-compatible
http://www.scrumalliance.org/articles/100-agile-and-cmmi-better-together
http://www.scrumalliance.org/articles/100-agile-and-cmmi-better-together
http://en.wikipedia.org/wiki/Scrum_(development)
http://www.ecircle.com/blog/2011/08/04/enare-effectively-integrating-marketing-tools/
http://www.ecircle.com/blog/2011/08/04/enare-effectively-integrating-marketing-tools/
http://www.ecircle.com/blog/2011/08/04/enare-effectively-integrating-marketing-tools/
http://en.wikipedia.org/wiki/Scrum_%28development%29
http://agilemakingprogress.blogspot.tw/2011/03/ship-it-scrums-potentially-shippable.html
http://agilemakingprogress.blogspot.tw/2011/03/ship-it-scrums-potentially-shippable.html

Managing a Global Software Project under an Agile and

Cloud Perspective

Giulio Concas
1
, Katiuscia Mannaro

1
 and Luisanna Cocco

1

1
Department of Electrics and Electronics Engineering, University of Cagliari, Piazza d'Armi

Cagliari, Italy

Abstract - Nowadays Lean-Kanban approach is perhaps the

fastest growing Agile Methodology in software engineering. At

the same time Cloud Computing (CC) is a technological

phenomenon that is becoming more and more important in

these last years. In our opinion Small and Medium Enterprises

(SMEs) can increase their competitiveness by taking

advantage of CC, and we think that it is very important to

study and assess its impact on SMEs’ management processes.

In this paper we proposed an effective tool to support strategic

initiatives to the software development for the companies that

develop software using agile methodologies and distributed

resources. We used System Dynamics to model and simulate

the software development: it allowed us to highlight in a very

efficient way the interaction among several factors present in

the software project.

Keywords: System Dynamics, Modeling, Simulation, Agile

Processes, Global Software Development, Cloud System

1 Introduction

Nowadays, software engineering involves people

collaborating to develop software and in this context many

challenges, such as geographic, cultural, linguistic and

temporal [4], [18], meet into Global Software Development

(GSD). Some problems are related to the issues about the

communication for information exchange, coordination of

teams, and activities.

Normally, the distance and the lack of overlapping working

hours create a negative impact on software projects, indeed

problems in the knowledge transfer and, as a consequence,

communications gaps or ambiguity on technical aspects must

be resolved.

Cultural diversities may bring to an unequal distribution of

work, lack of trust and fear, from which cost increases, poor

skill management and reporting issues may arise. Linguistics

and temporal diversities can instead lead to issues in

knowledge transfer, communication and project visibility.

In our opinion, Cloud Computing (CC) allows us to deal with

better all these problems.

CC is a delivery model for software, platforms and

infrastructures. Cloud providers have got the possession of

physical location, hardware, and system maintenance.

Enterprise users access cloud services via the Internet from

anywhere and at any time. Users usually pay a subscription

fee, and can run a single instance of system on a robust

infrastructure.

Indeed, Cloud services are delivered from a “multi-tenant”

system; there is a single instance of software running, but

many individual or enterprise customers use this system along

with their own necessities.

In this paper we proposed a tool for managing an agile

development environment on cloud platforms. This tool may

support companies with distributed resources to take strategic

decisions, no matter whether the choice involves outsourcing

development or supplier networks. Software engineering

involves people collaborating to develop better software.

Therefore, we use collaboration tools all along the product

life cycle to let us work together, stay together, and achieve

results together.

This management tool is based on a model that we built by

using an analysis of feedback loops among the components of

the process, such as requirements, iterations, releases and so

on, and through workflows and delays, in order to control

their dynamics. We used System Dynamics to model and

simulate how effective are Cloud-based software development

environments for Global Software. We assumed a

development process based on Scrum agile methodology and

simulated the agile software development process on Cloud

platform using a commercial tool available on the market:

Vensim.

The proposed model helps managers to highlight all the

factors that influence the software development in the

companies with distributed resources. Indeed, in our opinion,

our tool can be useful to improve all the activities linked to

the software development. It allows us easily to highlight and

focus all the elements that influence and compromise the

success of a software project. Consequently, it allows us to

discover, and then, to correct problems or conditions that

could compromise the success of the project.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 403

The remainder of the paper is organized as follows. Section 2

presents a brief description of some key software concepts of

the two studied software development approaches and the

Section 3 presents some related works. Finally Section 4

describes the details of the simulation model and Section 5

gives some final considerations of our research, and the

recommendations for future works.

2 Optimizing the Software Development

with Agile Methodologies and Cloud.

 In this section we take a look at the considered software

development approaches.

Scrum is presently the most used Agile Methodology (AM)

[1], while the Lean-Kanban approach is perhaps the fastest

growing AM. Scrum and Lean-Kanban have been proposed as

two possible solutions to quickly respond to changing

customer requirements, without compromising the quality of

the code.

Specially in real-life software projects having up-front

planning and budgeting, waterfall-like approaches are still

very used. The Waterfall model was introduced by Royce in

1970. This software approach requires that all process phases

(planning, design, development, testing and deployment) are

performed in a sequential series of steps.

Each phase starts only when the previous one has ended. It is

possible to step back to the previous phase, but it is not

possible to go back in the process, for instance in order to

accommodate a substantial change of requirements. This

methodology requires defining a stable set of requirements

only during the phase of requirements definition, and

feedbacks to previous stages are not easily introduced.

Agile Methodologies, so named in 2001 in the Agile

Manifesto [20], have been introduced in response to rigid and

hard methodologies to follow. Among them, Scrum and Lean-

Kanban are Agile process tools [8] based on incremental

development. They both use pull scheduling and emphasize

on delivering releasable software often.

The original term Scrum comes from a study by Takeuchi and

Nonaka [19] that was published at 1986 in the Harvard

Business Review. In 1993 Jeff Sutherland developed the

Scrum process at Easel Corporation, by using their study and

their analogy as the name of the process as a whole. Finally,

Ken Schwaber [15] [16] formalized the process for the

worldwide software industry in the first published paper on

Scrum at OOPSLA 1995. Scrum [17] is a simple agile

framework, adaptable also to contexts different from software

development [12].

Adopting Scrum implies to use timeboxed iterations and to

break the work into a list of smaller deliverables, ordered

according to a priority given by the Product Owner. Changes

to requirements are not accepted during the iteration, but are

welcomed otherwise. Scrum projects are organized with the

help of daily Scrums: 15 minutes update meetings, and

monthly Sprints, or iterations, which are designed to keep the

project flowing quickly.

Generally, at the end of every iteration the team releases

working code, and a retrospective meeting is held also to look

for ways to improve the process for the next iteration.

Lean software development is a translation of Lean

manufacturing [6] to the software development domain. The

Lean approach emphasizes on improving the value given to

the customer, by eliminating the waste (Muda) and

considering the whole project, avoiding local optimizations.

Kanban is a Japanese term that translated literally means

visual (Kan) and card or board (ban). Adopting Kanban

means to break the work into work items, to write their

description on cards, and to put the cards on a Kanban board,

so that the flow of work is made visible to all members of the

team, and the Work in Process (WIP) limits are made explicit

on the board. The Kanban board provides a high visibility to

the software process, because it shows the assignment of work

to the developers, it communicates priorities and highlights

bottlenecks. One of the key goals of Lean-Kanban approach is

to minimize WIP, so that only what is needed is developed,

there is a constant flow of released work items to the

customer, and developers focus only to deliver a few items at

a time. So, the process is optimized and lead time can be

reduced.

In a nutshell, Scrum and Lean-Kanban approaches are both

agile processes aiming to quickly adapt the process by using

feedbacks loops.

In Lean-Kanban the feedback loops are shorter, and the work

does not flow through time-boxed iterations, but flows

continuously and smoothly. Kanban is less prescriptive than

Scrum and it is able to release anytime, while Scrum will

release new features only at the end of the iterations.

Moreover, in Scrum it is not possible to change the

requirements in the middle of the sprint.

A common definition of Global Software Development is a

software development process at geographically separated

locations. For this reason, GSD involves communication for

information exchange, coordination of teams, activities and

artifacts so they contribute to the overall objective, and finally

control of teams. Many challenges meet into GSD [4], [18]

these are geographic, cultural, linguistic and temporal. The

distance and the lack of overlapping working hours create a

negative impact on software projects, create problems in the

knowledge transfer, and as a consequence communications

gaps or ambiguity on technical aspects may occur. Cultural

diversities may bring to an unequal distribution of work, lack

of trust and fear, from which cost increases, poor skill

404 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

management and reporting issues may arise. Linguistics and

temporal diversities can instead lead to issues in knowledge

transfer, communication and project visibility. The GSD can

be facilitated using the Cloud.

CC is a delivery model for software, platforms and

infrastructures. Cloud providers have got the possession of

physical location, hardware, and system maintenance.

3 Related Work

 Our model stemmed from two works about Global

Software Development.

In [4], Hossain, Babar, Paik, and Verner discuss the use of

Scrum practices in GSD projects, and identify key challenges,

due to global project distribution that restricts the use of

Scrum. In [18] instead, the authors present the challenges

encountered in globally dispersed software projects and

propose to exploit Cloud Computing characteristics and

privileges both as a product and as a process to improve GSD.

In a more and more globalized world the relationship between

culture and management of remote work is an avoidable issue

to face. So, they exploit CC proposing both a product and a

process to manage the many challenges in terms of culture,

management, outsourcing, organization, coordination,

collaboration, communication, development team,

development process and tool.

In [1] a practical experience in the application of some agile

software development practices, as Scrum model, to Azure

application development is described. Azure Services

Platform is an application platform on the cloud and it offers

PaaS capabilities, which allow application to be built and

consumed from both on-premise and on-demand

environments. This paper starts from several questions about

the interactions between cloud computing and agile software

development and it attempts to discuss their potential

advantages. In fact the authors show how setting up a

development environment on the Azure platform helps

enhance the agile practices.

Our work is based on a simulation technique used to study

and analyze the software development. The used technique is

known as System Dynamics.

The System Dynamics approach was introduced by Jay W.

Forrester [7] of the Massachusetts Institute of Technology

during the mid-1950s, and is suitable to analyze and model

non-linear and complex systems containing dynamic variables

that change over time.

System dynamics modeling has been used in similar research

on software development process, where there are multiple

and interacting software processes, time delays, and other

non--linear effects such as communication level, amount of

overtime and workload, schedule pressure, budget pressure,

rate of requirement change, and so on. In the field of the Agile

Methodologies, many system dynamics models were

introduced. The main goals of these researches aim to better

understand the agile process and to evaluate its effectiveness.

Most of the performed research was made on Extreme

Programming (XP), or generic AMs. Other processes such as

Scrum, however, are almost absent.

For example, Chichacly in [2] investigated when AMs may

work by using System Dynamics modeling, and comparing

AMs with a traditional waterfall process. In [21] the author

explored whether agile project management had a unique

structure, or would fit within the generic conceptually formed

system dynamic project management structures.

An analysis of factors that impacts on productivity during

agile web development and maintenance phases was

conducted by Xiaoying Kong et al. [10]. Another analysis

published in [9] gives both theoretical insights into the

dynamics of agile software development, and practical

suggestions for managing these projects.

4 A Tool for the Global Agile Software

Development on Cloud Environments

 In this section, we describe a tool proposed to analyze

and study the efficiency of a Cloud development environment

used for Global Software Development. Since the

collaboration among team members is an essential factor in

GSD, this tool using Cloud resources is perfect to enable the

facilitation, the automation and the control of all the

development process.

The development methodology adopted in this environment

set up using On-Demand resources is an Agile methodology

known as Scrum methodology.

On the contrary of collocated software development, in GSD

the distance among team entails difficulties in the

coordination and the control due to problems which stem from

many challenges in terms of culture, management,

outsourcing, organization, coordination, collaboration,

communication, development team, development process and

tool among distant teams from each other.

We propose a tool that uses a simplified version of the Scrum

approach in an On Demand development environment, in

order to obtain a structure easy to understand and to modify

during the whole life cycle of a software project.

According to SD modeling, and as reported in [11], our model

is represented in terms of level variables, flow variables and

auxiliary variables.

The tool proposed, shown in Fig.1, describes the development

of a generic software project gone ahead by a small team of

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 405

developers. In order to simplify the model, all the phases of

planning, design, coding, unit testing and similar have been

merged into just one development phase, represented by the

requirements development rate valve.

Figure 1.Tool for Cloud Software Development Environment .

The project software is modeled through a specific number of

requirements, defined as a set of functionalities to be

implemented. Therefore, the initial stock of requirements,

which are represented by the level variable called “Original

Work to Do”, evolves in a stock of developed requirements

which are represented by the level variable called “Live”.

For the purpose of modeling a planning phase, which matches

the real planning phases in the software development, we

introduced in the tool some variables which represent the time

spent in planning. They were modeled as delays in the

software project development, which influence project

outcomes and determine the system development speed.

 On the contrary of traditional development environments, in

Cloud development environments, the infrastructure is readily

available, and system maintenance and system updates of the

cloud server will be bear by the cloud providers and not by

the developers.

The values of these variables will be linked to the set up of the

Cloud development environment, in order to customize it as a

function of their own needs.

The time and effort spent at the beginning of project

development lifecycle are modeled by the following auxiliary

variables: setting up infrastructure hardware and software

licenses, deploying skilled resources to setup, manage and

certify the software development and deployment

infrastructure, building applications from multiple locations

when teams geographically distributed are added.

Some of these variables just cited, were taken from the work

of Dumbre et al. [1] and all are reported in Fig.2.

Figure 2. Tool for Cloud Software Development Environment:

Delay.

In addition to these variables, another variable for planning

and creating the Backlog is taken into account. This variable

is indicated as planning phase and it models the role of the

Product Owner.

Indeed, Scrum prescribes roles, such as the role of the Product

Owner. This role is given to a single person, who represents

the customer's interest, prioritizes the requirements in the

backlog, and answers to questions about requirements.

Moreover, Scrum prescribes a Sprint Planning Meeting, a

Sprint Retrospective Meeting and Scrum of Scrums meeting,

respectively, to plan the Sprint, to plan the iteration at the end

of every sprint and to coordinate more teams which work at

geographically separated locations.

As regards the modeling of the software development phase,

as well known, the life cycle of the software project depends

on the productivity of the developers and on the error made

by them (see Fig. 1), but also by the uncertain customer

requirements. Therefore, the fewer errors there are during the

process, the sooner the project will be finished.

In according to [2], we modeled the auxiliary variable

productivity: it represents the productivity of the developers.

We take into account only these factors that in our opinion

can be considered very relevant to the software development

processes. However further factors can be easily introduced.

The factors taken into account are: the personnel experience,

the personnel turnover, the communication complexity, the

amount of overtime and workload, the schedule pressure, and

the budget pressure (see Fig. 3).

Figura 3. Tool for Cloud Software Development Environment:

Productivity.

406 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

So for example in Fig. 3 the personnel experience auxiliary

variable contributes to the value of the productivity variable

introducing a multiplicative factor that takes into account the

knowledge of the current domain by developers. The schedule

pressure auxiliary variable contributes to the value of the

productivity variable introducing a multiplicative factor that

takes into account the effect of the project falling behind the

time schedule. Finally, for example the communication

complexity auxiliary variable contributes to the value of the

productivity variable by introducing a multiplicative factor

that takes into account the effect present primarily in large

project teams, where a large number of involved people

increases the number of communication paths.

For each iteration, only a fraction of the requirements, in the

level variable called “Selected Requirements”, is completed.

This is because a fraction of the work is done incorrectly due

to three types of error: effect of uncertain customer

requirements, problem in the software design, bug introduced

during the development.

Only the bug introduced during the development error passes

through the rework discovery in Scrum valve. The two other

errors can be discovered only at the end of the iteration.

Note that the requirements have the same size and weight and

before to be developed are subdivided in different Sprint

backlogs. Each backlog includes a random number of

features, extracted from a Gaussian distribution. These Sprint

backlogs are developed during short fixed-length iterations.

As requirements are implemented, they flow into the level

variables “Integration Testing”, “System Testing” and “User

Acceptance Testing” stock. If the tests are successfully

passed, then the requirements are accepted and considered

completed. Consequently, the accepted requirements flow into

the level variable called “Production Environment”.

Otherwise, a rework must be performed. This rework entails a

delay due to the time needed for the correction. From

“Production Environment” level variable the requirements

flow into the “Live” level variable and the work is finished.

As we have already said, in our model, the time to finish the

work “Original Work to Do” is affected by two main effects:

delays and errors.

In Cloud system, Production and Testing environments are

accessible anytime and anywhere. Any team member and user

can work and build applications referring just to one location,

with no need to coordinate multiple locations. In this way,

significant time and effort will be saved, and users will use all

their resources for creating value for their business.

Indeed, little time and efforts are spent to write verbose

installation scripts or release notes, and for the setup of

system testing, integration testing and user acceptance testing,

with the aim to obtain a product released under rigorous test

and validation. The deployment process is simplified, there is

no need of any separate packaging efforts; to pass from

development environment to testing environment, and from

here to production environment does not require any

additional step.

Prototypes and demos can be made accessible immediately to

customers for eliciting feedback in a short time. The code can

pass from one environment to another without writing

deployment script to set up the application in the respective

environments. All these activities have been modeled by two

variables: creating and managing different test environments

and creating and managing production environment

prototyping and demos introduced when the requirements are

moved from work done to test to a different testing

environment, and then are deployed to production

environment (see Fig. 4).

Figura 4. Tool for Cloud Software Development Environment:

Test Environments.

All the variables described above represent time and effort

spent in the development process.

5 Final Considerations and Future Work

 In recent years, a new way to distribute and use the

information and the communication technologies are heavily

gaining ground at the expense of the traditional information

and communication technologies. This new technology is the

Cloud Computing.

This work analyzes and studies this new technology applied to

the Software development process.

So, we propose a model based on System Dynamics for

highlighting the efficiency of the Cloud Platforms for Global

Software Development.

We underline that the modeled software development process

is based on agile methodologies. In particular, we applied a

Scrum process, and hence an agile methodology able to

manage better the software development with respect to the

heavy and prescriptive traditional methodologies to develop as

can be Waterfall process.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 407

The realized model is a simple tool, this can be customized

and used in order to follow the software development among

its geographically distributed teams.

Such a development environment allows to reduce the costs

and the time with respect to an environment set up On-

Premise, and hence a traditional environment.

We developed a simplified model to describe all the

significant factors that, in our opinion, enter during the life

cycle of a software project. However, further factors can be

easily introduced, and hence, the model can be easily

customized to analyzing and studying real software project

management.

The modeled real development environment is very complex,

and so, the model has been simplified. In addition, given the

lack of experimental data, our goal is only to propose a tool to

be used to help the software companies to plan and develop a

software project.

Moreover our study has been carried out under some limiting

assumptions that could threaten its validity. The proposed

model needs to be further elaborated and validated, for

example by adding new variables or new relationships among

factors.

This work must be considered only a starting point. Indeed,

given the lack of data available, here we do not show the

results obtained simulating it. But, we would like to underline

that very interesting results could be obtained to simulate it

with real data from real software development experience.

Therefore, the tool proposed will be the subject of our future

work, that will include studies to empirically validate the

model using data from GSD real projects and carried on using

Cloud environments.

6 References

[1] Amit Dumbre, Satha Priya Senthil, Sidharth Subhash

Ghag: Practising Agile software development on the Window

Azure platform, White Paper, May 2011.

[2] Carina Andersson, Lena Karlsson, Josef Nedstam,

Martin Host, Bertil I Nilsson: Understanding Software

Processes through System Dynamics Simulation: A Case

Study, Proceedings of the Ninth Annual IEEE International

Conference and Workshop on the Engineering of Computer-

Based Systems (ECBS’02).

[3] Chichakly Karim: Modeling Agile Development: When

is it Effective?. Proceedings of the 2007 System Dynamics

Conference. Boston, MA. Print.

[4] Collabnet: Reinforcing Agile Software Development in

the Cloud. Why the Cloud is Advantageous for Agile, and for

Accelarating its Enterprise-wide Adoption, White Paper,

2011.

[5] Emam Hossain, Muhammad Ali Babar, Hye-young Paik,

June Verner: Risk Identification and Mitigation Processes for

Using Scrum in Global Software Development: A conceptual

Framework, 2009 IEEE.

[6] Marc I. Kellner and Raymond J. Madachy and David M.

Raffo: Software process simulation modeling: Why? What,

How?. Journal of Systems and Software, vol. 46, pages 91--

105, (1999).

[7] James P. Womack, Daniel T. Jones, Daniel Roos: The

Machine That Changed the World : The Story of Lean

Production. Harper Perennial, (November 1991).

[8] J.W. Forrester: Industrial dynamics. Cambridge, MA:

MIT Press, (1961).

[9] Henrik Kniberg and Mattias Skarin. Kanban and Scrum

making the most of both. Managing Editor: Diana Plesa.

Enterprise software development series. InfoQ. USA. ISBN

978--0--557--13832--6 (2010).

[10] Kim E. van Oorschot, Kishore Sengputa, Luk N. van

Wassenhove: Dynamics of Agile Software Development.

Proceedings of the 27th International Conference of the

System Dynamics Society, July 26--30, (2009) Albuquerque,

New Mexico, USA.

[11] Kong Xiaoying, Liu Li, Lowe David: Modelling an

Agile Web Maintenance Process. (2005).

[12] Luisanna Cocco, Katiuscia Mannaro, Giulio Concas, and

Michele Marchesi: Simulating Kanban and Scrum vs

Waterfall with System Dynamics, XP2011

[13] M. Marchesi, K.Mannaro, S. Uras, M. Locci:

Distributed Scrum in a Research Project Management Agile

Processes. In Software Engineering and Extreme

Programming, Lecture Notes in Computer Science, Volume

4536/2007, pp. 240-244, (2007).

[14] Raffaele Giordanelli, Carlo Mastroianni, The Cloud

Computing Paradigm: Characteristic, Opportunities and

Research Issues, RT-ICAR-CS Aprile 2010.

[15] SalesForce: Agile Development Meets Cloud

Computing for Extraordinary Results at Salesforce.com,

White Paper, 2008.

[16] Schwaber Ken: Agile Project Management with Scrum,

Microsoft Press,Redmond, WA, (2004).

[17] Schwaber Ken: Scrum Development Process, White

Paper, (1997).

[18] Scrum Alliance, http://www.scrumalliance.org

408 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

[19] Sajid Ibrahim Hashmi, Victor Clerc, Maryam Razavian,

Christina Manteli, Damiani Andrew Tamburri, Patricia Lago,

Elisabetta Di Nitto, Ita Richardson: Using Cloud to Facilitate

Global Software Development Challenges, 2011 IEEE.

[20] Takeuchi H. and Nonaka I.: The New New Product

Development Game, Harvard Business Review, January-

February (1986).

[21] URL: http://agilemanifesto.org/

[22] Warren W. Tignor: Agile Project Management.

International Conference of the System Dynamics Society,

Albuquerque, NM 2009, July 26- July 30, 2009.

[23] Yash Talreja: Lean Agile Methodologies Accentuate

Benefits of Cloud Computing, 2010

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 409

410 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

SESSION

SOFTWARE ENGINEERING AND EMBEDDED
SYSTEMS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 411

412 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

	

Video Processing for Motion Tracking
of Safety Critical Systems

Travis Cleveland, David J. Coe, and Jeffrey H. Kulick
Department of Electrical and Computer Engineering

University of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract - The authors have been developing a laboratory
for teaching safety critical software development. The
laboratory currently utilizes an HO model train system,
which provides for easy understanding of the operational
and safety requirements. In earlier years, mechanical,
magnetic and optical sensors have been used to provide
location data to the scheduling and safety software.
However, this approach has grown to the level that over
1000 wire segments need to be maintained for correct
operation. This paper discusses the use of video tracking
software to significantly reduce the number of electrical
contacts subject to failure, and to provide more flexibility to
the system as the track layout changes.

Keywords: RTCA DO-178C, motion tracking,
 safety critical systems, software safety,
 real-time embedded systems

1 Motivation

The Department of Electrical and Computer Engineering at
The University of Alabama in Huntsville has been teaching
a course in safety critical software design for the past two
years [1]. The students have been developing a software
controller for a model train system shown in Figure 1
below.

During the course, students perform a functional hazard
analysis and assign Design Assurance Levels, as described
in Table 1, to the various functions as in typically found in a
DO-178C aircraft safety analysis [2-3]. During this
analysis, the students determined that the scheduler is a
Design Assurance Level A (DAL A) component since it can
cause train crashes and thus (model) loss of life. To reduce
the DAL assurance level so that assurance artifacts
requirements are moderated, students developed a parallel
safety monitoring system that is much simpler in design and
complexity so that the scheduler can be DAL C while the

monitor is DAL A. In normal railroad parlance, this
monitor logic is called vital logic.

The train scheduler hardware utilizes DCC control
protocols, and each locomotive has a DCC decoder. Control
signals are provided by a computer controlled Digitrax
controller system [5]. Within the DCC controller system,
contact with the rails from the locomotive wheels provides
occupancy data for the scheduler software. For the DCC
controller system, the track is divided up into individually
power able sections although the DCC system uses DCC
commands to control the speed and direction of the
locomotives and power is never removed by the DCC
system. In the current design there are 24 distinct track
sections.

During the safety analysis, it is determined that the
scheduler software in and of itself is unlikely to be
developed to DAL level A and using standard FTA analysis
a second safety system is developed to ensure safe
operation. This safety system is much smaller in code size
but contains additional sensors and software. The original
version of the safety system was developed using CTI
hardware components and in the past year a new student
team replaced that system with an Arduino-based safety
controller.

The safety system, which is entirely independent of the
DCC controller system, has a power management capability
for each of the 24 DCC track sections. A relay control
board allows the safety systems to independently power
down each of the 24 track sections as needed to prevent a
collision. Each safety section is monitored either by a set of
optical sensors that straddle the track as shown in Figure 2
or magnetic sensors that are located in the middle of the
track. The photographs in Figure 3 below show the
complexity of wiring required for the DCC track sections
and the wiring associated with the safety monitor’s optical
and magnetics occupancy sensor systems.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 413

	

Figure 1 – Camera-eye view of model train system used for safety critical software design course.

Table 1 – Aircraft Design Assurance Levels [2,4]

Design Assurance Level Category Description

DAL A Catastrophic Failure condition results in multiple fatalities with
probable loss of aircraft

DAL B Severe Failure condition would significantly reduce the ability of
the crew and/or aircraft capabilities required to
compensate for adverse operating conditions

DAL C Major Failure condition would reduce the ability of the crew
and/or aircraft capabilities needed to compensate for
adverse operating conditions

DAL D Minor Failure condition has no significant impact on safety
margins or crew workload

DAL E No Safety Effect Failure condition has no impact on safety

During the past year it was decided that the large number of
wires for the safety system was a significant safety risk.
Each DCC track section requires at minimum two wires to
provide power to any train and 4 wires for sensor data. Each
wire goes through a number of wiring blocks, relay blocks,
and power management blocks requiring over 1000 discrete
wires. Thus, to reduce the risks associated with the large
number of wires, we have sought ways to simplify the

safety monitor’s occupancy sensing. Efforts are underway
to replace the optical/magnetic sensor system and its
associated 700+ wires by a video camera system that only
has a few wires linking the cameras to the safety
management computer. Once the computational workload
is better understood, we expect to port the safety system
software to a dedicated pcDuino platform [6].

414 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

	

Figure 2 – Photograph showing optical sensors positioned at track section boundaries

(A) (B)

Figure 3 – Photographs of (A) DCC controller and safety system occupancy sensor wiring and
(B) relays for controlling power distribution to each track section.

2 Train Tracking System

The safety system currently uses a Logitech 1080p web
camera connected by USB to the safety management
computer. Figure 1 is a photograph of the entire track
layout as captured by the camera. Custom locomotive
tracking software has been developed using OpenCV
computer vision libraries that will process images collected
by the camera and output a continuous stream of track
section occupancy data in the form of data pairs consisting
of the locomotive identification number and the track

section number currently occupied by that locomotive.
Colored tags have been added to each locomotive to
facilitate tracking and locomotive identification. Figure 4
below is a screen shot of the locomotive tracking application
showing both the track layout and the filtered image
revealing only the tracking tags. Note that in the model
train layout, the DCC controller wiring for each track
section is currently visible to the camera unless it is blocked
from view by white paper during development of the
locomotive tracking software. The DCC controller wiring
will eventually be rerouted underneath the table surface.
The algorithms used for locomotive tracking are described
below.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 415

	

Figure 4 – Screen capture of locomotive tracking software showing track layout (lower left) and locomotive

tracking tags (top left and top right).

During actual train operation, the video images from the
camera are processed as described below and the location of
the occupancy blocks are recorded. As the software
algorithms are completed, an Nvidia GPU processor will be
used to accelerate processing of the images to reduce the
error between computed locomotive position versus the
actual locomotive position. Finally, the completed
algorithms will be ported to the pcDuino and included GPU.
For debugging purposes, the tracking data is currently
printed to the screen continuously. In the production
version of the software, in addition to being used by the
safety critical software, tracking data will be made available
via a socket connection for possible use by the scheduling
system.

3 Track/Camera Calibration
Procedure

The first step in the tracking process is to map the pixel data
to track section boundaries. The calibration process
develops a map of the locations of the track safety sections
by using the video system and a manually controlled
locomotive. The locomotive is positioned at the ends and
middle of each safety section and the video coordinate of
the individual block is recorded. Because the camera may
move from session to session, a calibration run is performed
at the beginning of each session to obtain the correct
location of the track on the video frame. Figure 5 (left)
shows the track sections as identified by the calibration
process with track sections overlaid onto the track layout
photograph using an alternating sequence of colors. Figure
5 (right) shows the actual location of the locomotive as it
traverses the track under DCC control.

416 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

	

Figure 5 – System state post calibration process (left) showing the track sections marked in alternating color

scheme and (right) tracking data showing locomotive as it traverses the track under power

4 Locomotive Tracking Algorithms
The goal of the locomotive tracking system is to at any time
be able to identify the track section occupied by any
particular locomotive and produce a continuous stream of
locomotive tracking data indicating the current position of
each locomotive. Our solution was to use a color-based
tracking scheme to locate and track colored markers
positioned on the top of each locomotive, with one marker
positioned at the front of the locomotive and one marker at
the rear. The locomotive tracking system must (1) capture
an image, (2) analyze the image, (3) track any locomotives,
and (4) report the positions of the locomotives. The
OpenCV computer vision libraries facilitate image capture
and subsequent processing. Below we describe image
analysis and locomotive tracking in more detail.

4.1 Image Analysis
The image coming into the system from the camera is a
color image. Once an image is captured, a function is used
to convert the RGB image over to the HSV spectrum to
simplify color processing. The program then extracts out
for each color a mask that is only of that color (eg. red).
During this masking phase the color is also searched for
centers of mass using a moments function. The centers of
mass are then pushed onto a vector where further calculation
can occur. The masked image is then used as the main
image to display as a debug aid where all the colors that the
system can see are displayed.

4.2 Locomotive Tracking

After all the colors are found and marked, the system goes
through each one and depending on the current mode,

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 417

	

Debug Mode or Tracking Mode, perform one of two
operations.

Debug Mode - In Debug Mode, the system ignores all colors
that are not orange since the train is marked in orange. The
user is instructed to calibrate the track by using a single
orange mark on a Train and track it around all possible paths
in the system (See Calibration). The Path is then built over
a system of grid cells and each location is marked with the
sector number. The more times the train is allowed to travel
over each sector the more accurate the sector locations will
be because it is averaging samples over multiple image
frames.

Tracking Mode - In Tracking Mode, the system will look at
the (X,Y) coordinates of each of the centers of mass in the
system. It will then determine where they are in relation to a
defined grid set up. Currently the grid is the full size of the
image and each pixel gets a marked grid cell location. When
the (X,Y) coordinates are returned, the system checks the
sector number of that particular grid cell. If it was not
marked on calibration, the system will check the
surrounding cells for a sector number. Therefore the current
center of mass may be ignored if no sector number is
marked. This has been tested and does not seem to have an
adverse effect on the system.

5 Results and Future Work

A prototype system has been completed and is running on a
Pentium workstation. Real time processing of the video
images of multiple locomotives has been achieved at model
train velocities in the range of 5 inches per second for a
single locomotive. Figure 5 (right) above shows locomotive
track sector position as it traverses track under DCC control.

We are currently planning to port this to the processor that is
going to run the safety monitor software. Although the
current safety system utilizes an Arduino, the plan is to port
it to a dedicated processor, the pcDuino from Sparkfun.
Although the pcDuino is substantially slower than the
Pentium [7], we are investigating speedups including
removing pixels from consideration where the locomotives

cannot exist. However, one goal of this project was to
include the ability to detect non-locomotive objects on the
track such as model livestock and vehicles. Determining
how to increase the scope of the search with out
unreasonably burdening the software is part of the ongoing
research.

Upon completion of this project, we will have demonstrated
that the traditional approach to modeling safety critical
systems with extensive sensors and miles of wire may be
replaced with video processing. This should make it much
easier for others to replicate our instructional setup given
that we will have eliminated a large number of wire
connections that would have been required. The video-
based system will also make the setup more amenable to
change.

6 References

[1] D.J. Coe, J.S. Hogue, and J.H. Kulick, "Software Safety
Engineering Education," 2011 International Conference on
Software Engineering Researchand Practice (SERP'11),
WORLDCOMP 2011, July 18-21, 2011, Las Vegas, NV
[2] RTCA DO-178C, “Software Considerations in Airborne
Systems and Equipment Certification”, December 13, 2011.
[3] SAE ARP4761, “Guidelines and Methods for
Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment”, Issued 1996-12.
[4] SAE ARP4754, “Certification Considerations for
Highly-Integrated or Complex Aircraft Systems”, Issued
1996-11.
[5] Link to Digitrax Controller Board,
http://www.digitrax.com/products/stationary-decoders/ds64/
[6] Link to pcDuino Development Board,
https://www.sparkfun.com/products/11712
[7] Katie Roberts-Hoffman and Pawankumar Hedge, “ARM
Cortex-A8 vs. Intel Atom: Architectural and Benchmark
Comparisons”,
http://www.ee.unlv.edu/~meiyang/ecg700/readings/ARM%
20Cortex-A8%20vs.%20Intel%20Atom.pdf

418 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Strengthening Interrupt Controls in Embedded Systems

by Cooperation between Windows CE and REMON

Shigeki Nankaku１, Hisao Koizumi
2
. and Akira Fukuda

3

1
Computer Science, Osaka Electro-Communication University, Shijyonawate, Osaka, Japan

2
Science and Engineering, Tokyo Denki University, Ishisaka, Hatoyama, Hiki, Saitama, Saitama
3
Information Science and Electrical Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan

Abstract - Many recent embedded system products have

sophisticated display functions. Microsoft Windows Embedded

CE (hereafter referred to as ‘Windows CE’) is a widely used

embedded OS with a simple GUI design. However, Windows

CE has threaded interrupt processes, and therefore it has

problems in handling processes for which a strict interrupt

response time is requested. We have developed Real-Time

Embedded Monitor (REMON) for controlling Interrupt

Service Routine (ISR) processes. When using REMON, it is

possible to improve the real-time characteristics of the

interrupt processes. This paper proposes a system that

combines Windows CE and REMON and utilizes the

advantages of both to create an embedded system having both

sophisticated display functionality and excellent

responsiveness to interrupts.

Keywords: Embedded Systems, Interrupt, Interrupt Service

Routine, HMI, Windows

1 Introduction

 It is vital for embedded systems to be able to send a

response to changes in an external environment within a set

period of time, such as in the case of mobile phones where it

is necessary to respond to an incoming call while creating an

email. Changes in the external environment are detected by a

wide variety of sensors and are communicated to the CPU

using interrupts.

Interrupts are functions of the CPU, and the mechanism used

by the CPU hardware is to place interrupt signals in the

interrupt signal lines and call the Interrupt Service Routine

(ISR). An ISR is software that is used to respond to changes

in an environment. Conceptually, interrupts can be considered

as a method by which hardware calls software. In other words,

it is possible for hardware to process responses to changes in

the embedded system environment by calling the ISR and

returning the results.

There are various types of environmental changes, and there is

also a wide variation in the times at which these changes

occur. Multiple changes can occur simultaneously. The

priority of a response depends on the type of change involved.

As a result, concurrency is sought in ISRs in order to permit

multiple interrupts with priorities attached.

Because ISRs directly handle hardware, such as when

prohibiting/permitting hardware-level interrupts to attain

exclusive control, knowledge of time restrictions for processes

and hardware is required when designing ISR systems.

Furthermore, as the ISR directly processes hardware, it has a

major influence on the system as a whole [1]-[4].

Normally, hardware is encapsulated and virtualized using a

real-time operating system (RTOS). This eliminates the need

for most of software that makes up the embedded system to

directly handle hardware. Furthermore, the ISR is

encapsulated in the same way using the RTOS.

In an RTOS environment, processes are executed using tasks

and threads (hereafter referred to as ‘threads’). The RTOS

provides a variety of functions to threads, such as exclusive

control and communication, known as system calls. Threads

are able to process interrupts in concurrent using functions

also provided by the RTOS [5]-[7].

Many recent embedded systems such as car navigation

systems have sophisticated display devices. Microsoft

Windows Embedded CE (hereafter referred to as ‘Windows

CE’) is a widely used embedded OS with a simple GUI design.

However, Windows CE has threaded interrupt processes, and

therefore it has problems handling processes for which a strict

interrupt response time is requested. Although it is possible to

directly embed interrupt processing into the Windows CE

kernel, since the processing is performed in a state where

interrupts are disabled by the kernel, problems such as lower

interrupt response times and difficulty in predicting the

interrupt response time may arise.

ISR controls are vital in embedded systems in order to

enable them to respond to changes in the external

environment. We have researched the interrupt scheduler

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 419

Real-Time Embedded Monitor (REMON) as a means of

controlling interrupts in embedded systems [8]-[10].

As REMON provides the same functionality as an RTOS

semaphore for each ISR, it is possible for the ISR to

execute exclusive control without using disable

interrupt/enable interrupt (DI/EI). The result is that, by

shortening the interval in which interrupts are prohibited,

the interrupt responsiveness of the embedded system is

enhanced, i.e. using REMON improves the real-time

characteristics of the embedded system.

REMON provides an independent execution environment

for each ISR in which each ISR has a state. Where

execution is paused, the state is referred to as a ‘wait state’.

REMON uses the fact that ISR has a ‘wait state’ and that

ISR can use a semaphore.

REMON is highly versatile and can also be applied to

RISC-type CPUs, which do not have hardware-interrupt

priorities. Furthermore, it records the interrupts that occur

and their frequency so its drop rate for interrupts will be

low even when they are occurring at a high frequency.

REMON also has ISR control functions such as ISR stack

overflow detection. In addition, there is little fluctuation in

the processing time for ISR execution, making real-time

design simple.

However, the objective of REMON is to control ISRs, and

it does not have the sophisticated display functions and

human interface (HMI) functionality integrated into

Windows CE.

In this paper, we propose, through the link-up of Windows

CE and REMON, a method to improve the interrupt

response of embedded systems with sophisticated display

functionality.

With the proposed system, both REMON and Windows

CE are simultaneously loaded on one CPU. High-priority

interrupts are processed by REMON, and low-priority

interrupts are processed by Windows CE.

Currently, REMON prohibits low-priority interrupts,

whereas Windows CE always permits high-priority

interrupts. As a result, switching from Windows CE to

REMON is always possible.

The proposed system makes it possible to handle processes

for which a strict response time is requested and those

which Windows CE has traditionally been unable to

handle. Furthermore, in the proposed system, it is possible

to use sophisticated display features using the functionality

of Windows CE.

2 Interrupt Processing by Windows CE

and REMON

2.1 What are interrupts?

 In this paper, an interrupt is defined as a function that uses

changes in a specific terminal within the CPU as a trigger for

the CPU to suspend its current activities and to start the

execution of a program specified in advance , i.e. the ISR.

Interrupts are functions contained by all CPU hardware. Using

an interrupt, it is possible to switch from the executing

program to a different program.

The computer system switches control from the

application program to the OS using periodic interrupts

from a timer device.

In an embedded system, changes in the external environment

are detected by various sensors which notify the CPU by

issuing an interrupt. The CPU can use this interrupt to execute

a process that responds to the change.

Figure 1 show an example of a connection where the sending

and receiving of packets is communicated by the network

controller to the CPU via an interrupt signal pin.

2.2 Interrupt Processing by Windows CE and

Related Issues

 Windows CE is a 32-bit RTOS for embedded devices. It is

compatible with multiple CPU architectures such as ARM,

MIPS, SuperH and x86. Furthermore, as the supported

application programming interface (API) is a subset of the

Windows API, it has high software productivity and is used

by a wide variety of devices such as portable AV players,

point-of-sale registers, car navigation systems, video

projectors and thin client terminals.

In Windows CE, when a device driver is loaded, a thread that

processes interrupts, known as the interrupt service thread

(IST) starts(Figure 2). The IST has a higher priority than

normal threads. When the IST starts, a system call known as

WaitForSingleObject, which waits for the generation of an

event provided by Windows CE, is issued straight away and

the IST goes into a wait state. When an interrupt is generated,

the ISR searches the interrupt number for that interrupt

(Figure 2). After notification of the interrupt number from the

ISR, the Windows CE kernel generates an event responding to

that interrupt number and releases the wait state of the IST.

When this happens, IST will process the interrupt.

In Windows CE, an important issue in interrupt processing is

that latency may occur because the interrupt is executed by a

thread. Therefore, it is difficult to predict the interrupt

420 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Ethernet Controller RTL8019AS CPU M30833FJFPEEPROM 93C46

LED

CS

CLK

DI

DO

INT0

(Interrupt Request

SA.0 - SA.4

(Host Address bus)

SD.0 – SD.7

 (Host Data bus)

SA5

IOCHRDY

IORB

IOWB

INT2

(Interrupt Input pin)

A.0 - A.4

(Address bus)

D.0 – D.7

 (Data bus)

CS (Chip Select pin)

RDY (Ready)

WRL

RO

Ethernet TRANS

TPIN +

TPIN -

TPOUT +

TPOUT -

LED0

LED1

LED2

EECS

EESK

EEDI

EEDO

Fig. 1 Use of interrupt signals

response time and to handle processes for which a strict

interrupt response time is requested.

In order to improve the response to the interrupt in Windows

CE, it is possible to process the interrupt within the ISR

(Figure 3). However, this approach poses a problem, as

interrupt processing occurs in an interrupt-prohibited state,

because other high-priority interrupts may be delayed. It also

does not resolve the issue of predicting the interrupt response

time.

2.3 Interrupt processing by REMON

REMON, by virtue of having a separate execution

environment and state for each individual ISR, can provide

each ISR with the same functionality as an RTOS semaphore

[8]-[10]. By applying an independent execution environment

to an ISR, REMON can associate each ISR with an interrupt

control block (ICB, Figure 4). When pausing the execution of

an ISR, the execution environment, including the CPU

register data, is stored in the ICB, and when restarting the ISR,

this data is retrieved.

A stack is allocated to each ISR for use as the local data area

for the ISR.

In REMON, each ISR has an independent execution

environment, and it is therefore possible for each ISR to

restart execution in an arbitrary order. By using REMON, the

ISR can be executed with minimal delay. In addition, it is

possible to attain exclusive control without using DI/EI.

Furthermore, through the use of semaphore provided by

REMON for synchronization, it is possible to coordinate the

operation of multiple ISRs.

2.4 Issues in the use of semaphore by ISR and

the use of semaphore by REMON

 Unrelated processing is not delayed in mutual exclusion

through semaphores that are used in embedded systems with a

RTOS. If an ISR can also use semaphores, the previously

KERNEL

IST
Load Device Driver

WaitForSingleObject
Interrupt ISR

InterruptID

Interrupt Routine

Fig. 2 Interrupt processing in Windows CE

KERNEL

IST
Load Device Driver

WaitForSingleObject
Interrupt

ISR

InterruptID

Interrupt Routine

SetEvent

Disable Interrupt

Fig. 3 System in which interrupt processing occurs in the

ISR

described issue does not occur. However, an ISR cannot use

semaphores if REMON is not used.

If an ISR requests the acquisition of a semaphore at a time the

semaphore is locked by another ISR, the ISR stops executing

and saves the context data, which refer to data required for

restarting the execution. The restart sequence is not related to

the sequence in which the ISRs were stopped, as the restart of

a stopped ISR is performed through the release of the

semaphore by another ISR. Because ISRs use semaphores, an

ISR must be stopped and restarted in a free sequence.

When REMON is not used, ISRs share one stack, where the

context is saved. When an ISR is pre-empted, the context data

are saved in the stack. As data are restored in the reverse

order in which they have been saved in the stack, ISRs are

only restarted in the reverse order in which they have been

pre-empted.

REMON assigns each ISR an individual storage place for its

context, thus enabling the use of ISR semaphores.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 421

REMON

scheduler

Interrupt ICB[0]

ICB[1]

ICB[2]

ICB[3]

ICB[4]

ICB[5]

ICB[6]

ICB[7]

ICB Table

ISR0

ISR1

ISR2

ISR3

ISR4

ISR5

ISR6

ISR7

Interrupt Service Routine

status of ICB

start address

stack bottom

CPU context

ICB of ISR3

PC(program counter)

SP(stack pointer)

PSW(processor status

word)

GP(general purpose

registers)

ETC(special purpose

registers)

Fig. 4. REMON Architecture

3 Cooperation between Windows CE

and REMON

 Here we propose a new embedded system that cooperate

Windows CE and REMON. We hope that, by combining the

sophisticated display capabilities of Windows CE and the

interrupt-control functionality of REMON, the new system

can be effective as an embedded system that has advanced

display functionality and can process interrupts within strict

response times.

There are several methods of combination of REMON and

Windows CE and each is described briefly below.

3.1 Method involving replacement of the

Windows CE interrupt handler by

REMON

 With this method (Figure 5), the Windows CE interrupt

process can be freely started from REMON. However, the

structure in which the interrupt is processed by IST does not

change, and this does not promise much improvement in the

interrupt response

3.2 Method that calls Windows CE from

REMON

With this method (Figure 6), all interrupts from the hardware

are received by REMON and high-priority time. Furthermore,

it would involve large-scale changes to Windows CE, making

implementation difficult.

interrupts are processed within REMON. For lower-priority

interrupts, it calls the Windows CE process. The REMON

scheduler (Figure 4) first searches the ICB database to locate

an ISR that can be executed, i.e. the array order and priority

match. Windows CE handles the lowest priority ISRs received

by REMON. It is only when it is unable to execute all of the

ISR that Windows CE is implemented.

With this method, it is also possible to monitor Windows CE.

This method also allows REMON and Windows CE to be

developed separately.

However, this method of linking REMON and Windows

CE has a disadvantage in that it further complicates the

already complicated Windows CE interrupt sequence. In

addition, the Windows CE interrupts are also delayed.

 Windows CE

IST

Hardware Divices

INTERRUPT

REMON

Fig. 5. Method where Windows CE interrupt handler is

replaced by REMON

 Windows CE

IST

Hardware Divices

Interrupt Handler

REMON

INTERRUPT

Fig. 6. Method where Windows CE is called from REMON

422 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 Windows CE

ISTs

Interrupt Handler

INTERRUPT

ISRs

Hardware Divices

REMON

Fig. 7. System that separates on the basis of the interrupt

level

3.3 Method to separate Windows CE and

REMON interrupts using interrupt

priority

With this method (Figure 7), the interrupts to be processed by

REMON and Windows CE are separated. While REMON is

executing high-priority interrupts, low priority interrupts are

prohibited. As a result, the interrupts processed by Windows

CE are prevented from hindering the execution of the high-

priority interrupts processed by REMON. Furthermore, since

Windows CE never prohibits interrupts and always allows

high-priority interrupts, it is always possible to switch to

REMON for any high-priority interrupts that occur while

Windows CE is executing.

Figure 8 shows the operation of ISR and IST, using CPU

interrupt priority, when the interrupts processed by REMON

and Windows CE are separated. CPU interrupt priority is a

function included in the CPU hardware that can set the

priority of interrupts. It is also possible to prohibit/allow

interrupts from the software on the basis of priority. Figure 9

shows the transitions in Windows CE and REMON when

using a method that separates interrupts on the basis of

priority.

Figure 10 shows the sequence of processing interrupts when

high-priority interrupts occur in a system that uses interrupt

priority to separate interrupts. The figure shows that REMON

is called when a high-priority interrupt occurs. If other high-

priority interrupts occur, REMON is called, but REMON is

not called for low-priority interrupts, Windows CE is called.

Figure 11 shows the interrupt operating sequence when a low-

priority interrupt is generated in a system that separates

interrupts on the basis of priority.

These are processed by Windows CE, with the same interrupt

process operation as that previously used by Windows CE.

REMON

scheduler

Interrupt

ISR

ISR

ISR

Windows CE

Thread

Thread

Thread

Priority

High

Priority

Low

Fig. 8. Windows CE–REMON architecture

High Level Interrupt

REMON

High Level Interrupt

Windows CE

Low Level Interrupt

Low Level Interrupt

Fig. 9. State transition for Windows CE and REMON

interrupts

Windows CE

Thread

REMON

Dispatcher

REMON

ISR

Windows CE

Kernel

Low Level

Interrupt

High Level

Interrupt

Disable

All Interrupt
Disable

Low Level Interrupt

High Level

Interrupt

Fig. 10. Operation when a high-priority interrupts occurs

When a low-priority interrupt is generated, Windows CE is

called. Further, when high-priority interrupts that are

processed by REMON are generated, REMON is called.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 423

REMON

Dispatcher

Windows CE

Thread

Windows CE

Kernel

Low Level

Interrupt

Disable

Low Level Interrupt

Disable

All Interrupt

Low Level

Interrupt

High Level

Interrupt

Fig. 11. Operation on occurrence of low priority interrupts

This method (Method 3.3) of creating a combined Windows

CE–REMON system, using interrupt priority to separate

Windows CE and REMON interrupts, best meets our

objectives. Therefore, we have adopted this method to

provide a link-up between Windows CE and REMON.

4 Testing and measurement of

results when Windows CE and

REMON work together

4.1 Testing environment

In order to test the combination of REMON and Windows CE,

we have created an embedded system on the MINI2440

(Table 1), using the Samsung S3C2440 ARM architecture

CPU, the ARM CPU most widely used by Windows CE

(Figure 12). The Windows CE version used is Windows

Embedded CE6.

Figure 13 shows the interrupt model in ARM and the ARM

interrupt control register. In ARM, two levels of interrupts,

known as IRQ and FIQ, are present. As FIQ processes at a

faster speed than IRQ, ARM uses a banked register in which a

part of the register can be switched. As FIQ has a banked

register, it can process at faster speeds than IRQ.

FIQ is not used by Windows CE and is used only as an

interrupt executed by REMON.

Table 1. MINI2440 specifications

CPU core ARM920T core

CPU clock 400 MHz

Memory 64 MB SDRAM,

256 MB Flash

Other 10/100Base-T Ethernet

3.5-in. touch panel liquid

crystal display

Fig. 12. Test environment MINI2440

IRQ

FIQ

DataAbort

PrefetchAbprt

Software Interrupt

Undefined

Reset

ARM Exception

Register [CPSR]

- MTFI

I : IRQ Disable

F : FIQ Disable

Fig. 13. ARM interrupt model

Table 2. Test environment MINI2440

 Interrupt response

speed (μs)

Windows CE 32.09

REMON–Windows CE 4.58

4.2 High-speed ISR switchover

FIQ is not used by the Windows CE kernel. By using

REMON for FIQ interrupts, the efficiency of interrupt

processing can be increased.

When the REMON ISR is initiated by temporarily disabling

IRQ interrupts, the embedded system can process interrupts at

high speeds without the interrupt overhead of Windows CE.

424 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

When processing interrupts with a strict interrupt response

time, it is necessary to switch to ISR at high speeds when an

interrupt occurs. Furthermore, if the interrupt that occurs has a

low priority, it must return processing promptly. For this

reason, the embedded system is constructed in such a way that

switchover uses the FIQ banked register and can switch with

the minimum amount of processing.

4.3 Measurement results

We used a logic analyser to measure the time from when the

interrupt was generated until the time processing started for

Windows CE alone and for the combined embedded

REMON– Windows CE system. As the logic analyser

conducted sampling using 800 MHz signals, the minimum

measured unit was 0.25 ns. Measurements showed the mean

value for each and every 100 calculations. The results are

shown in Table 2.

While processing interrupts with Windows CE had a response

time of 32.09 μs, this was reduced to 4.58 μs

when processing interrupts with the combined embedded

REMON–Windows CE system. Thus, we were able to attain a

sufficiently practicable interrupt response time.

5 Conclusions

 By combining Windows CE and REMON, it has become

possible to handle and process strict interrupt response times

that could not be processed with Windows CE alone.

Furthermore, we believe that realizing exclusive control of

interrupt processing has led to an improved level of reliability

in regard to interrupts.

Issues to be examined in the future include the

reinforcement of the interrupt control functionality of

Windows CE through sharing the interrupts of Windows CE

and REMON. We also plan to apply this to other real-time

operating systems.

6 References

[1] Shigeki Nankaku：“Guarantee of interruption response

time in embedded systems”, Systems, Control and

Information, The Institute of Systems, Control and

Information Engineers, Vol.51, No.9 pp.388-392 (2007) (in

Japanese)

[2] Ministry of Economy, Trade and Industry Japan:

Embedded Software Industry Survey Report 2010, (2011)

[3] ED LIPIANSKY ： ”EMBEDDED SYSTEMS

HARDWARE FOR SOFTWARE ENGINEERS”, WILEY

IEEE PRESS, (2012)

[4] Julio Sanchez and Maria P. Canton ： ”EMBEDDE

SYSTEMS CIRCUITS and PROGRAMMING”, CRC Press,

(2012)

[5] Phillip A. Laplante and Seppo J. Ovaska：”Real-Time

Systems Design and Analysis 4TH EDITION”, WILEY IEEE

PRESS, (2012)

[6] Alan Burns and Andy Wellings：”Real-Time Systems

and Programming Languages”, ADDISON-WESLEY, (1997)

[7] Giorgio C. Buttazzo： ”Hard Real-Time Computing

Systems”, Springer, (2011)

[8] Shigeki Nankaku：“Development of the simple interrupt

monitor REMON”, Proceedings of Electronics, Information

and Systems Conference Electronics, Information and

Systems Society, pp.447-448 (2009) (in Japanese)

[9] Shigeki Nankaku, Hisao Koizumi, Akira Fukuda:

“Control of Stack Overflow of ISRs for Embedded Systems

without MMU”, Proceedings of Electronics, Information and

Systems Conference Electronics, Information and Systems

Society, pp. 254-259 (2012) (in Japanese)

[10] Shigeki Nankaku, Kiminori Mizushino, Hisao Koizumi,

Akira Fukuda：“Interrupt Scheduler REMON for Embedded

Systems”, The Institute of Electrical Engineers of Japan,

Transactions on Electronics, Information and Systems Society,

Vol.133 No.2 pp. 316-325 (2013) (in Japanese)

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 425

Independent Verification and Validation of Software for

Weapon Management System of a High Performance

Aircraft

Sudha Srinivasan, Rekha.R, Dr.K.Karunakar

IV&V, Aeronautical Development Agency, Bangalore, Karnataka, India

Abstract - The failure of safety critical embedded software

is unacceptable be it for safety, security or economic

reasons. The risk of software failure in complex embedded

systems is overcome by using the Independent Verification

and Validation (IV&V) technique. The process of IV&V and

its planning needs to be initiated early in the development

life cycle of the weapon management system for a high

performance aircraft. In the present context, the aircraft has

so far achieved successful integration and release of Air-to-

Ground weapons and Air-to-Air close combat missiles. The

above functionalities are achieved by complex embedded

software systems which constitute the weapon management

system for which advanced IV&V techniques have been used

to remove errors during development phase. The

methodology used for performing IV&V of software for

weapon management system has been discussed in this

paper.

Keywords: Independent Verification and Validation,

Safety Critical Embedded System

1 Introduction

 Software IV&V is a systems engineering process

employing rigorous methodologies for evaluating the

correctness, quality and safety of the airborne embedded

systems throughout the software development life cycle. It

provides for the early detection and identification of risk

elements. The program is then able to take actions to

mitigate these risks early in the life cycle.

The IV&V Program plays a key role to identify, understand

and mitigate risks associated with the safety critical systems,

increase the probability of success of the mission as a whole

while reducing software errors, development cost and

development time.

The weapon management system is a high integrity software

system which manages the integration, preparation,

selection and firing of Air-to-Ground Weapons and Air-to-

Air Close Combat Missiles.

In this paper, the method used for performing the IV&V of

the weapon management system of a high performance

aircraft which is categorized as an airborne safety critical

embedded system is discussed. The importance of carrying

out the compiler validation, evolving the coding standards

and performing the independent verification and validation

of the Programmable Logic devices, INSITU software,

device driver software and acceptance test software for

hardware is discussed apart from the method used for

performing the IV&V of the application software of the

embedded system. The architecture and system details of

the weapon management system is however not discussed in

this paper since this paper emphasizes on the work carried

out for the IV&V of weapon management system , which

can be followed as a generic approach for performing the

IV&V of any safety critical airborne embedded system.

Outline of this paper is as follows: section 2 describes the

Independent Verification and Validation, Section 3

describes IV&V of application software, Section 4

describes the IV&V of hardware related software, Section 5

describes the coding standards and compiler validation and

Section 6 summarizes this paper.

2 Independent Verification & Validation

 In the modern high performance aircraft, when the

initial design was perceived, many safety and mission

critical functions were planned to be implemented in

software which amounted to many embedded software

systems.

In order to ensure safe flight and error free performance, the

technique of IV&V was adopted and has pioneered in the

country from the year 1990 in order to bring out new

techniques and new methods to evaluate complex systems.

The three types of independence required for an effective

verification and validation process identified for the IV&V

of weapon management system software are:

Firstly , Technical independence where the members of the

IV&V team are not involved in the development of the

software and this team works with an unbiased approach in

learning about the system requirements, proposed solutions

for building the system, and problems encountered.

Technical independence of the IV&V team is crucial in the

team's ability to detect the subtle software requirements,

software design, and coding errors that frequently escape

detection during development testing and Software Quality

Assurance reviews.

426 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Secondly, Managerial independence where the IV&V team

independently decides the areas of the software or system to

be analyzed and tested, the IV&V techniques to be

conducted, schedule of tasks (within the framework of the

system schedules) and technical issues to act upon. The

IV&V team provides its findings in a timely fashion to the

development team who act upon the reported discrepancy

and findings.

Thirdly, financial independence is achieved with the budget

being allocated by programme management and controlled

at high level such that IV&V effectiveness is not

compromised. This independence helps in usage of

appropriate tools and preventing the delays of IV&V

analysis and timely reporting of the results.

The focus of the IV&V objective is accomplished by

providing value-added, high quality, technical assurance

that the safety critical system being used is meeting its

requirements in terms of the technical, safety, security, and

reliability objectives of that mission.

3 IV&V of Application Software

 Incremental approach is followed for the IV&V of the

application software of the weapon management system.

The IV&V of the software life cycle artifacts for the

application software are carried out incrementally for each

weapon integrated to the aircraft. Regression analysis and

testing is carried out when there is a change in requirements.

Finally the IV&V with the integration of all the weapons is

carried out.

Figure 1 represents the independent verification and

validation process which is followed for the application

software of the weapon management system.

Figure 1: IV and V Process

The IV&V of application software begins early in the life

cycle, when the user requirements are captured and

continues till the system testing is completed successfully

without errors. As a part of the IV&V activity in the

software requirements phase, the correctness of the

allocation of system requirements to software is checked

along with the correctness, completeness, non-ambiguity

and testability of the software requirements.

Concurrently with software requirements IV&V, software

system test planning is initiated. All the proposed testing for

the system to ensure comprehensive testing and planning of

appropriate resources are carried out. The Software

Requirement Specification (SRS) and Interface

Requirement Specification (IRS) documents supplied by the

development team are analyzed and traceability to the

system requirements documents are checked in order to

ensure completeness.

The software design IV&V activities occur after the

software requirements have undergone the software IV&V

process and the software design or an increment of the

software design is completed.

The software IV&V tasks of traceability, evaluation and

interface analysis provide assurance that software

requirements are not misrepresented, incompletely

implemented or incorrectly implemented. By verifying that

the software design meets its software requirements, the

software design IV&V activity also supports validation that

the software design meets system requirements. Code

walkthrough is another opportunity to find and remove

errors that can cause unnecessary costs and delays from

advancing poor code into any of the test activities. Code

validation is accomplished through unit test described

below:

Figure 2: Test setup for Unit Testing

Unit testing is the test of the software elements at the lowest

level of development. Since the weapon management

software is a safety critical software, unit testing is

performed on the target as shown in figure 2.

In order to ensure coverage, test tools are used for unit

testing and the output of the tool such as the coverage chart

shown in Figure 3 is released as evidence to the designers.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 427

Figure 3: Coverage Chart

Appropriate regression testing with identified parameter

setting is performed whenever changes are made in

software.

System testing, in the context of software IV&V, involves

the conduct of tests to execute the completely integrated

system.

Figure 4 shows the plot of the number of errors detected by

IV&V at each stage of the software development life cycle

(SDLC) for one of the subsystems having about 20000 lines

of code of the weapon management system.

Figure 4: SDLC Stage-wise Error Detection

It may be observed that more than 100 errors were detected

and removed during the requirements phase. It is important

to note that the stringent IV&V process followed to catch

errors in the early phases of the software life cycle has

resulted in reduced errors during system testing resulting in

saving of time and cost.

The recommendations provided by the IV&V team, serves

as the basis for obtaining certification of this system for

flight from the certification agencies. The techniques used

for the IV&V of application software include analysis,

walkthroughs, simulations, reviews, checklists and defect

tracking of the software system.

4 IV&V of Hardware Related Software

 For Safety Critical systems, extensive test and

evaluation of all the software present in the embedded

system is essential. Thus, besides the independent

verification and validation of the application software, the

IV&V of all the software pertaining to the hardware is

performed. This includes the IV&V of INSITU software,

IV&V of software for acceptance test of the hardware,

IV&V of device driver software, and IV&V of

Programmable Logic Devices.

Table 1 shows the Size (approximate lines of code -LOC) of

the software and the number of errors uncovered by IV&V

in each of the hardware artifacts of one of the subsystems of

the weapon management system.

Table 1 : Software size and errors detected

The IV&V activities carried out for each of the hardware

artifact of the weapon management system listed in the table

is discussed below:

4.1 INSITU Software

 INSITU programming is a special ground based

software through which loading of software is carried out

for safety critical embedded systems. This is a very effective

method of downloading the application software onto the

embedded system. The mode of operation of the subsystem

can be either the INSITU mode in order to download/verify

the application software or application mode for the

execution of the application software itself.

All the IV&V activities carried out for the application

software described in this paper is carried out for INSITU

Software.

The INSITU software certified by IV&V is being used for

downloading of application software and also for the

checksum verification of the weapon management system.

This is proved to be an efficient and time saving method.

Hardware Artifact Approx. LOC Num of Errors

INSITU Software 10000 40

Acceptance Test

Software
11000 93

Device driver

Software
4000 57

Programmable

hardware
1209 11

428 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

4.2 Software for Acceptance Test of

 Hardware

 The IV&V of software for the acceptance test of

hardware is a very important activity since the application

software is ported onto this validated hardware. Carrying

out the acceptance test of hardware before testing the

application software on target, enables clear bifurcation of

errors encountered during development and testing of the

embedded system.

The verification and validation of the software used for the

acceptance test of all the hardware components present in

the unit under test are performed. The activities carried out

include, study of the data sheets of each of the hardware

components and memory mapping, verification of software

requirement specification, software design, code analysis of

the acceptance test software and test / analysis of the

coverage of each test. For example: Testing of the Flash

memory involves the loading, verification and checksum

calculation of the entire Flash contents.

The tests conducted are specific to the hardware design of

the particular unit under test and the IV&V team

participates in the final acceptance test of the hardware.

4.3 Device Driver Software

 Device drivers act as translators between the device

and programs that use the device. IV&V of device drivers

of each device is carried out. Each device has its own set of

specialized commands that its device driver software

contains. The device driver accepts the generic commands

from a program and translates them into specialized

commands for the device.

The activities for IV&V of device driver software included

the study of the devices used, analysis of software

requirements for each of the devices, analysis of the device

driver design document, code analysis, preparation of test

plan for testing each of the device driver functions,

preparation of test matrix table for all the functional test

cases and preparation of test drivers for each unit level

function for each of the devices.

Figure 5: Device Driver Test Setup

Figure 5 shows the device driver test setup with a Host PC

having compiler and BDM tool which is used to download

the software and to access the RAM to see the results. It is

connected to the Background Debug Mode (BDM) port of

the unit under test.

The test set up for testing of device driver software is

established based on the devices used and the test approach

involves the following steps:

STEP 1: Identification of inputs: The necessary input

parameters are identified as per the functional requirements.

STEP 2: Test driver: The test driver is custom written for

testing identified drivers.

STEP 3: Development of Test Matrix: After the code

analysis, based on the functionalities, the test cases are

generated manually.

STEP 4: Test Execution: The test cases are executed on the

unit under test.

STEP 5: Result analysis and generation of report: The

result obtained after the execution of the test cases is

compared with the expected output and Pass / Fail criteria is

recorded.

The IV&V report with the observations documented is

released for all the activities carried out for the device

driver software.

4.4 IV&V Of Programmable Logic Devices

 The application of Programmable Logic devices has

become widespread, especially in mission/safety critical

applications and hence the means to verify and validate their

design and functionality is essential.

The IV&V of the requirements of Programmable Logic

Devices involves analysis of requirements, traceability of

requirements to hardware specifications, check for missing

requirements, ambiguous requirements, duplication of

requirements and correct functional partitioning.

Programmable hardware designs that are primarily designed

at the behavioral and the structural level using Very high

speed integrated circuit Hardware Description Language

(VHDL) are good candidates for IV&V methods. IV&V

involves understanding & analysis of design and verification

of correct implementation of every requirement.

IV&V of VHDL source code includes checking the entity

declarations, architecture declarations, structural and

behavioral functionality, and verification of Pin numbers

against the hardware schematics.

IV&V testing of VHDL code comprises of preparation of

test cases to be tested on the simulator, generation of test

benches for running the simulation, execution of tests on the

simulator, analysis of actual test results against the expected

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 429

results, preparation of test report with simulation results

captured as waveforms. Further, testing on target is carried

out to ensure correctness.

Figure 6: Simulation Results

The report is then released to the designers and the

regression testing is again carried out for the corrected

version. Figure 6 shows the simulation results for a sample

test case.

5 Coding Standards and Compiler

 Validation
 The general-purpose languages like Ada and C , which

were developed to meet a number of different needs makes

the supporting compilation system and run-time

environment too large to be used with confidence on safety-

critical applications.

It is not considered safe to use these languages in its

complete form for safety critical applications. The use of the

programming language is restricted to a well-defined and

analyzable subset which does not contain complex and non-

deterministic features of the language. For the weapon

management system software, the safe subset was defined

by the IV&V team which was followed for the design and

development of the software system.

The compiler has direct effect on the final code that is

produced and the compilation process could introduce faults

or unsafe features into the object code. Thus, it is necessary

to take steps to ensure that the conversion to object code

does not introduce errors or undesirable machine level

features.

In order to find compiler code generated faults and to

provide the level of confidence required for safety critical

software, compiler validation is carried out before the

compiler is used for the development of software of safety

critical systems like the weapon management system.

6 Summary

 IV&V is a valuable tool for increasing software quality

and reliability. Verification, Validation, and Certification

are essential in the life cycle of any safety critical embedded

system.

Independent Verification and Validation (IV &V) is

important, especially in software, as the complexity of

software in systems has increased and planning for IV&V is

necessary from the beginning of the development life cycle.

It is also very important to perform the Compiler

Validation, IV&V of Programmable Logic devices ,

INSITU software , Device Driver software and software for

acceptance test of hardware apart from the IV&V of

application software as brought out in this paper. Many

errors are detected during these phases and subsequently

they are removed from the system.

IV&V stands tall in the software life cycle of an embedded

application and is very closely linked with certification

because it is a major component in support of certification.

Shouldering the responsibility of correcting the

design/development mistakes on one hand and working

hand in hand with the designer to produce every evidence to

certification agencies on the other hand is a major challenge

of an IV&V specialist.

7 References

 [1]Dr.K.Karunakar. “Software Testing Effective Methods,

 Tools and Techniques”. Tata McGraw Hill, pp. 261

 “Testing of Embedded Software Systems used in

 Aerospace Applications”.

[2]Audit Report on Independent Verification and

Validation of Software Released by Assistant Inspector

General for audits “National Aeronautics and Space

Administration”. NASA IG-03-011,A-02-005-00, March

2003.

[3]Wallace Dolores R. “Software Verification and

Validation An Overview”. Software IEEE , vol. 6, issue

3, pp. 10-17, 1989.

[4] Arthur James D. “Evaluating the Effectiveness of

Independent Verification and Validation” , vol. 32, issue

10 pp. 79-83., 1999.

[5] IEEE Standard for Software Verification and

Validation Link:

https://standards.ieee.org/findstds/standard/1012-

1998.html

430 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

https://standards.ieee.org/findstds/standard/1012-1998.html
https://standards.ieee.org/findstds/standard/1012-1998.html

SESSION

POSTERS AND SHORT PAPERS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 431

432 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

An Effective Method to Test Sensor Applications

Hwan-Cheol Joeng and Jang-Wu Jo
Department of Computer Engineering, Dong-A University

Abstract - The common way of testing sensor application is to
build a test board, connect sensors to the board, and test
sensor applications on the board. This paper introduced the
problem of existing approach to test sensor applications, and
proposed our approach to solve it. In the existing approach,
it’s impossible to apply the techniques of automatic test data
generation. In other words, users cannot manage test data of
sensor applications. This paper proposed sensor reading
generator through which users can manage test data.

Keywords: Sensors, SW testing, Sensor applications,
Embedded SW

1 Introduction
 Sensors can be defined as devices that sense external stimuli,
and change them into electrical signals[1]. In addition to the
above basic functions, sensors can convert electrical signals
into digital signals. The digital signals are then processed and
analyzed by micro processors. For the purpose of precise
processing and efficient analysis, the digital signals can be
interfaced to communicate with computers which are called as
Central Control Unit[2]. Software that run on the Central
Control Unit are called sensor applications, which receive
sensor readings(digital signal) from sensors, process and
analyze them precisely[3].

Recently, sensors are more and more widely used in many
areas, such as in automotive applications[4], medical
applications[5], and marine application[6] etc. Due to defects
in the sensor software, a lot of accidents have been reported:
Naro launch failure, AUDI A6’s SW defects of deceleration
sensor, BMW’s SW defects of injection pump, Hyundai’s SW
defects of air bag[7].

In this paper, we survey how to test sensor applications and
introduce some problems of current testing methods. We also
propose an effective method to test sensor applications, that
can manage test data of sensor applications without using
sensor data from real sensors..

Section 2 gives a motivation of this research. In section 3,
we propose an effective method to test sensor applications
where users can manage sensor readings without real sensors,
which is possible by sensor reading generator. We discuss
related works and conclude in Section 4.

2 Background
 The current method for testing the sensor application is
to build an board-level system and run the application on that
board[3]. The board-level system which has the same
environment as the target system needs to be built and sensors
need to be connected to the board-level system.

 Fig.2 shows the block diagram of board-level system,
including test-board, sensors, and a kind of communications.
The test data of sensor applications on the test-board is sensor
readings. The problem of this approach is that the range of
test data is limited, because sensor readings represent the
environment of sensors and environment has to be changed to
get different sensor readings.

3 Our Approach
 The goal of our approach is as following. 1) On the view of
programmers of sensor applications, programs need not to be
changed in case of using our approach. Without modification
of sensor applications, sensor readings can be replaced by

Fig. 1 Structure of testing sensor applications

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 433

sensor readings generated by our sensor reading generator. 2)
Sensor reading generator is capable of generating any value of
the range of the sensor. 3) Sensor readings from multiple
sensors can be also generated at the same time.

Fig.2 shows the process of generating sensor readings
without using real sensors. At the bottom of Fig.2, sensor
reading generator consists of four steps to generate artificial
sensor readings.

At the step of sensor selection, users select a sensor that
they want to use. If multiple sensors are needed, you can add
sensors through the repetition of the first step.

At the second step, users need to specify the characteristics
of selected sensors. Characteristics of sensors are used to
define sensors. As an example of temperature sensors,
temperature unit, such as Fahrenheit or Celsius, needs to be
specified.

At the third step, users specify the pattern of generating
sensor readings, such as random pattern, linear pattern, curve
pattern etc.

At the last step, users specify the kind of communications
between test-board and sensor reading generator. Two kinds
of communications, such as wired or wireless one, are
included. The details of wire communication include serial,
parallel, internet, and CAN(Controller Area Network) and
those of wireless one include wifi, Bluetooth, mote, and RFID.

4 Conclusion
 This paper introduced the problem of existing approach to
test sensor applications, and proposed our approach to solve it.
In the existing approach, it’s impossible to apply the

techniques of automatic test data generation. In other words,
users cannot manage test data of sensor applications.

This paper proposed sensor reading generator through
which users can manage test data. In the future research, we
will apply techniques of test data generation, such as branch-
coverage or path coverage, to sensor reading generator.

5 Acknowledgement

This work was supported by 2012 Academic Industry Co-
innovation Project from Busan Techno Park.

6 References

[1] Namki Min, “Introduction to sensors”, Dong-il press, 2013

[2] A. Feng, et. al, “Embedded system for sensor
communication and security”, IET Information Security, Vol.
6, Iss.2, 2012

[3] H. Ramamurthy, et. al, “Wireless Industrial Monitoring
and Control Using a Smart Sensor Platform”, IEEE
SENSORS JOURNAL, Vol. 7, NO. 5, 2007

[4] M. H. Salah, et. al, “A smart multiple-loop automotive
cooling system – model, control, and experimental study”,
IEEE/ASME Trans. Mechatronics, Vol. 15, NO. 1, 2010

[5] M. E. Cater, T. O’Reilly, “Promoting interoperable ocean
sensors the smart ocean sensors consortium”, Proc. OCEANS
2009, MTS/IEEE Biloxi – Marine Technology for Our Future,
Oct. 2009

[6] M. Rusu, et. al, “Distributed e-health system with smart
self-care units”, Proc. IEEE Fifth Int. Conf. on Intelligent
Computer Communication and Processing, 2009

[7] S.I. Cha, “The Present and Prospect of Software Testing
Industry”, communications of KIISE, vol.28, no.11, 2010

[8] Williarm C. Hetzel, “Program test methods”, Prentice-Hall,
1973

[9] B Korel, “Automated software test data generation”, IEEE
Transations on Software Engineering, Vol. 16, 1990

[10] Phil McMinn, “Search-based software test data
generation: asurvey”, Software Tesing, Verification and
Reliability, John Wiley & Sons, 2004

Fig. 2 Sensor reading generator

434 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Towards Cycle-Accurate Performance Predictions for Real-Time Embedded

Systems

 Konstantinos Triantafyllidis, Egor Bondarev, Peter H.N. de With

Eindhoven University of Technology

5600 MB, Eindhoven, The Netherlands

{k.triantafyllidis, e.bondarev, p.h.n.de.with}@tue.nl

Abstract— In this paper we present a model-based performance

analysis method for component-based real-time systems,

featuring cycle-accurate predictions of latencies and enhanced

system robustness. The method incorporates the following

phases: (a) instruction-level profiling of SW components, (b)

modeling the obtained performance metrics in MARTE-

compatible models, (c) generation, schedulability analysis and

simulation of a system model, (d) architecture improvement

based on the analysis results. Our proposed method

incorporates both the schedulability analysis and the simulation

technique, complementing the advantages and eliminating the

limitations of the individual steps. Moreover, the cycle-accurate

performance metrics initiated by our method lead to accurate

performance predictions for an autonomous navigation robot

system, with only 6% deviation (or less) from the actual

performance metrics.

Component-based development has become an adopted
practice in the real-time systems domain, since it enables rapid
system prototyping and development of a system from
existing blocks. Real-time systems are normally characterized
by hard performance requirements, such as throughput,
latency, etc. Therefore, at the early composition phases,
reliable assessment methods are required to accurately
evaluate and predict the performance of a designed system.
Such analysis should consider the complete set of influencing
factors, starting with intrinsic properties of hardware blocks
(e.g. cache hierarchy) and ending with behavior of system
tasks over the SW/HW topology and parameter-dependent
workload. Another challenge comes from the limitations of
analysis mechanisms, which are normally classified into two
categories: analytical methods and simulation techniques. The
former does not provide a detailed execution timeline, while
the latter cannot guarantee a proper prediction of worst-case
situations.

In the past decade, several methods addressing the
problems of SW/HW component modeling, predictable
assembly and evaluation of real-time systems have been
proposed by the research community. Cortellessa et al. [2]
have proposed a comprehensive approach for SW/HW
component modeling, composition and consequent simulation
of an assembly behavior. Klobedanz et al. [3] have discussed
a performance analysis approach based on the AUTOSAR
model. Both approaches do not provide platform-independent
models with cycle-level accuracy. Bondarev et al. [4] have
proposed a solution for design and performance analysis of
conventional CBSE embedded real-time systems based on
ROBOCOP components. This approach does not support

detailed modeling and simulation of network-related
primitives. Finally, Thiele et al. [6] presented an analytical
method targeting worst-case latencies without predictions on
detailed execution behavior.

Fig.1: Analysis and design-space exploration method for RT systems

In this paper, we present our ongoing work on the

ProMARTES method for analysis and design space
exploration of real-time component assembly, see Fig. 1. The
method consists of the following three phases. The Profiling
and Modeling phase aims at profiling and automated
generation of cycle-accurate performance models (MARTE
compatible) for individual components at component
development time. The Architecture Composition phase
includes component selection, composition, SW/HW
mapping and automated generation of a system model based

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 435

on defined workload scenarios. The composition can be
performed for a number of architectural alternatives. The
Analysis and Optimization phase enables prediction of system
performance properties (latency, resource use, throughput,
robustness, etc.) by schedulability analysis and simulation of
the system model. The results are validated against the
requirements, leading to follow-up design iterations. Each
iteration searches for an optimal architecture by tuning the
allowed factors of freedom (hardware topology, SW/HW
mapping, scheduling policies, etc.).

The proposed ProMARTES method features a number of
benefits. Firstly, the involved component profiling technique
provides cycle-accurate performance metrics [1]. Our tooling
chain offers automated generation of component performance
models compliant with the UML-MARTE profile. Secondly,
the established pipeline, generating models at different
analysis phases, automates the analysis process and carries the
profiled low-level metrics of the components through all
phases, until the overall system performance is predicted.
Thirdly, the method incorporates both the schedulability
analysis and the simulation techniques. The schedulability
analysis enables rapid identification of the best- and worst-
case response latencies. However, it does not provide detailed
behavior timeline data, average resource usage and latencies.
In contrast, the simulation technique provides detailed
behavior/execution timeline for all simulated system tasks,
which enables identification of performance bottlenecks.
Unfortunately, it requires a substantial time span to obtain
converging prediction results. By combining these two
analysis techniques, we complement the advantages and
eliminate the limitations that each individual technique
imposes. In conclusion, the worst-case predictions obtained at
the early design phase by the schedulability analysis can be
further used for a detailed simulation-based exploration of
execution architecture problems (buffering, task interleaving,
etc). Finally, the tool set for our method is encapsulated into
the Eclipse Papyrus IDE environment, so that an architect can
easily design the HW/SW architectures graphically and
convert them into design models in an automated way.

Our method has a number of limitations which require
further research. Firstly, the performance models can be
obtained only for Linux-based operating systems and require
the actual presence of the HW platforms. Secondly, the
generation of the behavior models of the components is not
yet automated and this task is supposed to be performed by
the component developer. Thirdly, the method does not fully
take into account the influence of the memory-, bus- and cache
behavior on the performance of the system. For more accurate
performance prediction, a cycle-accurate platform simulator
needs to be integrated into the method. Moreover, due to the
increasing popularity of applications that can be executed on
a GPU, it would be valuable to support the modeling and the
performance analysis of GPU-based systems. For analysis of
network-related activities, ProMARTES does not incorporate
the delays at the low OSI layers (transport, data link,
physical), which reduces the accuracy of predictions on
communication delays. We plan to integrate a more
sophisticated network simulator for most of the OSI layers.

Finally, manual composition of the architecture alternatives
during the design space exploration is time-consuming and
limits the space of possible alternatives. We are developing an
engine for automated generation of architecture alternatives,
which enables faster and broader exploration of possible
design choices.

To validate our method, we have applied it to the real-world
problem of an autonomous navigation robot system [5]. The
system is composed of a robot and a remote processing node
which communicate through a wireless network. The SW of
the system is delivered by ROS, and it is based on four SW
components. The navigation task is performed by 7 parallel
tasks which characterize the behavior of the system. The most
critical tasks of the navigation process are the GM:Map

(composes the map of the environment) and the MB:Nav

(transmits the control commands to the robot). Both tasks are
periodic and characterized by hard real-time deadlines. We
have composed the system and measured the actual latencies
of the two critical tasks. Subsequently, we have compared
these actual latencies to the predicted latencies, obtained by
schedulability analysis and simulation techniques. The
simulation predictions have shown a deviation of 1-2%
compared to the actual response-time delay for the worst-case
execution time (WCET) and 6-8% for the average-case
execution time (ACET) of the two tasks. The predictions from
schedulability analysis have shown that the predicted WCET
is 8% higher than the actual WCET of the two tasks. The
latter, increased, deviation can be explained by the fact that it
cannot be ensured whether the system has reached the worst-
case scenario during the actual execution. Moreover, we have
applied a robustness test to check if the proposed architecture
is still schedulable under overload conditions. To this end, we
have increased the frequency of the robot’s control loop by
10%. The system simulation has shown that the system still
satisfies the hard real-time requirements with 3% increase of
the WCET for the MB:Nav task. By examining the actual
response-time delays, we have proven that also the actual
system implementation satisfies the real-time requirements of
the autonomous navigation robot.

The improved prediction accuracy of our framework is that
our proposed method incorporates both the schedulability
analysis and the simulation technique, which are
complementary to each other in strength and eliminating the
individual limitations.

REFERENCES

[1] K. Triantafyllidis et al., "Low-Level Profiling and MARTE-
Compatible Modeling of Software Components for Real-Time
Systems".

[2] V. Cortellessa, et al., "Integrating Software Models and Platform
Models for Performance Analysis".

[3] R K. Klobedanz et al., "Timind Modeling and Analysis for
AUTOSAR-Based Software Development - A Case Study" .

[4] Bondarev et al., "CARAT: a toolkit for design and performance
analysis of component-based embedded systems".

[5] K. Triantafyllidis et al., "Performance Analysis Method for RT
Systems: ProMARTES for Autonomous Robot", submitted to FDL.

[6] L. Thiele, "Performance analysis of distributed embedded systems".

436 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

A Study on Traceabilty for Model-based Testing of
Automotive Embedded System

Kabsu Han
Intelligent system R&D Center

Korea Automotive Technology Institute
Daegu, Republic of Korea

kshan@katech.re.kr

Insick Son and Jeonghun Cho
School of EE,

Kyungpook National University,
Daegu, Republic of Korea

{mesque, jcho}@ee.knu.ac.kr

Abstract—Traceability is a potential ability for traces to be
established and used. Traceability is thereby an attribute of a source,
a target and trace links. Traceability is researched for a long time
and commercial tools are widely used. But actual practices are
searched hardly even model-based development and testing are
adopted. This paper present traceability fundamental and practical
case study for model based testing that the model represents the
requirements.

Keywords-Model-based testing; Test automation; Traceability;
Requirement management; Automotive embedded system;

I. INTRODUCTION
The traceability was recognized to discuss the

problem of software engineering in 1968 [3]. Traceability
was pointed as an issue of interest in software
engineering. In 1980s, traceability was founded as a
requirement in lots of national and international standards
for software and system development. But the actual
practice of traceability are hardly documented, even
model-based development and testing are widely used.
This paper introduces the concept of model-based testing
and provides traceability fundamental. Also, practical
requirements tracing with commercial tools are described.

II. MODEL-BASED TESTING
Model-based testing automates the design of test

cases and the assurance of traceability using model of
SUT (system under test), shown as Fig. 1 [1][2]. In detail,
hundreds of test cases will be generated automatically,
test designer describes abstract model of SUT that is
based on requirements. After that model-based testing
tool generates test cases from the model of SUT and
executes test cases automatically.

III. TRACE AND TRACEABILITY

In a software and system engineering area, the trace
can be defined like below.

1) A specified triplet of element comprising : a
source, a target and a trace link which connecting a
source and a target. When more than a source and a
target are associated by a trace link, such as a sub-pair
of a source and a target, the sub-pair are treated as a
single aource or a target.

2) The action of folloing a trace link from a source to
target.

Figure 1 Model-based Testing

The trace can either be atomic or chained. The
traceability is the potential ability for traces. To assure
the traceability, each of the sources, targets and trace
links have to be acquired and stored. After that, software
and system engineering activities and task can be traced,
shown as Fig. 2. The traces exist within specific
development and maintenance life cycles. Also, the trace
can be reused in different life cycles. The requirement s
traceability is the ability to describe and follow the
requirement lifecycle in forwards and backwards
direction. The tracing is the activity of either
establishing or using traces. The tracing can be divided
into 3 types, manual, automated and semi-automated.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 437

1) Manual tracing – traceability is eshtablished by
human tracer. Traceability creation and maintenance
with drag and drop user interfaces are used in
requiremnt management tools commonly.

2) Automated tracing – traceability is established via
automated tools and methods. Typically, traceability
creation and trace link maintenance are automated.

3) Semi-automated tracing – traceability is
established via combination of automated tools and
human activities. For example, automated tools sugguest
candidate trace links and human tracer verify them.

Figure 2 Traceabilty model

IV. CASE STUDY

To test traceability of model-based testing, ADB
(Adaptive Driving Beam) system is adopted. Model
described from informal requirements that are a parts of
vehicle regulation of UNECE and functional
requirement of OEM. The operating requirements are
shown as Fig.3. Environmental information, e.g., wheel
speed, illumination and oncoming vehicle, are
transferred to main ECU, the main ECU controls each
front lamp of vehicle depend on the information.

Figure 3 Operation requirements

Generation of abstract test with transition-based

notation is based on the number of inputs and the
number of state. The model is designed with

MATLAB/SIMULINK and V&V (Verification and
Validation) are used for requirements traceabilty, shown
as Fig. 4. V&V provides trace links via MS-word, Excel
and Rational Doors. The model with traceability is more
helpful to understand the system functionalities. Also,
the modification of some requirements can be verified
and validated via traces.

Figure 4 semi-automated tracing

V. CONCLUSION
To test traceability for model based testing, semi-automated
tracing is considered. MATLAB/Simulink with V&V is
applicable to trace the requirements for manual and semi-
automated tracing. To provide automated tracing, more
research is needed. Automated tracing between requirements
and model will be very helpful for model based testing.

ACKNOWLEDGEMENT
This research was financially supported by the Ministry of
Education (MOE) and National Research Foundation of Korea
(NRF) through the Human Resource Training Project for
Regional Innovation. (NO. 2011-05-대-05-024)
This research was supported by the MKE (The Ministry of
Knowledge Economy), Korea, under the CITRC
(Convergence Information Technology Research Center)
support program (NIPA-2013-H0401-13-1006) supervised by
the NIPA (National IT Industry Promotion Agency).

REFERENCES

[1] M. Utting, B. Legeard, Practical model-based testing, 1st ed., vol. 1.
Elsevier: San Francisco, 2007, pp.19–35.

[2] M. Panek, “Model-baseddevelopment and testing in embedded
automotive systems”, Testwarez, 2008.

[3] J. Huang, O. Gotel, A. Zisman, Software and Systems Traceability.
Springer, 2012.

438 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

SESSION

LATE BREAKING PAPER: SOFTWARE
ENGINEERING + MAINTENANCE, LEGACY

CODES, METRICS, COLLABORATIVE WORK,
SOFTWARE PROCESS IMPROVEMENT AND

MODELS, SOA, CASE STUDIES

Chair(s)

Prof. Hamid Arabnia

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 439

440 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Emerging and Innovative Techniques and Methodology in
Software Engineering for Systems Maintenance and

Development

Maureen Ann Raley
University of Alabama in Huntsville

P.O. Box 6904
Arlington, VA 22206 USA
Telephone: 571-357-3797

Abstract

When undertaking a substantial upgrade to a
heavily used, widely distributed network, it is
important to have a realistic status of the system
at all times to ensure all resources required are
available and in place. Our previous research
examined the utility of atomic and information
theory metrics to identify potential risks and
predict project progress to completion. These
metrics were derived from an information system
inventory database. Our results demonstrated it
was possible to predict the behavior of future
maintenance projects in one hardware or
software environment using the data from a
different environment assuming both projects
require similar labor and scheduling. We were
also able to identify risks during the project so
that mitigation could be effected. We propose
future work using metrics derived from inventory
databases for risk assessment that introduces
internal and external contingencies that could
impact the success of the systems maintenance
effort.

Keywords
Distributed systems; maintenance phase upgrade;
project management metrics; entropy metrics;
information theory metrics; COTS-based
systems.

1.0 Introduction
An essential activity in project

management is risk assessment and management.
Risk identification and mitigation is critical when
dealing with the maintenance and upgrade of a
large geographically distributed computer
system. The assessment involves mitigation of
issues that adversely impact delivering a system
on time and within budget that meets its goals.
When the system also must continue functioning
during system maintenance or upgrade, it is
essential to ensure that system availability, data
integrity, system security, and system
performance are not compromised [1] [2].

Collecting and continuously monitoring
measurement data (metrics) can help
management gain insight into the project status
and plan for contingencies to keep the project on
track. As the complexity of a project increases or
if the project is conducted under atypical
circumstances with geographically diverse
facilities, risk assessment becomes even more
critical. Monitoring effectiveness of the
processes and to identify and manage the critical
risks in the processes is essential under these
circumstances.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 441

2. 0 Background
With systems that are largely software-

based, most research in the area of risk analysis
has focused on the development and maintenance
of software source code to determine software
reliability, complexity, dependability, coupling,
cohesion, and maintainability. Various
traditional and object-oriented software
engineering metrics have been employed to
analyze quality and used as part of risk
assessment [1] [3] [4] [5] [6]. Additionally,
metrics measuring the amount of disruption or
entropy in the software have been the subject of
research [3] [7] [8] [9] [10]. Other research [5]
[11] [4] [6] has focused at the architectural level
on the interactions between the commercial or
commodity off-the-shelf (COTS) components
and involved the use of component dependency
graphs in the risk determination of COTS
components integrated into a large system.

Systems which are a combination of
commercial hardware, commercial software, and
customized code, known as COTS-based
systems, have come into common use, because
few organizations can spare the resources to
replicate commercial software and hardware.
Use of COTS-based systems, however,
introduces, fundamentally different approaches
between it and the conventional software
development and maintenance lifecycle [12] [13].
Because the introduction and increasing use of
COTS-based systems are relatively recent
occurrence, a substantial amount of research has
not yet been conducted to determine appropriate
tools and metrics. Requirements definition and
system integration remain the principal topics of
interest [14]; however, risk management and the
development and use of system maintenance
metrics is still in its infancy.

We conducted research to examine the
maintenance phase in upgrades of COTS-based
widely geographically distributed systems and to
develop and analyze metrics to predict risks that
could affect successful project completion [1].

One focus of our research was to predict
the behavior of future upgrades. Our analysis of
systems status was performed using information
from an inventory database. To our knowledge,
only a few previous research efforts involving
inventories and inventory modeling have been
published.

We examined two primary areas:
Maintenance Phase Behavior Analysis, in which
we compare and predict behavior in different
environments and Maintenance Phase Risk
Assessment, using both simple inventory-based
metrics and information theory-based metrics.
The data we examined was from inventory
database that was collected during a massive
nationwide distributed computer systems upgrade
by a very large United States entity.

3. 0 Discussion
We examined data from an inventory

database that had been collected and recorded
into the database on a weekly basis

The data shown in Table 3.1 included
both software and hardware upgrades on three
different types of computer systems. These
systems were mainframes (Type 1) and client
computers, workstations, desktop computers, and
laptops (Type 3). Data was also collected over
the first 12-weeks for servers and related network
equipment (Type 2).

We used the Type 2 data along with the
Type 1 and Type 3 data in our statistical analyses
that forms part of our Maintenance Phase
Behavior Analysis. However, due to space
limitations, and since fewer weeks of the Type 2
data was available, we have not included the
Type 2 data in our graph-based analyses, in both
the Maintenance Phase Behavior Analysis and in
the Maintenance Phase Risk Assessment.

442 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Table 1 - Data Examined by Our Research

There were two categories of applications
for each system type: Information Systems
(INFO), which provided support functions
similar to a generic Information Technology (IT)
activity, in that INFO personnel kept the network,
software, and hardware functioning.
Additionally, INFO personnel developed in-
house data mining and data analysis programs, as
well as the hybrid COTS-based systems.

The second application category was Operations
(OPS), which performed the activities associated
with the agency’s mission. OPS personnel were
the users of the system.

We primarily examined three categories
of inventory data for our research. Because of

the nature of the inventory, a unit was the
smallest element and could be either hardware
(one computer) or software (one application or
program). Within the inventory database, as part
of project planning, all units were assigned
categories indicating how each would be handled
during the project upgrade. Compliant (C) units
were those units that had been processed and
were in compliance of the project goals, capable
of functioning as expected within the distributed
system. Replace (R) units were to be removed
from inventory and replaced with new units. No
Effect (N) units were units that did not impact the
project upgrade.

3.1 Inventory Stability Metric

We developed the Inventory Stability
metric to gauge the movement of units into and
out of the inventory, as well as changes in
inventory as initial inaccuracies in unit count
were corrected.

The inventory stability and unit accuracy
is critical to assessing project progress when the
inventory database is used to track the number of
units in the categories that indicate the type of
maintenance performed. The inventory stability
metric had as input the weekly changes in the
number of units that:

x Are in compliance with maintenance
goals (C)

x Have no effect on the project and will not

be subject to maintenance activities (N)

x Will be replaced with new units, then
removed from inventory and disposed (R)

x Will be isolated to stand-alone status,

rather than modified or replaced (I)

Graphical analysis of our results from the
Information Systems (INFO) and Operations
(OPS) data on the same Type stations tend to be
similar. This could occur because the hardware

Data Set Maximum
Total Units

Average
Total
Units

Weekly
Data

Collection
Duration

Type 1
INFO

2875 2767 1 year

Type 1
OPS

6412 4530 1 year

Type 2
INFO

3728 3660 12 weeks

Type 2
OPS

38,814 35,985 12 weeks

Type 3
INFO

37,429 36,826 1 year

Type 3
OPS

648,463 595,006 1 year

 Units distributed throughout the
continental U.S.

x Type 1 - Mainframes and
associated software

x Type 2 - Servers, routers, hubs,
switches and associated software

x Type 3 - Clients, workstations, and
associated software

INFO – Information
Systems Division

OPS – Operations
Division

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 443

platform (computer) is similar and some, but not
all, of the software is similar.

INFO is similar across system Types,
possible because these systems are centrally
located and have the same type of characteristics.
OPS is very different across types. This could
possibly be attributed to logistics issues, as the
OPS offices are small and dispersed across very
widely separated locations, sometimes many
hundreds of miles. The scale of the effort for
OPS differed greatly among the system Types
ranging from 6412 units for Type 1 to 648,463
units for Type 3 systems. There were very few
mainframes in the field and a very large number
of laptops, workstations, and client computers.
Additionally, Type 1 mainframe hardware
required limited modifications, while most of the
Type 3 hardware platforms were replaced with
new equipment.

The Inventory Stability metric indicated high
activity and continuous fluctuation within all
datasets. Most of the graphs are characterized by
alternating weeks of high activity with weeks of
low inventory movement. High levels of
inventory activity can serve as a warning to
management to ensure incoming and outgoing
logistics are well planned and closely monitored
to avoid bottlenecks in the project.

3. 2 Project Progress Metric

We developed the Project Progress metric to
measure progress toward goal within time
constraints and to assess the risk of not achieving
goal when the time line must be met. Any
project, particularly a large one, needs to closely
monitor timeline and approach to goal because
time is the one resource that cannot be replaced.
Accurate oversight of subordinate offices is
critical. Inputs to the Project Progress metric are
the units that:

x Have been or will be modified (M)

x Still need to be modified (NM)

x Will be replaced with new units, then
removed from inventory (R)

x Will be isolated to stand-alone status,
rather than modified or replaced (I)

The project progress metric gives insight to
magnitude and frequency of movement within
each maintenance category, measures progress
toward the goal, and assesses the risk of not
achieving the goal when the time line must be
met.

Graphical analysis of our Project Progress
metric showed that the Type 1 INFO and OPS
projects were fairly similar and this also held true
for the Type 3 INFO and OPS. The Project
Progress metric for the Type 1 and Type 3 INFO
projects, was very different [1]. This could be
because the Type 1 project was significantly less
complicated and smaller in scope than the Type 3
effort. Additionally, management direction for
Type 1 systems was consistent, but was highly
changeable for Type 3 systems, particularly
regarding whether to modify or replace a large
number of the systems. Location was not much
of a factor with INFO systems, as the systems
were centrally located.

Project Progress metric also indicated a very
different result for OPS data among Type 1 and
Type 3 [1]. Again, management direction for
Type 1 systems was fairly consistent, while it
was inconsistent for Type 3 systems, particularly
regarding the modify or replace decision, which
changed several times over a few months.
Additionally, OPS systems faced significant
logistical issues over widely separated
geographical locations. Further, the magnitude
and scope of the projects for Type 1 systems and
Type 3 systems differed greatly.

Based on our initial analysis of maintenance
effort, upgrading the centrally located mainframe
systems tended to take less effort and ran more
smoothly than upgrading the physically smaller
and widely dispersed commodity systems that

444 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

frequently had been individually customized,
unlike the mainframe systems

4. 0 Summary
We developed both simple (atomic)

metrics and information theoretic (entropy)
metrics suites from data that is available in most
inventory databases. We found the introduction
of categories that characterized the final
disposition of the hardware and software units
had to be done before we could develop and use
the metrics; however, categorization of this
nature would be necessary before beginning the
project to determine the scope of the work to be
undertaken.

We also found that to use the metrics to
predict behavior and perform trend analysis
among different projects, we had to normalize the
input data to account for the vastly different
numbers of the units in the different projects.

We developed new information theoretic
or entropy metrics to measure inventory stability
and project progress. We found that the simple
(atomic) metrics suite was complementary to the
information theoretic (entropy) metrics suite.
The information theoretic aspect of the metrics
allows a better analysis of activity “spikes” and
the magnitude of change than provided by simple
atomic metrics. A better understanding of
inventory stability and project progress by using
these metric formulations would enable project
managers monitor activity levels throughout the
project to identify areas for resource allocation.
Knowing where and when to allocate resources,
particularly if the resources are scarce or the
activity is time critical, can affect the success or
failure of the project.

We performed a very large study of
system upgrades on different platforms and
environments using real data from a very large
entity. To our knowledge, the size of our
inventory system upgrade study is
unprecedented. During this study, kinds of
similarities and differences between different

platforms and environments were identified. A
better understanding of variations in upgrades in
different environments should help managers
predict upgrade schedules and know when to
allocate resources.

Our research showed it is possible to
predict the behavior of upgrades in one kind of
hardware or software environment using
information collected in a different hardware or
software environment, when the labor and
scheduling assumptions are the same. Due to the
large scale of this research, the results of our
analysis have great significance.

The results from our research can be
important to any large distributed upgrade and
have applications to government agencies and
large companies. These results can determine the
status of project completion and help identify
difficulties or aberrations within the project, so
are thus able to provide insight to management
when determining what resources need to be
allocated to projects. This research has particular
utility for time critical upgrades, such as those
needed to recover from directed intrusion by
foreign governments or hostile agents or to
interdict hacking. It also has potential use in
non-time critical maintenance, when software or
hardware reaches the end of its useful life.

The intrinsic characteristics of inventory
databases required us to return to basic statistical
assumptions and definitions to perform statistical
analysis on this data. An alternative would be to
analyze this data using Markov chains. These
have been used in the past in Operations
Research publications to perform inventory
optimization and behavior prediction [17].

Another alternative would be to use

decision-tree induction techniques (data mining,
machine learning) that are not limited by
restrictions associated with statistical models.
These techniques examine patterns in data to
produce multivariate classification models [18]
[19] [20]. During our research, we have also
considered other normalization methods for

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 445

analyzing dynamic, fluctuating inventory
databases.

5.0 REFERENCES
[1] M. A. Raley. Metrics for Risk

Determination in Large-Scale Distributed
Systems Maintenance, University of
Alabama in Huntsville, Huntsville, Al,
May 2008

[2] M. A. Raley and L. H. Etzkorn, "Case

Study: Lessons Learned During a
Nationwide Computer System Upgrade,"
in ACM SE 2004, Huntsville, AL, 2004.

[3] A. E. Hassan and R. C. Holt, "Studying

the Chaos of Code Development," in
International Workshop on Principles of
Software Evolution, Helsinki, Finland,
2003, p. 11.

[4] T. Wang, A. Hassan, A. Guedem, K.

Abdelmoez, K. Goseva-Popstojanvoa,
and H. H. Ammar, "Architectural Level
Risk Assessment Tool Based on UML
Specifications," in 25th International
Conference on Software Engineering,
Portland, OR, 2003, pp. 808-809.

[5] A. Ibrahim, S. M. Yacoub, and H. H.

Ammar, "Architectural-Level Risk
Analysis for UML Dynamic
Specifications," in 9th International
Confrence on Software Quality
Management (SQM 2001),
Loughborough University, Leicestershire,
England LE11 3TU, 2001, pp. 179-190.

[6] S. M. Yacoub, B. Cukic, and H. H.

Ammar, "Scenario-Based Reliability
Analysis of Component-Based Software,"
in Tenth International Symposium on
Software Reliability Engineering (ISSRE
'99), Boca Raton, FL, 1999, pp. 22-31.

[7] S. K. Abd-El-Hafix, "Entropies as

Measures of Software Information," in

International Conference on Software
Maintenance (ICSM '01), Florence, Italy,
2001, pp. 110-117.

[8] E. B. Allen, "Measuring Graph

Abstractions of Software: An
Information-Theory Approach," in Eighth
IEEE Symposium on Software Metrics
(METRICS '02), Ottawa, Canada, 2002,
pp. 182-193.

[9] N. Chapin, "Entropy-Metric for Systems

with COTS Software," in Eighth IEEE
Symposium on Software Metrics, Ottawa,
Canada, 2002, pp. 173-181.

[10] C. E. Shannon, "A Mathematical Theory

of Communication," The Bell System
Technical Journal, vol. 77, pp. 379-423,
623-656, 1948.

[11] S. M. Yacoub, H. H. Ammar, and T.

Robinson, "Dynamic Metrics for Object
Oriented Designs," in Sixth IEEE
International Symposium on Software
Metrics, Boca Raton, FL, 1999, pp. 50 -
61.

[12] R. W. Selby and V. R. Basili, "Analyzing

Error-Prone System Structure," IEEE
Transactions on Software Engineering,
vol. 17, pp. 141-152, 1991.

[13] B. Boehm, "Forward," in International

Conference on COTS-Based Software
Systems (ICCBSS), Redondo Beach, CA,
2004, p. 215.

[14] X. Franch, N. Maiden, and B. Boehm,

"Do We Need Requirements in COTS-
based Software Development?," in Third
International Conference, ICCBSS 2004,
Redondo Beach, CA, 2004, p. 8.

[15] M. D. Martin, J. O. Lenz, and W. L.

Glover, "Uncertainty Analysis for
Program Management," in A Decade of

446 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Project Management: Project
Management Institute, 1981.

[16] M. M. N. El Agizy, "Multi-Stage

Programming Under Uncertainty," in
Industrial Engineering and Operations
Research, Berkeley: CA, 1965.

[17] M. M. N. El Agizy, "Dynamic Inventory

Models and Stochastic Programming,"
IBM Journal of Research and
Development/IBM 2750, vol. 13, 1969.

[18] H. M. Olague, L. H. Etzkorn, W. Li, and
G. Cox, "Assessing Design Instability in
Iterative (Agile) Object-Oriented
Projects," Journal of Software
Maintenance and Evolution, vol. 18, p.
30, July/August 2006.

[19] J. R. Quinlan, C4.5: Programs for

Machine Learning. San Mateo, CA:
Morgan Kauffman Publishers, 1993.

[20] W. C. Navidi, Statistics for Engineers and

Scientists. New York, NY: McGraw-Hill,
2006.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 447

Novel Visual and Analytical Methods in Repurposing
Legacy Scientific Code – A Case Study

Submitted to The 2013 International Conference on Sofware Engineering Research and

Practice

Christopher S. Oehmen, Darren Curtis, Aaron
Phillips

Computational and Statistical Analytics Division
Pacific Northwest National Laboratory

Richland, WA USA
{Christopher.Oehmen, Darren.Curtis,

Aaron.Phillips}@pnnl.gov

Elena S. Peterson (Contact Author)
Computational Science and Mathematics Division

Pacific Northwest National Laboratory
Richland, WA USA

Elena.Peterson@pnnl.gov

Abstract— Scientific computing is dominated by team-
authored legacy code that has evolved over decades with the
purpose of capturing the evolving understanding of a scientific
discipline. Accumulated deprecated code, various optimization
techniques, and evolving algorithms lead to convoluted source
code that is impractical to reverse engineer using mainstream
methods. This prevents codes from being truly repeatable or
understandable, which are two of the most essential needs in
scientific computing. We refactored a long-standing
implementation of a common biosequence alignment
algorithm in an effort to reproduce its salient behaviors in
usable form. Because of the sheer size and complexity of this
code base, we developed custom tools to visualize and
manipulate the source code behavior under a variety of
conditions. We present a case study of extracting and
refactoring the algorithmic core and a novel process of
discovery/prototyping/testing using a combination of openly
available and custom-built tools. The result is a reduction in
code size of over 2 orders of magnitude while reconstructing
the key protein alignment function in BLAST.

Keywords- code reuse; bioinformatics; scientific computing;
visualization; program understanding

I. INTRODUCTION
Scientific computing has unique needs in terms of software

development, including the frequent absence of up-front
requirements, constantly changing algorithms that reflect
progress in understanding, and authorship that can include
large geographically dispersed collaborative teams with fluid
membership and nonstandard coding styles. Driving such a
software development environment is an underlying scientific
discipline that evolves rapidly in terms of fundamental
understanding that must be captured by the code. This leads to

an organic style of software development in which code must
be modified more quickly than it can be standardized. A second
concern for many scientific applications is the need for
optimization, which often leads to hard-coded (and often
undocumented) code regions that are initially only for testing,
but that are eventually absorbed into the functional core.

Along with the need for an organic code development
process, scientific computing also has a driving need for
repeatability since the professional credibility of its users relies
on the ability of others to reproduce important results.
However, this is often very hard to realize in an organic
development environment. We present here a case study for
refactoring one such code: Basic Local Alignment Search Tool
(BLAST [1])—one of the most commonly used biological
sequence analysis algorithms, having tens of thousands of
citations for the original publication and a variety of
applications and services built using the BLAST computational
core.

BLAST is a large-scale legacy code that is of central
importance to the biology community. BLAST was originally
developed in the late 1980’s to address the need for comparing
genes and proteins based on the text that describes the sequence
of chemical subunits in them. The BLAST algorithm was
originally published in 1990 and with its related papers has
been cited over 100,000 times for use in applied research such
as drug discovery and biomarkers research, and decades of
fundamental research into molecular processes that give
species and communities the capacity to survive. The BLAST
algorithm has become so fundamentally important to biological
sciences that increasingly large datasets are being analyzed
using BLAST. In fact, typical sequencing platforms that are
mostly responsible for the influx of new sequences to analyze
are increasing their throughput more quickly than Moore’s
Law—leading to a situation in which the need for computing is
outpacing the underlying hardware improvements. This

The Department of Homeland Security sponsored the production of this material under
DOE Contract Number DE-AC05-76RL01830 for the management and operation of
Pacific Northwest National Laboratory. A portion of this work was supported by the
Signature Discovery Initiative, Laboratory Directed Research and Development program
at Pacific Northwest National Laboratory, operated for the DOE by Battelle under
contract DE- AC06-76RLO-1830.

448 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

motivates a need for parallel implementations of BLAST such
as ScalaBLAST [2].

However, BLAST was not implemented as a library, so
using it as the algorithmic core of ScalaBLAST and other
parallel implementations is challenging because of its lack of
external API and problematic because of the possibility of
unintentional side effects when modifying the BLAST core. As
with most scientific software, the low-level details of how
BLAST is implemented have been left out of publications.
Even with the large corpus of publications on the details of
BLAST, there are many implementation-level details that must
be discovered to create a repeatable BLAST compute core. Our
goal was to re-implement the BLAST functionality necessary
to drive protein comparison calculations (the blastp operating
mode) so that we would have complete transparency and
understanding of the implementation details, and so that we
could be certain that our generalized parallel implementation
did not introduce unwanted side effects into the serial BLAST
core when driving it with our parallel ScalaBLAST control
layer. A second motivation for refactoring the BLAST core is
to create a domain-agnostic (i.e. non-biological) string analysis
platform. The utility of such a platform has been previously
demonstrated in domains such as cyber security [3].

However, in order to use BLAST on data from non-biology
domains, the user must map their data into text sequences.
This mapping requires converting the data space of a generic
domain into the specific amino acid frequencies that occur
naturally in biology. If this mapping is not done accurately, it
can significantly impact performance and accuracy. This
constraint on character frequency that is imposed by using the
biological code without modifications makes use of BLAST
on non-biological datasets over-constrained in most cases,
hence our desire to achieve a domain-agnostic version of the
code.

II. THE BLAST ALGORITHM
BLAST was devised to address a fundamental question in

biosequence analysis—calculating the statistical confidence
behind the assertion that two biosequences are derived from a
common ancestor. Biosequences are linear sequences of
chemical subunits.

At the heart of the BLAST algorithm is a process of text
alignment between two sequences—pairwise alignment. The
goal of pairwise alignment is to discover regions of two
sequences that have a high degree of similarity (see Figure 1).
String 1: HTNSILPWWFLRSTEAGGESLLQSDFMNT
String 2: FRDVVAPPLFLRSTEAGGESRFLLQSDF
Alignment
String 1: PWWFLRSTEAGGES--LLQSDF
Consensus: P FLRSTEAGGES LLQSDF
String 2: PPLFLRSTEAGGESRFLLQSDF
Figure 1. Example of text strings and a local alignment.

Local alignment is calculated efficiently using a staged
process where each level is designed to reduce the overall
search space that must be examined by the code to identify
alignments.

The functions that perform these tasks are captured in a
large code base having a high degree of complexity. Table 1
illustrates some of the attributes of the source code for the
version of the NCBI BLAST toolkit that was frozen as the
basis for ScalaBLAST (BLAST 2.2.13).

Table 1 Serial BLAST source code attributes*
Number of lines of code 1.5 Million (with comments)

Number of statements Nearly 800,000

Number of files 1953

Number of functions Over 25,000

% lines that are comments 19 (mostly terse source code
revision history)

*figures obtained using SourceMonitor from Campwood
Software

Not all of the functionality in the original code was needed for
our applications but extracting the necessary functionality
from the code base required analysis of the entire toolkit to
discover which segments of the code were needed for our
refactoring.

III. SOFTWARE EXTRACTION

A. Generalizing the BLAST algorithm for non-biological use

ScalaBLAST was originally built on top of BLAST, and
was later modified to be more tightly integrated with the
BLAST libraries via the use of BLAST data structures and
“API”. The tight integration caused ScalaBLAST to become
unstable as new versions of BLAST were released. In the
biology community, BLAST is considered a software library,
but has a very volatile API. Therefore efforts to adapt
ScalaBLAST to new versions of BLAST resulted in large
programming overhead. To gain stability in ScalaBLAST, the
version of BLAST was frozen. This had the advantage of
making ScalaBLAST maintainable, but the disadvantage of
being unable to compare results with newer releases of
BLAST. This presents a problem in the biology community, as
BLAST is widely considered the gold standard for sequence
alignment.

BLAST is designed to process DNA and protein sequences
only. The heuristics and algorithms have been crafted using
assumptions from the biology domain. In particular, the
statistical models used by the algorithms are based on existing
DNA/protein populations. To give the reader an appreciation
of the scope of the influence of the statistical models [4] on the
software as a whole, there is a 55 page paper summarizing the
statistics that heavily influence nearly every algorithm or
heuristic[8].

Because of the complexity of the BLAST source code
distribution, we searched for existing alternatives to the
BLAST library as the basis for refactoring our code. We
considered several programs, including Biopython, Bioperl,
and Seqan. These tools did not help as they are based on many
of the same biological assumptions as BLAST and in some
cases are just wrappers that call the BLAST routines
underneath.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 449

We attempted to create our own version of BLAST based
solely on research papers describing the BLAST algorithms
and heuristics. But our results from ground-up BLAST
refactoring differed significantly from the open source BLAST
due to a large number of undocumented algorithmic details.
The sophistication and importance of the underlying statistical
model were beyond our ability to replicate effectively.

The complexity of the codebase and various optimization
techniques precluded a brute force method of reading and
understanding directly from source code. In addition,
understanding of the code is complicated by optimization
techniques that confound code analysis. These include heavy
use of C pointers, use of the ‘register’ keyword, C structs
comprised of void * pointers, heavy use of #ifdef, and a
“super-global” data structure that is constructed, extended, and
significantly modified throughout the code. Of course standard
issues such as a complicated build system, lack of test code,
and undocumented API also existed.

B. Software Archeology
Attempting to understand the BLAST code base resulted in

what is commonly called “software archeology” [5]. Digging
through the layers of the code allowed us to identify some of
the key issues that we would need to address to re-engineer
this code. Since BLAST was developed over a period of
decades, there has been a “layering” affect in the API.
Functions that were once part of the API were wrapped with
new functions as requirements changed. These were in turn
wrapped with even newer function calls, some of which
simply reorder arguments from other parts of the API. These
API layers make it extremely difficult to locate key
functionality, as it may be hidden under 10 or 20 layers of the
call-stack. The BLAST code also shows signs of complete
functionality replacement over time and both the original and
improved functions are left in the code. This results in having
to actually run and debug the software to determine which
piece of code is operational. This “abandoned code” and code
bloat added to the complexity of detailed understanding.

IV. NON-INTRUSIVE METHODS

A. Commercial Software Attempts
In an attempt to gain an understanding of the overall

structure of BLAST (and eventually the underlying details),
we used several pieces of commercial software. These
included SourceMonitor, Starlight [6], KCacheGrind,
Visustin, and DDD.

We used SourceMonitor to perform static analysis on
BLAST and gathered metrics on the entire code base. In
particular, the cyclomatic complexity provided by
SourceMonitor proved to be extremely high on average in
BLAST. There are over 50 files in the BLAST code base that
have a cyclomatic complexity greater than 100 [7].

Starlight is a tool for visualization and exploration of data
networks. We used it to visualize a static representation of the

potential BLAST call stack. We developed a structure
containing every function call in the BLAST code base, and
used Starlight to view the resulting associations. We found
almost all functions tightly-coupled with the system as a
whole. This technique was useful for identifying clusters of
functions that make up specific functionality or heuristics.

We used Valgrind in combination with KCacheGrind to
analyze the function call tree at run-time and gained a high-
level understanding of the portions of code that were exercised
during a given run of BLAST. KCacheGrind is an interactive
tool that allowed us to explore multiple aspects of the code,
including the call tree, function names, call frequency, looping
structures, code coverage, and functionality discovery. A
portion of the tree traversed during a run is shown in Figure 2.
Each box in Figure 2 represents a single function and the line
between the boxes is the number of times the path was
traversed during the Valgrind (callgrind) snapshot.

Other tools such as Visustin for static analysis of control
flow structures and Visual Studio’s debuggers only confirmed
the complexity of the problem but did not provide any useful
additional analysis.

We were able to use the information gathered from
KCacheGrind in conjunction with GDB to walk through the
code at run-time. We set breakpoints at the beginning and end
of every function that KCacheGrind identified as being
executed. While this gave us a better understanding of the run-
time behavior of BLAST, the complicated control flow
structures and “super-global” data structure proved to be too
cumbersome for basic debugging. This led us to the use of
DDD as a way to visualize the data structures at run-time.
DDD is a wrapper around GDB, with the added benefit of
visualizing C data structures. Unfortunately, the size and
complexity of the data structures again proved too
cumbersome for the tool. In addition, since the “super-global”
data structure in BLAST is constructed of multiple levels of
structs of (void *) pointers, DDD was unable to dynamically
display the structure in its entirety because it did not know
how to cast the structure to the correct type.

These commercial applications gave us various hints as to
the depth and complexity of the code although they did not
individually or collectively provide an easy way to understand
the functionality and data flow in BLAST.

B. Custom-built debugging tool: GdbShell
In order to track changes to the “super-global” data

structure throughout the program run we used GDB to step
through the code. We combined GDB with Graphviz to create
a visualization of the data structure and the changes that had
been made to it. To more easily control the GDB process we
wrote a Perl wrapper as a scripting engine for automated GDB
control. This allowed us to set breakpoints at an arbitrary
number of specific points of interest in the code, and walk
through them automatically. We call this tool GdbShell.

450 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 GdbShell provides the ability to display the changes to a
data structure between two points in a program. This involves
setting a breakpoint, asking GDB for a text representation of a
given structure, parsing that text for nested structures and
finally recursively parsing the GDB responses for additional
nested structures. After the data structure had been completely
traversed, GdbShell saves it as a snapshot of the data structure.
GdbShell continues debugging until another breakpoint is
reached. Then another snapshot of the same data structure is
captured and compared to the previous one. This comparison
involves searching for parts of the structure that had been
added or deleted between breakpoints, as well as
modifications to the internal values of any part of the data
structure. A color-coded image is created based on which
portions of the data structure were added, deleted, or modified,
shown in Figure 3. The colors for Figure 3 are coded to
signify:

• White - no change between breakpoints
• Green - new structures created
• Blue - modified structures (with OLD and NEW)
• Yellow - custom code had to be written to view data

structures (e.g. pointers to arrays of pointers to arrays of
integers representing 5-bit packed ASCII characters)
between breakpoints.

• Purple/Orange – legend showing the breakpoints used to
create the image.

GdbShell did not originally have the ability to display
complicated dynamically allocated structures such as a pointer
to an array of pointers to arrays that represent a two-
dimensional matrix. We enhanced the functionality by
developing a framework that supports a simple plug-in
architecture using a visitor pattern for each unique data
structure. When a new data structure is discovered, custom
Perl code can be written to convert GDB representation of the
data into a human-readable ASCII representation.

GdbShell provided the necessary tools and processes for
understanding the BLAST code in a practical timeframe.

Without adding the features of automation and the ability to
quickly add custom analysis of new data structures the process
of detailing the complicated data flows and data structures
would have been technically possible but not practical.

V. PROTOTYPING WITH A “DISCOVERY CYCLE”
After using non-intrusive methods to determine where the

algorithms of interest were located, and the sequence of the
related function calls, we used GdbShell to discover what the
algorithms did and how they affected the data structure and
then prototyped what we learned in Perl. Perl allows for rapid
development, includes object orientation, and works well with
text-based problems like BLAST.

This cycle involves using KCacheGrind to isolate portions
of the code and GdbShell to gain an understanding of data
structures (how they changed, and which boundary conditions
caused these changes). Once we gain an understanding of a
particular feature, we implement it in our Perl prototype. We
attempted to “checkpoint” the code in between heuristics, to
ensure that each individual piece of our prototype was
producing comparable results to the corresponding BLAST
heuristic. If the results differed at these checkpoints, we
investigated by hand using old-fashioned “intrusive” methods
such as printfs and exit statements. This allows for
comparison of data structures at diverging points which then is
fed into the prototype discovery cycle.

VI. TESTING AND VERIFICATION
Our goal was to abstract, extend, and simplify the overall

algorithm, while producing comparable results without simply
copying the BLAST source code into our prototype. It was
essential for us to understand all the details of how the code
works.

BLAST is a heuristic chain, meaning that the overall
algorithm consists of multiple heuristics, each of which is
designed to perform some amount of data reduction on the
overall data space. The input data given to BLAST can

Figure 2. Illustration of a small part of the BLAST call tree using KCacheGrind.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 451

influence the underlying statistical models, which in turn
influence each of the data reduction heuristics. Such a
combination of heuristics creates a data-dependent decision
making process wherein a subtle statistical change at one layer
of the heuristic can propagate through other layers resulting in
very different output. This cascading dependency is illustrated
in Figure 4. In addition, each heuristic is so finely tuned for
performance that there are too many boundary conditions to
exercise all combinations with a reasonable set of test data.

Because of the large amount of boundary conditions and
dependencies in the heuristics, we needed a large, diverse data
set to test the overall process with. And we were much more
concerned with accuracy than speed during the prototyping
phase so individual tests could take minutes to hours and there
were hundreds or thousands of tests in order to exercise all
boundary conditions. To get around this accuracy/time
conundrum, we developed a simple test framework on a large
cluster (Olympus - 179th on the top 500 list). This allowed us
to quickly create tests that used a large data set, exercise
relevant code, and combine results in real time in order to
compare the aggregate results of our prototype and BLAST.
This allowed us to terminate large test runs if we discovered a

difference/problem early in the run, or if it was obvious that a
recent change did not improve results. At the end of a test run
(and in real time), we gathered statistics regarding the
accuracy of our prototype, where any problems were located
in the code, as well as the details of the individual problems.

 For a more detailed test, we used a whole yeast species
genome which has 5753 proteins. This whole genome was
compared against itself, which should result in a strong
alignment between each protein and itself, followed by a
collection of lower scoring alignments to more distantly
related proteins, followed by a large collection of statistically
insignificant alignments, which are useful for our purposes of
exposing all the details of how alignments are calculated.
Using this detailed dataset to test as much as possible of the
operational code regions, we evaluated the performance using
the following metrics: (1) the fraction of proteins for which
non-self top-hits had the same identity in both our code and
the NCBI implementation; and (2) the average number of hits
in agreement between the two methods before a difference is
found. The first metric assesses one of the most important
functions of the BLAST code, namely the ability to recognize
highly similar but non-identical proteins to a query. Many

Figure 3. Visualization of the “super-global” data structure that is passed between many BLAST
functions as a pointer. The functions create, destroy, and modify portions of the structure dynamically.
For example, the blue box in the zoomed area shows that the ‘length’ field was 0 at the first breakpoint
and is now 23 at the second breakpoint. The hex value, 0x8460a20, is the memory address of the ‘subject’
pointer in the global search struct.

452 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

users really only want the top (non-self) hit or the top few, so
getting the first non-self hit is the first metric we used. The
second metric assesses the quality of the complete hit list. For
a given protein query, all of the target proteins that have a
significant alignment are returned by the BLAST method. This
list is sorted by score and a statistical measure that is
calculated by the code. When multiple hits have identical
score and statistical measure, they appear in the list in random
order. This creates difficulties when comparing two results
because things can be in a different order, but still correct
because there is no correct order for a collection of alignments
that have identical scores. We solved this problem by sorting
alphabetically on unique protein names within identical score
blocks for both our runs and NCBI BLAST runs before
calculating our performance statistics. This ensured that
differences that are not resolvable by either code did not count
against our results.

Using this procedure, our code achieved the same non-self
top hit as NCBI BLAST for 5707 of 5753 proteins (99.2% of
proteins tested). This is an encouraging result that suggests we
are in agreement the vast majority of the time when
alignments are strong alignments (and therefore less likely to
be influenced by decision making at the statistical fringe).
Table 2 illustrates the performance of our method using a
variety of metrics that explore all hits for each protein instead
of just the top non-self hits.

Table 2 Comparison of refactored BLAST vs. NCBI
BLAST

Cutoff value
‘x’ AHBM AHBM % Fraction

identical

500 386.7 0.77 .45

400 311.9 0.78 .45

300 237.2 0.79 .45

200 162.3 0.81 .46

100 86.00 0.86 .51

50 45.44 0.91 .58

25 23.71 0.95 .68

For each cutoff value ‘x’, only the top ‘x’ alignments for
each protein were considered. The ‘Average Hits Before
Mismatch’ (AHBM) value was calculated by locating the first
discrepancy between NCBI and our BLAST implementation
for each protein. If there was no discrepancy and a protein had
fewer than ‘x’ alignments, the value of the first mismatch was
counted as ‘x’. Ideal performance for this metric is to have an
AHBM value equal to ‘x’, meaning that the end of all lists was
reached without a discrepancy. A value of 0 would be the
worst case, meaning that on average, lists varied at the top hit
location. AHBM% is a second representation of this metric

Figure 4. Hierarchical visualization of (1) coverage of the global alignment space sampled by the
BLAST heuristic; (2) detail of this region -covered alignment space is shown in red, untouched space is
white and represents saved computation and storage; (3) represents an area that is being explored by an
Affine Gap heuristic; (4) shows a border case where the scores are too low to continue exploring. The
tan box has the actual C language variables representing the data used to calculate the value in the cell
at the mouse pointer (cell with value 100).

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 453

that expresses the same score as a fraction of the ‘x’ value. In
this case, 1.0 is an ideal score and 0.0 is the worst possible
score. The third measure is the fraction of protein queries for
which the entire alignment list (after alphabetically sorting
within score-invariant blocks) had all the same alignments
with the same scores in the same order to that produced by
NCBI BLAST for the given cutoff value.

This validation shows two significant results. First, our
implementation reproduced the top non-self alignment for the
vast majority of test cases. This is an essential feature to
capture to make sure our results are relevant to users. Second,
on average, mistakes do not occur in the top part of the list
(i.e. the part of the list with highest statistical significance),
and when only the top 25 alignments are considered, the
average error does not occur until the 23rd or 24th alignment. In
addition, nearly 70% of the lists were completely identical
through the top 25 hits when comparing our BLAST
implementation with that of NCBI.

VII. CONCLUSIONS AND FUTURE DIRECTIONS
In this study, we were able to reproduce many of the

essential details of BLAST, one of the most pervasive and
significant algorithms used by the biological research
community. Because of the complexity of the code, we used a
combination of commercial products and custom-designed
tools to understand the original implementation enough to
refactor it. Without automating the “discovery cycle” and
prototyping and testing smaller sections of code we would not
have been able replicate the outcome to any degree of
certainty. Standard tools and processes did not apply to this
particular set of constraints so new tools were developed and
applied. These tools were built specifically for this effort but
are in the process of being abstracted for general use. They
could provide other developers attempting to re-construct
functionality of code where traditional methods don’t work.

Our testing and validation has shown that we have captured
many of the essential core heuristics of the NCBI BLAST
implementation, but the differences between them have led us
to discover further undocumented details in the BLAST source
code that would need additional development for us to
replicate.

We must point out that the NCBI BLAST code we used was
extremely fast and robust which is a testament to the dedicated
developers and their attention to detail. Because our emphasis
was on correctness and not performance, we have not
introduced optimization into our implementation. Much of the
complexity in the NCBI BLAST core is due to hand-
optimization of code segments. It is not yet clear how much of
this must be captured to reproduce both the performance and
the results of the BLAST core. However, our intention is to
have a complete implementation of correctly refactored code,
then proceed with our own optimization on a much smaller,
more formally designed codebase that can be easily
maintained and extended to non-biology data domains.

We believe that our experience refactoring the BLAST
source code is representative of the complexities of
maintaining and refactoring legacy scientific codes and for
other multi-author codes that have a similar development

cycle. For some applications, emphasis on performance and
the evolving nature of the underlying algorithms can lead to
highly complex software dependencies. When this is
combined with a long-term development cycle for which there
is a large number of contributors, gaining transparency into the
implementation-level details of an algorithm can become
prohibitive. In this paper we present an example of how
combining off-the-shelf products with custom analysis can
yield some of the transparency needed for more fully
understanding these implementation details but acknowledge
that further work is needed for complete understanding.

VIII. REFERENCES
1. Altschul, S., et al., Basic local alignment search tool.

J. Mol. Biol., 1990. 215(3): p. 403-410.
2. Oehmen, C. and J. Nieplocha, ScalaBLAST: A

scalable implementation of BLAST for high-
performance data-intensive bioinformatics analysis.
Trans. Parallel Distributed Sys., 2006. 17(8): p. 740-
749.

3. Oehmen, C., E. Peterson, and S. Dowson, An organic
model for detecting cyber events, in Proc. Sixth
Annual Workshop on Cyber Security and Information
Intelligence Research, F. Sheldon, et al., Editors.
2010, ACM: Oak Ridge, TN.

4. Altschul, S., et al., The estimation of statistical
parameters for local alignment score distributions.
Nucl. Acids Res., 2001. 29(2): p. 351-361.

5. Hunt, A. and D. Thomas, Software Archaeology.
IEEE J. Software, 2002. 19(2): p. 20-22.

6. Risch, J., et al., The STARLIGHT Information
Visualization System, in IEEE International
Information Visualization Conference (IV '97). 1997:
London, England.

7. McCabe, T. and C. Butler, Design Complexity
Measurement and Testing. Commun. ACM, 1989.
32(12): p. 1415-1425.

8. [ftp://ftp.ncbi.nlm.nih.gov/blast/documents/
developer/ scoring.pdf

454 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Use of Closures to Engineer Software for a Family of Numerical
Simulation Models

K.A. Hawick and E.P. Clarkson
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: k.a.hawick@massey.ac.nz; elliot.clarkson@gmail.com
Tel: +64 9 414 0800 Fax: +64 9 441 8181

June 2013

ABSTRACT

Closures offer powerful capabilities for encapsulating adap-
tive parts of a simulation program into dynamical data struc-
tures. We investigate the use of closure mechanisms for
managing different simulation models in a lattice simulation
framework implemented in both the Java and Groovy pro-
gramming languages. We present results based on compiled
Java with fixed model definitions as well as with user input of
models at runtime expressed in dynamical Groovy. We dis-
cuss performance and other tradeoff issues as well as the po-
tential for highly compact and reusable software components
in what would otherwise be quite a complex software system.

KEY WORDS
closures; software engineering; on-demand code generation;
code reuse; computational science; simulation.

1 Introduction
Developing fast and memory efficient simulation software is
time consuming and demanding of a lot of domain-level as
well as programmer expertise. programming languages of-
fering mechanisms for maximising code reuse and allowing
frameworks or libraries that can be used by short and com-
pact domain-specific language calling-fragments are poten-
tially very attractive providing computational efficiency can
be maintained.

The Groovy programming language [39] is a relatively new
system that is now widely available. Groovy [2, 25] builds
upon Java [13] and makes use of a number of the standard Java
data structures and libraries to extend the language to sup-
port generics [5], closures and other features [6, 23, 28] help-
ful in establishing internal domain-specific languages(DSLs)
[11, 17, 32] for various application areas including graph or
network systems [4, 18] and simulation modelling [16].

Closures [7, 35] are not new and have been available in effect
in declarative programming languages [31, 41] for some time
but it is not until relatively recently that efficient and com-
pact syntax notations for them have become widely available
in modern high-level imperative paradigm programming lan-
guages such as Ruby, Lua [22], Terra [8] or Groovy.

Figure 1: Some of the family of lattice simulation models
that can be generated by the closures framework: Prisoners’
Dilemma; Diffusion Gas; Epidemic; Sznajd Opinion; Cyclic
Layering; Schelling Segregation.

Other projects such as X10 [14, 37] are investigating mecha-
nisms to support high performance yet high level program-
ming language constructs for simulations [33] and various
language paradigms such as functional [38], object-oriented
languages [3] and dynamic [34] and scripting languages [27]
have various features that support this goal.

In this present paper we focus on a class of lattice oriented
simulation models that can be used as a whole family to in-

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 455

vestigate critical and phase transitional phenomena. Figure 1
shows snapshots of some of the family of lattice simulation
models that can be accommodated within our closure based
simulation framework. Other related families of models in-
clude multi agent systems for artificial intelligence and arti-
ficial life investigations [29] where a large number of agents
is needed to probe multi scale phenomena both spatially and
temporally. Computer simulations where a trajectory through
model space is needed are notorious for requiring a numerical
sampling and average over many independent “runs” and this
further emphasises the need for a simulation framework that is
computationally efficient. Our models are aimed at routinely
running in excess of 106 individual agents or cells.

Our present article is structured as follows: In Section 2 we
summarise the problem of interest to us – namely construct-
ing a software framework that allows fast simulation of any
of a whole family of lattice simulation models. We review
the key features of such a family and show how they can be
implemented using closures in Section 3. We discuss how we
used pseudo closures made from anonymous classes in Java in
Section 3.1 but how Groovy syntax provides proper closures
and how they can further simplify our code in Section 3.2.
We give further details on our implementation in Section 4.
We provide a discussion of selected results and some of the
implications for software engineering of simulation codes in
Section 5 and offer some conclusions and areas for further
work in Section 6.

2 Simulation Models
Phenomena such as phase transitions, relaxation, equilibra-
tion, the emergence of spatial complex patterns, or the emer-
gence or disorder can al be studied using lattice oriented sim-
ulation models. A great deal of work is available in the lit-
erature ([17] and references therein) concerning critical phe-
nomena and the simulation model that must often be used to
investigate the systems computationally rather than by con-
ventional analytic theory or experimental approaches.

Table 1 lists some of the key models used in this work with a
brief comment on their applications arena and a reference to
a more detailed description. In brief these models all follow
the pattern of requiring a set of scalar variables that comprise
the model state to be initialised (usually in a random pattern)
on a spatial lattice and then evolved according to some local
update formula.

In our investigations of such models, we need to study them
as a whole class rather than just solely as individual systems
of interest. As a consequence of this it is necessary to manage
them within a unified framework so as to be able to effectively
compare like with like and minimise assumptions and coding
errors. In fact this opens up great potential for savings of
software engineering effort. The models we focus on in this
present paper can be formulated as follows.

A lattice structure of the regular form σi ∈ L where the N

Model Name Application Arena Reference
Ising Magnetic Materials [20]
Q-State Potts Materials Science [19]
Kawasaki Materials Science [24]
Sznajd Opinions and Sociology [40]
Axelrod Culture Dissemination [1]
Reichenbach Cyclic Predator-Prey [36]
RPSLS Cycles and Parity [15]
Rabbit-Fox CA Predatory-Prey Cycles [21]
Conway GoL Complex System [12]
Forest Fire Ecology & Damage [9]
Eden Cancer Growth [10]
Epidemic Disease Spread [30]
Langton Ant Complex Growth [26]
Random Walk Growth & Information [30]
Self-Avoiding Constrained Growth [30]

Table 1: Models that use discrete cell types of finite number
of states and which can be modelled on the Bravais lattices in
two dimensions and with different cell neighbourhoods.

model variables are indexed by i = 0, 1, ..., N − 1 and may
be scalars or sometimes vectors of more than one degree of
freedom. In fact many of the models we focus on have a sim-
ple integer variable that can take on some number Q different
states. In the case of the Ising magnetism model Q = 2 and
the only; two allowable states are the quantum spin values
“up” and “down.” The Potts model extends this to some arbi-
trary number Q of pseudo spin variables. The Sznajd opinion
model can use the same structure to represent Q allowable
different opinions. The Kawasaki and diffuse models can use
Q different atomic species held in the same way. We can right
S = σi to represent a particular state of the whole model, with
a definite and specific value for each of the N site variables
σi.

The latticeL itself can have any geometry we can suppose and
typical examples are square or simple cubic (SC), but this can
be extended to hyper-cubic lattices of the form N = Ld, d =
2, 3, 4, ... with a length L and dimension d. In practice, we
can also implement other structures such as triangular and
hexagonal lattices in two dimensions, or the common crys-
tallographic structures found in real three dimensional sub-
stances such as face centred cubic (FCC), body-centred cubic
(BCC) or hexagonal close-packed (HCP) lattices.

The notion of locality is very important to the model family
we discuss. In most cases the model time evolution can be
written in the form:

St → St+1

σi,t → σi,t+1 = F(σi,t, σN (i),t) (1)

where we use N (i) to denote a localised neighbourhood of
sites around site i. This is an important restriction and the
locality of interactions - namely that the new value of site i
is obtained through a formula that depends only upon nearby
site values - imposes a realistic spatial structure and causality

456 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

time and length scales on the model. It also provides the basis
for incorporating parallelism into the model computations as
it allows a simple geometric decomposition and allows sites
in the whole system to be allocated in some sort of spatial
patching to different processors - real or virtual.

Some models are stochastic - that is the formula for updat-
ing individual sites has a random or thermal term in it. Our
framework is able to supply random fields in the form of
pseudo-randomly generated variates from one of several dif-
ferent generator algorithms.

The framework then must manage the site variables in terms
of their initialisation and time evolution. The framework must
also manage the spatial geometry mapping of i to space in the
form of x, or x, y, z or if using a higher dimension d > 3 then
to appropriate hyper-coordinates in the d-dimensional space.
The locality and neighbourhood being used can also be var-
ied. So for instance, it is often revealing to vary a model from
using nearest neighbour to next nearest, or Moore neighbour-
hood or some other structure such as neighbourhoods defined
by a radial distance of proximity.

In summary, the simulation is specified by: Model (M, Q);
Lattice Geometry (L, L, d); Neighbourhood (N). Each of
these parameters can be usefully managed and specified us-
ing the closure and pseudo-closure mechanisms we describe
below.

3 Closures
Closures are embedded code fragments that “close over the
embedding scope” and are thus able to combine code locality
of reference and scope with access to key variables that are set
up in the embedding source code. The closure mechanism is
particularly useful in the context of our simulation framework
for a family of models. Closures allow us to reuse many of the
services, and data structures in effect for a simulated model
but still keep the details of the particular chosen model defined
locally in a manner that is easy to read for the programmer
and subsequent developer. This is particularly important for
an ongoing project where new models are added later - and
could not practically have been formulated all at once at the
start of the project.

Attempts have been made to use simulation objects and an
object-oriented architecture [35] for simulation model frame-
works but it is not trivial to separate out all the necessary appa-
ratus for each model without introducing significant memory
or speed inefficiencies. More significantly it does not nec-
essarily aid development and addition of brand new models
conceived on an ongoing basis in the same way that the clo-
sures mechanism allows.

3.1 Pseudo-Closures in Java
We first developed our simulation framework using Java,
which does not have a fully developed closures syntax and
mechanism. It does however allow anonymous classes which

can be stored in a data structure such as a HashMap as we
illustrate below in Figure 2.

p u b l i c i n t e r f a c e E v o l v e r { p u b l i c vo id e v o l v e (i n t n) ; }
. . .
HashMap<Model , Evolver> map = new HashMap<>();
. .
map . p u t (Model . ISING , new E v o l v e r (){

/ / e v o l v e u s i n g M e t r o p o l i s I s i n g dynamics :
p u b l i c vo id e v o l v e (i n t s t e p s) {

f o r (i n t e n d e r = s t e p + s t e p s ; s t e p<e n d e r ; s t e p ++){
f o r (i n t s i t e =0; s i t e <N; s i t e ++){

i n t k = neighbourHood . r a n d o m S i t e () ;
i n t c u r r e n t V a l u e = s p i n [k] ;
i n t newValue =

(s p i n [k] + 1 + rng . n e x t I n t (Q−1)) % Q;
/ / p i c k p o s s i b l e (d i f f e r e n t) new v a l u e
i n t nbonds = 0 ;
f o r (i n t kn : ne ighbourHood . l i s t (k)){

i f (kn != NONE){
nbonds += c u r r e n t V a l u e == s p i n [kn]?−1:+1;
nbonds += newValue== s p i n [kn]?+1:−1;

}
}
i f (f e r r o m a g n e t i c){

i f (nbonds >= 0 | |
rng . nex tDoub le () <
m e t r o p o l i s (nbonds , c u r r e n t V a l u e))

s p i n [k] = newValue ;
}
e l s e {

i f (nbonds <= 0 | |
rng . nex tDoub le () <
m e t r o p o l i s (−nbonds , c u r r e n t V a l u e))

s p i n [k] = newValue ;
}

}
}

}
}) ;

Figure 2: Inserting a closure with evolve(int) method into
HashMap of models – example shown is for the Ising Q = 2
state model - generalised for Potts model case with arbitrary
number of states Q and ferro or antiferromagnetic coupling
cases.

Figure 2 shows how a type-parameterised Java generic data
structure – in this case a HashMap – was used to hold the
collection of Java pseudo-closures that close around the var-
ious evolve() method implementations for each simula-
tion model. We used a Java enumeration to specify the al-
lowed different models M. The Ising model is one such
and its evolve() method shown in explicit detail. In essence
these lines of code shown are all that is needed to imple-
ment a particular model using the other data variables (such as
L, d,N, σi) and structures in scope at the time. Service level
methods to pick random lattice sites in a random order, or to
gather the neighbours for a particular site (independent of the
lattice geometry and chosen neighbourhood) are part of the
support framework.

This was a useful Java capability to be able to exploit and it
helped to significantly reduce the number of lines of source
code for our simulation and in particular for a new model and

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 457

incrementally incorporate it into our framework.

3.2 Closures in Groovy
The Groovy language builds on top of Java and provides com-
pact, explicit closure syntax and mechanisms, an example of
which is given in Figure 3.

/ / Minimal c l o s u r e
{ p r i n t l n ” Hel lo , World ! ” }

/ / C l o s u r e d e m o n s t r a t i n g a c c e s s i n g v a r i a b l e s
/ / i n e n c l o s i n g scope
d e f g r e e t i n g = ” H e l l o ”
d e f p r i n t G r e e t i n g = { name −>

p r i n t l n g r e e t i n g + ” , ” + name + ” ! ”
}

/ / P r i n t s ” Hel lo , Ken !”
p r i n t G r e e t i n g (”Ken”)

Figure 3: A demonstration of closure syntax in Groovy

3.2.1 Resolving variables in Groovy closures

Groovy offers three keywords which provide handles to im-
plicitly available objects used to resolve references. Just
as this in Java refers to the enclosing class, owner in a
Groovy closure refers to either this or the surrounding clo-
sure. delegate is a user-settable handle which is used sim-
ilarly and normally points to the same object as owner. By
default, references to variables are resolved to owner, and
then delegate if this is unsuccessful (though this behavior
can be changed.) This mechanism is important as it provides
a way for closures to maintain their own symbol table, and
thusly opens the door to allow closures to become a collec-
tion of both code and data in a manner analogous to class
instances.

3.2.2 Closures as Pseudo-objects

If a separate object is created for each closure to use as a del-
egate and the resolve strategy is set to have the closure look
nowhere else for variable references, it is possible to treat clo-
sures as pseudo-objects, each with their own namespace.

To take this approach even further, Groovy provides a mecha-
nism to override the default behavior when a referenced prop-
erty cannot be located. If the coder attempts to write to a vari-
able that does not exist, it is possible to have it be created and
stored for later use. Figure 4 shows an example implemen-
tation of this technique, whereupon variables referenced for
reading are first searched for in the accompanying map. If the
reference cannot be resolved, the search is ‘passed upwards’
to another scope - whatever was passed in the constructor for
the ClosureScope object.

4 Groovy Implementation
We discuss the models in terms of tick closures that imple-
ment a single time-step on a model. A tick closure embodies

c l a s s C l o s u r e S c o p e {
d e f b ind ingEnv
d e f v a r s = C o l l e c t i o n s . synchron izedMap ([:])

p u b l i c C l o s u r e S c o p e (b ind ingEnv) {
t h i s . b ind ingEnv = b ind ingEnv

}
d e f p r o p e r t y M i s s i n g (S t r i n g name) {

v a r s [name] != n u l l ? v a r s [name] :
b ind ingEnv . ”\${name}”

}
d e f p r o p e r t y M i s s i n g (S t r i n g name , v a l u e) {

v a r s [name] = v a l u e
}

}
. . .
c l s = {

x = ” I am s t o r e d i n t h e map ! ”
p r i n t l n x

}
c l s . r e s o l v e S t r a t e g y = C l o s u r e . DELEGATE ONLY
c l s . d e l e g a t e = new C l o s u r e S c o p e (t h i s)
c l s ()

Figure 4: Using Groovy’s propertyMissing hook to store
newly-referenced variables in a map.

Figure 5: The resources available to the developer for rapid
prototyping through the framework.

precisely the particular model m ∈ {M} we wish to run. The
chosen neighbourhood \ ∈ {N} is specified by the chosen
neighbours closure.

The Groovy implementation was designed to allow the coder
to completely and concisely define a model by using a com-
bination of sensible, predefined closures, and custom-made
closures that would cater to its idiosyncrasies. Figure 5 shows
the main facilities available to the developer within the frame-
work. The dynamic nature of the Groovy environment means

458 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

that it is relatively straightforward to add other capabilities
for new models. This practice is especially useful for Cell ob-
jects, where it is a simple matter to add a new property to each
cell in a lattice, such as temperature, height, attractive force,
or whatever else the simulation might call for.

It is worth noting that when the choice between optimization
and coder-friendliness had to be made, the choice was to lean
to coder-friendliness in an effort to make the crafting of new
models as simple as possible. The Groovy implementation
was designed to be a rapid development tool for quickly proto-
typing new models, which could later be remade using other,
more specialised code outside of the framework.

Addition of a new model therefore requires only the construc-
tion of an appropriate new ‘tick’ closure, which would be
called for every iteration of evolution. This tick closure would
later be called by the support framework, and code inside the
tick closure has full access to all framework functions through
instances of classes in the enclosing scope.

d e f t i c k = {
l a t t i c e . b u f f e r . eachWi th Index { c e l l , k −>

d e f a l i v e N e i g h b o u r s = n e i g h b o u r s (k) . f i n d A l l ({
l a t t i c e . c e l l (i t) . s t a t e == ALIVE

}) . s i z e ()

i f (c e l l . s t a t e == ALIVE &&
(a l i v e N e i g h b o u r s ==2 | | a l i v e N e i g h b o u r s ==3))
c e l l . s t a t e = ALIVE

e l s e c e l l . s t a t e = DEAD
}
l a t t i c e . u p d a t e () / / Copy b u f f e r t o c u r r e n t l a t t i c e

}

Figure 6: A Groovy tick closure for Conway’s Game of Life

Figure 6 shows a tick closure defined for the Conway game
of life model. Not the concision of this and in particular how
easy it is to set up for example the live neighbour count using
existing framework apparatus. Other models in the simulation
family can be encoded with similar concision.

Closures are also utilised for neighbour calculation. It is thus
easy to substitute the neighbours() closure to quickly apply
existing algorithms to unusual neighbourhoods; for example,
taking neighbours from only an area below the cell in question
- as shown in Figure 7.

5 Results & Discussion
Neighbours can be dynamically generated, but we have found
that resolving variables in neighbour closures takes a signif-
icant amount of processing power. This is consistent with
neighbours being called a lot and highlights this as an area
for optimisation. Some sacrifice of dynamical freedom for
performance is likely justified for a production model run.
For model development purposes and where a relatively small
prototype model would only be run for short times, it is still

/ / A C l o s u r e t o f i n d n e i g h b o u r s below t h e c e l l :
d e f nBelow = { k −>

d e f r e s u l t s = [] a s A r r a y L i s t
d e f x = l . toX (k) / / Conver t t o E u c l i d e a n co or ds
/ / Get t h e 3 h o r i z o n t a l c e l l s one below t h i s one
(− 1 . . 1) . each {

r e s u l t s << l . toK ([x [0] + i t , x [1]−1])
}
re turn r e s u l t s

}
/ / O v e r r i d e t h e n e i g h b o u r s c l o s u r e
d e f n e i g h b o u r s = nBelow

Figure 7: Replacing the neighbours closure with something
unusual for a new model - in this case a spatially asymmetric
halo gathering neighbours only from below the cell.

acceptable.

Figure 8: Method calls involved in resolving references in
pseudo-object closures

Figure 8 shows a stack trace of the method calls involved in re-
solving references in the pseudo-object closures. Every time
a property is requested that is not present in the metaClass,
program flow is caught by propertyMissing, which searches a
map for the desired property. The overhead involved in such
a large quantity of method calls quickly adds up, especially
when these properties are referenced for every cell every iter-
ation (a likely situation.)

In principle, it would be possible to interface directly with
the appropriate metaClass to avoid this overhead. However,
this runs the risk of having the coder accidentally overwrit-
ing some important variable that is part of the inner workings.
A hybrid approach may be appropriate, whereupon proper-
tyMissing modifies the metaClass itself, but only when it is
safe to do so. This would prevent further calls to proper-
tyMissing the next time the property is referenced as the meta-
Class would return the desired value, saving time. This trade-
off between security/safety and efficiency is a general aspect
of Groovy that justifies further investigation.

Figure 9 shows the multi window development environment
enabled by the dynamical approach with available diagnos-
tics, console, model properties and development windows
supporting new model closures.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 459

Figure 9: Screen shot of the development environment in ac-
tion with windows supporting development of new model clo-
sures and model properties (1), dynamic user interfaces (2),
and Lattice visualisation (3). A debugging panel (4) is also
open, capable showing the output from the currently open
script and also accepting input in the form of a read-eval-print
loop. This allows the coder to enter commands which modify
the loaded code to test how the model behaves in response to
changes such as hot-swapping out the active neighbours clo-
sure for something different mid-run, or to probe values of
variables such as the properties of individual cells.

6 Conclusion
We have implemented a lattice-oriented simulation frame-
work in both Java and in Groovy. In Java we have been able
to use anonymous objects containing appropriate methods
defining the time-evolutionary behaviour of particular mod-
els, which can be stored in an appropriate data structure for
access at runtime. Similarly, we can package the appropri-
ate methods for accessing nearest, next-nearest, Moore neigh-
bourhoods for each different lattice geometry using the same
mechanisms.

This does help code clarity, keeping the requisite apparatus
for geometry all in one part of the program and the individual
model details also relatively localised within the source code.

The Groovy closure syntax helps extend this and enables fur-
ther source code reduction. The closure mechanism helps
considerably in an architectural case such as the simulation
model family where it is non-trivial nor optimal to separate
every model into a separate class/object. Closures have al-
lowed us to maximise model code locality while appropriately
still closing over other data structures and variables within the
simulation framework.

However, we encountered some speed deficiencies with our
Groovy implementation. It appears that further optimisation
is necessary to avoid too much overhead from some of the
dynamical calls Groovy inserts. In particular, the neighbours
cross-indexing and gathering routines are used so heavily it

would be worthwhile trading off some dynamic call flexibility
to maintain their performance.

Generally we have found Groovy and its syntactic mecha-
nisms for Closures a useful tool for reducing lines of code
and code complexity for the sort of family of applications that
we experimented with. There is scope for a revised system
that takes the best from both pure Java and a Groovy imple-
mentation and gives a hybrid that gives good performance but
retains much of the dynamic calling capabilities.

We have focused on Java/Groovy as this allowed us to lever-
age development with a large existing code base. There is
also however scope for attempting the architecture we have
discussed using other modern languages that also support clo-
sures. The general notion of how one derives an optimal mix
of closures and objects that approximate pseudo version of
one another has great promise for further software engineer-
ing investigations. Finally, we note that this approach pro-
vides very good support for a research software project where
new unknown models are added incrementally and by defini-
tion, the complete specification is open ended.

Acknowledgments
Thanks to B.Kennedy, S.Innes, M.Fraser and J.Scogings for
useful comments and assistance in exercising the preliminary
implementations described.

References
[1] Axelrod, R.: The dissemination of culture: a model with local

convergence and global polarization. J. Conflict Resolution 41,
203–226 (1997)

[2] Barclay, K.A., Savage, J.: Groovy for Programming - An In-
troduction for Java Developers. Morgan Kaufmann (2006)

[3] Barros, F.J.: A compositional approach for modeling and sim-
ulation of bio-molecular systems. In: Proc. 2012 IEEE Winter
Simulation Conference (2012)

[4] Bergmann, G., Ujhelyi, Z., Rath, I., Varro, D.: A graph query
language for emf models. In: Proc. Int. Conf. on Model Trans-
formation (ICMT 2011). pp. 167–182. No. 6707 in LNCS,
Zurich, Switzerland (27-28 June 2011)

[5] Bracha, G.: Generics in the java programming language. Tech.
rep., Sun Microsystems (July 2004)

[6] Burgin, M.: Basic classes of grammars with prohibition. arXiv
1302.5181, UCLA, USA (February 2013)

[7] Clarke, E.M.: Programming language constructs for which it is
impossible to obtain good hoare axiom systems. J. ACM 26(1),
129–147 (1979)

[8] DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J.:
Terra: A multi-stage language for high-performance comput-
ing. In: Proc. 34th ACM Conf. on Programming Language De-
sign and Implementation. pp. 1–11. Seattle, Washington (16-22
June 2013)

[9] Drossel, B., Schwabl, F.: Formation of space-time structure in
a forest-fire model. Physica A: Stat. Mech and its Applications
204, 212–229 (1994)

[10] Eden, M.: A two-dimensional growth process. In: Proc. Fourth

460 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Berkeley Symposium on Mathematics, Statistics and Proba-
bility. vol. 4, pp. 223–239. Univ. California Press, Berkeley
(1960)

[11] Fowler, M.: Domain-Specific Languages. No. ISBN 0-321-
71294-3, Addison Wesley (2011)

[12] Gardner, M.: Mathematical Games: The fantastic combina-
tions of John Conway’s new solitaire game ”Life”. Scientific
American 223, 120–123 (October 1970)

[13] Gosling, J., Joy, B., Steele, G.: The Java Language Specifica-
tion. JavaSoft Series, Addison Wesley Longman (1996), iSBN
0-201-63451-1

[14] Hannig, F., Roloff, S., Snelting, G., Teich, J., Zwinkau,
A.: Resource-aware programming and simulation of mpsoc
architectures through extension of x10. In: Proc. 14th Int.
Workshop on Software and Compilers for Embedded Systems
(SCOPES’11). pp. 1–8. Schloss Rheinfels, St. Goar, Germany
(27-28 June 2011)

[15] Hawick, K.A.: Complex Domain Layering in Even Odd
Cyclic State Rock-Paper-Scissors Game Simulations. In: Proc.
IASTED International Conference on Modelling and Simula-
tion (MS2011). pp. 129–136. No. 735-062, IASTED, Calgary,
Alberta, Canada (4-6 July 2011)

[16] Hawick, K.A.: Engineering domain-specific languages for
computational simulations of complex systems. In: Proc. Int.
Conf. on Software Engineering and Applications (SEA2011).
pp. 222–229. No. CSTN-123, IASTED, Dallas, USA (14-16
December 2011)

[17] Hawick, K.A.: Engineering internal domain-specific language
software for lattice-based simulations. In: Proc. Int. Conf. on
Software Engineering and Applications. IASTED, Las Vegas,
USA (12-14 November 2012)

[18] Hawick, K.A.: Fluent interfaces and domain-specific lan-
guages for graph generation and network analysis calcula-
tions. In: Proc. Int. Conf. on Software Engineering (SE’13).
IASTED, Innsbruck, Austria (11-13 February 2013)

[19] Hawick, K.A., Johnson, M.G.B.: Bit-packed damaged lattice
potts model simulations with cuda and gpus. In: Proc. Int.
Conf. on Modelling, Simulation and Identification (MSI 2011).
pp. 371–378. IASTED, Pittsburgh, USA (7-9 November 2011)

[20] Hawick, K.A., Leist, A., Playne, D.P.: Regular Lattice and
Small-World Spin Model Simulations using CUDA and GPUs.
Int. J. Parallel Prog. 39(CSTN-093), 183–201 (2011)

[21] Hawick, K.A., Scogings, C.J.: A minimal spatial cellular
automata for hierarchical predator-prey simulation of food
chains. In: Proc. International Conference on Scientific Com-
puting (CSC’10). pp. 75–80. WorldComp, Las Vegas, USA
(12-15 July 2010)

[22] Ierusalimschy, R.: Programming with multiple paradigms in
lua. In: Proc. Workshop on Functional and Constraint Lan-
guage Programming (WFLP’09). pp. 1–12. No. 5979 in LNCS,
Springer (2010)

[23] Kabanov, J., Hunger, M., Raudjarv, R.: On designing safe and
flexible embedded dsls with java 5. Science of Computer Pro-
gramming 76, 970–991 (2011)

[24] Kawasaki, K.: Diffusion constants near the critical point for
time dependent Ising model I. Phys. Rev. 145(1), 224–230
(1966)

[25] Konig, D., Glover, A., King, P., Laforge, G., Skeet, J.: Groovy
in Action. Manning (2007), iSBN 978-1-932394-84-2

[26] Langton, C.G.: Studying artificial life with cellular automata.
Physica D 22, 120–149 (1986)

[27] Li, D., He, S.: Javascript closure: Conceptm usage and ap-

plication. Computer Science Applications and Education 13,
463–468 (2013)

[28] Lienhardt, M., Lanese, I.: A reversible abstract machine and
its space overhead. In: Proc. IFIP Int. Conf. on Formal Tech-
niquesfor Distributed Systems. pp. 1–17. No. 7273 in LNCS,
Stockholm, Sweden (13-16 June 2012 2012)

[29] Lytinen, S.L., Railsback, S.F.: The evolution of agent-based
simulation platforms: A review of netlogo 5.0 and relogo. In:
Proc. Fourth Int. Symp. on Agent-Based Modelling and Simu-
lation (2012)

[30] Meakin, P.: Fractals, Scaling and Growth far From Equilib-
rium. No. ISBN 0-521-45253-8, Cambridge University Press
(1998)

[31] Merunka, V.: Instance-level modeling and simulation using
lambda-calculus and object-oriented environments. In: Enter-
prise and Organizational Modeling and Simulation - 7th Inter-
national Workshop (EOMAS 2011). London, UK (20-21 June
2011)

[32] Miller, J.A., Han, J., Hybinette, M.: Using domain specific lan-
guage for modeling and simulation: Scalation as a case study.
In: Proc. 2010 Winter Simulation Conference. pp. 741–752
(2010)

[33] Milthorpe, J., Rendell, A.P., Huber, T.: Pgas-fmm: Implement-
ing a distributed fast multipole method using the x10 program-
ming language. Concurrency and Computation: Practice and
Experience POnline, 1–16 (2013)

[34] Ozik, J., North, M.: Modeling endogenous coordination using
a dynamic language. In: Proc. Simulating Interacting Agents
and Social Phenomena: The Second World Congress, Agent-
Based Social Systems 7 (2010)

[35] Reddy, U.S.: Objects as closures: Abstract semantics of object-
oriented languages. In: Proc. ACM Conf. on Lisp and Func-
tional Programming. pp. 289–297. ACM (1988)

[36] Reichenbach, T., Mobilia, M., Frey, E.: Coexistence versus Ex-
tinction in the Stochastic cyclic Lotka-Volterra model. Phys.
Rev. E 74, 051907–1–11 (2006)

[37] Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.:
Report on the programming language x10. Tech. rep., IBM,
Thomas J. Watson Rresearch Center, USA (2010), http://
x10-lang.org/

[38] Steele, C.S., Bonn, J.P.: Fast functional simulation with a dy-
namic language. In: Proc. High Performance Extreme Comput-
ing (HPEC 2012). pp. 1–3. IEEE, Waltham, MA, USA (10-12
September 2012)

[39] Strachan, J.: Weblog (August 2003), http://
radio-weblogs.com/0112098/2003/08/29.html

[40] Sznajd-Weron, K., Sznajd-Weron, J.: Opinion evolution in
closed community. Int. J. Modern Physics C 11(6), 1157–1165
(2000)

[41] Todd, A.B., Keller, A.K., Lewis, M.C., martin G. Kelly: Multi-
agent system simulation in scala: An evaluation of actors for
parallel simulation. In: Proc. Int. Conf of Parallel and Dis-
tributed processing and Applications (PDPTA’11) (2011)

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 461

A Case Study in the Model-Driven Development of CorkBoard – a WebApp for
Collaborative Work

Andrew Harnage, Doug Flagg, Amber Whittemore, Devon M. Simmonds
University of North Carolina Wilmington

601 South College Road, Wilmington, NC 28403
{cah5854, dgf4958, arw5194, simmondsd}@uncw.edu

SERP ‘13

Abstract

We report on the model-driven development of
CorkBoard - a project designed to provide a
mechanism for small groups of persons to work
collaboratively. We narrowed the most important
software functions that a group would need for
project success to: notification, communication,
organization, accountability, and management. By
focusing on these five topics, we believed we could
create a WebApp that would serve as a positive
environment for a group and facilitate the process of
achieving success. Ultimately, we gained invaluable
knowledge and experience in planning, estimation,
scheduling, settings goals, meeting deadlines, and
working in teams through the progression of the
CorkBoard project. We present our results and
lessons learned in the process.

Keywords: CorkBoard, Collaboration, WebApp,
Model Driven Development, Communication.

1. Introduction

Working within a group can be a daunting task.
This is true whether group members are familiar with
each other or are meeting for the first time.
Professional and institutional workgroups encounter
multiple conflicts during the creation, progression, and
completion of a project. For example, scheduling and
personal conflicts arise; members may be unavoidably
absent from work at a time when projects still need to
be completed on time. Organizational and
communicational issues also occur when members are
forced to use multiple sources for communication and
data sharing. Additionally, responsibilities and tasks
are not always well defined, allowing for an uneven
distribution of work and lack of accountable on the
part of some project members.

Users, whether they are professional, scholastic,
or casual, use applications in the hopes of simplifying
and condensing otherwise complex tasks. Too often,
applications are built with unnecessary functions,
confusing controls, or too many operations, taking
away from the application’s main purpose. These
faults can force users to spend extra time learning the
functionality of the application, instead of utilizing it
for its intended purposes. Users need easy to use
applications, without large learning curves.

To aid individuals engaged in collaborative
projects and provide software that minimizes
unnecessary functionality and complexity, we
designed a Web application called CorkBoard.
WebApp’s are a popular category of applications
spawned by the Internet. WebApp’s have evolved into
sophisticated computing tools that provide both stand-
alone software and integrated business applications [1,
20]. CorkBoard provides functionality to aid
scheduling, communication, organization, and
distribution of work within groups of individuals.

Our motivation for the project was three-fold.
First we wanted to test our model-driven development
(MDE) skills. Secondly, we wanted to test these skills
by developing software that would be useful and third,
we wanted to engage in Web-based development
given the growth and reach of the Internet and
associated technologies. Model-driven engineering
(MDE) [11 – 13] is an approach to software
engineering that shifts the development philosophy
from a code-centric approach to an approach where
models become indispensable first class entities in the
software lifecycle. MDE is especially appealing as if
enables a reduction in some of the accidental
complexities [14] that arise in software development
when code-centric approaches are used. Modeling for
CorkBoard was done using UML [15] class, activity,
sequence, state and use case diagrams.

Several collaborative software are available [16
– 18], however, we have found several of these

462 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

applications to be very complex, difficult to use, and
containing unnecessary functionality. In addition, we
wanted to gain personal experience developing this
kind of software. In contrast to some of the available
applications, CorkBoard was designed to be simple,
reducing unnecessary functionality, while being a
productive program that is easy to navigate and that
focuses on small teams. Small teams [2] have been
found to be more effective and productive than a
single individual toiling away at a project [3]. We
focus on these small groups, facilitating their effort to
produce a successful.

2. Project Plan

Given the project goal of developing
collaborative software with a small learning curve, we
began the software engineering process with project
planning. Planning was done to define the scope,
assess risks, estimate required resources and schedule
project activities. The key emphasis of the project was
to create a unified accountability system to allow for
development of a group project. Planning enabled us
to lay a foundation for performing, observing and
having control over later software lifecycle activities
such as design, implementation and testing.

Figure 1: Use Case Diagram

The foremost purpose of the UML use case

diagram (UCD) is to visually associate users with the
services or processes provided by the system [7, 19].

In Figure 1 our actors, e.g. Group Admin, Group
Creator, User, and Group Member, each have specific
needs, roles and responsibilities. For example, the
Group Creator responsibilities include creating and
updating roles for other users. These roles are stored
in the database. Users differ from Group Members
because users are persons that haven’t been accepted
into a group. Group Creator, Group Admin’s, and
Group Members and general users form an inheritance
hierarchy users being the most abstract. As such, the
group Creator has the most authority and the users the
least.

2.1 Project Scope

The scope of the CorkBoard software is reflected

in the Use Case diagram shown in Figure 1. The
services provided by the software include managing
projects, managing groups, and managing documents.
These software features are meant to enable project
members to keep their work organized, with functions
to ensure that other members are up-to-date on
deadlines and other constraints. The WebApp is meant
to be easy to learn and navigate by providing users
with pictures, colors, and tools to customize and
organize the information and data for the project.

 2.2. Risk Plan

Ignoring risks because they are improbable and
not worth analysis has proven to be highly risky in
itself [5]. Table 1 shows the 3 risks that we identified
for the project. The probability, impact and priority
are on a scale of 0 to 10 with 0 being the lowest

Table 1: Risk Assessment
Risk Prob. Impact Priority Actions
Loss of
Project
Member

2 8 10 Divide
work up
among
remaining
members

Hardware
Breaks,
Loss of
Information

5 3 7 Backups
are on
Dropbox
and on
other
members
computers

Change in
Deadlines

5 5 3 If a
member
finishes
work early
then that
person
will help
the others

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 463

chance and 10 being the greatest. The first risk that we
identified was the possibility of losing a project
member. This risk would have the greatest impact on
our group if it happened. Hardware breaks and
changes in deadlines were the most probable risks.

2.3 Project Estimates and Schedule

Project planning included the development of a
work breakdown structure (see Figure 2) and
assigning responsibilities to project team members.
Tasks are defined for the product as a whole or for
individual functions [4]. The work breakdown
structure (WBS) was used to create a list to keep track
of each group member’s responsibility. The WBS
allows for an easy transition to project responsibilities
by taking the main ideas of what a group will need
and developing it. WBS is a vehicle for breaking an
engineering project down into subproject, tasks,
subtasks, work packages, and so on. It is an important
planning tool which links objectives with resources
and activities in a logical framework [6].

!

CorkBoard

Preliminary
Group
Setup

Project
Planning

Software
Requirements

System
Design

Testing
and

Control

Deployment

Determine
the Project

Initialize Roles
and

Responsibilities

Hold the
First

Official
Meeting

Create a
Schedule

Estimate
Resources

Assess
Risks

Assess Issues,
Constraints,

and
Limitations

Functional
Capabilities

Nonfunctional
Capabilities

Client Side

Server Side

Increase or
Decrease
Capabilities

Function
Testing

Reliability
and Security
Testing

Update
Changed

Specifications
or Functions

Figure 2: Work Breakdown Structure (The First two

Layers)

3. Software Design & Development

The design class diagram for the software is
shown in Figure 3. The figure lists all the types of
Objects we thought we would need to complete the
project. We thought it would be important to use
classes and inheritance to minimize code duplication.

 By having an inheritance hierarchy we allow for
the possible code to be reused in the current modle of
the system [11]. Picture, StickyNote, Tape and Tac
are all instances of BoardObject and each of can be
used as many times as the user would like. Each of the
BoardObjects has their own unique attributes related
to what the user applies to it. StickyNotes will have a
particular message a User wants along with the ability
to change the color and it will have the location (x and
y points) of the StickyNote.

As you go down the hierarchy of
GroupMember’s we are applying more specific roles
to each particular User. GroupMember’s can upload
documents, put objects on the CorkBoard, Chat and
update their own My Workspace page.
GroupAdmin’s can appoint other members to Admins,
change the Admin tab, use the Calendar and
Recycling bin and let Users into the group. Finally the
GroupCreator is the first member to create a group
and has the ability to remove members, give a group
name, delete a group and override changes for roles in
the group.

 Several state diagrams were developed for the
CorkBoard software. The state diagram shown in
Figure 4, focuses on either creating a new account or
logging in into an existing profile. It gives the user the
additional messages if he or she submits a bad
password or Email address, and includes an option to
retrieve a forgotten password as well. When accepted
the user proceeds towards the main home tab called
CorkBoard. If not accepted the user can go through a
series of events allowing for him/her to retrieve the
password by answering a personal question. The
option for creating a new account is also on this page
and a page with all the information needed for the
member’s database will be uploaded accordingly.

Figure: 3 Design Class Diagram

464 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 Architecture models describe the environment,
but not the relationship between other systems in the
environment [8]. These models are important because
they show how the data moves through the system,
which helps analyst understand what’s going on [4,8].
Architecture is intended to develop a recommended
practice for architectural description, allowing for
communication of system-level and software-level
architectural information between parties [9].

Figure 4: State Diagram for Login Page

Figure 5 shows our Shared Repository

Architecture for the software identifying the major
software subsystems. The Shared Repository
Architecture boasts several advantages including:

• Efficient way to share large amounts of data
• Sub-systems need not be concerned with how data

is produced Centralised management e.g. backup,
security, etc.

• Sharing model is published as the repository
schema

Figure 5: Shared Repository Architecture

5. Results

CorkBoard is a customizable group board where

individuals can notify the group on due dates, and post
reminders, pictures, and other important information.
The CorkBoard WebApp consists of four main tabs as
shown in Figure 6: CorkBoard, WhiteBoard,
Documents, and My Workspace. An additional Admin
tab will be visible to group creators and
administrators. As Figure 6 shows, CorkBoard is a
customizable group board where individuals can
notify their group of due dates, reminders, pictures,
and other important information.

Figure 6 is what the user would see as soon as
their user and password are accepted in the login page.
In this tab users can attach ‘board objects’ to the
CorkBoard. These board objects are guaranteed to be
seen by all of the members of the group, as the
opening tab is always displayed immediately
following user login. By using simple text and color
schemes we’ve given each ‘tab’ its own personality.

Whiteboard tab is an advanced group chat
system that allows members to communicate to one
another. The Documents tab will list each member’s
submissions to the project. Here, members can also
download these files to their personal computer. The
My Workspace tab allows members to upload
documents for personal viewing until they are ready to
share their personal documents with their group
through the Documents tab. Here, members can also
save personal notes and reminders. For the
administrators of the group, the Admin tab allows him
or her to change certain aspect of group, projects

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 465

including appearance and settings.

Figure 6: CorkBoard Home Tab

Figure 7: My Workspace Tab

6. Discussion and Lessons Learned

What sets the CorkBoard program apart from
other group organizing software is the level of
customization and organization automatically
implemented within this WebApp. Without the ability
to share ideas, the small group will likely suffer or
fail. Through the CorkBoard, members can set priority
on more important tasks, as well as be alerted of
higher priority changes or jobs. Accountability is also
automatically implemented within our system.
Through timestamps on each user’s last login and
uploads, members are able to track a particular
person’s progression through their responsibilities.

We experienced several challenges in
undertaking this project. Firstly, software engineering
often requires that engineers learn new technologies,
techniques and tools. in the CorkBoard project, only
one group member was experienced with
programming in C#, the others of us had to learn on
the fly. A second challenge common to software
engineers that we faced is the challenge of balancing

competing interconnected concerns sometimes
expressed as information management. In our case we
had to manage and balance a number of features
including a calendar, databases, and real-time updates.
Managing all of these elements was a learning
experience in itself. So too was, managing timing and
scheduling which proved to be a complicated process
with members being involved in multiple non-related
endeavors resulting in schedules colliding much of the
time.

Appropriate ethical practices are important in
fostering a viable software engineering community in
the long term. We address issues of ethics by making
users agree to our copyright agreement (End User
Agreement). Through this agreement, users are
informed that each group member is personally liable
for any consequences (legal or otherwise) that result
from uploading files to our WebApp. By accepting the
terms of this agreement, users consent to uploading
only their work, and agree not to share files they do
not own without proper permissions. In this
agreement, we also state that we are not liable for lost
information. Group Administrators are responsible for
ensuring that copyrighted material does not appear in
their groups.

 To address personal and group security, users
are asked to provide an email address and password
upon creating an account. If a user forgets his or her
login information, a backup email can be used to
recover these items. Because the CorkBoard is meant
to accommodate multiple group members, we hope
our WebApp allows for a wide array of users with
diverse backgrounds, experience levels, geographic
locations, and personalities.

CorkBoard can be used for many different kinds
of projects and it would have helped us if we had this
software at any stage of our team effort, from
inception to actually creating the final program. We
believe this program will be very useful to future
group projects as being able to communicate, plan,
and design before and after coding begins is central to
good software engineering groups.

We are currently making the final changes to the
software which should be fully functional before this
paper comes to publication.

466 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

References

1. Georgia M. Kapitsaki, Dimitrios A. Kateros, Christos A.
Pappas, Nikolaos D. Tselikas, and Iakovos S. Venieris. 2008.
Model-driven development of composite web applications. In
Proceedings of the 10th International Conference on
Information Integration and Web-based Applications \&
Services (iiWAS '08), Gabriele Kotsis, David Taniar, Eric
Pardede, and Ismail Khalil (Eds.). ACM, New York, NY,
USA, 399-402. DOI=10.1145/1497308.1497380 http://0-
doi.acm.org.uncclc.coast.uncwil.edu/10.1145/1497308.149738
0

2. Ryoko Yamaguchi, Nathan Bos, and Judy Olson. 2002.
Emergent leadership in small groups using computer-mediated
communication. In Proceedings of the Conference on
Computer Support for Collaborative Learning: Foundations
for a CSCL Community (CSCL '02), Gerry Stahl (Ed.).
International Society of the Learning Sciences 138-143.

3. Sonal Panse, “Small Group Communication: Effective Team

Communication,” Buzzle.com,
http://www.buzzle.com/articles/small-group-communication-
effective-team-communication.html, Accessed 11/2/12

4. Roger Pressman, “Software Engineering A Practitioner’s
Approach Seventh Edition,” 2010, McGraw-Hill, pp. 732

5. Ed Perkins, “Risk Based Decision Making,” 2011, IEEE-USA

Today's Engineer Online, URL:
http://www.todaysengineer.org/2011/Aug/risk-
management.asp, Accessed 3/7/13.

6. “The work breakdown structure in software project

management,” Robert C. Tauseworthe, Journal of Systems
and Software, Volume 1, September, 1984
Pages 181-186, http://dl.acm.org/citation.cfm?id=2305981

7. Neil Maiden and Suzanne Robertson. 2005. Developing use

cases and scenarios in the requirements process. In
Proceedings of the 27th international conference on Software
engineering (ICSE '05). ACM, New York, NY, USA, 561-
570. DOI=10.1145/1062455.1062555

8. Ian Sommerville, “Software Engineering, 6th Edition,” 2001,
Pearson Education Limited, pp. 151-155

9. “Software Engineering Standards,” James W. Moore, 1998,

IEEE Computer Society Press Order Number BP08008, pp.
128-130

10. “Integration-Ready Architecture and Design, Software

Engineering with XML, Java, .NET, Wireles, Speech, and
Knowledge Technologies,” Jeff Zhukl, The Press Syndicate of
the University of Cambridge, 2004, pp. 5

11. R. France and B. Rumpe. Model-driven evelopment of

complex software: A research roadmap. In FOSE '07: 2007
Future of Software Engineering, pages 37.54,Washington,
DC, USA, 2007. IEEE Computer Society.

12. B. Selic. The pragmatics of model-driven development. IEEE
Software., 20(5):19.25, 2003.

13. Simmonds, D. M., Reddy, Y. R., Song, E. and Grant, E. “A

Comparison of Aspect-Oriented Approaches to Model Driven
Engineering”, in Proceedings of the International Conference
on Software Engineering Research and Practice, (SERP),
2009.

14. Fred Brooks, “No silver bullet: Essence and accidents of

software engineering,” IEEE Computer, 20(4):10-19, April
1987.

15. The Object Management Group (OMG). Unified Modeling

Language: Superstructure. Version 2.2, Final Adopted
Specification, OMG, http://www.omg.org/uml, February
2010.

16. Brian J. McNely. 2007. Agency, invention, and sympatric

design platforms. In Proceedings of the 25th annual ACM
international conference on Design of communication
(SIGDOC '07). ACM, New York, NY, USA, 49-54.
DOI=10.1145/1297144.

17. Gabriele D'Angelo, Fabio Vitali, and Stefano Zacchiroli.

2010. Content cloaking: preserving privacy with Google Docs
and other web applications. In Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC '10). ACM, New
York, NY, USA, 826-830. DOI=10.1145/1774088.1774259

18. Anita Z. Schwartz. 2007. UD dropbox 2.0: collaboration

magic. In Proceedings of the 35th annual ACM SIGUCCS fall
conference (SIGUCCS '07). ACM, New York, NY, USA,
305-309. DOI=10.1145/1294046.1294118

19. Tao Yue, Lionel C. Briand, and Yvan Labiche. 2013.

Facilitating the transition from use case models to analysis
models: Approach and experiments. ACM Trans. Softw. Eng.
Methodol. 22, 1, Article 5 (March 2013), 38 pages.
DOI=10.1145/2430536.2430539

20. Suman Jana and Vitaly Shmatikov. 2011. EVE: verifying

correct execution of cloud-hostedweb applications. In
Proceedings of the 3rd USENIX conference on Hot topics in
cloud computing (HotCloud'11). USENIX Association,
Berkeley, CA, USA, 11-11.

21. “Project-Based Software Engineering, An Object-Oriented

Approach,” Evelyn Stiller, Cathie LeBlanc, 2002, Addison-
Wesley, pp. 217-219

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 467

An Object Oriented Runtime Complexity Metric based on

Iterative Decision Points

Amr F. Desouky1, Letha H. Etzkorn2
1 Computer Science Department, University of Alabama in Huntsville, Huntsville, AL, USA
2 Computer Science Department, University of Alabama in Huntsville, Huntsville, AL, USA

SERP'13

Abstract – Software metrics are used to measure

the quality of a software system. Such metrics

indicate the level of desired quality present in a

system. However software metrics have

traditionally been captured at compile time,

rendering useful results, but often times inexact,

as the complete source code differs from the

executing subset. For this reason, static metrics

can fall short of measuring the true operational

behavior of object oriented programs. In this

paper, we present an investigation into the

runtime boundary behavior of Rhino 1.7R4 – an

open source implementation of JavaScript, in

which we introduce a new runtime metric that

measures the quality of complexity based on

iterative decision points. We call this the “runtime

boundary” as we are instead measuring object

oriented quality at runtime; normal performance

metrics collected at runtime are typically neither

object oriented nor focused on quality. Finally,

we validate the metric by comparing it to bug

data.

Keywords: Object Oriented Runtime Metrics,

Complexity Measurement, Object Behavior, and

Software Engineering.

1 Introduction

 Object oriented software metrics have

traditionally analyzed the quality of software

systems at compile time [5]. Static, compile time

measurements must consider the entire source

code, since it’s not known at compile time which

sections of code will actually execute. Therefore,

static metrics have some degree of inaccuracy.

However, some previous work [1, 2, 3, 4] has

proposed a shift from the compile time boundary

to runtime, allowing software complexity to be

measured solely on a program’s runtime behavior.

This approach of measurement yields improved

accuracy as non-executed code is ignored during

metric computation. For instance, consider a

metric which determines the quality of complexity

based on the number of method invocations

achieved per object. To compute such a metric

outside the runtime boundary (that is, at compile

time) will prove inadequate as the exact number

of calls made to a given method cannot be fully

determined at compile time, primarily since

program execution typically relies on external

arguments such as user input, which is often

irregular. These Runtime boundary metrics are

object oriented, which differentiates them from

typical performance metrics which are largely not

focused on objects. Also, they examine quality

factors such as complexity (or cohesion) at

runtime, whereas typical performance metrics

clearly focus on performance.

In this paper, we propose a new object oriented

runtime complexity metric based on iterative

decision points. A decision point is a conditional

expression which can alter the control flow of the

program resulting in the execution of a particular

branch – sequence of code, over another [1].

Iterative decision points on the other hand are

control structures which execute a code fragment

repeatedly based on a single decision point.

Common examples of iterative decision points are

for loops, do-while, and while loops. To the best

of our knowledge, object oriented runtime

complexity metrics based on iterative decision

points have never been examined before.

468 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

The remainder of this paper is organized as

follows: Section 2 describes background

information and related work. Section 3 defines

our runtime complexity metric. Section 4 outlines

the experimental design and analyzes results

compared to bug data. And finally, section 5

concludes the paper and outlines future work.

2 RELATED WORK

While a large contribution has been made to static

metrics, a limited body of work has been

conducted in the field of Object Oriented Runtime

Metrics. Mitchell et. al. [3] investigate whether

objects of a class exhibit different behavior at

runtime from a coupling perspective. They

introduce a runtime object-level coupling metric

based on Chidamber and Kemerer’s widely

accepted CBO metric [5]. The authors conclude

objects of the same class at the runtime boundary

do exhibit different behavior than static metrics.

Mitchell et. al. [4] measure the quality of a

software design using runtime object oriented

metrics. The authors show that although some

degree of correlation exists between runtime

metrics and static metrics, runtime metrics capture

properties not found in static metrics.

Mathur et. al. [1, 2, 6] present runtime metrics

based on (1) decision points and (2) memory

occupied by an object at runtime; both provide

quality measurements of complexity. The former

of the two counts the number of decision points

executed per object for all selection structures: if,

if-else, if-else-if, and switch – as well as repetition

structures: for, while, and do-while. However,

each decision point is only counted once,

irrespective of the number of iterations. Our

proposed metric is different because we are

considering the number of iterations per decision

point as a complexity metric itself.

3 RESEARCH APPROACH

Chidamber and Kemerer [5] have defined

complexity: “The complexity of the class relates

to simplicity, in that the more complex the class,

the less simple the class”. For instance, a class

comprised of inheritance, control structures,

boolean logic, and methods, is more complex than

a simple hello world class with a single method.

To expand on this, a class with 1+n looping

iterations is intuitively more complex than a class

with only 1 looping iteration. The extra cycles

require CPU overhead to fetch, decode, and

execute all instructions inside the loop, as well as

memory, cache and register resources. Moreover,

each additional cycle carries the risk of impeding

performance in the event of a branch

misprediction, ultimately resulting in penalties

i.e., lost execution time. We use this intuitive

understanding in defining our runtime complexity

metrics.

Metric

Name

Definition

RuNFA

Runtime Number of Functions

Accesses for all instances of a class.

Object Instances that do not access a

function are not considered.

RuNOI

Runtime Number of Object Instances

per class

RuNLI

Runtime Number of Looping Iterations

for all instances of a class

RuCIDp-A

Runtime Complexity based on Iterative

Decision Points

𝑅𝑢𝐶𝐼𝐷𝑝 − 𝐴 =
𝑅𝑢𝑁𝐿𝐼

𝑅𝑢𝑁𝐹𝐴

RuCIDp-B

Runtime Complexity based on Iterative

Decision Points

𝑅𝑢𝐶𝐼𝐷𝑝 − 𝐵 =
𝑅𝑢𝑁𝐿𝐼

𝑅𝑢𝑁𝑂𝐼

RuCIDp-C

Runtime Complexity based on Iterative

Decision Points

𝑅𝑢𝐶𝐼𝐷𝑝 − 𝐶 =
𝑙𝑛(𝑅𝑢𝑁𝐿𝐼)

𝑅𝑢𝑁𝐹𝐴

Table 1. Runtime Metric Definitions

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 469

Consider the following example:

class Example
{
 void funct_1(int n) {
 while (n < 10) {
 n++;
 }
 }

 void funct_2(int n) {
 for (int i = 0; i < n; n++) {
 continue;
 }
 }

 void funct_3(int n)
 {
 do
 {
 n++;
 }
 while (n < 10);
 }

 void funct_4(int n) {
 for (int i = 10; i > n; n--) {
 continue;
 }
 }
 }

Figure 1. Program Example

Table 2 shows the runtime behavior of Figure 1 by

assuming the number of looping iterations for a

particular function of an object instance.

Class Example

Object

Instances

funct_1 funct_2 funct_3 funct_4

1 10 20 0 0

2 0 0 0 0

3 2000 40 0 80

4 10 0 0 100

5 0 0 0 30

Table 2. Runtime Results from Figure 1

In reference to Table 2, we compute our metrics

as follows:

RuNFA Count 𝑶𝒃𝒋𝒆𝒄𝒕 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 (𝟏, 𝟑, 𝟒, 𝟓) = 4

RuNOI Count 𝑶𝒃𝒋𝒆𝒄𝒕 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 (𝟏, 𝟐, 𝟑, 𝟒, 𝟓) = 5

RuNLI

∑ (𝑓𝑢𝑛𝑐𝑡_1 , 𝑓𝑢𝑛𝑐𝑡_2, 𝑓𝑢𝑛𝑐𝑡_3, 𝑓𝑢𝑛𝑐𝑡_4)

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

= 10 + 20 + 2000 + 40 + 80 + 10 + 100
+ 30

= 𝟐𝟐𝟗𝟎

Table 3. Metric Computation Example

𝑅𝑢𝐶𝐼𝐷𝑝 − 𝐴 =
𝑅𝑢𝑁𝐿𝐼

𝑅𝑢𝑁𝐹𝐴
=

2290

4
= 572.5

𝑅𝑢𝐶𝐼𝐷𝑝 − 𝐵 =
𝑅𝑢𝑁𝐿𝐼

𝑅𝑢𝑁𝑂𝐼
=

2290

5
= 458

𝑅𝑢𝐶𝐼𝐷𝑝 − 𝐶 =
ln(𝑅𝑢𝑁𝐿𝐼)

𝑅𝑢𝑁𝐹𝐴
 =

ln(2290)

4
= 0.83

4 Experimental Study

In this section, we perform four case studies as a

validation benchmark for our suggested metrics.

For our case study, we used Rhino 1.7R4. The

purpose of our validation is to determine whether

𝑅𝑢𝐶𝐼𝐷𝑝-A, 𝑅𝑢𝐶𝐼𝐷𝑝-B, and 𝑅𝑢𝐶𝐼𝐷𝑝-C are good

quality measures for object oriented complexity at

runtime. We employ Pearson Product-Moment

Correlation Coefficients to determine a

correlation between the presence of bugs per class

and our complexity metrics 𝑅𝑢𝐶𝐼𝐷𝑝-A, 𝑅𝑢𝐶𝐼𝐷𝑝-

B, and 𝑅𝑢𝐶𝐼𝐷𝑝-C. Our hypotheses for all three

metrics are:

𝑯𝟎: 𝑅𝑢𝐶𝐼𝐷𝑝 has measurable impact in predicting
the presence of bugs per class

𝑯𝟏: 𝑅𝑢𝐶𝐼𝐷𝑝 has no measurable impact in predicting
the presence of bugs per class

470 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

4.1 Rhino

Rhino is an open source software package which

serves as a JavaScript implementation written in

Java. We selected a subset of 10 Rhino classes and

modified them to compute our metrics. We chose

these classes because they were the classes that

mapped to bugs. Tags were applied to each

repetition structure to track the Runtime Number

of Iterations (RuNLI). In addition, each

constructor was marked to track the Runtime

Number of Object Instances (RuNOI) for a

particular class. However, any object instance that

did not access a loop was not counted. Finally, we

tagged each function containing a loop to measure

the Runtime Number of Functions Accessed

(RuNFA). We used Rhino’s comprehensive Test

Suite comprised of over 180 test cases to fully

exercise all components of Rhino [10].

4.2 Case Study 1

In our first case study, we analyze the presence of

bugs and RuNLI. A normality test indicated the

data was normal, so we employed Pearson’s

correlation. The results of the Pearson’s

correlation were not significant. However, an

observation of the data set does show a number of

bugs increasing with the number of loop iterations.

4.3 Case Study 2

In our second case study, we consider the

correlation between the presence of bugs and

RuCIDp-A. A test for normality shows RuCIDp-A

data as not normal. The results of the Pearson's

correlation were not significant. See Table 4.

Pearson’s Correlation

Pearson

-0.004

p-value

 0.99

Table 4. Case 2 Pearson’s Correlation

4.4 Case Study 3

Our third study considered the correlation

between the presence of bugs and 𝑅𝑢𝐶𝐼𝐷𝑝 − 𝐵.

A test for normality shows data as not normal.

The results of Pearson’s correlation were not

significant. See Table 5.

Pearson’s Correlation

Pearson

-0.463

p-value

 0.178

Table 5. Case 3 Pearson’s Correlation

4.5 Case Study 4

Our final case study considered the correlation

between the presence of bugs and 𝑅𝑢𝐶𝐼𝐷𝑝-C. We

compute the numerator using a natural logarithm

function in order to stabilize the variance sample

of 𝑅𝑢𝑁𝐿𝐼 because of the high iteration count. Log

transformation is an accepted data transformation

technique convenient for transforming extreme

ranges into a normal distribution [9]. A test for

normality shows 𝑅𝑢𝐶𝐼𝐷𝑝-C data as normal.

Thus, we employ Pearson Product Correlation.

The results show a fairly large (according to the

Hopkins scale) correlation [8] of 𝑅𝑢𝐶𝐼𝐷𝑝-C with

bugs, while a measure of p-value also indicates a

statistical significant correlation at the 90%

confidence level.

Figure 2. Test for Normality

Pearson’s Correlation

Pearson

-0.606

p-value

 0.064

Table 6. Case 4 Pearson’s Correlation

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 471

5 Conclusions & Future Work

In this paper, we presented an experimental study

into the runtime boundary behavior of Rhino

1.7R4 for computing our runtime metric. We

observed a fairly large negative correlation and

statistical significance at the 90% confidence

level. The negative characteristic of the

correlation was unexpected. However, we note

that the correlation was relatively strong. We

conjecture that perhaps software with a large

number of loops receives extra attention from the

programmer earlier on, and perhaps in some cases

this could overcome problems related to any

additional complexity through loop execution.

Further study on different software packages is

required.

This kind of situation would not have been seen

in a static, compile-time examination of the

program, because all loops would have been

considered equal. Since our approach works

dynamically, the execution of different loops

could in fact be different.

Future work includes examining the runtime

complexity behavior of self-iterative functions

(i.e. recursion) and bugs using 𝑅𝑢𝐶𝐼𝐷𝑝-C.

6 References

[1] Mathur, R., Keen, K. J., and Etzkorn, L. H.,

Towards an object-oriented complexity metric at

the runtime boundary based on decision points in

code. In Proceedings of the 48th Annual Southeast

Regional Conference (ACM SE '10). ACM, New

York, NY, USA, , Article 77 , 5 pages.

[2] Mathur, R., Keen, K. J., and Etzkorn, L. H.,

“Towards a measure of object oriented runtime

cohesion based on number of instance variable

accesses”. In Proceedings of the 49th Annual

Southeast Regional Conference (ACM-SE '11).

ACM, New York, NY, USA, 255-257.

[3] Mitchell, A., Power, J. F., “Using Object-Level

Run-time metrics to Study Coupling Between

Objects”, 2004 International Conference on

Software Engineering Research and Practice

(SERP’04), Las Vegas, NV, June 21-24, 2004,

532-537.

[4] Mitchell, A., Power, J. F., “An empirical

investigation into the dimensions of run-time

coupling in java programs”. In 3rd Conference on

the Principles and Practice of Programming in

Java, Las Vegas, Nevada, June 16-18 2004.

[5] Chidamber, S. R., and Kemerer, C. F., “A

metrics suite for object-oriented design”. IEEE

Transactions on Software Engineering,

20(6):467{493, June 1994.

[6] Keen, K. J., Mathur, R., Etzkorn, L. H.,

“Towards a Measure of Software Intelligence

Employing a Runtime Complexity Metric”,

Software Engineering and Applications, SEA

2009, November 2009.

[7] Etzkorn, L. H., “A Metrics-based Approach to

the Automated Identification of Object-Oriented

Reusable Software Components,” PhD

Dissertation, University of Alabama in Huntsville,

1997.

[8] Stein, C., Etzkorn, L., Gholston, S., Farrington,

P., Utley, D., Cox, G. and Fortune, J., (2009)

“Semantic Metrics: Metrics Based On Semantic

Aspects Of Software”, Applied Artificial

Intelligence,23:1,44 — 77

[9] Osborne, J., (2002). Notes on the use of data

transformations. Practical Assessment, Research

& Evaluation, 8(6). Retrieved February 13, 2013

from http://PAREonline.net/getvn.asp?v=8&n=6

[10] www.mozilla.org

472 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://pareonline.net/getvn.asp?v=8&n=6
http://www.mozilla.org/

The Influence of Human Aspects in Software Process

Improvement: a Brazilian Public Company Study

Regina Albuquerque
 1
, André Bibiano

 1
, Rosilene Fernandes

 1
, Daniel Araújo

1
,

Andreia Malucelli
1
, and Sheila Reinehr

1

1
 Post-graduate Program in Informatics, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba,

Paraná, Brasil

Abstract - This study discusses issues related to factors that can

influence the success of Software Process Improvement (SPI)

initiatives and seeks to contribute to the understanding of these

factors, focusing especially on human aspects in the adoption of

these initiatives. The study is quantitative, based on a survey

approach, and was conducted at a public information technology

(IT) company that aims at reaching Maturity Level G of the MR-

MPS-SW Model (Reference Model for Brazilian Software Process

Improvement). The results are analyzed taking into account four

basic hypotheses, organized based on four human factor categories:

inertia and resistance to negative experiences; lack of

evidence of benefits; imposition; and, restricted resources.

Keywords: Human Aspects, Software Process Improvement,

MPS.BR. MR-MPS-SW.

1 Introduction

 Software development companies have focused their

attention on SPI (Software Process Improvement). According

to Vavpotic and Bajec [1], this interest is due to the fact that

SPI includes a wide variety of approaches and practices that

seek to improve the quality and reliability of software

products, customer satisfaction and a return on investment in

software development.

 A number of standards and models with the best

software development practices, such as the CMMI [2] and

the reference models of the MPS.BR program [3] have been

developed for these purposes. The CMMI family, composed

of models that scale process improvements into maturity

levels, is widely known and used worldwide. The MPS.BR

(Brazilian Program for Software Process Improvement) was

created in Brazil in 2003 and is widely used to improve

software processes all over the country, with over 400

companies evaluated at different maturity levels. Its

improvement principles are also based on maturity levels.

 There are several studies that discuss the aspects

involved in successfully adopting this kind of improvement

program, including motivation, resources and professional

training [4]. According to [5], observing previous

experiences, identifying what went right and wrong, can be

very useful for understanding which motives led to success

and which led to the failure of a given approach. This

information is important to managers of SPI programs in

order to prevent possible problems and make adequate

planning for a successful implementation.

 In this context, it is important to understand the factors

that can influence the success of improvement initiatives,

especially human factors. The present study was conducted at

a Brazilian public information technology company, analyzing

human aspects in the implementation of the improvement

program based on the MR-MPS-SW reference model [3]. The

study is quantitative and the survey method was used to gauge

the perceptions of the workers during the implementation of

this program.

 The article is organized as follows: Section 2 presents

the theoretical framework of critical factors in the success of

SPI; Section 3 presents the research method and structure;

Section 4 shows the main results and also includes a

discussion; and Section 5 contains the conclusions of this

study.

2 Theoretical Framework

2.1 Main factors of the success of SPI program

 Despite the development and availability of a series of

standards and improvement models for over two decades,

there are still problems and they remain difficult to adopt. For

this reason, studies have been conducted in an attempt to

identify and analyze factors that influence the implementation

of SPI programs [6].

 In [7], the authors conducted a study to investigate the

factors and their impact on SPI programs in order to offer

recommendations to professionals and researchers in this

field. They analyzed the perception of SPI managers in

companies with different maturity levels (evaluated maturity,

evaluation of maturity and no evaluation) located in the

United Kingdom and in multinational companies. The factors

with the greatest impact, in the opinion of the managers, were:

i) reviews; ii) standards and procedures; iii) training and

mentoring; and iv) an experienced team. In more mature

companies they found internal leadership, inspections,

executive support and the quality of internal processes.

 In [8], the authors presented the results of an empirical

study on what demotivates software professionals from

lending their support to SPI programs. The study used data

derived from focus group discussions at 13 companies in the

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 473

United Kingdom involving 200 software professionals,

providing the views of managers of this type of program and

identifying problems that these professionals face when there

is no motivation for SPI. These issues include some human

factors such as: i) resistance to change; ii) lack of evidence of

process improvement; iii) imposition; iv) restricted resources;

and, v) commercial pressures.

 In [9], the authors reported the results of a qualitative

study using the procedures of Grounded Theory. The data

were collected during open interviews with 21 participants

from 11 different companies in Pakistan. The aim of the study

was to identify the factors that were successful in software

improvement in small and large companies with a web

domain. The result was a set of success factors of SPI

initiatives. In the view of the participants, these factors were:

automated tools, client support, communication, company

vision, cost benefit analysis, support from the staff, gradual

approach, support from the senior administration, consultancy

in SPI, function of the implementer, SPI measures, supportive

policies, adaptation of processes, application of existing

knowledge regarding SPI, SPI awareness programs, targets

and benefits of SPI, success of the company, the most

mentioned by the participants being the support of the senior

administration, benefits and targets of SPI and the success of

the company.

 In [10], the authors reported the results of a study of 81

software development companies in Santa Catarina State,

Brazil, comparing micro and medium size businesses to

medium and large size companies, taking into account factors

that might influence the adoption of SPI programs. The study

showed that the group of medium and large size companies

found the model bureaucratic, while half of the smaller

companies cited a lack of financial resources as a reason for

not adopting SPI programs. The study also found that each

group had different interests in adopting SPI. While the

smaller companies had less knowledge of the existing models,

made less use of them and were more concerned with

expanding their market, the larger companies were concerned

with customer satisfaction.

2.2 The Importance of the Human Factor in the Activities

of Organizations

 Considering human aspects and seeking to understand

and manage them can be a differential for the success of the

activities developed by organizations. For this reason, they

have become the object of study in recent years [11]. When

analyzing SPI, one of the main characteristics is to understand

and evaluate the needs and expectations of each user to

organize them following a technical formality [12].

 Software Engineering, according to [13], “is a domain

that is highly driven and guided by knowledge, in which the

factors of success are related to experience in accordance with

the data collected from people involved in the following

phases: project, construction, testing and implementation”. It

is necessary to harness the knowledge of each collaborator

and convert it into something that the organization can use,

which according to [14] is knowledge management.

 In this view of knowledge, according to [15] and [16],

tacit knowledge is highly personal and depends on the action

and commitment of each individual within a given context,

including cognitive elements, where human beings create

models and establish analogies. It is important to verify that in

accordance with the authors in [14], it is necessary to

understand how the creation of knowledge takes place within

a work environment and also that “the creation of

organizational knowledge is a spiraling process that begins at

the individual level and keeps moving up, extending the

communities of interaction that cross frontiers between

sections, departments, divisions and organizations”.

 In [8], the authors stated that many collaborators end up

not accepting practices that even logic, evidence or

experience suggest that they should. This can happen for a

number of reasons, such as established personal practices

(since people learn to develop programs that work and

establish some personal practices) and previous bad

experiences with new techniques or tools. Consequently, the

workers end up thinking that new practices do not bring them

any benefits.

 According to some studies, software developers are

resistant to initiatives when they feel they are being imposed.

According to [8], improvement programs initiated at the

corporate level are not conducted consultatively and do not

involve the developers in decision making.

 Furthermore, in the studies reported in [17] and in

accordance with Rainer et al. [7], the developers wanted some

evidence of the direct benefits of implementing the

improvement processes before they would agree to take them

on. Most of the studies showed that resources dedicated to

implementing SPI were a critical factor to their success [18].

Moreover, according to [17], software developers of all the

participating groups of the software development company

are highly motivated by people, experience and the tools

dedicated to the software improvement program.

 Kitson and Masters [19] conducted a study in which they

separated the practitioners of improvement processes into

three hierarchical groups and saw that, due to having collected

data from managers and developers, who had questions that

were faced in a daily analysis, there was a high level of

reliability in the range of accuracy and validity of data. This

separation is important because, according to [13], this

perspective enables differences to be detected in the

perception of the participants from the companies in question.

3 Research Method

 This is a quantitative study using the survey method.

Forza [20] describes three types of survey-based research:

exploratory, descriptive and confirmatory or theory testing.

Using these definitions, this study could be classified as

confirmatory because it has an understanding of the research

474 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

theme and aims to confirm hypotheses concerning the

influence of the human factors listed in the previous section.

 The study followed the script proposed by [20]: (i)

related to a theoretical level; (ii) project the survey; (iii)

conduct a pilot test; (iv) collect the data; (v) prepare data

analysis; (vi) produce a report. The procedures for each state

will be described in the following topics.

3.1 The Importance of the Human Factors in the

Activities of Organizations

3.1.1 Phase I: Relate to a theoretical level

 The aim of this study is to understand the different

perceptions of workers at a public company during the

implementation of Level G of the MR-MPS-SW. The

MRMPS-SW model is divided into 7 maturity levels, ranging

from A to G; with A being the highest level of maturity. At

each level, there are associated processes and expected

results. Level G, the first level of the model, is composed of

Project Management (PM) and Requirements Management

(RM) processes.

 The objective of the study was delineated in accordance

with the Goal-Question-Metric paradigm and stated as:

Analyze the implementations of an improvement program

based on the MR-MPS-SW reference model for the purpose

of investigating and understanding the factors involved in

relation to human aspects from the viewpoint of the

information technology manager, analysts and programmers in

the context of a public software development company. From

the theoretical context presented in Section 2 of this study, the

human factors that served as a basis for the definition of four

hypotheses were identified, for the purposes of achieving the

goals of this study, as shown in Table 01.

TABLE 01: HYPOTHESES

Human Factors Hypotheses

Inertia and resistance

to negative

experiences.

H1: It is harder for workers who have

been at the company for longer to accept

the activities involved in the process.

Lack of evidence of

benefits

H2: The workers can see no benefits from

adopting the SPI.

Imposition H3: The more technical workers in the

organization believe that they are less

involved in the software process

improvement.

Restricted resources H4: The workers believe that the

resources allocated to SPI programs

(training, staff and equipment) are

insufficient.

3.1.2 Phase II – Designing the Survey

 In this stage, the target public was defined, along with

the sample and data collection method. The target public of

the study was professionals in the field of software

development who are involved in SPI. The size of the sample

was approximately 300 people. The data collection method

that was chosen was a questionnaire to be distributed locally.

3.1.3 Phase III – Conducting the pilot test

 To validate the questionnaire, 14 questionnaires with 12

closed questions were distributed in the company’s

development sector. All of these questionnaires were returned,

with contributions from the management of the development

sector and the management responsible for the

implementation of the MPS.BR program. Following an

analysis of the results of the pilot test, some questions

suggested by the managers were added and two questions

were altered because the respondents had difficulty in

understanding them, which could compromise the results.

3.1.4 Phase IV – Collecting the data to test the theory

 After the adjustments to the questionnaire, 90 of them

were distributed during two workshops promoted by the

managers in charge of implementing the MPS.BR program, of

which 63 were returned completed

3.1.5 Phase V – Analyzing the data

 The first step of the data analysis was to verify whether

all 63 questionnaires could be considered valid, i.e., with all

the questions answered. All the questionnaires proved to be

valid for the study and the responses were tabulated. A

detailed analysis will be given in the following section.

3.1.6 Phase VI – Producing the report

 Following the tabulation of the data, a report was

produced with the perceptions gauged through data analysis,

highlighting whether or not the hypotheses of the study were

validated. The resulting graphs are included in this study.

4 Results and Discussion

 In this section, the results are presented and discussed.

They are organized into 4 factors: i) inertia and resistance to

negative experiences; ii) lack of evidence of benefits; iii)

imposition; and iv) restricted resources.

4.1 Inertia and resistance to negative experiences

 To analyze the first hypothesis, H1, the respondents

were asked to characterize their profiles according to how

long they had been working at the company: the newer

workers, who had been at the company for less than ten years,

and the older workers, who had been there for over ten years.

They were then asked about their experience in other SPI

programs and what they thought of this experience.

 The results showed that 59% of the workers had been at

the company for less than ten years and 41% are more

experienced. Regarding experience in SPI, 30% of the newer

workers had already been involved in such a program and

42% of the older workers. In both categories, the workers

considered their experience in SPI as positive.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 475

 From these results, the conclusion is that hypothesis H1,

in which the older workers of an organization find it more

difficult to adapt to SPI programs is confirmed. Another

finding is that resistance was not detected among the less

experienced workers.

4.2 Lack of evidence of benefits

 To analyze the second hypothesis H2, questions were

asked about the direct and indirect benefits, motivation and

the continuity perspective in the eyes of the workers in order

to gauge whether they saw any benefits to be gained by

adopting this type of program. It should be mentioned that this

question generated many responses since the workers could

see more than one benefit or motivation.

 The results showed that only 2% of the respondents

thought that the program would bring no improvements, while

the others found some type of improvement, with the most

outstanding benefits being: increased quality (79%) and the

accuracy of estimates (68%). Regarding to the motivation

perceived by the respondents for the organization adopting the

MPS.BR program, the most expressive motivations were

improved products/company projects (78%) and improved

company management (57%). The continuity perspective of

the improvement program has an expressive percentage of

respondents who believe that the program will continue, as a

result of its proven benefits (71%).

 These results show that the influence of this factor does

not apply to the implementation of the organization under

study, as its workers see benefits, motivations and continuity

perspectives because the benefits of this type of program have

been proven to them. This becomes more evident in terms of

the quality of products and project management. Therefore,

hypothesis H2 was not confirmed.

 Other factors that were highlighted by the respondents in

their answers to this open question concerning the continuity

of the program were: political issues, understanding of

benefits, results obtain and the commitment of those involved.

4.3 Imposition

 To analyze the third hypothesis, a question was asked

that characterized the role of the respondent in the software

development process of the organization in order to obtain the

point of view of the more technical workers.

 The workers were characterized as technical and

managerial. The technical workers were those who worked as

analysts, designers, developers and/or software development

supporting staff. The managerial roles were business analysts,

project managers and project leaders. The sample included

23 technical respondents, accounting for 37% of the total

number of interviewees. There were 40 respondents employed

in operational or managerial positions, representing 63% of

the total number of interviewees.

 It was observed that 52% occupy a technical position

and had no opportunity to participate in the improvement

program. This can be partially related to the fact that at G

Level, the focus is on management practices.

 Concerning the degree of knowledge of the MR-MPS-

SW model, there is a low level of knowledge of the model in

both groups. Among the technical staff, nobody had a high

degree of knowledge of the model, a considerable number

(78%) have low knowledge and 4% of these workers have no

knowledge of the model. As for the managerial positions, 3%

have in-depth knowledge of the model and 73% have a low

level of knowledge.

 These results led to the conclusion that hypothesis H3

that workers with a more technical role in the organization

believe that they are less involved in software process

improvement is confirmed. However, it is important to point

out that this is a result that is coherent with the level of the

model that is being implemented. As mentioned above, Level

G focuses more intensely on managerial practices. This is

inevitable because it has a more direct effect on managerial

rather than technical activities.

4.4 Restricted resources

 For the fourth hypothesis H4, the respondents were

asked two questions. The first dealt with whether the human

resources made available were sufficient. The second had to

do with possible obstacles that would be faced in this type of

program. Multiple choices were permitted and an open field

was provided for the respondents to include other obstacles

that they felt deserved to be mentioned.

 The results showed that 54% of the respondents claimed

that the amount of resources allocated to the process was less

than required and that the workers viewed this lack of

resources as an obstacle to the implementation of the

program. There were some factors that stood out: lack of tools

(52%) and lack of training (44%).

 The results showed that, in the opinion of the

respondents, there were insufficient resources for the

successful implementation of the SPI program. Therefore, the

conclusion is that hypothesis H4 that workers believe that the

resources allocated to the SPI program (training, staff and

equipment), was confirmed.

 Other obstacles to the MPS.BR at the company were

identified by the respondents, such as organizational culture

(6%) and resistance to change (5%).

5 Final Considerations

 This article presented the results of a quantitative study

concerning human factors that can influence the success of a

software process improvement process in the environment of

a Brazilian public information technology company, where

the implementation process is progress, i.e., there is yet to be

an official evaluation.

476 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 The factors that the study sought to explore were

resistance, lack of benefits, imposition and restricted

resources. These factors gave rise to four research hypotheses.

An analysis of the collected data showed that the hypotheses

related to resistance and evidence of benefits were not

confirmed, while the hypotheses regarding imposition and

restricted resources were confirmed.

 The adoption of the MPS.BR by the organization in

question is well regarded and eagerly awaited by the workers

no matter how long they have been working at the

organization or what position they hold. The study showed

that a very important factor to the success of the adoption of

this type of program, although it is often not given the priority

it deserves, is the allocation and availability of resources such

as training, number of staff involved, availability of adequate

equipment and communication to all the participants

throughout the implementation process.

 Some other factors that could influence process

improvement programs were obtained through responses to

the open questions asked in this survey. These factors

included political issues, understanding of benefits and results

obtained/commitment of those involved regarding the

continuation of the program and factors of organizational

culture, in addition to resistance to change, which were

identified as obstacles to successfully implementing the

MPS.BR.

 For future studies, this study could be expanded in the

same organization, involving new variables identified during

the course of this study in response to the open questions.

This further study could examine whether this behavior

applies after the official evaluation of the MPS.BR.

6 References

[1] Vavpotic, D.; Bajec, M. “An approach for concurrent

evaluation of technical and social aspects of software

development methodologies” in Information and Software

Technology, July 2008.

[2] SEI – Software Engineering Institute. “Standard

CMMI® Appraisal Method for Process Improvement

(SCAMPISM) A”, Version 1.2: Method Definition

Document. 2006.

[3] SOFTEX – Associação para Promoção da Excelência da

Excelência do Software Brasileiro –. “MPS.BR – Melhoria de

Processo do Software Brasileiro: guia geral”, Agosto 2012.

[4] Viana, Davi., Conte, T., Vilela, D., Santos, G.,

Prikladnicki, R., “The Influence of Human Aspects on

Software Process Improvement: Qualitative Research

Findings and Comparison to Previous Studies” in 16th

International Conference of Evaluation & Assessment in

Software Engineering (EASE 2012), in Universidad de

Castilla-La Mancha - Ciudad Real - Spain , Published by IET

Conference Publications pp. 121 - 125.

[5] Kasse, T.; McQuaid, P. A. “Factors Affecting Process

Improvement Initiatives” in The Journal of Defense Software

Engineering, August 2000.

[6] Nizam, M. H. ; Ahmad, N. R. and Hassan, N. H.

“Resistance Factors in the Implementation of Software

Process Improvement Project in Malaysia” in Journal of

Computer Science 4 (3): 211-219, 2008.

[7] Rainer A.; Hall, T. (2002), “Key success factors for

implementing software process improvement: a maturity-

based analysis” in The Journal of Systems and Software 62

(2002) 71–84.

[8] Baddoo, N.; Hall, T. (2003), “De-motivators for

software process improvement: an analysis of practitioners

views” in The Journal of Systems and Software vol.66 pp.23–

33.

[9] Sulayman, M.; Urquhart, C.; Mendes, E. and Seidel, S.

“Software process improvement success factors for small and

medium Web companies: A qualitative study” in Information

and Software Technology 54 (2012) 479–500, Contents lists

available at SciVerse ScienceDirect, 2012.

[10] Schoeffel, P.; Benitti, F. B. V. “Factors of Influence in

Software Process Improvement: a Comparative Survey

Between Micro and Small Enterprises (MSE) and Medium

and Large Enterprises (MLE)” in IEEE Latin America

Transactions, vol. 10, nº. 2, march 2012.

[11] Santos, D.V., Vilela Júnior, D.C., Souza, C., Conte, T.,

“Aspectos humanos que afetam um programa de melhoria de

processo de software - Uma análise qualitativa” in XIV

CIBSE (Congresso Ibero-Americano em Engenharia de

Software), RJ-Brasil.

[12] Sommerville, Ian. “Engenharia de Software” São Paulo

– Pearson Addison Wesley, 2007.

[13] Desouza, K.C. “Barriers to Effective Use of Knowledge

Management Systems in Software Engineering” En:

Communications of the ACM, vol. 46, n.1, p. 99-101, jan.

2003.

[14] Nonaka, I.; Takeuchi, H. Criação de conhecimento na

empresa. 16ª ed. Rio de Janeiro: Campus, 1997,358p.

[15] Coser, M. A., Carvalho, H. G., Kovaleski, J. L. “A

gestão do conhecimento no apoio à gestão de requisitos em

software”. XIII SIMPEP - Bauru, SP, 2006.

[16] Parreiras, F.S.; Bax, M.P. “A gestão de conteúdo no

apoio à engenharia de software”. In: Anais Congresso

Brasileiro de Gestão do Conhecimento, KMBrasil 2003, São

Paulo, SP, Brasil, 12 a 14 de Novembro 2003.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 477

[17] Baddoo, N., Hall, T. (2002), Motivators of software

process improve-ment: an analysis of practitioners’ views.

Journal of Systems and Software 62, pp. 85–96.

[18] El Emam, K., Fusaro, P., Smith, B., “Success factors and

barriers for software process improvement”. In: Messnarz, R.,

Tully, C. (Eds.), Better Software Practice for Business

Benefit: Principles and Experience. IEEE Computer Society,

Los Alamitos, CA, pp. 355–371, 1999.

[19] Kitson, D.H., Masters, S.M., “An analysis of SEI

software process assessment results: 1987–1991”. In: 15th

International Conference on Software Engineering, Baltimore,

Maryland, May 17–21, 1993.

[20] Forza, C. “Survey research in operations management: a

process-based perspective” in International Journal of

Operations & Productions Management; 2002;22,2;

Academic Research Library pg 152, 2002.

[21] Basili V.R.; Selby R.W “Paradigms for Experimentation

and Empirical Studies in Software Engineering” in Reliability

Engineering and System Safety vol.32 pp 171- 191, 1991.

478 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Methodology for ontology development in support to

the MPS model for software

Alessandro Viola Pizzoleto,

Hilda Carvalho de Oliveira

Statistics, Applied Mathematics and Computer Science

Institute of Geosciences and Exact Sciences

Universidade Estadual Paulista, Unesp

Rio Claro, Brasil

alessandropizzoleto@gmail.com, hildaz@rc.unesp.br

Abstract— This paper proposes the use of enterprise ontologies

as a complementary tool to support the adoption of software

process quality models. The model selected for this work was the

Reference Model MPS for software development (RM-MPS-

SW), which is part of the Brazilian Software Process

Improvement Program (MPS.BR). The RM-MPS-SW was

developed focusing micro, small and medium-sized enterprises

(MSMEs), although it is completely suited to large

organizations. In this context, this work presents a methodology

for the ontology development on the levels G and F of the RM-

MPS-SW. Concepts of the PMBOK (Project Management Body

of Knowledge) are included to support adherence to its principle

by software companies. The inclusion of BSC (Balanced

Scorecard) indicators approximates the model with the strategic

planning of the company. The intention is that this methodology

can be used as a basis for the representation of the other MPS-

SW levels and other software process models.

Keywords—Software process model, Quality model, Enterprise

ontology, MPME, MPS.BR, MPS-SW, PMBOK, BSC

I. INTRODUCTION

Currently, in the software development market there are
important and well-known international processes quality
models such as CMMI (Capability Maturity Model Integration)
and ISO 9000. Some countries adopt their own models, such as
Mexico with MoProSoft (Process Model for Developing and
Maintaining Software) and Brazil with the RM-MPS-SW
(MPS Reference Model for Software). Both of them use as
references CMMI model and ISO/IEC standards: 12207 and
15504. Both MoProSoft as the RM-MPS-SW aim national and
international recognition as a model applicable to the software
industry. For this, a project titled RELAIS (Latin American
Software Industry Network) was created focusing on the
approximation of these two models [2].

 These quality models are usually written in formal
language, designed for software development companies
regardless of size, features and stakeholders profiles.
Typically, the processes models are defined in maturity levels
that establish evolutionary stages for process improvement.
These levels define where companies should focus their efforts
to implement processes improvements.

For the implementation and management of these quality
models in enterprises, great efforts are required for the
appropriate understanding of its principles, the appropriate
strategy definition and dissemination of knowledge in order to
obtain the commitment from all those involved. Major
organizational restructuration is required, as well as financial
investments in professional team training and hiring
specialized consultants. Companies should also reserve funds
for certification implementation and its maintenance,
considering the developments at specific levels of the model.

For micro, small and medium-sized enterprises (MSME)
these challenges are bigger due to diverse technical and
financial restrictions. These companies often do not have well
defined and properly documented processes. There are
difficulties in defining dedicated teams to the comprehension
and implementation of the process quality model. The level of
details to be considered in the real working environment of
software companies requires dedicated workers and it directly
affects other services and projects. In general, the costs are
relatively high for the MSME. However, it is important that
MSME be encouraged to use quality models that give them
advantages in the competitive market. The vast majority of the
software development market is composed of MSME. In
Brazil, they constitute 99.1% of the number of companies in
the software market [1].

The textual form of these models covers a wide range of
information in breadth and depth (processes, attributes,
requirements, specific elements, etc.). Usually there is usually a
large number of dependencies between the information at the
same level and among all levels of maturity. Due to this
diversity, and high amount of content and interdependencies,
standardizing the understanding of everyone involved in
implementation, consulting and certification of these models is
very complex.

In this direction, this paper proposes an alternative
representation for organizing the content of software process
models, with the intention of simplifying and standardizing the
comprehension of these models.

 The process model considered for this work was the
Reference Model MPS-SW (RM-MPS-SW). This model was

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 479

developed focusing on MSME. However the MPS-SW is
completely suitable to large organizations that have sufficient
resources to invest in software process improvement. This
model is part of the Brazilian Software Process Improvement
Program (MPS.BR). The Program provides funds raised by
SOFTEX (Brazilian Association for Promoting the Software
Export) for MSME groups to implement the MPS-SW model
[2]. Section 2 presents detailed information about RM-MPS-
SW, including the seven maturity levels, from A to G. This
paper considers the two lower levels: G and F.

The alternative considered in this work to represent the
contents of the MPS-SW quality model was ontology-based,
more specifically enterprise ontology [3]. An enterprise
ontology is a formal and explicit specification of a shared
concept among the community of people in a company or part
of it. According to Dietz [5], this kind of ontology must satisfy
the following parameters: coherence, comprehensiveness,
consistency, conciseness and essence. Some additional
comments are presented in section 3.

The methodology for creating the ontology on levels G and
F of the MPS-SW Model is presented in section 4. This
methodology is meant to serve as the basis for representation of
other MPS-SW levels and other process models. The
methodology considers concepts and terminology of the
PMBOK (Project Management Body of Knowledge) and they
can be inserted in the ontology to support adherence to its
principle by software companies. The set of indicators of the
MPS-SW model is reinforced by inclusion of indicators of
three perspectives of BSC (Balanced Scorecard).The aim is to
contribute to the rapprochement with the strategic planning of
software development companies, considering the progress of
implementation of the MPS-SW model.

II. MPS REFERENCE MODEL FOR SOFTWARE

The MPS.BR program is coordinated for the Association
for Promotion of Brazilian Software Excellence (SOFTEX),
which has the support of other institutions such as: Ministry of
Science, Technology and Innovation (MCTI), Studies and
Projects Finance Organization (FINEP), Brazilian Micro and
Small Business Support Service (SEBRAE) e Inter-American
Development Bank (IDB).

The MPS model is currently made up of four components,
as illustrated in Fig. 1: (1) MPS Reference Model for Software
(MPS-SW); (2) MPS Reference Model for Services (MPS-SV);
(3) Assessment Method (MA-MPS); (4) Business Model (MN-
MPS). Each model consists of a set of normative documents
(guides) with general and specific descriptions. The guides
contemplate the processes involved, processes attributes (AP)
and expected outcomes (RAP).

The RM-MPS-SW describes “outcome” as being the
transformation on a feedstock in the product during the
execution of the process. Already an “expected outcome”
(RAD) is the successful execution of the process in reaching its
purpose.

The RM-MPS-SW includes internationally recognized
practices for implementation and evaluation of processes
meeting the business needs of the software industry. Processes

are described in terms of its purpose and a set of expected
outcomes (RAP), which are used for certification. The
execution of the processes is related to the definition of roles,
represented by people with the following responsibilities: (1)
perform the process, (2) monitor the performing process, (3)
audit to certify that the process is performed correctly and the
requirements are archived (4) validate that the process
complies with the requirements imposed by the enterprise
internal policy. The process is made up expected outcomes
(RAP), which should be documented. For certification of the
company at one specific level of maturity all, the objectives
and the expected outcomes defined for that level must be
attended.

Fig. 1. MPS model components which are part of program MPS.BR [2].

In general, the MPS-SW defines seven levels of maturity: A
(Optimization), B (quantitatively Managed), C (Defined), D
(Largely Defined), E (Partially Defined), F (Managed), and G
(Partially Managed). The level "G" is the first level and "A" the
highest level of maturity. This paper aims at the representation
ontological of levels G and F.

The processes of level G determine more appropriate
mechanisms to be used in critical management processes:
Project Management (GPR) and Requirements Management
(GRE). On the level F are set out processes in support of the
software development that ensure the quality of products and
process, as well as manage product configurations. These
processes deal with quantitative indicators about the
performance of all processes. On the level F the organization is
still dependent on the knowledge of a particular professional.
At the higher levels, the new processes already incorporate the
knowledge.

Each level has a set of cumulative processes and their
attributes to achieve the business objectives and model. The
entire process is composed by RAP, which should be
documented. For the company to obtain certification in a
certain level of maturity, all objectives and all are defined in
the guides for that level must be attended. The Table I shows
the processes and their attributes (AP) that must be attended at
each level of maturity. There are nine AP, identified as: - AP
1.1: the process runs; - AP 2.1: the process is managed; - AP
2.2: the work products of the process are managed; - AP 3.1:
the process is defined; - AP 3.2 : the process is implemented; -
AP 4.1: the process is measured; - AP 4.2: the process is

480 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

controlled; - AP 5.1: the process is the object of incremental
improvements and innovations; - AP 5.2: the process is
continuously optimized.

It is important to observe that the MPS-SW model is fully
compatible with the CMMI-DEV. There is a correspondence
established between the seven levels of the MPS-SW and the
five levels of the CMMI-DEV. In addition to the independent
certification processes of each model, there is a specific
process for evaluations MPS-SW complementary to
evaluations CMMI-DEV. Additionally, there is a process of
joint evaluation: MPS-CMMI.

TABLE I - Processes and attributes of the RM-MPS-SW levels.

Levels Processes
Process

Attributes

A

AP 1.1, AP 2.1,
AP 2.2, AP 3.1,

AP 3.2, AP 4.1,

AP 4.2, AP 5.1,

AP 5.2

B Project Management - GPR (new outcomes)

AP 1.1, AP 2.1,

AP 2.2, AP 3.1,

AP 3.2, AP 4.1,
AP 4.2

C

Decision Analysis and Resolution - DRU AP 1.1, AP 2.1,

AP 2.2, AP 3.1,
AP 3.2

Risk Management - GRI

Development for Reuse - GDE

D

Requirements Development - DRE

AP 1.1, AP 2.1,

AP 2.2, AP 3.1,

AP 3.2

Product Design and Construction - PCP

Product Integration - ITP

Verification - VER

Validation - VAR

E

Human Resources Management - GRH

AP 1.1, AP 2.1,
AP 2.2, AP 3.1,

AP 3.2

Process Establishment - AMP

Process Assessment and Improvement - DFP

Project Management (new outcomes) - GPR

Reuse Management - GRU

F

Measurement - MED

AP 1.1, AP 2.1,

AP 2.2

Acquisition - AQU

Configuration Management - GCO

Quality Assurance - GCA

Project Management Portfolios - GPP

G
Project Management - GPR

AP 1.1, AP 2.1
Requirement Management - GRE

III. ENTERPRISE ONTOLOGY

Enterprise ontology is a research line that has origins in the
Enterprise Project [3], from the inclusion of new concepts of
the TOVE project [3]. Enterprise ontologies describe concepts
and relationships that exist in an enterprise domain. The
objective is to improve and replace the existing modeling
methods to a structure of methods and tools that meet the
enterprise modeling and change management.

Enterprise ontology is intended to supply a common
vocabulary to be used by developers and users. It allows the
reuse of knowledge about the organization, the drafting of a
first version of the requirements and the identification of those
responsible for system information. An enterprise ontology is a
guide to acquiring knowledge since from one or more
organizations. This kind of ontology supports identifying

professionals with the right skills to compose project teams,
discussing matters related to the organizational environment
and guiding the execution of a task.

 Enterprise ontologies make easy the development of

systems that manipulate the knowledge of the organization.

They provide the development of generic tools, reducing the

effort required to build integrated development environments

to specific software to different organizations. Moreover, foster

the integration between the tools that manipulate knowledge

related to ontology, through shared databases created from its

ontological structure.

 According to Uschold and King [3] the building of an

enterprise ontology is based on four stages: (1) identification

of proposal of the ontology, in order to determine the level of

formality of the ontology description; (2) construction of

ontology, capturing, encoding and integrating appropriate

knowledge since from existing ontologies (when possible); (3)

evaluation of ontology throughout the process; (4) formal

documentation (definition of constants, predicates and

axioms), reviewing the of scope identifying stages and

formalization.

Blomqvist [6] presents a model of build an enterprise

ontology that direction, but structuring it more simply. This

method consists of five basic stages: (1) requirements analysis,

considering the scope and use cases; (2) iterative construction,

with middle-out approach, to covet the requirements

specifications; (3) implementation, with appropriate tool; (4)

assessment of clarity, consistency and usability; (5)

maintenance.

According to Blomqvist [6] the development of an

enterprise ontology may be manual or automatic. In this first

stage of the work, efforts were devoted to the definition of a

methodology for the manual construction based on the RM-

MPS-SW (levels G and F).

IV. METHODOLOGY FOR THE LEVELS G AND F OF

THE RM-MPS-SW

In this section we propose a methodology for the levels G
and F of the RM-MPS-SW, with support from the models of
enterprise ontology of Uschold and King [3] and Blomqvist
[6]. The methodology consists of five primary stages: (1)
design of the organizational structure of the model and defining
the scope of the ontology; (2) requirements specification, by
modeling of the quality model elements using middle-out
approach and by supplementing this with the expert
knowledge, PMBOK and BSC; (3) implementation of the
ontology, with the specification of additional information
(alpha release); (4) evaluate the clarity, consistency and
usability by business users and experts to generate a beta
release; (5) Maintenance, aiming new releases with necessary
changes, improvements and knowledge inclusion from experts
and companies that use the ontology.

In order to specify the requirements in stage 2 should be
used class diagrams using UML (Uniform Modeling
Language). Due to the complexity of the correspondence
between text structures and the model composed by class

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 481

diagrams, it is recommended to use Design Patterns for
support. The Stage 2 includes three steps: (2.1)
supplementation of the requirements specification with
elements that represent the experts’ knowledge in the model;
(2.2) supplementation of the requirements specification with
concepts and terminology from PMBOK; (2.3)
supplementation of the requirements specification with
indicators of the BSC model.

In relation to the step 2.2, it is observed that the generic
format of process quality models do not provide information on
how to execute and deliver the expected outcomes (RAP) in
order to prove their adoption. This can be mitigated by using
additional information from the PMBOK. On the other hand,
with respect to step 2.3, it is observed that the MPS-SW
includes a measurement process that is responsible for
managing indicators, from the level F. These indicators are
defined and used to support decision making related to projects
and processes, besides checking the efficiency of the model in
the company. The measurement process does not have
concepts that provide the definition of indicators related to
knowledge. Thus, it is recommended that the BSC indicators
are considered on the following perspectives: customer,
internal processes and learning and growth (The financial
perspective may not be used).

During all stages checks should be made to assess the
coverage of the elements considered, inconsistencies (see
partitions and circularities) and semantic errors. In relation to
the documentation, all stages generate documents, which must
be arranged in order to compose the ontology documentation.

The following subsections show how these stages were
implemented for the levels G and F of the RM-MPS-SW.

A. Stage 1: Organizational Structure of the Model

In stage 1 the structures of the thirteen guides of the RM-
MPS-SW were analyzed and a common structure among them
was observed. Fig. 2 shows the structure of these guides,
according to the concepts presented in section 2. Each level has
several processes and each process has its capacity. Each
process can have multiple results. For each level there are
capacities that are represented by a set of attributes described in
terms of expected outcomes (RAP). Every component provides
information related to theoretical basis, purpose and
requirements.

Verifications were made on the structure and guides of the
levels G and F, which comprise the scope of the ontology.

B. Stage 2: Requirements Specification of the Model

In step 2, all the structural features of the G level content
were analyzed, so that class diagrams were gradually being
built using the middle-out approach (from the principal
elements). Similarly, a diagram was constructed for level F,
relating it to the level G. Approximately 130 classes were
defined for each level. The support of Design Patterns was
required to assist in modeling. For example, the Creational
Design Patterns following were used: Abstract Factory, Factory
Method, and Builder.

Fig. 2. Organizational structure of the RM-MPS-SW including levels G and F.

Thus, it was possible to classify the processes considered,
observing the interdependencies and the information that
compose the RAP. Fig. 3 shows a class diagram evidencing
some interdependencies between the levels G and F.

For all text from the guides of the levels G and F was
checked if there were classes and corresponding relationships.

Fig. 3. Class diagram showing interdependences between levels G and F.

In step 2.1 the focus was to identify the parts of the texts
where there was identification of documents to be generated,
but there was no information about the characteristics of these
documents. To facilitate the understanding of the
characteristics of such documents, information was collected
through personal interviews with experts in the model
(implementers and evaluators). Such characteristics have been
added to the class diagram and their interdependencies defined.
Examples of these documents types: matrix qualification

482 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

(information on the capacities of employees), matrix of
physical resources, etc.

In step 2.2, the focus was to identify the parts of the text
where could be added PMBOK concepts. It is emphasized that
the PMBOK have 47 PM processes, and these processes are
scattered among five process groups and ten knowledge areas,
which are found in almost all areas of projects. Then, a strategy
was defined for the cross-checking of information between the
processes of levels G and F of the MPS-SW Model and
processes of the PMBOK. The first action was to analyze the
47 PMBOK processes and determine which of them were
directly related to the processes of the level G. The same was
done with the processes of the level F. The second action was
to define which related processes would be used to
complement the RAP of each level. As an example, Table II
shows the PMBOK processes consistent with the results of the
Project Management (GPR1 and GPR 2), which are part of the
levels G and F. The concepts of each of the PMBOK process
that was selected were added to the class diagrams.

TABLE II - Results of the Project Management process x PMBOK processes.

Result

RM-MPS-SW
PMBOK Process

GPR 1

Develop Project Charter.

Collect Requirements.

Define Scope.

Create WBS.

GPR 2

Create WBS.

Define Activities.

Estimate Activity Resources.

Estimate Activity Durations.

Estimate Costs.

In step 2.3 the BSC concepts on intangible indicators were
considered. It was analyzed how these concepts could
complement the measurement process (MED) of the level F.
This process is responsible for measuring, so it generates
indicators for all other processes. The concepts of the three
perspectives recommended in step 2.3 were added to class
diagrams to complement the MED process. The example
shown in Table III considers the transformation of an
intangible asset in a tangible asset to the Requirement
Management process (GRE). The column "how to measure"
aims to help companies capture a tangible value, which will be
used to define weights for decision making. Example of values
for the "indicator": 0-2 doubts - no changes; 3-5 doubts -
prepare training for the analyst.

TABLE III. Example to turn an intangible indicator into tangible.

 Process Indicator how to measure

GRE 1 – Project

requirements
Assess the quality

of the requirements.

Number of questions regarding
to the understanding of the

requirement.
Number of rework in code

writing.
Number of generated versions.

After steps 2.2 and 2.3, it was necessary to verify the
correspondence among the information in the class diagrams,
the PMBOK processes and the BSC indicators. Thus, a cross-
reference table was defined using spreadsheet software. In this
table were included all classes and relationships of class
diagram represented in column form. On the other hand,
information from the guides, personal interviews, PMBOK
concepts and BSC indicators were represented in line form. All
data were compared. Due to the complexity and large volume
of data, this correspondence was conducted through a modular
strategy The first step was to compare data in diagrams with
the texts of the levels G and F, including the processes that
evolve from level G to F. Subsequently, comparisons were
made with the PMBOK processes and then with the intangible
indicators of BSC used for the process MED. Finally, checks
were made with the information from the individual interviews.

C. Stage 3: Implementation of ontology of the Model.

The ontology development started in Stage 3 from the class
diagrams defined in the previous step. The language used was
OWL (Web Ontology Language), which includes descriptions
of classes with their properties and relationships. According to
the World Wide Web Consortium (W3C), this language was
designed to be used by applications that require processing of
the elements that compose the information. The ontology editor
Protégé v4.1 was selected, which is considered to as a
knowledge-based framework. The Protégé v4.1 ontology editor
was selected, which is considered to as a knowledge-based
framework. Protégé is a tool freeware, open source and self-
explanatory, without the need to investment in training. Three
Protégé plug-ins were used: (1) OWLViz, which visually
shows the aggregation of classes; (2) FACT++, which is a
classifier of ontology terminologies used to verify the integrity
of the components; (3) OWLViz, which allows viewing and
comparing the hierarchy of classes, facilitates navigation
gradually between the classes and allows the comparison
between class hierarchies.

The ontology is basically composed of the following
components: superclasses, subclasses and objects properties.
The main classes of the diagrams defined in stage 2
corresponded to superclasses and subclasses. The abstract
classes and relationships were used as objects properties. The
subclasses were related to each other through the objects
properties, according to the relationships of the class diagrams.
Fig. 4 shows the superclasses of ontology. For example, the
subclasses of "adaptation" represent all adaptations that may
occur in the company in each of the maturity levels of the
model. The superclass "work product" represents all documents
which are generated from the execution of processes (results).
Information about the hierarchy of the ontology subclasses
were derived from the relationships between the subclasses of
the diagrams. Some of these relationships were represented by
objects properties, as shown in Fig. 5. The names assigned to
objects properties are intuitive to users. Each of the objects
properties contains a description that shows its association with
the subclasses.

The relationships between the subclasses represent the
network of interdependencies between the processes of the
model. The visualization of the ontology in OWL allows

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 483

software development company identify where efforts should
be concentrated. The company can also identify higher-level
processes and how they can be related to each other, expanding
the vision of current "window" of the RM-MPS-SW.
Optionally, the company may invest efforts in processes of the
upper levels, depending on the degree of interdependence and
costs. Fig. 6 shows the visualization of the interdependence
between the levels G and F of the model MPS-SW. The same
systematic way was applied to other processes.

Fig. 4. Superclasses of the ontology.

Fig. 5. Objects properties of the
ontology.

Fig. 6. Interdependence between the levels G and F.

It is important to emphasize that during the process of
ontology development, all terms used in the ontology were
defined in Portuguese and in English. Moreover, additional
information was introduced in the ontology, with explanations
of the terms used, as shown in Fig. 7. The goal is to provide a
"dictionary" so that the user can get explanations while he
navigates through the ontology. It is noteworthy that the
information that was collected through personal interviews
with experts at the model is also documented.

 A strategy using cross-references was conducted to verify
coverage of all class diagrams in ontology development.

D. Stage 4: Evaluation of the Ontology Model

The previous stage resulted in an alpha version of the
ontology, edition 1.1 (v1.1). The stage 4 consisted of the
evaluation of this ontology by people involved with the RM-
MPS-SW. The purpose of this evaluation was to generate a set
of recommendations for the generation of a beta version, which
could be available for use. This evaluation was planned and
executed as a process of usability testing. The following

documents were developed: test plan, evaluator´s guide,
participant´s orientation guide, document for notes during
testing, questionnaire to collect participants' opinions and
consent for use of image.

Fig. 7. Example of additional information for level F.

E. Stage 4: Evaluation of the Ontology Model

The previous stage resulted in an alpha version of the
ontology, edition 1.1 (v1.1). The stage 4 consisted of the
evaluation of this ontology by people involved with the RM-
MPS-SW. The purpose of this evaluation was to generate a set
of recommendations for the generation of a beta version, which
could be available for use. This evaluation was planned and
executed as a process of usability testing. The following
documents were developed: test plan, evaluator´s guide,
participant´s orientation guide, document for notes during
testing, questionnaire to collect participants' opinions and
consent for use of image.

The preparation of the test structure aimed to allow to the
user to navigate through the ontology and perform some
functionalities on an increasing scale of difficulty. It is
noteworthy that despite the ontology be navigable through the
Protégé system was not the target of evaluation. This
information was clearly conveyed to participants at the
beginning of the tests. A brief guidance regarding the use of
Protégé was given to participants who did not report use
problems.

Three classes of participants were defined: beginners,
project managers and/or quality managers, implementers
and/or evaluators. Table IV presents the basic profile of these
participants regarding knowledge required. The tests were
conducted with nine participants: four beginners, two project
managers, a manager of quality and two implementers and
evaluators.

The tests resulted in a large amount of data that were
analyzed using the Morae Recorder and Morae Manager
systems. Table V shows the positive points that were indicated
by the participants after the tests. One of the participants, who
is implementer and evaluator, pointed out that the ontology is a
useful tool for training of implementation staff on the MPS-SW
model. A list of recommendations was generated from the
results. These recommendations were implemented in v1.1,

484 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

generating a beta release. For example, a superclass
"Questions" was created from the suggestions of the
participants during the testes. This class also includes
clarifications to many doubts of a team of model
implementation.

TABLE IV. Basic profile of the participants of usability testing.

Classification Knowledge

Beginner Knowledge in the area of Software Engineering

Project Manager /

Quality Manager

Knowledge in the area of Software Engineering

Knowledge of the business policy

Implementers. /

Assessors

Academic training solid: specialization, master's or

PhD concluded

Solid knowledge in software engineering with a

focus on software process

Minimum experience of six years in the area of

Software Engineering

MPS Reference Model Implementation Exam (P2-

MPS.BR)

MPS Assessment Method Course (C3-MPS.BR)

MPS Assessment Method Exam (P3-MPS.BR)

Experience Minimum of three years proven project

management software or proven experience of
implementing software processes in which the

organizational unit was certified with some level of

maturity of the RM-MPS-SW

TABLE V. Positive aspects indicated by the participants.

Positive points
Number of

answers

% of

answers

Easy of locating the information desired 8 89%

Rapid access to information coming 4 44%

Simple language 7 78%

Detailed information 4 44%

Visualizing the flow of information of the process 7 78%

None of the registered alternatives 0 0%

Others: “Useful tool for training” 1 11%

F. Stage 5: Maintenance of ontology of the model.

The result of stage 4 was a beta release (v1.2) of the
enterprise ontology for the levels G and F of the RM-MPS-SW.
This version is available in three free international repositories
(file "MR-MPS-SW.owl"): (1) www.daml.org/ontologies; (2)
owl.cs.manchester.ac.uk/repositor; (3) protegewiki.stanford
.edu/wiki/Protege_Ontology_Library.

This beta release can be used by software development
companies interested in implementing the G and F levels of the
RM-MPS-SW. The aim is to contribute to the implementation

of the Model, as well as to collect suggestions for changes,
improvements and inclusion of new knowledge.

V. CONCLUSION

The main objective of this paper was to present a
methodology for the development of an enterprise ontology for
the levels G and F of the MPS-SW model. This model is part of
the Brazilian Software Process Improvement Program
(MPS.BR). It was developed focusing on micro, small and
medium-sized enterprises (MSME), although it can be
implemented in large organizations. The MPS-SW model is
fully compatible with the CMMI-DEV and there a
correspondence established between their levels. Some of the
PMBOK processes and BSC indicators were integrated into the
ontology to support the implementation of the model. That
methodology comprises four stages and can be applied to other
levels of the MPS-SW model as well as to other process quality
models.

In the direction of future projects, workflows are being
developed from the ontology for levels G and F of the MPS-
SW, with tools for Business Process Management (BPM).
Considering the development of an ontology for all levels of
the model, there are studies aimed at evaluating a integrated
and modular way to build the ontology of the MPS-SW. The
intention is to minimize the size and complexity of the
ontology. Comparisons between the modular process and the
process presented in this paper should be made. One line of
research in this project is directed at mechanisms for
automating the ontologies development for software quality
models.

REFERENCES

[1] ABES - Brazilian Association of Software Companies. Brazilian Market

of Software, 2011. Available in: http://central.abessoftware.com.br/
Content/UploadedFiles/Arquivos/2012_Publicacao_Mercado_ABES.pdf

[2] SOFTEX - Association for Promotion of the Excellence of the Brazilian
Software, website of MPS.BR program: Brazilian Software Process
Improvement Program, 2013. Available in: http://www.softex.br/ mpsbr.

[3] M., Uschold, M., King. Towards a methodology for building ontologies.
Artificial Intelligence Applications Institute, University of Edinburgh,
1995.

[4] T. Gruber, “A translation approach to portable Ontologies
specifications.” Knowledge Acquisition, California, vol. 5, n. 2, pp. 199-
220, 1993.

[5] J. Dietz. Enterprise Ontology: Theory and Methodology. Springer, 2006.

[6] E. Blomqvist, “Fully automatic construction of enterprise ontologies
using design patterns: Initial method and first experiences”. On the
move to meaningful internet systems 2005: CoopIS, DOA, and
ODBASE. Springer Berlin Heidelberg, pp. 1314-1329, 2005.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 485

A method and a tool for evaluating the quality of an

SOA

R. Belkhatir
1
, M. Oussalah

2
, and A. Viguier

2

1
Department of computing, University of Nantes, Nantes, Loire-Atlantique, France

2
Research/Development Department, BeOtic, Rezé, Loire-Atlantique, France

Abstract - During these last years, Service Oriented

Architecture (SOA) has known a meteoric rise and more and

more companies are lured by this technology and its

strengths (reusability, costs benefits and productivity

increase) because of an improved control of the business

expectations. This technology could bring a lot of benefits

but there may also appear some major complications while

disrupting the company organization to adopt it. First and

foremost among these, is the risk of not being able to answer

favorably to expectations in terms of quality of services. As

these risks are distributed through all the services, the

question of evaluating SOA has recently arisen. In this light,

before adopting SOA, it is fundamental to evaluate the

quality of the architecture to set up. This paper presents a

tool enabling the assessment of a software oriented

architecture based on a model called SOAQE allowing

architecture decomposition with the aim of evaluating it

easier. The SOAQE model, validated by the software

engineering community, served as a basis for the elaboration

of this new generation of tools returning results under textual

and graphical forms for a better understanding of data .

Keywords: Software architecture paradigms. Service oriented

architecture. Quality attributes

1 Introduction

 Recently, more and more companies focus on SOA

solutions for developing their architecture. However, because

of the complex nature of the financial issues that this

technology involves, there exists a real need in assessing the

coherence of the project and the quality of the architecture

chosen. This would essentially allow:

(i) Controlling different costs.

(ii) Bringing much more credibility to the project.

(iii) Distinguishing itself from the competition.

(iv) Leading to certifications (standards).

(v) Preventing any future significant potential threat

including project failures that such evolution could

potentially lead to.

 Moreover, increases in terms of software size make the

development more complex to handle, and this same

complexity makes any form of predictability or estimation (cost

and quality) extremely difficult. There exists a need to first

build a predictive model of quality. We propose in this article a

new semi-automated method for evaluating SOAs, called

SOAQE (for Service Oriented Architecture Quality Evaluation).

This method considerably overcame shortcomings observed

so far such as lacks of pertinence and accuracy. The McCall

model, which describes software quality and led to the

international standard for the evaluation of software quality,

the ISO/IEC 9126-1:2001 [1] (which has recently been updated

to the SQuaRE standard ISO/IEC 25010:2011 [2]) serves as a

basis for our work. Correlatively, we work with a model that

can be defined by a set of views and each view is divided in

several factors, criteria and metrics. Our experimentations led

us to implement a tool called the SOAQE tool (Flex Client/Java

Server application), which, based on the SOAQE model, allows

quantifying numerically the quality of the architectural point of

view branch and all the attributes of its structure. We deal with

some state of the art works in the next section then we present

the case study from the BeOtic Company in Section 3. Section

4 introduces the SOAQE tool which supports our model and

Section 5 is devoted to the discussion. Finally, section 6

concludes this paper.

2 State of the art works

 The software engineering community first developed

methods such as GQM (Goal/Question/Metrics) [3] consisting

in a few steps:

1. Define goal of measurement

2. Devise suitable set of questions

3. Associate metric with every question.

 The limits of such methods appeared quickly: the fact

that the process cannot be automated because the different

goals of measurement and the questions/metrics resulting from

these goals are exclusively set by stakeholders (human

intervention) distorts results because stakeholders are not

able to cover all the possible requirements to evaluate the

quality. We have then seen emerge very similar methods like

486 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

ATAM or SAAM [4] which propelled software architecture

evaluation to a standard stage for any paradigm. However,

several major concerns have been raised with these methods

[4]; in particular their cost in terms of time (a lot of steps to

perform the whole process) and money because of the hand

operated nature of the evaluations conducted. And again, the

major lack concerned the results of the evaluations supported

with these methods: lots of deficiencies concerning the

requirements of the architecture because the process is still

not automated. The scale of the task has brought the academic

world to tackle these issues and to try to develop a more

formal and generic approach than different existing methods to

evaluate SOAs [4]. New efforts to evaluate SOA are being

undertaken in different aspects using different tools and

methods like [5] in which they applied attack graphs for SOA

security metrics. But the majority of these kinds of researches

are just a proposal or they are about some certain aspects of

evaluation or using different techniques [6]. From a global

perspective, current methods of evaluation are too vague

when it comes to giving accurate measures to quality. Our

work differs from those existing insofar as we wish to obtain a

precise quantitative measurement for each quality factor with

our model.

3 Case study

 This section describes an extract of a case study of an

existing BeOtic’s project (http://www.beotic.com/). This case

study has not a purpose of validating our method that we

already explained in details in a past paper [7] but illustrating

it.

3.1 Requirements

 For our case study, we collected data from an existing

project of the BeOtic Company. These confidential data

include code from the service oriented architecture of one of

the clients of the company. More exactly, the company

implemented its own tool called BeoMetric for collecting

metrics from the code (LOC, CR, CCN...); functioning as

JMetric (http://sourceforge.net/projects/jmetric) and we had

the chance to gather XML files regrouping the values of the

metrics considered for each method, class and package of the

client project.

3.2 Method use

 One of our past works [7] is dedicated to the realization

of the SOAQE model. In [7], we consider that the architectural

point of view of an SOA is composed by three main factors

(dynamism, reusability and composability) affected by

different coefficients according to their importance for SOA

(see figure 1).

Figure 1: SOA interest points

 And each of these factors is composed by the same six

criteria (Loose coupling, upgradability, communication

abstraction, owner’s responsibility, explicit architecture and

expressive power) to which we allocate a different weight

according to the factor considered (see figure 2).

Figure 2: Expression of reusability, composability and

dynamism perspectives.

 Our first work prompted us to study closely the loose

coupling criterion for which we defined its constituent metrics.

The aggregation of the values of these metrics allows

obtaining a finite value for the loose coupling criterion (see

figure 3). Therefore, we wish to incorporate to the SOAQE

model, the metrics obtained after applying the BeoMetric

module to the submitted architecture in order to get a final

mark for the quality of the architecture. The current state of

our research works allows us to work exclusively on the path

indicated with a blue circle on figure 3 (the loose coupling

criterion).

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 487

http://www.beotic.com/

Figure 3: SOA attributes tree weighted with means of

coefficients.

4 The SOAQE tool

 In this section, we present SOAQE Tool (Service

Oriented Architecture Quality Evaluation Tool), a tool that

supports our method.

4.1 Technical architecture

 This prototype has been built in cooperation with the

BeOtic Company to be used as a service for its customers. The

application takes as input XML files where are stocked the

values of twenty-six metrics for each method, class and

package of the architecture submitted. All these values are

then stocked in a SQL database to facilitate data retrieving for

the application. The server has been built using Java and the

server and the database communicate together via the DAO

technology. The client of the application has been

implemented using Flex and communicates with the server

using Blaze DS. Figure 4 describes the architecture of the

SOAQE tool.

4.2 General organization

 The first step of the application consists in displaying in

a data grid the set of metric values retrieved from the SQL

database. According to the user’s choice, these values can be

displayed for the classes or the packages of the source code.

This is to allow the user to compare the metrics desired for the

evaluation before launching it. As show in figure 5, we

implemented for the application a cube stack for the

visualization of the results and improved ergonomics.

Figure 4: Architecture of the SOAQE tool.

Figure 5: Graphical visualization of the metric values.

 In this light, the user can see, in addition to the data grid,

the behavior of the metric values with the help of a scatter plot

composed by three axes corresponding to the classes or

packages that the user chooses for the comparison. We also

implemented another module where, this time, the user can

visualize the evolution of the metric values for each class in

the architecture through colored curves (see figure 6).

Figure 6: Curves module of the SOAQE tool.

 Before launching the evaluation of the architecture

submitted, the user can set the tree view of the part of the

architecture being evaluated (organized under points of view,

factors, criteria and the metrics which has been displayed from

the database in the previous phase). The structure of the

arborescence is set with a panel under the form of a data grid

where is first displayed a default tree corresponding to the

most complete declination of the architecture for the

architecture point of view we concluded in a past work [7].

Nevertheless, we offered the possibility to the user to be

totally free with his evaluation; this is why it is still possible:

488 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

(i) To modify the attributes selected in the default

arborescence.

(ii) To add new attributes.

(iii) To delete existing attributes

 It has been concluded in past works that only factors and

criteria must have corresponding weights because the latter

have not the same importance according to the point of view

considered. The figure 7 is an overview of this control panel.

Figure 7: Control Panel

 By clicking on the save button, the new arborescence the

user created is directly stocked in the SQL database for the

next step of the application: the evaluation. Correlatively, the

panel closes and a new “Launching the evaluation” button

appears. This new operation consists in obtaining a finite

value for the quality of the architecture submitted.

(Because the graphics rendering of the results is not only

textual, the BeOtic Company asked us to not disclose any

overview of the graphics rendering to avoid any potential

leaks.)

5 Discussion

 Our proposition offers a new way of evaluating the

quality of a service oriented architecture since the process is

semi-automated and allows save time and money contrary to

all existing works trying evaluating the quality of an SOA [3, 4,

5, 6]. The model in which the tool is based has always been

validated by the software engineering community [7] and

allows obtaining real, accurate and immediate results for the

quality evaluation of the SOA. This tool has been implemented

to avoid major project fails. Indeed, we can now know if it

makes sense to swing towards SOA technology for the

company involved and this is exactly where the BeOtic

Company has an interest in the project because the company

is specialized in IT auditing and software distribution.

Nevertheless, we worked on this project as architects and the

work for the architectural point of view is not finished as there

still are criteria which have not been decomposed in

aggregations of metrics. So even if the tool works well and the

results obtained are correct, it is still possible to bring new

elements to the current work. This is why we chose to let the

user free to modify the default arborescence proposed for new

research results which are going to be revealed with future

works. We first designed a work rather restricted but when the

prototype considerably evolved, we added new functionalities

to have the most configurable tool possible for the user.

6 Conclusion

 In this paper, we present a model, the SOAQE model that

allows splitting and evaluating the quality of a service oriented

architecture. The method is based on two main steps:

(i) The division of the architecture into four levels of

attributes (points of view, factors, criteria and metrics).

(ii) The calculation of the quality mark.

 The SOAQE tool has been implemented according to the

SOAQE model [7] in order to allow evaluating any SOA

considered according to our method. Further step concerns

the deep study of new criteria for the architectural point of

view. Correlatively, to obtain a model and a tool which can

evaluate in a complete way the quality of any SOA, it is

essential to be able to split the whole architecture in a

combination of several attributes. Another part of the

perspectives concerns research on new points of view; we

already started a bit with the business one.

7 References

[1] J.P. Carvallo, X. Franch “Extending the ISO/IEC 9126-1

Quality Model with Non-Technical Factors for COTS

Components Selection” In Proceedings of the 2006

international workshop on Software quality (WoSQ '06).

ACM, New York, NY, USA, 9-14.

[2] W. Suryn, A. ABran, A. April, “ISO/IEC SQuaRE: The

second generation of standards for software product quality”

(2003)

[3] V.R. Basili, G. Caldiera, H. Dieter Rmbach, “The Goal

Question Metric Approach” Chapter in Encyclopedia of

Software Engineering, Wiley, 1994

[4] P. Clements, R. Kazman and M. Klein, “Evaluating

Software Architectures: Methods and case studied”, Addison-

Wesley, 2002 – 323 pages

[5] J. Magott, M.Woda “Evaluation of SOA security metrics

using attack graphs”, IEEE 2008, pp 277-284.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 489

[6] D.Cotroneo, C.Di Flora, S.Russo “Improving

Dependability of Service Oriented Architectures for Pervasive

Computing”, Proceedings of The Eighth IEEE International

Workshop on Object-OrientedReal-Time, 2003.

[7] R. Belkhatir, M. Oussalah, and A. Viguier, A Model

Introducing SOAs Quality Attributes Decomposition. ;In

Proceedings of SEKE. 2012, 324-327.

490 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Training Users of Accounting Information Systems for
their Satisfaction, Decision-making, and Competitiveness

J.M. Medina, Y. Loera, K. González, and A. Mora

Facultad de Comercio y Admón., Universidad Autónoma de Tamaulipas. Cd. Victoria, México

Abstract - Information technologies are rapidly changing the
world. Therefore, more scientific research that can contribute
to the development of our understanding regarding
information technology is needed. In particular, research that
addresses the role of accounting information systems is
urgently needed as financial problems in all types of
organizations are common worldwide. For this reason, this
research is aimed at determining the impact that training in
the operation of Accounting Information Systems has on their
users regarding Satisfaction, Decision-making, and
Competitiveness. A questionnaire was administered to 92
users. The positive impact that training has on competitiveness
(financial performance, market share and customer
satisfaction) is highlighted.

Keywords: IT, Decision-making, Competitiveness, User
Satisfaction

1 Introduction

 Accounting is the engine that moves an enterprise forward,
and helps it face its competitors’ efforts, trade agreements,
fiscal issues, etc. The accounting’s aim is to mirror an
enterprise’s estate, financial statement, and outcomes.
Decision makers in a company benefit from this information
when they receive it. For example, they can decide on what
direction they can give to the company or what policies they
can develop. Similarly, information related to accounting is
also beneficial for an enterprise’s partners as a good
performance of the company can determine the benefits they
will obtain from it.

However, in order to achieve the above mentioned and with
the support of the information technology (IT), the accounting
information systems (AIS) have emerged which have widely
facilitated these activities. Training, though is needed to
obtain a competitive advantage, users’ satisfaction, and more
informed decision-making. This study seeks to link these
elements in the operation of the informatics
applications/systems.

To achieve this aim, a transversal study is proposed. A
questionnaire was administered to 92 users of these AIS in 46
enterprises located in the central region of Tamaulipas
(Mexico). After that, a regression analysis was conducted

using the SPSS software package version 18, from which the
results are derived. Finally, the hypothesis is answered and
the main contributions to knowledge are discussed.

2 Literature review
2.1 Training

 Training is defined as an educational act and a systematic
effort made by enterprises in order to increase the potential of
their three main areas such as cognitive, psychomotor, and
affective. In other words, training is the action aimed at
developing workers’ aptitudes, attitudes, and skills so they can
perform their job effectively. Chiavenato [2] considers it as a
short-term educational process, which is systematically
applied and organized through which people develop
competences such knowledge, skills and attitudes according to
predefined aims.

Nevertheless, small enterprises offer less training to their
employees. Moreover, small organizations tend to prefer in
situ training to that provided by companies devoted to it [13].
The lack of time, high costs, slowness and scarcity of
information are frequently cited reasons for not offering
external training. Compared to large companies, small ones
have less capability to make up for the temporal losses in
productivity which can be present in the formation stages. In
other words, small companies are less able to allow their
employees to be absent or replace them when they are in
training. Several studies show that employee training has a
positive impact on the enterprises’ performance. These
studies usually establish the hypothesis that training helps
employees improve their productivity level, which is then
translated into a better organizational performance [1].

2.2 Satisfaction

 The need to assess the effectiveness of information systems
(IS), coupled with the difficulty of operationalizing economy
based variables have accelerated the search for easily
measurable variables, in this case, user satisfaction and system
use [4]. There have also been attempts to measure users’
satisfaction with information as a substitute for IS total
effectiveness in the organization [16]. Even then, user
friendliness and interface are both associated with IS

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 491

satisfaction, but the lack of positive benefits leads to a
decrease in the use and eventual disappearance of the system
or even the IS department [4].

The IS user’s satisfaction and performance is an important
assessment parameter [21], this variable has been the research
object since the 1970’s; despite this, there is not an
understandable theoretical assessment. The scale developed
by Ives, Olson and Baroudi [10] is one of the most popular.
No doubt, satisfaction has been a widely researched topic;
however, the analyses conducted correspond to particular
contexts. Therefore, such studies share the belief that they
need further research due to the complexity of the concept and
the multidisciplinary nature of the elements they contain. The
lack of agreement in the conceptual definition of the user
satisfaction variable leads to a situation in which there are
many operationalizations and definitions. It refers to a positive
orientation that an individual has towards an information
system [9], an attitude/feeling that he or she has as a result of
a transaction [23], affected by a variety of factors in a
situation and associated with the perception of an application.

Having reviewed the literature, the hypothesis for these
variables is now introduced:

H1. Training is an influential factor in the AIS users’
satisfaction.

2.3 Decision-making

 Decision-making is defined as the selection of a course of
action from several alternatives; it is at the center of planning.
Sometimes, managers view decision-making as their main
task, as they constantly have to decide what to do, who does
it, when to do it and even how to do it [22]. The IT includes
all the range of operations and decision-making activities.
This is both a beneficial aspect and a difficulty, Eisenhardt [5]
argued that little research on decision-making had been
undertaken until the late 1980’s; other scholars such as Teng
and Calhoun [20] state the potential effect of information
technology on decision-making at all levels has been captured
by the IT researchers from the beginning of the informatics
era; since the world is moving towards open and global
markets, the need to have access to timely, reliable and easy
information will be essential for effectiveness in decision-
making processes [7]. For this reason, managers of enterprises
need to determine the extent to which IT helps in the
achievement of decision-making aims.

The IT decisions have the potential to change individuals,
businesses and societies at large. However, they need to be
made in an accurate, fast and timely manner. Arguably,
technologies help improve productivity, and decision-making
[8]. Research has found that IT can change the hierarchy in
decision-making activities, which lowers the cost of
information acquisition and distribution [14].

H2. Training is an influential factor in the IT users’ decision-
making processes.

2.4 Competitiveness

 Competitive advantage is a phenomenon that occurs when a
firm experiences returns that are superior than those of its
competition (rents) [12]. The classical conception of
competitiveness was very similar to competition as it denoted
rivalry among economic agents. If understood like that, a high
concentration of enterprises with scarce differentiation
attributes can occur. However, what is needed is to defeat the
competitors through competitive advantage. Therefore,
competitiveness should be addressed beyond competition
since competitive advantage is not only about defeating
competitors, but defeating them with superior qualities.
Another approach adopted by the Organization for Economic
Cooperation and Development [18] defines competitiveness
as the capability that an enterprise, industry, region, or nation
has to generate revenue and high employment rates in a
sustainable manner when international competition exists.

Generally speaking, competitiveness is considered to be
meant success. Competitiveness can be considered a multi-
dimensional variable with a series of variables that need to be
adopted jointly in order to be measured [15]. On the way to
meet that aim, it is important to recognize that
competitiveness does not rule out cooperation, particularly
from a national perspective. But even more significant is the
fact that this aim requires entrepreneurs to be willing to
construct companies which can build their way on their own.
This way starts by giving priority to the domestic market, as
the internationalization requires them to face the demanding
world market challenges [19].

In addition, Lavon and Todd [12] state that those
organizations that refuse to invest in IT are likely to miss the
opportunity to improve their efficiency and effectiveness. If
such companies operate in a highly competitive environment,
which is the current tendency as a result of globalization, then
they will be more likely to fail in the market in which they
operate. The need that small and medium sized enterprises
(SME’s) have to address the concept of competitiveness is
evident. The addressing of such a concept can allow them not
only to face competition, but also to survive over time.

H3. The training of AIS’ s users is an influential factor in the
enterprise’s competitiveness.

3 Method

 All today’s IT, which were unimaginable a few years ago,
have made a significant progress in the study, treatment,
analysis and outcomes of large amounts of information in all
knowledge areas. That is to say, the methodological
limitations are no longer a critical issue for those who seek
empirical evidence. On the other hand, a clear definition of
the dependent variable enhances the reliability of the results
obtained; otherwise, the research becomes speculative only.

492 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

For this study, the definition and operationalization of the
variables were carried out as follows:

• Dependent variables: Satisfaction (trust in the accounting
information system, feelings of efficiency and effectiveness)
and Competitiveness (financial performance, market share,
innovation levels in products/services, customer
satisfaction).

• Independent variables: Trainig (updating in informatics,
continuous program, personal skills).

The empirical part of this project took place in the central
region of the Mexican state of Tamaulipas. The process
followed to meet the stated aim started with the state-of-the-
art review of the variables to test, mainly in scientific journals,
prestigious books and official websites. A questionnaire was
designed which included 10 open ended and 88 five point
Likert scale items. The open ended items were about
demographics and the Likert scale items covered the variables
under study. The questionnaire was piloted with 12
enterprises, and resulted in the elimination of 10 items which
lacked the minimum recommended statistical loading.
Therefore, the final version of the questionnaire included 78
items. For this study, only four variables are considered, with
5 items for Satisfaction, 4 for Decision-making, 3 for
Competitiveness, and 3 for Training.

According to the National System of Entrepreneurship
Information (http://www.siem.gob.mx), a total of 1463 SMEs
were registered in in the state of Tamaulipas (in Mexico, small
enterprises are those which have between 11 and 50
employees and medium- sized enterprises are those with a
range of 51 and 250 employees). The region under study has
365 SMEs. Unfortunately, managers/leaders’ participation in
research continues to be poor. Therefore, the final version of
the questionnaire was administered to 46 enterprises (92 valid
questionnaires for their analysis). Those people who make the
most use of information in enterprises such as the manager,
owner and the person in charge of the computers department
answered two questionnaires per enterprise. Two masters’
students who have an active professional live and two
undergraduate students provided support in the data collection
process. The respondents were given a week to return the
completed questionnaires so they could have the freedom and
sufficient time to answer it appropriately. The researched
enterprises represented different types of enterprises as the
study was transversal in nature. Based on the data collected,
the analysis of results is presented mainly using descriptive
statistics and regression analysis with the help of the SPSS
software package version 18.

Results

The first step was to analyze the descriptive data of the
respondents in order to obtain a profile of them. The analysis
reveals that 67% of the AIS users are females. Therefore, it is
recommended that the training provided be accessible to all
the participants, especially female participants, in terms of
knowledge acquisition and skills development. The most

predominant age group of the respondents is that between 21
and 30 years (87%). That is to say, while their age suggests
that they are likely to embrace IT, they are also in need of
continuous training. 52% of the AIS users are accounting
assistants, 39% are accountants, 7% are administrative staff,
and 2% are data entry operators.

In the hypothesis assessment, reliability degrees of each of the
variables measured with the Cronbach’s Alpha:
Training=.733, Satisfaction=.933, Decision-making=.929 and
Competitiveness=.701. In order for a variable to be considered
acceptable, its value needs to be greater than 0.7 [17]. If so, it
indicates that the questionnaire is valid; and its results can be
interpreted as reflecting the current reality.

It is important to indicate that according to Chin [3]: R
(Relation) represents the path coefficients, which should
obtain a value of 0.2 if they are to be considered significant,
with above 0.3 being an ideal value. R2 on the other hand,
indicates the variance explained by the variable within the
model. This should be equal or greater than 0.1, as lower
values provide little information even if they are significant.
Similarly, the significance should be lower than 0.05
(p<0.05). Of the three dependent variables, only one meets
the previous requirements; and therefore, it is the only one
accepted as true as the summary provided in Table 1 shows.

Hypothesis R R2 Sig Remark

H1. Training è Sat. 0.221 0.048 0.393 Rejected

H2. Training è DM 0.229 0.052 0.394 Rejected

H3. Training è Com. 0.362 0.131 0.050 Accepted

Table 1. Hypotheses Testing Summary

Sat. : Satisfaction, DM : Decision-making, and
Com.: Competitiveness

Figure 1 shows the tested research model, which includes a
graphical representation of the data as stated on table above. It
also includes the levels of relation between the independent
and dependent variables with their respective hypothesis.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 493

Figure 1. Tested Research Model

This figure shows that of the three stated hypotheses, only one
(H3) is accepted. Therefore, the following conclusions are
drawn:

H1: Rejected; although it achieves an R=.221 level, which is
greater than recommended, it falls behind the variance
explained (R2), with only .048 and with little significance (it is
greater than 0.05, achieving 0.393) (See Table 1). This may
mean that the training program provided to the AIS users is
not working effectively for their satisfaction. This is
especially true for the little confidence that users have in the
data they enter and obtain. In other words, users do not clearly
perceive efficiency in the operation of the AIS. Two situations
might explain this. Either there is a lack of training or the
training provided is inadequate.

H2: Rejected; even though it achieves an R=.229 level, which
is greater than recommended, it falls behind the variance
explained (R2), with only .052, and with little significance (it
is greater than 0.05, achieving 0.394) (See Table 1). This can
also be interpreted that the training received by the AIS users
is not helping them make good decisions. In other words, the
AIS is not providing them with relevant information than
could be useful for their decision-making practices.

H3: Accepted; it achieves a level of R=.363, which is greater
than recommended, the explained variance (R2) achieves
acceptable levels of .131 and with a significance of 95% of
reliability (lower than or equal to 0.05, achieving 0.05) (See
Table 1). This suggests that training always has an impact
somewhere in the organization. In this case, it appears that
training has an impact on competitiveness. That is to say, the
AIS users seem to believe that their organization is obtaining
a market gain, a certain degree of innovation, a higher level of
profit margin, and above all, a higher level of customer
satisfaction. They seem to attribute all these benefits to the
training they receive in the operation of these IT.

4 Conclusions

 The world is rapidly changing and creating large amounts of
information which have not been exploited sufficiently by
institutions. This is so even though it is widely known that
information exists in both the physical world by which we are
surrounded and the mental world of the human thoughts also
known as the computer limbo, as information is created,
stored, managed, and organized for its own benefit and that of
the human capital. The accounting information systems have
become essential in organizations as they are the main
generators of information for their users which can later be
used in a wide range of activities of the administrative
process.

The aim of this study was to determine the degree of influence
that Training, has on the Users of the Accounting Information
Systems of the Small and Medium Sized Enterprises for their
Satisfaction, effective Decision-making, and Competitiveness.
With the support of the review of the literature, the three
stated hypotheses have been answered. Now, answers to the
stated aims and the research questions will be provided next.

In that context, it is important to recall that the training
provided to the users of the accounting information systems is
of paramount importance. However, in this case, it is only
having a positive influence on the competitive levels of the
organizations. Unfortunately, there are other aspects of
organizations such as customer satisfaction that are equally, or
even more, important. In particular, the results show that users
satisfaction is an aspect that is not being successful.
Therefore, it is highly recommended that organizations should
make every effort to attempt to maintain the AIS users’
motivation so they can remain productive and can make
contributions to the organizations. Failing to perceive the
usefulness of the information generated by the AIS can lead to
a lack of trust in the AIS processes. Therefore, if the AIS
users do not trust the AIS, they will be very unlikely to take
advantage of all the benefits that these technologies can bring
to themselves as users and to the enterprise at large.

Similarly, the procedures followed during the decision-
making processes also need to be further assessed. The AIS
users seem to be under using the information generated by the
AIS as they consider it insufficient for their decision-making
practices. They seem to believe that they need a wider range
of alternatives at their disposal that can assist them in their
decision-making practices, which unfortunately the AIS is not
providing them. Further research can have this as a starting
point as the worldwide tendency is the emphasis placed on the
importance of empowering employees so they can make their
own decisions, especially, if based on information generated
by the AIS.

Likewise, it is important to recognize that training is being
perceived by the organizations and their employees as
valuable for their competitiveness development efforts. This
was reflected in their confidence that the organization is

494 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

making progress in terms of financial performance, market
share, and customer satisfaction thanks to training. Therefore,
the training in the operation of the AIS that they have
received has had a direct impact on competitiveness, which is
an important variable for the development of positive
relationships between different parties such as users,
organization, and technologies.

5 References
[1] Betcherman, G.; N. Leckie; K. McMullen. “Barriers to
Employer-Sponsored Training in Canada”, Réseauxcanadiens
de recherche en politiques publiques, Ottawa, p. 28, (1998)

[2] Chiavenato, I. “Las etapas de evaluación de un proceso
de capacitación, Administración de Recursos Humanos”. 8va
edición, Mc Graw Hill, México, (2007).

[3] Chin, W.W. “Issues and Opinion on Structural Equation
Modeling”. MIS Quarterly, 22(1), pp. vii-xvi, (1998)

[4] DeLone, W.; E. McLean. “The DeLone and McLean
Model of Information Systems Success: A Ten-Year Update”.
Journal of Management Information Systems, 19(4), pp. 9-30,
(2003)

[5] Eisenhardt, K.M. “Making Fast Strategic Decisions in
High-Velocity Environments”. Academy of Management
Journal, 32(3), pp. 543-576, (1989)

[6] Escobar, I.; E. Tamayo. “Contabilidad”. EDITEX.
Madrid, (2008)

[7] Hamill, J.; R. Deckro; J. Kloeber. “Evaluating
Information Assurance Strategies”. Decision Support Systems,
39(3), pp. 463-484, (2005)

[8] Hubbard, T. “Information, Decisions, and Productivity
On-Board Computer and Capacity Utilization in Trucking”.
University of Chicago and NBER. DRAFT. September,
(2001)

[9] Ishman, M. “Measuring Information Success at the
Individual Level in Cross-Cultural Environments”.
Information Resources Management Journal, 9(4), pp. 16-28,
(1996)

[10] Ives, B.; M. Olson; J. Baroudi. “The Measurement of
User Information Satisfaction”. Communications of the ACM,
26(10), pp. 785-793, (1983)

[11] Koontz, H.; H. Weihrich; M. Cannice. “Administración.
Una Perspectiva Global y Empresarial”. 13a. Edición,
McGraw Hill, México, (2008)

[12] Lavon, G.; M. Todd. “Information Technology and Its
Role in Creating Sustainable Competitive Advantage”, 6(1).

Consulted: jul 5, In: [http://www.jimsjournal.org/pi.html],
(2011)

[13] Leckie, N.; A. Léonard, J. Turcotteet; D. Wallace.
“Pratiques des ressources humaines perspectives des
employeurs et des employés”. Statistique Canada, Ottawa,
(2001)

[14] Malone, T.W. “Is Empowerment Just a Fad? Control,
Decision Making, and IT”. MIT Sloan Management Review,
38(2), pp. 23-35, (1997)

[15] Mayer, T.; J. Mucchielli. “Hierarchical location choice
and multinational firms' strategy: a nested logit model applied
to Japanese investment in Europe”. Multinational Firms: The
Global and Local Dilemma, London: Routledge, pp. 133-158,
(2002)

[16] Miller, J.; B. Doyle. “Measuring the Effectiveness of
Computer-Based Information Systems in the Financial
Services Sector”. MIS Quarterly, 11(1), pp. 107-124, (1987)

[17] Nunnally, J.C. “Psychometric Theory”. McGraw Hill
Editorial, New York, U.S.A., (1978)

[18] OECD (Organisation for Economic Co-operation and
Development). “Industrial Competitiveness”. París, (1997)

[19] Rozzo, C. “Internacionalización y Competitividad”.
Política y Cultura. No. 2, México, pp. 307-318, (1993)

[20] Teng, J.; K. Calhoun. “Organizational Computing as a
Facilitator for Operational and Managerial Decision Making:
An Exploratory Study of Managers’ Perceptions”. Decision
Sciences, 27(4), pp. 673-710, (1996)

[21] Torkzadeh, G.; X. Koufteros; W. Doll. “Confirmatory
Factor Analysis and Factorial Invariance of the Impact of
Information Technology Instrument”. Omega, 33(2), pp. 107-
118, (2005)

[22] Weihrich, H.; M. Cannice; H. Koontz. “Management: A
Global & Entrepreneurial Perspective”. McGraw Hill.
Edition 11th, (2010)

[23] Wilkin, C.; B. Hewitt. “Quality in a Respecification of
DeLone and McLean’s IS Success Model”. In: M.
Khosrowpour (Ed.). Proceedings of IRMA International
Conference. Hershey, PA: Idea Group Publishing, pp. 663-
672, (1999)

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 495

Dynamic Registration Forms

Troy Johnson, Joshua Edinborough, Matthew Binder, Andrew Bryant, Blayne Dennis, Roger Lee

Department of Computer Science, Central Michigan University, Mt Pleasant,USA

Software Engineering & Information Technology Institute, Central Michigan University, Mt Pleasant, MI

Abstract - User registration for events has been made easier

via the use of web applications. Similarly, administrative

systems often accompany them providing event coordinators

with the ability to manage the registration data of users who

register via web form. Many web applications that exist make

the management of registered users' data easier to manage.

However, the creation of unique registration forms for each

new event is often lacking in most systems; this often places

undue stress on companies and organizations providing the

online registrations, requiring significant development time to

create unique registration forms. In this paper, we present a

method for minimizing this development time by providing a

system for dynamic, self-service form creation for event

coordinators. This method uses a scheme for event data

storage requiring minimal database tables in MS SQL, control

and form generation in C#, and provides client access to

registration data. The system is intended to minimize form

creation time and provide ease-of-use for system

administration, event coordinators, and end-users. Our test

results demonstrate that the designed system is successful in

these regards as well as being responsive, secure, and

accessible in its performance.

Keywords: registration, dynamic, forms, generation

1 Introduction

 Event registration has been made more efficient by the

internet. Online registrants can now provide their registration

information to a web site holding the registration form for the

particular event, and event coordinators may easily view this

data. These interactive web applications leverage the ubiquity

of the internet and advances in web development to provide

more customized access [3] and more cost-effective solutions

for creating, distributing, and managing event registration.

Event coordinators are connected to their end-users (or

registrants) via authenticated access to event information on

these sites. The credentials of the user of the system will

identify the user as either an event coordinator or end-user; if

the user is a qualified event coordinator, they may complete a

variety of management tasks associated with an event. These

tasks will often include creating the events, manually adding

event registrants, and managing registrant data from

completed forms.

 Registration forms for events, distributed as web forms

to end-users, include a variety of field types and requirements

for completion. Forms may utilize one or more of the

following field types: Text input boxes for information such

as names and other short text; drop-down menus with

designated options to collect information such as birth month,

for example; check-box lists in which multiple options may be

selected, etc. These fields may or may not be required for

submission of the registration form to be successful. Event

coordinators will likely find systems that are made to fit their

needs based on the type of event they are creating and/or the

network used by their potential registrants to maximize

exposure. Many of these systems are fairly inflexible in their

ability to allow the event coordinators to customize the

registration forms. Often, the fields that need to be filled out

by registrants are pre-determined with little to no variability.

This poses a problem for coordinators who wish to vary the

fields and requirements for registration. With such rigidity,

the event coordinator must make do with the forms already

created or have systems developers to manually create new

forms, requiring hours of development time as custom code

must be created to display and handle the new registration

forms.

 An alternative to these problems would be to implement

a dynamic registration form application. Such a program

would remove the need for hard-coding to be done, shift the

task of designing the form to the event coordinator by

providing a self-serve system, and allow registrants to also

access the newly created forms to register for the event.

2 Related Work

 Systems often allow event coordinators to create new

events, propagate a URL address to event attendees to access

the registration form, and view attendee data. However, each

event will most likely require unique fields and registration

data to be obtained. As a result, system developers may be

required to develop unique registration forms for said events,

or else event coordinators must be limited in their abilities to

adapt forms. This is inconvenient for both the developers and

the event coordinators. This, among others, represents key

problems that exist in such systems, and solutions providing

dynamic form creation must address them.

 Systems lacking dynamic form creation often require

significant development time to update or create new web

registration forms. For example, the Office of Information

Technology (OIT) at Central Michigan University (CMU),

where our solution was implemented, typically requires 20-40

hours of development time for such tasks. Automation of the

496 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

form creation process is possible via a system using pertinent

form creation data stored in a database and an interface for

interacting with said system, hence, allowing the user to create

and store new form information. The new form data may then

be retrieved dynamically and used to generate a subsequent

web form. In his system for generating forms dynamically in

various languages, Burget [2] helps to alleviate the need to

create unique, hard-coded registration forms in order to

accommodate the variety of needs of clients. In Burget‟s

system, a client will request the form they wish to fill out and

a language to present the form in. Burget makes use of three

databases: First, a template database holds the layout

information for each unique form. Second, a question

database contains data regarding each field held in a forms

layout to be used in the construction of the form. Lastly, a

language database holds counterpart text for the data held in

the question database used to convert the form to other

languages. Ravishankar [5] addresses this problem further.

Their system configures an application server to dynamically

generate web forms, delivered to users, by retrieving field

data from XML documents and user information from their

requests. Users logging in as an administrator are qualified for

a variety of options including the editing of form information

to be stored in further XML documents. They may also update

subscriber information after having added subscriber profiles.

This implementation offers the capabilities of dynamic form

creation and editing of both form data and subscriber accounts

by client users (or coordinators), hence, reducing effort on the

part of systems administrators. Data, however, is stored in a

variety of sources. Data for form field markups, validation of

fields, form structures, subscriber-specific data for a given

form, and subscriber information are all stored in separate

XML documents or data sources, hence, requiring extensive

data source setup. Also, while access is flexible and available

to systems administrators and event coordinators, end-user

completion of registration forms is unavailable.

 Another problem to address is the responsibility placed

on the organizations and systems administrators to create web

registration forms for their clients. Dynamic form creation is

intended to alleviate this responsibility and make the task a

self-service action for the event managers (clients of the

systems administrators). For this to be possible, a web-based

solution is ideal as access is made more readily available for

end-users. Also, the system must analyze and store data

provided by the client users to create forms to their

specifications. Solutions such as that of Burget's do not

wholly minimize system administrators' creation of this

content as form templates must be created by administrators.

Similarly, Revishankar's methods do not offer a complete

solution for all three types of users: systems administrators,

event coordinators, and end-users.

 Ultimately, dynamic form creation systems can be

streamlined to directly deliver the web forms to both event

coordinators for approval and end-users for use and then store

their provided data for viewing by event coordinators.

Kirkpatrick [4] presents a system by which web forms may be

created dynamically from stored data and then used by end-

users to store their form data. The data storage design in this

system stores data such as field types and requirements, and

allows forms to be dynamically generated and delivered to

users. Class files are used, if present, or dynamically created

for forms of various fields and types to use this information to

generate and deliver web forms. The software component uses

response data for a form and saves it in an output table

containing fields identical to those of the form. This solution

addresses the dynamic generation of the forms and reduces

development time by eliminating the need for unique HTML

file creation. Similarly, it stores resulting response data to be

viewed later by coordinators. The system, however, does not

specifically address the need for this dynamic form creation

and delivery process to be managed mostly by the clients who

wish to have the forms made.

 While methods exist that address various problems to be

solved by an effective dynamic form creation, our system

addresses the need for an easy-to-use, fully automated system

for self-served registration form creation by client users while

also allowing consumption by end-users. Moreover, our

system will address problems regarding excessive data storage

for such a system and provides greater accessibility.

3 Methodology

 The dynamic form implementation presented here aims

to reduce down-time related to the creation of unique

registration forms for events. It does so by providing a self-

serve system for client users to manage form creation and

registered users via an easy-to-use interface presented

uniformly in a variety of web browsers. The system provides

access to systems administrators (OIT), event coordinators

(client users), and event registrants (end-users).

 During the event creation and following registration

form creation processes, both client users and OIT are

involved in the access of data. The use case diagram below

depicts the interaction each actor has with the system during

form creation.

 A client user uses basic web forms to provide request

information to the control software regarding event data, field

alterations, and registration users. The control software

accesses the database to select and manipulate event data, and

it uses the form generation object to build forms to be

displayed to the user‟s browser. The OIT users are able to

access the system as well via OIT web forms, allowing them

to manage events and event administrators as well as verifying

and approving event registration data as provided by client

users.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 497

Figure 1: Use Case Diagram

4 Dynamic Form Storage

 Storage of pertinent registration form data is done in a

database implementation in MS SQL. In order to maintain the

dynamic creation and alteration of form content, generic

database practices were implemented in a relatively small

number of tables; most major data exists in one or two

different tables with rows identifying where the data belongs.

Figure 2: Database Diagram

 As can be seen in figure 2, events are stored in table

„410Event‟. Each row in this table relates to multiple rows in

„410Info‟; this table designates form fields for the registration

form for the event with columns for the field name and input

type. In „401List‟, various options and their values are held

and relate to specific field types such as check boxes, radio

options, selectable menus, and alike. Each row in „410Info‟

may relate to many options in „410List‟. These tables allow

for the generation and creation of event registration forms by

the event coordinators. End-users, however, will create data to

be stored in the remaining two tables. Once registered, the

end-user‟s registration information is store in

„410Registration‟, a table whose rows designate a registration

for an event in „410Event‟ as designated in the foreign key

field „EventId‟. Each field of the registration form that is

completed by the end-user creates gathered registration data

stored in „410Gathered‟. Each entry in this table corresponds

to one registration in „410Registered‟ and stores „Information‟

for a field as defined by „410Info‟. This relational database

uses a small number of tables to store all necessary event

registration data to be used by event coordinators as well as

end-users. User profile and log in information for both,

however, are separately stored, authorized, and created by the

system in which this program extends.

4.1 Form Generation and Control

Interactions between the database and web clients is

controlled by the control software, implemented in C#. This

portion of the system initiates requests to and from the

database after receiving information from the web client and

OIT web forms. This portion is also responsible for calling the

form generator when needed; the form generator, also

implemented in C#, is responsible for creating the physical

manifestation of the even registration form, both temporary

test and final versions.

Figure 3: Object Model

Figure 3 depicts the relation between the various

objects within the system. Clients will input data into simple

forms created to collect all necessary information the request

498 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

type being pursued by the client: these actions may include

creating a new event, modifying the event registration form,

editing the list of users who may access the registration form,

and viewing registered users. Once received and processed via

a scripting language, the control software object controls

access to the database to collect and edit its contents. Using

fetched data, the control software relies on the form generator

to create output to be returned to the client‟s web browser.

OIT clients (or systems administrators) also use a similar

process for checking event data correctness, generating

temporary forms, and approving final form creation and

subsequent distribution back to the client.

4.2 Registration Form Creation Process

 The system described facilitates registration form

creation by providing an interactive process between client

users and OIT. This process involves a few key steps to be

completed by one or both user types:

1. Client users inputs and uploads event information via client

web forms.

2. The event is placed in the OIT event queue for verification.

3. OIT edits and checks the data for correctness and generates

a temporary form.

4. OIT sends the temporary form to the client for verification.

5. Client verifies the form or requests changes (back to step

three if needed).

6. OIT approves and distributes the finalized form to the

client.

4.3 Implementation

 To complete the described system the user interface,

control software, and database required implementation. A

web implementation was used to deploy access to all user

types, providing greater ease of access. Hence, HTML web

pages containing forms and menus were coded to create a user

interface that client-users, end-users, and OIT can interact

with at all stages of the registration form creation process. The

Control Software and Form Generation aspects were coded in

C#, in accordance with OIT standards documentation, to

mediate interaction between users providing requests via web

forms and the database containing all event information. The

database to hold said information was implemented as an MS

SQL database.

5 Results

Upon implementation of the described system in a testing

environment, various performance tests on the user interface

and overall system, as well as functional tests, provided

positive results that the system was successful. While limited,

the testing environment allowed many tests to be performed. A

development machine was used to deploy the site with the

database living on the same server; deployment on this

machine allowed testing to occur internally only. Specific test

cases were used to test the performance of the system in

regards to ease-of-use, response time, availability, and

security. The following test cases provided feedback:

 Client attempts verification before completely filling our

form.

 OIT attempts to approve a form when the database

communication has failed or experienced and error.

 OIT attempts to approve an unverified form.

 Client attempts to start a new form before finishing an old

one.

 Client attempts to start a new form before the old one has

finished processing.

These test cases, as well as more general ones, provided the

results that described the function of the site. Teams of users

were used to test the site, using some or all of the above test

cases, and they provided feedback via questionnaire. These

users required no knowledge of the system and its expected

behaviors, as to test the system more accurately from a

perspective like that of a production environment. Each of the

following categories was tested and users were asked to rate

each “poor”, “fair”, or “good”:

 Result

Administrative Interface

Ensure no unauthorized access Good

Events properly created; access granted to event

organizer

Good

Event start/end dates enforced Good

End-User Visual Display

Ensure access without authentication Good

Ensure required fields are truly required Good

Ensure page loads all fields Good

Drop-down menus properly populate Good

Event Organizer Display

Custom field addition Good

Drop-down list item addition Good

Required field addition Good

Field order save/recovery Good

Data Access Layer

All data access calls perform as expected Good

Data storing as expected Good

Entity models properly reflect database schema Good

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 499

From the team results, also, we found that the developed

system proved to be responsive in its test environment.

Responsiveness was determined by measuring response times

of the systems after various user requests. The threshold for

wait times without providing any feedback were set to 1

second, based on human perceptual abilities; any waiting time

longer should provide a dialog giving an estimated wait time

[6]. These test results demonstrate the success of our system in

this regard based on team testing and questionnaire responses.

6 Conclusions

 By providing a web-based system for client-users, end-

users, and OIT to interact in the dynamic registration form

creation process, this system is able to facilitate the creation

of unique event registration forms to be filled out by

registrants. Some systems exist, at present, which alleviate the

down-time and development time required to create unique

registration forms for unique events by removing the need to

hard-code forms in HTML or alike. However, many lack

ease-of-use, full automation, or storage of registrant

information, and may also be unnecessarily complex. Our

system implements web-based forms for users to submit

requests for various steps in the form creation process

including event creation, form generation, form approval, and

event registration. These requests are handled by the control

software and form generator, implemented in C#, to handle

authentication, database manipulation, and form generation

from data. A minimal, generic database was used and

implemented in MS SQL to store all event information in,

primarily, a few tables. Implementation in a testing

environment and subsequent tests show that the system

achieves its intended purpose, while being easy-to-use,

responsive, and secure. Future studies may be done on

implementing a potentially more efficient object database in

order to create a more flexible system. Also, while initial

testing seems to indicate success and potential release as an

alpha version, further testing should be done in a production

environment to allow for stress tests to be placed on the

system. The current design and implementation seems to be

an ideal solution for organizations wishing to minimize

administrative development time for event form creation for

unique events by allowing event coordinators to more easily

manage their own content.

7 References

 [1] Bruegge, Bernd, and Alleng H. Dutoit. Object-

Oriented Software Engineering: Using UML, Patterns, and

Java. Upper Saddle River: Prentice Hall, 2004. Print.

[2] Burget, Brenda. "Method and system for dynamically

generating web forms in a variety of languages." U.S. Patent

No. 6,557,005. 29 Apr. 2003.

[3] Ginige, A., & Murugesan, S. (2001). Web engineering:

An Introduction to Multimedia, IEEE, 8(1), 14-18.

[4] Kirkpatrick, Mark A., Wendy Jennings, and Mauricio

Lopez. "Method, System, and Apparatus for Presenting

Forms and Publishing Form Data." U.S. Patent No.

7,469,270. 23 Dec. 2008.

[5] Ravishankar, Geetha, et al. "Application server

configured for dynamically generating web forms based on

extensible markup language documents and retrieved

subscriber data." U.S. Patent No. 7,346,840. 18 Mar. 2008.

[6] Nielsen, J., & Hackos, J. T. (1993). Usability

engineering (Vol. 125184069). San Diego: Academic press.

500 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Software Reuse: The State Of Art

Abdullah A. Al-Baity
1
, Kanaan Faisal

2
, and Moataz Ahmed

3

Faculty of and Computer Science, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran,

Saudi Arabia

Abstract - this paper surveys the different approaches to

software reuse found in the research literature. It describes

and compares the different approaches and makes

generalizations about the field of software reuse.

In this survey we will present the definitions of software reuse

and will demonstrate the cases where software reuse are

valuable. Then, the different approaches of software reuse are

mentioned with an examination of the effectiveness of each

approach. Subsequently, the advantages and disadvantages of

each approach are presented. After that, we will study the

difficulty of implementing a software reuse process. Finally,

the open areas of research in this field are highlighted.

Keywords: Software Reuse, Architecture, COTS, Design

Patterns, Requirement, and Product Line

1 Introduction

 This paper will make a breadth survey about the

different approaches of software reusability.

Let us start with the basic definitions. We have two different

terms related with Software Reusability Development.

1.1 Software Development with Reuse: Software

development with reuse is the use of existing software or

software knowledge to construct new software. Reusable

assets can be either reusable software or software knowledge.

In this survey we will focus on this part of reuse the software

development with reuse [1].

1.2 Software Development for Reuse: Software

Development for Reuse is a process of producing potentially

reusable components. We know clearly the difficulties that are

faced when trying to reuse a component that is not designed

for reuse. The process of developing potentially reusable

components depends solely on defining their characteristics

such as language features and domain abstractions [2].

 However, both terms are overlapped related to the whole

Reuse process.

 Reusability is a property of a software asset that indicates

its probability of reuse. Software reuse’s purpose is to

improve software quality and productivity. Reusability is one

of the major software quality factors. Software reuse is of

interest because people want to build systems that are bigger

and more complex, more reliable, less expensive and that are

delivered on time [1].

1.3 Software Reuse Benefits [3]:

• Increased dependability: Reused software, that has been

tried and tested in working systems, should be more

dependable than new software.

• Reduces Process Risks: If software exists, there is less

uncertainty in the costs of reusing that software than in the

costs of development. This is an important factor for project

management as it reduces the margin of error in project cost

estimation.

• Effective use of specialists: Instead of application

specialists doing the use of specialists same work on different

projects, these specialists can develop reusable software that

encapsulate their knowledge.

• Standards compliance: Some standards, such as user

interface standards, can be implemented as a set of standard

reusable components. For example, if menus in a user

interfaces are implemented using reusable components, all

applications present the same menu formats to users.

• Accelerated development: Bringing a system to market

as early as possible is often more important than overall

development costs. Reusing software can speed up system

production because both development and validation time

should be reduced.

1.4 Software Reuse Problems [4]:

• Increased maintenance costs: If the source code of a reused

software system or component is not available then

maintenance costs may be increased as the reused elements of

the system may become increasingly incompatible with

system changes. Lack of tool support CASE toolsets may not

support development with reuse.

• Not-invented-here syndrome: Some software engineers

sometimes prefer to re-write components as they believe that

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 501

they can improve on the reusable component. This is partly to

do with trust and partly to do with the fact that writing

original software is seen as more challenging than reusing

other people's software.

• Creating and maintaining a component library: Populating

a reusable component library and ensuring the software

developers can use this library can be expensive. Our current

techniques for classifying, cataloguing and retrieving software

components are immature.

• Finding, understanding and adapting reusable components:

Software components have to be discovered in a library,

understood and, sometimes, adapted to work in a new

environment. Engineers must be reasonably confident of

finding a component in the library before they will make

routinely include a component search as part of their normal

development process.

1.4 Software Reuse Activity [4]: The reuse activity is

divided into six major steps performed at each phase in

preparation for the next phase. These steps are:

 Studying the problem and available solutions to the

problem and developing a reuse plan or strategy; Identifying a

solution structure for the problem following the reuse plan;

reconfiguring the solution structure to improve reuse at the

next phase; acquiring, instantiating, and/or modifying existing

reusable components; integrating the reused and any newly

developed components into the products for the phase, and

evaluating the products.

2. Software Product Line (SPL):

 The study of software product lines addresses the issues

of engineering software system families, or collections of

similar software systems. The objective of a software product

line is to reduce the overall engineering effort required to

produce a collection of similar systems by capitalizing on the

commonality among the systems and by formally managing

the variation among the systems. This is a classic software

reuse problem [5].

2.1 Basic Software Product Line Concepts [6]:

 Software product lines can be described in terms of four

simple concepts, as illustrated in the figure below:

 Software asset inputs: a collection of software assets –

such as requirements, source code components, test cases,

architecture, and documentation – that can be configured and

composed in different ways to create all of the products in a

product line. Each of the assets has a well-defined role within

a common architecture for the product line. To accommodate

variation among the products, some of the assets may be

optional and some of the assets may have internal variation

points that can be configured in different ways to provide

different behavior.

 Decision model and product decisions: The decision model

describes optional and variable features for the products in the

product line. Each product in the product line is uniquely

defined by its product decisions - choices for each of the

optional and variable features in the decision model.

 Production mechanism and process: the means for

composing and configuring products from the software asset

inputs. Product decisions are used during production to

determine which software asset inputs to use and how to

configure the variation points within those assets.

 Software product outputs: the collection of all products that

can be produced for the product line. The scope of the

product line is determined by the set of software product

outputs that can be produced from the software assets and

decision model.

Figure 1: Basic Software Product Line Concepts

2.2 Software Product Line Challenges:

 However, the predominant challenges, in most software

product lines, are:

a) The management of variability required to facilitate the

product differences. This is due to the fact that industrial

software product lines can easily incorporate thousands of

variable features and configuration parameters for product

customization. Managing this amount of variability is

extremely complex. One of the reasons for this high

complexity is that, due to continuous evolution of the product

line, a large number of new variable features and

configuration parameters are introduced but at the same time

obsolete variability is not removed. This increasing

complexity results in a combinatorial explosion of variants

[7].

b) With single systems, software engineers can maintain a

single point of view throughout the development process (i.e.,

focused on the implementation of the single system). In

contrast, with software product lines, software engineers must

take different points of view at different times in order to

effectively develop the software family[5].

502 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

However, there are several tools exist for support Software

Product Line development and maintaining such as ConExp,

sunifdef and DMS [5].

3 Commercial of the Shelf (COTS):

 A commercial-off-the-shelf (COTS) product is a

software system that can be adapted to the needs of different

customers without changing the source code of the system [3].

 When a software system is developed around a COTS

product[8], it is called a "COTS-solution system." If a system

includes a large proportion of COTS products it is called

"COTS- intensive systems ", "COTS-integrated systems"[2],

or "COTS-aggregate systems" [9].However, the term "a

COTS-based system" is generally used for all purposes [8].

3.1 COTS-Solution System:

 A COTS-solution system is a single product or suite of

products, usually from a single vendor, that can be tailored to

provide the system’s functionality. Vendors offer such

solutions if a consistent and well-bounded range of end-user

needs exists throughout a broad community, justifying the

vendors’ costs for developing the products or suites of

products.

 Significant tailoring is required to set up and use these

products, and the ability and willingness of an organization to

understand and adopt the processes supported by the products

are often key factors in success or failure. COTS-solution

systems are commonly found in such well-established

domains as personnel management, financial management,

manufacturing, payroll, and human resources. Typical

software vendors in this area include PeopleSoft, Oracle, and

SAP.

 COTS-Solution Systems usually require extensive

configuration to adapt them to the requirements of each

organization where they are installed. Once the configuration

settings are completed, a COTS-solution system is then ready

for testing. Testing is a major problem when systems are

configured rather than programmed using a conventional

language [9].

3.2 COTS-Integrated Systems:

 COTS-aggregate systems are systems in which many

disparate products (from different and sometimes competing

vendors) are integrated to provide a system’s functionality.

Such systems are created if operational procedures are

sufficiently unique to preclude the possibility of a single

 COTS product solution, if the constituent technologies

are immature, if the scale of the system is large enough to

encompass several domains, or simply because different

products provide distinct pieces of functionality to form the

complete system. Systems with these characteristics include

software support environments, large information systems,

and command-and-control systems. Often, the COTS products

and other components are combined in ways or to degrees that

are unprecedented [3].

3.2.1 Challenges of COTS-Integrated System:

 While adapting these components we did not care to

identify whether the causes of our problems were with the

functionality of the COTS products, their architecture, or in

fact the functionality or architecture we desired, so it is

somewhat difficult to button-hole the problems easily. [10].

3.3 Main Processes for Evaluation and

Selecting COTS Software [11]:

 Based on previous studies, several processes for

evaluating and selecting COTS software are shared by

existing methods for COTS software selecting. These

processes can be ordered as iteratively, sequentially, or

overlapping. However, the common processes for evaluating

and selecting COTS software can be classified in terms of

four general processes.

Supporting Process : This process consists of set of activities

that support other processes of the valuation and selection.

This process begins with planning for an evaluation and

selection COTS software; the tasks that might be completed

during this activity include forming the evaluation and

selection team (e.g. technical experts, domain experts, end

users, etc.), identifying stakeholders (e.g. integrators, (funding

customers, business owners, etc.), define the goals and

objectives, etc .Documentation is also performed during this

process.

Preparation Process: The main purpose of this process is to

collect and prepare the information that required for further

detail evaluation.

Evaluation Process: This process plays a vital role to

determine how well each of the COTS software alternatives

achieves the evaluation criteria.

Selecting Process: The outputs of the evaluation process are

several kinds of data such as facts, checklists, weights,

opinions. Those kinds of data should be consolidated and

interpreted into information.

3.4 COTS Products Problems [8]

 Incompatibility: COTS component may not have the

exact functionality required; moreover, a COTS product may

not be compatible with in-house software or other COTS

products; Inflexibility: usually the source code of COTS

software is not provided, so it cannot be modified;

Complexity: COTS products can be too complex to learn and

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 503

to use imposing significant additional effort; Transience:

Different versions of the same COTS product may not be

compatible, causing more problems for developers.

4. Software Requirement Reuse

 Much of the effort of building complex software systems

goes into understanding, specifying, and validating system

requirements. For mission- and safety critical systems,

requirements errors represent a major source of development

problems. Prior work in product-line engineering has shown

that we can substantially increase productivity while

decreasing errors by systematically re-using (rather than re-

creating) the work products for families of systems where

system requirements are sufficiently similar. Embedded

software for commercial product lines like printers, mobile

phones, or flight-control systems are typically families in this

sense [12].

Figure 2: implementation of Requirements Reuse.

 The systematic requirements reuse to develop software

requires two specific actions. First, to define the adequate way

to model and to store specifications in the phase of

development for reuse. Second, to define a process to

compare and to adapt the reusable requirements in the phase

of software development with reuse [13].

4.1 Requirement Representation for Reuse

 The best and the common classification and retrieval

techniques show limited utility in representing requirements

for reuse. Some different alternatives based on knowledge

representation, analogical reasoning to reuse the requirements

from a knowledge base has been proposed are based on meta-

models, evolutionary development and formal methods all of

which emphasize the process for development and

maintenance the reusable requirements [13].

4.2 Comparing and Adapting Requirement

 Comparing and adapting requirements means that it

should be established an equivalence relation between

requirements models and the sufficient condition to determine

the similarity between the requirements models, and it should

be established a process to compare requirements so that it

supports software. One technique is to reuse domain

descriptions and task specifications. And the other is to apply

techniques based on artificial intelligence to support the

structural and semantic matching when retrieving

requirements [13].

4.1 Benefits of Requirement Reuse

 Requirements need not be re-Validated with

stakeholders repeatedly; ensure consistency of requirements &

business rules within organization or Program; test Cases/Test

coverage is already available and can be reused; reduce

requirements work for subsequent uses.

 However, the main obstacle reported for adopting

requirements reuse is poor quality of existing requirements.

Having unstructured, incomplete, outdate existing

requirements makes it difficult to reuse them going forward.

Developing techniques to analyze the inventory of and

refactor existing requirements can help practitioners better

adopt and benefit from reuse.

5. Code Reuse

 In computer science and software engineering,

reusability is the likelihood a segment of source code that can

be used again to add new functionalities with slight or no

modification. Reusable modules and classes reduce

implementation time, increase the likelihood that prior testing

and use has eliminated bugs and localizes code modifications

when a change in implementation is required.

 The evolution of programming languages is tightly

coupled with reuse in two important ways. First, programming

languages have evolved to allow developers to use ever larger

grained programming constructs, from ones and zeroes to

assembly statements, subroutines, modules, classes,

frameworks, etc. Second, programming languages have

evolved to be closer to human language, more domain

focused, and therefore easier to use. Languages such as Visual

C++, Delphi, and Visual Basic clearly show the influence of

software reuse research [1].

 To reduce programming effort and shorten time-to-

market, programmers can find and reuse existing solutions for

their prototypes. Source code search engines have been

developed to locate implementations that are highly-relevant

to a feature specified by a programmer (e.g., via a natural-

language query). Existing search engines often return

packages that match only a small subset of the desired

504 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

features, and developers have to invest considerable effort to

integrate features from several different packages and

projects. Under these circumstances, the cost and effort

required for a programmer to comprehend and integrate the

returned source code can significantly reduce the benefits of

reuse [14].

 But, code, which is executed from other developer,

has a problem hard to understand and reuse because of

missing and insufficient document, the existing system

developer's absence. And that code causes decline in

performance. It also needs much time and costs in order to

solve these problems [15].

5.1 Code Reuse Benefits [16]

 Reusing code saves programming time, which reduces

costs. Sharing code can help prevent bugs by reducing the

amount of total code that needs to be written to perform a set

of tasks. Relatedly, separating code into specialized libraries

lets each be tuned for performance, security, and special

cases. Delegation of tasks into shared modules allows

offloading of some functionality onto separate systems.

Proper and efficient reuse of code can help avoid code bloat.

Bloated code contains unnecessary duplication and unused

instructions.

5.1 Code Reuse Drawbacks [16]

 There are other potential drawbacks to code reuse, often

very dependent on the situation and implementation:

5.1.1 Performance might become a factor:

 Depending on the platform and programming language,

a library or framework might perform slower than desired. In

some situations it might be beneficial to build a specialized

one-time solution instead of using a common library. APIs

accessed over a network will sometimes be slower than

solving a problem within the local system. The system of

modularity itself might create a bottleneck. For example, extra

process initialization or shared library management can create

overhead.

5.1.2 Loss of control over 3rd party solutions might have

negative repercussions.

 For example, there might be lack of support, desired

feature enhancements might not get added, or security might

not be fully tested. Outside the technical considerations, there

might also be licensing and liability issues. When not well

implemented or when taken too far, code reuse can eventually

cause code bloat. Ironically, adding modularity can eventually

lead to lingering APIs and libraries which go unused. In very

large systems it's not uncommon to lose track of how every

component is used. Over time a component my become

useless, but linger in the system. This, however, is not so

much an inherent drawback of code reuse as it's a problem of

implementation.

6. Design Reuse

 Broadly speaking, design reuse appears promising for at

least three reasons. First, since designs address early phases of

system development, many of the up-front (and hence most

costly) errors can be avoided. Second, reuse of familiar

designs can improve the understand ability of a system,

making it easier to evolve and maintain. Third, design reuse

promotes code reuse: often much of the infrastructure to

support a design can be shared among applications that share

that design.

 It is perhaps not surprising then, that some of the more

impressive examples of reuse today involve a strong

component of design reuse. Prominent examples include

specialized frameworks such as user interface toolkits,

application generators (such as Visual Basic), domain specific

software architectures, and object-oriented patterns [17].

6.1 Framework Reuse

 A software framework is an abstraction in which software

providing generic functionality can be selectively changed by

user code [clarify], thus providing application specific

software. A software framework is a universal, reusable

software platform used to develop applications, products and

solutions. Software frameworks include support programs,

compilers, code libraries, an application programming

interface (API) and tool sets that bring together all the

different components to enable development of a project or

solution [18].

6.1.1 Framework Reuse Benefits [18]

Application frameworks offer a variety of advantages:

 Using code which has already been built, tested, and

used by other programmers increases reliability and reduces

programming time. Software development teams can be split

between those who program the framework and those who

program the final complete application. This separation of

tasks lets each team focus on more specific goals and use their

individual strengths. Frameworks can provide security

features which are often required for a common class of

applications. This provides every application written with the

framework to benefit from the added security without the

extra time and cost of developing it. By handling "lower

level" tasks frameworks can assist with code modularity.

Frameworks often help enforce platform-specific best

practices and rules. Frameworks can assist in programming

to design patterns and general best practices. Upgrades to a

framework can enhance application functionality without

extra programming by the final application developer.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 505

6.1.1 Framework Reuse Drawbacks [18]

 There can be negative consequences to using a

framework:

 Performance can sometimes degrade when common

code is used. This sometimes occurs when a framework must

check for the various scenarios in which it is used to

determine a path of action. Frameworks often require a

significant education to use efficiently and correctly (i.e. some

have a high learning curve). Functionality which needs to

bypass or work around deficiencies in a framework can cause

more programming issues than developing the full

functionality in the first place. Bugs and security issues in a

framework can affect every application using that framework.

Therefore it must be tested and patched separately or in

addition to the final software product.

6.2 Architecture Reuse [17]

 The other broad area of related work is software design

reuse, a topic that is receiving increasing attention from

researchers and practitioners in areas such as module interface

languages, domain-specific architectures, software reuse,

codification of organizational patterns for software,

architectural description languages, formal underpinnings for

architectural design, and architectural design environments.

Collectively these efforts are attempting to establish an

engineering basis for architectural design, and make principles

and techniques of architectural design more widely accessible.

6.2.1 Software Architecture and Architecture Styles [17]

 An architectural style provides a specialized

architectural design vocabulary for a family of systems, and

typically incorporates a number of idiomatic uses of that

vocabulary and design rules for system composition. From the

point of view of a designer, architectural style is important for

several reasons:

 It limits the design space, thereby simplifying design

choices. It allows a designer to exploit recurring patterns of

organization, such as topological configurations, or even

specific organizations of components (such as the MVC

pattern in object-oriented systems). It provides a context

within which certain kinds of design integrity can be enforced,

such as the fact that no cycles are allowed. It permits

specialized analyses such as detection of deadlock. And

finally, as we detail in the next section, it provides a basis for

supporting reuse of architectural building blocks and patterns.

6.3 Design Patterns

 A design pattern is a general reusable solution to a

commonly occurring problem within a given context in

software design. A design pattern is not a finished design that

can be transformed directly into source or machine code. It is

a description or template for how to solve a problem that can

be used in many different situations. Patterns are formalized

best practices that the programmer must implement

themselves in the application. Object-oriented design patterns

typically show relationships and interactions between classes

or objects, without specifying the final application classes or

objects that are involved. Many patterns imply object-

orientation or more generally mutable state, and so may not be

as applicable in functional programming languages, in which

data is immutable or treated as such.

6.3.1 Design Patterns Goals:

• To support reuse of successful designs, to facilitate software

evolution (add new features easily, without breaking existing

ones), in short, we want to design for change.

6.3.2 Types of Design Patterns

Creational Patterns: To create objects rather than developer

instantiate it.

Structural Patterns: to compose group of objects in larger

structures.

Behavioral Patterns: To defines communication & flow

between objects.

7. Conclusions

 From the 1960s to the 1990s, most new software was

developed from scratch, by writing all code in a high-level

programming language. The only significant reuse or software

was the reuse of functions and objects in programming

language libraries. However, costs and schedule pressure

meant that this approach became increasingly unviable,

especially for commercial and Internet-based systems.

Software reuse is possible at a number of different levels:

1. The abstraction level: At this level, you don’t reuse

software directly but rather use knowledge of successful

abstractions in the design of your software. Design patterns

and architectural patterns are ways of representing abstract

knowledge for reuse.

2. The object level: At this level, you directly reuse objects

from a library rather than writing the code yourself. To

implement this type of reuse, you have to find appropriate

libraries and discover if the objects and methods offer the

functionality that you need. For example, if you need to

process mail messages in a Java program, you may use objects

and methods from a JavaMail library.

3. The component level: Components are collections of

objects and object classes that operate together to provide

related functions and services. You often have to adapt and

extend the component by adding some code of your own. An

example of component-level reuse is where you build your

506 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

user interface using a framework. This is a set of general

object classes that implement event handling, display

management, etc. You add connections to the data to be

displayed and write code to define specific display details

such as screen layout and colors.

4. The system level: At this level, you reuse entire application

systems. This usually involves some kind of configuration of

these systems. This may be done by adding and modifying

code (if you are reusing a software product line) or by using

the system’s own configuration interface. Most commercial

systems are now built in this way where generic COTS

(commercial off-the-shelf) systems are adapted and reused.

Sometimes this approach may involve reusing several

different systems and integrating these to create a new system.

By reusing existing software, you can develop new systems

more quickly, with fewer development risks and also lower

costs. As the reused software has been tested in other

applications, it should be more reliable than new software.

 However, there are costs associated with reuse:

1. The costs of the time spent in looking for software to reuse

and assessing whether or not it meets your needs. You may

have to test the software to make sure that it will work in your

environment, especially if this is different from its

development environment. 2. Where applicable, the costs of

buying the reusable software. For large off-the shelf systems,

these costs can be very high. 3. The costs of adapting and

configuring the reusable software components or systems to

reflect the requirements of the system that you are developing.

4. The costs of integrating reusable software elements with

each other (if you are using software from different sources)

and with the new code that you have developed. Integrating

reusable software from different providers can be difficult and

expensive because the providers may make conflicting

assumptions about how their respective software will be

reused.

 How to reuse existing knowledge and software should

be the first thing you should think about when starting a

software development project. You should consider the

possibilities of reuse before designing the software in detail,

as you may wish to adapt your design to reuse existing

software assets.

8. References

[1] William B. Frakes and Kyo Kang, "Software Reuse

Research: Status and Future", IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, VOL. 31, NO. 7,

JULY 2005.

[2] Muthu Ramachandran School of Computing Leeds

Metropolitan University " Software Reuse Guidelines",

ACM SIGSOFT Software Engineering Notes Homepage

archive volume 30 Issue 3, May 2005.

[3] Sommerville, Ian , "Software engineering / Ian

Sommerville". — 9th ed.

[4] Dr. Parvinder S. Sandhu, Aashima and Priyanka Kakkar,

Shilpa Sharma, "A Survey on Software Reusability"

International Conference on Mechanical and Electrical

Technology (ICMET 2010).

[5] Charles W. Krueger , "Software Product Line Reuse in

Practice" , Conference 2000 IEEE.

[6] http://www.softwareproductlines.com.

[7] Felix Loesch and Erhard Ploedereder "Optimization of

Variability in Software Product Lines" , 11th

International Software Product Line Conference 2007

IEEE.

[8] Daniil Yakimovich, "A COMPREHENSIVE REUSE

MODEL FOR COTS SOFTWARE

PRODUCTS",University of Maryland, College Park,

2001.

[9] Santiago Comella-Dorda, John Dean, Grace Lewis,

Edwin Morris, Patricia Oberndorf, and Erin Harper, "A

Process for COTS Software Product Evaluation",

TECHNICAL REPORT CMU/SEI-2003-TR-017 ESC-

TR-2003-017.

[10] David Wile, Robert Balzer, Neil Goldman, Alexander

Egyed, Marcelo Tallis and Tim Hollebeek, "Adapting

COTS Products The Fine Line between Development

and Maintenance", 26th IEEE International Conference

on Software Maintenance in Timișoara.

[11] Feras Tarawneh, Fauziah Baharom, Jamaiah Hj. Yahaya,

and Faudziah Ahmad, "Evaluation and Selection COTS

Software Process: The State of the Art", International

Journal on New Computer Architectures and Their

Applications (IJNCAA) 1(2): 344-357 The Society of

Digital Information and Wireless Communications, 2011

(ISSN: 2220-9085)..

[12] Oscar L´opez Villegas and Miguel A´ ngel Laguna,

"Requirements Reuse for Software Development",

University of Valladolid, Technological Institute of

Costa Rica 2002.

[13] Stuart R. Faulk , "Product-Line Requirements

Specification (PRS): an Approach and Case Study",

Conference 2001 IEEE.

[14] Collin McMillan, Negar Hariri, Denys Poshyvanyk, and

Jane Cleland-Huang, "Recommending Source Code for

Use in Rapid Software Prototypes", Conference

Publications 2012 IEEE.

[15] Jong-Ho Lee, Nam-Yong Lee,and Sung-Yul Rhew ,

"OBJECT-ORIENTED REFACTORNG PROCESS

DESIGN FOR THE SOFTWARE REUSE",Conference

Publications 2001 IEEE.

[16] http://docforge.com/wiki/Code_reuse.

[17] Monroe, Robert T. and Garlan, David, "Style-Based

Reuse for Software Architectures" ",Conference

Publications Tepper School of Business. (1996).

[18] http://docforge.com/wiki/Framework.

[19] Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides " Design Patterns: Elements of Reusable

Object-Oriented Software techniques".

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 507

http://docforge.com/wiki/Code_reuse
http://docforge.com/wiki/Framework
http://en.wikipedia.org/wiki/Design_Patterns_%28book%29
http://en.wikipedia.org/wiki/Design_Patterns_%28book%29

Empirical Validate C&K Suite for Predict Fault-Proneness of

Object-Oriented Classes Developed Using Fuzzy Logic.

Mohammad Amro
1
, Moataz Ahmed

1
, Kanaan Faisal

2

1
Information and Computer Science Department, King Fahd University of Petroleum and Minerals,

Dhahran, Saudi Arabia

Abstract Empirical validation of software metrics suites

to predict fault proneness in object-oriented (OO)

components is essential to ensure their accuracy in

practical industrial. In this paper, we empirically validate

the Chidamber and Kemerer (CK) metrics suite metrics

for their ability to predict software quality in terms of

fault-proneness: we explore the ability of these metrics

suites to predict fault-prone classes using defect data for

six versions of Rhino, an open-source implementation of

JavaScript written in Java. We conclude that the C&K

suite contain similar components and produce statistical

models that are effective in detecting error-prone classes.

Analyzing Fuzzy Logic models across six Rhino versions

indicates these models may be useful in assessing quality

in OO classes produced using modern highly iterative or

agile software development processes.

Keywords- fault-prone; fuzzy logic; software quality;

prediction model

1 Introduction

Several Object-Oriented metrics have been

developed by researchers to help evaluate software design

quality [1-3] . While a measure may be correct from a

theoretical perspective, it may not be of practical use in

software industrial[4, 5]. Metrics may be difficult to

collect or may not really measure the intended quality

properties of software. Empirical validation is necessary

to determine the usefulness of a metric in assessing open

source software quality. Open source tools are becoming

ever more important for the user these days. Many

companies are using this kind of software in their own

work. Therefore, many of these projects are being

developed rapidly and are quickly becoming very large.

However, because open source software is usually

produced by volunteers, and the development approach

employed is quite different from the usual methods

applied in commercial software development especially

for level of testing, the quality and reliability of the code

needs to be investigated. Various kinds of code

measurements can be quite helpful in obtaining

information about the quality and fault-proneness of the

code.

In this paper, we describe how we calculated and

validated the object-oriented metrics suite given by

Chidamber and Kemerer [3] for fault-proneness detection

from the source code of the open source Mozilla Rhino

JavaScript written in Java[6].

2 Chidamber and Kemerer’s (CK)

Metrics

Chidamber and Kemerer originally defined the

CK metrics suite in 1991. In 1994, they published another

paper containing revised definitions of some of the

metrics [3]. In this research, all CK metrics are selected to

be validated its ability to predict the fault, in total CK

suite continue six metrics which describe in Table 1.

508 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

TABLE 1: CK SUITE METRICES [3, 7]

Metric Description

DIT

Depth of Inheritance Tree (DIT) it measure the general classes, which are expected to be reused by other classes,

are usually at a high level in the inheritance hierarchy.

WMC

Weighted Methods per Class

Number of Methods per Class is a measure of software size, and hence an indicator of complexity

RFC

Response for Class is a measure of coupling. It counts the number of methods that are immediately available to

and potentially used by a class.

CBO

Coupling Between Objects (CBO) is a measure of coupling, counting the number of other classes to which a class

is coupled. A class A is said to be coupled to another class B, if class A accesses methods or variables defined by

class B. large CBO value often indicates a high degree of dependency on other classes

LCOM Lack of Cohesion of Methods

NOCL

Number of Children is measure the complexity of an inheritance hierarchy .It counts the number of immediate

subclasses derived from the current class.

3 Experimental Evaluations

3.1 Datasets:

We chose the Mozilla Rhino project to examine in this

study because it was a real open source project and

because of the availability of fault data for several

versions of the project, Rhino is an open source

implementation of JavaScript. The development team of

Rhino consists of three programmers. All in separate

locations delivering the java implementation with a

varying cycle time from two to 16 months. In this study,

we analyzed 14R3, 15R1, 15R2, 15R3, 15R4, and 15R5.

Error data exists for Rhino in the online Bugzilla

website[8]. We Collect the Rhino fault data form a

published work done by Hector M et al[5]. Figure 1

shows the statistic for selected Rhino versions that had

been investigate during the study.

 Figure 1: Defects reported and enhancements made per Rhino version.

rhino14R3
rhino1_5R

5
rhino15R4 rhino15R3 rhino15R2 rhino15R1

Defects reported 21 61 153 41 10 29

Enhancements Made 1 37 76 0 0 3

Class count 95 201 198 178 179 126

0

50

100

150

200

250

C
la

ss
es

Rhino version

Defects
reported

Enhancemen
ts Made

Class count

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 509

 Table 2 shows the descriptive CK metrics statistics for the Rhino datasets which extracted by using commercial tool named

METAMATA.

Table 2: THE DESCRIPTIVE STATSTICS FOR THE DATASETS

version Statistics DIT WMC RFC CBO LCOM NOCL

14R3 Max 6 464 165 59 2681 2

 Min 1 0 0 0 0 1

 Mean 2.506494 109.4805 26.66234 10.22078 115.3377 1.012987

 StdDev 1.154207 123.0208 33.43517 11.28182 420.9545 0.113961

15R1 Max 6 688 202 65 3305 3

 Min 1 0 0 0 0 1

 Mean 2.578431 122.6765 28.87255 10.89216 112.8627 1.019608

 StdDev 1.120787 140.9371 37.09919 11.98424 460.8304 0.19803

15R2 Max 7 732 203 69 4126 3

 Min 1 0 0 0 0 1

 Mean 2.779817 139.7064 29.23853 10.21101 141.2477 1.027523

 Std Dev 1.480477 167.6788 38.70709 12.13128 546.7883 0.213382

15R3 Max 7 730 206 76 4524 3

 Min 1 0 0 0 0 1

 Mean 2.841121 144.1402 29.96262 10.4486 152.1308 1.065421

 Std Dev 1.486731 169.6414 40.12408 12.59697 594.096 0.315362

15R4 Max 7 764 205 77 4951 3

 Min 1 0 0 0 0 1

 Mean 2.756757 147.5225 30.32432 10.25225 158.1982 1.117117

 Std Dev 1.472266 173.6812 41.31831 12.5274 615.8118 0.398605

15R5 Max 6 922 214 67 5172 6

 Min 1 0 0 0 0 1

 Mean 2.825688 156.1193 31.66055 10.25688 166.6422 1.155963

 Std Dev 1.470979 181.4662 41.41484 11.65746 665.6276 0.626192

Table 3:Correlations between: DIT, WMC, RFC, CBO, LCOM, NOCL, and number of Defects reported

 DIT WMC RFC CBO LCOM NOCL

WMC 0.188

RFC 0.349 0.941

CBO 0.829 0.535 0.671

LCOM 0.460 0.904 0.838 0.757

NOCL -0.267 0.859 0.667 0.093 0.692

of Defects 0.325 0.371 0.328 0.626 0.600 0.160

In order to get most relevant independent variables to the

dependent variable, we used Pearson’s Correlation

Coefficients (PCC), indicates the strength and direction of

a linear relationship between two variables. Table 3

510 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

shows the PCC between number of Defects and each of

the CK metrics. From the table, there is a significant

correlation between number of Defects and the CK

metrics. Table 3 shows that, there highly correlations

between CBO, LCOM and WMC metrics and number of

Defects.

3.2 Prediction Accuracy Measures

The term prediction accuracy in this paper means how

well a predictive model constructed using known data can

predict the outcomes of unknown data. This paper

evaluates and compares the Rhino software Fault-

Proneness prediction models quantitatively, using the

described below prediction accuracy measures. For all the

used measures the lower the error measure, the better is

the performance.

 Root-mean-square error (RMSE) shows differences
between values predicted by a model and the values
actually observed from the thing being modeled.

n

yxf
RMSE

n

i ii

 1

2))((
 (1)

 Normalized root-mean-square error (NRMSE): to
normalize the RMSE to the range of the observed
data.

minmax)()(xfxf

RMSE
NRMSE

 (2)

 MRE is a normalized measure of the discrepancy
between actual values and predicted values.

y

xfy
MRE

|)(|
 (3)

 Mean magnitude of relative error (MMRE) :

n

i

iMRE
n

MMRE
1

1 (4)

4 Result and Discussion

This section describes the experiments conducted in our

study. In the conducted experiments, we training the

model using one time all CK metrics and other with only

high correlated metrics CBO, LCOM and WMC. We

repeated the experiment more than one time to produce

reliable results. Figure 2 and 3 show the result for two

error measures (NRMSE, MMRE) for fuzzy Mamdani

model.

Figure 2: NRMSE error measures using Mamdani model

Figure 3: MMRE error measures using Mamdani model

 Max Mean
(WMC,CB
O,LCOM)

Max

(WMC,CB
O,LCOM)

Mean

NRMSE 1.2042 0.2982 0.8925 0.05190945

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

NRMSE (Rhino dataset)

 Max Mean
(WMC,C
BO,LCO
M) Max

(WMC,C
BO,LCO

M)
Mean

MMRE 0.0035 0.0112 0.0037 0.0137

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

(Rhino dataset)

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 511

5 Conclusion and Future Work

In this paper, we conducted the experiments to evaluate

the performance of the fuzzy inference systems models to

predict Fault-Proneness of Object-Oriented Classes

Developed Using CK metrics. As shown in table 3, there

is significant correlation between the measure provided

by three CK metrics (LOC,CBO,WMC) and the number

of defects in a class. We use to two Accuracy Measures

(NRMSE ,MMRE) to validate the used model. As a

future work, we plan to conduct the experiment with

larger dataset, which will enhance the performance of

fuzzy inference models.

ACKNOWLEDGMENT

The authors acknowledge the support of King Fahd
University of Petroleum and Minerals.

Reference

[1] Bansiya, J. and C.G. Davis, A hierarchical model

for object-oriented design quality assessment. Software

Engineering, IEEE Transactions on, 2002. 28(1): p. 4-17.

[2] Brito e Abreu, F. and W. Melo. Evaluating the

impact of object-oriented design on software quality. in

Software Metrics Symposium, 1996., Proceedings of the

3rd International. 1996. IEEE.

[3] Chidamber, S.R. and C.F. Kemerer, A metrics suite

for object oriented design. Software Engineering, IEEE

Transactions on, 1994. 20(6): p. 476-493.

[4] Basili, V.R., L.C. Briand, and W.L. Melo, A

validation of object-oriented design metrics as quality

indicators. Software Engineering, IEEE Transactions on,

1996. 22(10): p. 751-761.

[5] Olague, H.M., et al., Empirical validation of three

software metrics suites to predict fault-proneness of

object-oriented classes developed using highly iterative

or agile software development processes. Software

Engineering, IEEE Transactions on, 2007. 33(6): p. 402-

419.

[6] N. Boyd. Rhino Home Page. July 2006;]. Available

from: http://www.mozilla.org/rhino/.

[7] Yu, P., T. Systa, and H. Muller. Predicting fault-

proneness using OO metrics. An industrial case study. in

Software Maintenance and Reengineering, 2002.

Proceedings. Sixth European Conference on. 2002. IEEE.

[8] Database, B. Mozilla Foundation. July 2004;

Available from: https://bugzilla.mozilla.org/.

512 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

http://www.mozilla.org/rhino/

Template Generation in a Tiered Architecture
Practical C# class templates from DDL statements

James duPuis, Daniel Riehl, Roger Lee
Department of Computer Science

Central Michigan University

Mount Pleasant, MI, USA

{dupui1jp, riehl1dl, lee1ry}@cmich.edu

Abstract— Business applications are often written as tiered
applications with tiers dedicated to presentation, business logic,
and data access. Much research has been done to show the
benefits of structuring applications with tiered abstractions, but
this process often means developers spend considerable time
creating similar abstractions for different business and data
objects. In this paper, we present an application that preforms
automated code generation by parsing T-SQL DDL statements to
create stored procedures and C# .NET data access classes, and
classes to mimic business logic templates. Our research showed
that by using this application some of the mundane tasks
programmers who write multi-tiered applications face could be
automated.

Keywords—tiered architecture; three tiered architecture

I. INTRODUCTION

Applications driven by relational database management
systems have become ubiquitous in today’s society. These
applications cover a range presentation options from web
interfaces to mobile applications. Perhaps even more diverse
than the presentation of data is the range of domains that these
applications are used in. Everything from healthcare records,
call detail, to social media relies on storing data in a relational
database. Software engineers who design and maintain these
applications are faced with the same challenge, selecting an
architecture model to map the persistent data from the
application to a database and vice versa. This research
attempts to automate coding of templates for database centric
applications using a custom application named tier-gen.

II. BACKGROUND

Engineers have many models to refer to when selecting
architectures to map objects to a RDBMS. Choices range from
spaghetti code to tiered architectures to automation tools such
as object-relational mapping (ORM) such as Microsoft’s
ADO.NET Entity Framework or rapid application development
(RAD) tools such Iron Speed.

A. N-Tier Architecture

In an n-tiered, or multi-tiered, architecture the applications
logic is split into distinct and separate layers. These systems
gained popularity as client server architectures became
pervasive in the 90s [1]. Each layer encapsulates a set of
functionality, possibly calls to some persistent storage
mechanism, or UI. Often the terms layer and tier are used

interchangeably [1]. Layers have no knowledge of the adjacent
layers, with the exception of the calls placed between them [2]
[1]. Layering or tiers are a very common method to deal with
complex systems in computing. In the same way the specific
methods can break down large programs logic into smaller
more comprehensible components, layering can break down an
application’s logic into simpler modules [1].

Perhaps the most common example of layers in computing
is the OSI reference model describing communication over a
network. The OSI model defines 7 layers which abstract
different services for network communication include:
application semantics, reliable or effective data transfer,
routing, and electrical signaling [3]. This reference model was
popularized due to its ability to break up the intricate
requirements of network communication into simpler to
manager layers.

Besides simplifying a complex system, tiered architectures
provide other benefits. Black box abstraction is a tangible
benefit. For example, a developer can create a new application
protocol without any more than a rudimentary knowledge
about network routing or electrical signaling. Similarly, the
layers can be maintained and deployed separately [1].
Regressing to the previous example, if while creating a
protocol a developer discovered a bug in his device TCP
implementation, it is possible that the bug could be fixed
without adversely affecting the services running adjacent OSI
layers.

Layered implementations are not without their
shortcomings. There are times when a change to one layer
cascades throughout all layers who consume its services. This
is a classical problem with tiered applications and databases. If
a database is changed to include another column, each layer
that deals with that particular table must be changed.
Additionally, each layer will have a performance impact as it
deals with its abstraction [1]. The overhead of the abstraction
has the potential to surpass any benefits provided.

B. Three Tier Architecture

Three tiered architectures became very popular towards the
end of the 20

th
 century [2]. The rise of the web fueled

organizations to migrate their client server applications to web
applications. This amounted to a new user interface but the
same business logic. This coincided with explosive growth of

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 513

object oriented programming languages such as Java and
Microsoft’s .NET framework [1].

The three tied architectural defines three layers: data
access, business logic, and presentation [2]. These tiers can
also be referred to as data source, domain, and presentation [1].
The organizations who had implemented a three tiered
architecture in their client server applications were able to use
the same business logic and data access layers with a new
presentation layer for their web pages. Those without the
abstractions had to retool their applications, sometimes from
the ground up.

The data access layer is responsible for storing data in
persistent storage, typically a RDBMS. Messaging systems
and transaction monitors can also appear in this layer, but are
less common [1]. The business objects are responsible for
implementing an organizations policies and procedures.
Examples include validation of input from the presentation
layer or performing calculations. The presentation layer is
responsible for presenting the information the end user in a
pleasant manner [2].

 A purely implemented three tiered architecture should only
allow communication between adjacent tiers. This guideline is
not often followed closely in reality [1]. Consider a web
interface (presentation layer) that lists the unfiltered entries
from a table (data access layer). There is little use for a
business access layer here, with the exception of preforming
any calculations based on persistent values, or simply
providing a common internal representation between the
presentation and data access interfaces. In cases similar to this,
it is possible for the presentation layer to make a direct call to
the data access layer.

 How the different layers are programmatically represented
can vary depending on the complexity of the project and design
choices. It is possible that the different layers are represented
by methods, but in object oriented code, it is more likely to see
them as separate classes, or even packages [1].

III. OBJECTIVES OF REASEARCH

Our research aims to automate part of the development
process by generating general purpose templates. These
templates are indented to provide broad CRUD operations.

The process of creating templates for business objects is
often quite repetitive. Typically when mapping a relational
table to an object, each column with become a property, or
possibly a private member with public set and get methods,
depending on the preferred coding style. There are also
common database calls, it is almost assured that an application
will view, modify, and add records to particular tables within a
database. Assuming the persistent storage is a RDBMS and
the tables were created before other coding was started, it is
possible that an algorithm could produce code templates
representing the tables. This is often the case with a three
tiered design, that the database and data access are designed
first [2]. Both templates for business objects and rudimentary
data access could be generated. The business object template
could mimic the table by providing properties for the columns.
The data access template could generate basic CRUD stored

procedures to interact with the database as well as calls to the
procedures that use the business objects as parameters.

The more explicit the DDL design is the more information
can be gleaned from it for template generation. Consider
different column attributes, there are attributes to define keys
to enforce referential integrity, uniqueness, allow unknown
values, or default values. This data can all be read by an
application able to parse the input and then generate templates
taking it into account. Uniform templates can provide many
advantages.

Depending on implementation, code reuse is inherent to a
tiered architecture [1]. Consider the business needs of a
banking organization. It is possible that the bank designs their
systems for mobile customer access, ATM access, and access
via web interface. These applications all must perform similar
tasks, authenticating users, checking balances, and recording
transactions. It is possible that these applications could share
common modules providing access to mutual business and data
access layers. The by changing the user interface the code can
take on a completely new form. When a new technology
ultimately supplants web and mobile applications, the bank’s
developers need do nothing more than retool the presentation
layer. Similarly, when code is modified in the business logic
layer, it might be possible to replace that module across all
applications with little distribution or affect to the other layers.

IV. METHODS – TIER-GEN

 Tier-gen is an application written in C# that attempts to
transform Transact-SQL (T-SQL) DDL, specifically CREATE
TABLE statement’s into templates for a tiered architecture.
Executing the application will run the user through a series of
simple questions including: path to DDL script, connection
string parameters, what namespace output should be generated
in, and lastly the output type. There are two options for output,
just to generate C# classes, or to also generate a class library
DLL. The rough outline of the programs logic follows these
four steps: parse user input, create stored procedures and
GRANT EXECUTE statements for table access and
manipulation, create C# data access classes to call the stored
procedures, create C# business objects to represent the tables,
and finally create a base classes and generic abstractions. The
base classes and abstractions always generated are displayed in
Figure 1.

Figure 1: Base data access class and SQL connection

abstraction

514 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

A. Parsing DDL

The input script may contain a variety of T-SQL
statements, however, only CREATE TABLE statements will
be processed others are discarded. Since only create
statements are parsed, not all column attributes are if they are
passed as subsequent ALTER TABLE statements. That is, in
figure 2, the two samples would result in different output from
tier-gen.

For all practical purposes, the two samples will result in the
same structure. However, as tier-gen parses the script, the
ALTER TABLE statement is discarded.

Microsoft’s .Net framework provides an SQL parser that
was used for this process. The ScriptDom and ScriptDom.Sql
objects inside the Microsoft.Data.Schema namespace were
taken advantage of. This greatly simplified the process of
analyzing user input.

B. Output

The code for two objects is always generated as shown in
Figure 1. The class Conn is an abstraction that all data access
objects make use of. This class holds the connection string.
This is the only object in the project that actually integrates
with the database. The second object is BaseDAL with is the
class that all data access classes will derive.

1) SQL Script

Part of tier-gen’s output is in the form of an SQL script.
Five stored procedures are generated for each table in the
input. The following lists each procedures function: return all
tuples in the table, return one tuple based on a primary key,
insert a tuple, delete a tuple based on its primary key, and to
update a tuple based on its primary key. Before each
CREATE PROCEDURE statement is a check that will drop
any existing procedures with the computed name. One of the
parameters tier-gen prompts the user for is the username to use
in the connection string. This allows tier-gen to not only
embed a connection string, but generate GRANT EXECUTE
after each procedure. This has the potential to simplify the

developer or DBA’s job by providing explicit security settings
for the user account, or roll based access. That is, the user
defined in the connection string does not need the ability to
delete, drop or even select from a table, only execute a stored
procedure.

2) C# Classes

For each table in the input, two C# classes are generated.
The two classes will be named the table name followed by
DAL and the table name followed by BLL, for the data access
and business logic respectively.

The business logic is a shell that represents a single tuple
in the associated table. Each column is represented by two
parts, a private member and a public property. The SQL data
types are mapped to compatible data types in C#. Different
column attributes are taken into consideration such as if the
column allows nulls. If the column is nullable, then the data
type selected must allow nulls. With reference types, such as
strings, allowing null values is implicitly handled since null is
a valid state for a variable. With value types such as integer,
long and decimal this is not the case. An integer in C#, or
other value type, can never have the value null. However, a
nullable integer, or int? is a valid data type that allows the null
value. If a length was defined for a variable, such as a
VARCHAR, the setter for the corresponding property will
perform a check to verify that the value is within the bounds
of the field. If the value is outside the bounds an
ArgumentOutOfRangeException is thrown.

Two constructors for each business object are built. The
first is an empty default constructor waiting for information to
be added to it. The second constructor takes one parameter, a
DataRow from the System.Data namespace. It indexes the
DataRow by column name, assigning values to all the member
variables which are publicly accessible through the properties.

The data access files provide methods that make the
parameterized queries to the stored procedure. The UPDATE,
DELETE, and INSERT calls all accept a business object as a
parameter, and call the procedure using the data from the
business object. There are two SELECT methods made
available by the class, one to return a single object based on
the tables primary key, and a second that would return a
collection of business objects representing all rows in that
table.

Tier-gen is auto documenting. As the C# code is
generated, tier-gen does its best to use XML documentation to
explain the classes, methods, properties and members
generated. Since the applications output is C#, it is assumed
that the developers will be using some flavor of Visual Studio.
XML documentation integrates with Visual Studio to provide
IntelliSense integration [4]. This should aid developers who
are familiar with the SQL schema, but unfamiliar with tier-
gens output get started with a project.

/* Sample 1 */
CREATE TABLE Foo
(
 Bar INT NOT NULL IDENTITY,
 Val CHAR(1) NOT NULL
)

ALTER TABLE Foo
ADD CONSTRAINT FooPk PRIMARY KEY (Bar)

/* Sample 2 */
CREATE TABLE Foo
(
 Bar INT NOT NULL IDENTITY PRIMARY KEY,
 Val CHAR(1) NOT NULL
)

Figure 2: Example SQL DDL statements

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 515

3) Class Library

In addition to generating the C# libraries, the application
can also generate a dynamic-link library or DLL. The DLL is
the compiled C# classes. While this option does produce
working code there are notable drawbacks. When the classes
are compiled, the business logic layer is in effect sealed. It is
very unlikely that this layer should be sealed without
modifications, after all, this is where an organization or
projects custom business rules are supposed to be
implemented. However, it’s possible this feature could be
useful for extremely simple applications or proof of concept
templates.

Another reason a DLL is given as an output option is to
make the developer considers building a class library, instead
of directly embedding the class files in a project. There are
scenarios where multiple applications will use the same
database. For example, it is possible a mobile application will
need many of the same features as a web application,
connecting to the same database and same business rules. In
this case it might be possible to build a DLL contains these
database calls and business objects, effectively creating an
abstraction for both applications to use.

As the parser analyzes input, results are stored internally in
two object types; one class represents a SQL table and the
other a column. The table data type contains a collection of
columns. Each column has properties such as its name, SQL
data type, the corresponding C# data type, if it is part of a
primary key, if it is an identity field, if it allows nulls, and its
length, if applicable. For primitive C# data types such as
integers and decimals, when tier-gen converts the SQL data
type to a C# data type, it checks some of these properties such
as whether or not the field is nullable to select the correct data
type. That is, column defined as “VALUE INT NULL” in a
DDL statement should not be represented as an “int” in C#, but
an “int?” indicating that the value accepts null. This is not
needed for none primitive types such as strings, which will
accept null values by default.

V. RESULTS OF REASEARCH

Instead of analyzing the output by reviewing the code
produced by tier-gen, we decided to review how useful the
output was to make a simple sample application. This seemed
to be the most effective analysis the application, trial by fire. If
the programs output does not prove to decrease development
time with an academic application, it seems to reason that it
real world value would be very limited at best.

A. Airplane Reservation System

For test data a simplistic five table airplane reservation
system was used. The five entities provided included: airplane,
airport, passenger, flight, and reservation. Figure 3 provides an
abbreviated database diagram to show relationships between
the tables.

 All tables used in the sample schema include the identity
column attributes which is SQL Server’s auto numbering
mechanism [6]. While some of these columns might have
natural primary keys, such as RegistraionNumber in the
Airplane table, the use of identities is a simple way of forcing
the DBMS to maintain the unique row identifier [6]. While
this is not always the case, identities are used very frequently.
Researchers from Singapore and China evaluated nine PHP
and MySQL applications finding that 89.47% of tables made
use of MySQL’s AUTO_INCREMENT column attribute,
which is that DBMS’ auto numbering mechanism [5].

1) Preforming CRUD Operations

The .NET framework provides many features that allow
developers to make use of the output of tier-gen without
further extending it. Figure 4 provides an overview of the
class diagrams for the two classes generated to represent and
access the Airplane table. Recall that one object is generated
to represent the Airplane business object, AirplaneBLL and
another to represent the data access, AirplaneDAL.
AirplaneBLL has public members and properties for each of
the columns in the table. The class also has a default
constructor that is overloaded to also accept a DataRow object

Figure 3: Database diagram from the sample DDL statements

516 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

to populate the object’s members. The data access class is
derived from the BaseDAL class. It provides the same five
methods all DAL classes provide, to return a single
AirplaneBLL based on a primary key (Get), to return all
AirplaneBLL objects (GetAll), to insert a AirplaneBLL object
(Add), to delete a AirplaneBLL object (Remove), and to
modify a AirplaneBLL object (Update).

The .NET framework makes using the default methods and
objects very simple. As mentioned earlier, it is not unlikely
for a presentation layer call to reach the data access layer. In
ASP.NET, one of Microsoft’s web application frameworks,
the task is trivial, requiring only two controls, an
ObjectDataSource to point the application and the method
call, and a GridView or similar graphical control to display the
results. Figure 5 demonstrates a working example, both code
and the output, after adding the generated code to an
application.

Using the operations to update, delete, and insert data
require more code, but are still simple operations. Consider
adding a new airplane, this requires creating an AirplaneBLL
object, populating its properties and then passing it to
AirplaneDAL to be inserted into the database. Ignoring the
presentation layer controls, and assuming the method in figure
6 is fired after user input to the presentation controls has
completed, the code in figure 6 is able to perform this task.

2) Complex Joins

The CRUD operations performed by the generated code
are straight forward and simple to understand. However,
applications are rarely limited to such simple operations and
data displays. Consider the following tasks in SQL: filtering a
data set with a where clause, merging multiple data sets with
the JOIN keyword, viewing distinct values, and preforming
aggregate calculations. Listing how to perform an object
version of a corresponding SQL query is beyond the scope of
this document, but a simple example illustrating should
illustrate some of the possibilities. For the example consider
the following SQL query:

The query is preforming joins across each table in the
database, using the airport table twice for destination and
departure airports. Selection is used to limit the columns
returned in the results. Finally @value is used to signify that
the flight number is a variable that filters what flight’s roster is
shown. The same results can be retrieved from the tier-gen
output, without modification. Starting with version 3.5 of
Microsoft’s .NET Framework, the Language Integrated Query
or LINQ was included. One of LINQ’s many features is
preforming SQL like query expressions on enumerable
datasets. The example in figure 8 demonstrates how a
developer could produce a similar output as the previous
figure, without modifying tier-gen’s output.

VI. EVALUATION AND LIMITATION OF TEMPLATES

There is a great deal of work that could be done
experimenting with DDL statements with non-auto numbering
primary keys, foreign keys, and also tables without primary
keys. tier-gen targets applications with identity fields as the
primary key, the usefulness of the templates was not evaluated
with natural primary keys. Additionally, experimentation was
not done on tables without primary keys, it is likely that these
tables would not produce useful, or even possibly useable code.

Figure 4: Example class diagrams for the AirplaneBLL

and AirplaneDAL objects.

<asp:GridView runat="server" ID="airplanegridview"
DataSourceID="AirplaneObjectDataSource" />
<asp:ObjectDataSource ID="AirplaneObjectDataSource" runat="server"
TypeName="Test.AirplaneDAL" SelectMethod="GetAll">
</asp:ObjectDataSource>

Figure 5: Code and example view from sample database.

/// <summary>
/// User wants to add an airplane
/// </summary>
protected void AddPlane_Click(object sender, EventArgs e)
{
 var plane = new Test.AirplaneBLL() {
 Capacity = Convert.ToInt32(CapacityTextBox.Text),
 Model = ModelTextBox.Text,
 RegistrationNumber = RegistrationNumberTextBox.Text
 };
 using (var db = new Test.AirplaneDAL())
 db.Add(plane);
}

Figure 6: Code sample populating an AirplaneBLL and

passing it to the AirplaneDAL class

SELECT AD.Code, DepatureTime, AA.Code, ArrivalTime, Name, Email,
DateOfBirth, Phone
FROM Flight AS F
INNER JOIN Reservation AS R ON F.FlightId = R.FlightId
INNER JOIN Passenger AS P ON R.PassengerId = P.PassengerId
INNER JOIN Airport AS AD ON F.ArrivalAirportId = AD.AirportId
INNER JOIN Airport AS AA ON F.ArrivalAirportId = AA.AirportId
INNER JOIN Airplane AS A ON F.AirplaneId = A.AirplaneId
WHERE FlightNumber = @value

Figure 7: Sample SQL JOIN for the sample schema

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 517

The easy way out was taken with foreign key enforcement as
well, leaving the enforcement to the DBMS to handle. While
this is a valid solution, it could be worked into the business
logic as well. That is, a setter in a business object that
represents a foreign key could check to verify that the primary
key exits.

Researching other methods of handling foreign keys does
not end at referential integrity. In the sample application, the
business class representing Reservation contained three values,
all integers, even though two values were foreign keys, one
representing a flight, the other representing a passenger. While
this is the most straightforward method to automate these
classes, it might not be the most useful output for the developer
to consume. For example, the ReservationBLL object tier-gen
generated could include an integer to represent its own primary
key, and then replace the other two integers with a
PassengerBLL and FlightBLL objects.

Recall tier-gen’s input and part of its output is T-SQL, a
SQL extension language that is proprietary to Microsoft SQL
Server. No provisions are made for handling other SQL
extensions such as PL-SQL. The output SQL script contains
CREATE PROCEDURE statements that are untested with
other RDMSs other than Microsoft SQL. Many organizations
expect applications to be portable from one platform to
another, despite the fact that this is a rare occurrence [1].
There are multiple options to solve this problem, everything
from writing a custom SQL parser, to integrating with an open
source or commercial .NET SQL parser, both which are readily
available. Some of the open source libraries available for SQL
parsing require extensive grammars to be written, which is on
reason they were not used during implementation.

The scalability of the application is concerning, especially
if the DAL templates are not expanded and the DLL is used.
Consider SQL joins. It is possible to produce results similar to
joins using collection of the business objects and Microsoft
LINQ.

There are further concerns about the applications
scalability. In the sample applications used to test tier-gen has
one characteristic in common, they dealt with small datasets.

In the real world this is often impractical. It is likely that out of
the box the DLL produced by tier-gen would perform
extremely poorly with large dataset. The main reason the
application would scale so poorly can be seen in the sample
applications example using LINQ. This example requires all
the data in each table to be pulled to the device the application
is running from. Consider a web application where it is
common for a server to act as an application server while
another server acts as a database server. In this case the
application server would have to request the full table for each
table involved in the join be transmitted. Not only does this
have a high bandwidth cost and high CPU cost for the
application server, it stops the database from preforming a task
it has been optimized for. It would be worth investing time in
to stress test the application, finding out how much data was
too much for the generated classes to handle without
modification.

Keyword identification has also been neglected. Recall that
tier-gen will create a member and property for each column in
in an input table. It is possible that the code that has generated
conflicts with a C# reserved word. That is, consider a table
student that has a column class. This would generate a
property named class inside the studentBLL object, resulting in
invalid code due to the conflict between the class property and
the C# reserved word class.

VII. CONCLUSIONS AND FURTHER STUDY

There are many short comings that tier-gen suffers from as
outlined in the previous example. Additionally, further
research should be done in both the areas of foreign key
representation, natural primary keys, and large datasets. The
project is Microsoft centric. The application must be run on a
Microsoft operating system with particular libraries, in addition
to those provided by default in .Net, for the SQL parsing. If
during the code conversion process a table or column is named
with a C# reserved word, the output code will not compile and
a DLL will not be generated.

Tier-gen is not a complete project, and is far from being
ready to work on large scale systems. A full evaluation of the
usefulness of these templates would likely span a semester.
More time and effort is needed to implement other features and
to test which design tradeoffs. However, tier-gen did provide a
simple framework for working with small applications. The
following aspects would be interesting to further investigate:

 Can this technique be used with architectures other
than a multi-tiered architecture?

 Is it possible to address the shortcomings listed in the
templates evaluation?

REFERENCES

[1] Fowler, M. (2003). Patterns of Enterprise Application Architecture.
Addison-Wesley Professional

[2] Anderson, E. B. (1998). The Tracks of My Tiers. ENT, vol. 3 iss. 3, pp.
22.

[3] Day, J. (1983). The OSI reference model. Proceedings of the IEEE, vol.
71. Iss 12, 1334-1340.

[4] Randolph, N. David, G. Anderson, C. Minutillo, M. (2010). Professional
Visual Stuido 2010. Wiley

var results =
from f in (new FlightDAL()).GetAll()
join r in (new ReservationDAL()).GetAll() on f.FlightId equals
r.FlightId
join p in (new PassengerDAL()).GetAll() on r.PassengerId equals
p.PassengerId
join ad in (new AirportDAL()).GetAll() on f.DepartureAirportId equals
ad.AirportId
join aa in (new AirportDAL()).GetAll() on f.ArrivalAirportId equals
aa.AirportId
join a in (new AirplaneDAL()).GetAll() on f.AirplaneId equals
a.AirplaneId
where f.FlightNumber == SearchTextBox.Text
select new
{
 Leaving = ad.Code,
 DepartureTime = f.DepatureTime,
 Arriving = aa.Code,
 ArrivalTime = f.ArrivalTime,
 Name = p.Name,
 Email = p.Email,
 DOB = p.DateOfBirth,
 Phone = p.Phone
};

Figure 8: Example of using LINQ to preform SQL like

queries on tier-gen’s enumerable datasets.

518 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

[5] Zhang, H., Tan, H., Zhang, L., Lin, X., Wang, X., Zhang, C., Mei, H.,
(2011). Checking enforcement of integrity constraints in database
applications based on code patterns. Journal of Systems and Software,
vol 84, iss 12, 2253-2264

[6] Ben-Gan, I. (2005). Should I use identity or not? Sometimes another
approach works better. SQL Server Magazine, vol 7, iss 12, 30

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 519

The Proposal of Smart Phone Camera Application Which
Realize a Person's Super Deformation

Hideaki Hashimoto , Takayuki Fujimoto

Graduate School of Engineering, Toyo University
Kujirai2100, Kawagoe-City, Saitama, Japan

s36d01210025@toyo.jp, me@fujimotokyo.com

Abstract – Today, Japanese animation is a digital contents
which represents Japan, and it become worldwide that me
really proud of. Also, Print Club (Purikura), the picture-
taking machine which you could add some hand drawing or
grafttii, and “unique effect camera app” become really
popular in Japan. So we know there are some market of add-
effect picture. In this paper, we propose the camera app
which makes two heads high picture of person as a effect. By
this system, you could take two heads high picture pretty easy
without using any special systems.

Keywords: Smart phone, Camera application, Image
processing, Super deformation,

1 Introduction
 In resent years, Japanese anime and the word “Kawaii”
Really pointed out as culture. Because of this, we changed our
mind anime for entertainment and we really proud as
Japanese representative culture. Popularity of anime have the
factor of not only by interesting story. The other factor is the
Super deform character, chibi chara. Chibi chara iis tow heads
high character and it really influenced to anime. Also, “Print
Club”, the picture-taking machine which you could draw
some grafitti, and adding-effect apps become popular because
you could make any effect on your picture. In addition,
because of SNS become really popular, users wanted to use
their picture as icon, but they don’t want some one realize
who is the person in the picture. We know there is amarket. In
this paper, we propose the camera apps which make two head
high character picture by adding deform effect to your picture.
By this system, you could easily make Cibi chara picture by
only using one camera apps.

2 Purpose
 Purpose for this paper is propose of camera apps which you
could easily make two head high picture by only taking a
picture. It is not difficult system as exist image treatment
applications. It is a smart phone apps.

3 Background
3.1 What is Chibi chara
 Chibi chara is the character which drawed by Super deform
and usually two heads high. Japanese animator, Gen Sato,
said Chibi chara is shrinked to twenty-four heads high by
exaggerated expression. In general, people thinks SD series
(BANDAI) is the beginning Gundam, the giaut machine
anime, was maded for realistic figures so they couldn’t
develop market except realistic figures and DVDs. However
they put Gundam into Doraemon, humor two head high
anime, and it success because Doraemon spread support from
5th graders or up to kids or up. Cute two head high characters
also spred support from teenager girls. Again, using of Chibi
chara is not only for anime or comics. It appered in
commercial, ar ads, for apply uses.

Figure 1. Chibi chara

Source : http://upload.wikimedia.org/wikipedia/commons/

520 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

Figure 2. SD (Super deform) Gundam

Source : http://userdisk.webry.biglobe.ne.jp

3.2 What is deform
 Deform means transform realistic picture or paiintings to
different touch drawings and shows you different expression.
This word come from Freach, but this word doesn’t have a
mean simplify or exaggerate. Comics or anime, caricature,
and recent arts are world wide expressing technique, but
because of tequnique is incomplete, if the drawing doesn’t
balanced, it couldn’t accept as deformed. Only intentionally
works are called deform. Egypt’s wall painting is good
example. Compare to real human body, the paintings are
ridiculous, but the paintings are intentionally. In the other
hands, Pablo Picasso leave his deform painting.

3.3 What is Avatar
 In computing, an avatar is the graphical representation of the
user or the user's alter ego or character. It may take either a
three-dimensional form, as in games or virtual worlds, or a
two-dimensional form as an icon in Internet forums and other
online communities. It can also refer to a text construct found
on early systems such as MUDs. It is an object representing
the user. The term "avatar" can also refer to the personality
connected with the screen name, or handle, of an Internet user.

4 Mechanism of a system
4.1 Abstract of system
	 The mechanism of this system is explained in full detail
below.

① A photographic subject is photoed in blaubok.

Figure 3. A photograph is taken by blaubok.

② The position of a photographic subject's neck is specified.

Figure 4. Position setup

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 521

③ A scale change of the ratio of the head and the body is
made.

Figure 5. Scale change

④ Finished super deform character

Figure 6. Completion image

	
 4.2 Validity

 Now, many camera applications exist. However, the most
adds what changes a color tone, and a frame. This system
divides a screen into two, the upper part and the lower part,
and changes the magnification of size automatically for every

area. The existing smart phone application does not exist but
it can be said that this research is fresh. Moreover, since it is
called smart phone application, a display cannot say that
operation is easy in the small existing graphics editing
application. Furthermore, since a smart phone is familiar and
cheaper than a common computer, many younger age groups
own. It can be said that this system by which a user with little
knowledge of IT can also give super deformation processing
of a person easily with feeling which uses a camera function
also has validity.

5 Consideration
	 In this research, the person was photoed and the smart
phone camera application which can be easily formed into an
anime character (formation of the two-animal body) was
proposed.

In the middle of development, for a certain reason, much
more research and development will be furthered towards
utilization from now on, and it is considered now that whether
there is any sense of incongruity in the ratio after a feeling of
use and processing would like to solve the problem which
arose. In the existing smart phone camera application, there is
nothing that the two-animal body makes form into an anime
character the person who took a photograph, and it can be
said that this system is fresh.

 Moreover, unlike the existing graphics editing application,
since it is automatic processing with camera application,
everyone can do super deformation processing of a person
easily. Therefore, it is thought that this research has validity
and is in demand.

6 Associated research
As related application "HENGAO camera ", "Stretch Cam", a
"comics camera", etc. exist. "although not passed, the camera
" has the center line which divides the right and left of a
screen, and it unites with the center of the face of the person
who photos this line, and displays 2 par turn of the face which
combined only the left-hand side of the face after photography,
and the face which combined only right-hand side. Thereby,
right-and-left asymmetry of man's face is made intelligible,
and the difference in an impression is enjoyed. The step and
the usage of photography are close to this system. After taking
a photograph of "Stretch Cam" like fundamental camera
application, it chooses the range of a photograph and makes
every direction of a photograph expand and contract by pinch
out [with a finger / pinch in and]. After a "comics camera"
chooses the frame containing a comment, it can be photoed,
and also it gives an effect to the taken photograph, and
becomes a result like comics of Japan. Although such camera
applications which process it like exist mostly, the application
which carries out super deformation processing of the person
like this research does not exist. And it can be said that this
research is fresh. [making a person form into an anime

522 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

character easily with smart phone camera application] [no
one but / this / research]

7 Conclusion
In this research, research was advanced on the theme of "the
proposal of smart phone camera application which realizes a
person's super deformation (wearing out character-izing).
Moreover, it is because it thought that the smart phone camera
application with which there are many users using what SNS
had spread in recent years and gave effect processing to the
icon picture with an own portrait, a comics camera, etc., and
they make a person form into an anime character was in
demand.

8 References
[1] G. SATOU, “Chibi chara no egaki kata jinbutu hen”,
Graphics sya, 2003-8

[2] G. SATOU, “Chibi chara no egaki kata doubutu/mono
hen”, Graphics sya, 2003-8

[3] “Asahi key word, 1990-4, Asahi shinnbun sya

[4] Nikkei business, 1992-7-13, Nikkei BP sya

[5] K. OOTANI, R. KASHIWAZAKI, A.TAKAI, Y. TAKAI,

 “Anime ni okeru jinnbutu kao gazou no moe innshi

 tokutyou hyouka to kennsaku bunrui system” ‘Eizou

 media’, 113-118, 2010-2-15

 	

	

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 523

An Interface Generator For Customizable Fuzzy
 Expert System

Tongjun Ruan, Robert Balch
Reservoir Evaluation and Advanced Computational Technologies Group

Petroleum Recovery Research Center of New Mexico Tech.

801 Leroy Pl, Socorro, New Mexico 87801

Abstract- The Interface Generator is a tool

which allows user to define an interface by input

some information and generates the data input

interface for defined fuzzy expert system. Testing

shows that it can successfully accept and store

interface definitions from users and dynamically

generate the data input interface for defined

fuzzy expert system.

Key words: Interface Generator, Interface

definition and Fuzzy Expert System

1. Introduction

 REACT group started a new project in

January, 2005 to create a user definable and

customizable fuzzy expert system tool

(CFES)[1] to dramatically speed local and

regional play analysis and to reduce subsequent

drilling risk. In the previous projects, Risk

Reduction with Fuzzy Expert Exploration Tool

(FEE Tool)[2,3], the users were only able to

input the location information and information

about the prospect, while all the rules, the fuzzy

membership type used, the number of fuzzy sets,

and so on have already been defined in the

system and are not changeable to users. The goal

of the new project is to develop a more

customizable expert system, in which the users

without computer science background will be

able to define/adjust the system including the

variables, the rules and the fuzzy sets used in the

inference engine. Hence, the expert system will

be more individualized and fit the needs of

different users better.

 In the customizable fuzzy expert system,

since the user can define a new Fuzzy Expert

System similar to FEE Tool and add or reduce or

modify the variables of the system, the data input

interface should be automatically changed to

reflect the changed variables of the defined

system. Interface Generator was designed to

implement the functions.

2. System architecture

 The Interface Generator consists of three

major modules. They are storage module,

question definition module and interface

generation module. Below figure, figure 1, is the

architecture for the interface generator.

 The storage module includes binary file,

binary input/output engine and question/group

management sub-module. A binary file is

utilized to store the definition of the interface.

Binary I/O engine is a set of read and write

procedures created to operate binary file to load

or save question records. The question/group

management groups the questions to groups. It

also provides the functions to create, update and

delete questions and groups.

Figure 1. Three dish lined rectangles represent

the three major modules of the system. The right

table shows the corresponding source files for

each module.

Binary file

Binary I/O Engine

Question/Group

Management

Interface
Generation
Module

Storage Module

Question
Definition
Module

User

Definition

input

handler

Real-time

question

reviewer

Group

reviewer

Interface

designer

Interface

generator

524 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 Question definition module accepts the inputs

from users and provides the corresponding

reviewers. Definition input handler sub-module

handles the user inputs and sends the update

message to real-time question reviewer sub-

module, which adjusts the dynamic interface

reviewer in real-time. To review a group

interface, group reviewer sub-module is

implemented.

 Interface generation module creates the final

interface by the information from question/group

management sub-module. For each group,

interface designer calculates the display heights

of all questions. The accumulation of the heights

is calculated to design how many pages are

required to display all the questions in that

group. Then the locations are calculated for all

questions. Interface generator sub-module then

creates the multiple tabs (an example is shown in

figure 2), which contain all the questions in all

groups.

3. Interface Definition

 The graphic user interface could be very

various. We focus on a ‘question-answer’

structure, which is used by the previous project

(FEET).

 The “question-answer” structure consists of

following terms:

 Group----- a system may have several

groups

 Step ------a group may have several steps

 Step title---question name

 question body---state the question

 variable name----user defined variable

 component type--------provide components

(radio button, List and/or Numerical field,

etc) to let user input the their answers

 unit --------------the unit of variable value,

like “ft”, “ %”, etc.

 Fig. 2. shows FEET interface for data input.

There are three groups: Trap, Formation and

Regional assessments.

 Question definition module visualizes the

active question data from question/group

management sub-module. It processes the user

requirements and adjusts the dynamic interface

reviewer in the real time. This module includes

input process, real time question reviewer and

group reviewer sub-modules.

 Figure 2. a ‘question-answer’ interface from

FEET.

 Input process sub-module accepts, validates the

user inputs and creates a record data for the

current active question. The inputs are question

title, question description, unit, GUI component

parameter and GUI component ID. The first

three are the normal string inputs, which is

collected from text fields or text area. The GUI

component ID is collected from a combo box.

Currently the system supports three types of

answers for the question. They are :

1. text field,

2. radio button group

3. combo box.

 GUI parameter is a comma separated string,

which specifies the labels of GUI object.

 This sub-module is also responsible for

informing the real-time reviewer sub-module to

update the reviewer based on the modification

given by user. An example of real-time reviewer

updating is shown in figure 3.

Input interface Real-time reviewer

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 525

Input interface Real-time reviewer

Figure 3. An example of real-time reviewer

update.

 This example shows that user changes the

GUI opponent ID from radio button to combo

box, at the same time the corresponding updating

is rendered to the real-time reviewer. Moreover,

even a single character modification would be

reflected in the reviewer.

 Since the input process sub-module and the

real-time reviewer sub-module are implemented

in two separated panels, the special event

handling processes are designed to achieve

communication between them. The user input

actions are collected in input process panel by

implementing the system event listeners, which

include keyboard listener and combo box

listener. Since the events are not transparent

between panels, reviewer panel can not be

notified by listener the system events. To notify

reviewer panel the modifications on real-time, an

update event is defined. This event is generated

and broadcasted out from the input process panel

when the validated modification is accepted. A

special event listener is implemented in the

reviewer panel to accept the update event and to

notify reviewer to update. (see fig. 4)

Figure 4. Event handling for the question

definition module, where keyboard and mouse

events are system defined events, update event is

user defined event.

 Group reviewer sub-module shows the

reviewer for all the questions in one group. It is a

combination of question reviewers.

4. Interface Generation

 The interface generated from the group list is a

dialog with multiple tabs. Each tab shows a

question group. There can be an undefined

number of questions in a group, so displaying

them within one fixed size window is not always

possible. In this case, questions can be

distributed in a set of grouped windows. Since

the questions in a group constantly update as

dynamic GUI component, dimension calculation

and alignment algorithms were designed to

achieve optimal window sizes, based on the

computed sized of the question box and set them

in corresponding positions by distributing them

across virtual pages.

 Figure 5 shows the screen shots of an

example of a tab designed and generated by

interface generating module.

Figure 5. A tab containing multiple visual pages.

 The algorithm to distribute questions to

visual page groups (VPGs) is shown in below

pseudo code:

Input

process

panel

Reviewer

panel

Keyboa

rd

listener

Combo

box

listener

Keyboa

rd

events

Combo

box

events

Update event

generator

Update

event

listener

Integrating

panel

526 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 The algorithm is achieved by function

QuestionDistribution, which takes questions in a

group and the expected dimension of tab as

inputs, has visual page groups as output. The

basic idea of the algorithm is to place the

questions within a rectangle specified by tab

dimension, and monitor the increase of the

height. If an overflow happens, a new VPG is

created to hold the new questions and the

question causes the overflow.

 A function was also designed, calheight in

above pseudo code, to dynamically calculate a

height of a question. The height of a question

depends on the tab width and the question

specification, which includes the question title,

question description and the type of answers of

that question. Function calheight calculates the

total height required to display all the

components of the question, at the same time

sets the local offsets for each component. The

function was implemented largely based on the

function getPreferredSize of JAVA AWT

component.

 After questions of a group are distributed to

VPGs, the corresponding offsets should be

assigned to the questions according to the VPGs

id. For each question in VPG(i) the offset is

calculated and set as:

Offset(i) = XMargin + tabwidth × i,

YOffset(i) = YMargin, where XMargin and

YMargin are the margins in both directions, see

figure 6.

Figure 6. An example of distributing

question in visual pages. Each visual page

shows only questions in corresponding VPG.

The objects within the green rectangle

including the rectangle are a tab page

visible to user each time.

 When a tab for a group is displayed, a current

visual page ID, id, is stored. Based on id,

interface generator sub-module finds the

questions in VPG(id), and displays them in the

tab. Moreover, in order to page among visual

pages, the visibilities of two buttons are also

carefully controlled. If the id equals one, only the

‘next’ button should be visible. If the id equals

the number of VPGs, only the ‘previous’ button

should be visible. Otherwise, both buttons are

visible.

 After set positions of the visible GUI

components, interface generator sub-module

defines the event handling process for each

component. For example, the clicking of the next

button should increase the id, and it makes the

next visual page active. On the contrast, the

clicking of the ‘previous’ button leads previous

visual page active.

5. Data storage module

VPG QuestionDistribution(group, tabheight, tabwidth){

accumulateheight = 0;

initialize the first element of VPGs;

for each question(i) in group {

if (0 == accumulateheight) {

add question(i) to current VPG;

} else {

curheight = calheight(question(i),

tabwidth);

accumulateheight += curheight;

if (accumulateheight <= tabheight) {

 add question(i) to current VPG;

} else {

 new a VPG

 add question(i) to the new VPG;

 accumulateheight = curheight;

}

}

}

}

Ne

Ne Prev

Prev

Ne Prev

Ne Prev

Ne

Ne

Prev

Prev

Inp

ut 1

Inp

ut 2

Inp

ut 3

Inp

ut 1

Inp

Inp

ut 3

Inp

ut
1

2

3

Inp

ut 1

Inp

ut 2

Inp

ut 3

Inp

ut 1

Inp

Inp

ut 3

Inp

Inp

ut 2

Inp

ut 3

Inp

Inp

ut 2

Inp

ut 3

Inp

ut
1

2

3

Inp 1

2

3

YMar

gin

XMar

gin Tab Width

Tab

Heig

ht

Visual page 1

is visible

Visual page 2

is visible

Visual page 3

is visible

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 527

 Binary I/O engine is a set of binary read and

write procedures, which includes

readChar, readString, readShort, readInt,

readLong, readFloat, readDouble and writeChar,

writeString, writeShort, writeInt, writeLong,

writeFloat, writeDouble. Using these I/O

operations by following the protocol predefined,

the binary code is loaded and converted into a set

of question records, an example of such question

record is shown below:

{“Trap Assessment”,

 “Step 5. Structural strike analysis”,

 “ Structural strike analysis of the structure

surrounding your prospect. Indicate whether or

not the prospect is on structural strike. Click here

to view a pop-up map or use your own prospect

is on structural strike”,

“2” ,

“Yes, No, Unable to Verify/ Don't use in

Analysis”,

“”

}.

 The question record includes the following

attributes: group name, question title, question

body, GUI component id, and GUI component

parameter list and unit description. The example

of such record is shown in figure 3.b. In this

example, the group name is “Trap Assessment”,

the question title is “Step 5. Structural strike

analysis”, the question body is “Step 5.

Structural strike analysis...”, GUI id is 2, which

means it is a radio button group, the GUI

parameters are “Yes, No, Unable to Verify/

Don't use in Analysis “, which decides the

descriptions of radio buttons, and unit is empty.

 Figure 7 shows the corresponding GUI for that

question.
 The question record includes the following

attributes: group name, question title, question

body, GUI component id, and GUI component

Figure 7. Corresponding GUI for that

question

 The question record includes the following

attributes: group name, question title, question

body, GUI component id, and GUI component

parameter list and unit description. The example

of such record is shown in figure 3. In this

example, the group name is “Trap Assessment”,

the question title is “Step 5. Structural strike

analysis”, the question body is “Step 5.

Structural strike analysis...”, GUI id is 2, which

means it is a radio button group, the GUI

parameters are “Yes, No, Unable to Verify/

Don't use in Analysis “, which decides the

descriptions of radio buttons, and unit is empty.

Fig 8. The functions of question/group

management sub-module. Group operations:

New, Open, Save, Delete. Question operations:

New, Open, Save, Delete.

 By using the ‘group name’ and ‘question title’

the question/group management sub-module

groups the questions in groups. It also provides

user the functions to create, update and delete

questions and groups. The basic functions of

question/group management sub-module are

shown in figure 8.

 “New group” and “Open group” operations

make an active group, on which three operations

can be performed. ‘New question’ and ‘Open

question’ operations create or open an active

question of the current active group. An active

question is the input of the question definition

module.

Question/Group

Management

module

Record

list

Delete

group

New

group
Open

group

Active

group

Open

question

Save

question
New

question

Active

question

Save

group

Delete

question

528 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

 6. Test Result

 When the initial functions of Customizable

Fuzzy Expert System were implemented, we

tried to define and implement Delaware FEE

tool, [2,3] .

Totally, three groups, 5 pages and 17 questions

were defined using the interface definition

module presented above.

Figure 9. Generated Interface

 Figure 9. shows the generated interface.

Input values in the interface will be saved into a

file. Since the number of variable and names are

changeable, the file will store the variable

definition defined by user and the value, i.e.

{variable definition, value}. The inference

engine accesses them by the variable name and

inference based on these values.

7. Conclusion

 The Interface Generator was design and

implemented based on the frame of FEE Tool

interface[2,3].

 It consists of three modules: Interface

Definition, interface generation and Storage.

Interface definition module dynamically

generates one step interface to let user review the

defined interface during defining the step.

 Data storage module provides the function of

data management, which follows the protocol

predefined. Question record was designed as an

element exchange between Data storage module

and other modules.

 Interface generation module generates a

combined tabbed pane. Each group will be put

into one tab. The number of pages will be

automatically decided by the number of steps

and the size of each step.

 The interface generator has been written in

Java. Testing shows that this tool can

successfully accept and store interface

definitions from users and can dynamically

generate an interface for an expert system based

on the questions defined by a user.

Reference :

[1] R.S. Balch, R.F. Broadhead, and T. Ruan, A

Customizable Fuzzy Expert System for Regional

and Local Play Analysis , First Annual Report to

the Department of Energy, 2007.

[2] Ruan, T., Balch, R.S., and Schrader, S.M.:

“A Fuzzy Expert System for Oil Prospecting in

the Lower Brushy Canyon of SE New Mexico”,

IEEE International Conference on Information

Reuse and Integration, Las Vegas, NV August

15-17,2005.

[3] R.S. Balch, R.F. Broadhead, and T. Ruan,

Risk Reduction with a Fuzzy Expert Exploration

Tool, Fifth Annual Report to the Department of

Energy, 2004.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 529

Lessons Learned: Porting Java Applications to Android

G. Hsieh, D. Paruchuri, C. Steward, E. Nwafor and D. Gadam

Department of Computer Science, Norfolk State University, Norfolk, Virginia, USA

ghsieh@nsu.edu, [d.paruchuri, c.c.steward, e.c.nwafor, d.gadam]@spartans.nsu.edu

Abstract – Android has become the world’s most popular

mobile platform. It provides a very powerful Android

runtime and application framework that enable application

developers to efficiently create innovative and feature-rich

apps in Java. This attribute is very attractive to application

developers who are familiar with Java and who may wish to

port some existing Java applications to Android. However,

there are significant differences between Android’s Java and

the Java SE environments. In addition, Android apps need to

be designed and implemented with more care in order to

meet the more stringent resource and performance

constraints for mobile devices than those assumed for the

Java SE environment. As a result, porting non-trivial Java

applications from the SE to Android environments may not

be as easy and straightforward as one may assume. In this

paper, we discuss our experiences and lessons learned in

our efforts to port two Java-based applications/systems -

each utilizing an extensive set of open-source Java libraries

- to Android from the SE environment.

Keywords: Android, Java, application porting.

1 Introduction

Android has become the world’s most popular mobile

platform [1]. It has gained widespread acceptance since the

announcement of the Open Handset Alliance in late 2007

[2]. Seeing a tremendous growth of internet usage and

search in mobile devices, Google acquired Android, Inc. in

2005.

Android powers hundreds of millions of mobile

devices in more than 190 countries around the world. It's the

largest installed base and fastest growing of any mobile

platform [3]. There are more than one hundred different

makes of Android devices on the market currently,

including smartphones and tablets, from more than fifteen

manufacturers worldwide [1].

Android is also an open-source platform optimized for

mobile devices. It is made available through the Android

Open Source Project (AOSP) [4] which is led by Google,

Inc. Android builds on the open-source Linux kernel, and its

openness has made it very attractive for consumers and

developers alike.

In addition, Android truly is a complete stack, from

boot loader, device drivers, and libraries, to software APIs,

included applications, and SDK [5]. Figure 1 shows the

system architecture for the Android platform [6].

Figure 1. Android platform architecture

Android applications are typically written in Java. The

application framework provides a tightly integrated part of

the platform SDK and APIs that allow for high-level

interaction with the system from within applications (e.g.,

accessing network data) [5]. Beneath the application

framework is the middleware layer which contains the

Android runtime and system libraries.

Android’s runtime environment is similar to the Java

runtime environment (JRE) provided by Sun/Oracle. First, it

provides a core library which bundles all classes that are

part of the specific Java platform, including language

utilities, networking, concurrency, etc. Second, the runtime

environment provides a Java virtual machine (JVM), called

Dalvik, for running Java applications [5].

Android’s integrated support for Java application

development and deployment makes it very attractive to

application developers, especially those who are familiar

with Java and who may wish to port some existing Java

applications from the SE to Android environments.

However, it is important to note that Android’s Java is

not equal to Sun/Oracle’s Java SE. First, Android’s core

libraries do not bundle the same packages as in Java SE.

Second, Dalvik is a JVM optimized for mobile platforms

which accepts a different bytecode called Dalvik executable

(Dex). This requires that the regular Java bytecode produced

by a standard Java compiler needs to be translated into Dex

530 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

code in advance such that the latter can be executed by

Dalvik VM on Android.

These two major differences can have varying degrees

of impact when attempting to port existing Java applications

from Java SE to Android environments. Some may be able

to reuse many existing Java libraries with Android

applications while the bytecode translation is merely a

procedural issue that is automatically taken care of by

Android SDK.

On the other hand, porting of more complex and larger

scale applications may not be as easy and straightforward

due to these two major differences in the Java platforms.

There are also additional Java language/API-level

differences which require the modification of Java

application code. For example, the entry point to a Java

program on Java SE is its main() method, while an Android

app is not allowed to have a main() method. Another

example is that Android does not support the AWT or

Swing widget toolkits that are standard in Java SE for

developing graphical user interfaces in Java.

Furthermore, Android apps need to be designed and

implemented with more care in order to meet the more

stringent resource and performance constraints for mobile

devices than those assumed for the Java SE environment.

For example, the application may need to be restructured or

optimized in order to reduce the memory and storage

requirements, or to improve the response time by

performing tasks asynchronously.

Hence, porting of complex and larger scale Java

applications/libraries from Java SE to Android environments

can be very challenging. In some situations, it can be too

difficult or impossible without major redevelopment, and

thus it no longer qualifies as a “porting” effort.

In this paper, we present our experiences and lessons

learned in our efforts to port two non-trivial Java

applications (libraries) from Java SE to Android

environments, hoping to invite more systematic and

comprehensive discussion and information sharing among

software engineering professionals on this interesting topic

of “to port, or not to port”.

Both of our efforts are related to the self-protecting

security framework research program which began in 2005

at Norfolk State University [7] [8] [9] [10] [11] [12]. The

fundamental concept underlying this framework approach is

the use of a variety of XML-based open standards that are

commonly used for web services security [13], including

eXensible Access Control Markup Language (XACML)

[14] for expressing access control policies.

This self-protecting security framework approach can

be applied in a general-purpose fashion by using XACML

as the container for all related information. Or it can be

applied in a domain-specific fashion to use an open XML-

based standard, such as Clinical Document Architecture

(CDA) [15] for electronic health/healthcare information, as

the container for all related information.

For experimentation and demonstration purposes, we

have continued to develop prototype software for the self-

protecting security frameworks [7] [9] [16] [17]. Our

prototype software is written primarily in Java and it

involves extensive processing of XML documents.

One of our objectives is to provide similar self-

protecting security for apps and documents on Android. Our

first effort was centered on the open-source XACML Java

libraries, both Version 1.2 and 2.0, implemented by

Sun/Oracle [18]. We successfully ported, after some

difficulty, the Version 1.2 of Sun’s XACML Java library

which has been used for our prototype software on Java SE.

However, we abandoned porting the Version 2.0 after

running into so many problems.

Our second effort began with the open-source Model-

Driven Health Tools (MDHT) Runtime Jars for Java

(Release 1.0) [19], which has been used for developing our

initial prototype Personal Health Record (PHR) application

for the Java SE environment [16]. We successfully ported,

after a period of trial and error, a subset of the Jars to meet

the needs for our PHR application. Equipped with the ported

MDHT Runtime Jars, we next attempted to port our PHR

Java application code to Android. Due to the reasons

mentioned above, we ended up practically redeveloping the

PHR application as a native-architecture Android app

throughout [17].

 The remainder of the paper is organized as follows. In

Section 2 we provide an overview of Android’s Java

application architecture and runtime environment, focusing

on the implications for porting Java apps. In Section 3 we

discuss the activities, results, and experiences in our case

studies of porting efforts. In section 4 we conclude the paper

with a summary.

2 Android Java

 In this section, we discuss some of the most common

and important factors affecting the degree of reuse of

existing Java libraries or applications for Android. These

factors include the Android core libraries and Dalvik VM

which combine to form the Android Runtime, and the

structure and performance considerations for Android apps

which affect the scope of restructuring of Java application

code.

2.1 Android Core Libraries

Android’s Java core library implementation is based

on Apache Harmony [20] which is an open source Java SE

implementation by the Apache Software Foundation.

Although Harmony is the basis for Android’s core Java

library, they are not exactly the same.

The Android core library implementation includes only

those Harmony packages that are useful for Android mobile

devices. It also includes Android-specific implementation of

Java SE, replacing comparable packages in Harmony.

As a result, not all of Java SE runtime library is

implemented in Android. The degree of potential reuse of

existing Java apps or libraries is significantly determined by

what is supported, partially supported, or not supported at

all by Android’s core Java library.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 531

One obvious example is the user interface toolkits.

Android provides its own user interface components that are

optimized for mobile devices, and does not support AWT or

Swing which are considered the standard user interface

components for desktops. Thus, an existing Java SE app

which uses AWT or Swing will need to have its user

interface re-developed to replace AWT or Swing with

Android’s own user interface components.

As mentioned earlier, XML processing is fundamental

to our self-protecting security framework approach and

prototype implementation. Again, Android provides most,

but not all, of the many XML support classes in Java SE.

Android supports both Document Object Model

(DOM) and Simple API for XML (SAX) parsing of XML

documents, and includes all core Java classes that those

parsers require. On the other hand, the Java API for XML

Binding (JAXB) is missing from Android completely [5].

2.2 Dalvik VM

Dalvik VM [21] is in charge of executing Java

applications running on Android. It is developed through an

open-source project with support from Google. Dalvik is

optimized for mobile devices which have limited resources

and power comparing with the desktop environment.

For efficiency considerations, Dalvik does not interpret

Java bytecode directly. Instead, it uses the custom Dex

bytecode. The .class files produced by a Java compiler

needs to be converted to this Dex format. This conversion

can be easily done by the Android SDK took, dx. So it is not

necessary to have the source code for a Java library in order

to use it in an Android application.

The main difference between the Dalvik and

Oracle/Sun Java bytecodes is in the packing of code [22].

With Dex, all the classes of the application are packed into a

single Dex file, as shown in Figure 2 [21]. In addition, all

the classes in the same Dex file share the same constant

pools for strings, fields, methods, etc.

Figure 2. Dex file anatomy

The Dex approach helps reduce duplication of internal

data structures and cuts down on the file size. On the other

hand, classes from the same Dex file are loaded by the same

class loader instance. In other words, these classes cannot be

loaded using different class loader instances [22] as what

can be done with Java SE. This restriction can pose a

problem for porting those Java applications or libraries

which require the manipulation of multiple classloaders.

This also means that all the classes in the same Dex

file belong to the same namespace, and thus duplicated

names across multiple Java classes can be a problem for

Dex even when they are fine for the Java SE environment.

2.3 Android Applications

 As mentioned earlier, Android applications are

typically written in the Java programming language. Unlike

applications on most other systems, Android applications

don't have a single entry point (there's no main() function,

for example) [23].

Android applications are composed of one or more

application components. There are four types of application

components: activities, services, content providers, and

broadcast receivers. An activity is an application component

that provides a screen with which users can interact in order

to do something, such as dial the phone or view a map.

Thus, it is commonly used by Android apps which provide

user interfaces.

An activity is created as a subclass of the public class

android.app.Activity (or an existing subclass of it). The

lifecycle of an activity is managed by implementing

callback methods that the system calls when the activity

transitions between various states, such as when it is being

created, stopped, resumed, or destroyed [23].

In summary, the structure of Android Java applications

is quite different from that of Java SE. Thus, some

restructuring of the application code is required when

porting existing Java SE apps to Android.

 Furthermore, Android apps need to be designed and

implemented with more attention towards performance than

typical Java SE applications, in order to meet the more

stringent resource and energy requirements for mobile

devices.

 In Android, the system guards against applications that

are insufficiently responsive for a period of time by

displaying an “Application Not Responding (ANR)” alert

and may even force the non-responding application to close

[24]. It is critical to design responsiveness into the

application so the system never displays an ANR alert to the

user.

 Android applications normally run entirely on a single

thread (by default the "UI thread"). This means anything the

app is doing in the UI thread that takes a long time to

complete can trigger the ANR alert because the app is not

giving itself a chance to handle the input event or intent

broadcasts. Therefore, any method that runs in the UI thread

should do as little work as possible on that thread.

Potentially long running operations should be done in a

532 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

worker thread, which can be most effectively created with

the AsyncTask class [24].

Again, an existing Java app code may need to be

restructured for performance consideration, as we have done

for the Android version of our PHR prototype application.

2.4 Android SDK

The Android SDK [25] provides the API libraries and

developer tools necessary to build, test, and debug apps for

Android. The recommended IDE is Eclipse with the ADT

(Android Developer Tools) plugin.

Since we have been using Eclipse IDE for Java

Developers for our prototype software development,

Android’s Eclipse+ADT IDE is very convenient for us. To

test our Android apps and libraries, we used a variety of

Android device emulators, smartphones, and tablets.

3 Case Studies

In this section, we discuss our efforts, results, and

experiences in two cases: 1) porting Sun’s XACML Java

libraries and a sample application; and 2) porting MDHT

Runtime Jars for Java and our prototype Personal Health

Record application.

3.1 Sun XACML Jars and Sample App

Oracle/Sun Lab released its Version 1.2 of XACML

Java Library in July 2004 and Version 2.0 in July 2010 [18].

We have been using the Version 1.2 of the sunxacml library

for our prototype software. As a matter of fact, we have

extended the library to add new features and conventions for

our self-protecting security framework approach.

As we were already planning to upgrade our prototype

software to leverage the Version 2.0 of sunxacml, we first

attempted to port this version to Android in late 2011. After

running into so many problems with this version, we went

back to the Version 1.2 of sunxacml with which we had

more knowledge and experiences.

In the end, we managed to port the Version 1.2 of

sunxacml library to Android. However, the process was not

easy, nor straightforward. The main challenges were due to

the fact that the sunxacml library requires a set of Java core

(java.* or javax.*) classes that were not supported by

Android runtime.

The sunxacml Version 1.2 release contains the source,

data files, documentation, and the produced libraries. The

main library, sunxacml.jar, for producing and reading

XACML documents is 191 KB in size. The source needed to

build sunxacml.jar is contained in a /src/sunxacml folder

which contains 243 files in 23 subfolders taking up a total

space of 1.14 MB. The distribution also contains a

samples.jar (7 KB in size) which includes a sample program

called simplePDP that can be run to demonstrate XACML

applications while using sunxacml.jar. The source and XML

data files needed to build samples.jar and run simplePDP are

contained in a /sample folder which contains 22 files in 4

folders taking up a total space of 104 KB.

To port Sun’s Version 1.2 XACML Java API library

(sunxacml.jar) and its sample application (simplePDP) to

Android, we undertook the following major activities:

(1) Set up a new Android application project also called

simplePDP, using the Eclipse-integrated Android SDK (r6

or newer). The project target was set for Android API Level

6 (Android 2.0.1 Release 1) which was released in

December 2009 and represented the Android platform that

was broadly supported by Android devices in 2010-2011

timeframe.

(2) Set up the source for the simplePDP application project.

This step was quite straightforward as sunxacml already

used the same Apache Ant build tool and a very similar

project structure as required by the Eclipse-integrated

Android SDK.

(3) Restructure the code for the simplePDP class. The

original class for Java SE contains a main() method which is

not allowed for an Android application. Thus, we created a

new simplePDPActivity class, which extends the Android

Activity class, to serve as the entry point and to provide a

user interface for the Android simplePDP app.

The relevant initialization code contained in the main()

method was implemented inside the onCreate() method for

simplePDPActivity, such that the necessary and equivalent

initialization functions can be performed when the activity is

created after the app is launched by the user. Also contained

in the onCreate() method is the code to start an instance of

the modified simplePDP class which no longer contains a

main() method. Note that the sample program contains six

other helper classes for the simplePDP class. Those classes

did not require any code modification for Android.

(4) Restructure the file I/O. The sample application for

sunxacml takes two XML files as input to produce another

XML file as output. On Java SE, the input files are stored

under the /sample/policy and /sample/request folders,

respectively, within the project’s file structure, and they can

be easily accessed by using java.io APIs on the same Java

SE host.

For Android, we prefer to have these input files

distributed with the app such that no separate file transfer or

configuration actions are required. To accomplish this goal,

we have not found a working solution other than including

these files as resources or assets for the app such that they

can be packaged and installed as part of the app.

Unfortunately, this solution requires a different set of

APIs, namely Resources or AssetManager classes, instead of

the java.io.File class, to access the contents. This posed a

problem for the sample application as it relies on File

operations extensively. Instead of modifying the app code to

use AssetManager operations everywhere and thus causing

more widespread changes, we chose to isolate the changes

within the onCreate() method by adding the code to read the

contents through the AssetManager and then store them into

files on internal storage. The references to the internal files

(e.g., fully-qualified file names) are then used in the rest of

the application in the same way as before.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 533

(5) Bundle the missing core Java libraries. With all the

preparations done, we proceeded to build and run the app

using the Eclipse-integrated Android SDK. After fixing

application-level errors, a compilation or execution could

still fail due to “unresolved symbol” compilation errors or

“NoClassDefFoundError” runtime errors, both indicating

that some core Java classes were needed but missing from

the Android runtime.

To resolve these types of errors, we chose to bundle the

missing core Java classes with the app itself, instead of

extending the core runtime library for Android platform, to

facilitate our porting and experimentation efforts without

modifying Android platform releases. We also used an

iterative process to find appropriate solutions if possible. For

each missing core Java class or package, we first used online

resources, such as findJAR.com [26], to find available Jar(s)

that contain the missing element. After further investigation,

we next added such a Jar to the list of external libraries used

to build the simplePDP app. Then we proceeded to build and

run the app with the added external Jar which in turn might

need additional Jars that were missing from Android

runtime. This process was repeated until there was no core

Java class that was apparently missing. After a working set

was assembled, we next worked to reduce the memory and

storage requirements for the app by eliminating redundant or

extraneous classes from the working set.

For the sunxacml 1.2 Java API library and sample app,

we added three additional Jars: xml-apis.jar, jndi.jar, and

jndi-properties.jar, which combine to take 290 KB in size.

(6) Work around the “Conversion to Dalvik format failed

with error 1” problem. According to the error message, this

error indicates an “ill-advised or mistaken usage of a core

class (java.* or javax.*) when not building a core library.

This is often due to inadvertently including a core library file

in your application's project, when using an IDE (such as

Eclipse).” On the other hand, the Android app building tool

does provide a --core-library option which can be set to

suppress this error message and allow the build to proceed

even when core classes are present in the application project.

However, the ADT plugin for Eclipse does not allow this

option to be set through Eclipse. It is interesting to note that

the Android Maven Plugin does allow this option to be set

through Maven.

For our porting effort, we needed to include these

missing core library files (e.g., xml-apis.jar) in our

application’s project. However, we did not want to change

our build tool from Ant to Maven. Therefore, we modified

the default build.xml file to set this --core-library option

through a custom shell script that we developed. Using this

approach, we managed to work around the problem with a

relatively simple custom solution. However, it was not ideal

as it required modifying the default build file, and running

the final application packaging tool through the command

line interface outside of Eclipse.

In summary, we managed to port Sun’s XACML v1.2

Java Library and sample application to Android. The size of

the Android application package (.apk) file is about 187 KB.

Our efforts to port the Version 2.0 of Sun’s XACML

library and sample program did not succeed. One major

reason for our difficulties was due to the fact that the

Version 2.0 library was re-implemented using the JAXB

technology.

JAXB is very powerful as it provides a fast and

convenient way (using automation tools) to bind XML

schemas and Java representations, making it easy for Java

developers to map Java classes to XML representations [27].

On the other hand, it also adds a great deal of complexity to

the runtime environment. As an indication, the size of the

source-only release of Version 2.0 Sun XACML library is

already approximately 570 KB in size.

Since JAXB was not supported by Android’s runtime

core library, it was very challenging and time-consuming

trying to bundle all missing core classes (e.g., java.xml.bind)

and their dependencies in the application’s project. As a

result, we abandoned this approach after putting in a good

amount of effort without ever gaining enough confidence

that this approach could work from both functional and

performance viewpoints. For example, the size of the none-

functional .apk file had already reached a size of

approximately 500 KB for the same “application”.

3.2 MDHT Runtime Jars and PHR App

 Our interests in MDHT runtime Jars and personal

health record applications centered on our efforts in

developing the self-protecting security framework and

associated prototype software for securing electronic

medical records [8] [28] [16] [17].

As mentioned earlier, our approach leverages the CDA

which is an XML-based document markup standard that

specifies the structure and semantics of a clinical document.

For our prototyping effort, we chose to leverage the runtime

Jars provided by the open-source MDHT project which was

initiated, by the Veterans Health Administration in April

2008 in collaboration with IBM as the co-lead of the project,

to promote interoperability in healthcare infrastructure.

The MDHT runtime distribution contains JAR files

with generated Java code from template models, plus all

necessary dependencies for Eclipse-based modeling

framework and code generation facility. It is intended for

application developers who are using MDHT Java libraries

created from models (e.g., CDA), not for creating or editing

model specifications.

We first implemented a prototype PHR application for

the Java SE environment [16]. This application used the

MDHT runtime distribution Release 1.0, which became

available in September 2011 timeframe, for processing CDA

documents. Although the MDHT runtime release contained

24 Jar files with a total size of 9.68 MB, it was not an issue

for the prototype PHR application running on Java SE.

With our interest in providing self-protecting security

capability for Android, we undertook an effort to port the

MDHT runtime Jars to Android. The first major roadblock

we encountered was due to the duplicated file names. Each

of the Jar files contained a text file named plugin.xml and/or

another text file named plugin.properties. Given the

534 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

duplicated file names, the Eclipse-integrated Android SDK

would fail to build an Android application with these Jars in

the application’s project.

To work around this problem, we chose to delete these

files from all of MDHT runtime Jars, as they were

descriptor files used for describing how the plugin (Jar)

extends the Eclipse platform, etc. [29]. After the files with

duplicated names were removed from the Jars, the Android

application could be built successfully. Note that the file

removal could be easily accomplished by using the Java jar

command without modifying or recompiling any source

files.

Since our focus was on using the MDHT Java libraries

that were already created from models (and not on creating

or editing the models themselves), we believed that the

impact of removing these types of descriptor files would not

be significant for our purposes. Our experiences in running

the Android application with the modified Jars seemed to

confirm this assumption, as we have not observed any side

effect due to the removal of these descriptor files.

After resolving the major roadblock caused by

duplicated file names, we undertook optimization effort to

reduce the number and total size of the Jars required for our

application which did not need all the capabilities provided

by all the Jars collectively. We used an iterative and (more

or less) a trial-and-error approach to select the minimal

subset of Jars that we needed for our Android application. It

turned out that the final subset contained 11 (vs. 24

originally) Jars with a combined size of 4.35 MB (vs. 9.68

MB originally). This optimization effort and results were

very beneficial to our prototyping program as they helped to

reduce the application’s runtime memory and persistent

storage consumption on Android devices.

Our Java SE personal health record prototype

application had GUI-based user interfaces that allow users

to enter, view, modify, encrypt, and digitally sign their

records maintained in CDA documents. These user

interfaces were implemented using Swing.

To develop a similar PHR application for Android

[17], we used the final subset of modified MDHT Jars to

provide the same CDA processing functions. However, we

did major restructuring of our application level code for

both functional and performance considerations.

First, we restructured the code based on Android’s

application architecture. The Android PHR application now

consisted of five Android activities plus additional helper

classes. These activities allowed us to organize the code in a

very modular fashion, and they provided the main and

submenu user interfaces for starting the app, entering data,

viewing data, editing data, and emailing data, respectively.

Second, we developed the user interfaces for our

Android PHR application using the View-based components

for Android.

Third, we implemented the Android PHR application

with multi-threading capabilities in order to improve user

responsiveness and avoid the much dreaded ANR problem.

We used the AsyncTask construct to execute potentially

long-running operations (e.g., encrypting or saving a CDA

document which could be large) in separate threads away

from the UI threads.

 Fourth, we used the SAX-based XML parser for the

Android PHR application, in contrast with our using the

DOM-based XML parser for the Java SE based PHR

application. This approach allowed us to conserve memory

usage when parsing large CDA documents. However, it did

add a great deal more complexity in our application code in

order to handle the SAX events asynchronously. In addition,

the CDA structure is very flexible and hence complex, and it

is difficult to use SAX-based parser to extract information

from CDA documents [30].

The MDHT runtime Jars were implemented using the

in-memory, DOM-based programming model, and it did a

very good job of hiding the low-level details and complexity

from the application developers. Using the SAX-based

parser, the application developers had to handle the low-

level details themselves and this increased the application

programming complexity significantly. To save time, we

implemented only a subset of the data fields for the Android

based PHR application.

In summary, we managed to migrate our PHR app

from Java SE to Android. For performance consideration,

we used multi-threading and memory-efficient parsing of

XML documents. In the end, we practically redeveloped it

as a native-architecture Android app which bears little

resemblance with the Java SE based PHR app, while reusing

the MDHT runtime Jars.

4 Summary

In this paper, we presented our efforts, results, and

experiences in porting two Java applications/libraries from

Java SE to Android environments. These software packages

involved open-source Java libraries for processing XML-

based documents.

Overall, we found these experiences very educational,

as we encountered numerous problems along the way,

including those caused by the differences in the core Java

runtime library and virtual machine, IDE restrictions, etc.

We were able to overcome those problems in all cases

except the one involving the sunxacml v2.0 library. In

addition, we learned important lessons in dealing with the

more stringent resource and performance constraints for

mobile devices which are not the same as desktops. Using

techniques such as multi-threading and event-driven XML

parsing helped to improve the resource and performance

aspects; on the other hand, they added more complexity and

required more effort in developing the applications.

We like to close the paper with the following

observations:

(1) Migrating Java applications from Java SE to Android

is more complicated than what might be assumed, except for

small and trivial programs perhaps. Minimally, the app

needs to be restructured to conform to Android’s application

model (e.g., activity versus main() method).

(2) The complexity increases if the application has

extensive user interfaces implemented with AWT or Swing.

Int'l Conf. Software Eng. Research and Practice | SERP'13 | 535

These user interfaces need to be practically rewritten using

Android’s View components.

(3) Third-party Java libraries could be a problem,

especially if they use many of the core Java libraries (java.*

or javax.*) that are not supported by Android.

(4) Files for initialization, configuration, or information

could present a problem. Android has different classes and

APIs to handle “resource” type of content which are treated

differently from “files”. Duplicated file names could cause

additional problems.

(5) For performance and resource usage considerations,

Android implementations may require more efficient or

user-responsive techniques such as multi-threading and

asynchronous/event-driven processing.

(6) Do not ignore the fact that Android-powered mobile

devices are not the same as desktops, let alone servers. Be

careful not to overload Android devices with apps requiring

heavy-weight processing or storage.

5 Acknowledgement

 This research was supported in part by U.S. Army

Research Office, under contract no. W911NF-12-1-0081,

and U.S. Department of Energy, under grant no. DE-FG52-

09NA29516/A000.

6 References

[1] "Android," android.com, [Online]. Available:

http://www.android.com/. [Accessed 27 May 2013].

[2] "Open Handset Alliance," [Online]. Available:

http://www.openhandsetalliance.com/. [Accessed 27 May 2013].

[3] "Android, the world's most popular mobile platform," [Online].

Available: http://developer.android.com/about/index.html. [Accessed

27 May 2013].

[4] "Android Open Source Project," [Online]. Available:

http://source.android.com/. [Accessed 27 May 2013].

[5] C. Collins, M. G. Galpin and M. Kaeppler, Android in Practice,

Manning Publications Co., 2011.

[6] "Android Architectural Diagram," [Online]. Available:

http://developer.android.com/images/system-architecture.jpg.

[Accessed 27 May 2013].

[7] G. Hsieh and E. Nwafor, "A Self-Protecting Security Framework

for CDA Documents," in Intl' Conf. on Security and Management

(SAM'13), Las Vegas, NV, 2013.

[8] G. Hsieh, "Towards Self-Protecting Security for e-Health CDA

Documents," in Proc. Int'l Conf. on Security and Management 2011

(SAM'11), Las Vegas, NV, 2011.

[9] G. Hsieh and M. Masiane, "Towards an Integrated Embedded

Fine-Grained Information Protection Framework," in Proc. 2011 Int'l

Conf. on Information Science and Applications (ICISA'11), Jeju

Island, Korea, 2011.

[10] G. Hsieh, R. Meeks and L. Marvel, "Supporting Secure

Embedded Access Control Policy with XACML+XML Security," in

Proc. 5th int'l Conf. on Future Information Technology

(FutureTech'10), Busan, Korea, 2010.

[11] G. Hsieh, K. Foster, G. Emamali, G. Patrick and L. Marvel,

"Using XACML for Embedded and Fine-Grained Access Control

Policy," in Proc. 4th Int'l Conf. on Availability, Reliability and

Security (ARES'09), 2009.

[12] G. Hsieh, G. Patrick, K. Foster, G. Emamali and L. Marvel,

"Integrated mandatory access control for digital data," in Proc. SPIE

2008 Defense + Security Conf., Orlando, FL, 2008.

[13] E. Bertino, I. D. Martino, F. Paci and A. C. Squicciarini,

Security for Web Services and Service-Oriented Architectures,

Springer-Verlag, 2010.

[14] "eXtensible Access Control Markup Language (XACML)

Version 2.0," OASIS, 2005. [Online]. Available: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml. [Accessed 31

May 2013].

[15] R. H. Dolin, L. Alschuler, C. Beebe, P. V. Boyer, D. Essin and

E. Kimber, "The HL7 Clinical Document Architecture, Release 2," J.

Am Med Inform Assoc., vol. 13, no. 1, pp. 30-39, Jan-Feb 2006.

[16] D. Gadam, "Generating CDA Documents and Embedding XML

Security," M.S. Thesis, Department of Computer Science, Norfolk

State University, Norfolk, VA, March 2012.

[17] D. Paruchuri, "Developing a Personal Health Record

Application for Android Platform," M.S. Thesis, Department of

Computer Science, Norfolk State University, Norfolk, VA, April

2013.

[18] "Sun's XACML Implementation," [Online]. Available:

http://sourceforge.net/projects/sunxacml/. [Accessed 27 May 2013].

[19] "Model-Driven Health Tools (MDHT)," [Online]. Available:

https://www.projects.openhealthtools.org/sf/projects/mdht/.

[Accessed 27 May 2013].

[20] "Apache Harmony," [Online]. Available:

http://harmony.apache.org/. [Accessed 29 May 2013].

[21] D. Bornstein, "Dalvik VM Internals," Google, 29 May 2008.

[Online]. Available: https://sites.google.com/site/io/dalvik-vm-

internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf.

[Accessed 29 May 2013].

[22] G. Paller, "Understanding the Dalvik bytecode with the Dedexer

tool," 2 Dec 2009. [Online]. Available:

http://www.slideshare.net/paller/understanding-the-dalvik-bytecode-

with-the-dedexer-tool. [Accessed 29 May 2013].

[23] "Application Fundamentals," [Online]. Available:

http://developer.android.com/guide/components/fundamentals.html.

[Accessed 30 May 2013].

[24] "Keeping Your App Responsive," [Online]. Available:

http://developer.android.com/training/articles/perf-anr.html.

[Accessed 30 May 2013].

[25] "Get the Android SDK," Android Developers, [Online].

Available: http://developer.android.com/sdk/index.html. [Accessed

31 May 2013].

[26] "findJAR.com," [Online]. Available:

http://www.findjar.com/index.x. [Accessed 31 May 2013].

[27] "Lesson: Introduction to JAXB," [Online]. Available:

http://docs.oracle.com/javase/tutorial/jaxb/intro/. [Accessed 31 May

2013].

[28] G. Hsieh and R.-J. Chen, "Design for a secure interoperable

cloud-based Personal Health Record service," in IEEE 4th Int'l Conf.

on Cloud Computing Technology and Science (CloudCom'12) ,

Taipei, Taiwan, 2012.

[29] "FAQ What is the plug-in manifest file (plugin.xml)?,"

eclipse.org, [Online]. Available:

http://wiki.eclipse.org/FAQ_What_is_the_plug-

in_manifest_file_(plugin.xml)%3F. [Accessed 31 May 2013].

[30] Keith Boone, The CDA Book, Springer, 2011.

536 Int'l Conf. Software Eng. Research and Practice | SERP'13 |

