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Abstract— As high performance computing systems contin-
ually become faster, the operating cost to run these systems
has increased. A significant portion of the operating costs
can be attributed to the amount of energy required for these
systems to operate. To reduce these costs it is important for
system administrators to operate these systems in an energy-
efficient manner. To help facilitate a transition to energy-
efficient computing, the trade-offs between system perfor-
mance and system energy consumption must be analyzed and
understood. We analyze these trade-offs through bi-objective
resource allocation techniques, and in this paper we explore
an analysis approach to help system administrators inves-
tigate these trade-offs. Additionally, we show how system
administrators can perform “what-if” analyses to evaluate
the effects of adding or removing machines from their
high performance computing systems. We perform our study
using three environments based on data collected from real
machines and real applications. We show that by utilizing
different resource allocations we are able to significantly
change the performance and energy consumption of a given
system, providing a system administrator with the means to
examine these trade-offs to help make intelligent decisions
regarding the scheduling and composition of their systems.

Keywords: bi-objective optimization; energy-aware computing;
heterogeneous computing; resource allocation

1. Introduction
As large computing systems (e.g., supercomputers, clus-

ters, datacenters) have increased in size and performance, the
costs of operating these systems have increased as well. A
significant portion of these costs can be attributed to the
amount of energy that is required to run these systems.
Between the years 2000 and 2006 the energy consumption
more than doubled for high performance computing (HPC)
systems, resulting in servers and datacenters accounting for
approximately 1.5% of the total United States energy con-
sumption for that year [1]. This amounts to approximately
61 billion kWh, or $4.5 billion in electricity costs. Energy
consumption by HPC systems has continued to increase;

from 2005 - 2011 the electricity consumption of these
systems has increased by 56% worldwide [2].

Due to the increased electricity use and costs, some system
administrators are now faced with the challenge of operating
under limitations on electricity usage. To operate efficiently
under these limitations, it is important to understand the
trade-offs between system performance and system energy
consumption. In [3] and [4] it was shown that increasing the
energy consumption of a system often leads to an increase
in the performance of the system, and vice-versa. Based
on these studies, it is imperative for system administrators
to analyze the trade-offs between energy consumption and
performance of their systems to operate at a desirable level.

In this research, we examine how utilizing different re-
source allocations (i.e., mapping of tasks to machines) on a
given system can allow us to analyze the trade-offs between
energy consumption and performance for that system. The
current state of the art resource managers, such as MOAB,
are unable to reasonably determine the trade-offs between
performance and energy based on our experience with it in
cluster computing environments.

We model a heterogeneous distributed computing environ-
ment used to execute a workload consisting of a bag of tasks.
In such an environment, a task may have different execution
and power consumption characteristics when executed on
different machines. This behavior requires one to explore
different resource allocations to optimally manage the energy
consumption and performance of the system. We define a
resource allocation to be a complete mapping of all the
tasks in the bag to the machines. The competing nature
of minimizing energy consumption and increasing system
performance allows this problem to be modeled as a bi-
objective optimization problem.

Many bi-objective optimization algorithms exist, such
as those found in [5], that can be adapted and used to
produce resource allocations for our problem. We take the
solutions produced by such algorithms and create graphical
representations that allow us to analyze the performance and
energy trade-offs. We produce plots that show general trends
between performance and energy consumption, as well as
more detailed graphs that allow us to analyze how different
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allocations use the system on a machine-by-machine basis.
Analysis of these graphs can help system administrators find
allocations that will allow the system to run at a specified
energy/performance level as well as identify inefficiencies
in their systems. Additionally, system administrators may
desire to simulate the effect and observe the performance
and energy consumption implications of adding or removing
machines to the system. This could lead to the design of
more efficient and cost effective computing systems.

We examine the trade-offs between energy consumption
and performance for three different environments. Each
environment is based on a set of real machines and real tasks.
By analyzing numerous resource allocations, we show that
for each environment the behavior of the systems can differ
greatly, allowing system administrators to select a resource
allocation that best fits the needs of their system.

In this paper we make the following contributions:
1) Perform a machine-by-machine analysis of how dif-

ferent resource allocations can affect the perfomance
and energy consumption of a given system.

2) Provide an analysis approach that can identify both
energy efficient and energy-inefficient machines, al-
lowing system administrators to use this knowledge to
help build and manage their systems.

3) Demonstrate the versatility of our analysis technique
using three different heterogeneous environments.

The remainder of the paper is organized as follows.
Related work is discussed in Section 2. We explain the
system model in Section 3. In Section 4, we describe our
bi-objective optimization problem. Our experimental setup
is detailed in Section 5. Section 6 analyzes our simulation
results. Finally, our conclusion and future work is given in
Section 7.

2. Related Work
Several prior efforts have examined bi-objective resource

allocation problems in large computing environments.
The bi-objective genetic algorithm NSGAII [6] is adapted

for use within the resource allocation domain in [3] and [4].
System-level analyses are performed, specifically looking at
the trade-offs of energy and makespan [3] or energy and
utility [4]. Our current work performs an in-depth analysis on
a machine-by-machine level with a realistic system model.

A bi-objective heterogeneous task scheduling problem
between makespan and reliability is presented in [7] and
[8]. Instead of reliability, our work investigates the trade-offs
between makespan and energy consumption with a machine-
by-machine allocation analysis.

In [9], the authors solve a bi-objective optimization be-
tween makespan and robustness for a heterogeneous schedul-
ing problem. Solutions are created using a weighted sum
simulated annealing heuristic, where one run of the heuristic
produces a single solution. In our work we are concerned

with multiple solutions, and analyzing how their allocations
change based on their location in the search space.

A bi-objective flowshop scheduling problem between
makespan and total tardiness is modeled in [10]. Solutions
are created using a Pareto-ant colony optimization approach.
While we could use methods such as this Pareto-ant ap-
proach, the focus of our paper is on the resulting allocations,
not how they are created.

The authors of [11] model a homogeneous job-shop
scheduling problem between makespan and energy con-
sumption. We are interested in analyzing the behavior of
systems that consist of heterogeneous machines, which sig-
nificantly changes the problem and solution space.

An energy-constrained heterogeneous task scheduling
problem is examined in [12]. In this environment, the energy
constraint is realized by modeling devices with limited
battery capacity in an ad-hoc wireless network. In our work,
we are not directly concerned with an energy constraint,
though by analyzing different solutions from a Pareto front,
a solution could be picked that meets an energy constraint
if it was needed.

In [13], the authors try to minimize energy consumption
while trying to meet a makespan robustness constraint.
Because there is a constraint on the makespan robustness,
this is not a bi-objective optimization problem, and does not
involve the type of machine-by-machine analysis that we
preform.

There are many environments that can be modeled as dy-
namic resource allocation problems. One such environment
is [14], where the system must complete as many tasks as
possible by their individual deadlines while staying within
the energy budget of the system. This environment does not
perform a machine-by-machine analysis to to investigate the
trade-offs between energy and makespan.

3. System Model
3.1 Machines

We model a heterogeneous suite of M machines, where
each machine is one of MT machine types. Because we
are modeling a heterogeneous system, machine type A may
be faster for some tasks than machine type B, but may be
slower for other tasks [15]. Machines are also heterogeneous
in power consumption. We assume that each machine can
only execute a single task at a time, similar to the Colorado
State University ISTeC Cray [16]. Once a machine finishes
executing all of its assigned tasks it shuts down, and no
longer consumes any energy.

3.2 Workload
We model a workload environment where we have a bag

of T tasks, and each task belongs to a given task type.
Every task is known before the schedule is created. Due
to the heterogenous nature of the system, each task type
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i executing on machine type j will have known execution
(Estimated Time to Compute (ETC)) and power consump-
tion (Estimated Power Consumption (EPC)) characteristics
denoted as ETC(i,j) and EPC(i,j). Tasks of the same task
type have the same ETC and EPC characteristics. In resource
allocation, it is common to assume the availability of such
characteristics (e.g. [17], [18], [19], [20], [21]). These values
may be taken from historical sources ([20], [19]) or may
be constructed synthetically for simulation purposes ([22],
[15]).

4. Bi-Objective Optimization
4.1 Overview

Many interesting engineering problems deal with mul-
tiple objectives. It is often the case that these objectives
are competing with one another, and optimizing for one
objective may cause the performance of another objective
to decrease. It therefore becomes important for one to
analyze the behavior (trade-offs) between these objectives.
In our research we are trying minimize system makespan
(Section 4.2.1) while trying to minimize system energy
consumption (Section 4.2.2).

4.2 Objective Functions
4.2.1 Minimizing Makespan

One objective is to minimize makespan, which is defined
as the time when all tasks have finished executing. Makespan
is used to measure the performance of the system.

The makespan for a specific resource allocation, denoted
µ, is the maximum machine finishing time in the system.
The finishing time of a machine is the time at which all
tasks Tm assigned to machine m have finished executing.
Let tm ∈ Tm, Υ(tm) be the task type of tm, Ω(m) be the
machine type of m, and

Fm =
∑

∀tm∈Tm

ETC(Υ(tm),Ω(m)). (1)

Makespan is given as

µ = max
∀m∈M

Fm. (2)

4.2.2 Minimizing Energy Consumed
The other objective is to minimize total energy consumed.

This is defined as the total amount of energy consumed
by the machines to execute all tasks. The Expected Energy
Consumption (EEC) of a given task t on a given machine
m is

EEC[Υ(t),Ω(m)] = ETC[Υ(t),Ω(m)]×EPC[Υ(t),Ω(m)].
(3)

The total energy consumption for the system is

E =
∑

∀m∈M

∑
∀tm∈Tm

EEC[Υ(tm),Ω(m)]. (4)

energy consumed

makespan A

B

C
solutions that 
dominate A

solutions that are 
dominated by A

Fig. 1: Illustration of solution dominance for three solutions:
A, B, and C. Solution A dominates solution B because A
has lower energy consumption as well as a lower makespan.
Neither solution A nor C dominate each other because A
uses less energy, while C has a lower makespan.

4.3 Generating Solutions
In general, bi-objective optimization problems have a set

of optimal solutions (not a single solution). This set of
solutions is known as the Pareto optimal set, represented
as the Pareto front in objective space, defined as the set
of known solutions for which no better solutions in any
objective have been found [23]. Pareto fronts are useful for
analyzing the trade-offs between two objectives. A Pareto
front is calculated from existing solutions, but it is not known
where the true optimal set lies.

For a solution to exist within the Pareto optimal set, it
must not be dominated by any other solution. Domination is
defined as one solution being better than another solution in
at least one objective, and better than or equal to in the other
objective. A simple illustration of dominance is shown in
Fig. 1. We have three solutions: A, B, and C. B is dominated
by A because A has a lower makespan as well as a lower
energy consumption. Thus any solution located in the upper
right quadrant would be dominated by A, while any solution
located in the lower left quadrant would dominate A. Neither
solution A nor C dominate each other because A has a lower
energy consumption, and C has a lower makespan. Both of
these solutions would then be a part of the Pareto optimal
set.

Pareto fronts can be generated using any number of
algorithms, such as those found in [5]. The Pareto fronts
found in this paper were created using the Non-Dominating
Sorted Genetic Algorithm II (NSGAII) [6] adapted for use
within the scheduling domain as described in [3]. Note that
The method for generating the Pareto fronts are not the
focus of this paper, rather it is the analysis of the resource
allocations on the Pareto front.
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Table 1: Machines Types (designated by CPU)
1 AMD A8-3870k
2 AMD FX-8159
3 Intel Core i3 2120
4 Intel Core i5 2400S
5 Intel Core i5 2500K
6 Intel Core i7 3960X
7 Intel Core i7 3960X @ 4.2 GHz
8 Intel Core i7 3770K
9 Intel Core i7 3770K @ 4.3 GHz

Table 2: Task Types
1 C-Ray
2 7-Zip Compression
3 Warsow
4 Unigine Heaven
5 Timed Linux Kernel Compilation

5. Experimental Setup
5.1 Datasets

To accurately model the relationships between machine
performance and energy consumption in the ETC and EPC
matrices, we used the method outlined in [4] where a dataset
consisting of five applications executed on nine machines
[24] is used to create a larger synthetic dataset. The synthetic
data set resembles the original data set in terms of hetero-
geneity characteristics, such as the coefficient of variation,
skewness, and kurtosis [25]. The original machine types
(designated by CPU) are listed in Table 1 and the original
task types are listed in Table 2. The original data contained
both execution times and total system power consumption
(measured at the outlet) for each task on each machine. Each
machine used 16GB of memory, a 240GB SSD, and ran
Ubuntu 12.04 (but had different processors).

5.2 Experiments
We considered three test environments each with 36

machines. The first test environment only used machine
types 1 and 2 and there were 18 machines of each type in
the system. The second test environment utilized machine
types 1-6, and there existed six machines per type. Finally
the third test environment consisted of the full set of nine
machine types with four machines belonging to each type.
The bag of tasks for each test environment was identical and
consisted of 1000 tasks distributed among 30 task types (the
five original task types and 25 synthetic task types).

6. Results
In Figs. 2- 4 we present the results of our experiments

for the two machine type, six machine type, and nine
machine type environments, respectively. In each fig., the
subfig. “F” shows the Pareto front for each environment,
where the x-axis is the total system energy consumption
measured in megajoules(smaller is better) and the y-axis is

the makespan of the system measured in minutes (smaller
is better). Each individual marker in these plots represents a
complete resource allocation. In each of these Pareto fronts,
we see that makespan decreases (e.g. system performance
increases) as the energy consumption of the system in-
creases. This is consistent with the results from [3] and [4].
To better understand why this trend occurs, we analyzed
five separate resource allocations from the Pareto front (the
square markers in each of the Figs. 2F, 3F, and 4F).

For each of our selected resource allocations for each
environment, we plotted the completion time and energy
consumption of each machine, and grouped the machines
by machine type as seen in subfigs. A-E for each envi-
ronment. Subfigs. A-E range from illustrating the minimum
energy consumption allocation in subfig. A to the minimum
makespan allocation in subfig. E. For the minimum energy
allocations (subfig. A), each task ends up being assigned to
a machine that is part of the machine type that executes that
task with the least amount of energy.

In the A subfigs. (in all three environments), we find that
for each environment there is one machine type that has
a longer finishing time than the other machine types (the
left graph in the subfig.), and thus determines the makespan
for this solution. This occurs because that machine type has
more tasks for which it is the minimum energy machine
type (implying it is a more energy-efficient machine type),
thus those tasks will prefer to run on machines of that type,
forcing the completion time for those machines to increase.
There can exist many allocations that minimize energy
consumption, therefore to be in the Pareto front, a minimum
energy allocation must dominate by lowering the makespan
of the system. The resource allocation heuristic accomplishes
this by decreasing the finishing times of machines in the
longest finishing time machine type. This results in balanced
finishing times for machines of that type as can be seen in the
subfigs. The other machine types have unbalanced finishing
times among their machines because they do not have any
effect on the makespan of the system. Another interesting
observation is that in the environments with six and nine
machine types (Subfigs. 3A and 4A) there exist machines
that do not execute even a single task. This is because these
machine types are not the minimum energy machines for
any task.

Examining the subfigs. from A to E, we find the com-
pletion times of all the machines start to become balanced.
This is because to lower the system makespan, a resource
allocation must distribute the tasks to all the machines so that
one machine (or machines in a machine type) is not forced
to execute significantly more tasks than the other machines.
Hence, working through the Pareto front (from left to right)
the machine completion times become more balanced (lower
makespan) by forcing tasks to run on machine types that
consume higher amounts of energy. This becomes most
apparent in the E subfigs., where the machines have balanced
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Fig. 2: Pareto front (F) and five resource allocations (A-E) for an environment with two machine types. The Pareto front
illustrates the trade-offs between energy consumption in megajoules (x-axis) and makespan in minutes (y-axis). In A-E,
the left graph shows the completion of each machine in minutes (y-axis) in the system. The right graph shows the energy
consumption of each machine in megajoules (y-axis). In both graphs the machines are grouped by machine type (x-axis).

Fig. 3: Pareto front (F) and five resource allocations (A-E) for an environment with six machine types. The Pareto front
illustrates the trade-offs between energy consumption in megajoules (x-axis) and makespan in minutes (y-axis). In A-E,
the left graph shows the completion of each machine in minutes (y-axis) in the system. The right graph shows the energy
consumption of each machine in megajoules (y-axis). In both graphs the machines are grouped by machine type (x-axis).
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Fig. 4: Pareto front (F) and five resource allocations (A-E) for an environment with nine machine types. The Pareto front
illustrates the trade-offs between energy consumption in megajoules (x-axis) and makespan in minutes (y-axis). In A-E,
the left graph shows the completion of each machine in minutes (y-axis) in the system. The right graph shows the energy
consumption of each machine in megajoules (y-axis). In both graphs the machines are grouped by machine type (x-axis).

finishing times (left graph) but their energy consumptions
(right graph) are not balanced. This shows that as makespan
decreases, the amount of energy consumed increases.

It is important to note in Figs. 3 and 4 that even as the
allocations are decreasing makespan, there are still certain
machines that execute very few tasks, and it is not until the
lowest makespan allocation that they execute a comparable
number of tasks as the other machines. This occurs because
the trade-off in decreasing makespan versus the amount of
energy the system would consume is not large enough to
warrant using these energy-inefficient machines.

By examining Pareto fronts and various resource alloca-
tions from within those Pareto fronts, system administrators
can gather important information about the operation of their
systems. This includes finding machines and machine types
that are energy-inefficient. With this knowledge, a system
administrator may decide to leave these machines off to save
energy unless it is absolutely necessary to finish a workload
as fast as possible. Additionally, they can see which machine
types are being utilized the most and make future purchasing
decisions based on this information.

Finally, this study provides and example of how system
administrators can perform “what-if” analyses. For example,
what if we add more machine types to the system, what if
we add more machines of a specific machine type, or what
if we turn off certain machines? All of these scenarios could

be simulated and then analyzed by the system administrator
to help them decide how to best manage their system. We
illustrate the power of these type of questions by comparing
our three test environments against one another. We see that
as we increase the number of machine types in the environ-
ment, we are able to both lower the makespan and have a
smaller total energy consumption for the system. There are
many reasons this may occur, the most straightforward is
that more powerful and energy efficient machine types are
added. Another reason is that additional machine types may
increase the heterogeneity of the system, resulting in task-
machine affinity being exploited. We are also able to see
that it may be better to invest in machines that are of types
8 and 9 as they are the machines that execute the most tasks
in the most energy efficient manner, while it may be best to
not use machine types 1 or 2 at all as they both consume
more energy than the other machine types.

The analyses performed in this work cannot be done by
evaluation of only the ETC and EPC characteristics, rather,
they require a more comprehensive analysis of the complex
interaction between the workload, machines, two objectives.

7. Conclusions and Future Work
Energy-efficient computing is becoming very important

due to the need for greater performance and the rising
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costs of energy consumption. System administrators must
have tools that will allow them to evaluate the energy and
performance characteristics of their systems. In this work, we
provide a tool that allows system administrators to study the
trade-offs between system performance and system energy
consumption. We show that by analyzing individual resource
allocations we can examine how a given system is dis-
tributing and executing tasks depending on the performance
and energy consumption desired. This investigation can help
identify the degree of energy-inefficiency of the machines,
as well as allow system administrators to perform “what-
if” analyses to determine the effect of adding or removing
machines from their systems.

There are many directions for future work. These include
examining different performance and cost objectives such as:
maximizing robustness, minimizing temperature, maximiz-
ing utility, and minimizing monetary costs. We would like
to enhance our power model by utilizing dynamic voltage
and frequency scaling techniques to save additional energy.
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Abstract— Agent based applications are used for large
simulations of complex systems. When large number of
agents and complex interaction rules are required, an HPC
infrastructure can be helpful for executing such simulations
in a reasonable time. However, complex interaction rules
usually cause workload imbalances that negatively affect the
simulation time. In this paper, we propose a load balancing
schema that tries to find a reduced combination of exchanges
to balance the computing time of the processes. The method
adjusts the computational load within a certain range of
tolerance, computing the global reconfiguration of the work-
load using computing time, and the number of agents.
Experiments show gains between 15 and 30 percent of the
Execution time. In addition, we propose a modification of
the agent-based simulation framework named FLAME that
provides the automatic generation of the routines needed to
dynamically migrate agents among different computational
units.

Keywords: Agent-based Simulation, FLAME, Load Balancing,
Application Tuning, SPMD.

1. Introduction
Agent-Based Modeling and Simulations (ABMS) can take

advantage of High Performance Computing (HPC) systems.
Generally, HPC systems facilitate the execution of more
realistic scenarios with many agents and complex interaction
rules. Moreover, when the simulation requires more com-
putational scalability, SPMD paradigm is commonly used.
These SPMD applications execute the same program in all
processes, but with a different set of the domain.

ABMS show significant variations in amount of comput-
ing and communication times. During the simulation process
load imbalances are likely to appear due to the high-level of
interaction between agents and the different rules of behavior
exhibited by most of these models. In addition, an unequal
distribution of agents causes load imbalances that negatively
affect the execution time of the simulation.

In order to solve such problems, the parallel SPMD
simulation environments should include a dynamic load
balancing mechanisms that allows the migration of agents
between different computational units.

This paper is addressed to the PDPTA’13 Conference

Currently, few parallel ABMS environment oriented to
HPC environments can be found. Ecolab [1] is an object ori-
ented environment written in C++ and MPI. Repast HPC [2]
was recently released in 2012, it is also written in C++ using
MPI for parallel operations. Contrary to Ecolab, Repast HPC
was created from the beginning for large-scale distributed
computing platforms. Although both Ecolab and Repast
HPC argue that agents should be migrated; they do not
include generic migration routines, so the developer should
implement the whole migration code. Finally, FLAME [3]
allows the production of automatic parallelizable code to run
on large HPC system.

Dynamic load balancing strategies are commonly de-
veloped using centralized or hierarchical approaches. Un-
fortunately, these approaches report a high computational
cost and scalability problems. In other hand, decentralized
approaches can present problems regarding the quality of
the balance because the neighboring processes exchange
incomplete information. In [4] is proposed a centralized load
balancing based on space repartitioning. In [5] a hierar-
chical multi-level load balancing strategy is presented, and
centralized and hierarchical schemas are compared. In [6]
three algorithms using recursive domain decomposition in a
binary tree structure are compared using balance speed and
communication costs. In [7] a complex partitioning approach
based on irregular spatial decompositions is presented. In
[8] and [9] distributed cluster-based partitioning and load
balancing schema for problems of flocking behaviors are
defined.

In general, most of ABMS platforms do not include a load
balancing mechanism, and usually the strategy depends on
the nature of the agent model. Moreover, the load balancing
studies take place usually in non-SPMD platforms, and most
of them use applications created with integrated strategies.
Consequently, we decided to develop a strategy independent
platform, and integrate it in FLAME as a plugging. This plat-
form has been continuously developed from 2006. FLAME
is written in C using MPI and is aimed principally at the
economical, medical, biological and social science domains.
The code generated by FLAME lacks the necessary routines
to allow the migration of agents. Therefore, before using any
Load Balancing schema, a migration mechanism should be
implemented.

This paper describes a Load Balancing schema and a
modification of the FLAME framework that provides the
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automatic generation of the routines needed to migrate
agents between different computational units. Using these
routines, our Load Balancing schema allows automatic and
dynamic tuning decisions in terms of computational load.

The rest of this document is organized into five sec-
tions. First, Section 2 briefly describes FLAME. Next, the
proposed load balancing schema is discussed (3), then the
migration routines are presented (4). The results section
presents a comparison of the schema for two scenarios (5).
The final section includes the conclusions (6).

2. FLAME
FLAME was developed at the University of Sheffield in

collaborations with the Science and Technology Facilities
Council (STFC) in the United Kingdom. FLAME can be
used to solve problems involving multiple domains such as
economical, medical, biological and social sciences. This
framework allows writing several agents and non-agent
models using a common simulation environment, and then
performs simulations in a simple way on different parallel
architectures, including GPUs.

2.1 General Overview
FLAME is not a simulator in itself, but a tool able to

generate the necessary source code for the simulation. It
automatically generates the simulation code in C through a
template engine. FLAME provides a set of template files
that the template engine uses to generate the simulation
code getting information from the model specification. In the
same way, the migration routines are automatically generated
from a set of extra template files. The model specification
is described by two types of files, XMML (X-Machine
Markup Language) files, which is a dialect of XML, and
the implementation of the agent functions contained in C
files. Figure 1 shows the files required by FLAME to create
the simulation code.

Fig. 1: Diagram of the FLAME framework.

The functionality of FLAME is based on finite state
machines called X-machines, which consists of a finite
set of states, transitions between states, and actions. To
perform the simulation, FLAME holds each agent as an X-
machine data structure, whose state is changed via a set
of transition functions. Furthermore, the transition functions
perform message exchanges between agents if necessary.
Then, the simulation environment is composed mainly of
a set of X-machines defined through their state transitions,
internal memory, and agent messages.

The transitions between the states of the agents are
accomplished by keeping the X-machines in linked lists. The
simulation environment has one linked list for each state
of a specific agent. During the simulation, the X-machines
are inserted into the list related to the initial state, later
the corresponding transition function is applied to each X-
machine. Afterwards, these X-machines are inserted in the
list related to the next state. This process is repeated until
the last state, which determines the end of the iteration.

2.2 Parallelization
In HPC environments, FLAME communications are man-

aged by the Message Board Library libmboard, which
uses MPI to communicate between processes. Libmboard
handles the agents messages through message managing
mechanisms and filtering before being sent to local agents
and agents belonging to external processes. FLAME handles
deadlocks through synchronization points, which ensure that
all the data is coordinated among agents using a Single
Program Multiple Data (SPMD) pattern.

Figure 2(a) shows the communication between local
agents and external agents using libmboard library. Hence,
this library sends all messages to the agents through a coor-
dinated communication between different MPI processes.

(a) (b)

Fig. 2: Parallel communication and synchronization via
libmboard (a). Workload problems associated with distri-
bution of agents (b).

2.3 Distribution of the Agents
The parallel distribution of the agents in FLAME is based

on two static partitioning methods: geometric partitioning
and round-robin partitioning. Currently, FLAME does not
include mechanisms to enable the movement of agents
between processes. Thus, the workload in each process will
rely on the evolution of the model from its initial population
of agents. Consequently, evolution of the simulation may
trigger computing problems causing overhead, and also
may produce excessive external communications due to
the interaction among agents (as shown in Figure 2(b)).
Therefore, the time required to complete the simulation will
be negatively affected.
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3. Load Balancing Schema
In agent-based SPMD applications, estimation of perfor-

mance is a difficult task. In many instances, the performance
can vary by issues such as: amount of computation, interac-
tion pattern between agents, and environmental influences.
These issues depend on the complexity of the model, and
whether the simulation model has different kinds of agents
or not. In the same way, depending on the internal state
of the agents, these issues can change during the simulation
process. For this reason, this schema dynamically decides the
global reconfiguration of the workload using an imbalance
threshold, computing time, and the number of agents. The
threshold is a value between 0 and 1 that represents the
acceptable imbalance degree. Computing times and number
of agents are monitored in each iteration during the simula-
tion. This approach is executed by all the processes without a
central unit of decision. Therefore, each process knows the
global load situation and executes the algorithm with the
same input. Consequently, all processes calculate the same
reconfiguration of the workload.

The mechanism is triggered when an imbalance factor is
detected outside the tolerance range. This factor indicates
the percentage of imbalance in respect to the mean, and the
tolerance range defines the permissible degree of imbalance
(see algorithm 1). Moreover, it does not need to perform after
an iteration has been finished. In order to get a better result,
the load balancing mechanism should be executed between
the transition phases inside an iteration. Our schema consists
of the phases described below.

3.1 Monitoring
The schema is executed by all the processes; hence each

process needs to know the global load situation. Thus,
in each iteration, the computing time and the number of
agents of all processes is broadcasted by a collective MPI
communication. Our load balancing schema can be executed
in each iteration of the simulation. However, depending on
the complexity of the agent model, the migration process
would have better result if used between the transition
phases of the simulation. For this reason, before sharing
the workload information, we have to determine the current
computing time. Based on the results of a previous iteration,
the current computing time predicts the computing time for
the current number of agents before finalizing the current
iteration. As described in Equation 1, the current computing
time is predicted based on the current number of agents and
the information of the previous iteration.

comp_timeiter =
comp_timeiter−1 ∗ num_agentsiter

num_agentsiter−1
(1)

This information is exchanged using a collective MPI call.
Once all processes have the global workload information, the
activation mechanism is checked.

Algorithm 1 Global overview of the Load Balancing schema

collect all computing times for each process
avg_time←

∑
comp_timei/nprocs

ib_factori ← comp_timei/avg_time
tolerance← threshold ∗ avg_time
if ∀i ∈ procs,∃ proci/ |imbalance(proci)| > tolerance
then

sort computing times in descending order
center ← index of the less overloaded process
i← index of the first process in the sorted list
j ← index of the last process in the sorted list

end if
while |imbalance(proci ∧ procj)| > tolerance do

calculate contribution_rangei
j ← index of the last process in the sorted list
while |imbalance(proci ∧ procj)| > tolerance do

calculate acquisition_rangej
calculate expected migration for proci|procj
sort underloaded computing times from center
if |imbalance(proci)| 6 tolerance then

break
end if
j −−

end while
sort overloaded computing times until center
i← index of the first process in the sorted list
if |imbalance(proci)| 6 tolerance then

break
end if

end while
Execute the asynchronous exchanges

3.2 Activation Mechanism
In this phase, with the purpose of detecting imbalances,

the imbalance factor and the permitted tolerance of im-
balance are calculated for each process. The imbalance
factor represents the degree of imbalance according to the
mean computing time. The tolerance allows setting the
range where the execution is considered as balanced. Con-
sequently, depending on this tolerance range, an imbalance
can be detected (respectively, Equations 2 and 3 show the
imbalance factor, tolerance and the tolerance range).

ib_factori =
comp_timei

avg_time
(2)

tolerance = avg_time ∗ threshold
tolerance_range = avg_time± tolerance (3)

The Load Balancing mechanisms is triggered if a com-
puting time is detected outside of this tolerance range.
Furthermore, as every process executes this analysis with
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(a)

(b)

Fig. 3: Comparison and resorting in pairs.

the same inputs (times and agents of all processes), every
process have same balanced and imbalanced processes.

3.3 Comparison procedure
In this step, the schema should decide how many agents

need to be reallocated. This phase consists of performing
comparisons between the most overloaded and the most
underloaded processes. In order to reduce communication
cost, the criterion of migration is defined by adjusting these
processes inside the tolerance range during one exchange.
This is explained in the next subsection.

First, our algorithm sorts the computing times per node by
descending imbalance factor (Figure 3(a)). Then, following
the criterion described in the next subsection, the number
of agents that should be migrated for the first and the last
process is determined. Therefore, the computing time of
these processes will change by the expected time, which
corresponds to the time for the expected configuration of
agents. Once this is done, the next step consists of reordering
by the expected imbalance factors after the migration. Then,
first and last process will be changed as shown in Figures
3(a) and 3(b).

The load balancing procedure is repeated until all pro-
cesses are in the tolerance range of balance.

3.4 Load Balancing Criterion
In this section, the criterion for calculating the expected

migration agents between two processes is depicted. Due to
the complex interaction rules of the agents, the computing
time of one agent is not fixed. Therefore, doing a speculation
of this time based on the current total of the agents in
the simulation can be inaccurate. In order to ensure the
balancing of the overloaded process, we consider calculating
the number of agents to migrate according to the average
time per agent of the sender process (overloaded process).

(a) (b)

Fig. 4: Examples of the expected migration.

(a) (b)

Fig. 5: Examples of the expected migration.

This algorithm tries to find a reduced combination of
exchanges to balance the computing time of the processes.
To begin with, the time required to reach the tolerance range
of balancing is calculated by Equations 4 and 5 ( i and
j represent the most overloaded and underloaded process,
respectively).

exceeded_timei = comp_timei − avg_time

contribution_rangei = exceeded_timei ± tolerance (4)

required_timej = avg_time− comp_timej

acquisition_rangej = required_timej ± tolerance (5)

In order to minimize the migration exchanges, the ex-
pected number of agents to migrate should make both
processes go If the sender process has more exceeded time
than the required time for the receiver, then as shown in
Figure 5(a), the exceeded time is split according to the ideal
required time by the receiver. Subsequently, this procedure
should be repeated over the next underloaded process until
the entire exceeded time of the sender is reduced. In the
other hand, if the sender process has not enough exceeded
time to fill the required time of the receiver, then as shown in
Figure 5(b), the full exceeded time of the sender is migrated.
Likewise, this procedure should be repeated over the next
overloaded process until the entire required time of the
receiver is completed.

Consequently, based on the total time to be reallocated,
the number of agents for the migration should be calculated.
As noted above, we use the number of agents to migrate
according to the average time per agent of the overloaded
process because we consider that the overloaded process has
priority for the global reduction of the computing time. This
time is determined by the Equation 6 (i means the number
rank of the overloaded process).

time_per_agenti =
comp_timei

num_agenti
(6)
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Once all the movement of agents has been determined,
the migration phase is triggered. During the next phase, the
amount of agents defined by the criterion of load balancing
is migrated.

4. Migration of Agents
With the final objective of introducing automatic load

balancing strategies in HPC agent based systems, it is
necessary to develop efficient agent migration mechanisms.

Our proposal consists of automatically generating the
agent migration code for FLAME through the same template
structure used for generating the simulation code. In order
to achieve this new feature, new templates for generating the
migration routines are required. Then, the template engine
processes these templates to obtain the information about
the model and generates migration routines together with
the simulation code (as shown in Figure 6).

Fig. 6: Diagram of the FLAME framework with the enhanc-
ing.

Once the information about the agent has been obtained by
the new templates, the migration routines can automatically
add and remove agents in the migration process. This agents
are held in output lists identified by the id of the target
process. Later, the agents in the output lists are packed to
be sent out. The received data is unpacked and later inserted
with the others agents in the recipient process. Algorithms
2 and 3 show the procedures involved during the migration
of agents.

With the purpose of sending the agents to a recipient
process in a single communication, the agents in the lists
need to be stored in contiguous memory.This migration is
accomplished by packing and unpacking data using MPI
functions. These MPI functions require memory buffers
before being used, which sizes depend on the type and
amount of agents. Consequently, the generated migration
routines automate calculations of the buffer sizes required
during the migration process.

Algorithm 2 Sending Agents

while agents to be sent do
insert in the recipient list

end while
calculate the sizes and create the buffers
pack the agents and send the packages

Algorithm 3 Receiving Agents

create the memory buffers and receive the agents
while packed agents do

unpack and insert agent in the current process
end while

Before performing the migration process, a criterion must
be established to decide which agents should be sent (as
discussed in the previous section). Then, the migration
process starts through the migration routines mentioned
in section 4.1. The migration process should also require
deciding when it should be performed. Nevertheless, this
partially depends on the criterion by which the agents were
selected.

4.1 Migration Routines
The migration routines are specifically generated for each

type of agent in the model. In consequence, it is possible to
perform migrations after any transition.

The following list introduces the main migration routines.
In addition, the prefix NAME indicates the name of a specific
type of agent.

• Init_movement: Initializes global variables and data
structures involved in the migration.

• prepare_to_move_NAME: Moves agents to a spe-
cific output linked list and removes them from the
current process.

• Pack_NAME_agent_list: Packs all agents kept
in the output linked lists in contiguous memory
(MPI_PACKED datatype), one for each recipient.

• UnPack_NAME_agent_list: Unpacks the packed
agents received as MPI_PACKED. Then, inserts the
received agents in the X-machine list of the current
process.

5. Experimental Results
The main objective of this section is to demonstrate that

using the proposed load balancing schema and migration
routines, it is possible to correct imbalance problems in an
agent based SPMD application.

The example is a SIR epidemic model on a 2D toroidal
space. The SIR model describes the spread of an epidemic
within a population. The population is divided into three
groups: the Susceptible (S), the Infectious (I), and the
Recovered (R). For this reason, this model is called SIR.
Summarizing, a susceptible individual is who is not infected
and not immune, the infectious are those who are infected
and can transmit the disease, and the recovered are those who
have been infected and are immune. Additionally, natural
births and deaths during the epidemic are included in this
SIR model, so individuals might die from the disease or
by natural death due to aging. Consequently, births and
deaths represent a dynamic creation and elimination of

14 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



agents. Therefore, the workload can change as the simulation
proceeds.

Table 1: Initial parameters for both scenarios.

Parameters values Parameters values
infected 10 infectiousness 65
lifespan 100 chance recovery 50
average offspring 4 disease duration 20

In this section, two scenarios are presented. Table 1
depicts the environmental configurations of the simulations.
Both simulations are started with an initial population (see
Table 2), and 10 of these are infected. The experiments were
performed during 200 simulation steps and, the agents were
distributed doing a round-robin distribution. Thus, depending
on the number of processes and the initial agents, the initial
number of agents per process can be equal or similar.

Table 2: Scenarios of the experiments.

scenario agents carrying capacity space dimensions
A 30000 30000 650X650
B 50000 50000 1000x1000

The Load Balancing schema is activated after the fifth
simulation step. Given that the computing measurements
vary when the migration process has been triggered, the
activation mechanism is blocked during the next iteration.
After this, the activation mechanism will be enabled again.
Sending and receiving of the agents has been deployed
using MPI asynchronous functions to overlap the costs of
communication and computation.

The experiments were run using the FLAME Framework
0.16.2, libmboard 0.2.1 and OpenMPI 1.4.1. All experiments
were executed on a Cluster IBM with the following features:
32 IBM x3550 Nodes, 2xDual-Core Intel(R) Xeon(R) CPU
5160 @ 3.00GHz 4MB L2 (2x2), 12 GB Fully Buffered
DIMM 667 MHz, Hot-swap SAS Controller 160GB SATA
Disk and Integrated dual Gigabit Ethernet. Additionally,
we tested our schema using a case without Load Balanc-
ing schema, and three imbalance tolerances: 0.3(30%) ,
0.15(15%) and 0.05(5%). Moreover, for both scenarios, 16,
32, 64 and 128 cores were used.

Figures 7(a) and 7(b) compare the execution time with
varying number of processes by comparing different values
of tolerance with the original simulation without the load
balancing schema. Here, both scenarios have better results
using our load balancing schema. Moreover, in most cases if
the imbalance tolerance is reduced the improvement is better.
In Figure 7(a), when the number of processes is increased,
a larger value for the imbalance tolerance result in a worse
execution time. Due to the amount of agents per process
decrease for 128 processes, the communication time grows
versus the computing time.
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Fig. 7: Executions times in both scenarios.

Table 3: Execution time of scenarios A on 128 processes.

tolerance comp.(sec) gain(%) LB time agents - bytes mig.
0.05 69.4678 17.76 0.2860 11927 - 584546
0.15 74.2281 17.74 0.2386 9613 - 466639
0.30 81.9558 16.97 0.2108 8201 - 396513

original 117.5274 - - -

Table 4: Execution time of scenarios B on 128 processes.

tolerance comp.(sec) gain(%) LB time agents - bytes mig.
0.05 340.9736 27.62 0.3472 26581 - 1282533
0.15 369.3261 22.88 0.1620 14675 - 705725
0.30 405.1615 17.75 0.1301 11589 - 556842

original 534.8094 - - -

Table 5: Overhead of the Load Balancing schema of both
scenarios on 128 processes.

scenario A B
tolerance pack comm unpack pack comm unpack

0.05 0.0028 0.280 0.0017 0.0064 0.324 0.0047
0.15 0.0035 0.233 0.0021 0.0073 0.153 0.0059
0.30 0.0039 0.205 0.0027 0.0054 0.125 0.0043

original - - - - - -

Tables 3, 4 and 5 summarizes the execution time for
different values of tolerances. Packing, Communication,
Unpacking and Load Balancing times were calculated by
the sum of the maximum times per iteration. Migrated and
Bytes consist of the sum of all agents exchanged during
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all migration processes. As shown in Table 5, during the
migrations, the Load Balancing is mainly affected by the
cost of exchanging agents.
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Fig. 8: Degree of computing imbalance varying the tolerance
factor, for the scenario B on 128 processes.

Figure 8 shows the variability of the degree of imbalance
for different values of tolerance factor. This Figure shows the
degree of imbalance that decreases when the tolerance factor
is increased, but the Load Balancing schema is triggered
more frequently. Consequently, values of Table 5 expose that
the overhead of our schema is greater when reducing the
tolerance factor. For this reason, better results in terms of

execution time are related to finding a tolerance value which
does not imply an excessive overhead for exchanging agents.

6. Conclusion
Due to the different rules of behavior and the high

levels of interaction between agents, the ABMS applications
may present computational and communicational imbalances
during the simulation process. Therefore, to solve this prob-
lem, the simulation environment should be equipped with
migration mechanisms to move agents between overloaded
and underloaded processes.

In this paper, we have presented a Dynamic Load Balanc-
ing schema is proven in a model with high-level workload
variability. For both scenarios, our schema obtains good
results improving simulation execution time, and keeps a
quite stable overhead. This overhead is caused by the amount
of exchanges during the load balancing process. In addition,
our modification of the FLAME framework for automatically
generating agent migration functions. In this manner, the
workload among the different processes can be adjusted
dynamically during the simulation. In future work, we will
aim our research on balancing communication times.
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Abstract— Power is a dominant obstacle for significant cost
performance improvements of VLSI technology. Excessive
and unbalanced power consumption affects device reliabil-
ity, requires expensive packaging, and causes irreversible
damage to semiconductor devices. Hence, power monitoring
and thermal hot-spot elimination is a major concern of the
semiconductor industry. This research addresses multicore
power monitoring, management, and control via power-
aware task scheduling and load balancing; supporting hot-
spot elimination as well as overall power balancing and
reduction. The paper concentrates on the scheduling aspects
of efficient power management schemes in the context of
multicore systems. We utilize an in-house scheduling simu-
lator and incorporate power and execution metrics in several
classic scheduling algorithms. Results show a potential for
scheduling with high level of power efficiency and tolerable
degradation in execution time.

Keywords: task scheduling, energy-efficiency, optimization

1. Introduction
The need for achieving high performance without a com-

mensurate increase in power consumption has lead chip
manufactures to adopt the multicore design. The multicore
shift, however, is not an end-all solution to the power
dissipation problem, in fact it has made the problem of
energy efficient computing more complex. With multicore
systems becoming mainstream, power and thermal density
are no longer just a concern for large data centers and em-
bedded processors but for all types of computers. In recent
years, because of this need, there has been a plethora of
work in making computation more energy efficient, without
sacrificing performance. Among the many different methods
proposed, task scheduling has emerged as one of the most
promising techniques in this area.

The strategies proposed for power-aware scheduling span
architectural, compiler, runtime and operating system (OS)
based approaches. Although diverse, most strategies use
some form of dynamic voltage and frequency scaling
(DVFS) [1], [2], [3]. The central idea is to alert the system
to environmental changes, such as an increase in temper-
ature and then reduce the frequency of the processor with
DVFS, so as to consume less power. Although DVFS-based
techniques prove useful for reducing power consumption,

it has been shown that this strategy does incur a perfor-
mance penalty. This happens in two situations. First, some
architectures do not allow core-level scaling which implies
that slowing down an idle core, slows down all cores on
the chip, leading to overall lower performance. Another
issue arises, when the workload is dominated by parallel
applications. In this case, reducing the frequency of one core
(or thread) by 50% can cause the entire application to run
50% slower because of inter-thread dependencies. Thus, for
a scheduling strategy that aims to optimize for both power
and performance it is imperative that we devise a technique
that does not rely on DVFS as the primary mechanism for
controlling power consumption

A second issue with power-aware schedulers that has
surfaced in the last few years is that they have diverged
in two separate but related directions. Scheduling methods
have been proposed that aim to schedule single parallel ap-
plications on to large clusters [4], [5], [6]. These techniques
usually operate as runtime schedulers in the user-space and
tend to do much of the work statically, based on a priori
information (e.g., dependence DAG). On the other hand,
there has been some work that attacks the problem from the
OS-perspective and aim to dynamically schedule a workload
consisting of many different programs both parallel and
sequential. The latter approach has focused mostly on real-
time systems and often do not consider communication
or synchronization among parallel tasks [1]. Given current
architectural trends, it is clear that systems of all ranges,
will have to deal with an increasingly parallel workload.
Hence, for power-aware scheduling of current and future
architectures, it is crucial that we consider a marriage of
these two divergent strategies.

This paper describes the design and some of the chal-
lenges of a scheduling framework that addresses the two
issues mentioned above. We propose a framework that uses
DVFS only as a secondary technique, and instead relies
primarily on smart thread placement and migration at the
software-level. Furthermore, we propose the deployment
of a user-space runtime scheduler that provides support
and works in tandem with the OS-scheduler allowing us
to leverage the complementary strengths of the two units
into a single unified framework. The proposed framework
emphasizes aspects of scheduling that we believe are critical
to power-aware scheduling of parallel workloads.

1. Resource sharing: Thread executing on current ar-
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chitectures contend for resources at multiple levels. Since
cores waiting on a resource dissipate power without making
progress, contention of shared resources becomes a principal
bottleneck for parallel applications both in terms of perfor-
mance and energy efficiency. On the other hand, situations
that cause favorable sharing of resources lead to better
power utilization. This occurs when two threads sharing
a cache exhibit a high degree of locality, which reduces
offchip memory access, resulting in saved energy. Thus, it
is essential for a scheduler to not only consider when to
schedule a thread but where to schedule it as well. In parallel
to the work reported here, we are extending current work in
resource-conscious schedulers by constructing hierarchical
sharing information, derived through analytical models and
HW performance counter measurements.

2. Multi-objective scheduling algorithms: Power-aware
scheduling is a truly multi-dimensional problem since many
different factors can impact overall power consumption of a
parallel workload. Further, the objective might vary depend-
ing on context. For a real-time system the goal might be to
minimize power consumption while meeting task deadlines,
whereas a data center might exclusively focus on operating
under a thermal threshold. Regardless of the end goal, there
are many issues in intelligent scheduling that are overlap-
ping. Thus, in our framework, we propose the inclusion of
scheduling heuristics, that provide Pareto-normal solutions,
allowing us to schedule for multiple objectives such as
performance and power.

3. Extensibility and Adaptability: Given the changing
landscape of computer architecture it is important, that new
scheduling algorithms be both extensible and adaptable. For
this reason. we support a variety of scheduling techniques
including work-stealing (WS) [7], [8], complete fair share
(CFS), and multilevel feedback-queue scheduling (MFQ).
The software infrasturcture extends Linsched [9] and enables
fast implementation and evaluation of scheduling algorithms.
Furthermore, our simulator includes hooks for machine
learning algorithms [10] to make scheduling heuristics more
intelligent.

The rest of the paper is organized as follows : in Section 2
we review related work in power-aware scheduling, in Sec-
tion 3 we describe the proposed framework and highlight
its key features, in Section 4 we present preliminary evalu-
ation results of different scheduling algorithms with power
constraints; finally, we conclude and discuss future plans in
Section 5

2. Related Work
Much of the work in scheduling for power, has focused

on developing runtime strategies that aim to find an optimal
schedule for a single parallel application [4], [5], [6], [11].
General OS-based strategies for power-aware scheduling are
less common [12], [3].

The main approach to energy efficient scheduling has
been to use the technique of dynamic voltage and frequency
scaling (DVFS) to control the peak CPU temperature. Kim et
al. describe a DVFS-based scheduler for real-time parallel
applications running on large clusters [1]. In their model
they assume that no synchronizations are required between
concurrent threads but all sub-tasks must complete execution
before a job is considered complete. In addition, each job
must finish within a certain deadline. They use two heuristic
algorithms : earlier-deadline-first (EDF) and proportional
sharing and demonstrate through simulation results that
their techniques are effective in reducing power dissipation,
while maintaining the deadline constraints. Bautista et al.
present a power-aware scheduler for real-time applications
that aims to minimize power consumption while respecting
task deadlines. [2]. Wierman et al. provide theoretical bounds
on DVFS-based scheduling techniques [13]. They show
that in terms of performance and power, a static DVFS
scheduling strategy works as well as a dynamic strategy.
However, a dynamic strategy can yield benefits when the
objective is to make the system more reliable. Their sim-
ulator models a web server and tasks in their framework
represent network requests. Tasks are picked from a Poisson
distribution and arrive and leave at fixed intervals. Kashif
et al. propose a Priority-based Muti-level Feedback Queue
Scheduler (PMLFQS) for mobile devices. PMLFQS is a
work-conserving algorithm that uses different CPU speeds
for queues to minimize the overall energy consumed by the
CPU for each task. The paper, however, focuses on changes
to CPU speed to reflect energy efficiency on single core
processors. In contrast, we propose changes at the software
level, enabling a multicore operating system to incorporate
energy efficiency considerations into the scheduling algo-
rithm [14].

Recently Zong et al. have proposed two scheduling algo-
rithms for scheduling parallel applications on large clusters.
Their framework takes as input a precedence-constrained
task graph of the application to be scheduled and emits a
schedule that is predicted to be most energy-efficient [6].
Teodorescu and Torellas present a power management al-
gorithm that takes into account variations in voltage and
frequency among cores and attempt to improve performance
within a given power envelope. The algorithm uses linear
programming and is intended to complement the existing
OS-scheduling policies [15].

Banikazemi et al. present a user-space meta scheduler that
provides hints to the OS scheduler based on resource conges-
tion in cores. Resource congestion is estimated through HW
performance counter measurements. Their strategy shows a
14% overall improvement on the SPEC CPU workload [16].
One limitation of their approach is that they do not consider
memory affinity. Merkel et al. develop heuristics that sched-
ule threads based on resource sharing. They combine these
algorithms with DVFS based techniques. They evaluate their
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strategy on a workload with homogeneous sharing patterns
and show that their strategy is able to reduce the Energy
Delay Product (EDP) significantly [3]. The EDP is computed
based on the following formula

EDP = (Turnaround Time)2 × Energy Consumed

Boyd-Wickizer et al. propose a technique that operates at the
level of objects. The idea is to migrate threads from core-
to-core based on the data structures they access. bringing
threads closer to their data and thereby reducing memory
latency [12]. Tam et al. also propose a scheduler that
considers resource sharing on CMPs and SMTs[17]. How-
ever, their strategy does not take power into consideration.
Wu et al. propose LTEDF (Low Thermal Early Deadline
First), a temperature-aware task scheduling algorithm for
realtime multi-core systems. In LTEDF, a History Coolest
Neighborhood First (HCNF) task allocation algorithm is
employed to balance the temperature loads. When cores are
thermally saturated, task migration is performed to alleviate
thermal saturation. Zhou et al. proposes an algorithm that
is based on the observation that, given two tasks, one that
is hot (i.e., a high power consuming task) and one that
is cool (a low power consuming task), executing the hot
task before the cool one results in a lower final temperature
than the reversed order as long as executing the hot task
itself does not violate the thermal threshold [18]. Yang et
al. maximize performance by scheduling workloads to keep
the temperature below a given threshold. This threshold can
be the manufacturer-defined temperature threshold for the
physical chip, or an OS-defined threshold for a system to
stay within a thermal envelope [19]. Tang et al. propose
a combined hardware-software approach for thermal-aware
scheduling of applications in data centers [4].

3. Scheduling Framework
3.1 Overview

Fig. 1 outlines our proposed framework. A user-space
scheduler is combined with the OS-scheduler to handle
workloads that consist of both parallel and sequential tasks.
Performance monitors are used to extract information about
resource sharing from the platform. This resource sharing
information is fed into both the user-space scheduler and
the OS-scheduler. The user-space scheduler uses this infor-
mation to provide hints to the OS scheduler for scheduling
tasks on the next time slice. In our framework, we have two
representations of a task : one for the user-space and one for
the OS scheduler. In user-space a multithreaded program is
represented as a directed acyclic graph (DAG) of dynamic
instructions connected with dependency edges. The set of
dynamic instructions make a up a task node, which are in
turn connected by spawn edges to create the final dependence
DAG.

3.2 Capturing Resource Sharing
The processing units on scalable multicore systems are

organized in a hierarchy of nodes, chips, cores and thread
contexts and a variety of resources are shared at different
levels. For example, TLBs may be shared by hardware
threads running on the same core, an L2 cache may be shared
by two cores on a quad-core chip, and memory bandwidth is
generally shared by all cores on a chip. Favorable and non-
favorable sharing of these resources has significant impact
on power consumption. The need for incorporating resource
sharing into scheduling decisions has been recognized by
the OS community [12], [20], [21], [3]. However, the key
challenge in this regard has been the collection, extraction
and efficient delivery of this information to the operating
system. To address this issue, we take advantage of HW
performance counters. We probe a range of counters and use
analytical models to derive resource sharing information at
multiple levels. This includes information about inter-thread
data locality, cache conflicts and bandwidth congestion. Cost
estimates is assigned to each metric and the hierarchical
resource sharing information is stored as a persistent tree
structure. To utilize this information in scheduling we intro-
duce the notion of inter-thread affinity, which represents the
cost (or benefit) of coscheduling two threads on the same
chip (or node), where coscheduling implies the execution
of the two threads will overlap during some time slice.
Inter-thread affinity is computed by a runtime system that
consolidates and summarizes the RST information. This
data is stored in a power affinity graph (PAG) which is a
weighted undirected graph where vertices represent schedu-
lable tasks. An edge between two vertices denotes the impact
of scheduling the tasks on the same unit (e.g., chip) on
power consumption. Positive weights represent favorable
impact, whereas negative weights represent negative impact
on power efficiency. The PAG is probed by the OS scheduler
at the beginning of each time slice during scheduling. The
maintenance of this information entails some overhead and
hence we allow this option to be disabled.

3.3 Fine-grain Performance Monitoring
For power-aware scheduling on emerging multicore sys-

tems, it is evident that continuing with performance metrics
currently used by Linux systems (e.g., completion time,
waiting time, or single-core metrics like IPC) will not be
sufficient. Threads may behave differently based on what
other threads have been scheduled on the same chip, or
what threads were scheduled on the same core prior. Thus,
scheduling techniques need to extend the set of metrics that
are considered for making scheduling decisions. Modern
microprocessors provide a wealth of information on appli-
cation performance through a large set of HW performance
counters. For example, AMD Phenom exposes 119 major
native counter events, while Intel Nehalem exposes over
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Fig. 1: Scheduling Framework Overview

130. Software for probing these counters has matured sig-
nificantly and the use of performance counters has grown
in popularity in performance tuning and even compiler
optimizations[22]. Their role in scheduling has not been
explored to that great an extent, however. We propose to
include HW performance counters in our framework to
capture dynamic performance characteristics. They are used
to measure resource sharing and congestion (see Section 3.2)
and also get power estimates on a per-thread basis [23].
We intend to use the perfmon interface on Linux to collect
counter values and instrument the scheduler with calls to the
API so that it can take decision on the fly.

3.4 Scheduling Algorithms
We have performed a detailed analysis of several schedul-

ing policies. Following this analysis we are currently ex-
tending a range of scheduling algorithms to make them
energyconscious. We distinguish between two types of
scheduling policies, inter-core and intra-core, and augment
both types using a combination of execution metrics and
power consumption considerations. To further explain, con-
sider a multicore system. Each core is implementing an
internal scheduling policy (intra-core) such as first-in, first-
out (FIFO), round robin (RR), or highest response ratio
next (HRRN). In addition, an inter-core scheduling policy
such as work stealing (WS), Multi-level feedback queue
(MFQ), or complete fair sharing (CFS) may be used to
balance load among cores and eliminate core ’starvation’.
We have selected HRRN as the intra-core policy. Work
stealing has been selected as the inter-processor scheduling
policy. We have implemented several basic intra-processor
policies such as round robin, shortest remaining time as well
as the CFS and MFQ. Additionally, we are implementing
four different variants of the work-stealing scheduler (WS).
Although WS has proven effective in scheduling parallel
applications onto multicore systems, their role in power-
aware scheduling has not been explored. We believe that
by providing resource sharing information, extracted from
HW performance counter values, the scheduler can be made
effective in this context.

4. Preliminary Evaluation
4.1 Experimental Setup

As described in Section 3, we are extending the Linsched
simulator to include a multitude of intra-core and inter-
core scheduling policies. Each policy is implemented in two
ways. First, a ’classical’ power-agnostic method is imple-
mented. Next, a power-aware version of the policy is utilized.
In both cases, we measure execution and power metrics
and compare the power-agnostic performance (execution and
power consumption) to the performance of the power-aware
policy. We define ’success’ as the case where the power-
aware significantly improves the power consumption, e.g.,
by a factor of 2, while maintaining low impact on execution
performance, e.g., less than 10 percent performance degra-
dation. While the work on extending Linsched is ongoing,
we have performed an initial set of experiments utilizing an
in-house simple scheduling simulator and incorporated basic
intra-processor policies including round robin (RR), shortest
remaining time first (SRTF), and the highest response ratio
next (HRRN) scheduling policies. In each case, we run
the simulation ten times with different seeds for random
selection of parameters such as task arrival rate, task service
time (the amount of time a task is expected to spend on
the system), and task power consumption. We run each
simulation with 50,000 tasks generated over the span of
1000 seconds. An average arrival time of 5 tasks per second
with ah average service time of 0.1 seconds and average
power consumption of 5 ’power units’ are utilized. Wherever
applicable, we used a time slice of 0.1 seconds and an
eviction threshold of 0.5 power units which enforces a large
number of evictions in preemptive policies such as round
robin.

4.2 Overall Performance
Table 1 summarizes the performance of the three schedul-

ing strategies. For each scheduling policy, we present data
on three metrics : total energy consumed, turnaround time
and EDP. Each metric is a ratio of the power-agnostic policy
over the power-aware version. Thus, a value of less than one
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Table 1: Power-aware vs. power-agnostic performance com-
parison

RR SRTF HRRN
Energy Consumed Ratio 0.93 0.51 0.72
Turnaround Ratio 0.97 1.46 0.97
EDP Ratio 0.88 1.07 0.67

indicates that the power-aware version was able to improve
performance or energy consumption.

From the results in Table 1, we observe that overall the
power-aware heuristic in HRRN shows the most marked
improvement over the power-agnostic version. This policy
causes a significant reduction in energy consumed, coupled
with a small improvement in turnaround time. As a result,
this strategy obtains the lowest EDP ratio. SRTF is most-
effective in reducing overall energy consumption but it pays
a significant penalty in terms of wait time. The power-
aware version of RR yields a better EDP ratio than SRTF.
Although RR is not able to have a significant effect on energy
consumption, it has no negative effect on turnaround time.

4.3 Impact of Eviction Threshold
The power consumption difference between power-aware

and power-agnostic policies of RR is quite small. This
insignicant change can be attributed to the values of the
eviction threshold. In our simulations, an eviction threshold
is the amount of energy a task is allowed to consume before
it is evicted from the CPU. The eviction thresholds are
user-defined values, randomly chosen at the beginning of a
simulation. We speculate that larger values for the eviction
threshold caused tasks to be switched at the time slice rather
than when the task has consumed too much energy. To
verify this claim, we ran a set of simulations with different
eviction thresholds. Results from these runs are presented in
Fig. 2. As we can see, with an RR policy there is a direct
correlation between energy consumed and eviction threshold.
For larger values of the eviction threshold, tasks are allowed
to spend more time on the CPU, leading to overall higher
energy consumption. Thus, the RR policy can be made more
effective by reducing the eviction threshold. However, this
may lead to an increase in turnaround time.

4.4 Impact of Power Dissipation
The SRTF power-aware policy is most successful in

reducing overall energy consumption of the workload. SRTF
prioritizes tasks based on the following heuristic:

task ← t : min(tp × ts)

where, tp is the power consumeed and ts is the remaining
service time of the task in question. Thus, tasks that get
to run first are the ones with smaller energy demands. In
the power-agnostic version, tasks that get to execute first
are tasks with least service time, even if they have higher
power demands. To measure the impact of power demands
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Fig. 2: Round Robin Efficiency with Variations in Eviction
Threshold

on SRTF, we ran simulations where the power demands of
individual tasks in the workload are varied. The results of
these experiments are shown in Fig. 3. We notice that when
there are many tasks in the workload with lower demands it
leads to a significant reduction in energy consumption than
when we have many tasks with higher power and wait time
demands.
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Fig. 3: SRTF efficiency with power variations in workload

4.5 Impact of Service Time
Service time is another important parameter for schedul-

ing policies. The HRRN policy considers both the energy
demands and the remaining service time in prioritizing tasks
for execution. Because of this it outperforms both RR and
SRTF. As the service times are increased (i.e., there are more
long-running tasks in the workload), the efficiency of HRRN
also improves, as can be seen in Fig. 4

5. Conclusions and Future Work
Maintaining a homogeneous multicore system within an

allowable power envelope and balancing the power without
drastically affecting performance is the problem addressed in
this paper. For this end, we are developing scheduling poli-
cies that integrate power metrics with performance metrics.
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As a first step towards the evaluation of the utility of power-
aware policies, we have implemented several basic intra-core
policies using a simple scheduling simulator and performed
experiments with EDP based power-aware policies. The
experiments show that a power-aware policy has potential for
noticeable improvement in power consumption with minor
degradation in turnaround time.
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Abstract - Distributed computing infrastructures support 

system and network fault-tolerance, e.g., grids and clouds. 

They transparently repair and prevent communication and 

system software errors. They also allow duplication and 

migration of jobs and data to prevent hardware failures. 

However, only limited work has been done so far on 

application resilience, i.e., the ability to resume normal 

execution after errors and abnormal executions in distributed 

environments. This paper addresses issues in application 

resilience, i.e., fault-tolerance to algorithmic errors and to 

resource allocation failures. It addresses solutions for error 

detection and management. It also overviews a platform used 

to deploy, execute, monitor, restart and resume distributed 

applications on grids and cloud infrastructures in case of 

unexpected behavior. 

 

Keywords: Resilience, fault-tolerance, distributed computing, 

e-Science applications, high-performance computing, 

workflows. 

 

1 Introduction 

  This paper overviews some solutions for application 

errors detection and management when running on distributed 

infrastructures. A platform is presented relying on a workflow 

system interfaced with a grid infrastructure to model cloud 

environments. Section 2 gives some definitions of terms. 

Section 3 goes into details concerning a platform based on a 

workflow management system to support application 

resilience on distributed infrastructures, e.g., grids and clouds. 

Ttwo testcases illustrating resilience to hardware and sysem 

errors, and resilience to application errors respectively are 

described in Section 4, where an algorithm-based fault-

tolerant approach is illusrated. Section 5 is a conclusion. 

 

2 Definitions 

 This section provides some definitions of terms used in this 

paper in order to make clear some commonly used words, and 

ultimately avoid confusion related to the complex computer 

systems ecosystems [17]. 

The generic term error is used to characterize abnormal 

behavior, originating from hardware, operating systems and 

applications that do not follow prescribed protocols and 

algorithms. Errors can be fatal, transient and warnings, 

depending on their criticity level. Because sophisticated 

hardware and software stacks are operating on all production 

systems, there is a need to classify the corresponding 

concepts.  

A failure is different from a process fault, e.g., computing a 

bad expression. Indeed, a system failure does not impact the 

correct logics of the application process at work, and should 

not be handled by it, but by the system error-handling software 

instead: “failures are non-terminal error conditions that do not 

affect the normal flow of the process” [11]. 

However, an activity can be programmed to throw a fault 

following a system failure, and the user can choose in such a 

case to implement a specific application behavior, e.g., a 

predefined number of activity retries or a termination. 

Application and system software can raise exceptions when 

faults and failures occur. The exception handling software 

then handles the faults and failures. This is the case for the 

YAWL workflow management system [19][20], where so-

called dedicated exlets can be defined by the users [21] . They 

are components dedicated to the management of abnormal 

application or system behavior. The extensive use of these 

exlets allows the users to modify the behavior of the 

applications on-line, without stopping the running processes. 

Further, the new behavior is stored as a new component of the 

application workflow, which incrementally modifies its 

specifications. It can therefore be modified dynamically to 

handle changes in the user and application requirements. 

Fault-tolerance is a generic term that has long been used to 

name the ability of systems and applications to cope with 

errors. Transactional systems and real-time software for 

example need to be fault-tolerant [1]. Fault-tolerance is 

usually implemented using periodic checkpoints that store the 

current state of the applications and the corresponding data. 

However, this checkpoint definition does not usually include 

the tasks execution states or contexts, e.g., internal loop 

counters, current array indices, etc. This means that 

interrupted tasks, whatever the causes of errors, cannot be 

restarted from their exact execution state immediately prior to 

the errors. 

We assume therefore that the recovery procedure must restart 

the failed tasks from previously stored elements in the set of 

existing checkpoints. A consequence is that failed tasks cannot 
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be restarted on the fly, following for example a transient non-

fatal error. They must be restarted exclusively from previously 

stored checkpoints. 

Application robustness is the property of software that are 

able to survive consistently from data and code errors. This 

area is a major concern for complex numeric software that 

deal with data uncertainties. This is particularly the case for 

simulation applications [7]. 

Resilience is also a primary concern for the applications faced 

to system and hardware errors. In the following, we include 

both application (external) fault-tolerance and (internal) 

robustness in the generic term resilience [9]. This is fully 

compatible with the following definition of resilience: 

“Resilience is a measure of the ability of a computing system 

and its applications to continue working in the presence of 

system degradations and failures” [30]. 

In the following section, a platform for high-performance 

distributed computing is described (Section 3.2). Examples of 

application resilience are then given. They address system 

faults (Section 4.1), application failures (Section 4.2) and 

algorithm-based fault-tolerance (ABFT) (Section 4.3). 

 

3 Application Resilience 

3.1 Overview 

 Several proposals have emerged recently dedicated to 

resilience and fault management in HPC systems [14][15][16]. 

The main components of such sub-systems are dedicated to 

the management of error, ranging from early error detections 

to error assessment, impact characterization, healing 

procedures concerning infected codes and data, choice of 

appropriate steps backwards and effective low overhead 

restart procedures. 

General approaches which encompass all these aspects are 

proposed for Linux systems, e.g., CIFTS [5]. More dedicated 

proposals focus on multi-level checkpointing and restart 

procedures to cope with memory hierarchy (RAM, SSD, 

HDD), hybrid CPU-GPU hardware, multi-core hardware 

topology and data encoding to optimize the overhead of 

checkpointing strategies, e.g., FTI [22]. Also, new approaches 

take benefit of virtualization technologies to optimize 

checkpointing mechanisms using virtual disks images on cloud 

computing infrastructures [23], and checkpoint on failure 

approaches [32]. The goal is to design and implement low 

overhead, high frequency and compact checkpointing 

schemes. 

Two complementary aspects are considered here: 

• The detection and management of failures inherent to the 

hardware and software systems used 

• The detection and management of faults emanating from the 

application code itself 

Both aspects are different and imply different system 

components to react. However, unforeseen or incorrectly 

handled application errors may have undesirable effects on the 

execution of system components. The system and hardware 

fault management components might then have drastic 

procedure to confine the errors, which can lead to the 

application aborting. This is the case for out of bound 

parameter and data values, incorrect service invocations, if not 

correctly taken care of in the application codes. 

This raises an important issue in algorithms design. 

Parallelization of numeric codes on HPC platforms is today 

taken into account in an expanding move towards petascale  

and future exascale computers. But so far, only limited 

algorithmic approaches take into account fault-tolerance from 

the start. 

Generic system components have been designed and tested for 

fault-tolerance. They include fault-tolerance backpanes [5] 

and fault-tolerance interfaces [22]. Both target general 

procedures to cope with systematic monitoring of hardware, 

system and applications behaviors. Performance consideration 

limit the design options of such systems where incremental 

and multi-level checkpoints become the norm, in order to 

alleviate the overhead incurred by checkpoints storage and 

CPU usage. These can indeed exceed 25% of the total wall 

time requirements for scientific applications [22]. Other 

proposals take advantage of virtual machines technologies to 

optimize checkpoints storage using incremental (“shadowed” 

and “cloned”) virtual disks images on virtual machines 

snapshots [23] or checkpoint on failures protocols [32]. 

 

3.2 Distributed Platform 

 The distributed platform is built by the connection of two 

components:  

• workflow management system for application definition, 

deployment, execution and monitoring [1][2];  

• middleware allowing for distributed resource reservation, 

and execution of the applications on a wide-area network. 

This forms the basis for the cloud infrastructure. 

 

3.2.1 Distributed workflow 

 

The applications are defined using a workflow management 

system, i.e., YAWL [20]. This allows for dataflow and control 

flow specifications. It allows parameter definition and passing 

between application tasks. The tasks are defined incrementally 

and hierarchically. They can bear constraints that trigger 

appropriate code to cope with exceptions, i.e., exlets, and 

user-defined real-time runtime branchings. This allows for 

situational awareness at runtime and supports user 

interventions, when required. This is a powerful tool to deal 

with fault-tolerance and application resilience at runtime [9]. 

 

3.2.2 Middleware 

 

The distribution of the platform is designed using an open-

source middleware, i.e., Grid5000 [1]. This allows for 

reservation, deployment and execution of customized systems 

and application configurations. The Grid5000 nationwide 

infrastructure currently includes 12 sites in France and abroad, 

19 research labs, 15 clusters, 1500 nodes, 8600 cores, 
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connected by a 10Gb/s network. The resource reservations, 

deployment and execution of the applications are made 

through standardized calls to specific system libraries. 

Because the infrastructure is shared between many research 

labs, resource reservation and job executions, i.e., 

applications, are queued with specific priority considerations. 

 

 

Figure 1. Distributed application workflow. 

 

4 Experiments 

 Experiments are defined, run and monitored using the 

standard YAWL workflow system interface [6][19]. They 

invoke automatically or manually the tasks, as defined in the 

application specification interface. Tasks in turn invoke the 

various executable components tranparently through the 

middleware, using Web services [21]. They are standard in 

YAWL and used to invoke remote executable codes specific 

to each task. The codes are written in any programming 

language, ranging from Python to Java and C++. Remote 

script invocations with parameters are also possible. Parameter 

passing and data exchange, including files, between the 

executable codes are standardized in the workflow interface. 

Data structures are extendible user-defined templates to cope 

with all potential applications. As mentioned in the previous 

sections (Section “Workflow”, above), constraints are defined 

and rules trigger component tasks based on data values 

conditional checks at runtime. The testcases are distributed on 

a network of HPC clusters using the Grid5000 infrastructure. 

The hardware characteristics of the clusters are different. The 

application performance when running on various clusters are 

therefore different.  

Two complementary testcases are described in the following 

sections. The first one focuses on resilience to hardware and 

systems failures, e.g., memory overflow (Section 4.1). The 

second one is focused on resilience to application faults, e.g., 

runtime error of a particular application component (Section 

4.2). It is supported by a fault-tolerant algorithm (Section 4.3). 

 

4.1 Resilience to hardware or system failures 

We use the infrastructure to deploy the application tasks on 

the various clusters and take advantage of the different cluster 

performance characteristics to benefit from load-balancing 

techniques combined with error management. This approach 

therefore combines optimal resource allocation with the 

management of specific hardware and system errors, e.g., 

memory overflow, disk quota exceeded. 

The automotive testcase presented in this section includes 17 

different rear-mirror models tested for aerodynamics 

optimization. They are attached to a vehicle mesh of 22 

million cells. A reference simulation was performed in 2 days 

on a 48 CPU non-distributed cluster with a total of 144 GB 

RAM. The result was a 2% drag reduction for the complete 

vehicle. The mesh will be eventually refined to include up to 

35 million cells. A DES (Detached Eddy Simulation) flow 

simulation model is used. 

The tasks include, from left to right in Figure 1: 

• An initialization task for configuring the application (data 

files, optimization codes among which to choose…) 

• A mesh generator producing the input data to the optimizer 

from a CAD file 

• An optimizer producing the optimized data files (e.g., 

variable vectors) 

• A partitioner that decomposes the input mesh into several 

sub-meshes for parallelization 

• Each partition is input to a solver, several instances of which 

work on particular partitions 

• A cost function evaluator, e.g., aerodynamic drag  

• A result gathering task for output and data visualization 

• Error handlers in order to process the errors raised by the 

solvers 

The optimizer and solvers are implemented using MPI. This 

allows highly parallel software executions. Combined with the 

parallelization made possible by the various mesh partitions, 

and the different geometry configurations of the testcase, it 

follows that there are three complementary parallelization 

levels in this testcase, which allow to fully benefit from the 

HPC clusters infrastructure. 

Should a system failure occur during the solver processes, an 

exception is raised by the tasks and they transfer the control to 

the corresponding error handler. This one will process the 

failures and trigger the appropriate actions, including: 

• Migrate the solver task and data to another cluster, in case of 

CPU time limit or memory overflow: this is a load-balancing 

approach 

• Retry the optimizer task with new input parameters requested 

from the user, if necessary (number of iterations, switch 

optimizer code…) 

• Ignore the failure, if applicable, and resume the solver task 

This approach merges two different and complementary 

techniques: 

• Application-level error handling 

• A load-balancing approach to take full benefit of the various 

cluster characteristics, for best resources utilization and 

application performance 
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Finally, the testbed implements the combination of a user-

friendly workflow system with a grid computing infrastructure. 

It includes automatic load-balancing and resilience techniques. 

It therefore provides a powerful cloud infrastructure, 

compliant with the “Infrastructure as a Service” approach 

(IaaS). 

 

Figure 2. Distributed parallel application. 

4.2 Resilience to application faults 

An important issue in achieving resilient applications is to 

implement fault-tolerant algorithms. Programming error-aware 

codes is a key feature that supports runtime checks, including 

plausibility tests on variables values at runtime and quick tests 

to monitor the application behavior. Should unexpected values 

occur, the users can then pause the applications, analyzes the 

data and take appropriate actions at runtime, without aborting 

the applications and restarting them all over again. 

It is also important that faults occurring in a particular part of 

the application code do not impair other running parts that 

behave correctly. This is fundamental to distributed and 

parallel applications, particularly for e-Science application 

running for days and weeks on petabytes of data. Thus, the 

correct parts can run to completion and wait for the erroneous 

part to restart and resume, so that the whole application can be 

run to satisfactory results. This is mentioned as local recovery 

in [30]. 

This section details an approach to design and implement a 

fault-tolerant optimization algorithm which is robust to 

runtime faults on data values, e.g., out of bounds values, 

infinite loops, fatal exceptions. 

In contrast with the previous experiment (Section 3.3.1), 

where the application code was duplicated on each computing 

node and data migrated for effective resources utilization and 

robustness with respect to hardware and system failures, this 

new experiment is based on a fully distributed and parallel 

optimization application which is inherently resilient to 

application faults. 

It is based on several parallel branches that run 

asynchronously and store their results in different files, 

providing the inherent resilience capability. This is 

complemented by a fault-tolerant algorithm described in the 

next section (Section 3.3.3). 

The application is designed to optimize the geometry of an air-

conditioner [24]. It uses both a genetic algorithm and a 

surrogate approach that run in parallel and collaborate to 

produce pipe geometries fitting best with two optimization 

objectives: minimization of the pressure loss at the output of 

the pipe and minimization of the flow distribution at the output 

(Figures 2). The complete formal definition and a detailed 

description of the application are given in [24]. 

Solutions to the optimization goals are formed by several 

related elements corresponding to the different optimization 

criteria. In case of multi-objective optimization, as is the case 

here with the minimization of pressure loss throughout the air-

conditioner pipe and minimization of speed variations at the 

output of the pipe, there are two objectives. There are multiple 

optimal solutions than can be vizualised as Pareto fronts. 

 

 

Figure 3. Fault-tolerant algorithm: Part A. 

Approximate solutions using the surrogates (Figure 3: Part A) 

and exact solutions using the genetic algorithm (Figure 4: Part 

B) run asynchronously in parallel to evaluate temporary partial 

solutions. 

When a surrogate is deemed correct, i.e., its accuracy is 

below-user defined thresholds with respect to the fitness 

criteria, it is stored in the exact file and tagged “provisional”. 

Future evaluations by the exact genetic algorithm will use it 

together with the other exact values to improve the future 

exact solutions (Figure 4, Part B).  The genetic algorithm will 

eventually supersede the provisional solutions. In contrast, 

surrogates values are computed as long as “better” exact 

values are not produced. 

Each part stores its results in a specific file (Figure 7: Part E 

and Part F). When the exact solutions satisfy predefined 

accuracy criteria with respect to the optimization objectives, 

they are stored in the final results file (Figure 7, Part G).  

Each part in the application workflow implements an 

asynchronous parallel loop that is driven by the optimizer. 

Each loop runs independently of the other. Each loop is itself 

parallelized by multiple instances of the Surrogates (Figure 5: 

Part C) and Exact (Figure 6: Part D) evaluation codes that 

compute potential solution in parallel. Each solution is a 

candidate geometry for the air-conditioner pipe optimizing the 

fitness criteria, e.g., pressure loss and flow speed variations at 

the output of the pipe. 

The final results file stores the combined values for the 

optimal solutions (Figure 7: Part G). There are multiple 

optimal solutions, hence the need for a specific file to store 

them. 

 

4.3 Fault-tolerant algorithm 

The solution to resilience for the application described in 

the previous section (Section 4.2) is the fault-tolerant 

algorithm implemented to compute the solutions to the multi-
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objective optimization problem. This illustrates the algorithm-

based fault-tolerance approach (ABFT) used here. 

 

 

Figure 4. Fault-tolerant algorithm: Part B. 

As mentioned above, the implementation of the application is 

distributed, parallel and asynchronous. It is distributed 

because the tasks are deployed on the various sites where the 

application codes run. It is parallel because these tasks can run 

multiple instances simultaneously for the computations of the 

surrogates and the exact solutions. It is asynchronous because 

the surrogates and exact solutions are computed in two distinct 

parallel loops and produce their results whatever the state of 

the other loop. This paves the way to implement an inherently 

fault-tolerant algorithm which is described in more details in 

this section. 

 

Figure 5. Fault-tolerant algorithm: surrogate branch. 

There are four complementary levels of parallelism running 

concurrently: the surrogate (Part A) and exact (Part B) parts 

and inside each part, the multiple instances of approximate 

(Part C) and exact solutions (Part D) that are computed in 

parallel.  

Faults in either part A and B do not stop the other part. 

Further, faults in particular instances of the approximate and 

exact solutions computations do not stop the other instances 

computing the other solutions in parallel. 

Indeed, surrogates and exact solutions are computed in 

parallel using multiple instances of the task “Surrogates” and 

“Exact” in part C and Part D of the workflow (Figures 5 and 

6). Also, the faults in a particular instance inside parts C and D 

do not stop the computation of the other solutions running in 

parallel inside those parts.  

Further, the three independent files used to store the 

surrogates, the exact solutions and the final solutions 

respectively allow for the restart of whatever part has failed 

without impacting any other file (Figure 7). The content of the 

three files are indeed the checkpoints where the failed parts 

can restart from. This allows for effective checkpointing and 

restart mechanisms. Errors need not the whole applications to 

be restarted from scratch. They can be resumed using the most 

recent surrogates and exact solutions already computed.  

 

Figure 6. Fault-tolerant algorithm: exact branch. 

The vulnerability of the files to faults and failures is also a 

critical issue for application resilience. Most file management 

systems provide transaction and back-up capabilities to 

support this. Faults and failures impacting the Part E and Part 

F files will have little impact since the lost data they contained 

is automatically recomputed by the Part C and Part D loops 

respectively, which take into account the current provisional 

and exact solutions stored. Lost data in either file after a 

restart will therefore be recomputed seamlessly. The overhead 

is therefore only the recalculation of the lost data, without the 

need for a specific recovery procedure. 

The most critical part is the Part G file which stores the final 

optimal solutions. It should be duplicated on the fly to another 

location for best availability after errors. But the final results 

already stored in the Part G file are not impacted by faults and 

failures in either Part A, B, E and F. They need not be 

computed again. 

 

Figure 7. Fault-tolerant algorithm: result files . 

 

5 Conclusion 

High-performance computing and cloud infrastructures are 

today commonly used for running large-scale e-Science 

applications. 

 This has raised concerns about system fault-tolerance and 

application resilience. Because exascale computers are 

emerging and cloud computing is commonly used today, the 

need for supporting resilience becomes even more stringent.  

New sophisticated and low-overhead functionalities are 

therefore required in the hardware, systems and application 

layers to support effectively error detection and recovery. 

This paper defines concepts, details current issues and 

sketches solutions to support application resilience. Our 

approach is currently implemented and tested on simulation 

testcases using a distributed platform that operates a workflow 

management system interfaced with a grid infrastructure, 

providng a seamless cloud computing environment.  
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The platform supports functionalities for application 

specification, deployment, execution and monitoring. It 

features resilience capabilities to handle runtime errors. It 

implements the cloud computing “Infrastructure as a Service” 

paradigm using a user-friendly application workflow interface. 

Two example testcases implementing resilience to hardware 

and system failures, and also resilience to application faults 

using algorithm-based fault-tolerance (ABFT) are described. 

Future work is still needed concerning the recovery of 

unforeseen errors occuring simultaneously in the applications, 

system and hardware layers of the platform, which  raise open 

and challenging problems [31]. 
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Abstract 
 

      This paper defines the Non-Blocking Atomic 

Commitment problem in a message-passing 

asynchronous system and determines a failure detector 

to solve the problem. This failure detector, which we 

call the modal failure detector star, and which we 

denote by M*, is strictly weaker than the perfect failure 

detector P but strictly stronger than the eventually 

perfect failure detector ◇P. The paper shows that at 

any environment, the problem is solvable with M*. 

 

1. Introduction 
 

1.1 Background 

We address the fault-tolerant Non-Blocking Atomic 

Commitment problem, simply NB-AC, in an 

asynchronous distributed system where the 

communication between a pair of processes is by a 

message-passing primitive, channels are reliable and 

processes can fail by crashing. In distributed systems, 

to ensure transaction failure atomicity in a distributed 

system, an agreement problem must be solved among a 

set of participating processes. This problem, called the 

Atomic Commitment problem (AC) requires the 

participants to agree on an outcome for the transaction: 

commit or abort [5,11,12,17]. When it is required that 

every correct participant eventually reach an outcome 

despite the failure of other participants, the problem is 

called Non-Blocking Atomic Commitment (NB-AC) 

[2,6].  

The problem of Non-Blocking Atomic Commitment 

becomes much more complex in distributed systems 

(as compared to single-computer systems) due to the 

lack of both a shared memory and a common physical 

clock and because of unpredictable message delays. 

Evidently, the problem cannot be solved 

deterministically in a crash-prone asynchronous system 

without any information about failures. There is no 

way to determine that a process is crashed or just slow. 

Clearly, no deterministic algorithm can guarantee Non-

Blocking Atomic Commitment simultaneously. In this 

sense, the problem stems from the famous 

impossibility result that consensus cannot be solved 

deterministically in an asynchronous system that is 

subject to even a single crash failure [7]. 

 

1.2 Failure Detectors  

In this paper, we introduced a modal failure detector 

M* and showed that the Non-Blocking Atomic 

Commitment problem is solvable with it in the 

environment with majority correct processes. The 

concept of (unreliable) failure detectors was introduced 

by Chandra and Toueg [3,4], and they characterized 

failure detectors by two properties: completeness and 

accuracy. Based on the properties, they defined several 

failure detector classes: perfect failure detectors P, 

weak failure detectors W, eventually weak failure 

detectors W and so on. In [3] and [4] they studied 

what is the "weakest" failure detector to solve 

Consensus. They showed that the weakest failure 

detector to solve Consensus with any number of faulty 

processes is Ω+ and the one with faulty processes 

bounded by n/2 (i.e., less than n/2 faulty processes) 

is W. After the work of [8], several studies followed. 

For example, the weakest failure detector for stable 

leader election is the perfect failure detector P [4], and 

the one for Terminating Reliable Broadcast is also P 

[1,3].  

Recently, as the closest one from our work, 

Guerraoui and Kouznetsov showed a failure detector 

class for mutual exclusion problems that is different 

from the above weakest failure detectors. The failure 

detector, called the Trusting failure detector, satisfies 

the three properties, i.e., strong completeness, eventual 

strong accuracy and trusting accuracy so that it can 

solve the mutual exclusion problem in asynchronous 

distributed systems with crash failure. And they used 
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the bakery algorithm to solve the mutual exclusion 

problem with the trusting failure detector.   

 

1.3 Contributions 

How about the Non-Blocking Atomic Commitment 

problem? More precisely, what is the weakest failure 

detector to solve the Non-Blocking Atomic 

Commitment problem? The mutual exclusion 

algorithm is completely different from the NB-AC in 

which the order of getting the critical section is decided 

based on a ticket order. In contrast to the mutual 

exclusion algorithm, the NB-AC algorithm should 

receive the messages from all members of a group to 

make a decision. 

In general, Non-Blocking Atomic Commitment 

algorithms assume that the system is either a failure-

free model [13,14,16] or a synchronous model in 

which (1) if a process crash, it is eventually detected by 

every correct process and (2) no correct process is 

suspected before crash [13,16]: with the conjunction of 

(1) and (2), the system is assumed to equipped with the 

capability of the perfect failure detector P [3]. In other 

words, the perfect failure detector P is sufficient to 

solve the Non-Blocking Atomic Commitment problem. 

But is P necessary? For the answer to the question, we 

present a modal failure detector star M*, that is a new 

failure detector we introduce here, which is strictly 

weaker than P (but strictly stronger than ◇P, the 

eventually perfect failure detector of [3]). We show 

that the answer is “no” and we can solve the problem 

using the modal failure detector star M*.  

Roughly speaking, failure detector M* satisfies (1) 

eventual strong accuracy and (2) strong completeness 

together with (3) modal accuracy, i.e., initially, every 

process is suspected, after that, any process that is once 

confirmed to be correct is not suspected before crash. 

If M* suspects the confirmed process again, then the 

process has crashed. However, M* might suspect 

temporarily every correct process before confirming 

it’s alive as well as might not suspect temporarily a 

crashed process before confirming it’s crash. 

Intuitively, M* can thus make at least one mistake per 

every correct process and algorithms using M* are, in 

terms of a practical distributed system view, more 

useful than those using P.  

We here present the algorithm to show that M* is 

sufficient to solve Non-Blocking Atomic Commitment 

and it is inspired by the well-known Non Blocking 

Atomic Commit Protocols of D. Skeen [4,7].  

 

 

 

 

 

1.4 Road Map 

The rest of the paper is organized as follows. Section 

2 addresses motivations and related works and Section 

3 overviews the system model. Section 4 introduces 

the Modal failure detector star M*. Section 5 shows 

that M* is sufficient to solve the problem, respectively. 

Section 6 concludes the paper with some practical 

remarks. 

 

2. Motivations and Related Works  
 

Actually, the main difficulty in solving the Non-

Blocking Atomic Commitment problem in presence of 

process crashes lies in the detection of crashes. As a 

way of getting around the impossibility of Consensus, 

Chandra and Toug extended the asynchronous model 

of computation with unreliable failure detectors and 

showed in [4] that the FLP impossibility can be 

circumvented using failure detectors. More precisely, 

they have shown that Consensus can be solved 

(deterministically) in an asynchronous system 

augmented with the failure detector S (Eventually 

Strong) and the assumption of a majority of correct 

processes. Failure detector S guarantees Strong 

Completeness, i.e., eventually, every process that 

crashes is permanently suspected by every process, and 

Eventual Weak Accuracy, i.e., eventually, some correct 

process is never suspected. Failure detector S can 

however make an arbitrary number of mistakes, i.e., 

false suspicions.  

A Non-Blocking Atomic Commitment problem, 

simply NB-AC, is an agreement problem so that it is 

impossible to solve in asynchronous distributed 

systems with crash failures. This stems from the FLP 

result which mentioning the consensus problem can’t 

be solved in asynchronous systems. Can we also 

circumvent the impossibility of solving NB-AC using 

some failure detector? The answer is of course “yes”. 

The NB-AC algorithm of D. Skeen [16] solves the NB-

AC problem with assuming that it has the capability of 

the failure detector P (Perfect) in asynchronous 

distributed systems. This failure detector ensures 

Strong Completeness (recalled above) and Strong 

Accuracy, i.e., no process is suspected before it crashes 

[2]. Failure detector P does never make any mistake 

and obviously provides more knowledge about failures 

than S.  

But it is stated in [7] that Failure detector S cannot 

solve the NB-AC problem, even if only one process 

may crash. This means that NB-AC is strictly harder 

than Consensus, i.e., NB-AC requires more knowledge 

about failures than Consensus. An interesting question 

is then “What is the weakest failure detector for 
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solving the NB-AC problem in asynchronous systems 

with unreliable failure detectors?” In this paper, as the 

answer to this question, we show that there is a failure 

detector that solves NB-AC weaker than the Perfect 

Failure Detector. This means that the weakest failure 

detector for NB-AC is not a Perfect Failure Detector P. 

 

3. Model  
 

We consider in this paper a crash-prone 

asynchronous message passing system model 

augmented with the failure detector abstraction [3].  

 

3.1 The Non-Blocking Atomic Commitment 

problem 
 

Atomic commitment problems are at the heart of 

distributed transactional systems. A transaction 

originates at a process called the Transaction Manager 

(abbreviated TM) which accesses data by interacting 

with various processes called Data Managers 

abbreviated DM. The TM initially performs a begin 

transaction operation, then various write and read 

operations by translating writes and reads into 

messages sent to the DM and initially an end-

transaction operation. To ensure the so-called failure 

atomicity property of the transaction, all DMs on 

which write operations have been performed, must 

resolve an Atomic Commitment problem as part of the 

end-transaction operation. These DMs are called 

participants in the problem. In this paper we assume 

that the participants know each other and know about 

the transactions. 

The atomic commitment problem requires the 

participants to reach a common outcome for the 

transaction among two possible values: commit and 

abort. We will say that a participant AC-decides 

commit (respectively AC-decides abort). The write 

operations performed by the DMs become permanent if 

and only if participants AC-decide commit. The 

outcome AC-decided by a participant depends on votes 

(yes or no) provided by the participants. We will say 

that a participant votes yes (respectively votes no). 

Each vote reflects the ability of the participant to 

ensure that its data updates can be made permanent.  

We do not make any assumption on how votes are 

defined except that they are not predetermined. For 

example, a participant votes yes if and only if no 

concurrency control conflict has been locally detected 

and the updates have been written to stable storage. 

Otherwise the participant votes no. A participant can 

AC-decide commit only if all participants vote yes. In 

order to exclude trivial situations where participants 

always AC-decide abort, it is generally required that 

commit must be decided if all votes are yes and no 

participant crashes. We consider the Non-Blocking 

Atomic Commitment problem, NB-AC, in which a 

correct participant AC-decides even if some 

participants have crashed, NB-AC is specified by the 

following conditions: 

- Uniform-Agreement: No two participants AC-

decide different outcomes. 

- Uniform-Validity: If a participant AC-decides 

commit, then all participants have voted yes.  

- Termination: Every correct participant eventually 

AC-decides. 

- Non-Triviality: If all participants vote yes and 

there is no failure, then every correct participant 

eventually AC-decides commit. 

 

Uniform-Agreement and Uniform-Validity are 

safety conditions. They ensure the failure atomicity 

property of transactions. Termination is a liveness 

condition which guarantees non-blocking. Non-

Triviality excludes trivial solutions to the problem 

where participants always AC-decide abort. This 

condition can be viewed as a liveness condition from 

the application point of view since it ensures progress, 

i.e. transaction commit under reasonable expectations 

when no crash and no participant votes no. 

 

4. The modal failure detector star M* 
 

Each module of failure detector M* outputs a subset 

of the range 2


. Initially, every process is suspected. 

However, if any process is once confirmed to be 

correct by any correct process, then the confirmed 

process id is removed from the failure detector list of 

M*. If the confirmed process is suspected again, the 

suspected process id is inserted into the failure detector 

list of M*. The most important property of M*, 

denoted by Modal Accuracy, is that a process that was 

once confirmed to be correct is not suspected before 

crash. Let HM be any history of such a failure detector 

M*. Then HM(i,t) represents the set of processes that 

process i suspects at time t. For each failure pattern F, 

M(F) is defined by the set of all failure detector 

histories HM that satisfy the following properties: 

 

 Strong Completeness: There is a time after which 

every process that crashes is permanently suspected by 

every correct process:  

- i,jΩ, icorrect(F), jF(t),  t’’:t’>t’’, 

jH(i, t’). 

 Eventual Strong Accuracy: There is a time after 

which every correct process is never suspected by 

any correct process. More precisely:  
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- i,jΩ,icorrect(F),  t:t’>t, j correct(F), 

j H(i, t’). 

 Modal Accuracy: Initially, every process is suspected. 

After that, any process that is once confirmed to be 

correct is not suspected before crash. More precisely: 

- i,jΩ: jH(i,t0), t0< t< t’ , j H(i ,t)  j Ω-F(t’) 

 j H(i, t’) 

Note that Modal Accuracy does not require that 

failure detector M* keeps the Strong Accuracy 

property over every process all the time t. However, it 

only requires that failure detector M* never makes a 

mistake before crash about the process that was 

confirmed at least once to be correct.  

If process M* outputs some crashed processes, then 

M* accurately knows that they have crashed, since they 

had already been confirmed to be correct before crash. 

However, concerning those processes that had never 

been confirmed, M* does not necessarily know 

whether they crashed (or which processes crashed). 

 

5. Solving NB-AC Problem with M* 
 

We give in Figure 1 an algorithm solving NB-AC 

using M* in any environment of group where at least 

one node is available. The algorithm uses the fact that 

eventual strong accuracy property of M*. More 

precisely, with such a property of M* and the 

assumption of at least one node being available, we can 

implement our algorithm of Figure 1.  

 

Var status: {rem, try, ready } initially rem 

Var coordinator : initially NULL 

Var token : initially empty list 

Var groupi : set of processes 

 

Periodically() do 

request M* for HM 

 

1. Upon received (trying, upper_ layer)  

2.    if not (status = try) then  

3.            wait until  j  groupi : j  HM 

4.            statusi := try 

5.            send (ready, i) to j  groupi 

 

6. Upon received (ok, j) 

7.       token := token  { j } 

8.       If group = token then   

9.              send (commit, i) to j  Qk 

10.              status:= rem 

 

 

11. Upon received (ready, j ) 

12.      if status = rem then   send (ok, i ) to  j  

13.                 coordinator:=i 

14.                 status:= ready 

15.         else send (no, i) to j 

 

16. Upon received (no, j ) 

17.      if status=try then send (abort, i) tojgroup  

18.      status:= rem 

 

19. Upon received (abort, j ) 

20.      if status=ready then  do abort() 

21.                  status:= rem 

    

22. Upon received (commit, j ) 

23.      if status=ready then  commit-transaction() 

24.                  status:= rem 

 

25. Upon received HM from Mi 

26.      if (status=try and i  my_group and  HM )     

       then send (abort, i) to to j my_group 

abort-transaction() 

27.                     status:= rem 

28.      if (status=ready and coordinator  HM )  

       then coordinator:=NULL 

               abort-transaction() 

29.                     status:= rem 

 

Figure 1: NB-AC algorithm using M* : process i. 

 

We give in Figure 1 an algorithm solving NB-AC 

using M* in any environment E of a group with any 

number of correct processes ( f < n ). Our algorithm of 

Figure 1 assumes: 

 Each process i has access to the output of its modal 

failure detector module Mi*; 

 At least one process is available; 

 

In our algorithm of Figure 1, each process i has the 

following variables: 

1. A variable status, initially rem, represents one of the 

following states {rem, try, ready}; 

2. A variable coordinatori, initially NULL, which 

denotes the coordinator when i send its ok message to 

other node;  

3. A list tokeni, initially empty, keeping the ok 

messages that i has received from each member of the 

group.  

Description of [Line 1-5] in Figure 1; the idea of our 

algorithm is inspired by the well-known NB-AC 

algorithm of D. Skeen[4,7]. That is, the processes that 

wish to try their Atomic Commitment first wait for the 

group whose members are all alive based on the 

information HM from its failure detector M*. Those 
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processes eventually know the group by the eventual 

strong accuracy property of M* in line 3 of Figure 1 

and then sets its status to “try”, meaning that it is try to 

commit. It sets the variable group with all members 

and send the message “(ready, i)” to all nodes in the 

group. 

Description of [Line 6-10] in Figure 1; the 

coordinator asking for a ready to proceed an atomic 

commitment from every process of the group does not 

take steps until the all “ok messages” are received from 

the group. But it eventually received ok or no messages 

from the group, and it will commits or aborts the 

transaction.  

Description of [11-15] in Figure 1; On received 

“ready message from the coordinator, the node sends 

“ok” to the coordinator and it set its status with “ready” 

meaning that it is in ready state to wait a decision that 

is “commit” or “abort”.  

Description of [16-18] in Figure 1; If the coordinator 

received the message “no” from a node of group, it 

sends the “abort” message to every member of the 

group and after that it remains in “rem” state again.  

Description of [19-21] in Figure 1; The node i, 

received “abort” from coordinator j, if it is in ready 

state, aborts the transaction.  

Description of [22-24] in Figure 1; The node i, 

received “commit” from coordinator j, if it is in ready 

state, commits the transaction.  

Description of [25-27] in Figure 1; When the node i 

received the failure detector history HM from M*, if it 

is a coordinator and knows that a node of group died, it 

sends the abort message to all members of group. 

 Description of [28-29] in Figure 1; Upon received 

the failure detector history HM from M*. If it is a node 

waiting a decision from the coordinator and it knows 

that the coordinator died, it aborts the transaction.  

 

Now we prove the correctness of the algorithm of 

Figure 1 in terms of two properties: Uniform-

Agreement and Uniform-Validity. Let R be an arbitrary 

run of the algorithm for some failure pattern F ∈ E 

(f<n). Therefore we prove Lemma 1 and 2 for R 

respectively. 

 

Lemma 1. (Uniform-Agreement)  No two participants 

atomic-commit decide different outcomes. 

 

Proof: By contradiction, assume that i and j (i j) have 

made a different decision, one is commit and other is 

abort at time t’. According to the line 7-9 of the 

algorithm 1, the process i sends “ok” message and j 

sends “no” message to the  coordinator. Without loss 

of generality, one of the following events occurred 

before t’’ at every member of a group:  

(1) Assume the event that i received “commit” 

message from the coordinator. Then all participants 

of group eventually received the “commit” message” 

from the coordinator: a contradiction. 

(2)  Assume the event that j received “abort” message 

from the coordinator. Then all participants of group 

eventually received the “abort” message” from the 

coordinator: a contradiction. 

Hence, Uniform-Agreement is guaranteed. 

 

Lemma 2. (Uniform-Validity) If a participant atomic 

decides commit, then all participants have voted yes.  

 

Proof: Assume that a correct process i sends “no” 

message but commits the transaction at time t’, and all 

correct processes except i send “ok” message to the 

coordinator after t’. According to the algorithm, after t’, 

the coordinator eventually receives the messages from 

the group including process i and make a decision: 

commit or abort. But the coordinator received at least 

one “no” message from the participant of group. It 

would send “abort” message to all member of group. 

So it is contradiction. 

 

Theorem 1 The algorithm of Figure 1 solves NB-AC 

using M*, in any environment E of a group with f < n, 

combining with two lemmas 1 and 2. 

 

6. Concluding remarks 
 

Is it beneficial in practice to use a Non-Blocking 

Atomic Commitment algorithm based on M*, instead 

of a traditional algorithm assuming P? The answer is 

“yes”. Indeed, if we translate the very fact of not 

trusting a correct process into a mistake, then M* 

clearly tolerates mistakes whereas P does not. More 

precisely, M* is allowed to make up to n
2
 mistakes (up 

to n mistakes for each module Mi, i∈ Π). As a result, 

M*’s implementation has certain advantages 

comparing to P’s (given synchrony assumptions).  

For example, in a possible implementation of M*, 

every process i can gradually increase the timeout 

corresponding to a heart-beat message sent to a process 

j until a response from j is received. Thus, every such 

timeout can be flexibly adapted to the current network 

conditions. In contrast, P does not allow this kind of 

“fine-tuning” of timeout: there exists a maximal 

possible timeout, such that i starts suspecting j as soon 

as timeout exceeds. In order to minimize the 

probability of mistakes, it is normally chosen 

sufficiently large, and the choice is based on some a 

priori assumptions about current network conditions.  

This might exclude some remote sites from the 

group and violate the properties of the failure detector. 
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Thus, we can implement M* in a more effective 

manner, and an algorithm that solves NB-AC using M* 

exhibits a smaller probability to violate the 

requirements of the problem, than one using P, i.e., the 

use of M* provides more resilience.  
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Abstract—Approximation algorithms have been used to design
polynomial time algorithms for intractable problems that provide
solutions within the bounded proximity of the optimal solution.
Load balancing problem on Heterogeneous Distributed Comput-
ing System (HDCS) deals with allocation of tasks to computing
nodes, so that computing nodes are evenly loaded. Load-balancing
algorithms are attempts to compute the assignment with smallest
possible makespan(i.e. the completion time at the maximum
loaded computing node). Load balancing problem is a NP hard
problem. This paper presents an analysis of approximation
algorithms based on task and machine heterogeneity through
ETC matrix on Heterogeneous Distributed Computing Systems
with makespan as performance metric.

I. I NTRODUCTION

Heterogeneous Distributed Computing platforms are
widely used to process various jobs from different field of
scientific applications. The potential of distributed comput-
ing system are related to the management and allocation of
computing resources relative to the computational load of the
system [1][2][3][4][5][6]. These computational environments
are consists of multiple heterogeneous computing modules,
these modules interact with each other to solve the problem.
In a Heterogeneous distributed computing system (HDCS),
processing loads arrive from many users at random time
instants. A proper scheduling policy attempts to assign these
loads to available computing nodes so as to complete the
processing of all loads in the shortest possible time. Modern
distributed computing technology includes clusters, the grid,
service-oriented architecture, massively parallel processors,
pear-to-pear networking, and cloud computing [7].

Balancing the computing loads among the computing nodes
in a Heterogeneous Distributed Computing system (HDCS)
are carried out by the central server that assigns the jobs to
the nodes so as to optimize the makespan. Load balancing
has been studied by various researchers as a problem to min-
imize the makespan [4][5][8][9][10][11][12][13].The central
or serial scheduler schedules the processes in a distributed
system to make use of the system resources in such a manner
that resource usage, response time, network congestion, and
scheduling overhead are optimized. There are number of
techniques and methodologies for scheduling processes of a
distributed system. These are task assignment, load-balancing,
load-sharing approaches [1]. Due to heterogeneity of comput-
ing nodes, jobs encounter different execution times on differ-
ent processors. Therefore, research should address scheduling

in heterogeneous environment. Theload balancing problem
is to compute the assigned task with the smallest possible
makespan. The load balancing problem is NP-hard and proved
in [14] by reduction from partition problem.Approximation
algorithms has been used by the researchers for attacking NP-
hard optimization problems.

An optimization problem is NP-hard (intractable), if the
associated decision problem is NP-complete. The load bal-
ancing problem is a minimization problem, to minimize the
makespan ofn tasks onm computing nodes [4][14][15].
The problem of finding an assignment of minimum makespan
is NP-hard [16]. The most common approach used by the
researchers to find solutions to NP-hard problems were treating
them with integer programming tools or heuristics or approx-
imation algorithm[14][15]. Heuristic algorithms may produce
good solutions against the quality of the solution. Where
as approximation algorithm have the capability to produce
solution, that are guaranteed to be within some constant.
An approximation algorithm is characterised by a factorρ
called the approximation factor or approximation ratio; for
someρ < 1 for optimization problem and named asρ −
approximationalgorithm. A ρ−approximationalgorithm
guaranteed to produce a solution with objective function value
at mostρ times the optimal solution[17]. To prove analgorithm
to beρ− approximation algorithm, it is required to know
optimal solution to the problem, as optimal solution to the
load-balancing problem (minimization problem) is not known,
lower bound of the problem is to be used, to compare with the
proposed algorithm.

Here, the load balancing is a job scheduling policy which
takes a job as a whole and assign it to the computing node
[1]. This paper reviews the scope of applying approximation
algorithms for finding sub-optimal solution to load balancing
problem in heterogeneous distributed system. The rest of the
paper is organized as follows.Section 2 defines the system
model of Heterogeneous distributed computing system struc-
ture and the load-balancing problem.Section 3 discusses how
the approximation algorithms are used by various researchers
to solve load balancing problems using different approximation
schemes.Section 4 presents describes the different approxi-
mation schemes and their applicability to solve dynamic load
balancing problem. Finally, conclusions and directions for
future research are discussed inSection 5.
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II. L OAD BALANCING FOR HETEROGENEOUS
DISTRIBUTED SYSTEM

A. Heterogeneous distributed computing system

Heterogeneous distributed computing system (HDCS) uti-
lizes a distributed suite of different high-performance nodes,
interconnected with high-speed links, to perform different
computationally intensive applications that have diverse com-
putational requirements [1][7][18][19][20]. Distributed com-
puting provides the capability for the utilization of remote
computing resources and allows for increased levels of flexi-
bility, reliability, and modularity. In heterogeneous distributed
computing system the computational power of the computing
entities are possibly different for each processor as shown in
figure 1. A large heterogeneous distributed computing system
consists of potentially millions of heterogeneous computing
nodes connected by the global Internet [14][21][22]. The ap-
plicability and strength of HDCS are derived from their ability
to meet computing needs to appropriate resources [1][23][[24].
Heterogeneity in Distributed computing system (DCS) can be
expressed by considering three systems attributes(i) Processor
with computing node,(ii) memory, and(iii) networking [29].
The metrics used to quantify the processor or node processing
power by means of processing speed and represented with
FLOPS (Floating point Operations per Second) and can be
measured through LINPACK. Memory attributes are measured
as the available memory capacity to support the process.
The networking attributes are the link capacity associated
with transmission medium, propagation delay and available
communication resources can also contributes to the system
heterogeneity[25]. In general, load-balancing algorithms can
be broadly categorized as centralized or decentralized, dynamic
or static, periodic or non-periodic, and those with thresholds or
without thresholds [1][24]. We have used a centralized load-
balancing algorithm framework as it imposes fewer overheads
on the system than the decentralized algorithm [1][4]. Central-
ized load balancing algorithms requires the global information
on computing nodes at a single location and the load balancing
policy is initiated from the central location. Heterogeneity of
architecture and configuration complicates the load balancing
problem [1]. Heterogeneity can arise due to the difference
in task arrival rate at homogeneous processors or processors
having different task processing rates.

We have assumed that all computational tasks are capable
of executed on any computing nodes of DCS. A single
computing node that acts as a central scheduler or resource
manager of the DCS collects the global load information of
other computing nodes. Resource management sub systems
of the HDCS are designated to schedule the execution of the
tasks dynamically as that arrives for the service. HDCS envi-
ronments are well suited to meet the computational demands
of large, diverse groups of tasks. The problem of optimally
mapping also defined as matching and scheduling. A basic
assumption is that all computing nodes are always available
for processing.

B. Load balancing problem in Heterogeneous distributed com-
puting system

We consider a heterogeneous distributed computing system
consists of a set ofM = {M1,M2, ...,Mm}, m independent

TABLE I. EXPECTEDT IME TO COMPUTE: ETC

Task/Node M1 · · · Mj · · · Mm

t1 t11 · · · t1j · · · t1m
.
.
.

.

.

. · · ·

.

.

.
.
.
.

.

.

.
ti ti1 · · · tij · · · tim
.
.
.

.

.

. · · ·

.

.

.
.
.
.

.

.

.
tn tn1 · · · tnj · · · tnm

heterogeneous, uniquely addressable computing entity (com-
puting nodes). Let there areT = {t1, t2, ..., tn} n number of
tasks with each taskti has an expected time to computetij
on nodeMj. The tasks are arriving from the different users
or nodes to the central scheduler or or serial scheduler have
the probability to be allocated to any of them computing
nodes. Hence the tasks are characterized by expected time to
compute(ETC)as on table I, where allm computing nodes, can
be represented in first row. In ETC matrix, the elements along
a row indicate the execution time of a given task on different
nodes [20] in particulartij represent expected time to compute
ith task on machineMj .

The ETC model presented in [20] are characterized by three
parameters(i) machine heterogeneity,(ii) task heterogeneity
and (iii) consistency. The task heterogeneity can be repre-
sented with two categories(i) consistent and(ii) inconsistent,
here a consistent ETC matrix the computing nodes are arranged
in the order of their processing capability or may be arranged
as decreasing order of FLOPS. In particular a nodeMi has
a lower execution time than nodeMj for task tk , then
tki < tkj . Inconsistent ETC matrix is resulted in practice,
when HDCS includes different type of machine architectures(
HPC clusters, Multi-core processor based workstations, par-
allel computers, work station with GPU units). In literature
most of the researchers used thetask execution times as
uniformly distributed [18][20][26][27].Impact of heterogeneity
with greedy resource allocation algorithms for dynamic load
balancing in heterogeneous distributed computing system using
simulation is presented in [28]. The entire task has expected
time to compute onm nodes of HDCS. Hence the generalized
load-balancing problem is to assign each task to one of the
nodeMj so that the loads placed on all nodes are as ”balanced”
as possible [14].

Let A(j) be the set of jobs assigned to nodeMj ; andTj

be the total time machineMj have to work to finish all the
task inA(j). HenceTj =

∑
ti∈A(j) tij ; for all task inA(j).

This is otherwise denoted asLj and defined as load on node
Mj . The basic objective of load balancing is to minimize
make span, which is defined as maximum loads on any node
(T = maxj:1:mTj). Let xij correspond to each pair(i, j) of
nodeMj ∈M and taskti ∈ T .

xij = 0; when the task i not assign to node Mj . (1)

xij = tij ; when the load of task i on node Mj . (2)

For each taskti, we need
∑m

j=1 xij = tij ;for all taskti ∈ T .
The load on nodeMj can be represented asLj =

∑m
j=1 xij ,

wherexij = 0 whenever taskti /∈ A(j)). The load balanc-
ing problem aims to find an assignment that minimizes the
maximum load. LetL be the load of a HDCS withm nodes.
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Fig. 1. Heterogeneous Distributed Computing System with central scheduler

Hence the generalized load balancing problem on HDCS can
be formulated as

MinimizeL =

m∑

j=1

xij = tij , ∀ ti ∈ T (3)

n∑

j=1

xij ≤ L, ∀Mj ∈M (4)

where xij ∈ {0, tij}, ∀ti ∈ T, andMj ∈M (5)

xij = 0, ∀ ti /∈ A(j) (6)

Feasible assignments are one-to-one correspondence with
xij satisfying the constraints in equation 4. Hence an optimal
solution to this problem is the loadLi on a machine (corre-
sponding assignment). The problem of finding an assignment
of minimum makespan is NP-hard [14][16][23]. The problem
is therefore untractable with number tasks or computing nodes
(processors) exceeds a few units. The solutions to load balanc-
ing problem can be obtained using a dynamic programming
algorithm with time complexity©(nLm), where L is the
minimum makespan [14]. Queuing models are used as the key
model for performance analysis and optimization of parallel
and distributed system [27]. The HDCS can be modeled
as M/M/m/n (Markovian arrivals, Markovian distributed
service times,m computing nodes as server, and space for
n ≥ m tasks in the system) multi-server queuing system with
m servers as computing nodes.

In this HDCS model the nodeM1 is the fastest computing
node andMm is the slowest computing node. Assume that
service time follow exponential distribution with service rate
µj ,so thatµ1 ≥ µ2 ≥ ...µj ≥ ... ≥ µm, whereµj is the service
rate of nodeMj. The arrivals of the tasks at the central server
or resource manager are modeled as Poisson with arrival rate
λ. Each computing nodes can be modeled as shown in figure 2.
The tasks that are to be executed at a node are under the control
of local scheduler and the scheduling policy of the node is
responsible for the execution of the assigned task. We have
assumed First Come First Serve(FCFS) policy is being used

Fig. 2. Heterogeneous Distributed Computing System with central scheduler

at the computing nodes, which can be modelled asM/M/1
queuing system [29][30].

The load balancing problem has been evenly treated, in
both the fields of computer science and operation research.
The algorithm approaches used for load balancing problem
are roughly classified as(i) exact algorithms,(ii) heuristic
algorithms,and(iii) approximation algorithm [23][15]. The
lower bound of the minimization problem in equation 3 can be
calculated with the observation that, if it is possible to allocate
the tasks over all them computing nodes equally, the load
on each node will be(

∑
1≤j≤m Lj)/m. More over if a task

to be assigned to the slowest machineMm, the completion
time of that task can be decisive for the lower bound. The
lower bound can be obtained as,the maximum time taken by a
task to complete processing on nodeMm, i.e:max1≤ i≤ ntim.
If Lmax denotes the optimal solution for the load balancing
problem, then following equation 7 holds for HDCS withm
computing nodes.

Lmax ≥ max ( (
∑

1≤j≤m

Lj)/m, max1≤ i≤ ntim) (7)

Hence the lower bound of load balancing problem is de-
fined to beLmin = max((

∑
1≤j≤m Lj)/m, max1≤ i≤ ntim).

This lower bound is used to characterize the approximation
algorithm in this paper.

III. R ELATED WORK

Load balancing for distributed computing system is a
problem that has been deeply studied for a long time. Different
heuristic algorithms are used by researcher to find subopti-
mal solutions for homogeneous and heterogeneous distributed
system. Dandamudi[22]addressed dynamic load sharing in
distributed systems and established that load sharing improves
performance by moving work from heavily loaded nodes to
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lightly loaded nodes. An algorithmic approach to load balanc-
ing problem is presented in [14]. Techniques for mapping tasks
to machines in HDCS, considering task and machine hetero-
geneity is reported in [19] for static and dynamic heuristics.
Gopal and et al. in[6] presented a simulation study for four
load balancing algorithm on heterogeneous distributed system
with central job dispatcher. Different form of linear program-
ming formulation of the load balancing problem has been
discussed along with greedy, randomized and approximation
algorithm to produce sub-optimal solutions to the problem.
The solution to this intractable problem was discussed under
different algorithm paradigm. Modeling of optimal load bal-
ancing strategy using queuing theory was proposed by Francois
Spies(1996)[31]. This is one of the pioneer works reported
in the literature that presents an analytical model of dynamic
load balancing techniques asM/M/k queue and simulate with
fundamental parameters like load, number of nodes, transfer
speed and overload rate [31].

A review is presented in [13] considering the ten most
open questions in the area of polynomial time approxima-
tion algorithms for NP-hard deterministic machine scheduling
problems. Approximation algorithm for scheduling problem
for n jobs on m identical machine has been presented by
Graham(1966)[15]. A polynomial-time 2-approximation algo-
rithm was presented by Shmoys and Tardos, that minimizes
the makespan of the schedule and themean job completion
time for generalized assignment problem forn independent
task onm unrelated parallel machine[32]. A polynomial time
2-approximation algorithm for the single criterion problem of
minimizing the makespan was given by Lenstra, Shmoys and
Tardos[17]. An approximation algorithm for minimizing cost
and makespan is presented in [15] is based on the [32].Fast
approximation algorithms for resource allocation is suggested
in [33] that applicable to very large linear programming
problems with packing and covering constraints. Alon and et
al. presented anε−approximation scheme for the general load
balancing problem onm identical machines[34].An efficient
approximation algorithm for solving the generalized assign-
ment problem presented in [35] with(1 + α) approximation
ratio, whereα as approximation ratio of knapsack algorithm.
Chen and Choi [36] presented a 2-approximation algorithm
for data distribution with load balancing of Web Servers. An
improved 1/3-approximation algorithm for resource allocation
presented in [37] for reusable resources for the set ofn
tasks.An efficient approximation algorithm for load balancing
with resource migration in distributed system is suggest in [38],
by partitioning the system into regions.Chudak and Shmoys
presented an©(log m) approximation algorithm forn jobs
on m machine heterogeneous machine [39]. The results are
based upon the new linear programming formulation [39] using
the speed at which job has to be processed on the computing
nodes.

IV. A PPROXIMATION SCHEMES FORLOAD BALANCING

Approximation algorithms are being used an approach to
tackle NP-hard optimization problems. Since it is unlikely that
there can ever be efficient exact algorithms solving NP-hard
problems, one settles for non-optimal solutions, but requires
them to be found in polynomial time[14][16]. A simple load
balancing approximation algorithm for HDCS based on greedy
paradigm is shown in algorithm 1. Each task are assigned one

by one,to the computing nodes by selecting the node with
minimum load. Selecting the minimum load from them nodes
can be possible in©(1) time with the use of a binary min-
heap. A min-heap withm nodes can be used maintain the
current load ofm computing nodes in HDCS. The heap can
be updated in©(log m) time for eachTj. As n number of
task to be assigned the running time of the algorithm 1 is
©(n log m).

Algorithm 1 Greedy resource allocation

Require: ETC(MaxTask,MaxNode)
Ensure: makespan

1: Tj ←− 0 forall nodeMj

2: A(j)←− φ forall nodeMj

3: for i = 1 to MaxTaskdo
4: Let Mj be a node with minimumTj

5: Allocate taskti to NodeMj

6: A(j)←− A(j) ∪ {ti}
7: Tj ←− Tj + tij
8: end for
9: T ←− maxjTj

Theorem 1: Algorithm Greedy resource allocation is a 2-
approximation algorithm.

Proof: Let Lmax be the optimal solution to the load
balancing problem on HDCS. It has to be prove thatGreedy
resource allocation always completes as assignment ofn
tasks to the computing nodes such that the makespanT
satisfiesT ≤ 2 Lmax.
Let Mk be the machine with loadA(k)that determines the
makespan of an assignment with ETC matrix(Table I) using
algorithm 1 onm computing node. On successful execution
of the algorithm 1 we haveTk = max1≤ j≤ mTj. Let
ti∗ be the last task that assigned to nodeMk, where at
the time of assignment ofti∗, the computing nodeMk is
smallest load among allm nodes. LetT

′

k be the load of
machineMk just before the assignment of taskti∗, then
Tk = T

′

k+ti∗k andT
′

k ≤ T
′

j forall1 ≤ j ≤ m .That leads to

m.T
′

k ≤
∑

1 ≤ j ≤ m

T
′

j =
∑

1 ≤ i < i∗

tik <
∑

1 ≤ i ≤ n

tik ≤ m.Lmin

(8)

As T
′

k < Lmin, we can have

Tk = ti∗k + T
′

k
≤ ti∗k + Lmin

≤ max1≤ i≤ ntim + Lmin

≤ 2.Lmin

≤ 2.Lmax by using equation 7

So the algorithm 1 is never more than a factor 2 from
optimal solution for load balancing problem. TheGreedy
resource allocation leads to a larger makespan, when we have
large number of tasks with small expected time to compute
, followed by a single very very large task. Then greedy
algorithm 1 will assign the small task evenly on computing
nodes followed by the large task to one of the computing
node. A better allocation can be possible by assigning large
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TABLE II. SORTED EXPECTEDT IME TO COMPUTE: ETC’

Task/Node Mm Mm−1 · · · M1

t1 t1m t1(m−1) · · · t11
t2 t2m t2(m−1) · · · t21

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
tn tnm tn(m−1) · · · tn1

task to machine with lest ETC value, followed by allocation
of small tasks amongm − 1 nodes. Hence a better greedy
algorithm can be possible using the ETC matrix, where task
are arranged according to increasing expected time to compute
on m computing nodes. Let the computing nodeM1 is the
fastest computing node andMm is the slowest computing node
in the HDCS. Assume that service time follow exponential
distribution with service rateµj of nodeMj. Considering the
ETC matrix forn number task onm nodes, so thattij ≤ tik
for taskti on machineMj andMk, with µj ≥ µk. Hence for
task ti, we haveti1 ≤ ti2 ≤ . . . ≤ tim.

Lemma 2: Let there areT = {t1, t2, ..., tn} be the n
number of tasks with each taskti has an expected time to com-
pute tij on nodeMj , to be scheduled onm machines,where
tim ≥ ti(m−1) ≥ · · · ≥ ti1, thenLmax ≥ tm1 + t(m+1)1

Proof: Suppose there arem + 1 task to be assigned to
m heterogeneous machines, then at least two of the task from
t1, t2, ..., tm, tm+1 to be assigned on the same machine. As
M1 is the fastest machine, if those two task are to assigned
to the fastest machine say, then load of the machine can be
at leasttm1 + t(m+1)1.Hence makespan of the system can be
Lmax ≥ tm1 + t(m+1)1.

Let table IIETC
′

represents sorted matrix in descending
order ofexpected time to compute for task in every row.

Algorithm 2 Sorted Greedy resource allocation

Require: ETC′(MaxTask,MaxNode)
Ensure: makespan

1: Tj ←− 0 forall nodeMj

2: A(j)←− φ forall nodeMj

3: for i = 1 to MaxTaskdo
4: Let Mj be a node with maximumtij ;max1≤ j≤ m(tij)
5: Allocate taskti to NodeMj

6: A(j)←− A(j) ∪ {ti}
7: Tj ←− Tj + tij
8: end for
9: T ←− maxjTj

Theorem 3: Algorithm Sorted Greedy resource allocation
is a 3/2 approximation algorithm.

Proof: Let machineMk be the machine with maximum
load As first m task are to assigned on different machine,
When we are suppose to assign tasktm+1, we have the
information onmnode that is with maximum load. We have
also assumed that the taskti∗ allotted to the nodeMk. If
i∗ ≤ m, then ti∗ is the only task to be assigned toMk.
This is feasible because firstm tasks are assigned to different
nodes using greedy resource allocation algorithm. Hence,
allocation algorithm is optimal as every node gets a single task,
and second, Ifi∗ > m , then by using Theorem 1, we can have

Tk ≤ ti∗k +
1

m

∑
1 ≤ j ≤ m Lj .

whereLj is the total load on nodeMj and
1

m

∑
1 ≤ j ≤ m Lj

is the average load of the system. hence:

1

m

∑

1 ≤ j ≤ m

Lj ≤ max(max1 ≤ j ≤ mLj ,
1

m

∑

1≤ j ≤ m

Lj) ≤ Lmax

(9)

since the tasks are ordered by ETC on subjected for allocation,
for any computing nodeMj , t1j ≥ t2j ≥ · · · ≥ tnj holds.
Hence fori∗ > m, for any arbitrary computing nodeMj ; we
haveti∗j ≤ t(m+1)j ≤ tmj .Then by using Lemma 2 we have

ti∗j ≤ (tmj + t(m+1)j)/2 ≤ Lmax/2 (10)

hence the total load on nodeMk is at most(3/2).Lmax

V. CONCLUSION

In this paper, the dynamic load balancing problem is
modeled as an minimization problem. Load balancing is be-
ing performed during runtime at various stages to keep the
workload balance on different computing nodes of a HDCS.
This paper presents approximation algorithm to solve load bal-
ancing problem on HDCS with central scheduler with defined
lower bound.The approximation schemes are based on task
and machine heterogeneity through ETC matrix. This work
can be further enhanced to design approximation algorithms
considering four category of ETC matrix [20] based upon task
heterogeneity,machine heterogeneity, and consistency. Some of
the application on HDCS restricts a task to be executed on the
set of nodesH ⊆ M with specific resource dependability.
Scope of designing approximation load balancing algorithm
for such systems can also be explored.
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J. Robertson, M. Theys, B. Yao, D. Hensgenet al., “A comparison of
eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems,”Journal of Parallel and
Distributed computing, vol. 61, no. 6, pp. 810–837, 2001.

[28] B. Sahoo, D. Kumar, and S. K. Jena, “Analysing the impact of
heterogeneity with greedy resource allocation algorithms for dynamic

load balancing in heterogeneous distributed computing system,”Inter-
national Journal of Computer Applications, vol. 62, no. 19, pp. 25–
34, January 2013, published by Foundation of Computer Science, New
York, USA.

[29] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications. Prentice Hall of India, 2001.

[30] D. Grosu and A. Chronopoulos, “Algorithmic mechanism design for
load balancing in distributed systems,”Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 34, no. 1, pp. 77–84,
2004.

[31] F. Spies, “Modeling of optimal load balancing strategy using queueing
theory,” Microprocessing and microprogramming, vol. 41, no. 8, pp.
555–570, 1996.

[32] D. Shmoys and́E. Tardos, “An approximation algorithm for the general-
ized assignment problem,”Mathematical Programming, vol. 62, no. 1,
pp. 461–474, 1993.

[33] N. R. Devanur, K. Jain, B. Sivan, and C. A. Wilkens, “Near optimal
online algorithms and fast approximation algorithms for resource al-
location problems,” inProceedings of the 12th ACM conference on
Electronic commerce. ACM, 2011, pp. 29–38.

[34] N. Alon, Y. Azar, G. Woeginger, and T. Yadid, “Approximation schemes
for scheduling on parallel machines,”Journal of Scheduling, vol. 1,
no. 1, pp. 55–66, 1998.

[35] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,”Information Processing Letters, vol.
100, no. 4, pp. 162–166, 2006.

[36] L.-C. Chen and H.-A. Choi, “Approximation algorithms for data dis-
tribution with load balancing of web servers,” inProc. Intl Conf. on
Cluster Computing (CLUSTER 2001), 2001.

[37] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani, “Improved ap-
proximation algorithms for resource allocation,”Integer Programming
and Combinatorial Optimization, pp. 401–414, 2006.

[38] R. Varadarajan, “An efficient approximation algorithm for load bal-
ancing with resource migration in distributed systems,”manuscript.
University of Florida, 1992.

[39] F. A. Chudak and D. B. Shmoys, “Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that
run at different speeds,” inProceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 1997, pp. 581–590.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 41



42 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



SESSION

PARALLEL AND DISTRIBUTED ALGORITHMS
AND APPLICATIONS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 43



44 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



Parallel Algorithms for Hybrid Multi-core CPU-GPU Implementations of
Component Labelling in Critical Phase Models

K.A. Hawick and D.P. Playne
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

k.a.hawick@massey.ac.nz, d.p.playne@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2013

Abstract
Optimising the use of all the cores of a hybrid multi-core
CPU and its accelerating GPUs is becoming increasingly im-
portant as such combined systems become widely available.
We show how a complex interplay of cross-calling kernels and
host components can be used to support good throughput per-
formance on hybrid simulation tasks that have inherently se-
rial analysis calculations that must be run alongside more eas-
ily parallelisable simulation time-stepping calculations. We
present results for a cluster component-labelling analysis per-
formed during simulation of a Potts lattice simulation model.
We discuss how these hybrid techniques can be more broadly
applied to this class of numerical simulation experiments in
computational science.

Keywords: hybrid CPU/GPU; component labelling, phase
transitions; Potts model; heterogeneous system; multi-core.

1 Introduction
Graphical Processing Units have become widely used for a
range of scientific computational problems and they have been
shown useful for accelerating the performance of a CPU core.
Many problems fit neatly onto the large number of cores typi-
cally available on modern GPUs. However, CPUs themselves
have also been developing and it is now routine to find 6, 8
or even 16 cores on a CPU. These are not the lighter-weight
cores of a GPU - it is therefore incumbent on programmers to
find ways to keep both their CPU heavyweight cores and their
GPU lighter-weight cores busy on a computation to make op-
timal use of the devices [22].

In this paper we explore how a many-cored CPU can partici-
pate more fully in computations for a simulation problem and
how work can be interleaved between the CPU cores and calls
to GPU kernels to keep the combined CPU/GPU busy and
fully contributing towards the problem. We use the general
class of problem based around simulation of critical phenom-
ena and the associated analysis of the simulated system to in-
vestigate how to program and schedule useful work across the

Figure 1: Potts system at the critical temperature with Q=4 for
simulation steps {512, 4096, 32768}.

many-cored [3] CPU/GPU hybrid. We report on work based
on both Intel and AMD multi-cored CPUs and accelerated by
a range of different NVidia GPU models [17, 21].

We focus on simulations of the Q-state Potts model [23, 34]
in two dimensions. This is an interesting system that exhibits
a critical temperature that shifts when an increasing number
Q of states are present in the model. We combine this sim-
ulation with algorithms to analyse the number of component
clusters present in the system [10] and show a relationship be-
tween the cluster size distribution histograms and the intrinsic
phase transitional behaviour changes when Q is explored be-
tween Q = 2, 3, ...9. The Potts model has been studied using
conventional methods for some years and it has a number of
interesting known properties, many of which have been ob-
tained using numerical methods [1]. It is a potential basis for
other new models [8, 18] however and our work in exploring
the cluster size properties is motivated by this as well as the
model’s convenience as a size-parameterised parallel bench-
marking tool.

Figure 1 shows some typical screen snapshots of a Potts model
system. We explain the model further in Section 2 below.
Essentially it is an extension of the well-known Ising model
[12, 16] of magnetic spins. The Potts system allows each spin
to take on any of a discrete number Q of possible states. Each
spin site can change to a different spin value subject to avail-
able energy and thermal fluctuations. The energy behaviour
is driven by a coupling between local neighbouring sites so
that for a ferromagnetic Potts system like-like spin values are
favoured energetically. The consequence is that a hot random

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 45



system will gradually equilibrate to the chosen finite tempera-
ture and if it is around or just below the critical temperature it
will form droplets [27] which later coarsen to form large and
growing domains [7] of like-like spin values. If the system is
too cold then the formation of domains slows down and the
spatial structure becomes stuck or frozen in. If it is too hot
then randomness prevails and there is no long range spatial
order. The Potts system therefore exhibits a particular criti-
cal temperature Tc corresponding to this change in collective
behaviour and it transpires that Tc depends upon the allowed
number of possible states Q. Increasing the number of states
lowers the critical temperature at which long-range order can
be sustained.

There are a number of concurrency techniques [4,29] and soft-
ware technologies and multi threading approaches [13, 31] to
parallelising models such as the Potts system. One approach is
running the entire model on the GPU as a parallel kernel with
parts of the system geometrically split across different GPU
cores [6, 11, 32] . Another is to use a more conventional CPU
threading library to split the decomposition across threads run-
ning on the available CPU cores. There are various threading
solutions possible, some of which are reliant on special fea-
tures of the hardware or operating system [14, 26], and some
of which are relatively platform independent [28]. As far as
we are aware no one has employed the combined interleaving
of work across both CPU and GPU cores that we describe in
this present paper.

Our article is structured as follows: In Section 2 we describe
the Potts simulation model and its computational algorithm.
We summarise the typical CPU/GPU architectural arrange-
ment in Section 3 before describing details of our implementa-
tion in Section 4, including the component-labelling aspect of
the computation in Section 5 and the unusual hybrid cpu/GPU
interleaving approach we adopted in Section 6. We report on
the performance scalability we obtained in Section 7 but also
record some observations on the Potts cluster size distribution
we were able to study in Section 8. We comment on the impli-
cations of this hybrid CPU/GPU approach in and offer some
conclusions and areas for further work in Section 9.

2 Potts Model
The Potts model is usually formulated on a rectilinear lattice
with a coupling parameter J that aligns nearest neighbouring
spins to the same value. The Potts system is an extension of
the Ising model – the Ising system has only two possible spin
values - sometimes known as “up” and “down” and hence Q=2
for the Ising system. A simulation of the Potts model can be
formulated in terms of the Metropolis Monte Carlo method
[19].

The system geometry is fixed so there are N = Ld spin sites
arranged on the lattice. For the work reported here we fixed di-
mension d = 2 and varied Q = 2, 3, 4, ...9 although the ideas

discussed would extend to higher dimensional simulations.

H = −J
∑
<i,j>

δ(si, sj) (1)

The energy function or Hamiltonian is given in equation 1
where the summation is over the nearest neighbouring sites
i, j only and the spin variables si take on any of the Q allowed
values. The Dirac delta function δ yields 1 when the spin vari-
ables si, sj are equal and zero otherwise.

At each time step each spin site is “hit” in a random order
and the energy consequences of flipping the site to one of the
other Q − 1 possible states is computed using the coupling
term. If the hit leads to a lowering of energy the change is
accepted, but even if the change would lead to a higher en-
ergy, then the change might still be accepted - and this is done
by comparing a random number with the thermal probability
exp−δkBT where the exponent is the change or delta in en-
ergy of the system and kB is Boltzmann;’s constant. As is
commonly reported in the research literature [2], we work in
physical units where kB ≡ 1 and so we can take temperature
T as the reciprocal of the coupling J .

In the work we report here, we first explore how much compu-
tational work is required to take a randomly initialised “hot”
Potts configuration to thermal equilibrium, then run the system
for a further number of update steps, recording the then aver-
aged properties. The novel property we focus on in this present
work is the component cluster size distribution. We obtain this
by first labelling all the connected spin sites and then build-
ing up appropriate histograms of the component cluster sizes
present in the system at that step.

Since the critical temperature of the Potts system is known
to vary for different numbers of allowed spin states we carry
out our investigation at the known Tc(Q) values published by
Monroe [20] for the square lattice. This allows us to focus on
the interesting cluster sizes produced at large length scales at
or around the critical temperatures for all the Q values sam-
pled. There is likely to be a measurable finite size effect de-
viation from these theoretical values but we minimise this by
using relatively large simulated lattice sizes of N = 10242.
Other algorithms such as that of Swendsen and Wang [15] or
Wolff [9, 33] could be applied to minimise spurious simula-
tion effects further but we believe the Metropolis algorithm is
adequate for the work we report in this present article.

3 Background on Architecture
During the rise of GPU computing, most CPU processors had
two- or four-cores. For applications such as the Potts model, a
CUDA program could achieve speeds of approximately 100x
faster than a CPU core [11]. With this kind of performance dif-
ference the CPU was often forgotten and simply used as a host
to launch kernels on the GPU. At the time of writing, almost
all modern CPUs contain at least four cores and may contain
up to sixteen cores in the case of the AMD Opteron 6274 and
twelve virtual cores (six hyper threaded cores) in the case of
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the Intel Xeon X5675 or i7-970. These CPUs now represent
a significant computing resource that would be wasted being
used as just a host for the GPU.

Figure 2: Architecture of typical CPU/GPU hybrid system
showing thread relationships and data transfer bottleneck.

Figure 2 shows a typical architectural arrangement of the cores
of a CPU and a GPU, this diagram shows a CPU with a number
of cores and a GPU with many cores grouped into multipro-
cessors. All communication between the CPU and GPU takes
place through the PCI Express Bus, this communication may
be the CPU launching kernels on the GPU or copying data be-
tween the host system memory and the GPU device memory.

These separate memory areas and the limited communication
between them have traditionally made developing hybrid ap-
plication difficult. Splitting computation between the host and
the GPU device if often not efficient for simulations such as
the Potts model because the data transfer outweighs the bene-
fit of making use of the CPU. In this application however, there
are two separate tasks that can be computed simultaneously -
the Potts simulation and the Connected Component Labelling.

4 Potts Simulation Implementation
In this work, the simulation of the Potts model itself is com-
puted entirely on the CUDA capable NVIDIA GPU devices.
The regular data structure of a Potts system and the local na-
ture of the memory access required lends itself very well to
computation on the GPU architecture. The hybrid part of the
algorithm involves computing the Potts model on the GPU
which the Connected Component Labelling is performed on
the CPU. This is discussed further in Section 6.

The Potts system is stored using an array of unsigned
char in global memory. This limits the maximum Q value
for this simulation to Q = 256, this work explores the range
of Q = 2..9 so this limit is entirely sufficient. In the unusual
case that a system with Q > 256 is required, it would be
a minor change to change this type to an unsigned int
which would allow a value of Q up to 232. Because there is
a random component in the update of the Potts model, a ran-
dom number generator is required. The storage requirement
for the selected random number generator is three arrays of
long int. The last storage requirement is the labels of the
field. Because the number and size of the components are be-

ing counted, the clusters of each system must be labelled, an
array of unsigned int is used to store these labels.

The Potts simulation is performed on the GPU by creating on
thread for each cell in the system. Updating the system con-
sists of a two-step process using the checkerboard method. By
splitting the cells into the two colours of a checkerboard, it can
be guaranteed that all the cells of the same colour can be up-
dated without any of their neighbouring cells values changing
during the process. This means that two separate kernel calls
are required to update the Potts system, one for each set of
cells.

Algorithm 1 The algorithm for the RAN random number gen-
erator.
u = u ∗ 2862933555777941757 + 7046029254386353087
v∧ = v >> 17; v∧ = v << 31; v∧ = v >> 8
w = 4294957665 ∗ (w&0xffffffff) + (w >> 32)
r = u ∧ (u << 21); r∧ = r >> 35; r∧ = r << 4
r = (r + v) ∧ w

The random number generator used by this simulation is the
Ran algorithm described in Numerical Recipes [25]. Previous
research [24] has showed that this algorithm is sufficient for
our purposes and can be implemented effectively on a GPU.
In this implementation a separate random number generator is
used by each thread on the GPU. Each of these random number
generators is initialised on the host (using a completely sepa-
rate random number generation process) and copied onto the
GPU. This way each thread can execute independently from
every other thread and doesn’t have to synchronise or share
random number generators.

Algorithm 1 summarises the random number generator algo-
rithm. It is noteworthy that it is based on integer operations
and is therefore useful for GPUs, when not all models have
equally good balance and distribution of floating point units
across the cores.

5 Connected Component Labelling
Component labeling is a complex problem in its own right and
often poses challenges for labelling large systems on parallel
systems [10]. In addition to the main labelling activity, for the
cluster-size analysis we discuss in this paper, we also require
to histogram the sizes which involves an additional pass over
the labelled component cells. The connected component la-
belling algorithm used in this work is a multi-pass algorithm
based on the one presented in [30]. This particular algorithm
is used because it can be implemented as a parallel algorithm
on the GPU and was shown to label a system ≈ 10x faster
than a single CPU core [10]. This algorithm can be seen in
Algorithm 2.

Although this is a multi-pass algorithm, in our experiments
is has been found to label most system with 6-7 iterations
through the data and its performance is comparable to other
common algorithms. In fact for this type of complex cluster
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Algorithm 2 The Connected Component Labelling algorithm.
initialise labels using position as label
while labels have changed do

find the lowest neighbouring value for each label
resolve label equivalences
set all labels using equivalence list

end while

it can often outperform other popular algorithms such as the
Contour Tracing algorithm [5].

This algorithm is implemented on the CPU as a single-
threaded function as the hybrid update algorithm allows dif-
ferent system states to be labelled at the same time. In this
type of situation we have found it is better to give a different
system state to each core rather than all the cores attempting
to work on the same data at the same time. The GPU labelling
method used in the work is a CUDA implementation of this
algorithm, it follows the same high-level process but each step
of the labelling algorithm is parallelised. The details of how
this algorithm can be implemented for a GPU can be found
in [10].

6 Hybrid CPU/GPU Implementation
The simple approach to simulating the Potts model on a GPU
would be to run the entire simulation and analysis on the de-
vice to minimise the overhead of communication. This would
be suitable approach when the time taken to perform the anal-
ysis is small compared to the runtime of the simulation. How-
ever, in this case where the number of components in the Potts
system is counted every update, the analysis process takes con-
siderably longer than the simulation itself; ≈ 4-10x longer de-
pending on the system size of the simulation, see Section 7
for more details. In this case it makes sense to use the cores
of the CPU (which would otherwise be sitting idle) to analyse
the clusters while the GPU runs the simulation.

Unfortunately offloading the analysis to the CPU does not have
the desired effect, in fact it can slow down the simulation. Be-
cause the GPU is able to compute the simulation so fast, the
CPU is not able to keep up with all of the systems that get
copied off the GPU for analysis. The options to overcoming
this problem are to slow down the simulation and make the
GPU wait for an available CPU thread to label the latest sys-
tem, create a large buffer to store all of the systems and allow
the CPU to label them later or the solution used in this research
where the analysis of the systems is split between the CPU and
the GPU.

This hybrid approach allows the GPU to offload as much of
the analysis as possible but does not have to wait for the CPU
to catch up. Rather than attempt to model the comparative
computational throughput of different GPUs and CPUs this
method simply checks to see if there are any unoccupied CPU
threads every time a new system state is ready to be analysed.
If thread is available the system will be copied off the GPU

Algorithm 3 The algorithm for the Hybrid Update & Analysis
method.

for all steps do
call potts function on the GPU
if CPU thread available then
thread← available CPU thread
copy Potts system to thread buffer
call label Function using thread

else
call label function on the GPU
copy label results to host

end if
end for

into that thread’s buffer and leave it to label it. If all the CPU
threads are currently occupied it will analyse the system us-
ing the GPU and copy the results into the host memory. This
process is shown in Algorithm 3

7 Performance Results

CPU Cores Cache Clock Speed
Model (MBytes) (GHz)
i7-2700K 4 (8) 8 3.50
i7-970 6 (12) 12 3.20
Xeon E5-2640 6 (12) 16 2.50
Xeon X5675 6 (12) 12 3.06
Opteron 6274 16 16 2.20

Table 1: CPU relevant Properties.

To test the performance of the hybrid labelling method, the
simulation has been run on a range of different machines con-
taining different processors and graphics cards. The CPUs
tested include Intel i7, Intel Xeon and AMD Opteron proces-
sors. These CPUs differ in terms of number of cores, clock
speeds and cache sizes, the specifications of the processors
tested are shown in Table 1. The Intel processors support hy-
per threading and for each physical core have two virtual cores,
the number of virtual cores are shown in brackets in the table.
The machines containing Intel Xeon and Opteron processors
are dual CPU machines with two processors, this increases the
ratio of CPU/GPU computational power. The purpose of test-
ing these different configurations is to determine how well the
hybrid labelling method performs for a range of different CPU
and GPU architectures and relative performances.

GPU Cores Memory Bandwith Clock Speed
Model (GB/sec) (GHz)
GTX580 512 192.4 1.54
GTX590 512 163.85 1.22
GTX680 1536 192.2 1.01
M2075 448 150 (ECC off) 1.15
M2090 512 177 (ECC off) 1.30

Table 2: GPU relevant Properties.
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The different GPU models tested include the gamer-level
GeForce range and the compute-card Tesla range. All these
cards are Fermi or Kepler architecture devices which have
L1 and shared L2 cache. All the GPUs tested are high per-
formance cards as this experiment is designed to determine
whether using the CPU can accelerate an optimised simulation
on a high-end graphics card. The specifications of the GPU de-
vices used for this research are given in Table: 2. Please note
that although the GTX590 is a dual-GPU card, the specifica-
tions given here are for only a single GPU.

Figure 3: The performance results of the GPU Potts simula-
tion as well as the CPU, GPU and Hybrid labelling methods.
Results are shown in milliseconds per step.

Figure 4: The same information as Figure 3 but plotted on a
log-log scale to emphasise the power law relationship.

Figures 3 and 4 show the average time per step for the Potts
simulation executed on the GPUs as well as the CPU, GPU
and Hybrid labelling methods. The machines tested in these
experiments have a number of different configurations: an i7-
2700K and a GTX GTX590 (using one GPU), an i7-970 and
a GTX580, two Xeon E5-2640s and an M2090, two Xeon

X5675s and an M2075 and finally two Opteron 6274s and a
GTX680. The GPUs tested are the GTX580, GTX 590 (using
one GPU), GTX680, M2075 (hosted in a PCIe chassis) and
M2090.

The performance analysis show some interesting results, in
all test cases using the hybrid algorithm provided the best re-
sults performing≈ 20-50% faster than using just the GPU. For
the GPUs the relative performance was as expected with the
GTX680 being the fastest followed by the GTX580, M2090,
GTX 590 and the M2075. In all cases the GPU could compute
the Potts simulation significantly faster than it could label the
system.

The CPU results showed an interesting comparison between
the machine equipped with two Xeon X5675s and the one with
two Opteron 6274s. Although the two Opterons have a com-
bined total of 32 cores its performance was very close to the
two Xeons which have a combined total of 12 physical hyper-
threaded cores or 24 virtual cores. This shows that the Xeon
5675s can make better use of their resources. The performance
of the Opteron machine was still the overall fastest though due
to its higher performance GTX680 graphics card.

8 Potts Model Results
In addition to the speed and performance results presented in
Section 7 we also observe some interesting behaviours of the
component population sizes for the Potts system as we system-
atically vary the allowable number of states Q.

Figure 5: The number of clusters over time for Potts systems
at the critical temperature for Q = {2,3..9}.

Our first concern is to determine how long the randomized
Potts model system must be equilibrated to attain reasonable
measurements that are truly representative of the critical tem-
perature at each of eight Q values that we studied. Figure 5
shows the number of clusters as it progresses exponentially
towards a representative average value. We observe that gen-
erally the system will approach a representative value after ap-
proximately L = 1024 steps. This is likely related to the ef-
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fective speed limitation on the propagation of any information
across the system. The periodic boundary conditions mean
that phenomena require at least L/2 on average to reach across
any of the geometric lengths in the system. We appear to
be justified in starting our measurements after at least L time
steps.

Figure 6: Log-log scale plot of the cluster size populations
measured over many samples and for each of the separate Q
values.

Figure 6 shows a log-log scale plot of the cluster size distri-
bution, based upon many averaged samples for the different Q
values. We observe that the upper cluster size cutoff value -
although quite noisy - varies systematically with Q. It is use-
ful to fit straight lines to the limiting values of the curves in
Figure 6. The straight line region of the log-log plot suggests
a limiting behaviour characterised by a power law of the form
sν where ν is the fitted slope.

Figure 7: Fitted slopes and intercepts for the cluster size pop-
ulation data.

Figure 7 shows these fitted slopes and there is a percepti-
ble change in behaviour over the range of Q and a possi-

ble irregularity around Q ≈ 4, 5. The fitted intercepts how-
ever showed a quite remarkable sensitivity to the different be-
havioural regimes however. the Potts system is known to have
continuous phase transition for Q <= 4, and an inter-facial
wetting behaviour for Q >= 3 leading to a first-order phase
transition for Q >= 5. The fitted intercepts shown in the
lower curve of Figure 7 shows corresponding points of inflec-
tion between Q = 2, 3 and also around Q ≈ 4, 5, subject
to the experimental uncertainties, which we used for the error
bars on the plots. This suggests that the cluster size distribu-
tion is a worthwhile metric to compute and that there is scope
for investigating this further in higher dimensions.

On sufficiently large system sized problems (N ≈ 5122) and
greater, the overall utilisation efficiency of the CPU cores is
around 85-90%. This is the percentage of time that all threads
are occupied measured over the entire program duration. This
obviously represents a considerable improvement over having
for example five out of six Xeon CPU cores idle.

9 Discussion & Conclusions
We have described how an interleaving strategy allows a multi
cored CPU to make use of its own cores as well as the many-
cores available on an accelerating GPU co-processor. We have
demonstrated this strategy with a scientific simulation problem
involving the application of a Monte Carlo update procedure
to a Potts model system alongside an analysis of the growing
domains in the simulation using a component labelling algo-
rithm.

At the time of writing it is becoming increasingly common to
have at least two if not four or six cores available on a typical
CPU and in addition a typical modern GPU used as an acceler-
ating co-processor will have in excess of one thousand simple
cores and at least several tens of floating point units.

We found that we could obtain a high utilisation of the other-
wise idle CPU cores by interleaving the computational tasks
between CPU and GPU. We believe this strategy will become
even more important in future. Likely future GPUs will have
better memory and CPU/GPU communications bandwidths
available and this will shift the balance point again. It may
need to be a tune-able parameter or possibly even a self adapt-
ing one to determine how much of the computation should be
run on the GPU and how much on one of increasingly many
CPU cores. Ideally it will be possible to have kernels or gen-
erated software that can perform the same task on both.

More sophisticated systems may have multiple GPUs support-
ing a single CPU and it is also common to have clusters with
one or two CPUs supported by two to four GPUs at each node.
These numbers are likely to develop in future although for
computational problems like the one we discuss in this present
paper, it is desirable to ensure and maintain a close balance
of the number of GPU accelerators to CPU handling cores in
hardware and with the appropriate threading support available
in software. There is scope for investigating how our approach
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would scale up to handle multiple GPU accelerators, handled
by a many-cored CPU.

There is also scope for applying this interleaving approach to
other scientific simulation problems. similar strategy but with
a different loading/decomposition approach might also be use-
ful for future co-processors such as the Intel Xeon Phi and its
likely ancestors which will have uniform floating-point capa-
ble cores that are more coarse grained and more powerful that
the typical (more numerous) but finer cores on a GPU.
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Abstract—PDPTA 2013 - Parallelization of algorithms with
hard data dependency has a need of task synchronization.
Synchronous parallel versions are simple to model and program,
but inefficient in terms of scalability and processors use rate. The
same problem for Asynchronous versions with elemental static
task scheduling. Efficient Asynchronous algorithms implement
out-of-order execution and are complex to model and execute.
In this paper we introduce Petri Nets as a tool for simplifying
the modeling and execution of parallel asynchronous versions
of this kind of algorithms, while using an efficient dynamic task
scheduling implementation. The Cholesky factorization algorithm
was used as testbed. Simulations were carried out as a proof of
concept, based on real execution times on GPGPU’s, and have
shown excellent performances.

Keywords—Petri Net Modelization - Asynchronous Parallel
Execution - Dynamic Task Scheduling - Cholesky Factorization
Algorithm.

I. INTRODUCTION

The fork-join parallelization model is a natural step from a
sequential to a parallel version of an algorithm. An important
drawback is the insertion of synchronization points in the
algorithm which compels all the processors involved in the
execution to wait in idle state, the slowest. This causes poor
performance and scalability in those algorithms in which the
task loads of each parallel thread differ, which is typical of
algorithms with data dependency [1]. QR, LU and Cholesky
factorizations are algorithms with this type of problem.

Tiled algorithms emerge as a solution to the problem of
load balance for dense linear algebra algorithms on multicore
processors [2]. This type of algorithms are an evolution from
rectangular block-based algorithms, in which data reusability
was the concept to optimize. Tiled algorithms presents, as
many LAPACK algorithms do, two fundamentals steps of the
algorithm: panel factorization and trailing submatrix update.
However, now the key concepts are fine granularity and
asynchronicity to achieve better thread level parallelism.

Tiled algorithms divide data in square blocks that allow to
computing “out of order”, thus increasing the number of tasks
that can run in parallel. As with block based algorithms, fac-
torizations and updates consist in applying the proper routines
(“kernels”) among the operations defined in the BLAS [3] and
LAPACK libraries [4]. Block sizes are tuned to achieve good

performance in the execution of the kernels involved in the
algorithm.

The major difference between block and tiled algorithms
is that the former are synchronous, whereas the later are
asynchronous. The difference is well shown graphically in
[5]. Asynchronicity and fine granularity make it possible for
many tasks to run in parallel. “Out of order” means that
while one processor computes a factorization, the others can
simultaneously compute updates.

Since the number of tasks available to run in parallel
exceeds the number of processors, it is possible to do different
selection of tasks, in order to define the scheduling of the
parallel algorithm. Static scheduling are those defined prior the
algorithm execution. Common examples are the left looking
(LL) or right looking (RL), which differ according to whether
priority updates are on the left or on the right of the current
factorization panel [1], [6]. Both algorithms are shown inf
Fig. 1 and 2, and have in common that they are fork-join
synchronized.

Another known technique of static scheduling is look
ahead. As LL and RL, it is based on performing panel
factorization in one thread while the remaining update sub-
matrix from previous stages is done by others threads. It
has been observed that LL and RL are the extreme points
of a wide spectrum of possibilities of task selection, acting
in a parametrized way look ahead as a path for going from
one point to another [1]. All alternatives generate bubbles of
idleness in the algorithm due their static nature.

Directed Acyclic Graphs (DAG) have been used to model

1 do s t e p =1: b l nu
2 do i =1 : s t e p−1
3 s y r k s t e p , i
4 end
5 p o t r s t e p
6 do j = s t e p +1: b l nu
7 do k =1: s t e p−1
8 gemm s t e p , k , j , k
9 end

10 t r sm j , s t e p
11 end
12 end

Fig. 1. Left looking Cholesky

1 do s t e p =1: b l nu
2 p o t r s t e p
3 do i = s t e p +1: b l nu
4 t r sm i , s t e p
5 s y r k i , s t e p
6 end
7 do j = s t e p +1: bl nu−1
8 do k= j +1: b l nu
9 gemm j , s t e p , k , s t e p

10 end
11 end
12 end

Fig. 2. Right looking Cholesky
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the algorithms, with the vertex representing the tasks and the
edges, the dependency among them. The graph is also known
as Dependency Graph. Asynchronous execution is helped by
the use of DAG’s to control the dependency of tasks. The DAG
is mainlly used by the scheduler to select the next task [2].

Dynamic scheduling is introduced to improve static
scheduling, by selecting the task on run time according the
availability of free processors and enabled tasks. This type of
scheduling are aimed at preventing the existence of the stalled
points of static schedulers. However, they are complex and
cause overhead in the algorithm execution [6].

Hogg’s research shows no significant advantage in using
dynamic or static schedulers [7]. He also uses a DAG to model
the algorithm and the scheduling control. Concurrency control
and DAG implementation generate an overhead that seems to
consume the improvements of the dynamic scheduler.

Also in the line of dynamic scheduling, LAWN 243 [6]
introduces the use of the “locality” parameter to help the
scheduler dynamically select the next task to be assigned to a
processor, according the previously used data. Improvements
in parallel execution depend on the type of algorithm (LL or
RL), the size of the DAG’s window resident in memory and
the number of tiles into which the matrix is divided.

At the best of our knowledge, all dynamic attemps are
based on DAG, which are good to represent the structure of the
algorithm, but not for the execution and the scheduler. Both are
implemented in an ad-hoc, sophisticated style, without parallel
execution modelization.

A key factor to achieve a performing parallel algorithm,
is to minimize processor idle time due to synchronization.
Asynchronous execution is a big step in this path. Scheduling
is another. Tiled algorithms improve the parallelism of an
algorithm by increasing the number of tasks. The drawback
lies in the complexity of managing a large number of parallel
asynchronous tasks. The lack of a model for this results in
complex or pre-developed libraries implementations [6], [8].

Our research has two main objectives:

• To model the structure and parallel execution of dense
linear algebra algorithms with a simple tool.

• To improve performance by minimizing processor idle
time through the use of dynamic scheduler

The second objective follows the first: with a simple model,
dynamic overheads decrease and the scheduler can perform an
adequate selection without loss of performance.

Petri Net is the formalism chosen to represent the algo-
rithm. Its capability to represent parallel processes is known.
A few additions to this well-known formalism are enough to
achieve our objectives. As a “proof of concept” we develop a
simulation tool to represent and execute the Petri Nets, which
simulates different running parameters.

Cholesky factorization was chosen as a testbed algorithm.
We follow the kernels and DAG representation used in tiled al-
gorithm as defined in [9]. These kernels are xPOTRF, xGEMM,
xTRSM and xSYRK, where x can be ’s’ or ’d’ depending on
whether single or double precision data are used.

II. PETRI NET MODEL OF PARALLEL ALGORITHMS

A Petri Net (PN) is a bipartite directed graph consisting of
Places and Transition nodes. Usually, Places represent “states“
and Transitions “actions“. Arcs always link a Place to a
Transition (acting as input) or vice versa (acting as output).
There are tokens, which only exist in Places, and represents
“facts“. The overall state evolves when a transition is ”fired“,
moving tokens from input places to output places. A transition
can be fired when all input places have enough tokens [10].
This net is also known as Token Petri Net (TPN).

Petri Nets are used to model the algorithm, with operations
(kernels to execute) represented by Transitions and data rep-
resented by Places. Input parameters are represented by arcs
that go from Places to Transitions, and operations results, by
arcs from Transitions to Places.

Petri Nets can model the algorithm dependencies, and
can also describe the execution by means of the firing of
Transitions. The following subsections explain how the net is
used for both purposes.

A. Coloured Petri Net

Coloured Petri Nets (CPN) are one type of the many
defined as ”High Level Petri Nets“. The major difference with
TPN is that tokens have different values (”colours“) from a
domain. This permits to model with a high level of abstraction.
Here, transitions are enabled by having not only enough tokens
in their input places but also from the ”color“ defined. CPN
definition is taken from from [10], [11].

Coloured Petri Nets permit to model complex nets at high
level in a simple manner. DAGs of task dependencies with
many blocks divisions are difficult to understand due to their
large number of nodes (see Fig. 10 of LAWN 243 [6]). To
model tiled algorithms with CPN, the main domain used to
define tokens is tile position, represented by the row-column
pair.

The strategy to model the algorithm is:

1) Each operation is represented by one transition
2) For each transition, there are as many input Places as

data blocks parameters are involved in the operation.
3) No more places or transitions are used.
4) Output arcs represent data dependency.

To specify conditions in places, we extend or restrict
the tile-block domain. Also, multisets are used to represent
repetitions of blocks, and function arc expressions, to limit
token flowing [11].

Fig. 3 shows the CPN that represents the Cholesky algo-
rithm. It has only four transitions and eight places, according
to the strategy suggested. The name of the places follow the
number of the block used in each operation. Color token is
represented by < x,y >, multiset repetitions by braces {x},
and functions arcs are only booleans of the form if(cond).

In each place, the domains used are:

For potr1 and trsm2, the domain is < i, i >, i = 1 . . . n.

For trsm1, syrk1, and gemm1, the domain is < j, i > j =
2 . . . n, i = 1 . . . j − 1, j > i
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potr1 trsm2

potr

< i, i >

< i, i >
{n− i}

trsm1

syrk1

gemm2 gemm1

trsm

< j, i >
< i, i >

< j, i >
{n− j}

< j, i >
{j − i− 1}

< j, i >

syrk2

syrk

< j, i >

< j, j, i >

< j, j, i + 1 >
if(i+ 1 < j)

< j, j >
if(i+ 1 = j)

gemm3 gemm

< i, q >
< j, q >

< j, i, q >

< j, i, q + 1 > if(q < i− 1)

< j, i >
if(q = i− 1)

Fig. 3. Coloured Petri Net that represents Cholesky factorization algorithm.

For gemm2 the domain is < j, i >, j = 3 . . . n, i =
1 . . . j − 2, j > i

For syrk2 the domain is < j, j, i >, j = 2 . . . n ∧ i =
1 . . . j − 1 ∧ j > i

For gemm3 the domain is < j, i, q >, j = 3 . . . n, i =
2 . . . n− 1, q = 1 . . . i− 1 ∧ j > i ∧ i > q

The inital places mark is:

• In potr1: < 1, 1 >

• In trsm1: < i, 1 >, i = 2..n

• In syrk2: < i, i, 1 >, i = 2..n

• In gemm3: < j, i, 1 >, j = 3..n, i = 2..j − 1

In this way, a tiled algorithm is generically defined by a
CPN, and any consideration in the number of tiles is dispensed
with, it being only a parameter for domain definition. Its
simplicity and facility to analyze the parallel algorithm are
highlighted.

Nevertheless, CPNs are not used to execute the algorithm.
The overhead necessary to abstractly represent domains and
function arcs is expensive in terms of high performance
computing. On the other hand, the CPN developed in this
way fulfill the definition of well-formed CPNs [10]. This
type of nets are easily transformed to a TPN, which have
a computational implementation that is simple and light to
execute.

B. Token Petri Net

The previous section shows the facility to model a parallel
algorithm with a CPN and the procedure used to define places
and transitions. The resulting net is easily unfolded to a TPN.

To unfold a CPN we follow the steps defined in Diaz [10].
Each Place Pj in a CPN has a Domain D(Pj) associated with
it, and is unfolded to generate as many Places in TPN as is
the cardinality of D(Pj) in the colored Place. The repetitions
from the bag that represent the Place must be respected. Thus,
each Place in TPN is associated with an unique value from
the pairs (color, place) in CPN and repeated according the bag
pair cardinal.

The unfolding for Transitions is similar: for each Transition
in CPN there will be generated as many Transitions in TPN as
the cardinal of the Cartesian Product of all its input Places in
the CPN, respecting the cardinal of the bag in each Place. Each
Transition in TPN is associated with a unique value from tuples
of the Cartesian Product, repeated as the respective cardinal of
the bags of each input place.

Input Arcs in CPN is unfolded to TPN from the corre-
sponding unfolded Place / Transition in TPN. The same occurs
for output arcs, with reference to the condition of the guard
function.

Table in Fig. 4 show an unfolding example for Places from
CPN to TPN, for the case of 3 × 3 tiles divisions. The names of
Places in TPN follow the respective name in CPN, concatenate
with the color of the token that is represented. For example,
syrk132, is the Place in TPN, that came from Place syrk1
with color < 3, 2 > in CPN, and represents the first argument
in syrk operation of the tile in third row, second column.
Graphically, the unfolded TPN of the example is shown in
Fig. 5.

It is not difficult to see how fast the number of Places and
Transitions in TPN grow with an incresing number of tile di-
visions. It is practically impossible to show and understand its
graphical representation. However, the matricial representation
is elementary and easy to use. The importance of unfolding
is that a TPN can be represented with two matrices and one
vector of natural numbers, and that elementary matrix - vector
operations models the execution of the net.

The structure of TPN net can be represented by Nega-
tive and Positive Incidence Matrix (NIM / PIM). Both have
dimension p × t, where p is the number of Places and t
is the number of Transitions. Each position in the matrix
represents the relation between a pair place/transition, which is
the equivalent of an arc between them in terms of graph theory.
A position with zero represents absence of arc. A positive value
represents the number of tokens that will be absorbed / injected
by the transition depending on Negative or Positive case, if the
transition is fired.

Token existence in Places is represented by a Mark Vector
(MV). It has dimension 1 × p, and values are also naturals
numbers. Values represents the number of tokens that exists in
the respective Place.

The matricial representation highlights the facility to com-
pute enabled transitions and to fire them. We call NI−j and
PI+j the j-th column (transition) in NIM and PIM respectively.
By computing MV −NI−j , if the result has no negative values,
MV has enough tokens in the input Places of j-transition, and
thus can be fired.

Computing the difference for all the columns, determines
all the transitions that are enabled to fire. By construction,
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Place in CPN Domain in CPN Places in TPN

potr1
< i, i > potr111
i = 1 . . . n potr122

potr133

trsm1

< j, i > trsm121
j = 2 . . . n trsm131
i = 1 . . . j − 1 trsm132
j > i

trsm2 < i, i > trsm211 {2}
{n− 1} repetitions trsm222 {1}

syrk1
< j, i > syrk121
j = 2 . . . n syrk131
i = 1 . . . j − 1 syrk132
j > i

syrk2
< j, j, i > syrk2221
j = 2 . . . n syrk2331
i = 1 . . . j − 1 syrk2332
j > i

gemm1

< j, i > gemm121 {1}
j = 2 . . . n
i = 1 . . . j − 1, j > i
{n− j} repetitions

gemm2

< j, i > gemm231 {1}
j = 3 . . . n
i = 1 . . . j − 2, j > i
{j−i−1} repetitions

gemm3

< j, i, q > gemm3321
j = 3 . . . n
i = 2 . . . n− 1
q = 1 . . . i− 1
j > i > q

Fig. 4. Unfold example for Places for the Coloured Petri Net in Fig.3
supousing only 3 × 3 tiles divisions.

Places of the unfolded TPN have only one transition to
act as input. That guarantees the no competition of enabled
transitions for input tokens, and that all enabled transitions
can be fired simultaneusly.

To modelize the net execution, an additional function is
defined in order to compute the set of transitions enabled to
be fired. The function is h : N1×p×Np×t → N1×t, which has
parameters M y NI−, and its result values are:

h(j) =

{
0 if (M −NI−j ) has negatives values
1 if (M −NI−j ) else

j = 1 . . . t

then h positions with value 1 reference to transitions enabled
to be fired.

Firing all enabled transitions defines a new mark for Mark
Vector (MV’):

MV ′ = MV − h×NIM t + h× PIM t (1a)

III. EXECUTION MODEL

DAGs can model dependencies of tasks in a parallel
algorithm, but they do not modelize the execution. Petri Nets
have implicit modelization of execution: by representing tasks

potr111

trsm211(1) trsm211(2)potr1

trsm121 trsm131

syrk121 syrk131gemm121

trsm21

gemm231

trsm31

syrk2221

potr122 syrk21

trsm222

potr22 gemm3321 trsm132

gemm32 syrk2331

syrk2332

syrk31

syrk132

trsm32 potr133 syrk32

potr33

Fig. 5. Token Petri Net unfolded from the Coloured Petri Net in Fig.3
suposing only 3 x 3 tiles divisions.

as Transitions, all enabled Transitions are those that can be
executed.

Nevertheless, TPN is not sufficient to model the execution
of a parallel algorithm. It has no information about the running
time of a task, and has no limit about the number of processors
that execute the task.

To solve the problem of execution time, we use Timed
Petri Nets (TiPN) [10]. They have an important feature, the
representation of the time in Transitions. By adding a delay
between the time in which tokens are absorbed from input
places and the time in which tokens are injected in output
places, transitions can represent the notion of execution time.

Firing a transition k in TiPN implies an MV update in two
times:

MV ′ = MV −NI−k in tini (2a)
MV ′′ = MV ′ + PI+k in tini + ∆(Tk) (2b)

where tini is the initial firing time, and ∆(Tk) is the execution
time of task Tk.

To solve the problem of the availability of many processors,
we define an execution model. The model consists of a set of
processors and one TiPN that represent the algorithm and its
dependencies as we have used along this paper. Each processor
knows how to do the task that each transition represents.
The TiPN is shared by all the processors. Each processor
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1 While main a l g o r i t h m n o t f i n i s h e d
2 I f can ho ld t h e mutua l e x c l u s i o n
3 Compute f u n c t i o n h
4 De f i ne t h e t a s k to do
5 Update MV by a b s o r b i n g t o k e n s
6 Free t h e e x c l u s i o n
7 Task e x e c u t i o n
8 I n j e c t t o k e n s in MV
9 Else

10 Delay
11 Endif
12 End

checks the TiPN state to select a task to do, from all enabled
transitions. To prevent multiple selection of the same task, a
mutual exclusion mechanism is added to the TiPN.

Each processor executes the following pseudo-code parallel
execution algorithm:

Details of processor execution pseudo-code:

• Main algorithm is the represented by the Petri Net.

• The exclusion is hold until the tokens are absorbed
from input places, before the processor begins the
task execution. No colission is produced by tokens
injection.

• When more than one transition is enabled, a selection
policy must to placed.

• A delay is introduced if the processor can’t hold the
exclusion to avoid starvation.

The overhead introduced by the parallel execution is de-
fined by three factors. First, the mutual exclusion mechanism,
the execution of which uses few clocks cycles. Second, the
integer matrix and vector operations, which are highly opti-
mized to run in milliseconds in today processors. Third, the
selection policy must be guided by balancing between selection
algorithm and overall algorithm performance. In fact, the sum
of the three factors is several orders of magnitude smaller than
the kernels execution time, which means a minimum overhead.

IV. DYNAMIC SCHEDULING

Task selection between all the enabled tasks is a key factor
in the execution model. In the model implementation, Patterns
from Object Oriented Design was chosen as a design tool. The
design has three basic objects: one Petri Net, many Processors
that interact with the PN, and Selectors that colaborate with
the Processors, to select the next executable task.

Each Processor has a link to the Petri Net Object and a link
to one Selector. The Selector object is responsible for defining
the task that the Processor will do. It is a method that, taking
as input parameters the state of the PN and the processor,
returns the next task to the Processor. The design principle is
to decouple processing from selecting tasks.

Different selecting policies are implemented by simply
implementing the selecting method of Selector accordingly.
This is a way to modelize homogeneous or even heterogeneous
processors with different scheduling policies. Also, static or

dynamic scheduling can be easily implemented using the
appropriate Selector collaborator.

Simulation tests were developed to run static and dynamic
tasks schedulers. In both cases, task assignation to a processor
is dynamic, i.e. static or dynamic refers to the execution
sequence, not the execution processor.

Two static schedulers are tested, following LL and RL
algorithms. They were implemented easily by defining the
order of tasks that Selector must follow. The sequence was
defined from the algorithms shown in Fig. 1 and Fig. 2.

Two dynamic schedulers are tested. Both are based on
DAGs, but differ in the selection metric applied. The first,
called height tree (HT), selects the enabled task that is higher
in the dependency tree. The second, called inverse tree (IT),
select the enabled task that has a longer path to finish in the
graph. By longer path we mean that it has a bigger number of
steps in the longest path from the current to the end task. Non
deterministic selection is done in case of equal height.
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syrk21 gemm2131gemm2141 syrk31 gemm3141 syrk41
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Fig. 6. Dependency graph of Cholesky algorithm, 4× 4 tiles. Right values
references to the stage number in which the task is enabled to fire (bigger
value is earlier).
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Fig. 7. Dependency graph of Cholesky algorithm, 4× 4 tiles. Right values
references to the latest stage number in which a task must to be fired (bigger
value is earlier).
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Figures 6 and 7 show examples of DAGs of dynamic
schedulers used in tests. In height tree the level of a task is
assigned according the step in which the task is enabled. In
inverse tree, the level is assigned according to number of steps
in the longest path to the end. For example, task trsm41 has
level 8 in the first graph and level 6 in the second.

Differences between both schedulers are exposed in the
next example. Suppose you have three processors. Following
the dynamic schedulers previously shown, the first step is
compute potr11, and then compute trsm21, trsm31 and trsm41.
In the third step, scheduler height tree, must select any task
from all those that have level 7 assigned, but scheduler inverse
tree will select exactly syrk21, gemm2131 and gemm2141. Is
easy to see in Fig. 7 that syrk21 is a priority tasks in the path
to the end because it enables potr22. Scheduler height tree,
due to its non determination, may delay it selection.

V. SIMULATION RESULTS

Simulations of parallel algorithm were tested with dif-
ferent values for four parameters: matrix size, number of
processors, number of block division and scheduler used. To
test performance, a simulation tool was developed using a
high level language (Smalltalk). The tool takes the number
of blocks and defines all the tasks to be executed; then take
matrix size and decides the block size, and finally it takes
the number of processors and creates the same number of
Processor objects and one thread for each of them to execute in
parallel. According the scheduler, the respective Selector object
is linked to each Processor. The execution of each kernel is
simulated by throwing a time delay according the task.

In order to run simulations, it was used the time of
running of each kernel, obtained for different block sizes,
single precision, from a NVIDIA GTX 470 GPU. CUDA was
used for BLAS kernels and MAGMA for LAPACK kernel
xPOTRF. The results are shown in Table I. In all cases, the
time of communication of all data from main memory to GPU
and vice versa is considered. It was assumed that the main
processor uses one thread to control each GPGPU.

Table II shows results of simulations with only four proces-
sors and block range of 6000 and 8000, single precision. Due to
space limitations, only these results are presented, but they are
representative of other combination of execution parameters.
The metric of performance used is the idleness of processors,
which is calculated as a difference between total execution
time and total of processing time.

For Cholesky factorization algorithm, RL algorithm brings
the best results for static scheduling, which are consistent
with previous work [9]. For dynamic scheduling, inverse tree
brings results which are near the optimum. A timeline for both
schedulers is shown in Figures 8 and 9. Two things are noted:

Kernel Single pres.
6000

Double pres.
6000

Single pres.
8000

Double pres.
8000

potr 0.249 0.882 0.509 1.895
trsm 0.568 2.018 1.122 N/A
syrk 0.465 1.907 1.001 N/A
gemm 0.755 3.506 1.678 N/A
TABLE I. OBSERVED TIME FOR THE KERNELS EXECUTED OVER AN

NVIDIA GTX 470 GPU, IN SECONDS.

Block Size # Blocks # Procs. Algor. Time (sec) % idle time
6000 6 4 LL 17.50 53.66
6000 6 4 RL 13.26 38.77
6000 6 4 HT 10.16 20.56
6000 6 4 IT 9.51 14.97
6000 8 4 LL 40.59 53.45
6000 8 4 RL 26.33 28.47
6000 8 4 HT 20.98 10.95
6000 8 4 IT 20.69 9.65
8000 6 4 LL 36.89 53.35
8000 6 4 RL 27.79 38.08
8000 6 4 HT 21.37 19.64
8000 6 4 IT 19.95 13.96
8000 8 4 LL 85.34 53.16
8000 8 4 RL 55.05 25.37
8000 8 4 HT 44.30 10.21
8000 8 4 IT 43.71 8.97

TABLE II. OBSERVED VALUES OF SIMULATIONS.

the idle time of processors in synchronization points in RL
and the practical absence of idle time in IT.

The nature of the Cholesky algorithm imposes no paral-
lelism in the beginning and in the end of the execution, which
sum four serial tasks. Beyond those points, and also at the
end of execution, there is a limited number of parallel tasks
which produce idle state for some processors. For the rest of
the execution, all processors are always working.

VI. CONCLUSION AND FUTURE RESEARCH

We have developed a model of parallel programming
starting from CPN, unfolding them to TPN and executed by a
set of distributed processors that share in a memory area the
representation of the state of the algorithm, and decouple the
execution from the selection of the next task to do.

The model was used as a simulation tool, but it is easy to
adapt it to running real algorithms. We hope to get performance
improvements, due to the minimal overhead of the scheduling
policy and its almost optimal ”idleness“ rate of processors.

The simulations were based on times taken from a cur-
rently usual multicore - multiGPU machine. Its results show
that important improvements in performance can be obtained
with respect to static scheduler algorithms, using a dynamic
scheduler based on Petri Nets, which is easy to implement.

The model is adaptable to different numbers of processors
and data block partitions: the unfolding of the CPN capture
the number of partitions by generating the respective inci-
dence matrix. Data dependencies are automatically generated.
Besides, the execution model only needs as parameter the
matricial information; thus, to execute different algorithms, no
programming is necessary, it is enough to change the matrix.

Dynamic scheduling can be executed without need of
previous time execution of each kernel. That information is
necessary to achieve an optimal scheduling, at the cost of
more complex schedulers. Our simulations show a result that is
near the optimal, with a very light overload. Others dynamic
scheduling policies may achieve optimal or sub-optimal re-
sults, but they are complex to understand and implement.

Execution on a set of asymmetric processors can be im-
plemented by changing the Selector of task in each processor.
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Kernels used:
gemm potr syrk trsm

Timeline between 0 segs and 19 segs
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Proc2
init trsm31 syrk31 trsm71 syrk81 gemm2161 gemm2181 gemm3171 gemm4171 gemm5181 trsm62 syrk62 syrk82
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init trsm51 syrk41 trsm81 gemm2131 gemm2171 gemm3161 gemm4161 gemm5171 gemm7181 trsm52 syrk32 trsm72

Proc4
init trsm41 syrk51 syrk61 gemm2141 gemm3141 gemm4151 gemm5161 gemm6181 potr22 trsm42 syrk52 syrk72

Timeline between 19 segs and 38 segs
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gemm3252 gemm4262 gemm5282 trsm63 syrk53 syrk83 gemm4383 gemm5383 trsm64
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gemm3272 gemm4252 gemm5262 gemm6282 trsm73 syrk73 gemm4363 gemm5373 gemm7383 trsm84
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gemm3242 gemm3282 gemm4282 gemm6272 potr33trsm43 syrk43 trsm83 gemm4373 gemm6373 trsm74

Proc4
gemm3262 gemm4272 gemm5272 gemm7282 trsm53 syrk63 gemm4353 gemm5363 gemm6383 potr44trsm54

Timeline between 38 segs and 57 segs
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syrk64 gemm5474 potr55trsm65 syrk65 gemm6585 potr66 potr77

Proc2
syrk74 gemm5484 trsm85 gemm6575 trsm86 gemm7686
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syrk84 gemm6474 gemm7484 syrk75 gemm7585 trsm76 syrk76 trsm87 potr88

Proc4
syrk54 gemm5464 trsm75 syrk85 syrk86 syrk87

1

Fig. 8. Simulation timeline, RL scheduler, 8 blocks, 8000 range each, 4 processors
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Fig. 9. Simulation timeline, IT scheduler, 8 blocks, 8000 range each, 4 processors

By restricting the execution of tasks that have forwarding
dependencies in a non critical path to slower processors, those
processors can help in the overall parallel execution.

Future work will implement the effective execution with
this model, not only for linear algebra factorizations, but for
others algorithms as well. An implementation in a distributed
memory parallel architecture will also be researched.
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Abstract - Network alignment is one of the most 

commonly used biological network comparison 

methods since determining protein functions shifted the 

focus from targeting specific proteins based solely on 

sequence homology to analyses of the whole proteome 

based on protein-protein interactions (PPI). Aligning 

PPI networks of different species is of great importance 

when detecting evolutionary conserved pathways, or 

protein complexes. However, when it comes to large 

biological network data, the improved serial algorithms 

still take a long time. In this paper, a parallel algorithm 

for network alignment, which is based on the serial 

implementation of the GRAph Aligner Algorithm 

(GRAAL), is designed to improve the efficiency of 

network alignment. This algorithm is implemented in 

parallel with C++ and the Message Passing Interface 

(MPI) library. The results show that the parallel 

implementation of GRAph Aligner improves 

significantly in efficiency without losing accuracy, 

compared to the serial GRAph Aligner algorithm. 

Keywords:  GRAAL, network alignment, PPI, parallel 

implementation 

 

1 Introduction 

1.1 Network alignment 

Network alignment is considered to be one of 

the most common methods to analyze and compare 

biological networks. It is mainly about finding structure 

or topology similarities between two or more networks. 

Similar to sequence alignments, network alignments 

have two main instances: local network alignment and 

global network alignment. Based on the hypothesis that 

aligned sub-graphs are conserved through evolution, 

the goal of local alignment is to search for evolutionary 

conserved building blocks of the cellular machinery, 

disregarding the overall similarity between networks. A 

global network alignment gives a unique and one-to-

one alignment from every node in a smaller network to 

exactly one node in the other network. Hence, the goal 

of global network alignment is to search the maximal 

overall match between two or more networks. 

1.2 PPI datasets 

PPI networks are usually obtained by two high-

throughput experimental bio-techniques. They are yeast 

two-hybrid screening, resulting in binary interaction 

data and protein complex purification methods using 

mass-spectrometry, resulting in co-complex data. Many 

databases containing PPI networks are also available 

online. These include Biological General Repository 

for Interaction Datasets (BioGRID), IntAct, Database 

of Interacting Proteins (DIP), Mammalian Protein-

Protein Interaction Database (MIPS), and many others.  

The datasets that we use in this thesis are mainly from 

BioGRID and DIP databases.  

1.3 Background 

Recently, large amounts of experimental 

biological network data are becoming available due to 

the advanced techniques used in the biological field. 

These biological networks include protein-protein 

interaction (PPI) networks, transcriptional-regulation 

networks, brain functional networks, and metabolic 

networks. We mainly focus on analyzing PPI networks, 

which are probably the most commonly studied type of 

biological networks. In PPI networks, nodes represent 

proteins and edges among nodes stand for the 

interactions between proteins. It is generally 

represented as an undirected graph with no self-loops. 

PPI networks are of particular importance because 

proteins play a crucial role in all cell functions. Instead 

of acting in isolation, proteins always cooperate with 

other proteins to perform many biological functions 

and create large complicated networks. We learn 

protein-protein interaction (PPI) networks and apply 

network alignment as the biological network 

comparison method to focus on the analysis of the 

entire proteome. Comparative analyzing of PPI 

networks can give valuable insight into biological 

mechanisms, evolutionary changes, and provide deeper 

understanding of complex diseases. Exploring the inner 
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relationship of PPI network topology and biological 

functions are a big challenge given the scale of 

biological network data. Therefore, an efficient 

algorithm is essential to be implemented. 

The GRAph Aligner Algorithm (GRAAL), 

which is a global network alignment method, works 

well in network alignment. However, when it comes to 

large scale biological network data, the computational 

costs are increased significantly. In this work, we 

develop a parallel implementation based on the GRAph 

Aligner Algorithm (GRAAL). 

In this paper, we first give a brief introduction to 

the serial GRAAL algorithm in Section 2. Then, the 

parallel GRAAL algorithm including design and 

implementation are presented in Section 3. In the 

Section 4, we introduce the implementation 

environment. Section 5 analyzes the performance of the 

parallel algorithm. Finally, we conclude the work in 

section 

2 Serial GRAAL algorithm 

Kuchaiev et al. recently proposed a topological 

method of the global alignment of biological networks 

based on graphlet degree signatures, GRAph Aligner 

(GRAAL) [1]. Since this method does not use protein 

information, it can be used to align any two networks, 

not just biological ones. It mainly contains four steps 

given as follows: 

Step 1: Compute the vector of graphlet degrees of a 

node and signature similarities, which provide a novel 

method to measure the local topology in a node‟s 

vicinity and similarity between nodes from two 

networks (this vector is a matrix, also called a signature, 

that describes the node‟s neighborhood topology).  

        
                        

                 
             (1) 

Step 2: Compute the cost matrix of aligning each node 

of the first network with each node in the second 

network.  

                
             

                         
              (2) 

Step 3: Choose a pair of nodes (u, v) from the two 

networks respectively as an initial seed with minimal 

cost, then build „spheres‟ of all possible radii around 

nodes u and v. Spheres of the same radius in the two 

networks are then greedily aligned.  

Step 4: Calculate the edge correctness (EC) which is the 

percentage of edges in the first graph that are aligned to 

edges in the second graph. 

   
                           

    
            (3) 

3 Parallel GRAAL algorithm 

 Based on the analysis of the four steps of the 

serial algorithm introduced in the Section 2, we see that 

there are two main parts in this algorithm that can be 

implemented in parallel. The first part is the vector 

matrix calculation which describes the node‟s 

neighborhood topology. The second part is the cost 

matrix calculation which is the foundation to choose 

the initial seeds of two networks. Considering cost 

matrix calculation is just a formula based on previous 

result, it costs little time which we can skip. So we are 

focus on the parallel implementation of vector matrix 

calculation. The Implementation in [1] uses 73 

different orbits across all graphlets of size 2 to 5. The 

vector of 73 coordinates is the signature of a node that 

describes the topology of its neighborhood and 

captures its interconnectivities. 

 Therefore, the vector of 73 coordinates must be 

calculated for each node in the network. Note that the 

calculation of the vector matrix of a large network is a 

time consuming task. In order to reduce the running 

time and improve the performance, we can calculate 

the vector matrix and cost matrix using parallel 

computing technology. In order to do matrix 

calculations, we implement a block-row decomposition 

technology to partition both the data and the 

computational operations. 

3.1 Data decomposition 

The vector calculation contains a matrix-vector 

multiplication operation. So, we use a block-row 

decomposition technology to partition data into equal-

size sub-matrix, which are sent to each processor. 

Figure 1 shows the data decomposition. 

 

 
Figure 1: Data block-row decomposition 
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3.2 Task decomposition 

Step 1: We use one processor to read adjacency    

matrix from two network files. 

Step 2: Scatter the adjacency matrix to each processor 

to compute local vector matrix. 

Step 3: Gather those local vector matrix from each 

processor. 

 

3.3 Parallel algorithm implementation 

3.3.1 Degree matrix calculation 

For each node in each network, its degree must 

be calculated. We use several processors to calculate 

the fixed number of many different nodes‟ degrees 

simultaneously, and then combine these results to get 

the final degree matrix at a single destination process.  

3.3.2 Vector matrix calculation  

According to the number of graphlets we 

choose, there are related number of orbits among those 

graphlets. For every node in the two networks, we 

count the number of graphlets connecting to a node for 

all graphlets through different orbits. This is the node‟s 

signature vector. For example, if there are 73 different 

orbits between 30 graphlets consisting of 2 to 5 nodes, 

then the signature vector of a node has 73 coordinates. 

Calculating the matrix of this vector can also be 

parallelized in the same way as in Step 1. 

3.3.3 Distance matrix calculation 

Di(u, v) denotes the distance between the i
th

 

orbits of nodes u and v from the two networks. Di(u, v) 

for all node pairs from a matrix. The total distance D(u, 

v) between nodes u and v is calculated as 

       
          

   

   
  
   

                         (4) 

and D(u, v)  for all node pairs from a matrix, too. We 

can calculate both matrices in parallel. 

3.3.4 Construction of spheres and alignment of 

spheres 

Once the seed is found, GRAAL builds „spheres‟ 

of all possible radii around nodes u and v. Spheres of 

the same radius in two networks are then greedily 

aligned.  These two tasks are independent on different 

nodes and can be easily parallelized. 

 

4 Implementation Environment 

The parallel algorithm was implemented using 

C++ and MPI. It was tested on the platform of Albacore 

Linux cluster in the School of Computing at the 

University of Southern Mississippi [8]. The cluster 

consists of 256 processor cores, 300GB of RAM and a 

1-Gigabit Ethernet interconnects. Albacore is a hybrid, 

distributed-shared memory cluster, consisting primarily 

of Intel Xeon 56xx processors and Intel Xeon 55xx 

processors.  

5 Results and Performance Analysis  

The parallel GRAAL algorithm was compiled and 

executed on the Albacore cluster. Both the serial and 

the parallel GRAAL algorithms resulted in the same 

aligned networks, which verify the correctness of the 

parallel implementation.  

We downloaded four datasets from the Database 

of Interacting Proteins (DIP) online database [9] and 

BioGRID websites [10], and created four synthetic 

networks. Then we aligned these synthetic networks 

using both serial and parallel codes to verify the results 

and analyze the performance of the parallel algorithm. 

The parallel code is executed with different numbers of 

processors, e.g. 2, 4, 8 and 16 in the Albacore Linux 

cluster.  

We further tested the parallel code using three 

different datasets: the Fruit fly PPI network with 96 

nodes from DIP database, the Human Herpes Virus PPI 

network with 152 nodes, and the Human 

Immunodeficiency Virus PPI network with 321 nodes 

from BioGRID website. As described in the Section 3, 

the vector matrix calculation is the most time 

consuming part in the parallel GRAAL algorithm, so 

we only analyze the performance of the vector matrix 

calculation in this paper. Table 1, Table 2, and Table 3 

give the computation time T for calculating the vector 

matrix in the serial and parallel GRAAL algorithms for 

Fruit fly PPI network dataset, the Human Herpes Virus 

PPI network dataset and the Human Immunodeficiency 

Virus PPI network dataset with respect to different 

number of processors P. Table 4 shows the 

corresponding speedup that is defined as the ratio of 

serial computation time to the parallel computation time 

(We denote the serial and parallel execution times as Tp 

and Ts , speedup is defined as S = Ts / Tp). Table 5 

shows the corresponding efficiency that is defined as 

the ratio of speedup to the number of processors 

(Efficiency is defined as E = S / p, which S is the 

speedup and p is the number of processors). The 

reasons why the speedup and efficiency are chosen are 

that, for speedup, it delineates how much performance 

gain is achieved via a parallel design over serial design; 

and for efficiency, it describes how much time is spent 

on the computation.   For convenience of performance 

analysis, the speedup and efficiency are shown in 

Figure 5 and 6. 
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From Table 1, through Table 5, P is the number of 

processors and T is the average execution time (in 

seconds). For Table 4 and Table 5, H.Immu is short for 

Human Immunodeficiency Virus PPI network, H.Herp 

is short for Human Herpes Virus PPI network, F.Fly is 

short for Fruit Fly PPI network. 

 
Table 1: The execution times with different number of 

processors for the Fruit Fly dataset 

P 1 2 4 8 16 

T 1.41 0.75 0.39 0.21 0.12 

 
Table 2: The execution times with different number of 

processors for the Human Herpes Virus dataset 

P 1 2 4 8 16 

T 39.64 22.26 11.97 6.58 3.97 

 

Table 3: The execution times with different number of 

processors for the Human Immunodeficiency Virus 

dataset 

P 1 2 4 8 16 

T 219.69 126.53 77.52 50.63 33.29 

 

Table 4: The speedup (S) of the three datasets  

 P=1 P=2 P=4 P=8 P=16 

H.Immu 1.00 1.74 2.83 4.34 6.60 

H.Herp 1.00 1.78 3.31 6.02 9.98 

F.Fly 1.00 1.88 3.62 6.71 11.75 

 

Table 5: The efficiency (E) of the three datasets 

 P=1 P=2 P=4 P=8 P=16 

H.Immu 1.00 0.87 0.71 0.54 0.41 

H.Herp 1.00 0.89 0.83 0.75 0.62 

F.Fly 1.00 0.94 0.91 0.84 0.73 

 

 

Figure 2: Execution time for Fruit Fly dataset 

Figure 3: Execution time for Human Herpes virus 

dataset 

Figure 4: Execution time for Human Immunodeficiency 

virus dataset 

Figure 5: The speedup with different processors on 

Albacore 
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Figure 6: The efficiency with different processors on 

Albacore 

The results show that the computation time 

decreases significantly and the speedup increases when 

the number of processors increases. It is noted that the 

speedup curve is below the ideal speedup denoted by 

the dashed line in the Figure 5 because the parallel 

GRAAL algorithm needs to complete extra tasks and 

communication between processors. Since most 

parallel tasks are independent in the parallel algorithm, 

the communication cost is not significant. In summary, 

the parallel implementation of the GRAAL algorithm 

can significantly improve the computational 

performance of network alignment.  

6 Conclusion  

A parallel implementation of vector matrix and 

cost matrix calculations in the GRAAL algorithm is 

presented, which uses a block-row decomposition 

technique. The adjacency matrices of two networks are 

distributed onto p processes, with each process solving 

a sub-problem. This preliminary study shows that the 

parallel GRAAL implementation can significantly 

improve the computational performance, which 

provides an efficient way for aligning large networks, 

especially biological networks. 
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Abstract - Line simplification is a process of 
reducing the number of line segments to represent a 
polyline. This reduction in the number of line 
segments and vertices can improve the performance 
of spatial analysis applications. The classic Douglas-
Peucker algorithm developed in 1973 has a 
complexity of O(mn), where n denotes the number of 
vertices and m the number of line segments. An  
enhanced version of this algorithm was developed in 
in 1992 and has a complexity of O(n log n). In this 
paper, we present a parallel line simplification 
algorithm and discuss the implementation results 
using only one instruction stream of the parallel 
Multiple-instruction-stream Associative Computing 
model (MASC). The parallel algorithm is 
implemented in Chapel, a parallel programming 
language developed by Cray Inc., has parallel 
complexity of O(n) on n processors.  The 
performance of the parallel program was then 
evaluated on different parallel computers. 
 
Keywords: Parallel algorithms, associative 
computing, SIMD algorithms, line simplification, 
vertex elimination, level curve 

 
1. Introduction 

2D planar level curves are the polylines where 
mathematical functions take on constant values.  An 
example of a level curve in AutoCAD is shown in 
Figure 1.  The number of digitized line segments 
collected is far more than necessary [2].  Due to the 
high complexity of often-irregular geospatial 
functions, the number of line segments to represent the 
planar level curve can be very large, which may cause 
inefficiencies in visual performance.  Therefore, the 
polyline needs to be represented with fewer segments 
and vertices.  It is necessary to perform a polyline 
simplification algorithm on a 2D planar level curve. 

In this problem, the line segments of polylines are 
digitized in a raster scan order (left-to-right, top-to-
bottom).  The raster scan ordering of the line 
segments requires intensive searching on the 
remaining set of line segments to reconstruct the 2D 
planar curve polylines (O(n2) searches).  A much 

simpler problem is if the line segments were acquired 
in a “stream order”, then the end vertex of one line 
segment is the beginning vertex of the next line 
segment in the file. It would then be straightforward 
to apply a polyline simplification algorithm.  

Figure 1: An example of a level curve. 
 

The Douglas-Peucker line simplification 
algorithm is considered an effective line 
simplification algorithm [2, 13].  The algorithm uses 
the closeness of a vertex to a segment as a rejection 
condition. Its worst-case complexity is O(mn), where 
n denotes the number of vertices and m the number of 
segments. Furthermore, in 1992 Hershberger and 
Snoeyink introduced an improvement for Douglas-
Peucker algorithm to gain an enhanced O(n log n) 
time complexity [4].  The speed up is achieved by 
using binary search to maintain the path hulls of 
subchains.  Different approaches to this issue have 
also been discussed in [5, 10, and 12].  However, 
even the worst-case complexities O(mn) and 
O(nlogn) are considered computationally expensive 
when it comes to work with significantly large  
visualizations.   

In a previous paper [12] we presented a polyline 
simplification algorithm using the Multiple-
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instruction-stream Associative Computing model 
(MASC) [6, 8] to reduce the number of vertices 
required to represent polylines. MASC is an 
enhanced SIMD model with associative properties. 
By using the constant global operations of the MASC 
model, our algorithm has a parallel complexity of 
linear time O(n) in the worst case using n processing 
elements. 

For this research we present the results of an 
initial implementation, benchmarking, and 
performance analysis for the aforementioned 
algorithm. 

This paper is organized as follows. Section 2 will 
briefly discuss the MASC model of parallel 
computation that the algorithm is grounded upon.  
Section 3 will discuss the sequential and parallel 
polyline simplification algorithms in more detail.  
Section 4 will briefly discuss the implementation of 
the algorithm using Chapel.  Section 5 will present 
the results of our implementation and Section 6 will 
provide the discussions on future work and 
conclusion. 

 
2. The MASC Model of Parallel Computation 

The following is a description of the Multiple 
Associative Computing (MASC) model of parallel 
computation.  As shown in Figure 2, the MASC model 
consists of an array of processor-memory pairs called 
cells and an array of instruction streams. 

Figure 2: Conceptual view of MASC. 

A MASC machine with n cells and j instruction 
streams is denoted as MASC(n, j).  It is expected that 
the number of instruction stream processors be much 
less than the number of cells.  

Cells can receive their next set of 
instructions to execute from the instruction stream 

broadcast network.  Cells can be instructed from their 
current instruction stream to send and receive 
messages to other cells in the same partition using 
some communication pattern via the cell network.  
Each instruction stream processor is also connected 
to two interconnection networks.  An instruction 
stream processor broadcasts instructions to the cells 
using the instruction stream broadcast network.  The 
instruction streams also may need to communicate 
and may do so using the instruction stream network.  
Any of these networks may be virtual and be 
simulated by whatever network is present. 

MASC provides one or more instruction 
streams. Each active instruction stream is assigned to 
a unique dynamic partition of cells.  This allows a 
task that is being executed in a data parallel fashion 
to be partitioned into two or more data parallel tasks 
using control parallelism.  The multiple IS’s 
supported by the MASC model allows for greater 
efficiency, flexibility, and re-configurability than is 
possible with only one instruction stream.  While 
SIMD architectures can execute data parallel 
programs very efficiently and normally can obtain 
near linear speedup, data parallel programs in many 
applications are not completely data parallel and 
contain several non-trivial regions where significant 
branching occurs [3].  In these parallel programming 
regions, only a subset of traditional SIMD processors 
can be active at the same time.  With MASC, control 
parallelism can be used to execute these different 
branches simultaneously.  Other MASC properties 
are described in [6, 7, 8, 9, 11]. 

 
3. Polyline Simplification Algorithms 

In order to perform the polyline simplification, the 
raster scan digitized line segments in the input stream 
need to be re-arranged.  The random nature of the 
digitized line segments necessitates a massive 
number of search operations to determine coincident 
points.  For example, as shown in Figure 3, five line 
segments have been digitized.  

After rearrangement, the stream order would be: 
[B2 A2 A1 B1 B3 A3 A4 B4 A5 B5]. Then, each 
vertex will be checked with its next vertex for 
coincidence and eliminated accordingly. In this 
example, points [A1, B1, A3, B4] will be eliminated 
due to coincidence, and points [A4, B3] will be 
deleted due to collinearity.  The procedure for 
accomplishing these results is mentioned in the next 
two sub-sections. 
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Figure 3: Example of line segments with integer 

coordinates. 
 

3.1. A sequential algorithm 
An algorithm to simplify line segments is 

constructing polylines from coincident and collinear 
vertices. This can be obtained by eliminating vertices 
whose distances to the prior initial vertex are less 
than a maximum accepted tolerance α. The vertices 
having further distance to the initial vertex (> α) 
could be considered as part of a different polyline.  
However, finding the coincident and collinear 
vertices is expensive in this problem. 
 
Sequential Line Simplification Algorithm 
Begin 
1. Set pointer current to the first segment in 

segArray (current=0) 
2. While current does not reach the end of 

segArray 
2.1. Set pointer next to the next segment of 

current segment (next=current+1) 
2.2. While next does not reach the end of 

segArray 
a. Check if the segment in next has 

coincident vertices with current segment  
b. If yes, invert next segment if needed  
c. Move the next segment closed to the 

current segment in the array 

d. Move pointer current to the next 
segment (current+=1) 

e. Repeat step 2.2 
2.3. Move pointer current to the next segment 

of current segment (current+=1) 
2.4. Repeat step 2 

End 
The sequential algorithm above is to re-

arrange line segments into a stream order. The 
mechanism is similar to the selection sort. The 
algorithm requires searching all line segments for 
every investigated line segment to look for the line 
segment having coincident vertex and move it to the 
right place. This ineffective searching and sorting 
can be noticed by the usage of two while loops in 
step 2 and 2.2. Consequently, the complexity of this 
algorithm is O(n2), where n is the number of 
vertices.  

 
3.2. Parallel Line Simplification Algorithm 
Using the MASC model to counter the 

inefficiencies of the search and sorting discussed 
earlier, we adopt global constant time search 
operations of the MASC model to avoid such 
inefficiencies.  

Consider the simple example with five segments 
having integer-coordinate vertices as shown in Figure 
3. In the example, coincident vertices have the same 
value of coordinates, and three vertices are called 
collinear if the triangle composed by them has an 
area value of zero. This can be adjusted in the 
functions to check coincidence and collinearity by 
adding an accepted tolerance α [12]. 

Again, using the he input data described as in 
Figure 3, every line of the input file is a line segment 
consisting of two vertices.  Each vertex has an x-
coordinate and a y-coordinate. Using cross products 
we can determine the vertex’s left or right neighbor, 
which is the other point in the same segment. 

We use a tabular organization similar to the one 
illustrated in Figure 4 as the data structure in our 
algorithm. That is, the information about left and 
right neighbors (left$ and right$) of the currently 
investigated vertex and its coincident vertex (coin$ - 
if any) are stored in each PE.  Vertex A is called on 
the left of vertex B if A’s x-coordinate is less than 
B’s or if A’s y-coordinate is less than B’s when A 
and B have the same x value.  Vertex A is called on 
the right of vertex B if A’s x-coordinate is greater 
than B’s or if A’s y-coordinate is greater than B’s 
when A and B have the same x value. In addition to 
those location variables, two more variables are 
defined: visited$ for tracking if the vertex has been 
visited and delete$ for showing if the vertex should 
be eliminated or not.  Furthermore, every vertex is 
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   2	
  

A1 B1 

A2 
B2 

B3 A3 

A4 

A5 
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A1(0, 3) B1(-1, 3) 

A2(0, 3) B2(1, 2) 

A3(-3, 3) B3(-1, 3) 

A4(-3, 3) B4(-4,3) 

A5(-4, 3) B5(-5, 2) 
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assigned to one PE in the MASC model, which 
results in a massive number of processing elements. 

 
MASC_LINE_SIMPLIFICATION Algorithm 
Begin 
1. Set all PEs to active 
2. Set del$ = ‘No’, visited$ = ‘No’ 
3. Set left$/right$ to the other vertex of the segment 
4. For all PEs, repeat until no visited$ = ‘No’ 

4.1. Find the coincident vertex 
4.2. If there is no responder (no coincident 

vertex) 
4.2.1.  Set visited$ = ‘Yes’ 

4.3. Get the vertex from the responder (if any) 
4.4. Set empty left$/right$ of the two coincident 

vertices to its coincident vertex 
4.5. Check if left$/right$ of the two coincident 

vertices and themselves are collinear 
4.5.1.  If not: 

a) Set the current PE’s del$ = ‘Yes’, 
del$ = ‘No’ 

b) Update field having the deleted 
vertex as neighbor to its coincident 
vertex (responders) 

c) Set visited$ of both vertices = ‘Yes’ 
d) Clear coin$ of both vertices 

4.5.2.  Else if they are collinear: 
a) Set both vertices’ del$ to ‘Yes’ 
b) Set the current PE’s visited$ = ‘Yes’ 
c) Update fields that have the deleted 

vertices (responders) as neighbor 
i. If the deleted vertex is in left$, 

update to left$ of the deleted 
vertices 

ii. Else if the deleted vertex is in 
right$, update right$ of the 
deleted vertices 

d) Clear coin$ of both vertices 
End 

Using the MASC model, our algorithm does 
not have to re-arrange the line segments because it 
takes advantage of associative searching. The 
operations “Find its coincident vertex” in step 4.1 and 
“Find vertices that have it as neighbor” in step 4.5.1b 
and 4.5.2c return values in constant time. After the 
program finishes (all visited$ are ‘Yes’), there would 
be vertices whose del$ is ‘No’. Those remaining 
vertices belong to the simplified polylines of the level 
curve’s visual representation. The directions of 
remaining vertices are maintained with their left$ and 
right$ neighbors.  

Figure 4 illustrates the initial table representing 
the original digitized vertices.  During each iteration, 
a vertex is used in an associative search for its 
coincident vertex. Then, it checks their neighbors if 
they are collinear points. Appropriate actions are 

executed to guarantee that after every round of 
iteration, there is no deleted vertex in the table, and 
all vertices will be visited after the program finishes. 
Figure 5 demonstrates the table after one iteration. 
The associative searching capabilities of the MASC 
model helps each round of iteration take constant time. 
Figure 5 shows the final state of the table after all 
vertices are visited. Figure 8 is the resultant polyline 
constructed by fewer segments and vertices. The 
running time of the algorithm is O(n) in the worst case 
when there is no coincidence between vertices. 

 
 

 vertex left$ right$ coin$ visited$ del$ 
PE A1 B1   No No 
PE B1  A1  No No 
PE A2  B2  No No 
PE B2 A2   No No 
PE A3  B3  No No 
PE B3 A3   No No 
PE A4 B4   No No 
PE B4  A4  No No 
PE A5 B5   No No 
PE B5  A5  No No 

 

Figure 4: The initial table for the parallel 
algorithm 

 
 

 vertex left$ right$ coin$ visited$ del$ 
PE A1 B1 A2  Yes Yes 
PE B1  A2  No No 
PE A2 A2 B2  Yes No 
PE B2 A2   No No 
PE A3  B3  No No 
PE B3 A3   No No 
PE A4 B4   No No 
PE B4  A4  No No 
PE A5 B5   No No 
PE B5  A5  No No 

 

Figure 6: The table after one iteration. 
 

 

 vertex left$ right$ coin$ visited$ del$ 
PE A1 B5 A2  Yes Yes 
PE B1 B5 A2  Yes	
   Yes 
PE A2 A2 B2  Yes	
   No 
PE B2 A2   Yes	
   No 
PE A3 B5 A2  Yes	
   Yes	
  
PE B3 B5 A2  Yes	
   Yes	
  
PE A4 B5 A2  Yes	
   Yes	
  
PE B4 A5 A2  Yes	
   Yes	
  
PE A5 B5 A2  Yes	
   No 
PE B5  A5  Yes	
   No 

 

Figure 7: The table after all nodes are visited 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 67



 
 

Figure 8: The resultant polyline 
 

4. Implementation Using Chapel 
While many parallel programming tools exist that 

could be used to implement the parallel algorithm as 
described in Section 3, the language Chapel was 
selected because it can implement many (if not all) of 
the features of the MASC model of parallel 
computation efficiently using SMP’s or clusters.  
Chapel is a parallel programming language that has 
been in development (and currently being used) by 
Cray Inc. since 2007.  Chapel was selected as the  
language of choice because of its language features in 
data parallelism, task parallelism, concurrency and 
nested parallelism via high-level abstractions.  The 
major features of Chapel used in this research are 
parallel domains and arrays and parallel iteration. 

4.1. Parallel Domains and Arrays 
A domain is a language construct to define the 

size and shape of arrays.  Domains support parallel 
iteration. Chapel has two main classes of domains: 
arithmetic domains and indefinite domains.  
Arithmetic domains are represented using 
multidimensional integer coordinates. They are 
similar to traditional arrays.  Arithmetic domains 
could be dynamic allocated.  An example to create a 
simple 2D arithmetic domain and array is as follows: 

var D: domain(2) = [1..m, 1..n]; 
var A: [D] float; // an m x n array of floating point 
values 
 
Indefinite domains represent a set of special type that 
is specified by users.  Indefinite domains are mostly 
used to implement associative arrays.  The following 
example creates an array of integers indexed using 
strings: 
 
var People: domain(string); 
var Age: [People] int; 
People += “Mike”; 
Age(“Mike”) = 21; 
 

4.2. Parallel Iteration 
Parallel iteration is specified in Chapel using 

forall loops.  The forall loops iterate over domains 
and arrays.  The forall loops provide a high-level of 
data parallelism or associative searching to users.  If 
there are enough number of processors, all of the 
elements in the domains/arrays could be accessed in 
parallel. An example of forall loops is as follows: 
 
forall point in Points: 
{ 
NeighborOf(point) = …; 
} 
 

5. Results and Analysis 
The parallel program was tested on various 

parallel computing machinery (SMPs and clusters) 
that supported Chapel. Test data from the level 
curves in Figure 1 was used for benchmarking this 
algorithm.  There are 20 level curves in the figure 
with a total of 15,530 points.  The parallel program 
will gradually take all of 20 level curves as input and 
will measure the time it takes to get the results. The 
results are compared to the same parallel program but 
only use one processing element. 

 
5.1. Results: Symmetric Multiprocessors 
The first test was conducted on a Dell 

workstation in 8 processors at 3.0 GHz and has 16 
GB of RAM.  The following graph (Figure 9) is the 
execution times collected from the test run.  The unit 
in the number of processors column is microseconds. 

 
 

Figure 9: Execution time (microseconds) vs. 
number of data points (SMP). 
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5.2. Results: Clusters 
The cluster machines used in this research 

include 8 computing nodes, each of which has 2 
processors running at 3.0 GHz with 4 GB of RAM.  
Therefore, there are 16 processors in total.  A 1 Gbps 
network connects these computing nodes.  The 
parallel program is tested from using 1 computing 
node to using all 8 computing nodes with the data 
size of 15530 points.  The following graph (figure 
10) shows the execution times vs. the number of 
processor cores for a fixed (maximum) number of 
points.   

 

Figure 10: Execution time (ms) vs. number of 
processors (cluster). 

 
5.3. Analysis 

The communication between the computing nodes 
on the physical network really affects the 
performance of the parallel algorithm.  Reviewing the 
conceptual model of the MASC model (Figure 2) in 
we can clearly see that the broadcast/reduction 
network is an important factor deciding the 
performance of the parallel program.  Since each 
subset of points is located on different computing 
nodes, the parallel program has to go through the 
physical network in order to get the coincident points. 
This can be observed on the graph of execution time 
when the number of points is increasing in the 
clustering architecture.  Running with 4 processors 
on two computing nodes can reduce the amount of 
execution nearly 50%.  Nevertheless, when more 
computing nodes are added, the program’s execution 
time is not improved.  From this observation, we can 
conclude that clustering architecture is not suitable 
for this research problem MASC model until we can 
have a really fast network (close to the speed of SMP 
machine’s bus). 

 
6. Conclusion and Future Work 

This report has reviewed the importance of 
polyline simplification process on geometric 
applications such as visualizations of level curves or 
geographic map boundaries. The reduction in the 

number of points and segments can help improve the 
efficiency of these applications but still maintain the 
important geometric characteristics of the 
visualizations.  

Douglas-Peucker’s algorithm has a time 
complexity of O(mn), and its enhanced version has 
the time complexity of O(n log n).  After 
investigating the sequential algorithms, we have 
developed a massively parallel algorithm on this 
polyline simplification problem. The developed 
parallel algorithm takes advantage of the associative 
operations of the Multiple-instruction-stream 
Associative Computing Model.  The theoretical 
parallel complexity of the parallel algorithm is O(n). 

The MASC model’s architecture and properties 
were also studied in this report. A significant aspect 
in the MASC model is data parallelism. Chapel, a 
parallel language developed by Cray Inc., was chosen 
as the language to implement the parallel polyline 
simplification algorithm because of its support for 
data parallelism. 

A parallel polyline simplification algorithm was 
implemented using Chapel and the program was 
tested on different parallel architectures.  The 
evaluations have shown that the symmetric 
multiprocessing architecture is appropriate to support 
the parallel polyline simplification algorithm.  On the 
other hand, the communication over the network of 
the clustering architecture adversely affected the 
performance of the parallel program.   

One interesting study to extend this work would 
be to consider using hardware accelerators such as 
CUDA or Intel Phi.  The ability to efficiently manage 
a massive number of threads provides a potential 
capability on the parallel polyline simplification 
algorithm when each thread in hardware accelerator 
can be considered a processing element in the 
conceptual MASC model.  The performance would 
be increased significantly. 
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Abstract— The maximum flow problem is one of the most
fundamental problems in network flow theory and has been
investigated extensively. The Ford-Fulkerson algorithm is a
simple algorithm to solve the maximum flow problem based
on the idea of augmenting path. But its time complexity is
high and it’s a pseudo-polynomial time algorithm. In this
paper, a parallel Ford-Fulkerson algorithm is given. The idea
of this algorithm is not intuitive. All the arcs in the computed
flow network are processed simultaneously in the parallel
steps in every iteration. We execute the algorithm in CUDA
and the simulation result shows that this parallel algorithm
has a good performance.

Keywords: Flow network, Maximum flow problem, Ford-
Fulkerson algorithm, Parallel Algorithm, CUDA

1. Flow network
In graph theory, a flow network (also known as a trans-

portation network) is a directed graph where each edge has a
capacity and each edge receives a flow. The amount of flow
on an edge cannot exceed the capacity of the edge. Often in
Operations Research, a directed graph is called a network,
the vertices are called nodes and the edges are called arcs.
A flow must satisfy the restriction that the amount of flow
into a node equals the amount of flow out of it, except
when it is a source, which has more outgoing flow, or sink,
which has more incoming flow. A network can be used to
model traffic in a road system, fluids in pipes, currents in
an electrical circuit, or anything similar in which something
travels through a network of nodes.

G(V,E) is a finite directed graph in which every edge
e = (u, v) ∈ E has a non-negative, real-valued capacity
c(u, v). Two special kinds of vertices are distinguished: a
source S and a sink T . A flow network is a real function
f : V × V → R with the following three properties for all
nodes u and v:

• Capacity constraints: f(u, v) ≤ c(u, v). The flow along
an edge cannot exceed its capacity.

• Skew symmetry: f(u, v) = −f(v, u). The flow from u
to v must be the opposite of the net flow from v to u.

• Flow conservation:
∑

w∈V
f(u,w) = 0. unless u = s or

u = t. The flow to a node is zero, except for the source,
which "produces" flow, and the sink, which "consumes"
flow.

Notice that f(u, v) is the net flow from u to v. If the
graph represents a physical network, and if there is a real
flow of, for example, 4 units from u to v , and a real flow of
3 units from v to u, we have f(u, v) = 1 and f(v, u) = −1.

The residual capacity of an edge is cf (u, v) = c(u, v) −
f(u, v) = 1. This defines a residual network denoted
Gf (V,Ef ), giving the amount of available capacity. See that
there can be a path from u to v in the residual network, even
though there is no path from u to v in the original network.
Since flows in opposite directions cancel out, decreasing
the flow from v to u is the same as increasing the flow
from u to v. An augmenting path is a path (u1, u2, · · · , uk)
in the residual network, where u1 = s, uk = t, and
cf (ui, ui+1) > 0. A network is at maximum flow if and
only if there is no augmenting path in the residual network.

Should one need to model a network with more than
one source, a super source is introduced to the graph. This
consists of a vertex connected to each of the sources with
edges of infinite capacity, so as to act as a global source. A
similar construct for sinks is called a super sink. An example
of flow network is shown in Fig.1

Fig. 1: An example of flow network

2. Maximum flow problem
The maximum flow problems involve finding a feasible

flow through a single-source, single-sink flow network that
is maximum. The maximum flow problem can be seen as a
special case of more complex network flow problems, such
as the circulation problem.

Let G = (V,E) be a network with s, t ∈ V being the
source and the sink of N respectively. The value of flow of
N is defined by |f | =

∑
v:(s,v)∈E f(s, v), where s is the

source of G. It represents the amount of flow passing from
the source to the sink. The maximum flow problem is to
maximize |f | , that is, to route as much flow as possible
from s to t.
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3. Ford-Fulkerson algorithm
The Ford-Fulkerson method[1] (named for L. R. Ford,

Jr. and D. R. Fulkerson) is an algorithm which computes
the maximum flow in a flow network. The name "Ford-
Fulkerson" is often also used for the Edmonds-Karp algo-
rithm, which is a specialization of Ford-Fulkerson. The idea
behind the algorithm is simple. As long as there is a path
from the source (start node) to the sink (end node), with
available capacity on all edges in the path, we send flow
along one of these paths. Then we find another path, and so
on. A path with available capacity is called an augmenting
path.

Let G(V,E) be a graph, and for the arc e = (u, v), let
c(u, v) be the capacity and f(u, v) be the flow. We want to
find the maximum flow from the source s to the sink t.

The Ford-Fulkerson algorithm has two main steps. The
first is a labeling process that searches for a flow augmenting
path i.e., a path from s to t for which f < c along all forward
arcs and f > 0 along all backward arcs. If this step finds
a flow augmenting path, the second step changes the flow
accordingly. Otherwise, no augmenting path exists, then we
get the maximum flow. The detail step is as follows:

The algorithm begin with any feasible flow (e.g., f = 0).
In general, a node is in one of three states:unlabeled, labeled
and scanned, or labeled and un-scanned. Upon entering Step
1, all nodes areunlabeled. The first step renders the source
labeled and un-scanned.

Step 1. Initially, label the source (s, l(s) =∞);
Step 2. Select any node u, that is labeled and un-scanned

(If there are not nodes that is labeled and un-scanned, then
the current flow is the maximum flow). For all nodes v ∈
N(u) (where N(u) is the set of all the neighbor nodes of
u, i.e. (u, v) ∈ E or (v, u) ∈ E). If v is unlabeled, then:
• If (u, v) ∈ E and f(u, v) < c(u, v), then as-

sign the label (u,+, l(v)) to node v. where l(v) =
min(l(u), c(u, v)− f(u, v));

• If (v, u) ∈ E and f(v, u) > 0, then assign
the label (u,−, l(v)) to node v. where l(v) =
min(l(u), f(v, u));

Then let u be labeled and scanned, meanwhile let v be
labeled and un-scanned. If the sink node t is labeled then
go to step 3, else return to step 2.

Step 3. let x = t, then do the following work until x = s.
• If the label of x is (y,+, l(x)), then let f(y, x) =

f(y, x) + l(t)
• If the label of x is (y,−, l(x)), then let f(x, y) =

f(x, y)− l(t)
• Let x = y

Then go to step 1.
The Ford-Fulkerson algorithmis simple to implement but

its time complexity is high and it’s a pseudo-polynomial time
algorithm. By adding the flow augmenting path to the flow
already established in the graph, the maximum flow will be

reached when no more flow augmenting paths can be found
in the graph. However, there is no certainty that this situation
will ever be reached, so the best that can be guaranteed is that
the answer will be correct if the algorithm terminates. In the
case that the algorithm runs forever, the flow might not even
converge towards the maximum flow. However, this situation
only occurs with irrational flow values. When the capacities
are integers, the runtime of Ford-Fulkerson is bounded by
O(|E|f) , where |E| is the number of edges in the graph and
f is the maximum flow in the graph. This is because each
augmenting path can be found in O(|E|) time and increases
the flow by an integer amount which is at least 1.

In order to decrease the computational time, many re-
searches gave different algorithms. Edmonds and Karp[2]
showed that the Ford and Fulkerson algorithm runs in time
O(|V ||E|2)if flows are augmented along shortest paths from
source to sink. Independently, Dinic [3] introduced the
concept of shortest path networks, called layered networks,
and obtained an O(|V |2|E|) algorithm. This bound was im-
proved to O(V3)by Karzanov[4], who introduced the concept
of preflows in a layered network. Since then, researchers
have improved the complexity of Dinic’s algorithm for
sparse networks by devising sophisticated data structures.
Among these contributions, Sleator and Tarjan’s[5] dynamic
tree data structure is the most attractive from a worst-
case point of view. The algorithms of Goldberg[6] and of
Goldberg and Tarjan[7] are a novel departure from these
approaches in that they do not construct layered networks.
Their method maintains a preflow, as per Karzanov, and
proceeds by pushing flows to nodes estimated to be closer
to the sink.

All the works above and some other works gave algo-
rithms that have good computational performance, i.e. the
time complexity is lower than the Ford-Fulkerson algorithm.
But the algorithms in these works are very complicated
and some of them are only suitable for the flow networks
with specific structure. In this paper, an parallel based on
the Ford-Fulkerson label algorithm is given which is not
complicated and the computational performance is good
when there are enough processers.

4. Parallel Ford-Fulkerson algorithm
The parallel work is executed on the step 2. But our

parallel method is different from the intuitive idea that
processing all the nodes which is labeled and un-scanned
with all their neighbor nodes synchronous. For example:

Let L = u1, u2, · · · , um is the set of all the
nodes which is labeled and un-scanned. Let P =
(u, v)|u ∈ Landv ∈ N(u), then all the elements in P is
processed synchronous in step 2.

The method above has a drawback that in every iteration
of the algorithm, the set P must be constructed before step
2 and this work can’t be processed by a parallel mode.
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The effect of the parallel process is terrible because of this
drawback.

The parallel mode in our algorithm can avoid this draw-
back and the basic idea is that all the arcs in E are processed
simultaneously in step 2. The detail of this parallel method
is as follows:

Step 1. Initially, label the source (s, l(s) =∞);
Step 2. For every arc (u, v) ∈ E, only one of the two

possible situations may occur:
• u is labeled and un-scanned, v is unlabeled and

f(u, v) < c(u, v). If this situation occurs, then as-
sign the label (u,+, l(v)) to node v. Where l(v) =
min(l(u), c(u, v) − f(u, v)). Let u be labeled and
scanned and v is labeled and un-scanned

• v is labeled and un-scanned, u is unlabeled and
f(u, v) > 0. If this situation occurs, then assign
the label (v,−, l(u)) to node u. Where l(u) =
min(l(v), f(u, v)). Let v be labeled and scanned and
u is labeled and un-scanned

If the sink node t is labeled then go to step 3, else return
to step 2.

Step 3. let x = t, then do the following work until x = s.
• If the label of x is (y,+, l(x)), then let f(y, x) =

f(y, x) + l(t)
• If the label of x is (y,−, l(x)), then let f(x, y) =

f(x, y)− l(t)
• Let x = y

Then go to step 1.

5. Simulation Result
We execute our work and do the experiments on Dell

Work Station with 8 CPUs.
First, we execute our parallel algorithm to a flow network

with 100 nodes and 896 arcs. The flow network is shown in
Fig.2. We compare our parallel algorithm with the Edmonds-
Karp algorithm which is an improvement version of the
Ford-Fulkerson algorithm. As the run time of both the two
algorithm are lower than 1ms, we run each algorithm 100
times and get the total run time. The total run time of the
Edmonds-Karp algorithm is 63ms. The total run time of our
parallel algorithm is 94 ms.

Then we execute our parallel algorithm to a flow network
with 1000 nodes and 94522 arcs. As there are too many arcs
and nodes, the flow network can’t be shown as figure. And in
this flow network, the run time of both the two algorithm are
long enough, so we run each algorithm only one time and get
the run time. The run time of the Edmonds-Karp algorithm is
265ms and the run time of our parallel algorithm is 141ms.

From the simulation results, we can see that our algorithm
can get a better performance of run time than the Edmonds-
Karp algorithm in the situation with more nodes and arcs
even if there are only 8 processors on our experiment
platform. But there can’t be a large number of CPUs in

Fig. 2: A flow network with 100 nodes and 896 arcs

a PC (even a Work Station), so we can’t get the effect
of our algorithm presented in this paper. For this reason,
we use GPU (graphics processing units) instead of CPU to
compute. CUDA (formerly Compute Unified Device Archi-
tecture) is a parallel computing platform and programming
model created by NVIDIA and implemented by the graphics
processing units (GPUs) that they produce. CUDA gives
developers access to the virtual instruction set and memory
of the parallel computational elements in CUDA GPUs.
Using CUDA, the latest Nvidia GPUs become accessible for
computation like CPUs. Unlike CPUs, however, GPUs have
a parallel throughput architecture that emphasizes executing
many concurrent threads slowly, rather than executing a
single thread very quickly. This approach of solving general-
purpose (i.e., not exclusively graphics) problems on GPUs
is known as GPGPU.

For the reason that the computing performance and fre-
quency of GPU and CPU are different, we implement both
the Edmonds-Karp algorithm and the parallel algorithm on
GPUs. We use 256 GPUs for the parallel algorithm and only
one of the GPUs is used when we implement the Edmonds-
Karp algorithm. The simulation results are shown in Fig.3
and Fig.4. In Fig.3, the number of nodes is fixed as 500
and the mean degree of the flow network is increased from
25 to 250. The dotted line is the result of the Edmonds-
Karp algorithm and the solid line is the result of the parallel
algorithm. From Fig.3, we can see that with the mean degree
increasing, the effect of the parallel algorithm is get more
evident. The similar result is shown in Fig.4. The mean
degree of the network is fixed as half of the number of the
nodes, and the number of the nodes is increased from 50 to
500. With the number of nodes increasing, the effect of the
parallel algorithm is get more evident.

6. Conclusion
The maximum flow problem is one of the most fun-

damental problems in network flow theory and has been
investigated extensively. In this paper, we give a parallel
Ford-Fulkerson algorithm, which is simple to implementa-
tion. Different from the intuitive idea, the basic idea of our
algorithm is processing all the arcs simultaneously in the
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Fig. 3: Run time and the the mean degree of the flow network

Fig. 4: Run time and the the number of nodes

step of searching for a flow augmenting path. The simulation
result show that the given parallel algorithm have a great
improvement of the computing time.
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Abstract - Many existing token-based, distributed
mutual exclusion algorithms can be generalized by a
single algorithm. The number of messages required to
provide mutual exclusion is dependent upon the logical
topology imposed on the nodes and the policy used to
forward requests.

This paper extends the generalized algorithm to
support prioritized requests and presents models that
can be used to analyze the performance and verify the
correctness of the prioritized algorithm. Both safety
and liveness properties are verified. Model checking
can also be used to analyze performance. Using the best
topology, the generalized algorithm attains the same
worst-case performance as a centralized algorithm; that
is, three messages per critical section. In the average
case, the generalized algorithm performs better than a
centralized one when the star topology is used.

Keywords: distributed algorithm, model checking,
mutual exclusion, real-time, token-based

1 Introduction

Many distributed mutual exclusion algorithms
have been proposed [1, 4, 5, 6, 8, 12, 13, 16, 17, 18, 19].
These algorithms can be classified into two groups
[14, 17]. The algorithms in the first group are called
permission-based [1, 5, 6, 16]. A node enters its criti-
cal section only after receiving permission from a set of
nodes. The algorithms in the second group are called
token-based [4, 8, 12, 17, 18, 19]. The possession of
a system-wide unique token gives a node the right to
enter its critical section.

Lamport proposed one of the first distributed mu-
tual exclusion algorithms [5]. Lamport’s algorithm is
permission-based and requires 3 ∗ (N − 1) messages to
provide mutual exclusion. Another permission-based
algorithm, proposed by Ricart and Agrawala, reduces
the number of required messages to 2 ∗ (N − 1) mes-
sages per critical section entry [15]. Maekawa proposed
a permission-based algorithm in which the number of
messages required is O(

√
N) [6]. Sanders generalized

permission-based algorithms [16].

Ricart and Agrawala proposed a token-based
algorithm which is essentially the same as Suzuki
and Kasami’s algorithm [18]. Based on Suzuki and
Kasami’s algorithm, Singhal proposed a heuristically-
aided algorithm that uses state information to more
accurately guess the location of the token [17]. The
maximum number of messages required by these three
algorithms is N .

By imposing a tree-based logical structure on the
nodes, another class of token-based algorithms has
been obtained. In this class of algorithms, all of the
nodes, except for the root node, are on a path to the
root node (a sink node) in the logical structure. The
logical structure determines the path along which a
request message travels. There are two different types
of logical structures: dynamic and static.

An algorithm, based on a dynamic logical struc-
ture, was proposed by Trehel and Naimi [19]. The ba-
sic notion underlying this algorithm is path reversal.
Path reversal at each node is performed as a request
from node x travels along the path from node x to
the root node. As the request travels, node x becomes
the new parent of each node on the path, except for
node x. Thus, node x becomes the new root node. A
complete analysis of path reversal has been given by
Ginat [3]. The average number of messages required
per critical section is O(log(N)).

If a static logical structure is used, the basic no-
tion underlying the algorithm is what we call edge re-
versal [11]. Edge reversal at each node is performed as
the request from node x travels along the path from
node x to the root node. At each node, the direction
of each edge on the path is changed to point towards
node x; that is, to the neighboring node who sent the
request on behalf of node x. However, the shape of the
logical structure never changes. Suprisingly, this small
change results in algorithms which have a small fixed
upper bound on the number of messages required per
critical section, and the upper bound only depends
on the logical structure. Algorithms based on edge-
reversal were proposed by Neilsen and Mizuno [10] and
Raymond [12]. Raymond’s algorithm assumes that the
static logical structure is an unrooted tree. If the ra-
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diating star topology is used, the average number of
messages required is O(logN). However, this is not
optimal, using a simple star topology with one root
node only requires 4 messages per critical section, two
messages to pass the request, and two for the token.

Neilsen and Mizuno introduced a token-based al-
gorithm that achieves optimal performance with re-
spect to worst-case performance [11]; i.e., 3 messages
per critical section. They also proposed another al-
gorithm that generalizes all existing token-based al-
gorithms that impose a logical structure on the nodes
[9]. Both algorithms assume a fully-connected physical
network and a directed acyclic graph (dag) structured
logical network. A node or a token does not need to
maintain a queue of outstanding requests for mutual
exclusion. Instead, the queue is maintained implicitly
in a distributed manner and may be deduced by ob-
serving the states of the nodes. The algorithms require
very simple data structures; each node maintains a few
simple variables, and the token carries no (or a very
simple) data structure. Furthermore, the algorithms
can adapt to changes in the network.

More recently, the notion of prioritized mutual
exclusion algorithms have been proposed [7]. Mueller’s
algorithm extends Trehel and Naimi’s algorithm by in-
corporating a priority queue at each node. Our gener-
alized algorithm can also be easily adapted to operate
much like a priority-based scheduler which schedules
tasks based on their priority, and schedules tasks at
the same priority level using round robin scheduling.
The basic single-priority, generalized algorithm can be
used to provide round robin scheduling. To support
prioritized requests, the generalized algorithm is eas-
ily extended to pass the token between priority levels.

Section 2 introduces the generalized algorithm.
Section 3 presents models that can be used to verify
correctness with respect to guaranteed mutual exclu-
sion, deadlock freedom, and starvation freedom for the
highest priority tasks. Section 4 analyzes the perfor-
mance of the algorithm using these models.

2 Overview

We assume that the system consists of N nodes,
which are uniquely numbered from 0 to N −1. At any
given time, each node can have at most one outstand-
ing request to enter its critical section. Physically, the
nodes are fully connected by a reliable network, but
logically, the nodes at each priority level are organized
in a directed acyclic graph (dag). Nodes can be as-
signed different priorities. We start by describing the
basic generalized algorithm for each priority level.

Two types of messages, called REQUEST and
TOKEN, are exchanged among nodes. When a node

requests to enter its critical section, it initiates a RE-
QUEST message. A TOKEN message represents the
token; when a node receives a TOKEN message, it
may enter its critical section.

Each node maintains three simple variables: in-
teger variables LAST and NEXT, and a boolean vari-
able HOLDING or SINK. The logical directed acyclic
graph (dag) structure indicates the path along which
a REQUEST message travels and is imposed by the
LAST variables in the nodes. When a node initiates
or receives a REQUEST message, the node forwards
the request to the neighboring node pointed at by its
LAST variable (unless the node is a sink, in which case
its LAST variable is -1).

The NEXT variable indicates the node which will
be granted mutual exclusion after this node. If the
node is currently the last node to be granted mutual
exclusion, its NEXT variable is -1. Thus, by following
the NEXT variables from the token holder to the node
whose NEXT variable is -1, the implicit waiting queue
of the system can be deduced. When a node leaves its
critical section, it forwards the token to the node at the
front of the waiting queue and also performs a dequeue
operation. That is, it sends a TOKEN message to the
node indicated by its NEXT variable (this is the node
at the front of the queue) and clears the variable (this
corresponds to the dequeue operation), unless NEXT
is -1. If NEXT is -1, the node continues to hold the
token if it is at the highest priority level by setting
HOLDING to true, otherwise the token is returned to
the highest priority level as described below.

Semantically, a sink node in the system is (1) the
last node in the implicit waiting queue (i.e., its NEXT
variable is -1), and (2) the last node on the path along
which a request travels within a given priority level
(i.e., its LAST variable is -1). When a sink node re-
ceives a REQUEST message, it enqueues the request
into the implicit waiting queue and becomes a non-
sink. The node initiating the request becomes the new
sink since it is now the last node in the queue. Each
edge in the path must change direction to point in the
direction of the new sink. This is done by the nodes
along the path in a distributed manner as follows:

• When a node initiates a new REQUEST message,
it forwards the message to its neighboring node
indicated by its LAST variable and sets its LAST
variable to -1 to become a new sink. It remains a
sink until it receives a subsequent request.

• When an intermediate (non-sink) node receives a
REQUEST message from a neighboring node X,
it passes the message to the neighboring node in-
dicated by its LAST variable. Then, the node
sets its LAST variable to any node on the path
traveled by the REQUEST message. Thus, if it
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receives a subsequent request, it forwards the re-
quest in the direction of the new sink. In Trehel
and Naimi’s algorithm, the LAST variable is set to
the node that initiated the request; this is called
path reversal. In Neilsen and Mizuno’s algorithm,
the LAST variable is set to point to the neighbor-
ing node from which it received the REQUEST
message; this is called edge reversal.

• When a sink node receives a REQUEST message
from a node X, it sets its NEXT variable to the
identifier of the node initiating the request. This
corresponds to an enqueue operation. The node
also sets its LAST variable to any node on the
path traveled by the REQUEST message. Note
that if a sink node holds the token, but is not
in its critical section (this state is indicated by a
boolean variable HOLDING) when it receives a
request, it immediately forwards the token to the
node initiating the request.

Because of message delay, there may be several
sink nodes in the system while requests are in tran-
sit. The system is initialized so that only one node
at the highest priority level possesses the token. Ini-
tially, there is only one sink node at each priority level,
and its LAST variable is initialized to -1. In all other
nodes, LAST is set to point to the neighbor which is
on a path to the node holding the token at the highest
priority level (or the sink at all lower priority levels
indicated by setting SINK to true).

const
I = node identifier

var
HOLDING : boolean;
LAST, NEXT : integer;

proc ProcessWork;
begin

if (not HOLDING) then
begin

send REQUEST(< I >) to LAST;
LAST := -1;
wait until a TOKEN

message is received;
end;

HOLDING := false;

critical section (CS)

if (NEXT 6= -1) then
begin

send TOKEN message to NEXT;
NEXT := -1;

end;
else HOLDING := true;

end;

proc ProcessRequest; (receive REQUEST(X1, · · · , Xk))
begin

if (LAST = -1) then
begin

if HOLDING then
begin

send TOKEN
message to X1;

HOLDING := false;
end;

else NEXT := X1;
end;

else send REQUEST(X1, X2, · · · , Xk, I)
to LAST;

LAST := Xi for some 1 ≤ i ≤ k;
end;

Figure 1. Single Priority Algorithm

The complete generalized algorithm for a sin-
gle priority level is shown in Figure 1. There are
two procedures at each node: ProcessWork and Pro-
cessRequest. Procedure ProcessWork is executed
when a high priority node I requests for entry
into its critical section, and procedure ProcessRe-
quest is executed when a high priority node I re-
ceives a request from some other high priority node.
In the algorithm, REQUEST messages are of form
REQUEST(X1, X2, · · · , Xk) where X1, X2, · · · , Xk de-
notes the path on which the request traveled and X1

denotes the node where the request originated. Each
node executes procedures ProcessWork and Process-
Request in local mutual exclusion. The only exception
is that a node does not have to execute in mutual ex-
clusion while waiting for a TOKEN message to arrive
or while in its critical section.

The prioritized algorithm for low priorty nodes is
similar, except that the boolean variable HOLDING
is replaced with SINK. Initially, a node in the high-
est priority level holds the token, and HOLDING for
that node is set to true. Likewise, the root node at
each lower priorty level has its SINK variable set to
true. When a request from a low priority node reaches
the sink node, a PROXY REQUEST is sent up to
a node at the highest priority level, called the proxy,
and eventually the PROXY REQUEST reaches a node
that holds the token or will receive the token in the fu-
ture. Low priority requests are eventually enqueued in
the token. Also, proxy requests are forwarded, at the
highest priority level, just like a regular requests, ex-
cept that the edges are not reversed; i.e., higher prior-
ity nodes never request the token from lower priority
nodes so there is no need to dynamically adjust the
edges. When a node that is holding the token passes
the token to a low priority node, a PROXY TOKEN
message is used to pass the token, and the token is
returned to the high priority node who sent the token
using a PROXY RETURN message.
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3 Verification Model

In this section we provide models that can be used
to verify the correctness of the generalized algorithm
with respect to guaranteed mutual exclusion, deadlock
freedom, and starvation freedom using UPPAAL [2].
The model for a single priority level consists of two
templates, ProcessWork and ProcessRequest, cor-
responding to proc ProcessWork and proc Process-
Request, respectively, in the algorithm shown above
in Figure 1. Channels are used to model the exchange
of request messages and the token. Global arrays are
used to model the state at each node using the arrays
Holding, Sink, Next, and Last as defined above. Ini-
tially, one node will hold the token, so Holding[i] =

true at that node. Also, the topology is defined by
the initial values assigned to Last.

The first UPPAAL template, ProcessWork, is
shown below in Figure 2. It models the work per-
formed at each node. Initially, all nodes are in the
Idle state. The template is parameterized using id

to identify each node where id ∈ {0, 1, · · · , N − 1}.
At node 0, id = 0, etc. Also, Holding[id] is set to
true at the node currently holding, but not using, the
token. This node can enter its critical section imme-
diately after setting Holding[id] to false to indicate
that the token is in use.

 

Figure 2. ProcessWork Template

All other nodes must send a request message to
the node identified by LAST[id], and set LAST[id] =

-1. Upon receipt of the token via a Token message,
the requesting node may enter its critical section.

A local clock, x, is used to prevent a node from re-
maining in it’s critical section forever. The model lim-
its critical sections to be at most 10 time units through
the location invariant x ≤ 10.

To process requests, the ProcessRequest tem-
plate is used as shown in Figure 3. When a request
message is received, at node id from node p, using
Request[p][id][s]?, the source node requesting to
enter its critical section is node s.

If the node receiving the request is a sink node,
Last[id] == -1, the request can be satisfied immedi-
ately if the node receiving the request is holding, but
not using, the token; that is, if Holding[id] == true.
In which case, the Token message can be sent imme-
diately. On the other hand, if the token is currently
in use, then the request is simply enqueued by setting
Next[id] = t which is a local meta variable assigned
to s when the request is received.

If the node receiving the request is not a sink
node, Last[id]≥0, then the request is forwarded on
to the node indicated by Last[id].

In all cases, Last[id] is set to the identifier of
the neighboring node which sent the request; that is,
edge reversal is used.

 

Figure 3. ProcessRequest Template

The generalized algorithm is slightly more complex
because each node can set it’s Last[id] value to be
any node visited from the requesting node to the sink.
Consequently, a list or queue of visited node numbers
must be carried with the Request message. This is
modeled with a set of global queues that get updated
as the Request travels. One queue is assigned to each
node and used to enqueue the nodes on the path from
the given requesting node to a sink. Since each node
can have at most one outstanding request to enter its
critical section, the queues can be initialized when a
request is first initiated, and each requesting node can
be associated with a single queue. The nodes can be
initialized to impose any logical topology. For exam-
ple, to impose the star topology, with node 0 as the
root, each node could execute the following code:

void Initialize(int id)
{

if (id == 0)

{
Holding[id] = true;

Last[id] = -1;

}
else

{
Holding[id] = false;

Last[id] = 0;

}
Next[id] = -1;

}

Figure 4. Initialization Routine
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The generalized ProcessWork template is shown in
Figure 5. By making Init a committed state, all nodes
will enter the Ready state before any nodes start re-
questing. The only other change required is to add a
function, initRequest(id), that is used to initialize
the queue passed with the Request message to contain
a single element <id>.

The generalized ProcessRequest template is
shown in Figure 6. As the Request message travels
from a requesting node to a sink node, the identifier of
each node receiving the request must be enqueued in
the request message. Since UPPAAL messages have
zero capacity, this is modeled using a set of global
queues and a function call enQueue(t,id) to enqueue
id on the queue for the requesting node t. Also, each
node on the path sets Last[id] to be some element
in the queue. Recall that if it is set to the node at the
front of the queue (the requesting source node), then
this is just path reversal; at the other extreme, setting
Last[id] to the neighboring node sending the request,
namely node p, then this results in edge reversal.

 

Figure 5. Generalized ProcessWork

 

Figure 6. Generalized ProcessRequest

The function, someQueue(), relies on a random num-
ber generator, modeled by the RandomValue template
shown below, to randomly select a random element
from the queue carried with the request.

 

Figure 7. RandomValue

Finally, to support different priority levels, we can
add the notion of a proxy node at the highest prior-
ity level, and use algorithms similar to the above to
request the token.

 

 

Figure 8. Prioritized ProcessWork

When no requests are pending at the highest pri-
ority level, and a request is pending at some lower
priority level, the token is passed to allow a node at a
lower priority level to obtain the token. The first pend-
ing request at each lower priority level is enqueued in
priority order in the token. Of course, this may lead
to starvation; if there is always a pending request at
the highest priority level, then lower priority requests
will not be satisfied.

For the prioritized case, four templates are used,
nodes at the highest priority level use ProcessWork
and ProcessRequest as shown in Figures 8 and 10,
and the lower priority nodes use ProcessWorkLow
and ProcessRequestLow as shown in Figures 9 and
11. Due to space constraints, we only include the pri-
oritized models for edge reversal (extending the tem-
plates shown in Figures 2 and 3), but the generalized
case is similar.  

 

Figure 9. Prioritized ProcessWorkLow
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Figure 10. Prioritized ProcessRequest

 

 

Figure 11. Prioritized ProcessRequestLow

4 Performance Analysis

To verify the correctness of the algorithm
we have developed analytical proofs of correct-
ness. We have also verified both safety and
liveness properties using UPPAAL [2]. To ver-
ify that the algorithm satisfies mutual exclusion,
the property: A[](not (ProcessWork(i).CS and

ProcessWork(j).CS)) must be verified for different
values of i and j; that is, only one process can be in
its critical section (state CS) at any time. By sym-
metry, only a few combinations need to be checked.
To verify liveness properties, we first limit the amount
of time each process can remain in its critical section;
otherwise, one node could remain in its critical sec-
tion forever. The CS state has a location invariant
of x ≤ 10 for a real-valued clock x which is initial-
ized to 0 upon entry to the critical section state. The
choice of ten time units is arbitrary. To verify that a
node that wants to enter its critical section can enter,
we verify the property ProcessWork(1).Requesting

--> ProcessWork(1).CS; that is, requesting the criti-
cal section “leads to” entry. Formally, a process, at the
highest priority level, in the Requesting state eventu-
ally reaches the CS state. Starvation freedom is not
satisfied by lower priority processes.

The performance of the algorithm depends on the
topology of the logical structure. The best topology is
the star topology, with one node in the center and all
other nodes as leaf nodes. For the analysis, we define
the diameter D of a logical structure to be the length
of the longest path in the structure. As the logical
structure evolves, the value of D may also change.

First, we consider a single priority level. The up-
per bound is equal to (D + 1) messages per critical
section entry. This occurs when a requesting node
and a sink node are at opposite ends of the longest
path: D messages for the request to travel to the sink
node and one message for the token to be sent back
to the requesting node. Thus, using the straight line
topology, the upper bound is N , where N is the num-
ber of nodes in the system. Using the best topology,
the upper bound is 3, since the diameter of a star is
2. This is the same as the performance of a central-
ized mutual exclusion algorithm. To verify this upper
bound, counters can be used, as shown in Figures 4
and 5. Once a request is satisfied, the counter is set
back to zero. Then, the model can be verified to see if
there exists a path on which the number of messages
required for a request from a given node to be satis-
fied is possible; e.g., E<>(Count[1]==3). For the star
topology with edge reversal, each leaf node can require
up to 3 messages per critical section; thus, the prop-
erty E<>(Count[1]==3) is satisfied if node 1 is a leaf
node, and the property E<>(Count[1]==4) is never
satisfied. Likewise, the central node requires at most
two messages per critical section. Not suprisingly, for
the worst topology – a straight line – the worst-case
for path reversal and the generalized algorithm is N
messages, N − 1 Request messages and a Token mes-
sage to forward the token. However, this is not true for
edge reversal because the underlying topology doesn’t
change. Consequently, the number of Request mes-
sages required is the maximum distance from the re-
questing node to the end of the line. Roughly, N/2 for
the node in the middle of the line.

If there is more than one priority level, then the
number of messages required at the highest priority
level is only dependent on the number of nodes in the
highest level with the same analysis as above. For
lower priority messages, after the request reaches a
sink node, by traversing at most the diameter of the
topology used for the given priority level, a proxy re-
quest may need to be forwarded up to the highest pri-
ority level, and to a sink node – again, at most the di-
ameter of the nodes at the highest priority level. The
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token is passed to the lower priority node with a single
message, and returned with a single message. Thus,
the worst-case message complexity is DH + DL + 2
for low priority requests, where DH is the diameter
of high priority nodes, and DL is the diameter of low
priority nodes. If the low priority level consists of a
single node, then DL = 0. For the star topology, and
the proxy node set as the root, at most 3 messages are
required per critical section.

5 Summary

This paper presented a prioritized token-based
algorithm for distributed mutual exclusion. The al-
gorithm imposes very little storage overhead on each
node and in each message. Furthermore, the algo-
rithm generalizes several existing token-based algo-
rithms and shows how they can be extended for prior-
itized systems. Using the best topology and edge re-
versal, the algorithm attains comparable performance
to a centralized mutual exclusion algorithm; that is,
three messages per critical section entry. In the aver-
age case, the algorithm attains the best performance
of any known algorithm.
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Abstract 

 

Computation implemented in DNA reactions promises to advance high-performance computing (HPC) for 

at least three reasons.  It (1) is inherently Amdahl-scalable by reactor-volume, (2) has  a power/operations-

per-second(OPS) ratio that is potentially orders of magnitude smaller than that of silicon circuits, and (3) 

can provide a natural access-interface to DNA-based high-density information storage.  In order to serve 

as general-purpose computing regime, DNA computing will have to support Boolean operations.  Here, I  

describe an implementation of  the modus ponens inference rule (commonly used in Boolean logic) in a 

DNA strand-displacement (DSD) system. 
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1.0  Introduction 

 
Computing implemented in DNA reactions 

promises to advance high-performance 

computing (HPC) for at least three reasons.  

It: 

 

 Is inherently Amdahl-scalable ([6]; 

[7], p. 39) by reactor-volume 

 

 Has  a power/operations-per-

second(OPS) ratio that is potentially 

orders of magnitude smaller than 

that of silicon circuits ([7], pp. 18-

19; [8]) 

 

 Provides a natural access-interface 

to DNA-based high-density 

information storage ([2]). 

 

DNA strand displacement 

 

A variety of information-processing circuits, 

including a catalytic gate ([3], an 

implementation of which has been tested in 

vitro),  have recently been implemented in 

DNA strand displacement (DSD) reactions.   

In a DSD reaction, portions of a strand of 

DNA in one reactant displace portions of a 

strand in another DNA  reactant. 

 

A DSD simulation system is described in [4] 

and [5].  Some examples of DNA molecules 

represented in the language defined in [5] 

follow.  ( A "stroke" (|) denotes the  

juxtaposition of multiple molecules.) 
 

 

82 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



 
 

Figure 1.  Some examples of DNA molecules expressed in the language of [5].  
 
 

In Figure 1, the notation 1:2 represents a 

lower strand of DNA, where the 3’ end of 

the strand is on the left, denoted by an 

arrowhead. The strand is divided into 

domains, which correspond to short DNA 

sequences. In the leftmost element of Figure 

1, the domains are represented by numbers 1 

and 2, where each number represents a 

distinct domain.  

 

In Figure 1, the red domain 1 represents a 

toehold domain, while the black domain 2 

represents an ordinary specificity domain. 

Toehold domains are very short sequences, 

generally between 4 and 10 nucleotides in 

length, that enable one DNA strand to bind 

to another.  Since toehold domains are short, 

two strands bound to one another will 

quickly unbind in the absence of further 

interaction along neighboring domains.  

 

In Figure 1, the notation <1 2> represents an 

upper strand of DNA, where the 3’ end of 

the strand is assumed to be on the right. The 

strand consists of two domains that are 

complementary to domains 1 and 2 of the 

leftmost element of Figure 1, where two 

domains are complementary if their 

respective sequences are Watson-Crick 

complementary. Two complementary 

strands, 1:2 and <1 2>, can hybridize along 

their complementary domains to form a 

double-stranded molecule, denoted by [1 2], 

as shown in the third element from the left 

in Figure 1. A molecule can also consist of 

multiple upper strands bound to a single 

lower strand. For example, [1 2]:[3 4]  

denotes a DNA molecule that consists of 

upper strands <1 2>and <3 4> bound to a 

single lower strand 1:2:3:4. 

 

There can also be gaps between bound upper 

strands as in the molecule [1 2]:3:[4 5], 

where domain 3 of the lower strand is 

unoccupied (see rightmost element of Figure 

1).   

 

Bound upper strands can also overhang to 

the left or right, as shown in Figure 2. 

 

 
 
 

Figure 2.  Three examples of overhanging strands, expressed in the notation of [5]. 

 

 

In Figure 2, the molecule <1>[2 3]<4> 

consists of an upper strand<1 2 3 4> bound 

to a lower strand 2:3. The region[2 3] of the 

molecule is double-stranded, while <1>and 

<4> represent single-stranded regions 

overhanging to the left and right. The 

molecule [1]<2>:[3] consists of an upper 

strand <1 2> bound to a molecule1:[3], 

where the single-stranded region <2> is 

overhanging the double-stranded region [3]. 

Multiple overhanging strands can be bound 

simultaneously along different regions, as in 

the case of the molecule<1>[2 3]<4>:<5>[6 

7]<8>, which represents two upper strands, 

<1 2 3 4> and <5 6 7 8>, bound along 

regions [2 3] and [6 7], respectively. Notice 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 83



that the colon is used to separate the two 

bound upper strands.   

 

A given strand can also be displaced by 

another strand as a result of binding, as 

shown in Figure 3. 
 

 

 
Figure 3.  An example of a strand displacement reaction in the notation of [5]. 

 

 

Although toehold domains are short enough 

to unbind rapidly in the absence of 

additional specificity domains, they are still 

long enough to greatly accelerate the 

initiation of strand displacement when 

additional specificity domains are present. In 

Figure 3, when the strand <1 2> becomes 

bound it initiates the displacement of its 

neighboring strand by a process 

of branch migration. Although this process 

involves a random walk of multiple 

elementary steps, these are relatively fast at 

experimental concentrations and can be 

omitted ([3]).  This means that the unbinding 

reaction on toehold domain 1 in Figure 3 can 

be effectively ignored and the two 

consecutive reactions can be approximated 

by a single displacement reaction. 

 

In general, the DNA molecules are assumed 

to have no additional secondary structure. 

This can be achieved by careful selection of 

appropriate DNA sequences ([3],[4]).  In 

addition, DNA sequences of distinct 

domains are assumed to be sufficiently 

different that they do not interfere with each 

other.  For further detail, see [4] and [5]. 

 

 

Modus ponens 

 

Modus ponens, sometimes called the "rule 

of detachment"([9], p. 47),  is an inference 

rule widely used in Boolean logic ([1]).  It 

allows us to infer a proposition ψ from a 

conjunction of  propositions of the form φ -> 

ψ and φ, where φ and ψ  range over 

propositions and -> denotes Boolean 

implication ([1]).  Implementing modus 

ponens in [4] requires mapping the elements 

of the rule (i.e., φ, φ -> ψ, and ψ) to 

elements of DNA circuits that are 

implementable in [4]. 

 

 

2.0  Method 
 

Figure 4 shows a mapping of "φ" and  " φ -> 

ψ" to the DSD strand-definition language of 

[5].   

 

 
Figure 4.  Mapping of φ and  φ -> ψ to input species of [4]. The top species (the "substrate", 

in catalyst-gate nomenclature) represents the proposition φ -> ψ.  The bottom species (the 

"fuel", in catalyst-gate nomenclature) represents the proposition φ.  
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Figure 5 shows the DSD script for the catalytic gate described in [3] (without the "reporter" 

molecules of [3]),  implemented in the language described in [5],  using  the  input descriptors 

shown in Figure 4.   

 

The reaction product of interest is the sequence <1 2>, which represents ψ. 

 

 
(*  DIRECTIVES AND DOMAIN-DEFINITION SEGMENT *) 

directive duration 7000.0 points 1000  (* run sim for 7000 sec, save 1000 points *) 

(* directive leak 1.0E-9,   default leakage rate /nM/s *) 

(* directive tau 0.1126,  default merged rate /s *) 

(* directive migrate 8000.0, default nucleotide migration rate /s *) 

(* directive lengths 6 20, default toehold and normal domain lengths *) 

(* directive tolerance 1.0E-6, default ODE tolerance for deterministic simulator *) 

(* directive time s, default time units *) 

(* directive concentration nM, default concentration units *) 

directive plot <2 3^ 4>; <1>[2]:<6>[3^ 4]:5^*; <1 2> (* plot a subset of strands *) 

directive scale 500.0 (* multiply concentrations, divide binding and leak rates *) 

new 3@ 4.2E-4 , 4.0E-2 (* initialize *) 

new 5@ 6.5E-4 , 4.0E-3 (* initialize *) 

 

 

(* PROGRAM SEGMENT *) 

( 13 * <2 3^ 4> 

| 10 * <4 5^> 

| 10 * <1>[2]:<6>[3^ 4]:5^* 

)    

 

Figure 5.  DSD code used in this study (adapted from [4]). 

 

 

The script shown in Figure 5 was executed 

as a "deterministic" system under [4] on a 

Dell Inspiron 545 with an Intel Core2 Quad 

CPU Q8200 clocked at 2.33 GHz, with 8.00 

GB RAM, under Windows Vista Home 

Premium/SP2.   

3.0  Results 

 

Figure 6 shows the reaction graph produced 

by the method described in Section 2.0. 
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Figure 6.  The reaction graph produced by the method described in Section 2.0.  Rectangles 

with darker borders represent inputs; all other rectangles represent intermediates.  Arrows 

represent reaction direction. The output of interest is the strand <1 2>, which represents ψ.  

ψ  is "detached" by the system from the main reactant of the system,  <1>[2]:<6>[3^ 

4]:5^* (modus ponens is sometimes called the "rule of detachment"). Strand <4 5> is the 

catalyst of the system.  ( See Figure 7 for concrete realizations of the sequences in the 

diagram.)   

 
Figure 7 shows a concrete DNA segment-description realization, generated by [4],  of the species 

in Figure 6. 

 

 

 
 

Figure 7.  A concrete DNA segment-description realization of the DNA species in  Figure 6. 
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Figure 8 shows part of the output of DSD simulation of modus ponens under the conditions 

described in Section 2.0.  

 

 

 
 

 

 

Figure 8.  Output of the simulation described in Section 2.0.  The green line represents the 

proposition φ -> ψ (the "substrate", in catalytic-gate nomenclature) . The red line 

represents φ (the "fuel", in catalytic-system nomenclature).     The blue line represents the 

production of  ψ  (= " <1 2>") from  modus ponens ("(φ and φ -> ψ) implies ψ ").  The 

system is Amdahl-scalable by reactor-volume.   In actual practice, a "reporter" species 

(typically, a dye) would be used to visualize the production of  ψ. 

 

 

 

 

Compilation of the system described in 

Section 2.0 took ~3 seconds.  The 

subsequent simulation utilized ~25% of the 

CPU and ~0.5  GB memory on the platform 

described in Section 2.0, as measured on the 

system monitor, and executed in ~0.1 

second. 

 

 

 

 

4.0  Conclusions and discussion  

 
The method described in Section 2.0 and the 

results described in Section 3.0 motivate 

several observations.: 

 

 1.  Modus ponens can be 

implemented in a DSD system. 

 

 2.  The implementation is Amdahl-

scalable by reactor-volume. 
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 3.  The implementation shown here 

could be easily abstracted to a DSD module 

([5]) which would hide  the representation 

internals of the implementation. 

 

 4.  In principle, any catalytic system  

that, in the presence of a molecule A, 

"detached" a molecule B from a complex 

molecule C that contained both A and B, 

could be used to model modus ponens. 

 

 5.  Other, perhaps simpler, 

implementations of modus ponens may be 

possible in [4].  The implementation 

described here, however, is known to work 

because the catalytic gate schema on which 

it trades has been implemented in vitro ([3]). 
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Abstract— Massive amounts of data is being produced in
everyday activities hence it is necessary to store and analyze
such data. Hadoop is a popular distributed system used
to store this data and MapReduce is used for performing
analysis on it. Detail study and experiments led to conclusion
that MapReduce job’s execution times can be lowered. A
cost-effective mechanism known as collaborative caching
has been proposed for efficient use of resources and system.
This mechanism helps in improving the performance, reduc-
ing access latency and increasing the throughput. A new
architecture called Hadoop-Collaborative Caching is pro-
posed in order to lower the execution times. It incorporates
collaborative caching, reference caching and Modified-ARC
algorithm. Each of the DataNodes have their own dedicated
Cache Manager that manages caching, replacement, collab-
orative caching and eviction. Cache is organized in to recent,
frequent, recent history and frequent history. To evaluate,
results obtained were compared with default configuration
of Hadoop.

Keywords: Hadoop Collaborative Caching, Distributed
Computing, MapReduce

1. Introduction
Data is being generated at an enormous rate, due to online

activities and use of resources related to computing. To
access and handle such enormous amount of data spread,
distributed systems is an efficient mechanism. Hadoop is a
widely used distributed system, follows clustered approach,
highly scalable and it allows massive amounts of data to be
stored. Hadoop follows the master/slave architecture decou-
pling system metadata and application data where metadata
is stored on dedicated server NameNode and application data
on DataNodes. Over the years, Hadoop has gained impor-
tance because of its scalability, reliability, high throughput
and performing analysis and large computations on these
massive amounts of data. Currently, Hadoop is being used
by all the leading industries like the Amazon, Google, Face-
book, Yahoo etc. Hadoop’s filesystem architecture and data
computational paradigm has been inspired by Google File
System and Google’s MapReduce[3]. At Yahoo, there is a of
span 25,000 servers, and stores 25 petabytes of application
data, with the largest cluster being 3500 servers[11]. In a
paper presented at Sigmod [2], describes how Facebook is
using Hadoop in real time, with only few modifications made
to it, it provides high throughput and low latency.

1.1 MapReduce
Hadoop uses MapReduce paradigm [20] to perform anal-

ysis, transformations and parallel computations on the data
stored. MapReduce is a parallel processing framework which
divides the input into smaller inputs and execute tasks on
it simultaneously hence achieving higher performance[10].
But according to PACMan [7], the initial phase which is
map phase in MapReduce involves reading raw data from
the disk and this task is I/O intensive. According to recent
summit by Cloudera in June 2012, Optimizing MapReduce
Job Performance [4], explains that certain optimizations can
be made in order to improve the processing of MapReduce
task. Also in paper "Optimizing Hadoop for the cluster" by
Christer [5], mentions that the default configuration is slow
and optimizations are needed. In a paper, "The Performance
of MapReduce: An In-depth Study" [6] clearly mentions that
MapReduce is slow, the processing execution time can be
improved by adding more nodes to the cluster, but that is
not a cost effective solution. There were two observed facts
after the initial analysis of MapReduce experiments; the data
during the initial phase was being read from disk and there
were more Rack-Local tasks scheduled.

1.2 New Approach
It is known that accessing data from cache is much

faster as compared to disk access. Hence to lower the
job execution time of MapReduce jobs and improve the
overall cluster efficiency of Hadoop system, improvements
and architectural changes were incorporated in Hadoop
Distributed filesystem which led to new system, Hadoop-
Collaborative Caching. The new approach followed in order
to lower job execution times was collaborative caching on
DataNode. Collaborative caching is one such mechanism in
which the cache distributed over the clients or dedicated
servers or storage devices form a single cache to serve the
requests. This technique led to more data-local jobs. Not
only local data was cached on DataNodes and served as an
input to MapReduce jobs but information about data cached
on remote caches was stored on DataNodes, introducing
a new layer to hierarchy resulting in NameNode cache,
DataNode’s cache, Remote DataNode’s cache and the disk.
Caches of all the participating DataNode’s machines taken
together formed a single cache or global cache. NameNode
is the central co-ordinator of this global cache, but allowing
the decisions of remote caching to be taken by Cache
Manager on DataNodes. New DataNode protocols have been
introduced. New Approach allows efficient use of resources
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where instead of increasing the number of nodes, more slots
can be added in order to improve performance.

Caching of data was made faster and easier by the
reference caching technique. A HDFS block is composed of
two files which is meta file and the block file. Meta file refers
to checksum value of the data and block file refers to actual
data. If these file references are cached, it helps in locating
the meta files faster for checksum checks, faster caching of
data from disk to memory since not much time is spent in
searching for files when data stored is about petabytes. This
mechanism provides an additional method of reducing the
overall time.

Modified-ARC cache replacement policy was used in
order to maximize cache hit ratio and to improve efficiency.

The organization of the paper is as follows; Section 2
explains the Related Work, Section 3 New Architecture,
Section 4 Modified-ARC, Section 5 Data Flow between the
different components of the newly proposed system, Section
6 Factors leading to improvement in the system, Section 7
Evaluations and Section 8 Concludes.

2. Related Work
According to PACMan, when multiple jobs are run in

parallel, job’s running time can be decreased only when all
the inputs related to running a job are cached. So according
to Dhruba[7] et.al, either cache all the inputs related to that
particular job or do not cache the inputs at all. Caching
only part of the inputs will not help in improving the
performance. These massive distributed clustered systems
have large memories and job execution performance can be
improved if these memories can be utilized to the fullest.
PACMan is a caching service that coordinates access to
the distributed caches[7]. This service aims at minimizing
total execution time of job by evicting those items whose
inputs are not completely cached. For evicting the inputs
which have been minimally used, LFU-F algorithm, LIFE
sticky policy have been proposed. They define a new pa-
rameter wave-width of the job which refers to total tasks
which can be executed in parallel at a time. They have
used MapReduce and Dyrad as examples to illustrate their
algorithm and hypothesis. According to them reading the
raw input from filesystem is IO intensive and forms 79%
of the phase[7]. They conducted experiments on Hadoop
and observed improvement in job execution time. They
emphasize on memory-locality tasks which is an important
factor contributing to cluster efficiency.

Dhruba[7] et.al proposes an architecture called the PAC-
Man which coordinates the caches globally and it takes care
of two things which is support queries where block is cached
and coordinating the cache replacement[7]. Its architecture
includes a coordinator service and PACManClients are lo-
cated on nodes where data lies. Blocks are cached on these
clients. The coordinator includes the information regarding
this block belonging to which file and wave-width of the

file. This overall structure of the coordinator is used for
scheduling tasks which are memory local, in implementing
sticky policy[7] and to check on the incomplete files. If the
data is not cached then it accesses disk. Also it emphasizes
to schedule a data local job. For replacement policies they
go for global cache replacement policies which are LIFE
and LFU-F[7]. The overall job execution time is reduced
attempting to schedule jobs of smaller-wave widths. This
system does not take into account the remote caching.

The main aim defined in paper Dynamic Caching [16]
is caching mechanism allowing concurrent access to data
and proposes algorithms relating to locality of data which
focuses on the decrease in the overall job completion time.
For implementing Dynamic caching they are using Hadoop
and their caching mechanism is based on Memcached[16]
which are a set servers storing the mapping of block-id
to datanode-ids. These servers also serve the remote cache
requests. The caching of blocks is carried out on DataNodes.

The paper mentions about two different design archi-
tectures, First architecture defines; to serve the request of
DataNode, simultaneous requests are sent to NameNode and
Memcached servers. DataNode receives reply from both of
them, but it checks if true from Memcache then access
block from Memacache else access the block from disk
whose location as indicated by NameNode. In second design
architecture, again simultaneous request is sent to Memcache
and NameNode, but NameNode does not reply back untill in-
dicated by Memcache about unavailability of block where in
such a case NameNode sends block locations to DataNode.
The design includes prefetching where whenever request is
seen by Memcache, neighbouring blocks are also looked up.
If neighbouring blocks are missing then Memcache requests
NameNode to look for replicas and if available, requests are
sent to DataNode to cache blocks and Memcache updates
it’s locations. The caching system designed is not distributed
and for lookups it is always required to contact the single
set of Memcache servers. Also there incurs an extra delay
with respect to second architecture when Memcache does
not contain the blocks in cache.

3. Hadoop-Collaborative Caching: Ar-
chitecture

Following section explains in detail the Hadoop-
Collaborative Caching architecture; added functionalities to
already existing components and newly added components.
Fig.1, shows diagram of Hadoop-Collaborative Caching sys-
tem architecture.

3.1 Cache Manager
Each of the DataNodes have their dedicated CacheMan-

agers who have responsibilities of managing caches, lookup
in local as well as global cache image upon request, replace-
ment policy for cache and eviction policy for cache when
cache is fully utilized. A buffer is maintained to cache the
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file references which are meta file and block file. Blocks in
the cache will be replaced when the cache is fully utilized
and eviction in either of the caches will take place in LRU
manner. Cache is divided into recent, frequent, recent history
and frequent history.
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Fig. 1: Proposed Architecture

3.2 Global Cache Image
Global Cache image is a mapping of block to DataNode,

denoting that this block is cached on which DataNodes in
the cluster. This mapping is maintained by NameNode and
copy of it is sent to all the DataNodes as a response to
cache block report. Each of the DataNodes maintain a copy
of Global Cache Image as well. Global Cache Image lookup
is done by Cache Manager upon local cache miss.

3.3 NameNode
NameNode is the central co-ordinator for maintaining the

Global Cache Image. It builds its global cache image when it
obtains the cached block report from the DataNodes. As soon
as it obtains its report, it updates the mapping of cachedblock
to DataNode. Upon updation of the Global Cache Image, as
a response to cached block report it sends a copy of Global
Cache Image to the DataNode via DNA_UPDATE_GCI
command.

3.4 DataNode
DataNode provides a cached block report of its local cache

to NameNode after periodic interval. As a response to this
report NameNode commands DataNode to update global
cache image.

3.5 DFSClient
DFSClient receives set of caching DataNodes along with

non caching DataNodes from NameNode as response to its
request to read a particular file.

3.6 New DataNodeProtocols
These OP Codes have been introduced as part of the

collaborative caching mechanism and as DataNode transfer
protocol. The receipt of these OP Codes help in determining
the next set of steps to be taken by DFSClient or DataNode.

• OP_READ_BLOCK_CACHED: To indicate that DF-
SClient is attempting to read the data from cache.

• OP_STATUS_BLOCK_CACHED_ELSEWHERE:
DataNode sends this to DFSClient to signify that this
block is cached on a different node.

• OP_STATUS_BLOCK_NOT_CACHED: DataNode
sends this to DFSClient to signify that this block is
not cached at all.

• DNA_UPDATE_GCI: This is the instruction sent by
NameNode to DataNode in response to the cached
block report.

4. Modified-ARC algorithm
The following section explains the Modified-ARC algo-

rithm in detail. Fig 2 shows the diagram of Modified-ARC.
A variant of this algorithm is implemented. Basic idea is to
divide the caches into two different sections namely cached
objects and history objects. Cached section contains the
actual data and History section contains the references of
evicted items. Hence the cached section is further divided
into Recent Cache and its Recent History and Frequent
Cache and its Frequent History. The size of recent and
frequent together is fixed. The idea derived from actual ARC
algorithm[9].

Recent Cache (R) Recent History(RH)

Frequent Cache(F) Frequent History(FH)

Prefetch Buffer

Block first time, place it 
in Recent Cache 

On Request, Initially 
place the 

references(meta file + 
blockfile) in the 
prefetch buffer

Cache the data in 
recent cache using 
these references

Block fully utilized, 
remove the cached 
data from remote 

cached and place its 
reference in recent 

history 

Second reference to 
block in Recent cache, 

place it in Frequent 
cache 

Frequent Cache fully 
utilized, remove the 
block and place it in 

Frequent History  

Fig. 2: Modified-ARC

• Recent Cache: A cache where the block seen for the
first time is placed.

• Frequent Cache: A second reference to the same block
will cause the block to be placed in this cache.
The basic idea behind is:

• Initially on a request for block, check for references
in either of the history caches, if present then place
their blocks in recent or frequent cache, else cache
references and serve request from either of the history
caches which helps in faster caching as well as locating
the files for initial checks.

• If references are found in the recent history then it is
used to cache the block and place it in recent cache. If
block is found in recent cache, then place it in frequent
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cache, hence hit in either of the history caches removes
the references and places the corresponding block in
either of the caches (recent or frequent). Caching of
block involves caching metadata as well data.

• When either of the caches are fully utilized then block is
evicted from recent or frequent cache but its reference is
placed into its corresponding history. When either of the
history caches are fully utilized causes the references
to just drop out of the cache.

5. Data Flow
In the following section, detailed explanation is pro-

vided of interaction between the components DataNode, DF-
SClient and NameNode with respect to new functionalities
implemented.

5.1 NameNode and DFSClient Data Flow
DFSClient requests NameNode for blocks locations de-

pending on the file and offset. Upon the request, NameNode
returns block’s id and set of locations where these blocks are
located along with replicated blocks locations. If the blocks
are cached, then it returns set of caching DataNodes as
well as non caching DataNodes. DFSClient tries to connect
to best possible node by sorting in the order such that
caching DataNodes are first in the list and then Non Caching
DataNodes.

5.2 DFSClient and DataNode Data Flow
DFSClient DataNode DataXceiver

Choose best data node
1. Check caching enabled
2. Check cached read 
attempts
3. Prioritize  cached 
location/data node

Connect to chosen data node
Send OP_READ_BLOCK_CACHED

BlockSender

Instantiate DataXceiver
Send 
OP_READ_BLOCK_CACHED

IF block not in local cache + 
global cache image (GCI) , send 
OP_STATUS_BLOCK_NOT_CACH
ED

IF block not in local but in GCI, 
send 
OP_STATUS_BLOCK_CACHED_EL
SEWHERE followed by caching 
DatanodeInfo

Forward OP CODE and INFO 
(if any) to client

IF block found in cache, 
instantiate BlockSender to 
fulfill request

Send OP_SUCCESS followed 
by block data

Forward OP CODE and block 
data to client

IF OP_SUCCESS, read data
IF 
OP_STATUS_BLOCK_CACHED_ELSEW
HERE and not max cache read 
attempts connect to notified 
Datanode
IF OP_STATUS_BLOCK_NOT_CACHED 
read from non-caching Datanode

Fig. 3: DFSClient and DataNode Interaction Sequence Dia-
gram

Fig3. shows the sequence diagram of data flow between
DataNode and DFSClient. After obtaining locations of the
blocks and their block ids from NameNode, DFSClient sorts
them in the order such that caching DataNodes are first in the
list. It checks for total cached read attempts, if maxed then

connect directly to non caching DataNode. It checks if the
DataNode it is trying to connect was previously declared
dead. A dead DataNode is a node when the client tried
to read earlier and after maxed attempts, the DFSClient
failed to connect to DataNode. Similar to deadnodes are
cached deadnodes which indicates that particular DataNode
previously had it cached but cached block was removed and
the block could not be obtained. It sorts and tries to connect
to best DataNode possible.

A connection is established between the first chosen
DataNode in the list and DFSClient. If DFSClient is reading
the cached block then it writes opcode
OP_READ_BLOCK_CACHED to the DataNode. DataNode
in turn instantiates DataXceiver and forwards the opcode
sent by DFSClient. If cached block is found then opcode
OP_SUCESS is sent followed by data using BlockSender
and is forwarded to DFSClient so that it can start reading
data.

If the cached block is not found then send
OP_STATUS_BLOCK_NOT_CACHED opcode or
OP_STATUS_BLOCK_CACHED_ELSEWHERE to
DFSClient. Opcode OP_STATUS_BLOCK_NOT_CACHED
indicates no cached block can be found and opcode
OP_STATUS_BLOCK_CACHED_ELSEWHERE indicates
this block can be obtained in remote cache. This opcode is
followed by the socket address of the DataNode to connect
to. This is where collaborative caching helps, attempting to
read from neighboring cache.

After receiving the opcode
OP_STATUS_BLOCK_CACHED_ELSEWHERE, it
again checks for cache read attempts, if not maxed out
then try reading from cache specified by other DataNode, if
caching DataNode is available. If opcode OP_READ, then
read the data from non caching DataNode. If the read is for
the first time, DataNode indicates CacheManager to cache
the block’s metadata as well data.

5.3 NameNode and DataNode Data Flow
DataNode sends NameNode cached block report about its

locally cached blocks after a certain configured interval. This
is sent in the form of CachedBlocksCommand. Accordingly
Global Cache Image in the namesystem is updated. As
a response to this command NameNode sends DataNode
instruction to updates its Global Cache Image with the help
of DNA_UPDATE_GCI command.

6. Improvements in Hadoop
The proposal to implement collaborative caching and

integrating with Hadoop works. It proved to be successful
resulting in a considerable lower job execution times which
led to improvement and enhancement in the overall system.

Reading data from cache is always faster as compared to
reading data from the disk. On the DataNode side, the data
was being streamed from disk hence the overall performance
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of a MapReduce job was considerably slow and had a
overall high I/O rate. An attempt has been made to cache
this data and stream from cache. Moreover, collaborative
caching allows us to stream the data from remote caches
which proves to be an added advantage. In Hadoop, it was
also observed that caching references added to the overall
improvement of the system performance. There are three
main reasons that contribute to improvement in the system.

a) Remote Memory Caching: Caching of input data at
the DataNode level helps in improving job execution time.
A distributed cache structure is followed where each of
the DataNodes have their own caches maintained by Cache
Managers. We are utilizing the memories of all the partici-
pating DataNodes thus reducing the no. of disk accesses. If
the data is not found in requested node’s cache but found
in other node’s cache, so instead of serving from disk we
are serving from cache and which saves us execution time.
This approach not only reduces job execution time, but also
helps us to utilize the resources efficiently. To improve the
performance, instead of adding more nodes, we can focus
on adding more slots causing more map and reduce tasks
to be scheduled at once parallely and with the technique of
collaborative caching, data is available in cache causing in
overall lowering of the job execution timing.

b) More data-local Tasks: The second reason is, whenever
JobClient submits the Job, JobTracker tries to schedule the
job on the same node as the input. More the data-local tasks,
better the execution time. So as soon as TaskTracker contacts
JobTracker either with slot available or no, if the slot is
available then schedule a task. If the input required for the
task resides on a different node, then it is rack-local and
in such a case the data is streamed from other node to the
node where the task is scheduled and then the task is carried
out. This results in added extra time to complete the task
resulting in increasing the overall job execution time. But
with caching, the tasks scheduled get completed earlier and
slots become available faster which provides room for tasks
to be scheduled as data-local, hence improving the overall
execution time. Also in terms of collaborative caching, the
data is streamed from neighbouring node’s cache, although
there is n/w I/O involved, but minimal and moreover, it is
from cache hence it reduces the overall time.

c) Reference Caching: The third reason was, initial request
served by the references which were cached during the
request contributed to the improvement as well. This is
because, these references help the system to obtain the data
into cache faster since disk lookup with large number of
files stored incurs extra time and with reference caching,
this lookup is saved. Hence, the effect of caching was visible
the first time itself. When first time a request is encountered
and a cache check is made for the request, if data is not
found in cache causes the data to be cached with the help of

reference caching. The main advantage here is that with the
initial request, only certain number of bytes are read and
not the actual data. The same request for the same block
comes again and this time it is already cached, so the data
is streamed from cache. But with first time requests, there
incurs extra time to cache the block although difference in
timings due to reference caching can be observed during
initial execution. The second time, a request for the same
block and with data available and streamed from cache,
a considerable decrease in the timing can be observed.

With the Modified-ARC cache replacement algorithm,
better cache hit ratios were observed, a factor leading to
overall improvement.

d) Collaborative Caching Works: The overall improve-
ment is also result of the caching algorithm. DFSClient
always attempts to sort so as to have caching DataNode first
in the list indicates that attempt is made to always stream
from cache. Moreover, if DFSClient cannot find the block
in the local cache of this DataNode, it can connect to next
location provided by DataNode for streaming from cache.

7. Evaluation
This is a preliminary work. The experiments were con-

ducted with limited number of nodes and hardware. Exper-
iments were performed on default configuration of Hadoop
and compared with results obtained on execution of jobs on
Hadoop-Collaborative Caching.

The following section explains the configurable parame-
ters used, metrics used and the different experiments con-
ducted in order to test the new functionality and improve-
ments.

7.1 Configurable Parameters
Following are the list configurable parameters used while

conducting experiments:
• Local Cache Size: To calculate the cache hit and miss

rates, recent cache size and frequent cache capacity, pa-
rameters were configured from 6 - 24 blocks depending
on the block size.

• Block Size: To perform experiments on cluster, the
block sizes used 32 MB, 64 MB, 128 MB.

• Minimum Block Size For Caching: Block size >1 MB
• History Cache Size: This size was configured to 100.
• Max Read Cached Attempts: This number is set to 2.
• Caching Enable: To enable or disable caching.
• Cache Block Report Interval: Configured as 10 secs.

7.2 Metrics
Following section explains the metrics used while con-

ducting the experiments:
• Average Block Access Time: Hadoop has large block

size (default 64MB), it does not read all the data at
once, instead it streams the data in the form of packets
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and then sends over the network to recipient. Hence for
Hadoop the total average block access time is
Total Average Block Access Time = Time to read from
disk or cache + Time to transmit the data over the
network.

• Cache Hit / Miss Rate: It is used to measure how many
times a block was read from the cache. The higher the
number, the better it is. Cache hit rate is calculated :
Hit Rate (%) : Total no. hits / Total number of requests
for blocks.
Total Hits (%) : Total no. hits in local cache(recent +
frequent) and global cache

• Local Cache Size: Local Cache size is a combination
of Recent cache size and Frequent cache size.
Local Cache Size: Recent Cache Size + Frequent Cache
Size.

• Max Read Cached Attempts: This number indicates
the maximum number of times we connect to DataNode
to read from cache before we finally read from the disk.

• Cache Block Report: It is a report send by all
the DataNodes regarding information about their local
caches to NameNode. This helps NameNode construct
the Global Cache Image.

7.3 Experiments and Results
The experiments described below uses WordCount appli-

cation, in order to test the new improvements incorporated,
The WordCount application counts the frequency of words
for a given input. Inbuilt "time" command of linux was used
to compare the results. The cluster was restarted when files
of greater data size was run due to memory limitations.

e) MapReduce: Following explains in detail of how the
MapReduce experiment was conducted, results obtained
and explanation about the observations made.

Fig. 4: MapReduce Job Execution (Block Size 64 MB)

Experiment Conducted: For MapReduce experiments,
MapReduce Job was run on datasets ranging from 500 MB
- 1 GB on default as well Hadoop-Collaborative Caching in
cluster mode. It was conducted for block sizes 32MB, 64MB
and 128 MB. Cluster was restarted for Hadoop-Collaborative
Caching when MapReduce Job was run for data files greater

than 650MB, due to memory limitations. Fig 4 depicts graph
for MapReduce Job Execution for block size 64MB.

The results varies depending on the distribution of blocks
across the cluster and the way the jobs are scheduled across
the cluster

Observations and Results: It can be observed that
Hadoop-Collaborative Caching results obtained showed a
considerable improvement. From Fig.4 graph, it can be seen
that with increase in file size, the map reduce timings have
decreased. It can also be observed that there are drop in
timings when file size is 750 MB and 950 MB. Also it is
observed that with increase in file size, difference in the job
execution time of default Hadoop and Hadoop-Collaborative
Caching increases. Hence collaborative caching shows a
significant improvement in MapReduce job execution times.

Explanation: This is due to the fact that streaming from
cache is faster as compared to from disk which is combined
with serving requests from references. With increase in file
size, no. of blocks that make up the block increases and if
the blocks are found in cache (local or remote) instead of
accessing from disk, the overall execution time decreases
resulting in a larger gap between Hadoop and Hadoop-
Collaborative Caching. The another major factor leading to
decrease in overall job execution time is job being executed
as data-local tasks. Job can be executed as data-local and
rack-local. When jobs are executed on the same node as the
input, it is data-local task whereas when the job is executed
on node other than the input it is rack-local job. Execution
of data-local jobs are faster as compared to rack-local. In
Rack-Local jobs, when job is executed data is streamed from
other node hence increasing the overall timing. So more
the rack-local jobs, more time required to complete the job.
The reason for execution of rack-local jobs is; as number of
slots are fixed, for slots are being used by TaskTrackers, if
JobTracker receives a request from TaskTracker and it has
an empty slot, an attempt is been made to schedule a data-
local task. But if that is not possible then rack-local task is
scheduled. In case of collaborative caching because of the
raw data in memory, jobs are executed and completed earlier
and hence slots become available earlier leading to more of
data-local tasks. The next factor which acts as an advantage
is during the first run with Hadoop-Collaborative Caching
implemented, the caching effect is seen. This is because
Hadoop initially reads 516 bytes and then the whole data.
When the initial bytes are read, with the help of reference
caching block is cached and when the data is to be read, it is
read from cache. Although there incurs extra time when the
block is cached for the first time and successive requests for
the same blocks results in higher decrease in timings. A drop
in timings from file size 900 MB to 950 MB, which is due
to fact the way jobs are scheduled and the data distribution
of the blocks when the input files are loaded into HDFS.
The overall decrease in timings was also due to reference
caching and Modified-ARC algorithm.
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There seemed to be overall high n/w I/O so caching results
can be improved to a larger extent with higher network
speed of 1 Gbps.With increase in file size, the MapReduce
job execution time decreases.More data-local tasks lead to
better execution time

f) Multiple Clients Execution: Following explains in
detail of how the Multiple Client Execution experiment
was conducted, results obtained and explanation about the
observed results.

Fig. 5: Multiple Job Execution (File Size 500 MB)

Experiment: This experiment was conducted to run jobs
parallely such that each of them are run in background. The
maximum jobs which could be run was 6 due to memory
limitations. Fig 5 shows graph for Multiple Job Execution
time for multiple clients. This experiment was carried out
for file size 500 MB, where multiple clients are trying to
run MapReduce task for file size 500 MB.

Observations and Results: Above graph shows simulta-
neous clients submitting the job. It can be clearly observed
that Hadoop-Collaborative Caching shows better results as
compared to default Hadoop configuration. It can also be ob-
served that execution time of Hadoop-Collaborative Caching
is consistently low.

Explanation: The reason for only having 6 max jobs in
parallel is due to infrastructure and memory limitations. The
machines could not launch more than 6 JVMs limiting the
experiment to run only 6 jobs at a time. The execution time
is low for Hadoop-Collaborative Caching due to the reason
that data is available in cache causes more data-local tasks
which causes overall decrease in the job execution time.

8. Conclusions
Our next steps would be to expand this preliminary set

of experiments to larger cluster. A new architecture has
been proposed named as Hadoop-Collaborative Caching.The
architecture aimed at improving the overall MapReduce job
execution time by lowering it and increasing the efficiency
of the system. This was done through the mechanism of
collaborative caching where data is served from local caches
as well as remote caching. This was combined with caching

references and Modified-ARC algorithm. NameNode’s re-
sponse to client was modified to send cached locations as
well to the non cached locations of DataNode. NameN-
ode maintains the Global Cache Image which is image of
location of all the cached blocks on the cluster. This is
mapping of cached block to DataNodes indicating this block
is cached on these DataNodes. On the DataNode side, each
of them have their dedicated Cache Managers which have
responsibilities of caching data, replacement policy which
is Modified-ARC and caching of references. Caching of the
references also improved the overall system execution. The
cache was divided into four sections recent, recent history,
frequent and frequent history instead of maintaining just
a single cache. This mechanism helped in better caching
replacement. Hence overall, the job execution time decreased
by a considerable amount, efficiency of the system increased
and there were more data-local jobs scheduled.

References
[1] http://hadoop.apache.org/docs/r0.20.2/hdfs_design.html
[2] Dhruba Borthakur, et.al "Apache Hadoop Goes Realtime at Face-
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Abstract - In this paper, the parallelization of the Fault 

Position Method for the stochastic assessment of voltage sags 

is presented. The parallelization of this stochastic method is 

made by using multi-thread programming in an algorithm 

written in C programming language, including functions 

defined by the POSIX threads header and library in order to 

perform the parallel calculations desired. All tests were 

performed using the GNU/Linux operating system. The 

proposed parallelized method is applied to two electrical 

systems: a small 5-bus test system and the IEEE 57-bus test 

system, in order to demonstrate its proper operation. A 

comparative analysis of the parallelized Fault Position 

Method with respect to the traditional method is presented, 

and the reduction in computational time is shown. 
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processing; multi-threading 

 

1 Introduction 

 A voltage sag is defined as a decrease in RMS voltage at 

the power frequency for durations from 0.5 cycles to 1 

minute, usually reported as the remaining voltage [1]. Short 

circuits are the main cause of their appearance in electrical 

systems, but they can also be caused by the starting of large 

motors, overloads or the disconnection of capacitor banks 

[1][2]. 

 A voltage sag is a phenomenon of power quality that 

significantly affects energy users, especially in the industrial 

sector, where considerable economic losses are originated by 

this disturbance [2][3]. Furthermore, within the scope of smart 

grids, an important goal is to design electrical systems that 

operate in a more automated, secure and efficient way, 

providing power quality in the range of need [4][5]. 

 In recent decades, several methods have been proposed 

for evaluating a power system in terms of voltage sags 

[6][10]. One of the most widely used methods is the well-

known Fault Position Method (FPM) [7][11], which allows to 

estimate the occurrence of sags based on statistical data of 

faults in the elements and parameters of the electrical network 

under study.  

 When applying the Fault Position Method, a large 

number of fault positions must be considered in order to 

obtain accurate results [10][12], however, increasing the 

number of faults will require greater computational resources. 

This is an important aspect to consider when large power 

grids are being analyzed. Therefore, it is of interest to employ 

computational techniques, such as parallel programming, that 

allow to apply this method in a more efficient way. 

 In modern power system analysis, it has become 

necessary to use diverse computational tools such as parallel 

processing or object-oriented programming, amongst others. 

Parallel processing is defined as a method of data processing 

in which two or more processing elements perform 

calculations to solve a problem working simultaneously 

together. Parallel processing has been applied in the solution 

of several problems in the field of power system analysis and 

industrial applications. For example, in [13], an algorithm for 

fault detection in DC motor drivers using parallel 

programming is presented; in [14], parallel processing is 

employed in the study of electromagnetic transients; in [15], a 

method for the harmonic power flow analysis is developed; in 

[16], this technique is applied to the fast steady-state solution 

of power systems. Recently, fine-grained parallel processing 

techniques have been applied to the fast steady-state solution 

of large-scale electric power systems [17]. In previous works, 

parallel processing has allowed to reduce the computational 

time required to perform a study, which, in consequence, 

makes it possible to perform power system analyses in less 

time and improve the system operation, thus reducing 

economic losses associated with electrical faults. 

 In this paper, the Fault Position Method for the 

stochastic assessment of voltage sags in electrical power 

systems is implemented employing parallel processing 

techniques based on multi-thread programming. The proposed 

method is applied to IEEE test systems in order to 

demonstrate its performance 

2 Parallelized Fault Position Method 

 In order to illustrate the procedure to parallelize the 

Fault Position Method, a brief description of the method is 

presented first, and then the steps for its parallelization are 

exposed. 
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2.1 Fault Position Method Basis 

 The Fault Position Method is based on the classic short 

circuit calculation, combined with data of fault probability in 

nodes and lines, in order to estimate the occurrence of sags in 

a given period of time. The procedure followed to apply this 

method is described next [7][11].  

 Consider the generic system with n buses shown in 

Fig. 1. When a fault occurs at a generic bus i of the electrical 

system, according to the classic short circuit calculation, the 

impedance matrix of the system, Zbus, is of order (nn), and 

the voltage at bus m can be calculated by [18] 

 pf

m m mi iV V Z I   (1) 

where: 

 pf

mV is the pre-fault voltage at bus m; 

 
miZ  is the transfer bus impedance between busbar m of 

                the system and the faulted bus i; 

 
iI  is the fault-current phasor at bus i that can be 

             calculated as 

 
pf

i

i

ii

V
I

Z
  (2) 

where: 

 pf

iV is the pre-fault voltage at bus i; 

 
iiZ is the transfer bus impedance of the faulted bus i. 

Then,  

 pf pfmi

m m i

ii

Z
V V V

Z
   (3) 

  

 

POWER SYSTEM 
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pj 

bus m bus i 

  

Fig. 1. Electrical system 

In order to estimate the frequency of voltage sags, short 

circuit calculations must be performed throughout the system, 

i.e., the magnitudes of voltage sag due to faults at each bus of 

the system are obtained, considering all fault positions, both at 

lines and buses. 

 For the calculation of voltage magnitudes due to line 

faults, fictitious buses along the lines must be considered. For 

example, in the generic system shown in Fig. 1, one fault 

position in the middle of the line connecting buses k and j is 

considered. Then, according to the classic short circuit 

calculation, the voltage at bus k can be calculated by  

 

*

*

kppf pf

k k p

pp

Z
V V V

Z
   (4) 

where: 

 
*

kpZ is the modified transfer bus impedance between  

                busbar k and the faulted bus p; 

 
*

ppZ is the modified transfer bus impedance of the faulted 

                bus p. 

 It is important to notice that in equation (4) the order of 

the correspondent bus impedance matrix, Z
*
bus, is 

((n+1)(n+1)), due to the addition of  the fictitious bus p. 

 Then, considering that the fault at the generic position p 

(real or fictitious bus) has an associated value of fault rate, p 

(usually faults/year), the accumulated frequency of voltage 

sags for a magnitude threshold between Vlow and Vup, at a 

generic bus k, can be calculated by [2][7] 

 
     :         k p low p upP V V V    (5) 

 

where:  

 Pk is the voltage sags probability at bus k (voltage 

sag/year) 

2.2 Parallelization of the Method 

 From the previous description of the Fault Position 

Method, it is clear that in order to achieve an acceptable level 

of precision, a large number of fault positions must be 

included in the calculations. Furthermore, if a fictitious bus is 

added in each calculation, the dimension of the problem 

grows significantly when several fault positions in the 

electrical system are simultaneously analyzed. 

 For example, for the IEEE 57-bus test system that 

consists of 63 lines [19], if 10 fault positions are included in 

the lines, 687 fault calculations are required, with a (5757) 

order  impedance matrix, or a new (687687) order 

impedance matrix must be created, which would include all 

the fault positions of the system (assuming fictitious buses). 

Obviously, when large systems are being analyzed, the 

computational requirements become a more relevant aspect, 

and it results interesting to apply techniques such as parallel 

processing in order to perform calculations more efficiently. 
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 In the designed algorithm for the parallelization of the 

Fault Position Method, each processing element divides the 

line in a specified number of parts. Then, a fault position is set 

in each one of these parts and the bus admittance matrix is re-

calculated for every part. As it was previously mentioned, the 

dimension of the admittance matrix for each calculation is 

((n+1)(n+1))), due to the addition of the fictitious bus that 

represents the fault position. Once the bus admittance 

matrices are obtained, they must be inverted in order to find 

the impedance matrices and calculate the voltage magnitudes 

at buses for each assumed fault. Then, based upon these 

values, the probability of voltage sags occurrence in each bus 

will be obtained according to specific voltage ranges. To 

perform this task, parallel processing based on multi-threading 

was applied. 

 In multi-threading [20], multiple control threads can 

solve a large portioned problem; lightweight sub-processes 

executed within a process share code and data segments, but 

with their own program counter, machine registers and stack. 

Global and static variables are common to all threads. 

 The efficiency of the parallel algorithm is measured in 

terms of the time it takes to complete the calculations with one 

processing element in comparison to the time it takes to 

complete the calculations with p processing elements; this 

relation is known as Speed-Up (S) [21]. 

 
1

p

T
S

T
  (6) 

where: 

 1T  is the execution time with one processing element; 

 pT is the execution time with p processing elements. 

 Using this metric of performance ensures that the 

reduction of execution time is independent of the computer 

characteristics. 

 In this work, the parallelization algorithm was written in 

C programming language, including functions defined by the 

POSIX threads header and library in order to perform the 

parallel calculations desired. All tests were performed using 

the GNU/Linux operating system, in particular the Xubuntu 

12.10 distribution, and using an Intel (R) Xeon (R) CPU 

ES40S with two quad-core processors running at 2.0 GHz. 

3 Case Studies 

 Two case studies are presented, which allow to verify 

the operation and efficiency of the method implemented using 

multi-thread programming. 

3.1 Studies in a small test system 

 In order to analyze in detail the performance of the 

proposed method, a 5-bus test network (Fig. 2) is adopted. 

Impedances of the network elements are indicated in Fig. 2 in 

per-unit values. In this example, uniform distribution of faults 

along the transmission lines has been assumed. Balanced 

three-phase faults have been considered with the following 

statistical rates of faults/year for the different lines: line 2–4, 

=16; line 2–5, =8; and line 4–5, =4.  

 In order to demonstrate the performance of the proposed 

parallelized Fault Position Method, the results are compared 

to the results obtained from the application of an analytical 

method [10], in which the accuracy does not depend on 

discrete values, as is the case of the Fault Position Method. 

 In Table 1, the voltage sags per year calculated using the 

parallelized Fault Position Method, considering different 

number of fault positions, are presented. It can be clearly seen 

that as the number of fault positions considered increases, the 

obtained result is closer to the analytical solution. The results 

obtained using a small number of fault positions are 

significantly different to the analytical solution, however, 

when a large number of fault positions is considered, there is 

no appreciable difference between the results yielded by the 

Fault Position Method and the analytical method. A similar 

behavior would be observed when this calculation is made for 

the rest of the buses. 

 In Table 2, the speedup results using the proposed 

technique for different number of fault positions are shown. 

The efficiency of the parallel algorithm is more evident when 

the number of fault positions increases. The maximum 

speedup factor in this case is 2.984 (columns S in Table 2), 

which means that the calculations are performed almost three 

times faster than they would be if a sequential algorithm was 

used. 

 

Fig. 2. Small test system 

TABLE 1. VOLTAGE SAGS/YEAR AT BUS 2 USING THE FAULT POSITION 

METHOD WITH DIFFERENT NUMBER OF FAULT POSITIONS 

Voltage 

sag range 

Analytical 

method 

Fault position method (voltage sags/year) 

Fault positions 

1 50 100 1000 10000 

0.0<V≤0.1 4.74 0.0 4.64 4.64 4.74 4.74 

0.1<V≤0.2 10.37 8.0 10.24 10.48 10.45 10.46 

0.2<V≤0.3 7.12 4.0 7.04 7.12 7.12 7.12 

0.3<V≤0.4 5.77 16.0 6.08 5.76 5.77 5.77 
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TABLE 2. SPEEDUP OF THE PARALLEL SOLUTION OF THE 5-BUS TEST CASE 

USING THREADS AND DIFFERENT NUMBER OF FAULT POSITIONS 

 
100 

faults 

1,000 

faults 

10,000 

faults 

100,000 

faults 

1,000,000 

faults 

Threads S S S S S 

1 1.000 1.000 1.000 1.000 1.000 

2 1.588 1.404 1.499 1.493 1.506 

3 1.588 2.314 2.837 2.946 2.989 

4 1.500 2.403 2.870 2.938 2.984 

 

 

3.2 Studies in the IEEE-57 buses test system 

 The IEEE 57-bus test system consists of 57 buses (see 

Fig. 3) which are interconnected by means of 63 lines, 15 

transformers and 7 generating units [15]. Balanced three-

phase faults have been considered and a fault rate of 1.0 for 

all lines; fault rates at buses have been neglected. 

 Fig. 4 shows the results of voltage sags for the voltage 

range from 0.5 to 0.6 p.u. when different number of fault 

positions at lines are considered. In order to visualize the 

differences more clearly, graphs are shown for 1, 10 and 100 

fault positions. It is observed that as one increases the number 

of fault positions, results tend to values that would be 

obtained without the discretization of fault positions. 

Similarly, Fig. 5 shows the results for the voltage sags range 

of 0.6 to 0.7, and once again it can be observed that the results 

with 10 positions are closer to the obtained with 100 positions 

than the obtained with one fault position. 

 

 

 

Fig. 3. IEEE-57 buses test system 
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Fig. 4. Voltage sags/year considering a voltage sags range from 0.6 to 

0.7 p.u. 
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Fig. 5. Voltage sags/year considering a voltage sags range from 0.6 to 

0.8 p.u. 

 In Fig. 6 and Fig. 7, the number of voltage sags/year for 

a voltage range up to 0.7 p.u. and 0.8 p.u. are shown, 

respectively. It can be seen that the differences are smaller for 

the more widely voltage sags range. 

 In Table 3, the execution times considering different 

number of fault positions for the 57-bus system are shown. It 

can be seen that when the number of threads used to perform 

parallel calculations is increased, a significant reduction in 

execution time is achieved. The speedup obtained with 8 

threads and 40 faults indicates that the problem is solved 

approximately 7.8 times faster than when a single processing 

element is used. 
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Fig. 6. Voltage sags/year considering a voltage sags range from 0.1 to 

0.7 p.u. 
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Fig. 7. Voltage sags/year considering a voltage sags range from 0.1 to 0.8 

p.u. 

 

TABLE 3. SPEEDUP OF THE PARALLEL SOLUTION OF THE IEEE-57 BUSES TEST 

SYSTEM USING THREADS AND DIFFERENT NUMBER OF FAULT POSITIONS 

 10 faults 20 faults 40 faults 

Threads 
Time 

(secs) 
S 

Time 

(secs) 
S 

Time 

(secs) 
S 

1 7.136 1.000 14.258 1.000 28.520 1.000 

2 3.637 1.961 7.268 1.961 14.528 1.963 

3 2.399 2.974 4.784 2.979 9.554 2.985 

4 1.831 3.897 3.647 3.909 7.285 3.914 

5 1.491 4.786 2.968 4.803 5.922 4.815 

6 1.266 5.635 2.515 5.669 5.015 5.686 

7 1.041 6.852 2.062 6.914 4.112 6.935 

8 0.941 7.583 1.847 7.718 3.666 7.779 

 

4 Conclusions 

 In this paper, parallel processing techniques have been 

applied to the parallelization of the Fault Position Method for 

the stochastic assessment of voltage sags. The applied 

parallelization is based on multi-thread programming, which 

allows to divide the task of short circuit calculations for the 

assumed faults in the electrical system. 

 The proposed parallelized method was applied to a small 

5-bus test system and to the IEEE 57-bus test system. In the 

case studies performed, it is demonstrated that the proposed 

parallelized method can be a helpful tool to estimate the 

voltage sag performance of the system in a more efficient 

manner than the traditional Fault Position Method.  
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Abstract - this paper addresses the problem of 3D shape 

retrieval in large databases of 3D objects (large retrieval). 

While this problem is emerging and interesting as the size of 

3D object databases grows rapidly, the main two issues the 

community has to focus on are: computational efficiency of 3D 

object retrieval and the quality of retrieved results. In this 

work we deal with the first consideration, namely the 

computational efficiency of 3D object retrieval by exploiting 

new implementations based on parallel computing by 

exploiting multi-core and GPU architectures. Experimental 

results, show that the large scale retrieval can be achieved 

using the multi-core environment. 

Keywords: 3D Content-based Shape Retrieval, Large Scale 

Retrieval, GPU, multi-core architecture, CMBOF method, 

OpenMP  

 

1 Introduction 

  Currently, there are an increasing number of 3D objects 

on the web, leading to large databases, thanks to recent 

digitizing and modeling technologies. The need of efficient 

methods for 3D shape-content based retrieval, in order to ease 

navigation into related large databases, and also to structure, 

organize and manage this new multimedia type of data, has 

become an active topic in various research communities such 

as computer vision, computer graphics, mechanical CAD, and 

pattern recognition. The 3D shape retrieval is the processing 

of retrieving visual similar objects to given 3D object query. 

 Various 3D shape retrieval methods have been proposed 

in the literature [3,4,5,6,7]. All recent methods are based on 

the shape descriptors; that consists in designing an efficient 

canonical characterization of the objects. This 

characterization is referred as a descriptor or a signature. 

Since the descriptor serves as a key in the search process, it is 

a critical kernel with a strong influence on the searching 

performances (i.e. computational efficiency and relevance of 

the results). Designing an efficient canonical characterization 

of the objects was become a major challenge in 3D objects 

indexation. A good 3D shape retrieval method must satisfy at 

least the two following conditions simultaneously [3]: 

 The relevance and the quality of retrieval results: the 
first 3D objects returned by the method must be the 
most similar to the query. 

 Computational efficiency of 3D object retrieval: the 
retrieval results should be fast. 

 Most existing methods do not satisfy the above 

conditions simultaneously. Moreover, for the large database, 

the retrieval process needs more computational time which 

does not permit the large scale retrieval. In order to achieve 

faster retrieval of 3D object, we propose in this work, new 

implementations based on parallel computing by exploiting 

multi-core and GPU architectures. For the tests, we use the 

CMBOF method proposed by Lian et al. [8], since it gives the 

best result comparing to many other methods in particular the 

view based methods [9,10,11,12]. 

 Generally, the retrieval process is performed into two 

essentials stages: indexation and shape matching. Our 

contribution in this paper is to study the problem of retrieval 

in large database in particular the stage of matching, since this 

stage needs more computational times regarding to the size of 

3D object databases which grows rapidly. 

 The rest of the paper is organized as follows. In section 

2 we give a brief description of the CMBOF method. The 

parallelization on multi-core is presented in section 3. We 

conclude the paper in section 4. 

2 Description of the CMBOF method  

 The CM-BOF (Clock Matching Bag-Of-Features) is a 

3D retrieval method, proposed by Lian et al [8], this method 

gives the best result comparing to many other methods in 

particular the view based methods [9,10,11,12].  

 The two essential stages of the 3D shape retrieval are: 

indexation and shape matching. In the following we give a 

brief description of the two stages of the CMBOF method. 

2.1 Shape indexing 

 The indexation is the process for computing the 

descriptor of a given 3D object. It is based on the following 

steps:  
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 Normalization and alignment: 3D objects are given in 
arbitrary position, orientation and scale. So, a step of 
normalization and alignment of the 3D shape is necessary 
in order to assure the invariance of affine transformations 
(scaling, translation rotation and reflection). To compare 
two 3D objects using multi-view methods, these objects 
must have the same length, orientation and position. 
Actually there is no efficient method of normalization and 
alignment which satisfies at the same time the following 
constraints: rotation invariance, best alignment and 
computational time.  

 Multi-view rendering: in this step, a set of depth-buffer 
views (2D images) are uniformly captured around the 3D 
object. CMBOF method uses vertices of a given unit 
geodesic sphere which is obtained by subdividing the unit 
regular octahedron. The number of views to be captured is 
6, 18, 66 or 258. Lian et al [8] showed that 66 is the best 
number of views. 

 SIFT feature extraction: a 3D object can be approximately 
represented by a set of depth-buffer views. In the CMBOF 
method, each view is described as a word Histogram 
(descriptor of the view) using SIFT (Scale Invariant 
Feature Transform) algorithm [13]. This algorithm is used 
to extract salient local features from each 2D view. In this 
case, a 3D object is characterized by several descriptors 
depending on the number of the views captured around 
this object instead one descriptor as proposed in other 
multi-view methods [9,10,11,12]. 

 Vector quantization and histogram generation: Each SIFT 
feature extracted from 2D view is quantized as a vector or 
visual word (descriptor) by using a global visual 
codebook. The quantized local features are accumulated 
into a histogram which becomes the feature vector 
(descriptor) of the corresponding 2D view. 

2.2 Shape matching 

 To retrieve visual similar 3D objects to a given 3D 

object-query, the descriptor of the query is compared with the 

descriptors of objects in the database. Instead of completely 

solving the problem of normalization and alignment, Lian et 

al [8] are proposed the Clock Matching approach. The basic 

idea of this approach is to consider 24 matching pairs when 

comparing two 3D Objects, by placing one object in the 

original orientation while the second one may appears in 24 

different poses. The dissimilarity between the two 3D objects 

is measured by the minimum distance of their all (24) 

possible matching pairs. After the query is compared with 

each object in the database, the obtained distances are sorted 

according to query; the top k results returned should be the 

most similar to the query. 

3 Parallelization of the retrieval process 

 Current machines offer microprocessors composed of 

multiple cores (processors) and Graphical Processing Units 

(GPU). The major challenge is to exploit efficiently the 

potential of these architectures at their maximum 

performance. The aim of this work is to propose new 

implementations based on parallel computing to achieve 

faster retrieval of 3D object and therefore allows the large 

scale retrieval (the retrieval in large databases) by exploiting 

the potential of GPU and multi-core architectures. Recall that 

the retrieval process, using the CMBOF method, is performed 

into the following two essential phases that are performed 

online:  

 Indexation of the 3D query-object: computing the 
descriptor of the query shape 

 Shape matching: comparing the descriptor of the query-
object with the descriptor of each 3D objects of the 
database. 

 Note that a few works have been proposed in the 

literature to implement the 3D shape retrieval under HPC 

environments. These works are partial, since they only 

concern indexation phase (particularly the SIFT Quantization 

[1,2]) and not the shape matching phase. On the other hand, 

several works have been proposed in the literature based on 

sequential solutions to allow the large scale of 3D shape 

retrieval [14,15]. 

Experimental are performed as follow:  

 Tests on GPU (Graphics Card Units) are performed on 
GeForce GT610, 2048 MB of global memory, L2 Cache 
size 6,6 MB. 

 For the GPU programming we have used CUDA5.0. 

 Tests on multi-core are performed on a Dell PowerEdge 
R910 Server Intel® Xeon® Processor E7-4850 2GHz of 
10 cores, 32GB RAM.  

 For multi-core programming we have used OpenMP 

 For the 3D-object data base, we have used Princeton 3D 
Shape Benchmark database [17] composed of 1800 - 3D 
Objects. In order to make tests in large database, we have 
increased the size of the data base by duplication of the 
3D-objects.  

 To capture 66 views around a 3D object, we have used the 
executable provided by Lian [8]. 

3.1 Indexing phase 

 To compute the descriptor of a given 3D object, the 

CMBOF method [8] proposes to describe the 3D-object by 

several word histograms (descriptors) where each descriptor 

corresponds to a 2D view (2D image) captured around the 

shape of this object. To compute the descriptor of a given 2D 

view, the following steps are performed: 

 Extraction of the SIFT salient local features from this 2D 
view. 

 Vector quantization and histogram generation. 

 For the first step, the extraction of SIFT salient local 

features using SIFT algorithm executed on CPU is very time 

consuming; especially if it is necessary to extract SIFT 
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features from several 2D views as in case of CM-BOF 

method.  

 In this work, we extracted the local features of each 2D 

view using the SIFT-GPU version proposed by Changchang 

Wu [18], since it gives a higher computing performance 

compared to the CPU version [16]. For 66 views, the SIFT is 

performed in 1,8s on GPU compared to 10,8s on CPU. 

3.2 Shape matching phase 

 In this phase, the descriptor of the query is compared 

with descriptors of each 3D object belonging to the database. 

Note that the descriptors of objects in the database are 

computed offline. 

 Sequentially shape matching in a large database is time 

consuming. The advantage of using multi-core is to compare 

simultaneously the query-object with p objects; where p is the 

number of cores. After the comparison of the query with each 

3D object in the database is completed, the obtained distances 

will be sorted. 

 Assume that the database is composed of m 3D objects. 

To exploit the potential of the multi-core architecture at their 

maximum performance and improve the load balancing 

between different cores we use a dynamic data distribution as 

follows:  

 Each core deals with an initial workload (a number k of 
objects with k≤m/p). The remaining block of objects will 
be shared between all cores. 

 All cores execute simultaneously the comparison process 
between the query object with their own objects. 

 As soon as a processor (core) completes its work, it takes 
one objects from the shared block (the remaining objects). 
This process is repeated as long as it remains untreated 
objects. 

 Figure 1 presents the evolution of the execution time of 

the shape matching process by various cores using the clause 

“dynamic schedule” of OpenMP. Tests are performed on 3D-

objects of a database composed of 10800 3D-objects. Thus 

the Figure 1 states that, the execution time is significantly 

reduced in proportion to the number of cores. 

 

 
Figure 1 . Execution time for the shape matching process 

 

 In Figure 2, we report the results of the measured speed 

up (sequential_time/parallel_time) of the shape matching 

process compared to the ideal one. The obtained speed (up to 

90% ) shows that the proposed implementation is scalable, 

which means that; if we increase the number of cores, the 

parallel time remains close to the sequential time divided by 

the number of cores. 

 
Figure 2 . Mesured speed up compared to the ideal one  

In Figure 3, we measure the efficiency (the percentage of the 

using processor performance when increasing the number of 

cores) 

 

Figure 3 . Efficiency  

 In Figure 4, we compare the execution time of the 

matching process for different sizes of databases. In this test 

we report the evolution of the parallel time on 10 cores versus 

sequential time. The results show that the size of the database 

does not affect the speed up. If we use large databases on p 

cores, the parallel time remains close to the sequential time 

divided by p. We conclude that the large scale can be 

achieved by using a great number of cores. 
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Figure 4 . Execution time of the retrieval process on databases 

with different sizes 

4 Conclusion  

 In this paper we are interested by the computational 

efficiency of 3D objects retrieval. We have proposed new 

implementations of the retrieval process based on parallel 

computing by exploiting the multi-core environment and 

GPU accelerators. The proposed implementations, for the 

matching process, are independent of the 3D object 

algorithm. So that, for our tests, we have used the CMBOF 

method proposed by Lian et al. [8], since it gives the best 

results compared to many other methods, proposed in the 

literature, in particular the view based methods. 

 First, we have compared the SIFT algorithm both on 

CPU and GPU. For the version on GPU, we have used the 

algorithm proposed in [18]. 

 Then, we have proposed parallel implementations on 

multi-core environment. The experimental results show that 

the execution time is significantly reduced as the number of 

cores grows. On the other hand, for fixed number of cores, 

the execution time grows linearly (almost linear) as the size 

of the database grows. We conclude that the large scale can 

be achieved using parallel computing. 
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Abstract - Sensors, which monitor the surrounding 
environment in order to enhance our decisions, play a major 
role in our lives and contribute to our actions. A single 
sensor, however, is not capable of providing enough 
information; therefore, multiple sensors have to be integrated 
in a way to perform the additional task of interpretation, 
which may be more helpful and informative than what can be 
observed using a single sensor. Since the nature of sensor’s 
functional characteristics can lead to output that contains 
erroneous measurement readings due to noise, measurement 
errors, and delays, multiple sensors are needed to confirm the 
certainty of desired actions. For sensors to work properly, a 
computational system is required in order to fuse sensor data 
in a process called multi-sensor-data fusion.  

This paper presents an overview of multi-sensor-data 
fusion, using two techniques (Bayes and Dempster-Shafer), 
with highlights of the techniques’ shortcomings. 

Keywords: sensor fusion; Bayes’ theory; Dempster-
Shafer; fusion model. 

 

1    Introduction  
Sensor-data fusion refers to the integration of data from 

multiple sensors of identical or different technical 
characteristics. The merits of the sensor fusion methods are to 
provide a better estimate of the feature of interest and to 
provide a result represented by hypothesis that is more 
accurate than would be obtained when using a single sensor. 
There are many problems considered when designing a 
system with a single sensor [1], such as loss of data when a 
sensor failure occurs, individual sensors providing data only 
from its own field of view, the frequency of measurements 
being limited to the time needed for a sensor to process its 
data, which is limited in accuracy due to the precision of the 
sensing system of the sensor, and the uncertainty in sensor 
measurement about objects which have been detected.  

In order to enhance the certainty measure of the 
observed data, a multi-sensor-data fusion system is required. 
Countless benefits can be derived from using sensor-data 
fusion methods, depending on the system and the application 
nature, since each system expects at least one of the 
following features to exist [2][3]: redundancy, which enables 

the whole system to be active even when a sensor failure or 
breakdown channel occurs; improved coverage area, which 
therefore makes complementary data available; increased 
confidence in the results and the certainty of information; 
enhancement of spatial resolution; extended temporal 
coverage; and improvement in the detection rate of objects. 

In the past few decades, sensor-data fusion has been 
researched and has appended developments for many fields 
such as science, technology, and engineering. In order to 
build a multi-sensor-data fusion system, deep understanding 
of the application characteristics is required. This can help in 
choosing the suitable data-fusion architecture, and in setting 
the data transmission facets. Then, determining the optimal 
fusion technique and acquiring a reliable algorithm for 
estimation and prediction are required [4]. 

 This paper has been organized as follows: Section II 
presents types of sensors, and section III defines the levels of 
data fusion. In section IV the architecture of fusion has been 
proposed and an overview of multi-sensor fusion models is 
presented in section V. In Section VI we discuss two methods 
of combining data which are (Bayes’ and Theory of 
Evidence). The paper concludes with an evaluation of these 
two fusion techniques and a declaration of their shortcomings. 

2   Types of Sensors 
There are two types of sensors: active and passive [5]. 

In active sensors, the output is generated as a result of 
stimulation that causes an alteration in the electrical 
amplitude. This type of sensor requires a power source for 
excitation and data security because it uses a direct transfer 
of data. Such examples: sonar, radar, or an ultra-wide band 
sensor. Alternatively, passive sensors do not require an 
electrical power source to work; they generate a voltage 
output using the temperature of the energy they are sensing. 
Also, passive sensor-data is considered more secure than 
active sensor-data. As an example of such sensors, a camera 
senses the amount of light it receives from the environment, 
and converts it into voltage levels. The variations in these 
voltages are stored as different pixel values in the computer.  

Each of these types of sensors can be further sub-
divided depending on whether the targets identify themselves 
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or not; that is, whether they are cooperative or uncooperative 
sensors [5]. 

3   Sensor-Data Fusion Levels 

In general, the process of sensor-data fusion can be 
categorized into three levels: low, intermediate, and high-
level [4].  

• Low-level: Also referred to as raw-data fusion. Raw-
data is fused from multi sensors of the same type to 
generate a new raw data set which is more annotative 
than the original raw-data, as collected by sensors.  

• Intermediate-level: This level of fusion also called 
feature fusion. It combines different features into a 
feature map, which is usually used for detection of 
objects.  

• High-level: This level of fusion, known as decision 
fusion, requires a fusion method to be applied, such as 
the statistical or fuzzy logic method, to compute a 
hypothesis value representing the decision. 

4   Fusion Architecture 

Three different multi-sensor-data fusion architectures 
exist: centralized, pre-processed, and hybrid [6] [7]. 

• Centralized fusion: This architecture is employed when 
sensors of the same type are selected. The fusion 
process combines raw data from all sensors in a central 
processor. This process requires a time synchronization 
of all sensors’ data. The decision resulting from this 
type of fusion is based on the amount of data collected 
by sensors. The advantage of centralizing fusion is 
secured data, and there is no data loss in the 
preprocessing. On the other hand, centralizing fusion 
requires sending all the collected data to the central 
processor, which is not acceptable in some 
applications. 

• Pre-processed fusion: known as distributed fusion. 
Used for sensors of the same or different types. In this 
architecture, the central processor is relieved from 
preprocessing the raw data from the individual sensors. 

• Hybrid fusion: This fusion architecture involves a mix 
of centralized and pre-processed fusion schemes. In 
practice, this is the best set-up of fusion architecture. 

5   Fusion Models 

There are several fusion models to consider when 
designing a multi-sensor-data fusion system. They will be 
reviewed in this section. 

5.1 Joint Directors of Laboratories- JDL 
Model: 

The JDL model was proposed by the US. Department of 
Defense (DoD) in 1986 [8]. The JDL model consists of: five 
levels of data processing, as follows [8]: Level 0 is Source 
Preprocessing, which determines the time, type, and identity 
of the collected data. Level 1 is Object Refinement, a level 
that combines information received from Level 0, in order to 
generate a representation of individual objects. Level 2 is a 
Situation Refinement, which defines the relationship between 
objects and detected targets and incorporates environmental 
information and observations. Level 2 is Threat Refinement, 
in which inferences are constructed about the target to have a 
solid base for decisions and actions. These inferences are 
based on a priori information and prediction about the next 
state. Level 4 is a Processing, which consists of three 
processes: monitoring data fusion efficiency, defining the 
missing information needed to enhance multi-level data 
fusion, and allocating sensors in order to accomplish the aim 
of the fusion process. At the same time, the JDL model has a 
database management system responsible for controlling data 
fusion processes, and a bus for interconnection between 
levels [3] [8]. 

5.2 Waterfall Model 
This model assigns the priority of processing to the lower 

levels first. The fusion process is based on six levels of 
processing [9]; these levels can be matched to the JDL model 
levels: The first two levels, Sensing and Signal Processing, 
are similar to the first level in the JDL model (Level 0). The 
next two levels, Levels 3 and 4; are Feature Extraction and 
Pattern Processing, and these levels relate to Level 1 of the 
JDL model. Level 5 is a Situation Assessment that can be 
matched to Level 2 in the JDL model. Level 6 is Decision 
Making that is equivalent to the Threat Refinement level in 
the JDL model (Level 3). 

    The advantage of the Waterfall model is the simplicity in 
understanding and applying, but it has a major limitation, as 
there is no feedback loop between levels. 

5.3 Intelligence Cycle–Based Model 
The Intelligence Cycle–Based model is a cyclic model 

that captures some inherent processing behaviors among 
stages. It consists of five stages: planning, collection, 
collation, evaluation, and the dissemination stage [1] [10]. 

Stage-1 is the Planning and Direction stage, where 
determinations of the requirements take place; Stage-2 is the 
Collection stage, which collects required information; and 
Stage-3 is a Collation stage, that streamlines the collected 
information. Stage-4 is Evaluation stage, where the fusion 
process occurs, and the last, Stage-5 is the Dissemination 
stage, that distributes the fused inferences. 
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5.4 Boyd Model 
The Boyd model is considered a cyclical model [11]. Its 

cycle has four stages of processing: observation, orientation, 
decision, and action. Each stage can be matched to a specific 
level of the JDL model [3]:  

The Observation stage is similar to Source Preprocessing 
in the JDL model and to the Collection stage of the 
Intelligence Cycle model. The Orientation stage is 
comparable to Levels 1, 2, and 3 of the JDL model, and it can 
be considered similar to the Collection and Collation stages 
of Intelligence cycle model. The Decision stage is 
comparable to the processing level in the JDL model and 
equivalent to the “evaluation and dissemination stages” of the 
Intelligence cycle model. While the Action stage has no 
match to any level in the JDL model, it can be considered as 
the Dissemination stage of the Intelligence cycle model. A 
better fusion process model can be obtained by a combination 
of the intelligence cycle and Boyd models, such as the 
Omnibus Model. 

5.5 Omnibus Model 
This model is based on a combination of the Intelligence 

cycle and Boyd models. The cyclic structure of this model 
can be compared to the Boyd loop, with more enhancements 
to the structure of the processing levels [12].  

The observation step of the Boyd model has been 
modeled as a sensing and signal processing. While the 
orientation step of the Boyd model is conducted as feature 
extraction and pattern processing. The decision step of the 
Boyd model has been replaced in Omnibus by two phases: 
context processing and decision making. The action step of 
the Boyd model is divided into control and resource tasking.  

The Omnibus model is considered more efficient and 
generalized than other fusion models, such as Waterfall, 
Intelligence cycle, or Boyd models. The Omnibus model 
employs the strengths of other previous models and at the 
same time is considered very easy to employ in a sensor 
fusion system. 

5.6 Thomopoulos Model 
The architecture of this model is based on three levels of 

data processing: signal level, evidence level, and dynamic 
level [13]. 

The signal level is a correlation and learning process that 
integrates sensor data. The evidence level is used to describe 
the statistical model that processes data from different sensors 
in some form of local inference. The dynamic level combines 
different observations in a centralized or decentralized 
fashion, assuming that a mathematical model that describes 
the process from which data is collected is known [13]. 

6   Fusion Techniques 

Once the fusion architecture is designed, one or more 
fusion techniques should be implemented to fuse the data at 
different levels,  keeping in mind that uncertainty exists in all 
descriptions of the sensing and data fusion process. Then, an 
explicit measurement of this uncertainty must be provided, in 
order to fuse the sensory information in an efficient and 
predictable manner [14]. However, there are many methods 
used for representing uncertainty; almost all of the theoretical 
developments are based on the use of probabilistic models 
[14].  

Probabilistic models have an important aspect when 
developing data fusion methods. It is an essential requirement 
to obtain a well understanding of probabilistic modeling 
techniques when a data fusion is required in any coherent 
manner [14]. This section discusses two approaches used in 
sensor fusion systems, Bayesian network ‘Posteriori’ as a 
probabilistic model technique and an alternative method to 
the probability; theory of evidence by Dempster-Shafer. The 
Bayes’ approach deals with probability values in which 
incomplete information which leads to uncertainty is not 
accounted for, that is: 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐴̅𝐴 = 1. Where Dempsetr-Shafer 
accounts for incomplete information in the mass function: 
𝑚𝑚(𝐴𝐴, 𝐴̅𝐴, 𝜃𝜃) = 1.  

6.1 Multi Sensor Data Fusion Using Bayes’ 
Tachnique 

The main objective when developing a sensor fusion 
system is to integrate data from multiple sensors, whether 
identical or different, active or passive, in order to generate 
reliable estimation about the object of interest, as depicted in 
Fig.1. Several methods are modeled when multi-sensor fusion 
is required, such as: Deciding, Guiding, Averaging, Bayesian 
statistics, and Integration [15]. 
 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. General model of multi-sensor data fusion 
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In general, the model of sensor fusion consists of a set of 
sensors Sj = {s1, s2, s3, ….., sm} where each sensor’s output is 
represented by an array of likelihood values; that is, the 
conditional probabilities. This array represents the 
environment of interest, which could be modeled by a single 
state T represented by finite types of targets, Ti = {t1, t2, t3, 
….., tn}. A single sensor S observes targets tn and returns a 
single value for each type T. These values form the 
Likelihood Probability array, P(s|ti), which are illustrated in 
Table I . 

When more than one sensor is employed in the system, a 
sensor fusion method must be applied to integrate the various 
observations in order to make an assessment of each target 
type being detected. In the case of another sensor S2 is 
introduced to detect or observe the same target types, namely 
t1, t2, t3, t4, …..tn, a second likelihood array is generated as in 
Table I. For every sensor in the system, a likelihood vector is 
generated. 

TABLE I. LIKLIHOOD VECTORS FROM SENSOR1(S1) AND SENSOR2 (S2) 
Target 
type 

t1 t2 t3 ---------- tn 

Sensor S1 P(s1|t1) P(s1|t2) P(s1|t3) ----------- P(s1|tn) 
Sensor S2 P(s2|t1) P(s2|t2) P(s2|t3) ------------- P(s2|tn) 

 
6.1.1   Bayes’ Theorem  

Bayes’ rule is based on the joint and the conditional 
probability [16]. 

                   𝑃𝑃(𝑇𝑇𝑖𝑖|𝑆𝑆) = 𝑃𝑃(𝑆𝑆|𝑇𝑇𝑖𝑖)𝑃𝑃(𝑇𝑇𝑖𝑖)
∑ 𝑃𝑃(𝑆𝑆|𝑇𝑇𝑖𝑖)𝑖𝑖  𝑃𝑃(𝑇𝑇𝑖𝑖)

                            (1) 

Where, 
 P (Ti): The prior beliefs about the values of Ti. 

P (S|Ti): The observation S about the state Ti, which is the 
conditional probability describing each state of nature Ti. This 
is called the likelihood that observation S will be made.  
P (Ti|S): It is computed from the original prior information 
and the information gained by observation. It represents the 
posterior probability value describing the likelihoods 
associated with Ti, given the observation S. 
The Bayesian posterior probability represents our confidence 
in the hypothesis, which is based on the prior data and current 
observation values, which enable the user to make a decision 
based on the application type. Table II represents the joint 
likelihood probability values JLV, and the posteriori 
probability values. JLV is generated for a target type ti from 
S1 and S2; P(S1,S2 | ti), based on (2) 

                         P (S|ti) = P (S1|ti) . P (S2|ti)                   (2) 

Then by applying Bayes’ theory, the hypotheses values for 
each target type are computed by applying the posterior 
probability values using (1).  

On the other hand, Bayes’ theory still suffers a few 
disadvantages; one disadvantage when using a Bayes’ 
theorem that is acquiring accurate a priori probabilities values 
P(T) or P(𝑇𝑇𝑖𝑖). In many cases all the a priori probabilities are 
assigned equal values that would affect the precision in the 
posteriori probability, which differs from case to case, based 
on the number of targets, as in (3). 

     P (t1) =P (t2) =P (t3) = ------- =P (tn) = 1/n               (3) 

Where,  
n: is the number of targets. 
 

TABLE II. GENERATING THE CONDITIONAL AND POSTERIOR PROBABILITY 

JLV 
P(s|ti) 

P(s|t1) 
= 

P(s1|t1).P(s2|t1) 

P(s|t2) 
= 

P(s1|t2).P(s2|t2) 

P(s|t3) 
= 

P(s1|t3).P(s2|t3) 
------------ 

P(s|tn) 
= 

P(s1|tn).P(s2|tn) 

Posteriori 
P(ti|s) 

𝑃𝑃(t1|𝑠𝑠) 
= 

𝑃𝑃(𝑠𝑠|𝑡𝑡1)𝑃𝑃(𝑡𝑡1)
∑ 𝑃𝑃(𝑠𝑠|𝑡𝑡𝑖𝑖)𝑖𝑖  𝑃𝑃(𝑡𝑡𝑖𝑖)

 

𝑃𝑃(𝑡𝑡2|𝑠𝑠) 
= 

𝑃𝑃(𝑠𝑠|𝑡𝑡2)𝑃𝑃(𝑡𝑡2)
∑ 𝑃𝑃(𝑠𝑠|𝑡𝑡𝑖𝑖)𝑖𝑖  𝑃𝑃(𝑡𝑡𝑖𝑖)

 

𝑃𝑃(𝑡𝑡3|𝑠𝑠) 
= 

𝑃𝑃(𝑠𝑠|𝑡𝑡3)𝑃𝑃(𝑡𝑡3)
∑ 𝑃𝑃(𝑠𝑠|𝑡𝑡𝑖𝑖)𝑖𝑖  𝑃𝑃(𝑡𝑡𝑖𝑖)

 
-------------- 

𝑃𝑃(𝑡𝑡𝑛𝑛 |𝑠𝑠) 
= 

𝑃𝑃(𝑠𝑠|𝑡𝑡𝑛𝑛)𝑃𝑃(𝑡𝑡𝑛𝑛)
∑ 𝑃𝑃(𝑠𝑠|𝑡𝑡𝑖𝑖)𝑖𝑖  𝑃𝑃(𝑡𝑡𝑖𝑖)

 

6.2 Multi Sensor Date Fusion Using Theory of 
Evidences 

This theory was developed by Dempster and Shafer [17] 
[18], as a mathematical method that generalizes Bayesian 
theory, which allows the representation of ignorance. The 

Bayesian theory assigns for each evidence only one possible 
event, while Dempster-Shafer associates evidence with 
multiple possible events. The Dempster-Shafer theory 
assumes that the states for which we have probabilities are 
independent with respect to our subjective probability 
judgments. The implementation of this method to a specific 
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problem normally involves two steps [18]. The first step is to 
solve the uncertainties into a priori independent items of 
evidence. The second is a computation using the Dempster-
Shafer method, as illustrated in Table III. 

Three functions in Dempster-Shafer theory must be noted 
due to their importance [16]:  

1) The Basic Probability Assignment function or Mass 
function (bpa or m): This is the fundamental of 
Dempster/Shafer theory. It presented by a mass function 
m and defined as follows in (4): 

 𝑚𝑚:𝑃𝑃(𝑥𝑥)
 
→ [0,1] 

𝑚𝑚(∅) = 0   

                               ∑ 𝑚𝑚𝐴𝐴∈𝑃𝑃(𝑥𝑥) (𝐴𝐴) = 1                            (4) 

Where, 
P (x) is the power set of x 
∅ is the null set 
A is a set in the power set (A∈ P (x)). [19] 

2) The Belief function (Bel): represents the lower boundary 
of the pba interval. Where the Belief for a set A is defined 
in (5): 

                        𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) =  ∑ 𝑚𝑚𝐵𝐵|𝐵𝐵⊆𝐴𝐴 (𝐵𝐵)                              (5) 

Where,  
(B) is a proper subset of set (A). 

3) The Plausibility function (Pl): Is the upper boundary of 
the pba interval.  The plausibility for a set A is defined in 
(6): 

                           𝑃𝑃𝑃𝑃(𝐴𝐴) =  ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵|𝐵𝐵∩𝐴𝐴≠∅                           (6) 

Based on the basis that all assignments should be added up 
to one, we can derive these two measures from each other in 
(7): 

                             𝑃𝑃𝑃𝑃(𝐴𝐴) = 1− 𝐵𝐵𝐵𝐵𝐵𝐵(𝐴̅𝐴)                               (7) 

Where, 
 𝐴̅𝐴 is the classical complement of A. 

6.2.1   Dempster –Shafer Method of Fusion 
Since the Dempster-Shafer method of integration of two 

events is a conjunctive relation (AND), then the integration of 
two masses 𝑚𝑚1 and 𝑚𝑚2  is performed as in (8) [20]: 

          𝑚𝑚12(𝐴𝐴) =  ∑   𝑚𝑚1(𝐵𝐵).𝑚𝑚2𝐵𝐵∩𝐶𝐶=𝐴𝐴 (𝐶𝐶)
1− 𝑘𝑘�                 (8) 

Where, 
 𝐴𝐴 ≠ ∅ ,  
𝑚𝑚12(∅) =  0  
𝐾𝐾 = ∑  𝑚𝑚1𝐵𝐵∩𝐶𝐶=∅ (𝐵𝐵).𝑚𝑚2(𝐶𝐶)  

K is the conflict degree between evidences, and (1-K) is used 
as a normalization factor. 

TABLE III. INTEGRATION OF SENSOR1 (S1) AND SENSOR2(S2) USING 
DEMPSTER/SHAFER 

 
 Sensor1 (S1) 

m1(A1) m1(A2) ------ m1(An) 

Se
ns

or
 2 

(S
2) 

m2(B1) m1(A1).m2(B1) m1(A2).m2(B1) ------ m1(An).m2(B1) 

m2(B2) m1(A1).m2(B2) m1(A2).m2(B2) ------ m1(An).m2(B2) 

m2(B3) m1(A1).m2(B3) m1(A2).m2(B3) ----- m1(An).m2(B3) 

------------ 

------------ 

------------ 

------------ 

------------ 

m2(Bm) m1(A1).m2(Bm) m1(A2).m2(Bm) ----- m1(An).m2(Bm) 

 
 

 

m2(Bm)     
An ∩ Bm 

= 
m1(An) . m2(Bm) 

-------- 

     

m2(B3)      

m2(B2)      

m2(B1) 
    

 

 m1(A1) m1(A2) m1(A3) ------------- m1(An)           

 

Dempster/Shafer theory is considered as a forward straight 
method to express pieces of evidence with different levels of 
abstraction, and it can be used to combine pieces of evidence, 
which is not always available when using other methods of 
fusion. 

7   Conclusion 
This paper presents a review of multi-sensor fusion and the 

requirement for building a data fusion system. Two fusion 
techniques were proposed: Bayes and Dempster/Shafer’s 
theories. While Bayes’ theory does not account for 
incomplete information, it is the sum of a probability, and its 
complement in a sample space is one. Dempster/Shafer 
accounts for ignorance or incomplete information, so the sum 

1 

0 
 

         1 
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of the probability and its complement with ignorance is equal 
to one. 

Both methods represent the hypothesis with a single value 
(posteriori or support). Dempster/Shafer introduces an upper 
boundary called plausibility; therefore, it gives more room for 
the decision making process. However, both theories require 
a prior knowledge of the state; Bayes’ theory requires a priori 
probability, and Dempster/Shafer requires a mass function. 
Based on the prior information available, one method has an 
advantage over the other.  

One of the major problems when using both techniques is 
that both assume independency in their computation process 
between events, and this assumption leads to uncertainty in 
the hypothesis, sometimes adding or taking away part of the 
value associated with the hypothesis. In our ongoing research 
we were able to show that when we quantified dependency 
between two sensors’ events (outputs), we accounted for 
uncertainty, but the assumption of independence does not 
control the performance of the system. 
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Abstract— We propose a new control algorithm using Lin-
ear Progamming in the Intelligent Lighting System. The
Intelligent Lighting System is a lighting control system
that provides desired illuminance distributions at minimum
electrical power. Parameter tuning in the current control
algorithm is generally expensive, because the current control
algorithm bases on Hill Climbing Method. So to reduce
loads by parameter tuning, We study on applying Linear
Progamming to the Intelligent Lighting System. We can treat
object problem in the Intelligent Lighting System as linear
programming problem. And so, Simplex Method is derived
optimized solution, and lighting fixtures are controled. As a
result of verification, it was confirmed that proposed method
is superior to conventional algorithm on parameter tuning
and dealing with changing required illuminance.

Keywords: Lighting Control, Lenear Programming, Simplex
Method, Kalman Filter

1. Introduction
In recent years, continuing research into the office en-

vironment has identified that the office environment has a
major influence on workers. Previous research has reported
that improving the office environment can increase workers’
intellectual productivity and comfort[1], [2]. With regard to
the lighting environment, it has also been reported that pro-
viding each worker’s desired brightness can raise intellectual
productivity[3]. However, at present, the standard lighting
design of Japanese offices features a desktop illuminance
of 750 lx or greater in Japan. Consequently, this cannot be
considered a lighting environment suited to each worker.
Furthermore, it is also believed that desired illuminance
differs by race and culture. For all these reasons, we have
been researching into an intelligent lighting system in or-
der to provide individual illuminance environments in our
laboratory[4], [5]. An intelligent lighting system provides
each user ’s desired illuminance, and also gives energy
saving. And we have shown an effective control algorithm
ANA/RC[4], [6], [7] based on hill climbing method.

Since ANA/RC, based on the hill-climbing method, is a
heuristic method, preset parameters strongly influence the
search efficiency of the optimal solution. If search efficiency

is poor, convergence to the target value also becomes poor, so
improving search efficiency is an important issue to consider.
A tuning system has not yet been proposed for intelligent
lighting systems, so further experience and experiments are
needed in order to sustain search efficiency. Tuning costs are
expected to increase in the future when intelligent lighting
systems are introduced to large-scale offices. Therefore,
in this study we propose a control algorithm using linear
programming, as a method that facilitates tuning by decreas-
ing the number of parameters from the previous algorithm
(ANA/RC). In addition, for practical use, we propose a
disturbance detection method that uses a Kalman filter.

2. Intelligent lighting system
2.1 Overview of the intelligent lighting system

The intelligent lighting system, as indicated in Fig 1, is
composed of lights equipped with microprocessors, portable
illuminance sensors, and electrical power meters, with each
element connected via a network.Individual users set the
illuminance constraint on the illuminance sensors. At this
time, each light repeats autonomous changes in luminance
to converge to an optimum ligthing pattern. Also, with the in-
telligent lighting system, positional information for the lights
and illuminance sensors is unnecessary. This is because the
lights learn the factor of influence to the illuminance sensors,
based on illuminance data sent from illuminance sensors. In
this fashion, each user’s target illuminance can be provided
rapidly.

Network

Fluorescent Lamp

Control Device

Illuminance Sensor

Power Meter

Fig. 1: Configuration of the Intelligent Lighting System

112 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



2.2 Illuminance control algorithm
we have shown an effective control algorithm ANA/RC

（Adaptive Neighborhood Algorithm using Regression Coef-
ficiet）[4], [6], [7] based on hill climbing method.

The hill-climbing method is an algorithm where the
optimal solution is derived by generating the solution of
the next step based on the solution of the current step.
Solutions are accepted based on the changes in the objective
function value, and the transition process is repeated until
an optimal solution is derived. Control is performed by
taking the lightness of lighting (the luminous intensity) to
be the design variable, and taking the sum of the difference
between current and target illuminance and electric power
consumption to be the objective function. Furthermore, in
ANA/RC, differences in lightness that a light exerts on the
illuminance meter are learned by regression analysis, and
luminous intensity is appropriately changed in response to
the degree of exertion [4], [6], [7]. By using this process,
solutions can be quickly derived. Hereafter, the lightness
difference a light exerts on an illuminance meter will be
called‘ influence. ’

f = P + w
n∑

i=1

gi (1)

gi =

{
(Ici − Iti)

2 (Ici − Iti) ≤ 0
0 otherwise

(2)

P :electric power consumption[W]
Ic:current illuminancelx
It:target illuminancelx

w:weight, n:the number of illuminance sensors

The objective function was derived from amount of elec-
tric power P and illuminance constraint gi . Also, changing
weighting factor w enables changes in the order of pri-
ority for electrical energy and illuminance constraint. The
illuminance constraint brings current illuminance to target
illuminance or greater, as indicated by formula (2).

2.3 Requirements for control algorithm
Because the hill-climbing method, which is the control

algorithm the intelligent lighting systems are based in, is
a heuristic method, parameter tuning heavily influences the
search efficiency. If search efficiency is poor, conversion to
the target also becomes poor, which is why search efficiency
is an important issue. However, efficient techniques for the
parameter tuning of intelligent lighting systems have yet to
be proposed. For this reason, tuning based on experience
is needed, and personnel cost is incurred. In particular,
due to the largeness of scale and the complexity that is
foreseen for future environments, further complexities are
predicted for parameters. Thus, we propose a method for
reducing costs through parameter tuning by effective tuning
methods. In this paper, we propose a control algorithm

using linear programming, as a method for facilitating tuning
by reducing the number of parameters. Also, in terms of
practical use, handling disturbances/faults such as noise from
measuring equipment, effects from daylight, or malfunction-
ing of equipment, becomes important. We therefore propose
a disturbance and fault response method that uses a Kalman
filter.

3. Object problem for the Intelligent
Lighting System

There are three points required, as below

1) Minimize electric power consumption
2) Realize illuminance required by worker
3) Be in lighting controlable range

These are formulized Eq (3)～Eq (5)

min f(L) = P (3)
subjectto Icj ≥ Itj (4)

L ∈ {l|m ≤ Li ≤M} (5)

P :electric power consumption[W]
Ic:current illuminancelx
It:target illuminancelx

m:lower limit of luminous intensity[cd]
L:luminous intensity of lighting fixture[cd]
M :upper limit of luminous intensity[cd]

As shown in Equation 3, the design variable is the
luminous intensity of lighting. Therefore, in cases where
optimization methods are used that are not heuristic searches
(e.g., quasi-Newton method), it is necessary for the objective
function and constraints to be operable in terms of the design
variable.

4. Formulization of objective function
The objective function is the electric power consumption

shown in Equation 3. It is expressed as a function of the
design variable (luminous intensity). Luminance and electric
power consumption have a proportional relationship. For
example, luminous efficiency [lm/W] is used as an index for
evaluating light-source efficiency. A preliminary experiment
was conducted to formulize this; in this experiment, the
relationship between vertically downward luminance from
lighting and electric power consumption was examined. The
result is shown in Figure 2. The vertical axis is electric power
consumption [W] and the horizontal axis is percentage of
luminance compared to the luminance when the lights are
lit to their maximum luminous intensity.

Figure 2 shows luminance and electric power consumption
to have a relationship that can be approximated by a linear
equation. This means that, for an intelligent lighting system
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Fig. 2: Relation between luminance and electric power
consumption

comprised of multiple luminaires, electric power consump-
tion can be expressed as in Equation 6.

P = f1(L) =
n∑

i=1

(αi × Li) + β (6)

P：electric power consumption[W]
α：main coefficient[W/cd]

β：constant term[W]
L：luminous intensity[cd]

The main coefficient α and constant term β in Figure 6 are
values particular to each luminaire. Preliminary experiments
are therefore necessary to find main coefficient α and
constant term β for each luminaire. However, the precision
of the objective function would be sufficient if is enough to
evaluate this. Therefore, Equation 7 is used for the objective
function, so that the preliminary experiment can be abridged.

P =.. f2(L) = α

n∑
i=1

Li (7)

P：electric power consumption[W], L：luminance
intensity[cd], α is an arbitrary value

Equation 7 enables the expression of the target function
as a linear function of the design variable.

5. Formulization of penalty condition
5.1 Relation between luminance and illumi-
nance

The constraints are the current illuminance Ic and target
It, and are expressed as illuminance values. This can be
expressed as a function of the design variable (luminous
intensity). Luminance and illuminance have a causal rela-
tionship; for example, when a light is strongly lit, a place
becomes brighter. The relationship between luminance and
illuminance is shown in Equation 8, using the point-by-point
method.

I =
L

A× cos θ

∮
Se

dSe cos θ cos δ

p2
(8)

I:illuminance [lx], L:luminance intensity [cd]
Se:surface of light sources A:size of the surface [m2]

p:distance to light sources [m]
θ:degree from points of illumination to the surface of light

sources. [rad]
δ:angle of elevation from plane of illumination to light

sources [rad]

From Equation 8, it can be understood that illuminance and
luminance have a linear relationship. Furthermore, each of
the terms in Equation 8, with the exception of luminance,
are values that change in response to the shape of the
light source, or the positional relation to the light source.
Due to this, these terms can be treated as constants in an
environment where neither the shape of the light source, nor
the positional relation to the light source, change. In such
an environment, Equation 8 can be expressed in the form of
Equation 9. Hereafter, we call this numerical constant the
‘ influence factor. ’

I = R× L (9)

I:illuminance [lx], R:influence factor [lx/cd]
L:luminous intensity of lighting fixture [cd]

Equation 9 shows that, by calculating influence factor R,
the relationship between luminance and illuminance can be
digitized. This makes it possible to express the illuminance
constraint as a function of design variable. Hereafter, the
set of influence factor R will be called the‘ model of the
lighting environment. ’

5.2 Estimate influence factor
In order to express the illuminance constraint as a function

of design variable, it becomes necessary to estimate the
influence factor, which digitizes the relationship between
lighting and the illuminance meter. Because the relationship
between luminance and illuminance can be expressed in the
form of Equation 9, the model equation for the lighting envi-
ronment in terms of an intelligent lighting system comprised
of multiple lights and illuminance meters, becomes Equation
10.

Ij =
n∑

i=1

(Rij × Li) +Dj (10)

I:illuminance [lx], R:influence factor[lx/cd]
L:luminous intensity of lighting fixture[cd]

D:illuminance from daylight [lx]

In ANA/RC, an estimation of the influence factor is
conducted. In this method, the intelligent lighting system
randomly increases and decreases the luminance of lighting
in a range undetectable by humans. In other words, in the
process of optimization, the illuminance changes in various
ways in response to the changes in luminance. Taking these
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changes as a basis, the state estimation method is used to
digitize the relationship between luminance and illuminance.
However, in ANA/RC the least squares method is used as the
state estimation method, so it cannot respond to changes in
environment. In addition, because single regression analysis
is done independently for each light, as a model for pre-
dicting illuminance from luminance, as in Equation 10, its
precision is low. Therefore, in this paper, the Kalman filter
is used as the state estimation method, and state estimation
is conducted, integrating all lighting information.

5.3 Estimation using Kalman filter
5.3.1 Kalman filter

The Kalman filter is a method where observed values
with error are used to estimate the state variables of linear
systems. Provided that the noise conforms to normal distri-
bution, the Kalman filter is the most suitable filter among
all filters, including those that are nonlinear. Furthermore,
because it is a sequential estimation method, calculations
only use recent data rather than using all data. Due of this,
an increase in calculations due to an increase in transition
history data is limited. For this reason, it is thought to be
suitable for long-term system operations.

5.3.2 Dealing with Disturbance
In the illuminance information obtained by the illumi-

nance meters, effects from light sources that the intelligent
lighting system holds no luminance information on (e.g.
daylight or task-lights) can take up a large part. These effects
are called disturbance, and there are four main types.

1) Noise of illuminance sensors
2) Noise of lighting fixture
3) Disturbance to sensors (shadow of a person, paper or

partition and so on)
4) Changing of Daylight intensity
Items 1 and 2 are disturbances that conform to normal

distribution. Thus, as is characteristic of Kalman filters, as
the updating process of the Kalman filter progresses, their
influence becomes minimized. Item 3, however, does not
conform to normal distribution, so it is necessary to reject
it as an unexpected observed value so that its effect on the
current model is minimized. Here, an acceptance decision
is conducted on the observed values. If the Kalman filter
is effective, then observation prediction error ν should
comply with normal distribution. Statistic Φ, comprised of
observation prediction error ν and error covariance S, is
used to conduct a chi-square test. Statistic Φ is shown in
Equation 11.

Φ = νk
TS−1

k νk (11)
νk = Zk −Hkx̂k/k−1

Φ:statistic, ν:observation prediction error, k:steps
S:error covariance, Z:observed value

H:observation model, x̂:state space

As a result of chi-square test, if observation prediction
error ν does not occur with significant probability, the
observed value is accepted and the Kalman filter is updated.
If observation prediction errorν does occur with significant
probability, the observed value is rejected and the Kalman
filter is not updated. From this, the disturbance item 3 exerts
on the model can be minimized. The disturbance of item 4
is an environmental change, for which it becomes necessary
to correct the model. However, for the meter, the only
difference between it and item 3, is in whether the effect
disturbance exists over a mid-long period rather than a short
period, so it is difficult to make a decision at the point when
the disturbance occurs. Because of this, item 4 disturbances
are rejected in the same way as item 3 disturbances, and the
influence they have on the model becomes minimized. As a
result, a lot of data would be necessary in order to correct
the model. Therefore, we propose a method where a new
Kalman filter is constructed at the moment the environmental
change occurs, and then after a set amount of time, the filter
is compared with the previous filter.

5.4 Making and selecting Kalman filter
To correct the model in response to the item 4 disturbance

mentioned in the previous section, a Kalman filter is newly
constructed in response to the environmental change, and
then the filter that better suits the environment is selected.
First, a Kalman filter constructed during operation of the
intelligent lighting system. We will call this filter the‘main
filter.’While updating the main filter, an acceptance decision
for observed values is performed that is based on Equation
11. If an unexpected observed value is detected as a result
of this, then it is assumed that an item 4 disturbance
has occurred, and in that moment, a new Kalman filter is
constructed that is independent of the main filter. This new
filter is updated in the same way as the main filter. Hereafter,
we will call this new constructed filter‘ the main candidate
filter. ’After a set amount of time has passed, the main
filter and main candidate filter are compared. The filter with
the smaller value for evaluation norm Ψ, in Equation 12, is
chosen to become the new main filter.

Ψ = νk
T νk (12)

νk = Zk −Hkx̂k/k−1

Ψ:evaluation norm, ν:observation prediction error, k:steps
Z:observed value, H:observation model, x̂:state space

To summarize the above process, for a short-term effect
(item 3 disturbance), where the original environment is
restored after a set amount of time, the main filter is updated
without change, and for a mid-long term effect (item 4
disturbance), where the environment remains changed after
a set amount of time, the main candidate filter, which has
taken into account the effect of the disturbance, is chosen to
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be the new main filter. In other words, this means that the set
length of time until the evaluation comparison will determine
which disturbances are rejected and which disturbances are
incorporated and reflected. By using Equation 10, it has
become possible to express illumination constrictions as
linear functions of design variables.

6. Control algorithm using linear pro-
gramming
6.1 Linear programming

By the methods described in Chapter 4 and Chapter 5,
it has become possible to express objective functions and
constraints in an object problem as functions of design
variables. Particularly, because both can be expressed as a
linear function of a design variable, it is possible now to treat
the object problem as a problem in linear programming. In
linear programming problems, with some exceptions (e.g.,
when constraints are contradictory), it is possible to derive
a global optimal solution. For this reason, it is advantageous
from both the perspective of tuning simplification and in the
accuracy of solutions. This is especially true in comparison
to the previous algorithm, in which the accuracy of solutions
is not necessarily guaranteed. Therefore, we will derive
the solution by using a linear programming method. Two
representative linear programming methods are the simplex
method and the interior point method. In this paper we chose
to use the simplex method.

6.2 Simplex method
The simplex method is an iterative method, where exe-

cutable base solutions with the smaller objective function
values are generated in succession. The simplex method,
by following Bland’s smallest subscript rule, is guaranteed
to be finitely convergent. In other words, either an optimal
solution is derived through a finite amount of repetitions, or
it is discriminated that a no solution exists. Because of this,
a precondition is that the model mentioned in Chapter 5 is of
high precision. However, by this method, an optimal solution
can be derived while only using the internal processing of
the computer, without synchronization with hardware. The
simplex method, however, is an exponential time algorithm,
and is inferior in terms of search efficiency when compared
to the interior point method (a polynomial time algorithm).
Generally, however, it is known to be capable of deriving
optimal solutions in the number of occurrences ranging
from 1.5n to 3n, with regard to number of constraints n.
Therefore, in practical use, it is thought to be sufficiently
quick. Because of this, we use the simplex method, as it is
easy to implement.

6.3 Control algorithm using simplex method
The processing of our proposed method consists of two

phases: the modeling phase, where modeling of the lighting

environment is performed (described in Chapter 5), and
the optimization phase, where a solution is sought by the
simplex method. In the modeling phase, Equation 10 is
derived by first changing the luminance of the lighting in
minute increments that stay within a range undetectable by
the human eye, and then, using the illuminance changes
that occur, state estimation is conducted using the Kalman
filter. The process is conducted persistently, the precision
of the Kalman filter is improved, and Equation 10 is ac-
curately derived. Each time Equation 10 is updated by the
modeling phase, the optimization phase is conducted. In the
optimization phase, Equation 7 and Equation 10 are used
for formulizing the object problem as Equations 13-15. The
optimal solution is then derived using the simplex method.

min f(L) = P = α
n∑

i=1

Li (13)

subjectto Icj ≥ Itj =
n∑

j=1

(RijLi) +Dj (14)

L ∈ {l|m ≤ Li ≤M} (15)

L：luminous intensity of lighting fixture [cd]
P：electric power consumption [W]

Ic：current illuminance [lx], It：target illuminance [lx]
R：influence factor [lx/cd], D：illuminance from daylight

[lx]
m：lower limit of luminous intensity[cd]
M：upper limit of luminous intensity[cd]

In addition, when model precision in the modeling phase
cannot be guaranteed, or in other words, if the Kalman filter’
s estimated error covariance exceeds the threshold value, the
modeling phase is not conducted. The process above enables
the derivation of a level of luminance that actualizes the user’
s desired brightness of room-environment while consuming
as little electric power as possible.

7. Verification of proposed method
7.1 Overview of Experiment

A simulation was conducted, in which a real office was
simulated. The simulation environment used is shown in
Figure 3.

In the simulation, illumination was calculated from the
luminance of lighting, by using the point-by-point method.
Furthermore, in order to simulate observational noise of the
illuminance meter, random numbers from the normal distri-
bution of average value 0 lx, variance 5 lx2 were added to
the illuminance information. The values used were obtained
empirically from actual meter information. In addition, the
time until the comparison of the main filter with the main
candidate filter was set to 300 seconds. This means that the
effects from disturbance lasting less than 300 seconds were
rejected as faults (item 3 disturbance), and the effect from
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Fig. 3: Simulation environment in ground plan

disturbance lasting 300 seconds or longer was reflected in
the model as a change in environment (item 4 disturbance).

7.2 Result of Estimating Daylight illuminance
For 3000 seconds, luminance was varied in a range unde-

tectable by the human eye, and the lighting pattern satisfying
the required illuminance was sought. Based on the luminance
information and illuminance information obtained during
operation, the transition state of the estimated illuminance-
from-daylight value, estimated using the Kalman filter, was
verified. In addition, to set up a situation of environmental
change, for illuminance meter 7, influence from daylight was
set to 0 lx until 1000 seconds and to 500 lx after 1000
seconds. Figure 4 shows the estimated illuminance-from-
daylight values and the actual illuminance-from-daylight
values for illuminance meter 7.

As Figure 4 shows, the estimated illuminance-from-
daylight value stabilized at around 60 seconds, and with
the exception of the time between 1000-1300 seconds, the
estimated illuminance-from-daylight value closely matched
the actual illuminance-from-daylight value. The process is
conducted in the way described in Section 5.4, where, any
time a change in environment is detected, a new Kalman
filter is generated, and the filter better suited to the environ-
ment is chosen after a set amount of time has passed. This
means the change in environment is not reflected until the set
amount of time passes. In the verification experiment, this
time was set at 300 seconds, so an error compared to the

Fig. 4: History of estimating daylight illuminance on sensor
7

predicted illuminance-from-daylight value is expected from
the timeframe of 1000 seconds to 300 seconds. The result in
Figure 4 matched this expectation, confirming that the above
process was conducted correctly. Furthermore, in the span
of 60 seconds (where the estimated value was stabilized) to
1000 seconds (where the environmental change occurred),
the average error was 9 lx and the maximum error was 23
lx. On the other hand, in the timeframe after 1300 seconds
(the point where environmental adaption was completed),
the average error was 10 lx and the maximum error was 30
lx. The human eye cannot sense illuminance differences of
around 50 lx [8], so the error of the estimated illuminance-
from-daylight value was sufficiently small.

7.3 Changing required illuminance
Setting up a situation where target illuminance changes,

a comparison was performed between the previous method
and proposed method. Target-setting was the same as for the
previous section, but at 1500 seconds, the target illuminance
value of illuminance meter 8 was shifted to 800 lx. In Table
1, the error in terms of target illuminance after the targets
were changed is shown for the previous method and the
proposed method.

Table 1: Differences between required illuminance and pro-
posed illuminance

time (sec) Previous (lx) Propose (lx)

1400 62 8
1500 134 6
2000 90 9
2500 58 1
3000 50 6

As Table 1 shows, the proposed method converges to the
target illuminance more quickly than the previous method.
Electric power consumption of each of the previous and
proposed methods is shown in Table 2. The values in Table
2 are percentages where the electric power consumption
from having all lights switched on at maximum luminance is
considered to be 100%. Table 2 shows that in the proposed
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Table 2: Conparison of electric power consumption
time (sec) Previous(%) Propose (%)

1400 50 47
1500 51 55
2000 62 55
2500 64 55
3000 63 54

method, electric power consumption stabilizes faster than in
the previous method. In addition, electric power consump-
tion after stabilization is lower than in the previous method.

8. Conclusion
In this paper, we proposed a new control algorithm for

intelligent lighting systems. The proposed method consists
of two phases: a phase where the lighting environment is
modeled using the Kalman filter, and a phase where the
simplex method is used to find a solution. Through a veri-
fication experiment, we showed that the proposed method
was superior to the previous method in terms of quick-
response to changes of target illuminance. Furthermore,
using the proposed method enables lighting control where
target illuminance can be responded to without requiring
complex parameter tuning. Through the modeling phase
described in this paper, it is also possible to use as an
optimization method other than the simplex method as the
control algorithm for the intelligent lighting system.
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Abstract - As streaming services have become increasingly 

popular, the use of multimedia systems has become 

widespread. However, research has shown that multimedia 

systems based on a single supercomputer are limited in 

scalability, capability, fault tolerance, and cost efficiency. 

Owing to these limitations, much research on building 

parallel multimedia systems has been conducted. Here, to 

provide an overview of this research, we classify existing 

studies and describe representative examples of the different 

issues under investigation. 

Keywords: multimedia system, video server, parallel 

processing, content delivery network 

 

1 Introduction 

As the number of people playing multimedia content on 

personal internet-connectable mobile devices such as smart 

phones and tablet PCs has grown in recent years, multimedia 

delivery through the internet has increased. When delivering 

content, a multimedia system is required for streaming 

services to clients. However, building a multimedia system 

with a single supercomputer is difficult owing to its 

limitations in capacity, scalability, fault tolerance, and cost 

efficiency. For example, if the supercomputer is shut down by 

a problem, all of its services will be terminated because no 

other servers are available. 

A parallel multimedia system, which consists of video 

servers that provide streaming services and a load balancer 

that provides a request-routing service, can overcome these 

limitations. Adding other affordable servers extends total 

delivery capability by increasing the total network bandwidth 

or CPU performance. This also improves the availability, fault 

tolerance, and cost efficiency of the system. 

Extensive research has been conducted to build parallel 

multimedia systems, including numerous studies on disk 

scheduling, data placement, buffer management within a disk, 

and admission control in the storage system, as well as on 

geographical server placement,  movie allocation to individual 

servers, server selection among available servers, and request 

routings in delivery systems. In this paper, we introduce 

various investigations on future parallel multimedia systems 

and describe the differences between parallel multimedia 

systems and parallel web server systems. 

We present background knowledge in Section 2 and 

describe research on storage and delivery systems in Sections 

3 and 4, respectively. We then summarize the research in 

Section 5. 

2 Related works 

In this section, we describe background knowledge on 

topics such as parallel multimedia systems, content delivery 

networks (CDNs), and differences between parallel web and 

parallel multimedia systems. 

2.1 Parallel multimedia system 

In a parallel multimedia system, many servers 

simultaneously deliver movies through a network after 

receiving requests from users. Figure 1 shows the general 

architecture of such a system. 

  

 

Figure 1. General architecture of a parallel multimedia 

system 

When an author wishes to broadcast a movie, the author 

delivers it to the appropriate publishing point of a delivery 

system. The delivery system may be a cluster of PCs or a 

single supercomputer; the storage system may be a disk set or 

computers that share their storage capacities with the delivery 

system. The encoding system may be camcorder or any other 

device that outputs content. Recently, PC clusters are widely 

used as delivery systems and storage systems for their fault 

tolerance and affordability. 
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A client can view a movie at the publishing point through a 

unicast or multicast delivery method according to the server 

setting. In unicast methods, the delivery system maintains and 

manages all streams and connections to the clients, whereas in 

multicast methods, a server sends movies to a group, after 

which a router distributes them to the clients. 

2.2 Content Delivery Networks 

CDNs place surrogates (replicas) in selected regions and 

distribute content to each surrogate. To select a surrogate to 

serve the requesting client, network proximity, geographical 

proximity, or response time can be used.  

CDNs consist of origin servers, surrogates, distribution 

systems, request-routing systems, and accounting systems. 

Content providers create and deliver content to the origin 

servers. To actually serve the clients, the content is delivered 

to the surrogates. Distribution systems have the role of 

distributing the created content to surrogates by one of two 

methods: push or pull. In the push method, content is 

distributed when a surrogate anticipates a client to make a 

content request; in the pull method, content is distributed 

immediately when a surrogate receives a request from a user. 

Request-routing systems directly receive requests from users, 

select surrogates, and redirect clients to the selected 

surrogates. Accounting systems record both the content 

distribution to surrogates and the content delivery to clients 

[1]. 

The issues of CDNs, such as the physical placement of 

servers, object placement [2], and extendibility to video 

objects [3], have been actively studied by various researchers. 

2.3 Elements essential for parallel multimedia systems 

Many studies have focused on building parallel web server 

systems. Most of this research can usually be applied without 

modification when building parallel multimedia systems. 

However, a number of differences between parallel web 

server systems and parallel multimedia systems occasionally 

make it difficult to apply these studies to the latter. Parallel 

multimedia systems place greater emphasis on the following 

elements than do parallel web server systems. 

2.3.1 Content allocation 

Although storage capacity has increased, storing the same 

content on all servers wastes storage space because the 

content size is enormous, especially in the case of multimedia 

systems. Therefore, the content stored in one video server is 

usually different from that in another video server. In addition 

to saving storage space, efficient content allocation minimizes 

delay and jitter because the client makes a request to the 

fastest video server and the allocation can utilize both the 

temporal and spatial localities [4]. 

2.3.2 Content awareness 

Owing to the allocation of content differing on every video 

server, the load balancer must investigate the requested 

content, find the server on which it is stored, and redirect the 

requesting client to this server. Such routing based on the 

requested content is called content-aware routing. Storage 

scalability can be also achieved through content awareness. 

For example, when new storage is added to a multimedia 

system and a content-aware multimedia system has the content 

information in this newly added storage, the former can 

immediately begin streaming the content. Content awareness 

can also support session integrity, sophisticated load 

balancing, and differentiated services [5]. Content awareness 

is actively studied in parallel web systems [6], and most of 

this research can also be applied to building parallel 

multimedia systems. 

2.3.3 Support to heterogeneous servers 

Numerous servers such as Windows media, Helix universal, 

and Darwin streaming have been developed as video servers. 

However, various video servers do not operate together and 

are thus mutually incompatible. If heterogeneous servers 

could operate simultaneously for a multimedia system, the 

total building cost could be significantly reduced owing to the 

freedom of selection and use of already existing video servers. 

3 Storage systems 

The storage system is an important component of a 

multimedia system. In this section, we review the numerous 

requirements of a multimedia storage system and the 

extensive research to support efficient streaming to clients. 

3.1 Requirements of a multimedia storage system 

Although a storage system may take various forms, 

including a single hard disk, a single computer, or multiple 

computers, every storage system, in addition to meeting the 

performance and fairness requirements in the traditional 

system, must satisfy the following requirements for the 

multimedia system. 

3.1.1 Real-time characteristics 

Storage systems must deliver movies to the delivery system 

within the given time so that the latter can successfully deliver 

the requested movies to the clients, who can then view the 

movies with minimal interference or jitter [7]. 

3.1.2 Large file sizes and high data rate 

Given the large file size of movies, storage systems must 

store large movies efficiently. In addition, movies must be 

continuously read at a high data rate from the storage systems. 

For example, a 2-h MPEG-1 video stream requires a 

streaming rate of approximately 1.2 Mbps for appropriate 

display and a storage size of 1.2 GB [8]. 
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3.1.3 Multiple data streams 

Storage systems must consider the fact that clients may 

make many requests for different movies [7]. As such requests 

make a disk head move significantly forward or backward, 

disk scheduling must be designed efficiently. 

3.1.4 Continuous access 

If a movie is accessed by a user request, the access has a 

greater likelihood of continuing for a longer time than general 

file, text file access, or a graphic file access. 

3.2 Research on multimedia storage systems 

For the abovementioned requirements, research has been 

conducted on the following aspects. 

3.2.1 Disk scheduling 

This must be improved because traditional systems do not 

support real-time characteristics although they support 

performance and fairness. In addition, multiple data streams 

make the disk head take large forward or backward jumps in 

multi-user environments. Efficient disk scheduling for 

multimedia storage systems must minimize this overhead and 

support real-time characteristics. 

Traditional scheduling schemes include First Come First 

Served (FCFS), Shortest Seek Time First (SSTF), Elevator 

(SCAN), and C-SCAN algorithms [9]. As an example of a 

disk-scheduling algorithm for multimedia storage systems, 

Earliest Deadline First (EDF) [10] is an algorithm that 

processes the request closest to the deadline first, and can 

support real-time characteristics. However, EDF has the 

limitation that it has a long seek time and rotational delay, 

which in turn lead to poor performance. Hence, many 

researchers have attempted to improve EDF or SCAN with 

other algorithms [11, 12]. Although SCAN-EDF [11] operates 

like EDF in cases of requests with different deadlines, it 

operates like SCAN with identical deadline requests. WRR-

SCAN [12] combines WRR (Weighted-Round-Robin) with 

SCAN. A weight is assigned to each real-time task, and the 

disk head provides service based on this weight. 

3.2.2 Data placement 

Either contiguous or scattered block placement can be used 

for storing movies. If the requested movie is placed on 

physically contiguous blocks in a single disk, the response 

time can be significantly reduced, especially for multimedia 

systems, because the seek time and rotational delay are 

reduced. However, this continuous placement is likely to 

cause a fragmentation problem. In contrast, this problem does 

not occur when scattered physical blocks are used for placing 

movies. However, the reading overheads are greater for 

scattered placement than for contiguous placement owing to 

the greater number of intra-file seeks relative to the physical 

blocks during numerous requests [13].  

Extent-based, cylinder-based, or constrained placement [7] 

attempts to minimize the seek time by placing the physical 

blocks of a movie within an extent, a cylinder, or an average 

distance, respectively. Log-structured placement attempts to 

minimize writing time instead of the seek time; it writes all 

modifications to the physical blocks after collecting them in a 

large contiguous area of free space on a disk. Consequently, 

this placement scheme is suitable for storage systems with 

numerous movie updates.  

Data striping and data interleaving are both technologies 

that scatter movies across a set of disks. 

3.2.3 Buffer management 

Both caching and replacement algorithms are critical for 

buffer management because a buffer is a restricted resource. 

Replacement algorithms can be classified into block-based 

and stream-based algorithms [7]. In block-based algorithms, a 

block in the disk is cached and replaced using algorithms such 

as Least Recently Used (LRU) and Least Frequently Used 

(LFU), similar to caching algorithms at the CPU level. 

Least/Most Relevant for Presentation (L/MRP) was proposed 

as a block-based algorithm for multimedia systems [7]. 

L/MRP considers a presentation mode and a presentation 

point as parameters. 

Stream-based algorithms assume that if many requests for 

the same movie are issued, then the same requests will be 

issued. Interval caching, which is among the stream-based 

algorithms [7], selects the smallest intervals as to-be-cached 

objects in order to maximally utilize the temporal locality [14]. 

The prefetching strategy is especially efficient for a 

multimedia system because it exploits the continuous access 

pattern of the multimedia system. 

3.2.4 Admission control 

These algorithms determine whether to admit a new request 

to the storage system after considering the deadlines of 

existing requests. There are cases in which new sequential 

requests must be denied because the deadlines of existing 

requests must be met first. There are also cases in which a 

client application can reward missed deadlines or tolerate 

some missed deadlines. These various requirements of 

deadlines can be classified into the following three categories 

[13]. 

- Deterministic: All deadlines must be met. In this category, 

requests that may violate the deadline must be denied. 

- Statistical: A certain probability of deadlines may be met. In 

this category, for example, a client application can view a 

movie even if only 80% of the deadlines are guaranteed. 

Admission control algorithms determine admission according 

to the statistics. 
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- Best effort: There is no guarantee in this category. The 

storage systems simply attempt their best to meet the 

deadlines. 

4 Delivery systems 

The delivery system delivers movies to clients after 

receiving them from the storage systems. In this section, we 

describe the geographical placement of servers, movie 

allocation to delivery systems, server selection, and request 

routings that deliver a request to one of the delivery systems 

and serve the clients. 

4.1 Server placement 

The geographical placement of delivery systems is 

important because the optimal placement enables movies to be 

delivered with minimal delay and jitter. Studies on finding the 

optimal placement have been conducted with extra servers in 

distributed systems [15] and with replica placement [16] in 

the web environment. Wua et al. [15] propose a dynamic 

programming algorithm and a heuristic in the case that the 

server can serve unlimited requests and three different 

heuristics in the case that the server has some limitations. Qiu 

et al. [16] suggest that the greedy algorithm is the best among 

the algorithms mentioned in their paper for this placement 

problem. Balázs et al. [17] show that the other algorithms can 

be better than the greedy algorithm. Qiu et al. and Balázs et al. 

show that this problem can be addressed by using many 

algorithms that address the Facility Location Problem or K-

median problem. 

Although the initial placement can be determined by using 

one of these algorithms when the client requests and network 

topologies are given, dynamically changing the initial 

placement is difficult. Thus, movie allocation and server 

selection, described in the following subsections, are more 

widely investigated for optimal streaming. 

4.2 Movie allocation 

The file sizes of movies in a multimedia system are 

enormous. Hence, storing the same movies in all of the 

delivery systems is a waste. However, allocation of movies to 

all of the delivery systems can guarantee minimum network 

delays owing to the close distance between a client and a 

system. The frequency of movie duplication in delivery 

systems may be another problem because frequent duplication 

may cause serious performance deterioration because of the 

excessive time consumed to copy movies. Simple cache 

replacement algorithms such as FIFO, MRU, LRU, and LFU 

are difficult to use owing to the enormous file sizes of movies. 

Another issue worth considering is that user access to movies 

has temporal and spatial localities like those of a CPU-level 

cache [18]. In other words, a movie that is once accessed is 

more likely to be accessed in the near future and in nearby 

locations. Movies should be allocated to the delivery systems 

after considering these complex factors, such as the storage 

capacity, network delay, frequency of movie duplication, 

temporal locality, and spatial locality. 

The problem of optimal allocation, which maximally saves 

storage capacity and minimizes communication overheads 

between clients and the delivery systems, was known as the 

File Allocation Problem and shown to be NP-complete [19]. 

This problem has been investigated in [20 - 22]. Bisdikian et 

al. [20] describe their cost model and many issues regarding 

movie allocation for future studies, and Akiko et al. [21] 

describe their cost model and propose an approximate 

algorithm for movie allocation. Takeshita et al. [22] propose a 

new algorithm that runs on a dynamically reconfigurable 

processor. 

When designing movie allocation algorithms, the following 

three different processes are considered. 

- Movie selection: This process determines the to-be-

duplicated movie. The movie is usually chosen by the 

predictive load [23], by ascending order [24], by descending 

order [20], by alternating order according to popularity, or at 

random [25]. The sequentially ascending or descending 

method selects a movie based on popularity in ascending or 

descending order. In the alternation method, movies are 

alternatively selected. For example, movies may be selected in 

the following order: the most popular movie first, the least 

popular movie next, the next most popular movie third, the 

next least popular movie fourth, and so on. In the random 

method, a movie is randomly selected. 

- Count selection: This process determines the number of 

duplications of a movie. For example, a highly popular movie 

can be duplicated to numerous delivery systems. The 

duplication number has been determined by solving the 

apportionment problem [26]. The predictive load [23] and 

popularity [20, 24] have been investigated for this 

determination. Furthermore, Wolf et al. [27] used Webster’s 

monotone divisor based on popularity. 

- Selection of movie-duplicating server: This process 

determines the server on which the selected movie is 

duplicated. If the movie and number of duplications are 

selected, the delivery system with the movie will be chosen. 

The delivery systems were determined based on the round-

robin [24] or circular first fit [25] methods. In addition, the 

first fit or best fit can be used. The round-robin method 

simply selects one of the delivery systems from a list in a 

round-robin manner; the first fit method selects the first 

delivery system with sufficient network bandwidth and 

storage capacity; the best fit method selects the best delivery 

system among them; and the circular first fit (the next fit) is 

the same as the first fit, except that the delivery system is 

found from the next delivery system that is previously 

selected. 
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4.3 Server selection 

Server selection in web systems, which has been actively 

investigated, can be applied to multimedia systems. One of the 

servers can be selected after considering the factors that are 

classified into the following three classes [28]. 

- Static: One of the video servers is statically selected by 

using static data such as geographical proximity [24], the 

number of hops between a client and a server [25], bandwidth 

of network interfaces, speed of the CPU, and disk speed. 

- Statistical: One of the video servers is statistically 

selected by using the past performance data, such as network 

latencies and network bandwidth. 

- Dynamic: One of the video servers is dynamically 

selected after probing the current CPU usage, disk usage, or 

round-trip time through the Ping. 

Dynamic approaches show the best results in many studies 

[28]. However, dynamic approaches have additional probing 

overheads, and most of the tests were conducted for parallel 

web server systems instead of parallel multimedia systems. 

In addition, random selection and round-robin selection can 

be used without considering any of the factors mentioned 

above. 

4.4 Request routings 

Request routing redirects the requesting client to one of the 

selected servers by using one of the methods introduced in the 

previous sub-section. For the purpose of distributing a request 

transparently to clients, many request routings such as Linux 

Virtual Server (LVS) and DNS have been developed. We 

refer the interested reader to [29] for request routings. 

5 Conclusions 

In this paper, we classified studies on parallel multimedia 

systems largely into two categories: those on storage systems 

and those on delivery systems. We also classified the research 

on storage systems into the following four categories: disk 

scheduling, data placement, buffer management, and 

admission control. Furthermore, we classified the research on 

delivery systems into studies on server placement, movie 

allocation, server selection, and request routing. We describe 

each sub-category and introduce some existing research 

within it for the future researches. 

We believe that this paper is valuable in providing a 

summary of research on parallel multimedia systems thus far. 

To the best of our knowledge, this paper describes the 

broadest fields on parallel multimedia systems. 
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Abstract - From the first analysis of immuneprecipitation 
followed by Western Blotting (WB) Corin and TLP seem to 
precipitate at the same height ( approximately 50KDa) and 
are recognized by the same antibodies. In parallel we are 
improving the tests of immunoprecipitation by the use of cell 
extracts derived from lung cancer cells A549 and NCI-H23 
with the aim to be able of obtaining a precipitate containing 
only the TLP. In fact the partial aminoacid sequence of TLP 
showes a high homology with the sequence of human Corin 
(only one aminoacid is different) and is present in lung cancer 
under different isoforms. It is known that human Corin is 
expressed mostly outside the cells and the protein extract 
derived from the extracellular medium and from the cells 
transfected with the plasmid, which overexpresses Corin, 
showes many more bands analyzed on SDS-PAGE that are 
equivalent to the bands (about 50-100 KDa) observed in the 
WB analyzed with anti-TLP. 

Keywords: TLP, NSCL, Corin, Immunotherapy, Vaccine 

 

1 Introduction 
  While surgery, radiotherapy and chemotherapy are able to 
cure many cancers, new approaches are required to improve 
radical curative therapy. A possible route is to utilize the latest  
achievements made in research on the immunology and 
genetics of cancer [1]. Cancer immunotherapy [2],  
or the manipulation of the naturally occurring oncolytic 
immune reaction, is based on the observation  
that both in animals and humans neoplastic cell antigens 
stimulate the onset of specific humoral and  
cellular antibodies [3]. Certain difficulties that have been 
encountered reflect the lack of well-purified  
antigens and/or their ability to unblock cell immunity in the 
cancer patient.  
Two ways are known to enhance the host's immunity: 
aspecific activation (BCG in primis) and  
specific activation (to stimulate oncolytic circulating and cell 
antibodies). Moreover, some researchers  
have performed therapeutic trials with antigens, from 
autologous and homologous human cancer  
cells, obtained by various purification procedures [4]; [5].  

The first observation by Tarro et al [6] demonstrated that 
when TLP is extracted from a tumor,  
purified in the laboratory, and reintroduced into the patients 
body, it boosts the immune system's cancer  
responsive capabilities [7]. As lung cancer accounts for the 
largest number of cancer deaths in the Western  
world, TLP may have the potential to greatly improve the 
cure rate and or serve as a lung cancer vaccine (Table 1) [8].  
Corin is a cardic serine protease that activates natriuretic 
peptides. It consists of an N-terminal cytoplasmic tail, a 
transmembrane domain, and an extracellular region with a C-
terminal trypsin-like protease domain. The transmembrane 
domain anchors corin on the surface of cardiomycytes. To 
date, the function of the corin cytoplasmic tail remains 
unknown [9]. Corin shows high homology with TLP and is 
present in various isoforms in the lung [10]. If the fragments 
from cutting with thrombin proved to be the same, the data 
would support the hypothesis that TLP and Corin are the 
same protein. At the same time we are arranging to use a 
plasmid that allows us to transfect and over-express human 
corin with the purpose to assess by Western blotting (with 
anti-TLP and anti-Corin antibodies) whether the two proteins 
are actually the same protein or are different. 
 
2 Material and Methods  
1. Antigens, Ac-RTNKEASI-Ahx-C-amide,Ac-Ahx-C-amide-
NQRNRD, Corin 
2.  Antibodies, Anti-Corin antibody, Anti-TLP antibody 
3.  Cell Lines, Cancer cell lines : A549, H23, H82, H187 
Control cell lines : MET-SA, NL-20, Primary line of 
fibroblasts 
4. Tests, a) Immunoblotting, b) Immunoprecipitation,  
c) Peptide competions assay, d) Western blotting 
5. Other reagents, Thrombin to cut protein, Plasmid to 
transfect Corin 
3 Results 
From the first analysis of immuneprecititation followed by 
Western blotting Corin and TLP seem to precipitate at the 
same height ( approximately 50KDa) and are recognized by 
the same antibodies, Concurrently we obtained a plasmid 
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from Prof, Qingyu (Cleveland, Ohio) that let us transfect 
HEK-293 cells and overexpressthe human Corin with the  
purpose to evaluate by Western blotting (with anti- TLP and 
anti-Corin) whether the two proteins are really the same 
protein. In parallel we are improving the tests of 
immunoprecipitation by the use of cell extracts derived from 
lung cancer cells A549 and NCI-H23 with the aim to be 
able of obtaining a precipitate containing only the TLP. This 
result would allow a better sequence of the aminoterminal 
fragment of TLP and furthermore would allow to look in 
details the homologies between TLP and Corin.  
 From a careful analysis of bibliography conceming 
both TLP and Human Corin, and from our data 
achieved during the present time, it seems that is 
coming out that Corin and TLP are really the same 
protein.  
In fact the partial aminoacid sequence of TLP showes a 
high homology with the sequence of human Corin (only 
one aminoacid is different) and is present in lung cancer 
under different isoforms. From the references it is 
known that human Corin is expressed mostly outside 
the cells and the protein extract derived from the 
extracellular medium and from the cells transfected with 
the plasmid, which overexpresses Corin, showes many  
more bands analyzed on SDS-PAGE that are equivalent 
to the bands (about 50-100 KDa) observed in the 
Western blots analyzed with anti- TLP.  
 

3.1 Tables 
  

TLP AS A TUMOR – ASSOCIATED ANTIGEN 
• 50 KD PROTEIN OVEREXPRESSED IN LUNG  
TUMORS AND OTHERS EPITHELIAL  
ADENOCARCINOMAS 
• IMMUNIGENIC IN HUMANS AS EVIDENCED BY  
SERUM ANTIBODIES 

Table 1. Tumor Liberated Protein from Lung Cancer and 
Perspectives for Immunotherapy 
 
 
 
 
 
 
 
 
 
 
 

TISSUE MICROARRAY PROFILE (a) 
 

NSCLC 
STAGE I 

POSITIVITY 
(%) 

NEGATIVITY 
(%) 

TISSUE 

400 56.3 
(225/400) 

43.7 
(175/400) 

NORMAL 
LUNG 

TISSUE 

POSITIVITY 
(%) 

NEGATIVITY 
(%) 

400 0 
(0/400) 

100 
(400/400) 

(a) Carried out by William C. Hyun, Ph.D., at the University of 
California San Francisco, Cancer Center, Laboratory Cell Analysis. 

Table 2. Sensitivity and Specificity of TLP for Antibodies 
 

3.2 Figures 

 
Fig 1. In vitro and in vivo Functions of TLP  
 
4 Conclusions 
Tumor Liberated Protein (TLP) is a new protein extracted 
from tumors in vivo and transformed cells in vitro (Fig. 1)[8]. 
TLP is detectable in blood as well as in cancer tissue [11]; 
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[12]. 
TLP is a tumor associated antigen of 50 KD monomer [13]; 
[14].  
TLP is overexpressed in lung tumor [13]; [14] and other 
epithelial adenocarcinomas [15]; [16]. 
TLP is immunogenic in humans as evidenced by serum 
antibodies [17]. 
Preliminary information on lung tissue microarray is shown in 
table 2. 
<Research is ongoing to obtain the complete sequence of 
TLP, by proteomics approaches, in order to achieve adequate 
antigen preparations that might be used to generate assays for 
early diagnosis and, possibly, a specific anticancer vaccine> 
[18]. 
The perspectives of TLP are the following: 
− Since its sequences stimulate cytotoxic 
immunoresponse in humans and animal models, it is 
possible to design potential active and passive 
immunotherapies for NSCL cancer and colorectal 
cancers (CRC) based on TLP epitopes and humanized 
antibodies [19]; [20]. 
− Fragments of TLP can be used to stimulate immune 
response to attack existing tumors [9]; [21]. 
− At risk populations could be inoculated with TLP 
fragments to stimulate immune response to undetected 
or newly developing tumors [22]; [23]. 
− Therefore the ability of the immune system to 
recognize TLP, represents a main target for diagnosis 
and therapy in this field of research. 
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Abstract— Protein-protein interactions (PPIs) play
various important roles in living organisms. Hence,
many efforts have been made to investigate and predict
PPIs. Analysis of strengths of PPIs is important as
well as PPIs because such strengths are involved in
functionality of proteins. In this paper, we propose
several feature space mappings from protein pairs,
which make use of protein domain information, and
perform five-fold cross-validation for data obtained
from biological experiments. The result of average
root mean square error (RMSE) using support vector
regression (SVR) with our proposed feature was better
than that by the best existing method, APM proposed
by Chen et al.

Keywords: protein-protein interaction strength, support
vector regression, protein domain

1. Introduction
Many investigations and analyses have been done for

protein-protein interactions (PPIs) due to their impor-
tance in cellular systems. In addition, many prediction
methods have been developed. As well as studies
of PPIs, analyses of strengths of PPIs are important
because such strengths are involved in functionality of
proteins. In terms of transcription factor complexes,
if a member protein has a weak binding affinity,
target genes may not be transcribed depending on
intracellular circumstance. For example, it is known
that multi-subunit complex NuA3 in Saccharomyces
Cerevisiae consists of five proteins, Sas3, Nto1, Yng1,
Eaf6, and Taf30, acetylates lysine 14 of histone H3, and
activates gene transcription. However, Yng1 and Nto1
are often found in the complex, and interactions with
other member proteins are difficult to be observed by

biological experiments. Hence, Byrum et al. proposed
a biological methodology for identifying transient and
unstable protein interactions recently [1].

Although many biological experiments have been
conducted for protein-protein interactions [2], [3],
strengths of PPIs have not been always provided. Ito et
al. conducted large-scale yeast two-hybrid experiments
for whole yeast proteins. In their experiments, yeast
two-hybrid experiments were conducted for each pro-
tein pair multiple times, and the number of experiments
that interactions were observed, or the number of
interaction sequence tags (ISTs), was counted. Con-
sequently, they decided that protein pairs having three
or more ISTs should interact, and reported interacting
protein pairs.

The ratio of the number of ISTs to the total number
of experiments for a protein pair can be regarded as
the interaction strength between their proteins. On the
basis of this consideration, several prediction methods
for strengths of PPIs have been developed. LPNM [4]
is a linear programming-based method, and ASNM [4]
is a modified method from the association method [5]
for predicting PPIs. Chen et al. proposed association
probabilistic method (APM) [6], which is the best
existing method for predicting strengths of PPIs as
far as we know. These methods make use of protein
domain information. Domains are known as structural
and functional units in proteins, and are stored in
several databases such as Pfam [7] and InterPro [8].
The same domain can be identified in several differ-
ent proteins. In these prediction methods, interaction
strengths between domains are estimated from known
interaction strengths between proteins, and interaction
strengths for target protein pairs are predicted from
estimated strengths of domain-domain interactions.
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Fig. 1: Illustration of protein-protein interaction model
based on domain-domain interactions

In this paper, we also make use of domain infor-
mation, and propose several feature space mappings
from protein pairs. We use support vector regression
(SVR), perform five-fold cross-validation for data from
biological experiments by Ito et al. [3] and WI-PHI
dataset [9], and take the average root mean square error
(RMSE). The average RMSE by our proposed method
was smaller than that by the best existing method, APM
[6].

2. Method
In this section, we briefly review a probabilistic

model and related methods, the association method [5],
ASNM (association method for numerical interaction
data) [4], APM (association probabilistic method) [6],
and propose several feature space mappings using
domain information.

2.1 Probabilistic Model of Protein-Protein In-
teractions Based on Domain-Domain Interac-
tions

Many strength prediction methods are based on
the probabilistic model of protein-protein interactions
proposed by Deng et al. [10]. This model utilizes
domain-domain interactions, and assumes that two
proteins interact with each other if and only if at
least one pair of domains contained in the respective
proteins interacts. Fig. 1 illustrates this interaction
model between two proteins P1 and P2, which consist
of domains D1, D2, D3, and domains D2, D4, D5,
respectively. As in this case, two proteins can contain
the same domain. According to this model, if P1 and P2

interact, at least one pair among (D1, D2), (D1, D4),
(D1, D5), (D2, D2), (D2, D4), (D2, D5), (D3, D2),

(D3, D4), and (D3, D5) interacts. Conversely, if a pair,
for instance (D3, D4), interacts, P1 and P2 interact.

From the assumption of this model, we can derive
the following simple probability that two proteins Pi

and Pj interact with each other.

Pr(Pij = 1)

= 1−
∏

Dm∈Pi,Dn∈Pj

(1− Pr(Dmn = 1)), (1)

where Pij = 1 indicates the event that proteins Pi

and Pj interact (otherwise Pij = 0), Dmn = 1
indicates the event that domains Dm and Dn interact
(otherwise Dmn = 0), Pi and Pj also represent the
sets of domains contained in Pi and Pj , respectively.
Deng et al. applied the EM (expectation maximization)
algorithm to the problem of maximizing log-likelihood
functions, estimated probabilities that two domains
interact, Pr(Dmn = 1), and proposed a method for
predicting PPIs using the estimated probabilities of
domain-domain interactions [10]. Actually, they cal-
culated Pr(Pij = 1) using Eq. (1), and determined
whether or not Pi and Pj interact by introducing a
threshold θ, that is, Pi and Pj interact if Pr(Pij =
1) ≥ θ, otherwise the proteins do not interact. Since
interacting sites may not be always included in some
known domain region, it can cause the decrease of
prediction accuracy in this framework.

2.2 Association Method
Let P be a set of protein pairs that have been

observed to interact or not to interact. The association
method [5] gives the following simple score for two
domains Dm and Dn using proteins that include the
domains.

ASSOC(Dm, Dn) =

|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj , Pij = 1}|
|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj}|

, (2)

where |S| indicates the number of elements contained
in the set S. This score represents the ratio of the
number of interacting protein pairs including Dm and
Dn to the total number of protein pairs including Dm

and Dn. Hence, it can be considered as the probability
that Dm and Dn interact.

2.3 Association Method for Numerical Interac-
tion Data (ASNM)

The association method for numerical interaction
data (ASNM) [4] is a modified method for predicting
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strengths of PPIs from the original association method
[5]. This method takes strengths of PPIs as input data.
Let ρij represent the interaction strength between Pi

and Pj , and we suppose that ρij is defined for all
(Pi, Pj) ∈ P . Then, the ASNM score for domains Dm

and Dn is defined as the average strength over protein
pairs including Dm and Dn by

ASNM(Dm, Dn)

=

∑
{(Pi,Pj)∈P|Dm∈Pi,Dn∈Pj}

ρij

|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj}|
. (3)

If ρij always takes only 0 or 1, ASNM(Dm, Dn)
becomes ASSOC(Dm, Dn).

2.4 Association Probabilistic Method (APM)
Although ASNM is a simple average of strengths

of PPIs, Chen et al. proposed the association proba-
bilistic method (APM) by replacing the strength with
an improved strength [6]. It is based on the idea that
the contribution of one domain pair to the strength
of a PPI should vary depending on the number of
domain pairs included in a protein pair. They assumed
that the interaction probability of each domain pair is
equivalent in a protein pair, and transformed Eq. (1) as
follows:

Pr(Dmn = 1) = 1− (1− Pr(Pij = 1))
1

|Pi||Pj | .(4)

Thus, by substituting the numerator of ASNM, APM
is defined by

APM(Dm, Dn) =∑
{(Pi,Pj)∈P|Dm∈Pi,Dn∈Pj}

(1− (1− ρij)
1

|Pi||Pj | )

|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj}|
. (5)

They conducted some computational experiments, and
reported that APM outperforms existing prediction
methods such as ASNM and LPNM.

2.5 Feature Based on Number of Domains (DN)
We propose a feature space mapping based on the

number of domains (DN) from two proteins. It can
be considered that the probability that two proteins
interact increases with a larger number of domains
included in the proteins. Thus, the feature vector of

MKANGLDNDPARTRMERTDIDSEHPEAQPLLNNNHRTLGAGSANGPAVNEGRDIE

NGLDNDPARTRMERTDIEHPEAQPLLNNNHRTLGAGSAVNEGRD

D
1 D

2
D
3

Fig. 2: Illustration of restricting an amino acid se-
quence to which the spectrum kernel is applied to the
domain regions

DN for two proteins Pi and Pj is defined by

f
(m)
ij = M(Dm, Pi) (for Dm ∈ Pi), (6)

f
(T+n)
ij = M(Dn, Pj) (for Dn ∈ Pj), (7)

f
(l)
ij = 0 (for Dl /∈ Pi ∪ Pj), (8)

where T indicates the total number of domains over
all proteins, and M(Dm, Pi) indicates the number of
domains identified as Dm in protein Pi.

2.6 Feature by Restriction of Spectrum Kernel
to Domain Region (SPD)

Furthermore, we propose a feature space mapping
by restricting the application of the spectrum kernel
[11] to domain regions (SPD). Let A be the set of
alphabets representing twenty types of amino acids.
Then, Ak (k ≥ 1) means the set of all strings with
length k generated from A. The k-spectrum kernel for
sequences x and y is defined by

Kk(x, y) = ⟨Φk(x),Φk(y)⟩, (9)

where Φk(x) = (ϕs(x))s∈Ak and ϕs(x) indicates the
number of times that s occurs in x.

To make use of domain information, we restrict an
amino acid sequence to which the k-spectrum kernel
is applied to the domain regions. Fig. 2 illustrates
the restriction. In this example, the protein consists
of domains D1, D2, D3, and each domain region is
surrounded by a square. Then, the subsequence in each
domain is extracted, and all the subsequences in the
protein are concatenated in the same order as domains.
We apply the k-spectrum kernel to the concatenated
sequence. Let ϕ

(r)
s (x) be the number of times that

string s occurs in the sequence restricted to the domain
regions in protein x in the above manner. The feature
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vector of SPD for proteins Pi and Pj is defined by

f
(l)
ij = ϕ(r)

sl (Pi) (for sl ∈ Ak), (10)

f
(20k+l)
ij = ϕ(r)

sl (Pj) (for sl ∈ Ak). (11)

It should be noted that ϕ
(r)
s for proteins having the

same composition of domains can vary depending on
the amino acid sequences of their proteins. That is,
even if Pi and Pj have the same compositions as Pk

and Pl, respectively, and the feature vector of DN for
Pi and Pj is the same as that for Pk and Pl, then the
feature vector of SPD for Pi and Pj can be different
from that for Pk and Pl.

2.7 Support Vector Regression (SVR)
We employ support vector regression (SVR) [12]

with our proposed features to predict strengths of PPIs.
In the case of linear functions, SVR finds parameters
w and b for f(x) = ⟨w, x⟩+b by solving the following
optimization problem.

minimize 1
2 ||w||

2 + C
∑

i(ξi + ξ′i),
subject to yi − ⟨w, xi⟩ − b ≤ ϵ+ ξi,

yi − ⟨w, xi⟩ − b ≥ −ϵ− ξ′i,
ξi ≥ 0, ξ′i ≥ 0,

where C and ϵ are positive constants, and (xi, yi) is
a training data. Here, the penalty is added only if the
difference between f(xi) and yi is larger than ϵ. In
our problem, xi means a protein pair, and yi means
the corresponding interaction strength.

3. Computational Experiments
To evaluate our proposed features, DN and SPD, we

conducted computational experiments, and compared
them with the existing method, APM.

3.1 Data and Implementation
It is difficult to directly measure actual strengths of

PPIs for many protein pairs by biological and physical
experiments. Hence, we used Ito’s yeast two-hybrid
data with 1586 interacting protein pairs [3] and WI-
PHI dataset with 50000 protein pairs [9]. For each
protein-protein interaction, WI-PHI contains a weight
that is considered to represent some reliability of the
PPI, and is calculated from several different kinds of
PPI datasets in some statistical manner. As strengths of
PPIs, we used the value dividing the number of ISTs
by the total number of yeast two-hybrid experiments
for Ito’s data, and used the value dividing the weight of

Table 1: Results of the average RMSE by SVR with
our proposed features, DN and SPD (k = 1, 2), and by
the existing method, APM, for training and test data

method RMSE for training RMSE for test
SVR with DN 0.0927 0.0831
SVR with SPD (k=1) 0.0289 0.0516
SVR with SPD (k=2) 0.0242 0.0282
APM 0.0265 0.0331

PPI by the maximum weight for WI-PHI. Since these
datasets do not include protein pairs with interaction
strength 0, we randomly selected 100 protein pairs that
were not included in the datasets, and added them as
protein pairs with strength 0. We used UniProt database
[13] to get amino acid sequences and information of
domain compositions and domain regions in proteins.
We used SVM light [14] for executing support vector
regression, and used the polynomial kernel K(x, y) =
(s⟨x, y⟩+ c)d.

3.2 Root Mean Square Error (RMSE)
The root mean square error (RMSE) is a measure of

differences between predicted values ŷi and actually
observed values yi, and is defined by

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (12)

where N is the number of test data.

3.3 Result
We conducted five-fold cross-validation, and calcu-

lated the average RMSE. We examined various values
of parameters of the polynomial kernel in the range
of 1 ≤ s, c, d ≤ 50. Table 1 shows the results of the
average RMSE by SVR with our proposed features,
DN and SPD of k = 1, 2, and by APM [6], for
training and test data, where parameters (s, c, d) for
the polynomial kernel were (1, 1, 3) in DN, (28, 7, 17)
in SPD of k = 1, and (19, 4, 23) in SPD of k = 2.
Although the average RMSEs by SVR with DN and
by SVR with SPD of k = 1 were larger than those
by APM for both training and test data, those by SVR
with SPD of k = 2 were smaller than those by APM.

4. Conclusion
We proposed feature space mappings, DN and SPD,

for predicting strengths of protein-protein interactions.
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DN is based on the number of domains in a pro-
tein. SPD is based on the spectrum kernel, and is
defined using the amino acid subsequences in domain
regions. We employed support vector regression (SVR)
with polynomial kernel, and conducted five-fold cross-
validation using Ito’s yeast two-hybrid data and WI-
PHI dataset. For both training and test data, the average
RMSEs by SVR with SPD of k = 2 were smaller than
those by APM, which is the best existing method. It
implies that the use of amino acid sequences in domain
regions enhanced the prediction accuracy comparing
with only information of domain compositions.

It is desired that additional datasets of accurate
interaction strengths for many proteins are provided.
However, to further enhance the prediction accuracy,
we can improve kernel functions combining physical
characteristics of domains and amino acids.

Acknowledgment
This work was partially supported by Grants-in-Aid

#22240009 and #24500361 from MEXT, Japan.

References
[1] S. Byrum, S. Smart, S. Larson, and A. Tackett, “Analysis of

stable and transient protein-protein interactions,” Methods in
Molecular Biology, vol. 833, pp. 143–152, 2012.

[2] P. Uetz, L. Giot, G. Cagney, T. Mansfield, R. Jud-
son, J. Knight, D. Lockshon, V. Narayan, M. Srinivasan,
P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover,
T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston,
S. Fields, and J. Rothberg, “A comprehensive two-hybrid
analysis to explore the yeast protein interactome,” Nature,
vol. 403, pp. 623–627, 2000.

[3] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and
Y. Sakaki, “A comprehensive two-hybrid analysis to explore
the yeast protein interactome,” Proceedings of the National
Academy of Sciences of USA, vol. 98, pp. 4569–4574, 2001.

[4] M. Hayashida, N. Ueda, and T. Akutsu, “Inferring strengths
of protein-protein interactions from experimental data using
linear programming,” Bioinformatics, vol. 19, pp. ii58–ii65,
2003.

[5] E. Sprinzak and H. Margalit, “Correlated sequence-signatures
as markets of protein-protein interaction,” Journal of Molec-
ular Biology, vol. 311, pp. 681–692, 2001.

[6] L. Chen, L.-Y. Wu, Y. Wang, and X.-S. Zhang, “Inferring
protein interactions from experimental data by association
probabilistic method,” Proteins: Structure, Function, and
Bioinformatics, vol. 62, pp. 833–837, 2006.

[7] R. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. Pollington,
O. Gavin, P. Gunesekaran, G. Ceric, K. Forslund, L. Holm,
E. Sonnhammer, S. Eddy, and A. Bateman, “The Pfam protein
families database,” Nucleic Acids Research, vol. 38, pp.
D211–D222, 2010.

[8] S. Hunter, P. Jones, A. Mitchell, R. Apweiler, T. K. Attwood,
A. Bateman, T. Bernard, D. Binns, P. Bork, S. Burge,
E. de Castro, P. Coggill, M. Corbett, U. Das, L. Daugherty,
L. Duquenne, R. D. Finn, M. Fraser, J. Gough, D. Haft,
N. Hulo, D. Kahn, E. Kelly, I. Letunic, D. Lonsdale,
R. Lopez, M. Madera, J. Maslen, C. McAnulla, J. McDowall,
C. McMenamin, H. Mi, P. Mutowo-Muellenet, N. Mulder,
D. Natale, C. Orengo, S. Pesseat, M. Punta, A. F. Quinn,
C. Rivoire, A. Sangrador-Vegas, J. D. Selengut, C. J. A.
Sigrist, M. Scheremetjew, J. Tate, M. Thimmajanarthanan,
P. D. Thomas, C. H. Wu, C. Yeats, and S.-Y. Yong, “InterPro
in 2011: new developments in the family and domain predic-
tion database,” Nucleic Acids Research, vol. 40, pp. D306–
D312, 2012.

[9] L. Kiemer, S. Costa, M. Ueffing, and G. Cesareni, “WI-PHI:
A weighted yeast interactome enriched for direct physical
interactions,” Proteomics, vol. 7, pp. 932–943, 2007.

[10] M. Deng, S. Mehta, F. Sun, and T. Chen, “Inferring
domain-domain interactions from protein-protein interac-
tions,” Genome Research, vol. 12, pp. 1540–1548, 2002.

[11] C. Leslie, E. Eskin, and W. Noble, “The spectrum kernel: a
string kernel for SVM protein classification,” in Proceedings
of Pacific Symposium on Biocomputing 2002, 2002, pp. 564–
575.

[12] V. Vapnik, The Nature of Statistical Learning Theory.
Springer, New York, 1995.

[13] The UniProt Consortium, “Reorganizing the protein space
at the Universal Protein Resource (UniProt),” Nucleic Acids
Research, vol. 40, pp. D71–D75, 2012.

[14] T. Joachims, Advances in Kernel Methods – Support Vector
Learning. MIT-Press, 1999, ch. Making large-scale SVM
learning practical.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 135



Mining Infrequent Patterns of Two Frequent Substrings
from a Single Set of Biological Sequences

Daisuke Ikeda
Department of Informatics, Kyushu University

744 Moto-oka, Fukuoka 819-0395, Japan.
daisuke@inf.kyushu-u.ac.jp

Abstract— This paper is devoted to considering mining
infrequent patterns from biological sequences. Two typical
approaches to find infrequent patterns are model-driven and
data-driven, and each of them has advantages and disad-
vantages. As a mixed approach, FPCS (Finding Peculiar
Composite Strings) was proposed in a literature, where two
substrings x and y are decided by given data and their
concatenation xy is evaluated in a model-driven manner.
Although its effectiveness has already shown, it requires the
background set of sequences, in addition to the target set.
In this paper, we propose another approach for infrequent
patterns, which, given a single set of sequences, finds string
patterns of two substrings frequent in the set. Therefore, the
proposed approach is simpler than FPCS. Using biological
features, such as RNA, of popular bacterial DNA sequences,
the effectiveness of the proposed approach is evaluated. For
B. subtilis and C. perfringens, the proposed approach can
find RNA regions as well as FPCS while it fails to do that for
E. coli and S. enterica because FPCS is more finely granular
than the proposed approach.
Keywords: Under-represented patterns, Infrequent patterns, Text
mining, Bioinformatics

1. Introduction
With plenty of biological sequences, it is becoming much

more important to develop mining algorithms for such
sequences. As one of such mining algorithms, those for
frequent or infrequent patterns, called over-represented or
under-represented ones, respectively, have been attracted in
bioinformatics [2].

Compared to frequent patterns, it is more difficult for
mining algorithms to find infrequent ones from biological
sequences because of data sparseness. That is, there exist a
huge number of infrequent subsequences due to the sparse-
ness, and thus it is critical to select useful patterns out of
the huge number of infrequent candidate patterns.

We can see existing methods as two basic approaches
for infrequent pattern mining: one is model-driven in which
a probabilistic model is assumed for being normal and a
candidate pattern is under- or over-represented if its fre-
quency is far from the expected frequency estimated from
the model; the other is data-driven in which, given two sets

of sequences, an algorithm outputs a pattern if it frequently
appears in one of the sets while it rarely does in the other.

A typical approach of the former types is the z-score [2].
The score for a pattern w is defined as

z(w) =
f(w)− E(w)

N(w)
,

where f(w) is the frequency of w in a given set of sequences,
E(w) its expected value of w under an assumed probabilistic
model, and N(w) a normalization factor of w. As a proba-
bilistic model, the Bernoulli model is assumed in [3], [4] and
the Markov model is considered in [5], [6]. However, a sim-
ple model can not describe the given sequences well while a
complicated one requires huge computational resources, and
thus it is difficult to decide an appropriate model in advance.

A typical approach for the latter types is the contrast or
distinguish pattern. In this case, a background set is assumed
to define being normal, in addition to a target set [7], [8].
However, this approach is basically for frequent patterns
by eliminating useless candidate patterns which are both
frequent in two sets.

In [9], the algorithm called FPCS (Finding Peculiar Com-
positions) were proposed, where, given a target set T and
a background set B of sequences, a pattern w is extracted
as the form of w = xy if each of x and y is more frequent
in B than in T and conversely w = xy is more frequent
in T . More precisely, given two parameters θT , θB(≥ 1), a
candidate pattern w is extracted if

P(x|B) > θBP(x|T ),
P(y|B) > θBP(y|T ), and
P(xy|T ) > θTP(xy|B),

where P(w|S) denotes the empirical probability of w in S.
This means that we estimate P (xy) by P(x|B) · P(y|B)
and, if the observed probability P(xy|T ) is larger than the
estimated probability P (xy) = P(x|B) ·P(y|B), we say xy
is quite unusual in T .

In this framework, the estimation of probabilities is done
like z-score with a probabilistic model, but the unit of words,
such as x and y, is defined automatically using the given
background set of data. In this sense, we can say that FPCS
is a mixed approach of model- and data-driven approaches.
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In [9], it is shown that, given bacterial sequences as
the target and background sets, many of found peculiar
compositions are exceptional by a z-score criteria, and some
peculiar compositions are not [9]. This implies that we can
find peculiar compositions which can not be found by z-
score. In [10], it is shown that many peculiar composi-
tions are found in biological features, such as rRNA and
transposase, using DNA sequences of 7 popular bacteria,
such as Escherichia coli K-12 (E. coli) and Bacillus subtilis
(B. subtilis).

Although FPCS’s effectiveness has shown, it requires the
background set of sequences, in addition to the target set. Of
course, it seems to be natural in bioinformatics to compare
the target sequences with some other sequences. However, it
is much more useful when we can use an infrequent mining
algorithm for a single set of sequences. In this paper, we
proposed another approach for under-represented patterns,
inspired by FPCS.

The proposed method requires a set of sequences and
outputs infrequent patterns of the form w = xy, where x
and y are frequent in the input set and P (xy) is much more
frequent than its estimated value P (x)P (y). Using biological
features, such as RNA, of popular bacterial DNA sequences,
the effectiveness of the proposed method is evaluated.

2. Finding Peculiar Compositions
According to [9], [10], we briefly explain the peculiar

composition discovery problem and its significance on DNA
sequences of popular bacteria.

2.1 Problem Definition
Let Σ be an alphabet and an element of Σ is called a

letter. In case of nucleotide sequences, Σ = {A,C,G, T}.
The set of all the finite sequences of one or more letters is
denoted by Σ+, and an element of Σ+ is called a string.
The length of a string x, denoted by |x|, is the number of
letters of x.

Consider a string x = a1 · · · an (ai ∈ Σ). A letter ai
in x is denoted by x[i], and aiai+1 . . . aj (i < j) is called a
substring1.

For two strings x, y ∈ Σ+, the concatenation of x and y
is denoted by xy. We call xy the composition of x and y.
Conversely, a pair of two strings (x, y) is called a division
of w if w = xy. There exist O(|w|) divisions. For instance,
if x = AAC and y = GC then xy = AACGC, and
(A,ACGC), (AA,CGC), . . . (AACG,C) are divisions of
AACGC.

Let x, y ∈ Σ+. An occurrence of x in y is an integer i
such that x[j] = y[i+ j] (1 ≤ j ≤ |x|). The frequency of x
in y is the number of occurrences of x in y. We extend this
notion in case of a set D of strings, instead of a string y,
as follows: fD(x) to denote the sum of the frequencies of x

1In this paper, we do not consider the empty string, that is the case i = j.

in all strings in D. Since the frequency is affected by the
absolute size of D, we introduce the empirical probability
of x in D as the relative frequencies P(x|D) = fD(x)/#D,
where #D is the sum of frequencies.

We define a set of positions of x in y as follows:

Posy(x) = {i+ j | x[j] = y[i+ j], 1 ≤ j ≤ |x|}.

For example, Posbabbab(ab) = {2, 3, 5, 6}. In other words,
Posy(x) is a set of all positions on y covered by x. It
is naturally extended for a set D of substrings in y by
Posy(D) = ∪x∈DPosy(x). Note that we count only one
time even if two substrings x and x′ share some positions
in y since Posy(D) is defined as a set.

The peculiar composition discovery problem is defined as
follows.

Definition 1: The peculiar composition discovery prob-
lem is, given two sets T and B of strings and threshold
values θT > 1, θB > 1 and η ≥ 2, to find all peculiar
compositions of the form xy such that

P(x|B) > θBP(x|T ),
P(y|B) > θBP(y|T ),
P(xy|T ) > θTP(xy|B), and
fT (xy) ≥ η.

From the first two conditions, both frequencies of x and y
are much larger in B than those in T . Therefore, we can
expect that the composition xy appear frequently in B than
in T . From the third condition, however, a found peculiar
composition xy appear more frequently in T than in B. In
this sense, xy is exceptional.

2.2 Peculiar Compositions in Biological Se-
quences

Fig. 1 provides found peculiar compositions on a genetic
map of the whole target sequence B. subtilis from 1bp at the
top-left to 4,214,630bp at the bottom-right, where E. coli
is used as the background sequence. A map contains two
tracks. The above one is for biological features, where a fea-
ture is displayed above (resp. below) of the track line if it is
in the normal strand (resp. its complement); the below track
is for found peculiar compositions, where they are drawn at
both strands because if a peculiar composition is found at
the normal strand then its corresponding composition is also
found at the corresponding position of the complement, and
vice versa.

Fig. 1 includes rRNA colored by blue, tRNA lightblue,
and other RNA related features navyblue as biological
features, where we say that a feature is RNA related if
its feature key includes “RNA” as a substring. A “gene”
or “CDS” whose function, product, or note record contains
“transposon” and “phage” is colored in green and yellow,
respectively. We exclude other “gene” and “CDS” from the
map because it is known that genes prevail in bacterial DNA
sequences.
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Fig. 1: A genetic map of the whole DNA sequence of B. subtilis with two tracks, where rRNA, tRNA, other RNAs,
transposon, and phage are colored in blue, lightblue, navyblue, green and yellow, respectively, on the above track, and found
peculiar compositions are colored in red on the below track.

We see that peculiar compositions found in case that
θT = 2.0, θB = 2.0 and η = 3 densely appear at biological
features, especially RNAs. It is known that RNAs are well
preserved among species, and transposons and phages are
external, and thus we can say that found peculiar composi-
tions are useful.

Fig. 2 shows three enlarged maps of B. subtilis from 1bp
to around 1Mbp, where parameter values for η are changed.
From these maps, we see that found peculiar compositions
are densely appear at biological features, even if we use a
larger value for a parameter.

In [10], it is also shown that patterns extracted by the
z-score and contrast patterns appearing infrequently in the
target sequence can not match well to biological features.

Peculiar compositions in Table 1 are found in B. subtilis,
where E. coli is used as the background set, and θT = θB =
2.0 and η = 10. They are found in rRNA (rrnO-16S).

3. Peculiar Compositions of Frequent
Substrings

In this section, we introduce the peculiar composition of
frequent substrings discovery problem.

First of all, we assume a single set of sequences. To define
frequent x and y, we have used T and B in the peculiar
composition discovery problem. However, now we do not
have B and thus we define frequent x and y by a minimum
support threshold. Once we obtain frequent x and y, all we

have to do is to find xy whose probability is much larger
than its estimation value, P (x)P (y).

The peculiar composition of frequent substrings discovery
problem is defined as follows.

Definition 2: The peculiar composition of frequent sub-
strings discovery problem is, given a set T of strings and
threshold values θ > 1, minsupf ≥ 2 and minsupxy ≥ 2,
to find all peculiar compositions of frequent substring of the
form xy such that

fT (x) ≥ minsupf

fT (y) ≥ minsupf

P(xy|T ) > θP(x|T )P(y|T ), and
fT (xy) ≥ η.

From the first two conditions, both x and y must be frequent,
and the probability of xy must be larger than its expectation
value P(x|T )P(y|T ). The last condition is for the minimum
support of found patterns.

4. Experiments
In this section, after describing data sets and how to eval-

uate, we show both qualitative and quantitative evaluation of
the proposed method.

4.1 Setting
The data sets used in our experiments are whole DNA

sequences of four bacteria, E. coli, B. subtilis, Clostridium
perfringens (C. perfringens for short), and Salmonella en-
terica (S. enterica for short), whose statistics are shown in
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Fig. 2: Three maps in case η = 3, 5 and 10 from left to right, where the target set, the background one, and the other
parameters θT , θB are fixed to B. subitilis, E. coli, 2 and 2, respectively.

Table 1: Some peculiar compositions found in B. subtilis, where E. coli is used as the background set.
(x, y) (fT (xy), fB(xy)) (fT (x), fB(x)) (fT (y), fB(y))
(AACGCTGG,CGGCGTG) (9, 1) (92, 389) (399, 1217)
(ACGCTG,GCGGCGT ) (9, 3) (1532, 4008) (584, 1838)
CGCTGGCG,GCGTG) (9, 2) (104, 895) (4009, 11412)
(CGCTG,GCGGCGT ) (10, 6) (6718, 17434) (584, 1838)
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Fig. 3: A gene map of B. subtilis from 1bp to around 20Kbp.

Table 2. We have chosen E. coli and B. subtilis since they
are typical model bacterium with different properties: the
former is Gram-negative while the latter is Gram-positive.
We have chosen C. perfringens (resp. S. enterica) since it is
gram-positive (resp. gram-negative).

As qualitative evaluation, we use genetic maps as shown
above, and as qualitative evaluation we caluculate a popular
evaluation value used in information retrieval, F -masure,
which is defined as

Fβ =
(1 + β2) · P ·R
β2 · P +R

,

where P and R denote precision and recall, respectively.
We choose β = 1/4 for Fβ although F -measure typically
means F1, which puts weight on precision and recall equally.
However, our goal is not to find these features but to show
that found peculiar compositions match biological features.
Although found patterns seem to fully cover RNAs (see
Fig. 1), they are sparse in an enlarged map of Fig. 3, where
only about 20Kbp are described. From the viewpoint of our

goal, we do not need high recall values since we are trying
to find useful, infrequent patterns and we can’t expect that
infrequent patterns cover all occurrences of some features.
Thus, we choose β = 1/4, which weighs precision four
times as much as recall.

4.2 Genetic Maps
As qualitative evaluation, we show genetic maps, like

Fig. 1.
First, we show a map obtained from B. subtilis with

parameter values θ = 1 × 107, minsupf = 1000, and
minsupxy = 20 (see Fig. 4). We see that dense regions of
peculiar compositions of frequent substrings match to blue
regions, that is, rRNA and tRNA.

Next, we show a map obtained from E. coli with parameter
values θ = 2× 107, minsupf = 3000, and minsupxy = 20
(see Fig. 5). In this case, we can’t find dense regions even
when we change parameter values. To compare FPCS, we
show a genetic map of E. coli, where B. subtilis is used
as the background set, θT = θB = 2, and η = 5 (Fig. 6).
Unlike Fig. 5, we can clearly see dense regions and most of
these regions correspond to some biological features.

Fig. 7 shows genetic maps of C. perfringens and S. enter-
ica. From the map of C. perfringens, we see dense regions
at rRNA and tRNA while we can’t see such regions at
designated features from the map of S. enterica although
there exist dense regions.

4.3 F -measures
In this section, we quantitatively evaluate the proposed

method by the F -measure. Table 3 shows the results, where
“feature” column shows features we consider as correct ones.
For E. coli, we use RNA and transposon as target features

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 139



Table 2: List of DNA sequences used in experiments.
Name Accession # GC% Length (bp) Gram-pos/neg
E. coli NC_000913 50.8 4,639,675 –
B. subtilis NC_000964 43.6 4,214,630 +
C. perfringens NC_008216 28.4 3,256,683 +
S. enterica NC_021176 50.2 4,791,958 –
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Fig. 4: A genetic maps of the whole DNA sequences of B. subtilis, where θ = 1×107, minsupf = 1000, and minsupxy = 20.

10
00

00
0

20
00

00
0

30
00

00
0

40
00

00
0

10
00

00
0

20
00

00
0

30
00

00
0

40
00

00
0

Fig. 5: A genetic map of the whole DNA sequences of E. coli, where θ = 2× 107, minsupf = 3000, and minsupxy = 20.
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Fig. 6: A genetic map of the whole DNA sequence of E. coli, where B. subtilis is used as the background set, θT = θB = 2.0
and η = 5.

Table 3: Precisions, recalls, and F1/4 values E. coli and B. subtilis, where features in “feature” column are assumed to be
correct.

NC# feature θ minsupf minsupxy precision recall F1/4

NC_000913 RNA, Transposon 1.5× 107 1000 20 0.0559 0.2819 0.0586
NC_000913 RNA, Transposon 1.5× 107 1000 20 0.0306 0.0567 0.0314
NC_000913 RNA, Transposon 1.5× 107 2000 20 0.0316 0.0126 0.0290
NC_000913 RNA, Transposon 1.5× 107 3000 20 0.0241 0.0082 0.0217
NC_000964 RNA 1× 107 1000 20 0.1869 0.0755 0.1720
NC_000964 RNA 1× 107 2000 20 0.1949 0.0596 0.1720
NC_000964 RNA 2× 107 1000 20 0.6032 0.0071 0.1011

and, for B. subtilis, we use only RNA.
First of all, F -measure values for B. subtilis are much

better than those for E. coli as we have seen from genetic
maps.

Next, we compare these results with those of FPCS [10].
F -measures obtained by FPCS are much larger than those of
the proposed method. In case of E. coli, F1/4 = 0.2116 for
RNA and transposon, where precision is 0.7161 and recall is
0.0172, and when B. subtilis is given, and F1/4 = 0.3230 for
only RNA, where precision is 0.6319 and recall is 0.0366.

5. Conclusion
We have proposed a peculiar composition of frequent

substrings which requires only a single set of sequences, and
evaluated both quantitatively and qualitatively. The proposed
method only requires a single set and thus it is simpler than
FPCS. However, F -measure values of the proposed method
are much smaller than those of FPCS.

The reason for this may be due to the definitions of
x’s and y’s being frequent for final output patterns of the
form xy. In FPCS, x and y are defined independently using
two ratios, θT and θB , and thus the frequencies for them can
be quite different. In fact, we see quite different frequencies
of x and y in Table 1. On the other hand, being frequent
is defined absolutely by one parameter value, minsupf , in
the proposed method. Therefore, frequencies of x and y
must be similar. Thus, FPCS is more finely granular than
the proposed approach.

From maps of 4, 5, 7, it seems that peculiar compositions
of frequent substrings appear at RNA given gram-negative
bacteria while they do not given gram-positive bacteria. It is
important to validate this hypothesis with more experiments.
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Abstract— Evaluating the reliability of estimated phyloge-
netic trees is of critical importance in the field of molecular
phylogenetics, and for other endeavors that depend on
accurate phylogenetic reconstruction. The bootstrap method
is a well-known computational approach to assessing phylo-
genetic trees, and more generally for assessing the reliability
of statistical models. However, it is known to be biased under
certain circumstances, calling into question the accuracy of
the method. Therefore, several advanced bootstrap methods
have been developed to achieve higher accuracy, one of
which is the speedy double bootstrap approach (sDBP-
method). In the phylogenetic tree selection problem, it has
been shown that the sDBP-method has comparable accu-
racy to the double bootstrap approach and is much more
computationally efficient. In this study, we thus develop an
R package named SDBP, which is an implementation of
our sDBP-method on a statistical software R to assesse
the reliability of phylogenetic trees. We are confident that
biologists will benefit from our sDBP-method and SDBP
package.

Keywords: SDBP, Speedy double bootstrap method, Phylogenetic
trees, Reliability, Rapid computation, R package

1. Introduction
The analytical methods used in the field of molecular

phylogenetics are important basic tools for reconstruct-
ing the evolutionary history (phylogenetic relationships) of
molecules and organisms. Molecular phylogenetic methods
are primarily used in the context of biological systematics,
but they also find applications in a wide variety of other
fields as diverse as community ecology [1], biogeography
[2] and proteomics, including inference of the similarity of
protein-protein interactions [3]. Many methods for phyloge-
netic reconstruction have been developed and are in regular
use [4]. However, those based on maximum likelihood
estimation have proved most effective for reconstructing
phylogenies using molecular sequence data (DNA, protein,
etc.). Early work on this application of maximum likelihood
was conducted by [5], whose approach involved computing

the maximum likelihood value for many topologies and
selecting the topology with the highest likelihood (the max-
imum likelihood (ML) tree) as the most probable candidate
for the true topology.

It must be noted that maximum likelihood values are
dependent on the particular characteristics of a random
variable; that is, the molecular sequences that constitute
the underlying data for phylogenetic reconstruction. Thus,
some analysis of the statistical reliability of the estimated
ML tree or multiple alternative trees should be undertaken.
Statistical hypothesis testing is commonly used for this
purpose, and the ‘bootstrapping’ technique is a well-known
computational method for calculating reliability when a
simple mathematical formula is difficult to derive. Bootstrap-
ping is a resampling method that approximates a random
sample by creating a bootstrap sample, generated by random
sampling with replacement from the original single data set.
In the context of phylogenetic tree selection, Felsenstein
[6] proposed the use of bootstrapping to place confidence
intervals on phylogenies. He defined thep-value of a tree
according to a frequency called the bootstrap probability
(BP); the proportion of bootstrap pseudoreplicates of the
original data set in which the tree is found to be optimal.
However, it is known that under some circumstances the
naive bootstrap probability can be biased [7], [8]. Thus, some
advanced bootstrap methods have been proposed, to achieve
higher accuracy [9], [10], [11].

Among these, the double bootstrap method (DBP-method)
[9], [10] has been shown to be third-order accurate and is
potentially a useful measure of phylogenetic tree support.
However, the method has a huge computational cost. To
overcome the computational burden in the phylogenetic tree
selection problem, we have previously proposed a ‘speedy’
double bootstrap (sDBP-method) method to compute the
reliability of phylogenetic trees [12]. In the phylogenetic
tree selection problem, our previous work [12] has been
shown that the sDBP-method has comparable accuracy to the
DBP-method and is much more computationally efficient.
Because, it is well known that a good statistical method is
not in itself sufficient, we also need to develop an easy-to-
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usecomputer tool. We thus develop the R package named
SDBP, which is an implementation of our sDBP-method on a
statistical software R to assess the reliability of phylogenetic
trees. We are confident that biologists, who may not have
advanced computer skills, will benefit from our sDBP-
method and SDBP package.

R is a language and environment for statistical computing
and graphics. It is an open-source GNU project based on
the S language and environment developed at Bell Lab-
oratories (formerly AT&T, now Lucent Technologies) by
John Chambers and colleagues. We can summarize why we
implemented our method in R as follows. At first, R provides
a wide variety of statistical (linear and non-linear modeling,
classical statistical tests, time-series analysis, classification,
clustering, · · · ) and graphical techniques, and is highly
extensible. In addition, it is important that R is not only
applicable to statistical fields of research, but also to the
biological field. Genome analysis, including GneABEL [13],
and areas related to biotechnology also have a great many
applicable R packages. Finally, R is available under the terms
of the Free Software Foundation’s GNU General Public
License in source code form. It can be compiled and run
on a wide variety of UNIX platforms and similar systems
(including FreeBSD and Linux), Windows, and MacOS.

This paper is organized as follows. We first give some
background, and then briefly introduce the mathematical
theory of the sDBP-method and its algorithm for assessing
the reliability of phylogenetic trees. Next, we describe the
basic usage of our packageSDBPusing the mammalian mi-
tochondrial data from [14]. Finally, we describe the results.

2. Theory and Algorithm
2.1 The reliability of a phylogenetic tree

In this study, homologous sites of aligned molecular
sequence data are regarded as the units for sampling, and we
use DNA data as our example for the following methodologi-
cal descriptions. Suppose we havem homologous sequences,
each withn nucleotide sites. These data can be represented
as anm × n matrix X = {xjh} = {x1, · · · ,xn}, where
xh is the value of theh-th site andxjh is one of the four
deoxyribonucleotides (T, C, A, or G).

Species 1 : x11 x12 · · · x1n (1)

Species 2 : x21 x22 · · · x2n

...
...

Species m : xm1 xm2 · · · xmn

The log-likelihood can be expressed as

l(θ;X) =

n∑
h=1

logf(xh; θ), (2)

wheref(xh; θ) = f(x1h, x2h, · · · , xmh; θ) is the probability
that at a particular homologous site, species 1 has base
x1h, species 2 hasx2h and speciesm has xmh. The
vector θ denotes unknown parameters such as the edge
lengths (branch lengths) of a tree, and the base substitution
rates along these branches. Here we assume that the base
substitution rates have already been estimated, soθ denotes
only the unknown edge lengths. For a given tree topology,
θ is estimated by maximizing the log-likelihood, and the
maximum log-likelihood of any tree topologyi is given by

li(θ̂i;X) =
n∑

h=1

logfi(xh; θ̂i). (3)

The topology with the highest value ofl(θ̂;X) is the
maximum likelihood phylogeny (TML) for the data setX,
and is thus the most likely candidate for the true topology. To
define null hypotheses for performing model comparisons,
we must consider the true distribution for a random variable
x can be expressed as

q(x) (4)

And the expectation ofli(θ̂i;X), i = 1, · · · ,K with respect
to

(x1, · · · ,xn)
i.i.d.∼ q(·) (5)

can be expressed as

µi = Eq[li(θ̂i;X)] (6)

If we assume that treeT1 is the best topology, the null and
alternative hypotheses will then be

H1 : µ1 = maxi=1,··· ,K µi vs. HA
1 : others, (7)

and we must continue performing these comparisons as
many times as is necessary, assuming in turn that tree
Ti, i = 2, · · · ,K is the best topology. Note that the null
hypothesisH1 involves multiple comparisons with the “best"
topology [15]. As can be seen from equation (7), the null
containsK − 1 hypotheses such that

H1j : µ1 ≥ µj , j = 2, · · · ,K. (8)

The null hypothesisH1 is a polyhedral convex cone and
B(h1), which is the boundary ofH1, is nonsmooth at
the vertex as well as on the faces of dimension less than
K − 1. Shimodaira and Hasegawa [14] proposed a multiple
comparisons procedure (the SH-test) to testH1, but this was
shown to be overly conservative because they assumed that
the parameter configuration isµ1 = µ2 = · · · = µK , that is,
the least favorable configuration or the vertex ofB(h1) [16].
A different method (the AU-test), which uses a multiscale
bootstrap technique to obtain third-order accuratep-values
for testing the null hypothesis, has also been proposed [11].
In our previous work [12], we developed an algorithm using
an advanced bootstrap method [10] that was also able to
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provide third-order accuratep-values to assess statistical
reliability of phylogenetic trees. We call it the speedy double
bootstrap method, which will be considered in the following
subsection.

2.2 The theory of speedy double bootstrap
method

In this subsection, it is necessary to review the theory
of the speedy double bootstrap method. For this, we start
by explaining the third-order accuratep-value. It was first
proposed by [17] for the multivariate normal model, which
can be represented as

Y
i.i.d.∼ Nt(η, It). (9)

This normal model is a simplification of reality. LetH ⊂
Rt be an arbitrarily-shaped region with smooth boundaries
denoted byB(h). We want to calculate ap-value p(y) for
testing the null hypothesisη ∈ H. According to [17], when
the true parameterη is on the boundary surfaceB(h), the
third-order accuratep-value can be expressed as

p(y) = 1− Φ(d− c), (10)

where d is the signed distance fromy to η̂(y), with a
positive or negative sign wheny is outside or insideH,
respectively. The point̂η(y) is the closest point toy (in
Euclidean distance) on the surfaceB(h), andc in equation
(10) is a quantity related to the curvature ofB(h) at the point
η̂(y). The speedy double bootstrap method of [10] (named
later by [12]) begins with a bootstrap resampling from the
multivariate normal model with distribution

Y∗ i.i.d.∼ Nt(η̂(y), It). (11)

It then usesY ∗ to calculated∗, which is the signed distance
from Y ∗ toB(h). According to [10], the third-order accurate
p-value obtained by the sDBP-method can be expressed as

1− Φ(d− c) = P (d∗ > d; η̂(y)) +O(n−3/2). (12)

2.3 The algorithm for the speedy double boot-
strap method for phylogenetic trees

We now return to the problem of phylogenetic trees, as
seen inH1 and the vector(l1, · · · , lK). We describe the
algorithm using the sDBP-method to calculate thep-value of
H1. First, we find a vector corresponding toη̂(y) in equation
(11). According to [18], the maximum log-likelihood vector

l = (l1(θ̂1), · · · , lK(θ̂K)) (13)

asymptotically follows a multivariate normal distribution, the
mean vector of which is

µ = (µ1, · · · , µK). (14)

Note that the vectorl in equation (13) is an unrestricted
maximum likelihood estimate forµ. Because we assumed

that µ1 = maxi=1,··· ,K µi in H1, under this restriction
the restricted estimator forµ can be estimated using the
PAVA (pool adjacent violators algorithm) [19] method, and
is expressed as

µ̂ = (µ̂1, · · · , µ̂K). (15)

We then excise a subsetW ∈ {1, · · · ,K}, including the
element 1, so that

µ̂1 =

∑
j∈W lj(θ̂j)

#W
,

µ̂j = min(µ̂1, lj(θ̂j)), j ∈ {2, · · · ,K}. (16)

The vectorµ̂ = (µ̂1, · · · , µ̂K) corresponds tôη(y). Also,
the covariance matrix of the vector(l1, l2, · · · , lK) can be
estimated byΣ = (σij), with σij given as

n

n− 1

n∑
h=1

[
logfi(xh; θ̂i)−

1

n

n∑
h=1

logfi(xh; θ̂i)

]
(17)

×
[
logfj(xh; θ̂j)−

1

n

n∑
h=1

logfj(xh; θ̂j)

]
.

We then need to calculate two other quantities corresponding
to d∗ and d in equation (12). To do this, we generateB1,
for example10000 bootstrap pseudoreplicates of the vector
(µ̂1, µ̂2, · · · , µ̂K) in equation (15). The pseudoreplicates
(µ̂∗(b1)

1 , · · · , µ̂∗(b1)

K ), b1 = 1, · · · , B1 are sampled from

(µ̂∗(b1)

1 , · · · , µ̂∗(b1)

K )T
i.i.d.∼ NK((µ̂1, µ̂2, · · · , µ̂K)T ,Σ),

(18)
whereT represents the transpose, andΣ is used as above.
The vectors (µ̂∗(b1)

1 , · · · , µ̂∗(b1)

K ) constitute the first-order
(first-tier) bootstrap pseudoreplicates. Now,d∗ and d in
equation (12) can be written as

d∗(b1) = maxj=2,··· ,K µ̂∗(b1)

j − µ̂∗(b1)

1 , (19)

d = maxj=2,··· ,K lj − l1.

Next, we calculate thep-value for H1, defined below and
also denoted bysDBP :

sDBP =
#(d∗(b1) > d)

B1
. (20)

In exactly the same way as shown forH1, we can apply the
sDBP method to all other hypothesesHk, k = 2, · · · ,K.

3. Implementation
3.1 Implementation in R

We have implemented the sDBP algorithm for phyloge-
netic inference as a R package. Our package is namedSDBP,
and calculatesp-values for phylogenetic trees. It can be used
in combination with several other functions or packages in
R.

The package was written in the S language using the S3
object system, and consists of a number of user-level objects:
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sdbp, sdbpk, bpk , bp, dbpk, andmam20. The following
subsections describe how to use these user-level objects. The
SDBP provides three types ofp-value: the sDBP (speedy
double bootstrap probability), the DBP (double bootstrap
probability), and the BP (bootstrap probability).

3.2 Usage – Using the mammalian mitochon-
drial protein sequences

In this subsection, we explain how to use SDBP with the
mammalian mitochondrial protein sequences data from [14].
This data set included in file mam15-files, which can be
download from scaleboot Home Page.
http://www.is.titech.ac.jp/˜shimo/prog/scaleboot/index.html
Scaleboot also is an R package. The mammalian protein
data set includes sequences of n = 3414 amino acids from
six mammalian species (human, seal, cow, rabbit, mouse,
and opossum). The proteins coded for in the mammalian
mitochondrial genome are ND1, ND2, COX1, COX2, ATP8,
ATP6, COX3, ND3, ND4L, ND4, ND5, and CYTB. The
clade{seal, cow} was significantly supported in preliminary
analyses, so only the 15 unrooted trees (see Table 1) that
included this clade were considered in our comparisons (the
opossum is the outgroup). Now, the number of treesK is 15,
and the sample sizen is 3414. HypothesisH1 denotes that
µ1 = maxi=1,··· ,15 µi. Our aim is to calculate thep-values
for hypothesisH1 as well asHi, i = 2, · · · , 15.

In advance, we used the software package PAML [20],
to calculate the site-wise log-likelihood for each tree. The
output file is file mam15.lnf. The format of mam15.lnf is
not available for our package, so the format was changed
using CONSEL [21] by executing the command “seqmt
−−paml mam15.lnf". Thus we obtain the site-wise log-
likelihood matrix saved in the file mam15.mt for each tree.
The file mam15.mt obtained by CONSEL should be placed
in the R work directory. The15 tree topologies is in the file
mam15.tpl, that can be found in mam15-files.

Our SDBP package is built under R version 3.0.0. There-
fore, this R version (or later) is needed to install our package.
For Windows OS, after booting R, choose the tabPackages
in the upper tool-bar and select the tabInstall Package(s)
from zip files option, then choose theSDBP_1.0.zipfile
downloaded from CRAN, the official R package archive.

For using the command line on UNIX platforms to install
the source version packageSDBP_1.0.tar.gzdownloaded
from CRAN, just write the following command:

R CMD INSTALL SDBP_1.0.tar.gz

and boot R via the command line using the command.

R

Then, the following on theR consolecommand line to load
our package (the following command can be typed on both
Unix and regular Windows machines):

> library("SDBP")# load our package

And then, read the data named mam15.mt.

# read scaleboot for reading .mt files
> library(scaleboot)
> dat<-read.mt(mam15.mt)
> dim(dat)# dat matrix demation
[1] 3414 15

Calculating the sDBP-value for each tree requires the following
line. Thus our package is as easy-to-use as R package.

> result <- sdbp.default(dat)
> result

We performed this on a personal computer with the following
specifications: 2.50 GHz CPU (Core (TM) i5-2520M CPU) and
8.00 GB RAM. The results are output in decreasing order of log-
likelihood.

Call:
sdbp.default(dat = dat)

Speedy double bootstrap probabilities:
t1 t3 t2 t5 t6 t7
0.5828 0.3905 0.2237 0.1191 0.1109 0.0681 ...

Calculating the stand error for each value, we can use the command
summary.

> summary(result)

The output is

Call:
speedy.default(dat = dat)

stdErr p.value
t1 0.0049 0.5717
t3 0.0049 0.3928
t2 0.0041 0.2173
t5 0.0032 0.1136
...
attr(,"class")
[1] "summary.sdbp"

This command is for testing hypothesisH1 in equation (7) for tree
1 in the topology file mam15.tpl, using the algorithm in subsection
2.3. Also, for testing hypothesesHi : µi = maxk=1,··· ,15µk, i =
2, · · · , 15 for tree 2,· · · , tree 15 in the topology file mam15.tpl,
we repeatedly use the algorithm in subsection 2.3. However, the
algorithm for testing one of the hypothesisHi of Hi, i = 2, · · · , 15
is a little different from the algorithm for testing hypothesisH1.
The difference is that we calculate the projectionµ̂ of the maximum
log-likelihood vectorl = (l1, · · · , l15) for each hypothesis and
the signed distances. For example, the projection vectorµ̂ of the
maximum log-likelihood vectorl = (l1, · · · , l15) under hypothesis
H2 is obtained using the following equations.

µ̂2 =

∑
j∈W2

lj(θ̂j)

#W2
, µ̂j = min(µ̂2, lj(θ̂j)), j ∈ {1, 3, · · · , 15},

where W2 is subset of the numbers{1, · · · , 15} including the
element 2. For details of the implementation of the PAVA method,
see our R source code in sdbp.R in SDBP. The signed distances
are

d∗
(b1)

= maxj=1,3,··· ,15µ̂
∗(b1)
j −µ̂∗(b1)

2 , d = maxj=1,3,··· ,15lj−l2.

The similarity between testingHi, i = 2, · · · , 15 and H1 is the
covariance matrixΣ in equation (17).
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When we want to calculate the reliability for one tree, for
example tree 2, we can use the commandsdbpk, with the output
shown below. This command corresponds to testing hypothesis
H2 : µ2 = maxk=1,2,··· ,15µk for tree 2 in the topology file
mam15.tpl.

> result1 <- sdbpk(dat,2)
> result1

Call:
sdbpk(dat = dat, k = 2)

t2
0.2237

Then, calculating the bootstrap probability can use the command
bp, again shown with the output.

> result2 <- bp(dat)
> result2

Call:
bp(dat = dat)

Bootstrap probabilities:
t1 t3 t2 t5 t6 t7
0.5794 0.3213 0.0342 0.0124 0.0279 0.0057 ...

4. Result
4.1 Analysis of mammalian mitochondrial pro-
tein sequences

Table 1 presents the results of our sDBP value calculations
for the 15 phylogenetic trees analyzed in this study, along with
values reported by [11] for traditional BP analyses and the AU-test.
We also developed an algorithm for the regular double bootstrap
approach for phylogenetic trees [12], although in this paper we
have omitted the description of how the DBP were calculated. In
Table 1, the original tree number in the file mam15.tpl is renamed
in decreasing order of log-likelihood. The confidence sets of trees
obtained by the sDBP algorithm and the DBP algorithm atα =
0.05 were{1, 2, 3, 4, 5, 6, 7} and{1, 2, 3, 5, 7}, respectively (Table
1). The sDBP tree set was thus slightly larger than the set selected
by DBP. Tree 7 is the most strongly supported asTML by recent
analyses incorporating additional sequence data [22], [23], [24],
and our results for this tree indicate that sDBP=0.084>0.05 and
DBP=0.056> 0.05. Our conclusions are thus not in contradiction
with the latest data. For a confidence set of models, our sDBP
algorithm gives a confidence set of candidate trees, and includes
the “best" topologymaxi=1,··· ,15 µi, with an error rate below the
0.05 level. Thus, our sDBP tree set does not immediately give the
work for straightly gives the “best" topology.

4.2 Comparison of computational speed
For the sDBP algorithm, the DBP algorithm, the AU-test and

the BP-test, we measured the time taken to calculate ap-value for
tree 7 (see Table 1), based on the site-wise log-likelihood data. We
used the RELL approximation method [18] with the BP-test, and
conducted two separate sets of analyses. In the first set, we applied
the sDBP algorithm withB1 = 103 pseudoreplicates, the DBP
algorithm withB1 = 103 andB2 = 103 pseudoreplicates, and the
BP-test with103 pseudoreplicates. In the second set, we applied
the sDBP algorithm withB1 = 5×103 pseudoreplicates, the DBP
algorithm withB1 = 5×103 andB2 = 5×103 pseudoreplicates,
and the BP-test with5 × 103 pseudoreplicates. The results of the
two sets are shown in Table 2. This time, we used the command

Table 1 Comparison of four differentp-values from analyses of
fifteen mammalian trees, based on protein sequence data from [14].
Thep-values that are NOT significant atα = 0.05 are emphasized
in bold type.

Treea △li BPb
i DBPc

i sDBPdi AUe
i Tree formf

1 -2.7 0.579 0.607 0.576 0.789 (((1(23))4)56)
2 2.7 0.312 0.458 0.401 0.516 ((1((23)4))56)
3 7.4 0.036 0.167 0.235 0.114 (((14)(23))56)
4 17.6 0.013 0.041 0.116 0.075 ((1(23))(45)6)
5 18.9 0.035 0.082 0.110 0.128 (1((23)(45))6)
6 20.1 0.005 0.031 0.069 0.029 (1(((23)4)5)6)
7 20.6 0.017 0.056 0.084 0.101 ((1(45))(23)6)
8 22.2 0.001 0.007 0.042 0.009 ((15)((23)4)6)
9 25.4 0.000 0.002 0.022 0.000 (((1(23))5)46)
10 26.3 0.003 0.011 0.023 0.028 (((15)4)(23)6)
11 28.9 0.000 0.003 0.013 0.003 (((14)5)(23)6)
12 31.6 0.000 0.001 0.004 0.001 (((15)(23))46)
13 31.7 0.000 0.002 0.005 0.001 (1(((23)5)4)6)
14 34.7 0.000 0.003 0.001 0.005 ((14)((23)5)6)
15 36.2 0.000 0.001 0.000 0.002 ((1((23)5))46)

aTrees are numbered by increasing order of
△li = maxj ̸=ilj − li, the difference between the log-likelihood
value for a given tree and the largest value among all other trees.
bBootstrap probability, calculated from 10000 pseudoreplicates

(from Shimodaira (2002)).
cDouble bootstrap probability, calculated from 25 million

pseudoreplicates (B1 = 5×1000, B2 = 5× 1000).
dSpeedy double bootstrap probability, calculated from 10000

pseudoreplicates (B1 = 10000).
eMultiscale bootstrap probability, calculated from 100000

pseudoreplicates (AU-test; from Shimodaira (2002)).
fTaxon labels: 1 = human, 2 = seal, 3 = cow, 4 = rabbit, 5 =

mouse, 6 = opossum.

sdbpk, bpk anddbpk to measure the time. For measuring time
of AU-test, we used the commandrelltest from R package
scaleboot. For both sets, the BP-test was the fastest, followed by
the sDBP algorithm, the AU-test then the DBP algorithm. For the
first set of calculations (lower numbers of pseudoreplicates) the
sDBP algorithm was 1021-fold faster than the DBP algorithm, and
this advantage improved substantially for the second set (higher
pseudoreplication), with the sDBP algorithm being 5076-fold faster
than the DBP algorithm.

Table 2 Comparison of the BP, DBP, sDBP and AU methods,
regarding their speed for computing ap-value for tree-7.

BP DBP sDBP AU Speed increase (sDBP/DBP)

Time (secs)a 0.69 715 0.73 3.72 1021-fold
Time (secs)b 3.52 17921 3.53 14.39 5076-fold
a Caseof B1 = 103, B2 = 103 pseudoreplicates
b Case ofB1 = 5× 103, B2 = 5× 103 pseudoreplicates

5. Conclusion
As shown in the result section, the sDBP algorithm has compara-

ble accuracy to the DBP algorithm and is much more computation-
ally efficient for phylogenetic tree selection problem. For allowing
researchers to apply the sDBP algorithm easily, we have developed
an easy to use R package. We think this implementation of sDBP
algorithm will be of further utilities to assessing the reliability of
phylogenetic trees.
Availablity
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The program is freely distributed under GNU General Public
License (GPL) and can directly installed from CRAN,
http://cran.r.-project.org/
the official R package archive. The instruction and program source
code are avaliable at
http://www.bi.cs.titech.ac.jp/sdbp/
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Abstract— Tandem mass spectrometry, a method involving
multiple steps of mass spectral selection, is widely used
in various biological fields. In recent years, steady im-
provements have been made with respect to speed, and
the number of protein databases available for analysis has
rapidly increased. Consequently, computational analysis has
become the bottleneck in tandem mass spectrometry.

To overcome this problem, we attempted to improve the
tandem mass spectrometry analysis software CoCoozo. To
accelerate the program, we improved the algorithm and also
incorporated utilization of multi-core CPU and GPGPU. As
a result of algorithm improvements, when all mass spectral
data files had precursor data, we achieved 8.9-fold speedups
compared with the original software. In addition, in the
case of no precursor data, by using a 12-core CPU and
a GPU card we achieved 18.1-fold speedups compared with
the original software.

Keywords: Mass Spectrometry, MS/MS, CoCoozo, Multi-
threading, GPGPU.

1. Introduction
Mass spectrometry is currently commonly used in pro-

teomics research, a field of study in which the entire set of
proteins expressed by a genome, cell tissue, or organism is
examined [1]. Although various mass spectrometry methods
have been developed, tandem mass spectrometry (MS/MS,
MS2) is the primary technique now used in many biological
investigations, including research on cancer biomarkers [2],
Alzheimer’s disease [3], and protein-protein interactions [4].

In mass spectrometry analysis, target sample proteins or
peptides are divided into several fragments whose masses are
measured by a mass analyzer, with an analyzer outputting
their spectra. Mass spectrometry analysis software is then
used to identify the sample peptides or proteins based on

Correspondenceto: Yutaka Akiyama

these spectra. Tandem mass spectrometry, in which sample
masses are measured in two or more steps, is currently in
wide use. The advantage of tandem mass spectrometry is
enabling the analysis of mixed protein samples. In two-step
tandem mass spectrometry, the peptide ions fragmented from
sample proteins during the first step are called precursors,
and those fragmented from precursors during the second step
are called fragments. Two-step tandem mass spectrometry
generates mass spectral data for both precursors and frag-
ments, and identifies sample proteins using both spectra. The
mass spectral data contain mass-to-charge ratios (m/z) and
collateral intensities of fragments and, in most cases, the
precursor that is the source of the fragments.

Various software programs have been developed to an-
alyze mass spectra from tandem mass spectrometry. To
identify proteins in a sample, the software calculates the
similarity between the spectral data and that of a protein
in a database. MASCOT [5] is well known and widely
used, but other software programs, such as SEQUEST [6],
SpectraST [7], and CoCoozo have also been developed.
Each program employs a different algorithm for database
searching and similarity measurement, with each algorithm
having different advantages and disadvantages with respect
to speed and sensitivity. MASCOT, for example, uses a
statistical evaluation algorithm [5], whereas SEQUEST uses
a cross-correlation scoring algorithm [6]. For similarity
measurement, SpectraST utilizes an inner product algorithm
between measured and database mass spectral vectors [7].

CoCoozo is a mass spectrometry analysis software pack-
age developed at the National Institute of Advanced Indus-
trial Science and Technology (AIST) of Japan and the Tokyo
Institute of Technology. It features a unique error correction
function for analyzing mass spectra with high precision.
CoCoozo has performed consistently over the past several
years of use in AIST projects.

In recent years, the speed and sensitivity of tandem mass
spectrometry analyzers have steadily improved, with their
throughput continually increasing. In addition, the number
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of reference protein databases has steadily increased. Con-
sequently, computational analysis is more time intensive than
ever, and has become a bottleneck in mass spectrometry.

During the same time period, computer system perfor-
mance has also been materially improved. Current computer
systems have been enhanced by various acceleration tech-
nologies, including “multi-core CPU” and “General-Purpose
computing on Graphics Processing Units” (GPGPUs). A
graphics processing unit (GPU) was originally developed for
processing graphics in the 1980s. GPU computational per-
formance has increased dramatically over time, eventually
overtaking that of CPUs. Consequently, GPUs have come to
be used for general-purpose calculations rather than graphics
processing, and this technique is now called “GPGPU”. A
GPU has dozens or hundreds of streaming processors that
are activated in parallel for calculations. GPGPU programing
is difficult, requiring high parallel computing skills. To over-
come this problem, several platforms have been developed
to facilitate computational use of GPGPUs. At present,
NVIDIA’s CUDA is the most substantial platform, and is
widely used. Through the CUDA platform, programmers
can make use of GPUs without having knowledge of GPU
low-level instructions. As a result, GPGPU techniques have
already been used in various applications, such as for astro-
nomical calculations [8] and Fast Fourier Transform (FFT)
[9].

In this paper, we report attempted enhancement of the
computational speed of the tandem mass spectrometry anal-
ysis software package CoCoozo. To achieve this goal, we im-
proved the algorithm and also incorporated multi-threading
and the above-mentioned GPGPU-based acceleration tech-
nology at parts of similarity evaluation. As a result, when
all mass spectral data files had precursor data, we achieved
8.9-fold speedups compared with the original software. In
addition, in the case of no precursor data, by using a 12-
core CPU we achieved 15.9-fold speedups with the original
software. Moreover, by using a 12-core CPU and a GPU card
we achieved 18.1-fold speedups compared with the original
software.

2. CoCoozo
CoCoozo, which is mass spectrometry analysis software,

has been already developed and used in several research
fields. In this section, we briefly describe the algorithm of
CoCoozo and discuss about its bottlenecks.

A flowchart of CoCoozo main processes is shown in
Figure 1. For each precursor in a database, CoCoozo first
checks whether or not a query data file includes precursor
spectral data. If the query data file contains precursor spectral
data, CoCoozo then performs a “precursor matching” pro-
cess, which checks whether query precursor spectral data
correspond to database precursor spectral data. If so, a
“fragment matching” process is subsequently performed. If
a query data file does not include precursor spectral data,

Fig. 1: CoCoozo Main Process Flowchart (for a mass spec-
tral data)

the process goes directly to “fragment matching”, which
calculates a similarity score between query fragment spectral
data and fragment spectral data in a database. After fragment
matching, a database precursor data entry has an assigned
score based on the results of fragment matching. Finally,
all precursors are ranked by their scores, with the highest-
scoring precursors outputted as the analysis results.

During precursor and fragment matching processes, the
matching algorithm judges whether m/z of a precursor or a
fragment in a database matches, within a given tolerance,
that of a query. Because the measured data sometimes
includes error, the tolerance value is set based on the m/z
value and a tolerance ratio parameter. One of the differences
between precursor matching and fragment matching is the
tolerance ratio parameter. In precursor matching, the ratio
is fixed. In contrast, in fragment matching, the ratio varies
depending on query spectrum intensity. When there are mul-
tiple spectra within a tolerance during fragment matching,
the spectrum with the strongest intensity is judged as a
“match”. The precursor matching process is therefore faster
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than fragment matching.
If a data file has no precursor spectrum, the matching

process takes much longer. This is because a large number
of fragment matchings are needed in proportion to the
number of precursor spectra in a database if a data file
has no precursor spectrum. If, however, a data file contains
a precursor spectrum, only a few fragment matchings are
required because most of the precursors have already been
filtered out based on the results of the precursor matching
process.

2.1 Bottlenecks in CoCoozo
We profiled CoCoozo to locate the bottlenecks for two

cases. The first case was one in which all mass spectral files
included precursor spectral data (case of complete precursor
data); the other case was one in which about 10% of mass
spectral files were lacking precursor spectral data (case of
incomplete precursor data).

The comparison between queries and database was found
to be the dominant process in the entire execution time
profile. This “matching” process targeting both precursors
and fragments is the main process of the CoCoozo search
algorithm. In addition, execution time was about 13 times
longer in the case of incomplete precursor data compared
with the case of complete precursor data. In the case of
complete precursor data, the precursor matching comparison
was the most dominant process in the entire execution time
profile. On the other hand, fragment matching comparison
was the most dominant process in the case of incomplete
precursor data.

3. Methods
In this section, we introduce our newly proposed to

accelerate the CoCoozo software using Multi-core CPUs and
Graphics Processing Units.

3.1 Improvement of Matching Algorithm and
Initialization Process

A similar matching algorithm is used for both precur-
sors and fragments. To improve the process, the data is
sorted that is replaced every comparison by m/z. In other
words, we sort the data that is compared with the tolerance.
Proteins are often diversely denatured, however, by post-
translational modification (PTM), leading to a change in
their masses. The way in which CoCoozo handles this PTM
complicates sorting by m/z. We thus modified the program
structure to improve the sorting. The new sorting algorithm
allows matching to terminate when the sorted data exceed
the tolerance upper limit. Because fragment matching has
variable tolerance, the sort termination is based on a pre-
defined maximum tolerance. In addition to early termination,
the number of comparisons is decreased during precursor
matching by skipping the data below the lower tolerance
limit. This skip is especially effective in precursor matching

because the number of comparisons with a given tolerance
range is larger than in fragment matching. On the other hand,
the skip is less effective in fragment matching because the
number of comparisons with a given tolerance range is small.

In addition, we improved initialization of the variable for
storing the score for each query. In the original initialization
process, all of the scores are initialized regardless of whether
or not they have changed. This guarantees that all scores are
initialized when an analysis begins. Because initialization of
all scores is redundant, scores that are unchanged since the
last initialization are omitted.

3.2 Multithreading
When mass spectral files without precursor spectral data

are included, the execution time materially increases. Based
on profiling, fragment matching occupies about 85% of the
entire execution time for the case of incomplete precursor
data. Consequently, we apply a multithreading technique
to fragment matching and scoring after fragment matching
in cases in which an analysis target mass spectral data
file lacks precursor spectral data. The two processes are
consecutive. The one-time process targets database frag-
ments created from the same precursor, and the consecutive
process independence from other continuative processes, so
the application of multithreading is relatively easy. In the
multithreading part, each thread is in charge of matching
fragments created from the same precursor and their scoring.

For multithreading implementation, we used the POSIX
threads (pthread) library, a part of POSIX.1 [10] standardized
by IEEE.

3.3 Acceleration by GPGPU
Even after improving the matching algorithm, fragment

matching in the case of incomplete precursor data still oc-
cupied about 70% of the entire execution time. We therefore
tried to introduce GPGPU to the fragment matching calcula-
tion. Each comparison between a fragment spectrum and one
of the database entries in the fragment matching process is
independent of the other comparisons, and each comparison
is computationally not very intensive. The processes that
follow the comparison are not independent, however, and
the results of these processes depend on the results of other
comparisons between database fragments created from the
same precursor and query fragments. These should therefore
be processed in serial, but serial processes are difficult to
effectively execute on a GPU.

Consequently, we only applied the GPGPU technique
to m/z and intensity comparisons. We parallelized each
comparison on GPUs. Variable tolerance is inefficient on
GPUs, however, because implementation of variable toler-
ance requires conditional statements, which results in CPU
utilization scarcely decreasing. Because of this, a fixed
tolerance based on maximum width ratio is used on the
GPUs. In other words, preliminary selection is performed
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on the GPU, with remaining matching executed on the CPU
using results from the GPU.

In addition, we applied multithreading to the CPU pro-
cessing that follows the GPU processing. The CPU pro-
cessing corresponds to the original fragment matching and
scoring. The one-time process targets database fragments
created from the same precursor and the consecutive pro-
cess independence from other continuative processes, so the
application of multithreading is relatively easy.

For the GPGPU implementation, we used CUDA (Com-
pute Unified Device Architecture), a platform for GPGPU
provided by NVIDIA. Our software requires CUDA version
higher than 2.3, and we used CUDA version 4.1 for the
following experiments.

4. Results
4.1 Datasets and Database

We used 1,486 mass spectral data files as input queries.
The files were in PKL format and had already been fil-
tered. Because all of the files contained precursor spectrum
data, we also prepared another dataset for checking the
performance in the case of incomplete precursor data. In
the second dataset, precursor spectral data was deleted
from 149 randomly selected files, with the remaining 1,337
files identical to those in the original dataset. We used
a database containing 38,415 proteins, 857,298 precursors,
and 26,489,468 fragments, with lysyl endopeptidase (Lys-C)
used for dividing a protein into precursors.

We allowed CoCoozo to search monovalent and divalent
fragment ions, and to consider N-terminal acetylation.

4.2 Computing Environment
For this research, we used the TSUBAME2.0 supercom-

puter system at Tokyo Institute of Technology. Programs
were executed on a thin node of TSUBAME2.0 with 12
CPU cores. Node specifications are shown in Table 1.

Table 1: Computing Environment
CPU Intel Xeon 2.93 [GHz] (6 cores) x 2

Memory 54 [GB]
OS SUSE Linux Enterprise Server 11 SP1

GPU NVIDIA Tesla M2050
Compiler gcc 4.3.4

MPI OpenMPI 1.4.2
CUDA CUDA 4.1 (64bit)
Profiler Intel VTune Amplifier XE 2011

We used the UNIX “time” command to measure exe-
cution times and Intel VTune Amplifier XE 2011 for more
detailed profiling.

4.3 Improvement of Matching Algorithm and
Initialization Process

Figure 2 shows execution time results when all of the
mass spectral data files include precursor spectral data (case

Fig. 2: Result of “Improvement of Matching Algorithm
and Initialization Process” (execution time) in the case of
complete precursor data.

Table 2: Results of Improvements in the case of complete
precursor data

times [sec] speedup
Original 609.23
- Precursor-matching 443.0
- Fragment-matching 27.61
- Score Initialization 72.46

Improvement of Algorithm 68.80 8.9-fold
- Precursor-matching 6.63 65.3-fold
- Fragment-matching 11.08 2.5-fold
- Score Initialization 0.15 483.1-fold

of complete precursor data). CoCoozo with the improved
algorithm is approximately 8.9-fold faster than the original
version. In particular, a precursor-matching step is about
65.3-fold faster than that of the original, and a fragment-
matching step is approximately 2.5-fold faster. With respect
to score initialization, the improved version is approximately
483.1-fold faster than the original, equivalent to other short
processes.

These results demonstrate the magnitude of the improve-
ments arising from the revised algorithm in the case of
complete precursor data. Table 2 summarizes the results of
improvements in the case of complete precursor data.

4.4 Multithreading
Figure 3 shows execution time as a function of number

of threads when about 10% of mass spectral data files lack
precursor spectra (case of incomplete precursor data). As
seen in the figure, even in the one-thread case, execution
is much faster than in the original version, because the
multi-threaded version used an improved matching algo-
rithm. CoCoozo with 12 threads is approximately 5.3-fold
faster than CoCoozo with 1 thread; the increased speed is
less than 12-fold because multi-threaded processing is only
applicable to certain parts of the entire program. Another
reason is concurrency of threads. As measured by Intel
Vtune Amplifier, the peak concurrency is 6 threads even on
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Fig. 3: Result of “Multithreading” (execution time) in the
case of incomplete precursor data.

Fig. 4: Result of “Acceleration by GPGPU” (execution time)
in the case of incomplete precursor data.

a 12 CPU core system: 12 threads cannot be simultaneously
used, and several threads are often idle.

Finally, compared with the original version, CoCoozo
with the improved matching algorithm and running with 12
threads is approximately 15.9-fold faster.

4.5 Acceleration by GPGPU
Figure 4 shows CoCoozo execution time with GPGPU

for the case of incomplete precursor data. In the figure,
the data represented by bars labeled “CPU” is the same as
in Figure 3. CoCoozo with GPGPU is approximately 2.0-
fold faster than CoCoozo with the improved algorithm but
without GPGPU, and approximately 6.0-fold faster than the
original version. In particular, a fragment-matching step with
GPGPU is approximately 13.8-fold faster than that with the
improved matching algorithm. CoCoozo with GPGPU and
12 threads is approximately 3.0-fold faster than CoCoozo
with GPGPU and 1 thread. The reason for the low efficiency

Table 3: Results of Improvements in the case of incomplete
precursor data

times [sec] speedup
Original 7752.82
Improvement of Algorithm 2589.52 3.0-fold
Multithreading (12-thread) 488.30 15.9-fold
GPGPU 1302.57 6.0-fold
Multithreading (12-thread) & GPGPU 427.97 18.1-fold

gain is the same as above. When concurrency is measured
with Vtune Amplifier, peak concurrency is 3 threads, and
with parallel execution is scarcely over 9 threads. The
deterioration of concurrency is caused by the use of GPGPU,
as it assists in fragment matching comparisons. Because
there is less opportunity for multithreading processes when
using GPGPU, more threads are idle. Finally, CoCoozo with
GPGPU and 12 threads is about 18.1-fold faster than the
original version.

Table 3 summarizes the results of improvements in the
case of incomplete precursor data.

5. Discussion
Although analysis results are almost unchanged following

improvements, a subtle difference was noted: the values of
some scores are different. This difference does not affect
the substance of the results, and thus the results after im-
plementation of improvements are not distinguishable from
the original ones. The difference is caused by results from
fragment matching changing slightly because of data sorting,
but this only appears when some peaks having the exactly
same intensities are sorted and the matching order of the
peaks change from the original order. We believe this change
seldom occurs and has little or no effect.

In the case of complete precursor data, database initial-
ization dominates program execution time, representing over
50% of the entire elapsed time. Because initialization is only
executed once at the beginning of the program, however, it
is not a very serious problem, even when very large query
data files are inputted.

6. Conclusions
We have enhanced the tandem mass spectrometry anal-

ysis software CoCoozo in three ways: through improved
matching and initialization algorithms, multithreading, and
GPGPU. When mass spectral data files all contain precur-
sor spectrum data, CoCoozo with the improved algorithm
achieves an 8.9-fold speedup compared with the original
version. In cases where 10% of mass spectral data files
lack precursor spectrum data, CoCoozo with the improved
algorithm is 3.0-fold faster than the original. In addition,
the multithreading version of CoCoozo with 12 CPU cores
achieves a 15.9-fold speedup, and the GPGPU version of
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CoCoozowith 1 GPU and 12 CPU cores is 18.1-fold faster
than the original.

In this research, we applied multithreading programming
and GPGPU only to the case of incomplete precursor data.
The case of incomplete precursor data does not often occur
in practice, however. Consequently, the application of mul-
tithreading programing and GPGPU to the case of complete
precursor data is an important focus of future work.
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Abstract— Open Source Software (OSS) has been widely
used in software development. However, OSS often lacks
adequate documentation and as a result developers cannot
obtain enough information to develop software with OSS.
The popularization of OSS, or free software, has enabled
developers to more easily obtain source codes to improve
their coding skills. Developers read source codes in order to
understand the architecture and behavior of OSS. However,
it is difficult for developers to find the information they need
due to the lack of documentation .

In this paper, we propose a method for calculating the
importance of source code modules based on the dependency
of the source codes. We target Java language, and we
calculate the degrees from class dependency.

Keywords: open source software, software maintenance, source
code reading

1. Introduction

As a result of the short-term nature of software develop-
ment and the creation of large software programs, creating
and managing many software documents poses problems.
In recent years, software development using Open Source
Software (OSS) has increased; however, developers find it
difficult to obtain information about OSS due to the lack
of documentation. Therefore, developers have to read OSS
source code that offers them less information.

On the other hand, developers have found it easier to
obtain source codes with the popularization of OSS or free
software. They use this information to either revise the OSS
or improve their coding skills. However, it is difficult for
developers to determine the order of reading source codes;
and this is especially true for primary developers.

Many research studies targeting source code summariza-
tion [1], [2], [3] and source code mining [4], [5], [6] have
been done. Source code summarization helps developers to
quickly understand software. However, methods for reading
source code modules are also important.

In this paper, we propose a method to calculate the
importance of source code modules, using the dependency
of source codes. Here we target Java programming, and
calculate the importance degree using class dependency.

2. Source Code Reading
Developers develop various methods to read source codes.

Generalized methods for source code reading are as follows
[7]:

1) First, developers find the focus point for reading by
keyword searching, and then start reading the source
code from the located point.

2) Developers start reading from the main function or the
main method.

3) Developers use a debugger when they read source
code. They set break points to focus areas, after which
the debugger is executed. Developers can read source
code with various debugging information such as a
variable’s value.

In addition to the methods listed above, it has been shown
to be effective for developers to read the source code module,
which is primarily obtained from other modules. Frequently
accessed source code may have an important function. As
such, it is considered to be an effective method for reading
and understanding source code. Developers can detect the
reading points from the dependency of the source codes.

3. Class Dependency
In the Java program, each part of the source code refers

to various classes. For instance, one class uses another class.
If class A uses class B, a relationship between class A and
class B is established, which is identified as “class A refers
to class B”. Figure 1 illustrates the relationship.

ClassA
...
ClassB xx = new ClassB();
...

ClassB
...
...
...

Fig. 1: Class dependency relationship: “Class A refers to
Class B”
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In our method, dependency is computed by using other
classes in one class. However we do not consider usage
frequency. For example, if class A uses class B many times
in one class, we only count one relation between class A
and class B.

Because some class dependencies arise from these refer-
ring relationships among classes, developers can understand
the links in the source code.

Some open source software have functions that enable
developers to analyze class dependency. “ispace” [8] is one
example of such software. “ispace"" is a plug-in software for
eclipse, and it provides a function that enables users to draw
a class dependency graph. Users can gain an understanding
of class dependency in source codes.

However, when users describe a large software program
using such tools, it is hard for users to understand depen-
dency intuitively because of its complexity. For example,
Figure 2 shows a class dependency of JUnit [9] Version
4.10.

In this way, it is important for developers to have a
function that provides a guide for source code reading. Cal-
culation of the source code module importance is required.
We propose such a method in the next section.

4. Module Importance
When developers try to read source codes without soft-

ware documentation, they find it difficult to decide where
to start reading the source code when they have to refer
to complicated class dependency diagrams (Figure 2). Here,
we propose a method that defines the importance of source
code modules using information obtained from source code
analysis. In this paper, we apply our source code analysis
method to Java.

Module importance is calculated by analyzing strings in
source codes. After the analysis, the reference and referenced
relationships are obtained. In this context, we refer to classes
with a large value of importance as “frequently-used” classes
and these are treated as important classes in the source
code. Here, we show an algorithm for obtaining module
importance.

1) Analyze input source code in order to collect tokens
relevant to classes or instances of classes.

2) From obtained information, the reference and refer-
enced class numbers are counted.

3) Sort classes in descending order of summation of
reference number and referenced number for each
class. Sorting is based on the following rules:

a) If the summation of the reference numbers and
the referenced number of the classes is equal,
then the classes should be sorted in descending
order based on the referenced number.

b) If the summation of the reference numbers and
the referenced number is equal, and also the

referenced number is equal, then the classes
should be sorted in descending order based on
the reference number.

c) If the summation of the reference number and
the referenced number is equal, and also the
reference number and the referenced number
are equal, then the classes should be sorted
in descending order based on the sum of the
reference number and the referenced number of
the neighboring class.

d) If neighboring class values are equal, then it
does not matter which number (the reference
number or the referenced number) you choose.
Here neighbor means classes that are connected
to a focus class.

e) If it is not possible to decide upon the precedence
order of the classes, then the antecedence classes
are given priority in the ordering.

Module importance serves as a guide for source code
reading. We defined it as, “frequently used classes are
important.” Therefore we designed the above algorithm. In
order to sort the importance in detail in the case in which
the summation of the reference number and the referenced
number is equal, the algorithm uses the neighbor class’s
value for sorting.

5. Case Study
Here, we show a case study of our method using a small

Java source code. The intended software is a template of
image processing software, which can be used by students
in a practical software development class to modify the
software in order to develop a more sophisticated program.
The name of the template software is “SimColorBase” [10],
which can process file filtering for images such as “brighten
up” or “darken up”. Figure 3 shows a SimColorBase screen
shot.

Fig. 3: SimColorBase screen shot

In this case study, we target classes included in SimCol-
orBase and do not cover classes provided by Java.
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Fig. 2: Class dependency schematic for JUnit Ver. 4.10
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This software consists of two packages “dyschro-
matopsia” and “dyschromatopsia.filter”. The “dyschro-
matopsia” package contains the following four classes:
“ImageFileChooserFilter.java,” “ImageOpenFile.java,” “Im-
agePanel.java,” and “SimWindow.java”. On the other
hand, the “dyschromatopsia.filter” package has “BrighterFil-
ter.java” and“DarkerFilter.java” classes. We show the pack-
age structure of the SimColorBase in Figure 4.

Fig. 4: Package structure of SimColorBase

The ImagePanel class provides functions for image pro-
cessing, such as “brighten up” or “darken up”, by selecting
radio buttons on the Panel. This class is a core class of
SimColorBase. The SimWindow class contains the main
method; that is, this class is the entry point of this program.
The SimWindow class includes a setting for the menu bar
and file processing codes.

The result of the source code analysis shows that the
SimWindow class creates an instance of the ImagePanel
class (Figure 5) and the ImageOpenFile class (Figure 6); that
is, the relationship information indicates that the SimWin-
dow class refers to the ImagePanel class and the ImageOpen-
File class.

Fig. 5: Creation of the ImagePanel instance on the SimWin-
dow class

Fig. 6: Creation of the ImageOpenFile instance on the
SimWindow class

From the above the analysis, we can determine that the
number of the “refer class” is two. We can also determine
that the ImagePanel class and the ImageOpenFile class are
referred from the SimWindow class; therefore, the number
for each “referenced class” is one. Those relationships are
shown in Figure 7.

SimWindow

ImagePanel

ImageOpenFile

Fig. 7: Relationship among the three classes

We analyzed all the SimColorBase source codes using a
similar procedure. We then tallied the“refer class”numbers
and the“ referenced class”numbers and sorted them into
a tabular form (Table 1).

From Table 1, it can be seen that the ImagePanel class is
the most important class because the sum of the refer class
numbers and referred class numbers was larger than the sum
of the refer class numbers and the referred class numbers
for the ImageOpenFile class and the SimWindow class,
respectively. The ImageOpenFile class and the SimWindow
class have the same value of importance; however, the
ImageOpenFile class is located on the second rank because
of rule 3b (as noted above in Section 4). In this case,
the source code should be shown in the following order:
ImagePanel→ ImageOpenFile→ SimWindow→ Brighter-
Filter→ DarkerFilter→ BrighterFilter.

A class dependency diagram of SimColorBase that is
generated by ispace [8] is shown in Figure 8. The sum of the
refer class number and the referred class number conforms
closely to the degree of the corresponding node on the class
dependency diagram.

Here, we discuss the validity of our method using the re-
sult of the case study. In the case study, the ImagePanel class
was evaluated as the most important class. The ImagePanel
class is the core class of the SimColorBase application and
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Table 1: Class dependency data for the SimColorBase class
Importance Classname Referencedclass Referclass total

1 ImagePanel 1 2 3
2 ImageOpenFile 1 1 2
3 SimWindow 0 2 2
4 BrighterFilter 1 0 1
5 DarkerFilter 1 0 1
6 ImageFileChooserFilter 1 0 1

Fig. 8: Class dependency for the SimColor Base class

defines the graphical user interface of the SimColorBase.
For practical purposes, the ImagePanel class is the class
for reading first if a developer wants to understand the
SimColorBase. Therefore, we find that our method works
in practice.

On the other hand, SimColorBase is an application for
filtering image files. However the importance of Brighter-
Filter and DarkerFilter classes that process filtering are low.
Such frequently performed classes can not be judged as
important in our method. In order to calculate importance
in consideration of frequently performed classes, dynamic
analysis is required.

In this case study, we analyzed a small software program;
however, when targeting large software programs, it is
difficult to find points for reading the source code due to the
size of the source code or the dependency graph. Our method
can reduce the challenges developers face when analyzing
source codes by enabling them to calculate the importance
of the source code modules. We are also considering other
methods for calculating the importance of the dependency
using natural language processing methods.

6. Presentation of important class
After calculating the importance of the source code mod-

ule, the source code is shown according to its order of
importance. The importance of the source code can be
presented in two different ways. First, the source code can be
identified by its appropriate class. Second, the source code’s

appropriate class can be shown with its related classes. In
order to understand the program, it is also important to
understand the context of a class; therefore, it is important
to also identify the refer class and referred class for each
class.

Figure 9 illustrates a case showing the ImagePanel class
and its related classes. As can be seen, the ImagePanel
class is the focus class. Figure 9 also includes information
about the SimWindow class , the BrighterFilter class and
the DarkerFilter class. The point of instantiation for the
ImagePanel class in the SimWindow class is also focused
on.

7. Related works
To date, only research that has targeted supporting source

code reading has been done.
Karrer et al. [11] propose a method that presents a focus

method centered around a call graph. DeLine et al. [12]
propose a source code navigation method. In that method,
the source code is displayed with a thumbnail and users
can understand the source code using the spatial memory
of the entire code. In these research studies, users move the
focus point manually; on the other hand, the focus points we
propose are presented automatically. Therefore, differences
exist between the method we use for detecting the focus
class and the methods used by other researchers.

Inoue et al. [13] proposed a component ranking model. In
the model, rank is computed using class inheritance, inter-
face implementation, abstract class implementation, variable
declaration, instance creation, field access, and method invo-
cation. Moreover the ranking model also considers similarity
between the two components. In our method, we restricted
use to the appearance of class names that can be obtained
from the source code, we do not consider similarity among
classes.

8. Conclusion
In this paper, we proposed a method for calculating

the importance of a source code module that supports
a developer’s ability to read source code. Moreover, we
conducted a substantive experiment using a small software
program. In future works, we have a plan to develop a
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BrighterFilter

DarkerFilter

ImagePanelSimWindow

Fig. 9: Presentation of the ImagePanel class (focus class) and related classes

system based on the proposed method. Moreover, we will
construct a source code reading support environment and
conduct a survey of software developers. A source code
reading support environment requires a supporting function
that shows the focus points which software developers are
currently reading. As such, the Focus+Context presentation
of the source code must also be considered.
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Abstract— The orthogonal qd algorithm with shifts (oqds al-
gorithm), proposed by von Matt, is an algorithm for computing
the singular values of bidiagonal matrices. This algorithm is
accurate in terms of relative error, and it is also applica-
ble to general triangular matrices. In particular, for lower
tridiagonal matrices, BLAS Level 2.5 routines are available
in preprocessing stage for this algorithm. BLAS Level 2.5
routines are faster than BLAS Level 2 routines widely used
in preprocessing for bidiagonalization. Generally, it takes
O(n3) operations to reduce a full n-by-n matrix to a band
matrix such as bidiagonal or lower tridiagonal matrix. On
the other hand, computing the singular values of a bidiagonal
or lower tridiagonal matrices takes only O(n2) operations.
Consequently, if we have an algorithm for computing the
singular values of lower tridiagonal matrices, we can expect
that the total computation time including preprocessing to
obtain the singular values is reduced.

In this paper, we consider the oqds algorithm for lower
tridiagonal matrices. We propose a shift strategy for lower
tridiagonal matrices to accelerate convergence and derive
criteria for deflation or splitting.

(This paper is submitted to PDPTA’13)

Keywords
singular value computation, orthogonal qd algorithm, lower

tridiagonal matrix, shift strategy, deflation, splitting.

1. Introduction
In 1997, von Matt proposed an algorithm, based on

Rutishauser’s qd algorithm [1], called orthogonal qd algorithm
with shifts (oqds algorithm) for computing the singular values
of bidiagonal matrices in which all the transformations consist
of Givens rotations [2]. It is shown that the oqds algorithm is
also applicable to general triangular matrices [3].

In this paper, we shall consider the application of the oqds
algorithm to lower tridiagonal matrices. It allows us to use
lower-tridiagonalization as pre-processing instead of bidiago-
nalization. The lower-tridiagonalization is less computational
complexity than the bidiagonalization. Further, we can adopt
BLAS Level 2.5 routines with efficient cache reuse which
are faster than BLAS Level 2 routines for implementation

of the lower-tridiagonalization. The oqds algorithm for lower
tridiagonal matrices thus enables us to reduce the total compu-
tation time to obtain the singular values of general triangular
matrices.

For practical use, we should design good shift strategies
for convergence acceleration and good convergence criteria
for accurate computation. However, appropriate shift strate-
gies and convergence criteria for lower tridiagonal matrices
have not been proposed yet. In this paper, we propose a
shift strategy consisting of the generalized Newton shift and
associated two methods, Laguerre shift and Kato-Temple shift,
and the well known Gerschgorin shift. Moreover, we design
new convergence criteria for deflation and splitting required
for the implementation of the oqds algorithm. By the criteria,
we can do the convergence test for lower tridiagonal matrices.
At the end, we show some results of numerical experiments
to compare the oqds algorithms for bidiagonal matrices and
for lower tridiagonal matrices.

2. Orthogonal QD Algorithm for Lower
Tridiagonal Matrix

Let

L =



α1

β1 α2

γ1 β2 α3

. . .
. . .

. . .

γn−2 βn−1 αn


(1)

be ann-by-n lower tridiagonal matrix. One step of Cholesky
LR method [4] with shiftσ2 transforms the lower tridiagonal
matrix L into the upper tridiagonal matrixU by

LT L − σ2I = UTU. (2)

Then, we setL := UT . By repeating this procedure iteratively,
the diagonal elements of the matrixL converge to the singular
values of the matrixL and the non-diagonal elements get
into zero. It is known that the Cholesky decomposition is
numerically unstable; the Cholesky decomposition may col-
lapse even if the shift valueσ is zero. For resolving this
problem, we use theimplicit Cholesky decomposition [2].
The implicit Cholesky decomposition is designed by using

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 161



Algorithm 1 Generalized Givens transformation
(rotg2(x1, x2, σ, c, s))

scale := max(|x1| , |x2|)
if scale= 0 then

c := 1
s := 0

else
x1 := x1/scale
x2 := x2/scale
sig := σ/scale
norm2 := x2

1 + x2
2

r :=
√

norm2− sig2

c := (x1 × r + x2 × sig) /norm2
s := (x2 × r − x1 × sig) /norm2
x1 := scale× r
x2 := σ

end if

the generalized Givens transformation which is numerically
stable. The oqds algorithm is formulated as the iteration of
the implicit Cholesky LR step.

2.1 Implicit Cholesky decomposition

The implicit Cholesky decomposition computes an upper
tridiagonal matrixU from L andσ by an orthogonal transfor-
mation

Q

[
L
0

]
=

[
U
σI

]
, (3)

whereQ is a 2n-by-2northogonal matrix. It is readily verified
that, for the sameL and σ, the sameU is obtained by (3)
as by the Cholesky LR method (2). The orthogonal matrixQ
is given by superposition of the Givens and the generalized
Givens transformations onR2.

Definition 2.1 (Generalized Givens transformation [2]).Let
σ be a real. The transformation onR2

G

[
x1

x2

]
=

[
r
σ

]
(4)

by a 2-by-2 orthogonal matrixG is called the generalized

Givens transformation ifr = ±
√

x2
1 + x2

2 − σ2 andσ2 < x2
1+x2

2.
Sucha matrixG is uniquely determined by

G =

[
c s
−s c

]
, (5)

[
c
s

]
=

1

x2
1 + x2

2

[
x1 x2

x2 −x1

] [
r
σ

]
. (6)

It should be noted that the generalized Givens transforma-
tion is equal to the ordinary Givens transformation ifσ = 0.
The procedure of the generalized Givens transformation is
shown in Algorithm 1. The first step of the implicit Cholesky

decomposition is a series of three orthogonal transformations:

G1



α1

β1 α2

γ1 β2
. . .

γ2
. . .

. . .

0
0
. . .

0



=



α̃1

β1 α2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



, (7)

G2



α̃1

β1 α2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



=



˜̃α1 β̃1 0
0 α̃2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



, (8)

and then

G3



˜̃α1 β̃1 0
0 α̃2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



=



α̌1 β̌1 γ̌1

0 α̃2

0 β̃2
. . .

γ2
. . .

. . .

σ
0
. . .

0



. (9)

In the first column, the first transformation (7) byG1 generates
the lower diagonal elementσ. The second (8), the third (9) by
G2, G3 vanishβ1, γ1, respectively. Here,G1 is the generalized
Givens transformation for the first and the (n+ 1)th rows and
G2, G3 are Givens transformations for the first and the second
rows, the first and the third rows, respectively. After the three
transformations, we obtain the first column of the matrix on
the right hand side of equation (3). Applying similar operations
for second to nth columns successively, we obtain the upper
tridiagonal matrixU in the equation (3) and let the nextL be
UT to continue the algorithm. The operations are numerically
stable.

Algorithm 2 summarizes the above procedures. The subrou-
tines “rotg” and “rot” appeared in the Algorithm 2 are basic
BLAS routines. If we call the “rotg(x1, x2, c, s)”, the rotation
angle of the Givens transformation is stored in the argumentsc
ands with cos and sin forms. The subroutine “rot(x1, x2, c, s)”
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appliesthe Givens transformation defined by the argumentsc
and s.

Algorithm 2 Implicit Cholesky Decomposition for ann-by-n
lower tridiagonal matrixL (icds(L))

U := 0
for i = 1 to n do
α̌i := αi

rotg2(α̌i ,0, σ,c, s)

*eliminate subdiagonal element
rotg(α̌i , βi , c, s)
rot(β̌i , βi , c, s)

*eliminate subsubdiagonal element
rotg(α̌i , γi , c, s)
rot(β̌i , βi , c, s)
rot(γ̌i , γi , c, s)

end for
return Ľ

3. Shift Strategy
In the implicit Cholesky decomposition, proper choice of

the shift valueσ significantly accelerates convergence of the
oqds algorithm. The shift valueσ must be smaller than the
minimum singular value of the matrixL to keep the positive-
definiteness ofUTU. Therefore, we need a method to estimate
the lower bound of the minimum singular value of the lower
tridiagonal matrixL or the minimum eigenvalue ofLT L.

In this section, we discuss four types of lower bounds of
the minimum singular value or eigenvalue and design shift
method using them.

3.1 Gerschgorin Shift
Theorem 3.1 (Gerschgorin [5]).For an n-by-n matrix A=(
ai j

)
, let us define

Ri :=
∑
k,i

|aik |. (10)

Then, for any eigenvalueλ of A, there exists an integer i such
as

|λ − aii | ≤ Ri . (11)

If the matrix A is positive-definite symmetric, min(aii − Ri)
gives a lower bound of the eigenvalues since all the eigenval-
ues ofA are positive real number.

3.2 Generalized Newton shift
For a positive-definite symmetric matrixA and an arbitrary

positive integerp, the value of (Tr(A−p))−1/p is a lower bound
of the eigenvalues ofA. Then, finding the value of Tr{(LT L)−p},
we get a lower bound of the singular values ofL. We consider
a method of computing the value of Tr{(LT L)−p} in this
subsection.

Algorithm 3 Gerschgorin shift (gerschgorin(L))

σ := α2
n−1 + β

2
n−2 + γ

2
n−3 − |αn−3γn−3| − |βn−3γn−3 + αn−2βn−2|

if σ ≤ 0 then
return 0

end if
tmp := α2

n−2+β
2
n−3+γ

2
n−4−|αn−4γn−4|−|βn−4γn−4 + αn−3βn−3|−

|βn−3γn−3 + αn−2βn−2|
if tmp≤ 0 then

return 0
else if tmp< σ then
σ := tmp

end if
for i = N - 2 to 3 do

tmp := α2
i + β

2
i−1 + γ

2
i−2 − |αi−2γi−2| − |βi−1γi−1 + αiβi | −

|βi−2γi−2 + αi−1βi−1| − |αiγi |
if tmp≤ 0 then

return 0
else if tmp< σ then
σ := tmp

end if
end for
tmp := α2

2 + β
2
1 − |α1β1| − |β1γ1 + α2β2| − |α2γ2|

if tmp≤ 0 then
return 0

else if tmp< σ then
σ := tmp

end if
tmp := α2

1 − |α1β1| − |α1γ1|
if tmp≤ 0 then

return 0
else if tmp< σ then
σ := tmp

end if

Let L̄ be an n-by-n lower tridiagonal matrix,

L̄ =



ᾱ1

β̄1 ᾱ2

γ̄1 β̄2 ᾱ3

. . .
. . .

. . .

γ̄n−2 β̄n−1 ᾱn


(12)

determined fromL with shift s by

L̄L̄T = LLT − sI. (13)

The relationships among elements are given by

ᾱ2
i + β̄

2
i−1 + γ̄

2
i−2 = α

2
i + β

2
i−1 + γ

2
i−2 − s, (14)

β̄i−2γ̄i−2 + ᾱi−1β̄i−1 = βi−2γi−2 + αi−1βi−1, (15)

ᾱi−2γ̄i−2 = αi−2γi−2. (16)

Differentiating equations (14)–(16) with respect tos, we obtain

2ᾱi ᾱ
′
i + 2β̄i−1β̄

′
i−1 + 2γ̄i−2γ̄

′
i−2 = −1, (17)

β̄′i−2γ̄i−2 + β̄i−2γ̄
′
i−2 + ᾱ

′
i−1β̄i−1 + ᾱi−1β̄

′
i−1 = 0, (18)
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ᾱ′i−2γ̄i−2 + ᾱi−2γ̄
′
i−2 = 0. (19)

Note that theαi , βi , γi are independent ofs but theᾱi , β̄i , γ̄i

are not. Differentiating once more, we get

2ᾱ′2i + 2ᾱi ᾱ
′′
i + 2β̄′2i−1

+ 2β̄i−1β̄
′′
i−1 + 2γ̄′2i−2 + 2γ̄i−2γ̄

′′
i−2 = 0, (20)

ᾱ′′i−2γ̄i−2 + 2ᾱ′i−2γ̄
′
i−2 + ᾱi−2γ̄

′′
i−2 = 0, (21)

β̄′′i−2γ̄i−2 + 2β̄′i−2γ̄
′
i−2 + β̄i−2γ̄

′′
i−2

+ ᾱ′′i−1β̄i−1 + 2ᾱ′i−1β̄
′
i−1 + ᾱi−1β̄

′′
i−1 = 0. (22)

Let us write the eigenvalues of the matrixLLT by
λ1, λ2, · · · , λn. Then, the characteristic polynomial of the ma-
trix L̄L̄T

f (s) = det(LLT − sI)

= (λ1 − s)(λ2 − s)· · · (λn − s), (23)

because of the triangularity of the matrixL, is expressed by

f (s) = ᾱ1ᾱ2 · · · ᾱn. (24)

Let us define

g(s) := − f ′(s)
f (s)

= −2
ᾱ′1
ᾱ1
− 2
ᾱ′2
ᾱ2
− · · · − 2

ᾱ′n
ᾱn
, (25)

h(s) := g′(s)

= −2
ᾱ′′1 ᾱ1 − ᾱ′21
ᾱ2

1

− · · · − 2
ᾱ′′n ᾱn − ᾱ′2n
ᾱ2

n
(26)

so that g(0) = Tr{(LT L)−1} and h(0) = Tr{(LT L)−2}. Each ᾱi

tends toαi as s → 0. Hence, we can calculate the value
of ᾱ′i , β̄

′
i , γ̄

′
i , ᾱ

′′
i , β̄′′i , γ̄′′i at s = 0 from αi , βi , γi by

using (17)–(22), and theng(0) and h(0) by (25) and (26).
It is clear by the definition ofg(0) andh(0) that the values
are always nonnegative without numerical error (in infinite-
precision arithmetic). The procedure of computation for the
traces of lower tridiagonal matrixL is shown in Algorithm 4.
The generalized Newton shift is value of 1/

√
tr2.

3.3 Laguerre Shift
If we already have the value of Tr{(LLT)−1} and Tr{(LLT)−2},

we could improve the sharpness of the shift byO(1) operation.
Laguerre shift is one of the methods to improve the shift value.

Theorem 3.2 (Laguerre [7]). For an n-by-n positive-definite
symmetric penta-diagonal matrix B= LLT , let θ be the
following value:

θ :=
n

Tr
(
B−1
)
+

√
(n− 1)

(
nTr
(
B−2
) − Tr

(
B−1
)2) .

Then, theθ is a lower bound of the eigenvalues of B which is
greater thanTr(B−1)

−1
and Tr(B−2)

−1/2
.

If the valuenTr
(
B−2
)
−Tr
(
B−1
)2

is negative, Laguerre shift
is useless. In that case, we adopt the generalized Newton shift.
Algorithm 5 shows a procedure of Laguerre method.

Algorithm 4 Computation for the traces (trace(L))
α′1 := −1/(2α1)
β′1 := −α′1β1/α1

γ′1 := −α′1γ1/α1

α′2 := (−β1β
′
1 − 0.5)/α2

β′2 := −(γ′1β1 + γ1γ
′
1 + α

′
2β2)/α2

α′3 := −(1+ 2× γ1γ
′
1 + 2β2β′2)/(2α3)

α′′1 := −α′1
2/α1

β′′1 := −(α′′1β1 + 2α′1β
′
1)/α1

γ′′1 := −(α′′1γ1 + 2α′1γ
′
1)/α1

α′′2 := −(β′1
2 + β1β

′′
1 + α

′
2

2)/α2

β′′2 := −(γ′′1 β1 + 2γ′1β
′
1 + γ1β

′′
1 + α

′′
2β2 + 2α′2β

′
2)/α2

α′′3 := −(γ′1
2 + γ1γ

′′
1 + β

′
2

2 + β2β
′′
2 + α

′
3

2)/α3

for i = 4 to N do
γ′i−2 := −α′i−2γi−2/αi−2

β′i−1 := −(β′i−2γi−2 + βi−2γ
′
i−2 + α

′
i−1βi−1)/αi−1

α′i := −(1+ 2βi−1β
′
i−1 + 2γi−2γ

′
i−2)/(2αi)

γ′′i−2 := −(α′′i−2γi−2 + 2α′i−2γ
′
i−2)/αi−2

β′′i−1 := −(β′′i−2γi−2 + 2β′i−2γ
′
i−2

+βi−2γ
′′
i−2 + α

′′
i−1βi−1 + 2α′i−1β

′
i−1)/αi−1

α′′i := −(α′i
2 + β′i−1

2 + βi−1β
′′
i−1 + γ

′
i−2

2 + γi−2γ
′′
i−2)/αi

end for
tr1 := 0
for i = 1 to N do

tr1 := tr1− (2α′i /αi)
end for
tr2 := 0
for i = 1 to N do

tr2 := tr2− 2(α′′i αi − α′i
2)/α2

i
end for
return (tr1, tr2)

Algorithm 5 Laguerre shift (laguerre(tr1, tr2))
(tr1, tr2) := trace(L)
tmp := n× tr2− tr12

if tmp> 0 then
return n/(tr1+

√
(n− 1)× tmp)

else
return 0

end if

3.4 Kato-Temple Shift
There is another lowerbound, Kato-temple shift.

Theorem 3.3 (Kato-Temple [8]). For an n-by-n symmetric
matrix An, let An−1 denote the submatrix of An obtained by
deleting the last row and column. For any lower boundλ∗

of the eigenvalues of An−1, and for any x∈ Rn, ∥x∥ = 1, let
ρ = xT Ax. Then, ifρ < λ∗ , the value

ρ − ∥Anx− ρx∥2
λ∗ − ρ ≤ λmin (An)

givesa lower bound of the eigenvalues of An.

We choosex = (0, . . . ,0,1)T . The method requiresλ∗ which
is a lower bound for the submatrixAn−1, but the generalized
Newton method enables us to find the lower bound ofAn−1
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in computation of the lower bound ofAn. Consequently, we
obtain one more improved shift value byO(1) operation.
Algorithm 6 shows a procedure of Kato-Temple method. The

Algorithm 6 Kato-Temple method

x := (0, . . . ,0,1)T

(tr1, tr2) := trace(Ln−1)
λ∗ := laguerre(tr1, tr2)
ρ := xT Ln−1x
if ρ < λ∗ then

return ρ − ∥Anx− ρx∥2/ (λ∗ − ρ)
else

return 0
end if

procedureof the proposed shift composed by the generalized
Newton, Laguerre and Kato-Temple is shown in Algorithm 7.
We adopt the largest value of them.

3.5 Applying Shift
Among the shifts discussed in this section, we cannot

determine which is the most effective. The sharpness of each
shift depends on the type of matrix, and the type of matrix is
unknown before computing. Laguerre shift often gives sharp

shift but if the value ofnTr
(
B−2
)
− Tr

(
B−1
)2

is negative,
we cannot adopt the shift. Besides, even if a shift value is
smaller than minimum singular value, iteration of the oqds
algorithm might fail. For example, ifσ > x2

1 + x2
2, we could

not apply the generalized Givens transformation. Gerschgorin
shift gives a sharp value if the subdiagonal and second-
subdiagonal elements are small. On the other hand, if non-
diagonal elements are too large, Gerschgorin shift gives useless
value such as zero or negative value. In such a case, we should
choose another shift. Generalized Newton shift always gives
usable value in the case other shifts failed.

For those reasons, we should design a proper shift strategy.
Generally, non-diagonal elements converge to zero in the oqds
algorithm, and after deflation or splitting, the eigenvalues of
the matrixA become more clustered. Therefore, we adopt the
largest value of generalized Newton, Laguerre, Kato-Temple
shift first, and if the generalized Givens transformation failed,
then we move to the Gerschgorin shift. Then, one step of
the oqds algorithm works as Algorithm 8. The subroutine
“gerschgorin(L)” returns the value of Gerschgorin shift of
matrix L.

4. Convergence Criteria
It is nontrivial how to assess a series of matrices generated

by the iterative process of the oqds algorithm converges
sufficiently.Besides, in the implementation of this algorithm,
deflation and splitting are required for activating the shift
method. In this section, we consider the situation that deflation
or splitting is available where the values of subdiagonal and
second-subdiagonal elements are so small.

Let us write

L̂ := L − βkek+1ek
T

Algorithm 7 Proposed shift (algshift(L))
α′1 := −1/(2α1)
β′1 := −α′1β1/α1

γ′1 := −α′1γ1/α1

α′2 := (−β1β
′
1 − 0.5)/α2

β′2 := −(γ′1β1 + γ1γ
′
1 + α

′
2β2)/α2

α′3 := −(1+ 2× γ1γ
′
1 + 2β2β′2)/(2α3)

α′′1 := −α′1
2/α1

β′′1 := −(α′′1β1 + 2α′1β
′
1)/α1

γ′′1 := −(α′′1γ1 + 2α′1γ
′
1)/α1

α′′2 := −(β′1
2 + β1β

′′
1 + α

′
2

2)/α2

β′′2 := −(γ′′1 β1 + 2γ′1β
′
1 + γ1β

′′
1 + α

′′
2β2 + 2α′2β

′
2)/α2

α′′3 := −(γ′1
2 + γ1γ

′′
1 + β

′
2

2 + β2β
′′
2 + α

′
3

2)/α3

for i = 4 to N do
γ′i−2 := −α′i−2γi−2/αi−2

β′i−1 := −(β′i−2γi−2 + βi−2γ
′
i−2 + α

′
i−1βi−1)/αi−1

α′i := −(1+ 2βi−1β
′
i−1 + 2γi−2γ

′
i−2)/(2αi)

γ′′i−2 := −(α′′i−2γi−2 + 2α′i−2γ
′
i−2)/αi−2

β′′i−1 := −(β′′i−2γi−2 + 2β′i−2γ
′
i−2

+βi−2γ
′′
i−2 + α

′′
i−1βi−1 + 2α′i−1β

′
i−1)/αi−1

α′′i := −(α′i
2 + β′i−1

2 + βi−1β
′′
i−1 + γ

′
i−2

2 + γi−2γ
′′
i−2)/αi

end for
tr1 := 0
for i = 1 to N − 1 do

tr1 := tr1− (2α′i /αi)
end for
tr2 := 0
for i = 1 to N − 1 do

tr2 := tr2− 2(α′′i αi − α′i
2)/α2

i
end for
λ∗ := 1/sqrt(tr2)
tmp := n× tr2− tr12

if tmp> 0 then
λ∗ := max(λ∗,n/(tr1+

√
(n− 1)× tmp))

end if
tr1 := tr1− (2α′N/αN)
tr2 := tr2− 2(α′′NαN − α′N

2)/α2
N

shi f t := 1/sqrt(tr2)
x := (0, . . . ,0,1)T

ρ := xT Ln−1x
if ρ < λ∗ then

shi f t := max(shi f t, ρ − ∥Anx− ρx∥2/ (λ∗ − ρ))
end if
tmp := n× tr2− tr12

if tmp> 0 then
shi f t := max(shi f t,n/(tr1+

√
(n− 1)× tmp))

end if
return shi f t
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Algorithm 8 oqds step(oqds(L, shi f t))
f lag := 0
if f lag = 0 then
σ := algshift(L)

else if f lag := 1 then
σ := gerschgorin(L)

else
σ := 0

end if
if σ + shi f t= shi f t then

Ľ := icds(L,0)
L := Ľ

else
Ľ := icds(L, σ)
if α̌ , α̌ then

f lag := f lag+ 1
else

shi f t := shi f t+ σ
L := Ľ

end if
end if

which is the matrix equal toL except for zero at (k+1, k)-entry.
Then

LT L = L̂T L̂ + E1, (27)

LLT = L̂L̂T + E2 (28)

hold, where

E1 := β2ekek
T + αk+1βk

(
ekeT

k+1 + ek+1eT
k

)
+βkγk−1

(
ek−1eT

k + ekeT
k−1

)
, (29)

E2 := β2ek+1ek+1
T + αkβk

(
ek−1eT

k + ekeT
k−1

)
+βkγk

(
ek+1eT

k + ekeT
k+1

)
. (30)

Theorem 4.1 (Weyl’s monotonicity theorem [9], [10]). For
an n-by-n positive-definite matrix A, letλi (A) denote the i-th
largest eigenvalue of A. Then, there exist reals ui and vi such
that

λi

(
LT L
)
= λi

(
L̂T L̂
)
+ ui ∥E1∥1 , (31)

λi

(
LLT
)
= λi

(
L̂L̂T
)
+ vi ∥E2∥1 (32)

where |ui | ≤ 1, |vi | ≤ 1.

From the definitions (29) and (30) ofE1 and E2, we have

∥E1∥1 = ∥E1∥∞ = |βk| (|αk+1| + |βk| + |γk−1|) , (33)

∥E2∥1 = ∥E2∥∞ = |βk| (|αk| + |βk| + |γk|) . (34)

By Weyl’s monotonicity theorem, we thus get the numerical
deflation or splitting criterion to neglect a subdiagonal element
βk:

σ2 + |βk| (|βk| +min(|αk+1| + |γk−1| , |αk| + |γk|)) ≃ σ2, (35)

where ‘≃’ means that the left-hand side and the right-hand
side are numerically equal. We assume thatβk is so small and
negligible provided that (35) holds numerically.

Similarly, we get the numerical criterion for neglecting a
second-subdiagonal elementγk. On the setting of

L̂ := L − γkek+2ek
T ,

the perturbation matrices are given by

E′1 := γ2ekek
T + αk+2γk

(
ek+2eT

k + ekeT
k+2

)
+βk+1γk

(
ek+1eT

k + ekeT
k+1

)
,

E′2 := γ2ek+2ek+2
T + αkγk

(
ek−2eT

k + ekeT
k−2

)
+βkγk

(
ek−1eT

k + ekeT
k−1

)
.

Then, by evaluating the 1- and∞-norms of these matrices,
we obtain the criterion for neglecting a second-subdiagonal
elementγk as follows:

σ2 + |γk| (|γk| +min(|αk+2| + |βk+1| , |αk| + |βk|)) ≃ σ2. (36)

For the matrices in iteration, we perform deflation and splitting
as follows:

1) If βn−1 andγn−2 in the last row satisfy the criteria (35)
and (36), then we deflate the matrix by deleting the last
row and column.

2) If βk−1, γk−1 andγk−2 satisfy the criteria (35) and (36),
then we split the matrix into two submatrices formed by
rows and columns 1 tok− 1 andk to n, respectively.

5. Numerical Experiments
Some numerical experiments were performed for the oqds

algorithms for bidiagonal matrices and for lower tridiagonal
matrices. The singular values of square random matrices were
computed by the oqds algorithm for bidiagonal matrices by
von Matt and by the oqds algorithm for lower tridiagonal
matrices which we propose. It should be noted that: The oqds
for bidiagonal matrices were applied to random bidiagonal
matrices and the proposed oqds algorithm for lower tridiagonal
matrices were applied to random lower tridiagonal matrix.
The numerical experiments were performed on a Linux PC
with Intel Core i7 920 (Nehalem) 2.66GHz and DDR3-1066
12GB memory. Table 1 shows the computation time of each
algorithm. The first row shows the size of matrices. The
second and the third rows show the computation time taken
by the oqds algorithm for bidiagonal matrices and for lower
tridiagonal matrices, respectively.

Table 1

Computation time (seconds)

matrix size 10000 20000 30000
oqdsfor bidiagonal 11.764 43.243 93.080

proposed oqds for lower tridiagonal 27.089 100.013 210.225

5.1 Discussion
Hence, in order to compute the eigenvalues of matrices

of the same size, the oqds algorithm for lower tridiagonal
matrices is expected to take a longer computation time than the
oqds for bidiagonal matrices. From Table 1, we observe that
the computation time in the former algorithm is not extremely
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longer than the latter algorithm: the former is two or three
times slower than the latter.

This observation demonstrates that the oqds algorithm for
lower tridiagonal matrices is practically useful for the general
dense matrices. Commonly, the computation of the singular
values of a dense matrix is twofold:

1) preprocess of reducing into a sparse band matrix.
2) singular computation of the sparse band matrix.

The computation time for preprocess is estimatedO(n3) while
for the singular value computationO(n2). Hence, a vast amount
of the computation time is consumed by the preprocess. On
the preprocess for dense matrices, it is reported in [11] that
the reduction into a lower tridiagonal matrix is about 50%
faster than that into bidiagonal matrices. Therefore, the total
time of preprocess into a lower tridiagonal matrix and the
oqds for lower tridiagonal matrices is much faster than the
time of preprocess into bidiagonal matrices and the oqds for
bidiagonal matrices.

6. Conclusions
We proposed the oqds algorithm for lower tridiagonal

matrices. Though computing singular values of lower tridi-
agonal matrices takes longer time than bidiagonal matrices,
preprocess reducing dense matrices into lower tridiagonal
matrices takes less time than into bidiagonal matrices. Not only
simple reduction of computational complexity, we can apply
the BLAS Level 2.5 routines to lower tridiagonalization. The
BLAS Level 2.5 routines are more cache efficient than BLAS
Level 2 routines commonly applied to bidiagonalization. A
cache efficient algorithm saves a number of memory accesses
which waste a big time. The computation time for preprocess
is estimatedO(n3) while for the singular value computation
O(n2), hence, a vast amount of the computation time is
consumed by the preprocess. Therefore, if we can compute the
singular values of lower tridiagonal matrices not so longer than
for bidiagonal matrices, it is expected that total computation
time decreases extremely.

For an implementation of this algorithm, we proposed a new
shift strategy consisting of the generalized Newton shift and
associated two methods, Laguerre shift and Kato-Temple shift,
and the well known Gerschgorin shift. Moreover, we design
new convergence criteria for deflation and splitting required
for the implementation of the oqds algorithm. By the criteria,
we can do the convergence test for lower tridiagonal matrices.

As a result, the algorithm computes the singular values of
a lower tridiagonal matrix withinO(n2) computation time.
Although it takes about two or three times as long time for
tridiagonal matrices as for bidiagonal matrices, proposed algo-
rithm is expected to be faster than the conventional methods
since the preprocessing requiresO(n3) operations and takes
much larger time than the oqds algorithm.

As a future work, we have to perform more experiment to
compare the computation time including preprocessing. Fur-
thermore, exact error analysis should be made and we ought
to check out the accuracy of the algorithm after improving the
implementation and setting proper test matrices which have
known eigenvalues.
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Abstract— A new lower bound for computing positive roots
of polynomial equations is proposed. We discuss a two-
stage algorithm for computing positive roots of polynomial
equations. In the first stage, we use the continued fraction
method based on Vincent’s theorem, which employs the lower
bound of real roots, for isolating the positive roots into
intervals. In the second stage, we apply a bisection method to
each interval. In order to compute the proposed lower bound,
we follow three steps. First, we compute a candidate for
the lower bound generated by Newton’s method. Second, by
using Laguerre’s theorem, we check whether the candidate
for the lower bound is suitable. Third, we compare the local-
max bound and the proposed lower bound. Then, we employ
the larger bound to accelerate the continued fraction method
based on Vincent’s theorem. Finally, we conduct experiments
to evaluate the effectiveness of the proposed lower bound.

(This paper is submitted to PDPTA’13.)

Keywords: continued fraction method, Vincent’s theorem, local-
max bound, Newton’s method, Laguerre’s theorem

1. Introduction
The real roots of univariate polynomial equations are more

useful than the imaginary roots for practical applications in
various engineering fields. Thus, the objective of this study
is the computation of all real roots of polynomial equations.
For this purpose, we develop a real-root isolation algorithm.
For polynomial equations without multiple roots, each root
can be isolated into a numeric interval. Then, the accuracy
of the isolated real roots can be easily enhanced by using a
bisection method.

The continued fraction method for isolating the posi-
tive roots of univariate polynomial equations is based on
Vincent’s theorem [2], [10]. In this method, each positive
root is isolated using Descartes’ rule of signs [3], which
focuses on the coefficients of the polynomial equations.
The execution of Descartes’ rule of signs requires origin
shifts. Thus, several coefficients of a polynomial equation
are transformed into nonzero coefficients, even in the case
of sparse polynomial equations, which have many zero
coefficients. The Krawczyk method [8], which is based on

the numerical verification method, is a technique that has
been developed for isolating the positive roots of polynomial
equations that have many zero coefficients. In this paper, we
investigate the continued fraction method, which is based
on Vincent’s theorem, for isolating the positive roots of
polynomial equations that have many nonzero coefficients.

To accelerate the continued fraction method based on
Vincent’s theorem, the lower bound of the smallest positive
root is required. In general, to obtain the lower bound of
positive roots of a polynomial equation, we first substitute
1/x for x in the polynomial equation f(x). Second, we
compute the upper bound of the positive roots. Third, we
obtain the lower bound by computing the inverse of the
upper bound. The Cauchy bound [9] and the Kioustelidis
bound [6] are known as upper bounds of the positive roots of
polynomial equations. Akritas et al. introduced a generalized
theorem including the Cauchy bound and the Kioustelidis
bound [1]ï£¡D Then, by specializing this generalized theo-
rem, they proposed a new upper bound called the local-max
bound, which is different from both the Cauchy bound and
the Kioustelidis bound.

In this paper, we propose a new lower bound for accel-
erating the continued fraction method based on Vincent’s
theorem. The new lower bound is obtained using Newton’s
method [5] and Laguerre’s theorem [7]. The magnitude
correlation of the local-max bound and the new lower bound
depends on the input polynomial. Thus, after we compare the
local-max bound and the new lower bound, the larger lower
bound is adopted for the continued fraction method based on
Vincent’s theorem. Note that computing lower bounds incurs
computation time. Therefore, the new lower bound must be
sometimes larger than the local-max bound.

To evaluate the new lower bound, we compare the time for
computing the lower bound generated by only the local-max
bound with that for computing the lower bound generated
by both the local-max bound and the new lower bound. If
the computation time decreases by virtue of the new lower
bound, it is proved that the new lower bound is sometimes
larger than the local-max bound.

The remainder of this paper is organized as follows. In
Section 2, we describe univariate polynomial equations. In
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Section 3, we introduce the continued fraction method based
on Vincent’s theorem. In Section 4, we propose the new
lower bound, which is computed using Newton’s method and
checked using Laguerre’s theorem. In Section 5, we evaluate
the effectiveness of the proposed lower bound. Finally, in
Section 6, we state our conclusions and briefly describe the
scope for further investigation.

2. Positive Roots of Polynomials
To compute the positive roots of a polynomial equation

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0, (1)
x ∈ R, ai ∈ Z,

in the interval x ∈ (0,∞), we first isolate each root into
a numeric interval. Second, we improve the accuracy of the
real roots by using a bisection method. If a real root is equal
to 0, then an = 0. Thus, we discuss only the problem in
x ∈ (0,∞). Here, the intervals are defined by,

x ∈ [a, b], x ∈ (a, b] or x ∈ [a, b), a, b ∈ R, a ≤ b, (2)

where [, ], (, ] or [, ) denote a closed interval, a left-open
right-closed interval, and a left-closed right-open interval,
respectively.

A polynomial equation f(x) should have no multiple roots
so that the continued fraction method can be employed for
isolating its positive roots. If a polynomial equation g1(x)
has multiple roots, then these roots are transformed into
simple roots by using the equation

f(x) :=
g1(x)

G.C.D.(g1(x), g′1(x))
, (3)

where G.C.D.(, ) is the greatest common divisor related
to two equations, and g′1(x) denotes the first derivative of
g1(x). Thus, we can assume that f(x) have no multiple
roots.

A polynomial equation g2(x) with rational coefficients bi
is given by the equation

g2(x) = b0x
n + b1x

n−1 + · · ·+ bn−1x+ bn = 0, (4)

bi =
di,2
di,1
∈ Q.

By using the least common multiple, or L.C.M., of all di,1,
the polynomial equation g2(x) can be transformed into the
equation f(x) with integer coefficients:

f(x) := L.C.M.(di,1)g2(x). (5)

A polynomial equation g3(y) with integer coefficients and
no multiple roots is set to the equation

g3(y) = a0y
n + a1y

n−1 + · · ·+ an−1y + an = 0, (6)
y ∈ R, ai ∈ Z.

The real roots of g3(y) in the interval [u, v], u, v ∈ R
are isolated through the following procedure. By using the
replacement,

y → − 1

x+ 1
−u+v

+ v, (7)

we transform g3(y) into the equation

g4(x) = g3

(
− 1

x+ 1
−u+v

+ v

)
, (8)

f(x) := numerator (g4(x)) , (9)

where the function “numerator” implies computation of the
numerator of g4(x). Under eq. (7), y ∈ [u, v) in g3(y)
corresponds to x ∈ [0,∞) in f(x). However, the case that
y = v is not included in the interval [u, v). Thus we treat
the case that y = v as a special case.

Hence, polynomial equations with rational coefficients and
multiple roots in the interval [u, v] can be transformed into
eq. (1) by the above operations.

3. Continued Fraction Method based
Vincent’s Theorem for Isolating Positive
Roots
3.1 Concept

In the continued fraction method based on Vincent’s
theorem, real roots in (0,∞) can be isolated using the
Descartes’ rule of signs.

Descartes’ rule of signs is derived from the following
theorem.

Theorem 1 (The Descartes’ rule of signs): In a polyno-
mial equation

f(x) = a0x
n + · · ·+ an−1x+ an = 0,

x ∈ R,

with real coefficients,

W := the number of “changes of sign” in the list of
coefficients{a0, a1, . . . , an} except ai = 0,

N := the number of positive roots in (0,∞)

are defined. Under these definitions, we have,

N = W − 2h.

Here, h is a non-negative integer.

By using Theorem 1, the number of positive roots of the
polynomial equation f(x) is determined in the following
conditional branch:

• In the case that W = 0, f(x), x ∈ (0,∞) does not
have any positive roots.
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Table 1: Synthetic division in g5(x).
a0 a1 a2 a3

a0 a0 + a1 a0 + a1 + a2

a0 a0 + a1 a0 + a1 + a2 a0 + a1 + a2 + a3
a0 2a0 + a1

a0 2a0 + a1 3a0 + 2a1 + a2
a0

a0 3a0 + a1

• In the case that W = 1, f(x) has only one positive root
in the interval x ∈ (0,∞).

• In the case that W ≥ 2, the number of positive roots
of f(x) cannot be determined.

In the case that W = 1, the isolated interval should be set
to (0, ub], where ub denotes the upper bound of positive roots
for a polynomial equation f(x). Computation methods for
the upper bound of positive roots of a polynomial equation
f(x) are described in Section 3.2.

In the case that W ≥ 2, we divide the interval (0,∞) in
the two intervals. Then, Descartes’ rule of signs is applied
in each interval. In the continued fraction method based on
Vincent’s theorem, the interval (0,∞) is divided in (0, 1)
and (1,∞). The division is performed by the replacement

x→ x+ 1,

x→ 1

x+ 1
.

By using the replacement x→ x+1, the interval (0,∞) of
the replaced polynomial equation corresponds to the interval
(1,∞) of the original polynomial equation. Similarly, by
using the replacement x→ 1/(x+1), the interval (0,∞) of
the replaced polynomial equation corresponds to the interval
(0, 1) of the original polynomial equation. The intervals
(1,∞) and (0, 1) do not include the case that x = 1. To solve
for this case, after either replacement, we check whether the
coefficient an, which is a constant term, vanishes. If an = 0
in the replaced polynomial equation, then 1 is a root of the
original polynomial equation.

In the above replacements, the computation of coefficients
of a replaced polynomial equation is required. For example,
in the case that the coefficients of

g5(x) = a0(x+ 1)3 + a1(x+ 1)2 + a3(x+ 1) + a4, (10)

are computed, the synthetic division, which is shown in
Table 1, can be adopted. In Table 1, the coefficients of
x3, x2, x1, and x0 become a0, 3a0 + a1, 3a0 + 2a1 + a2,
and a0 + a1 + a2 + a3, respectively. Thus, by using the
synthetic division, the computation cost, which is incurred
for obtaining the coefficients of the replaced polynomial
equation for a replacement x→ x+ 1, is O(n2).

3.2 Computation for Upper Bound
To obtain the upper bound, the following theorem [1] can

be applied.

Theorem 2 (Akritas, 2006): Let f(x) be a polynomial
with real coefficients and we assume a0 > 0 in this section.
Let d(f) and t(f) denote its degree and number of terms,
respectively.
In addition, assume that f(x) can be reshaped as follows:

f(x) = q1(x)− q2(x) + · · · − q2m(x) + g6(x), (11)

where all the polynomials qi(x), i = 1, 2, · · · , 2m and g6(x)
have only positive coefficients. Moreover, assume that for
i = 1, 2, · · · ,m we obtain,

q2i−1(x) = c2i−1,1x
e2i−1,1 + · · ·

+c2i−1,t(q2i−1)x
e2i−1,t(q2i−1) (12)

and

q2i(x) = b2i,1x
e2i,1 + · · ·+ b2i,t(q2i)x

e2i,t(q2i) (13)

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i), and the expo-
nent of each term in q2i−1(x) is greater than the exponent
of each term in q2i(x). If for all indices i = 1, 2, · · · ,m, we
obtain

t(q2i−1) ≥ t(q2i), (14)

then the upper bound of the positive roots of f(x) is defined
by,

ub = max
i=1,2,··· ,m

{ (
b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, · · · ,(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)

−e2i,t(q2i)

}
,

(15)

for any permutation of the positive coefficients c2i−1,j , j =
1, 2, · · · , t(q2i−1). Otherwise, for each of the indices i for
which we obtain

t(q2i−1) < t(q2i), (16)

we break up one of the coefficients of q2i−1(x) into t(q2i)−
t(q2i−1) + 1 parts, so that now t(q2i) = t(q2i−1) and we
apply the same formula defined in eq. (15).

In general, we can get better bounds if we pair coefficients
from non-adjacent polynomials q2l−1(x) and q2i(x), for 1 ≤
l < i. A well-known implementation of this type is the
Cauchy rule. In the Cauchy rule, if f(x) is given by eq. (1),
of degree n > 0, with ak < 0 for at least one k, 1 ≤ k ≤ n,
and if λ is the number of negative coefficients, then an upper
bound of the positive roots of f(x) is defined by,

ub1 = max
1≤k≤n:ak<0

k

√
−λak

a0
. (17)
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Algorithm 1 Implementation of the “local-max” bound.
cl← {an, an−1, · · · , a1, a0}
if n+ 1 ≤ 1 then

return ub3 = 0
end if
j = n+ 1
t = 1
for i = n to 1 step −1 do

if cl(i) < 0 then
tempub = (2t(−cl(i)/cl(j)))1/(j−i)

if tempub > ub then
ub = tempub

end if
t++

else if cl(i) > cl(j) then
j = i
t = 1

end if
end for
ub3 = ub

We have another bound called Kioustelidis’ bound [6] as
follows:

ub2 = 2 max
1≤k≤n:ak<0

k

√
−ak
a0

. (18)

The Kioustelidis bound is closely related to the Cauchy
rule. However, the Cauchy bound and the Kioustelidis bound
give an overestimation of the upper bound for some cases.
Thus, Akritas et al. introduced the local-max pairing strategy
(defined in Definition 1) in order to generate a suitable
bound.

Definition 1 (“local-max”): For a polynomial equation
f(x) given by eq. (1), the coefficient −ak of the term
−akxn−k in f(x) is paired with the coefficient am/2l of the
term amxn−m, where am is the largest positive coefficient
with 0 ≤ m < k and t denotes the number of times the
coefficient am has been used.

The implementation of the local-max bound is described in
Algorithm1, and the output is ub3.

3.3 Acceleration using Lower Bound
The continued fraction method based on Vincent’s theo-

rem requires many replacement operations x → x + 1 and
x → 1/(x + 1). In other words, the origin shift is realized
by x → x + 1. Thus, if the positive roots are much larger
than 1, then the computation time increases, as we must
repeat the replacement operation x→ x+1. To decrease the
computation time, the lower bound of the smallest positive
root of a polynomial equation should be used as a shift.

In general, to obtain the lower bound lb of an original
polynomial equation, we first substitute 1/x for x in the
original polynomial equation. Second, we compute the upper
bound ub3 of the positive roots. Third, we obtain the lower
bound lb by computing the inverse of the upper bound as
follows:

lb =
1

ub3
. (19)

If lb > 1, then the replacement x→ x+ lb is adopted, as the
computation time for isolating the positive roots decrease. If
lb ≤ 1, then we do not adopt the lower bound lb, as the lower
bound lb is not sufficiently large to reduce the computation
time.

Algorithm 2 shows a continued fraction method based
on Vincent’s theorem with origin shift using the local-max
bound. The computation time for the Algorithm 2 is less than
that for the continued fraction method based on Vincent’s
theorem without the origin shift. The replacements x→ x+1
and x→ 1/(x+1) are called Möbius transformations. After
the intervals for isolating the positive roots of a polynomial
equation are determined, each interval should be replaced
by the interval processed by all inverse transformations of
Möbius transformations.

4. New Lower Bound
The acceleration of the continued fraction method based

on Vincent’s theorem employs the origin shift, which adopts
the lower bound lb of the smallest positive root of a given
polynomial equation. Thus, if the lower bound tends to the
smallest positive root, then the computation time of the
continued fraction method decreases.

In this paper, we propose a new lower bound generated by
Newton’s method. Note that in some polynomial equations,
a bound generated by Newton’s method is not suitable as the
lower bound. Hence, by using Laguerre’s theorem, it must
be checked whether a bound generated by Newton’s method
is a suitable lower bound.

Newton’s method is defined by the following recurrence
formula:

xm+1 = xm −
f(xm)

f ′(xm)
. (20)

Here, f ′(x) denotes the first derivative of f(x). If Newton’s
method is adopted at the origin, then a candidate for the
lower bound r is computed as follows:

r = 0− f(0)

f ′(0)
= − an

an−1
. (21)

The cost for computing r is O(1).
We can check whether a candidate for the lower bound r

is suitable by using the following theorem.
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Algorithm 2 Continued fraction method based on Vincent’s
theorem with the local-max shift strategy.
R← ϕ
S ← {poly}
if 0 is a solution of poly then

R← R ∪ [0, 0]
poly ← poly/x

end if
while S ̸= ϕ do

poly ← dequeue(S)
W ← Descartes(poly)
if W = 1 then
ub3 ← Algorithm1 with poly
R← R ∪ Inverse Möbius trans ((0, ub3])

else if W ≥ 2 then
poly2← Trans(poly, x→ 1/x)
ub3 ← Algorithm1 with poly2
lb← 1/ub3
if lb > 1 then
poly ← Trans(poly, x→ x+ lb)
if 0 is a solution of poly then
R← R ∪ Inverse Möbius trans ([lb, lb])
poly ← poly/x

end if
end if
poly3← Trans(poly, x→ x+ 1)
if 0 is a solution of poly3 then
R← R ∪ Inverse Möbius trans ([1, 1])
poly3← poly3/x

end if
poly4← Trans(poly, x→ 1/x+ 1)
S ← S ∪ {poly3, poly4}

end if
end while

Theorem 3 (the Laguerre theorem): For a polynomial
equation

f(x) = a0x
n + a1x

n−1 + · · ·+ an = 0

with real coefficients, let N be the number of positive roots
that are larger than a positive value α. The number N is less
than or equal to the number of sign changes in the following
polynomials fk(α):

fk(α) = a0α
k + a1α

k−1 + · · ·+ ak, k = 0, 1, . . . , n.

Here, f(α) ̸= 0 is assumed.

If x in Theorem 3 is replaced by 1/x, Theorem 3 can be
transformed into the following theorem.

Theorem 4: The number of positive roots of a polynomial
equation

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n = 0,

in the interval 0 < x < r is less than or equal to the number
of sign changes in the following polynomials pk(r):

p0(r) = a0,

p1(r) = a0 + a1r,

p2(r) = a0 + a1r + a2r
2, . . . ,

pn(r) = a0 + a1r + · · ·+ anr
n.

Here, r > 0 and pn(r) ̸= 0.

Thus, if the number of sign changes in pk(r), k = 0, · · · , n
is 0, then no positive roots in the interval 0 < x < r exist.
In such a case, the computation cost is O(n).

To get a candidate for the lower bound r, it is necessary
that the signs of an and an−1 must be opposite. Moreover,
it is needed to check pn(r) ̸= 0.

If a candidate for the lower bound r generated by New-
ton’s method is the lower bound of the smallest positive root,
then we adopt the lower bound lb as an origin shift defined
in the following equation:

lb = max

(
1

ub3
, r

)
. (22)

If lb > 1, then the origin shift x→ x+ lb is performed.
The improved algorithm of the continued fraction method

based on Vincent’s theorem with the shift strategy, including
both the local-max bound and the new lower bound gener-
ated by Newton’s method, is shown in Algorithm 3.

5. Experiment
In this section, we conduct experiments to evaluate the

effectiveness of the proposed lower bound.
Here, Algorithm 2 and Algorithm 3 are compared.
As test polynomial equations, we use f(x) with integer

coefficients:

f(x) =
r∏

i=0

(x− xi)×

s∏
j=0

(x− αj + iβj)(x− αj − iβj), (23)

xi, αj , βj ∈ R.

Here, parameters xi, αj , and βj are randomly set as follows:

−10000 ≤ xi, αj , βj ≤ 10000, (24)

Parameters s and r are set to s = 490, r = 20. Then, we
generate 100 test polynomial equations.

Table 2 shows the experimental environment. In the
continued fraction method based on Vincent’s theorem, the
multiple-precision arithmetic library GMP [4] is needed to
compute all coefficients in replaced polynomial equations.

Figure 1 shows the plots of the computation time in all
test polynomial equations. In Figure 1, the computation time
for Algorithm 3 is less than that for Algorithm 2, and the
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Algorithm 3 Improvement of the continued fraction method
based on Vincent’s theorem with the shift strategy including
both the local-max bound and the new lower bound gener-
ated by Newton’s method.
R← ϕ
S ← {poly}
if 0 is a solution of poly then

R← R ∪ [0, 0]
poly ← poly/x

end if
while S ̸= ϕ do

poly ← dequeue(S)
W ← Descartes(poly)
if W = 1 then
ub← Algorithm 1 with poly
R← R ∪ Inverse Möbius trans ((0, ub])

else if W ≥ 2 then
poly2← Trans(poly, x→ 1/x)
ub3 ← Algorithm 1 with poly2
r ← NewtonLowerbound(poly) which is checked
by using the Laguerre theorem
lb← max(1/ub3, r)
if lb > 1 then
poly ← Trans(poly, x→ x+ lb)
if 0 is a solution of poly then
R← R ∪ Inverse Möbius trans ([lb, lb])
poly ← poly/x

end if
end if
poly3← Trans(poly, x→ x+ 1)
if 0 is a solution of poly3 then
R← R ∪ Inverse Möbius trans ([1, 1])
poly3← poly3/x

end if
poly4← Trans(poly, x→ 1/x+ 1)
S ← S ∪ {poly3, poly4}

end if
end while

difference among the computation time in Algorithm 3 is
small.

Table 3 shows the computation time for the 100 random
polynomial equations. The maximum computation time for
Algorithm 3 is 1.48 times faster than that for Algorithm 2.
The average computation time for Algorithm 3 is 1.09 times
faster than that for Algorithm 2. The standard deviations in
Algorithm 2 and Algorithm 3 are not considerably large.

The computation cost of the local-max bound, which is
used the continued fraction method based on Vincent’s theo-
rem described in Section 3.3, is O(n). The computation cost
of Newton’s method, which can compute a candidate for the
lower bound r, is O(1). The computation cost of Laguerre’s
theorem, which can check whether a candidate for the lower

Table 2: Experimental environment.
CPU Core i7 3770K 3.5GHz

Memory size 32GB

Compiler GCC 4.7.2

Library GMP 5.1.1
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Fig. 1: Computation time in all test polynomial equations.
[sec.]

bound r is suitable, is O(n). Thus, the computation cost
of Algorithm 3 is equal to that of Algorithm 2. However,
from Figure 1 and Table 3, the computation time for Algo-
rithm 3 is less than that for Algorithm 2. This is because
some lower bounds generated from Newton’s method are
more suitable than the local-max bound. Consequently, the
continued fraction method based on Vincent’s theorem is
improved by using the proposed lower bound.

Hence, the improved continued fraction method with the
local-max bound and the proposed lower bound generated
by Newton’s method is efficient.

6. Conclusions
In this paper, we proposed a new lower bound for ac-

celerating the continued fraction method based on Vincent’s
theorem. To accelerate this method, a suitable lower bound
should be computed. In the original continued fraction
method based on Vincent’s theorem, the local-max bound
is adopted. In contrast, we used Newton’s method to obtain
another lower bound. This method can sometimes generate
a lower bound larger than the local-max bound. To compute
the proposed lower bound, we followed three steps. First,
we computed a candidate for the lower bound generated by
Newton’s method. Second, we used Laguerre’s theorem to
check whether the candidate is suitable. Third, we compared
the local-max bound and the new lower bound. Then,
we employed the larger bound to accelerate the continued
fraction method based on Vincent’s theorem. Experiments
were conducted to evaluate the proposed lower bound. The
results showed that the average computation time of the
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Table 3: Computation time.
average [sec.] deviation max.[sec.] min.[sec.]

Algorithm 2 30.45 6.45 68.74 20.76
Algorithm 3 28.05 4.46 43.04 19.89

continued fraction method with both the local-max bound
and the proposed lower bound is 1.09 times faster than that
with only the local-max bound. Hence, the proposed lower
bound is effective.

In the future, the proposed lower bound should be evalu-
ated using different types of test polynomials from (24).

References
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Abstract— People share various types of information in-
cluding opinions on hot topics, bookmarking activity and
rumors via online communities. To make it possible to pre-
dict future trends in online communities, it is important that
we develop a model of information diffusion through social
networks and a method for estimating its parameters. In
this paper, we present a latent feature independent cascade
model, which can effectively estimate diffusion probabilities
by capturing the influences between latent communities. In
particular, we incorporate two types of latent features for
each node. The first represents the features as a sender
and the second represents the features as a receiver. We
demonstrate experimentally that the proposed model can
estimate the diffusion probabilities more accurately than
commonly used methods. We also show the effectiveness of
the proposed model for estimating information spread.

Keywords: information diffusion model, independent cascade,
social network, latent feature model

1. Introduction
In online communities, various types of information in-

cluding opinions on hot topics, bookmarking activity and
rumors are shared between individuals by word of mouth.
Based on the facts that the user activations in online commu-
nities are reflected in the box-office performance of movies
[1], market prices [2] and the polling number for elections
[3], there is great interest in predicting future trends and
discovering instances where information is shared on social
networks [4], [5], [6].

Various diffusion models have been proposed for simu-
lating the information diffusion behavior on social networks
[7], [8], [9], [10], [11]. The Independent Cascade Model
(ICM) proposed by Kempe et al. [7] has been particularly
well-studied in recent years, and is used for addressing the
influence maximization/minimization problem [7], [12] and
finding influential nodes [13], [14], [15]. ICM is a simple
probabilistic model that describes processes by which pieces
of information spread from node to node on a social network,
where the behavior is based on the diffusion probability of
each link. Thus, to simulate the real information diffusion
behavior, it is important to learn the diffusion probabilities
of all links precisely.

Some methods have been developed for estimating the
diffusion probability parameters [16], [17], [18], [19]. Saito

et al. developed an estimation method based on the EM
algorithm under the assumption that continuous time delays
occur between the activations [17], while Gruhl et al. as-
sumed discrete time delays [16]. Although their methods
provide ways to obtain the diffusion probabilities given the
observations of activity, the low generalization performance
results when the observations are insufficient. For example,
information diffusion does not occur abundantly throughout
the network, or often occurs in one portion of the network
but not in another. Such cases lead to a poor parameter
estimation result.

In realistic social networks, each node has attribute infor-
mation such as affiliation, age and gender. We can expect
the estimation performance regarding diffusion probabilities
to improve by using these attributes. However, whether or
not the attributes can be observed depends on the target
applications.

In this paper, we propose a Latent Feature Independent
Cascade Model (LFICM), which is designed to estimate the
diffusion probabilities effectively. In the LFICM, we incor-
porate two types of latent features for each node. The first
represents the features as a sender and the second represents
the feature as a receiver. The diffusion probabilities are
generated based on the latent features between the nodes
of each link. By incorporating the latent features, we can
estimate the diffusion probabilities with high generalization
performance, since the LFICM has a smaller number of
parameters than a conventional ICM. For the LFICM, we
developed a parameter estimation method based on the EM
algorithm. Although a method that estimates the diffusion
probabilities based on the observed attribute features of
each node has already been developed [18], the proposed
model can estimate the ICM parameters without observing
additional attribute features by treating the features as latent
variables. In our experiments, we show that the proposed
model can estimate the diffusion probabilities better than
the conventional parameter estimation methods using three
real network structures and synthetic activation data. We also
show that in a simulation-based influence estimation method,
the estimated influence degrees behave in much the same
way as the true influence degrees.

2. Proposed Method
In this section, we present our proposed model, the

Latent Feature Independent Cascade Model (LFICM), and
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Table 1: Notation of LFICM
K Number of dimensions of latent feature vectors
I Set of pieces of information
xu Latent feature vector of node u as sender
yu Latent feature vector of node u as receiver
di Diffusion sequence for information i
κuv Diffusion probability from node u to node v
r Time-delay parameter
γ Bias parameter
σX Standard deviation of xu (hyperparameter)
σY Standard deviation of yu (hyperparameter)

its parameter estimation method.

2.1 Model
Suppose that a set of pieces of information I spreads over

a directed social network G = (V, E), where V is a set of
nodes corresponding to individuals and E ⊆ V × V is a set
of links corresponding to relationships between individuals.
We define B(v) as a set of parents of node v ∈ V , B(v) =
{u|(u, v) ∈ E}, and F (v) as a set of children of node v ∈ V ,
F (v) = {w|(v, w) ∈ E}. Table 1 lists the symbols and the
descriptions used in LFICM.

For a piece of information i ∈ I , we observe logs showing
when each node transmitted the information i. We refer to
a status of a node from which information is transmitted
as active. The logs form a sequence of length Li of active
node-time pairs as follows,

di = {(vi1, tvi1), (vi2, tvi2), · · · (viLi , tviLi
)}.

Note that each active node can be affected by any of its
parent nodes, but we cannot observe by whom the active
nodes are influenced.

LFICM assumes that the pieces of information spread
according to the same mechanism as with the Independent
Cascade Model (ICM) [7]. ICM provides a process whereby
the information spreads from node to node through the
links. ICM has two types of model parameters for each
link (u, v) ∈ E , diffusion probability κuv and time-delay
parameter ruv , where 0 ≤ κuv ≤ 1 and ruv > 0. For
simplicity, we assume ruv = r although it is easy to run.

The diffusion process of the ICM is as follows. We first
fix a set of source nodes S ⊆ V from which the information
diffusion process starts. Thus, node v ∈ S becomes active
at time tv = 0. Then the process iteratively executes the
following two steps until no more activations are possible:

• When node u becomes active, it attempts to transmit
information to each inactive child node v ∈ F (u). This
trial succeeds with the diffusion probability κuv.

• If node v is activated by node u in the above step, then
the activated time of node v is tu + ∆ where ∆ is a
random variable following an exponential distribution
with parameter r given below:

∆ ∼ Exponential(r) (1)

Fig. 1: Step by step procedure of the ICM. (left) Initial state.
Diffusion probabilities are assigned to each link in advance.
Node v1 is a source node. (center) Node v2 becomes active
when affected by node v1. (right) Node v3 is not affected
by node v1 or v2.

Figure 1 shows the step-by-step procedure of ICM.
To extend ICM for estimating the diffusion probabilities

with high generalization performance, we introduce two
types of K-dimension latent feature vectors xu ∈ RK and
yu ∈ RKfor each node u ∈ V . In LFICM, the diffusion
probability from node u to node v, κuv , is calculated as
follows:

κuv = f(xu,yv, γ) =
(
1 + exp(−x⊤

u yv − γ)
)−1

, (2)

where γ is a bias parameter that does not depend on the
nodes. Function f is a sigmoid function, thus 0 ≤ κuv ≤ 1.
Here, xu and yu represent the features as an information
sender and the features as an information receiver, respec-
tively. The diffusion probability κuv has a high value when
x⊤
u yv is high.
The latent features of node u ∈ V , xu and yu follow a

K-dimension normal distribution,

xu ∼ N (xu|0, σ2
XI), (3)

yu ∼ N (yu|0, σ2
Y I), (4)

where 0 and I denote K-dimension zero vector and a unit
matrix of size K ×K, respectively.

Under the calculated parameters described above, a diffu-
sion sequence di is generated based on the ICM diffusion
process shown in Algorithm 1 given source nodes Si ⊆ V ,

di ∼ ICM
(
{κuv}(u,v)∈E , r,G,Si

)
.

2.2 Parameter Estimation
We present a parameter estimation algorithm for the

LFICM based on the Expectation-Maximization (EM) al-
gorithm [20].

Given a set of diffusion sequences D = {di}i∈I , we
can write the posterior probability for LFICM parameters
X = [xu]u∈V ,Y = [yu]u∈V as follows,

P (X,Y | γ, r,D, σX , σY ,G) (5)
∝ P (D|X,Y ,γ, r,G)P (X|σX)P (Y |σY ).

The first factor on the right hand side of Eq. (5) is the
likelihood of LFICM. Let ∆

(i)
uv be the difference between

the active times of nodes u and v for information i, i.e.,
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∆
(i)
uv = tiv − tiu. For convenience, let Ci and Ci(t) be a

set of active nodes and a set of active nodes by time t for
information i, respectively, that is,

Ci = {v | (v, t) ∈ di}, Ci(t) = {v | (v, t′) ∈ di, t′ < t}.

Although we omit the detailed derivation of the likelihood
due to space limitations, we can obtain the following likeli-
hood,

P (D|X,Y ,γ, r,G) (6)

=
∏
i∈I

∏
v∈Ci

∏
u∈B(v)∩Ci(tiv)

p(i)u→v

∑
u∈B(v)∩Ci(tiv)

p
(i)
u→v

p
(i)
u↛v

×
∏

w∈F (v)\Ci

(1− κvw) ,

where p
(i)
u→v represents the probability that node u makes

node v active, and p
(i)
u↛v represents the probability that node

u fails to affect node v,

p(i)u→v = κuvr exp(−r∆(i)
uv), (7)

p(i)u↛v = κuv exp(−r∆(i)
uv) + 1− κuv. (8)

The second and third factors are prior distributions for X
and Y , respectively,

P (X|σX) =

|V|∏
u=1

1√
2πσK

X

exp
(
− x⊤

u xu

2σ2
X

)
, (9)

P (Y |σY ) =

|V|∏
u=1

1√
2πσK

Y

exp
(
− y⊤

u yu

2σ2
Y

)
. (10)

With the posterior probability Eq. (5), we find parameters
X̂ , Ŷ , γ̂ and r̂ based on the maximum a posteriori (MAP)
principle. The parameters can be estimated with an EM
algorithm that alternates between estimating which active
nodes are affected by the E-step, and updating the parameters
under the E-step result in the M-step. We use x̄ as a current
estimate for variable x to avoid confusion.

E-step: In the E-step, we need only to consider the like-
lihood Eq. (6) in the posterior probability Eq. (5). By
employing a similar method to that described in [17], we can
derive function Q, which is the expectation of the complete-
data likelihood, from the likelihood Eq. (6) as follows,

Q(X,Y , γ, r; X̄, Ȳ , γ̄, r̄) (11)

=
∑
i∈I

∑
v∈Ci

[ ∑
u∈B(v)∩Ci(tiv)

(
ξ̄(i)uv log κuv

+(1− ξ̄(i)uv ) log(1− κuv) + q̄(i)uv log r + ξ̄(i)uvr∆
(i)
uv

)
+

∑
w∈F (v)\Ci

log(1− κvw)

]
+ logP (X|σX) + logP (Y |σY )

Algorithm 1 ICMGENERATOR

Require: diffusion probability {κuv}(u,v)∈E , time-delay pa-
rameter r，network G，source nodes S

1: di ← {(u, 0) | u ∈ S}
2: repeat
3: (u, tiu)← mintix{(x, tmx) | (x, tmx) ∈ di, x ∈ S}
4: for v ∈ {inactive nodes in child nodes of u } do
5: if u succeeds in propagation to v with κuv then
6: tiv ← tiu +∆, where ∆ follows Eq. (1).
7: di ← di ∪ {(v, tiv)}
8: S ← S ∪ {v}
9: end if

10: end for
11: S ← S \ {u}
12: until S = ∅
13: return di

where

q(i)uv =
p
(i)
u→v/p

(i)
u↛v∑

u′∈B(v)∩Ci(tiv)
p
(i)
u→v/p

(i)
u↛v

, (12)

η(i)uv =
κuv exp(−r∆(i)

uv)

κuv exp(−r∆(i)
uv) + (1− κuv)

, (13)

ξ(i)uv = q(i)uv + (1− q(i)uv )η
(i)
uv . (14)

Here, function Q is guaranteed to be a lower bound for the
posterior Eq. (5), that is, P (X,Y | γ, r,D, σX , σY ,G) ≥
Q. q

(i)
uv can be regarded as the probability that node u is

influenced by node v on information i under the current
estimates.

In the M-step, we estimate the parameters by maximizing
the function Q.

M-step: Using the current estimates, X̄, Ȳ , r̄, γ̄, q̄
(i)
uv , η̄

(i)
uv

and ξ̄
(i)
uv , we update the parameters, X,Y , r and γ. The

closed form solution for Eq. (11) does not exist for the
parameters, X,Y and γ owing to the non-linearity of
the sigmoid function. Thus, we need to use a kind of
optimization method based on a gradient with respect to each
parameter. In this study, we use the quasi-Newton method,
which only needs first-order derivations with respect to the
parameters.

The first-order derivations of the parameters, xu,yu for
each u ∈ V and γ are derived as follows:

∂Q(X,Y , γ, r; X̄, Ȳ , γ̄, r̄)

∂xu
(15)

=
∑
i∈I

( ∑
v∈F (u)∩Ci

(
ξ̄(i)uv − f(xu, ȳv, γ̄)

)
ȳv

−
∑

w∈F (u)\Ci

f(xu, ȳw, γ̄)ȳw

)
− 1

σ2
X

xu
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∂Q(X,Y , γ, r; X̄, Ȳ , γ̄, r̄)

∂yv
(16)

=
∑
i∈I

( ∑
u∈B(v)∩Ci(tiv)

(
ξ̄(i)uv − f(x̄u,yv, γ̄)

)
x̄u

−
∑

s∈B(v)∩Ci,v /∈Ci

f(x̄s,yv, γ̄)x̄s

)
− 1

σ2
Y

yv

∂Q(X,Y , γ, r; X̄, Ȳ , γ̄, r̄)

∂γ
(17)

=
∑
i∈I

( ∑
v∈Ci

∑
u∈B(v)∩Ci(tiv)

(
ξ̄(i)uv − f(x̄u, ȳv, γ)

)
−
∑
v∈Ci

∑
s∈F (v)\Ci

f(x̄u, ȳs, γ)
)

The time-delay parameter r can be calculated using the
following closed form,

r =

∑
i∈I

∑
v∈Ci

∑
u∈B(v)∩Ci(tiv)

q̄
(i)
uv∑

i∈I

∑
v∈Ci

∑
u∈B(v)∩Ci(tiv)

ξ̄
(i)
uv∆

(i)
uv

. (18)

In the EM algorithm, the parameters are estimated by
alternating E-step and M-step and continuing the procedure
until the improvement of the log-likelihood converges. In
summary, the parameter estimation procedure is given by
Algorithm 2.

Algorithm 2 LFICMESTIMATOR

Require: network G，diffusion sequences D，dimension of
features K，hyper-parameters σX and σY

1: Initialize X,Y , γ, r
2: repeat
3: E-step: update qmuv, ηmuv, ξmuv based on Eqs.

(12),(13) and (14)
4: M-step: update X,Y , γ using quasi-Newton method

based on Eqs. (15) - (17), and r based on Eq. (18)
5: until convergence of improving the log-likelihood Eq.

(5)
6: return X,Y , γ, r

3. Experiments
To evaluate the proposed model with respect to the preci-

sion and effectiveness of the estimated diffusion probabilities
of the ICM, we ran experiments using real networks and
synthetic diffusion sequences.

3.1 Experimental Data and Settings
Three real networks data. In this study, we used three kinds
of real network structure datasets. The first is BLOG data,
which we obtained by tracing the track-back of posts in the
goo blog in May 2005 [17]. The network is constructed by

Table 2: Parameter settings for generating synthetic diffusion
sequences

K γ r S σX σY

BLOG 5 -3.5 10.0 Random 1.0 1.0
ENRON 5 -6.5 1.0 Random 1.0 1.0
MIXI 7 -6.5 1.0 Random 1.0 1.0

Table 3: Statistics of network data for evaluation of LFICM
|V| |E| |I| avg. |di|

BLOG 12,047 79,920 200 207.1
ENRON 36,692 367,662 200 203.4
MIXI 80,608 571,136 1,500 8.6

putting a link from blog (node) u to blog v if a post on blog
u refers to one on blog v through the track-back function.
The second dataset is referred to as ENRON data and consists
of exchanges of e-mail in Enron Corp. The network regards
each sender and receiver as a node and puts a link if node
u sends an e-mail to node v. The last dataset is referred
to as MIXI data, which is bidirectional (co-link) friendship
network data obtained from a well-known social networking
service in Japan1.

Synthetic diffusion sequence generation. In our experi-
ments, diffusion sequences are generated artificially based
on the proposed model. The procedure for generating the
diffusion sequences is as follows. First we generate the latent
feature vectors under the parameter settings for each dataset
shown in Table 2, and calculate the diffusion probability
for each link. Then we generate diffusion sequences di

based on Algorithm 1. Table 3 shows the statistics of
generating diffusion sequences. Note that there are too few
diffusion sequences for complete estimation, as suggested
by a comparison of the number of links with the volume of
the sequences.

Baseline methods. We use two parameter estimation meth-
ods as baselines for comparison, which are adopted in [17],
[19]. The first method attempts to estimate the parameter di-
rectly by the maximum likelihood method [17]. This method
is the basis of our model. We refer to it as SaitoICM. The
second method is identical to SaitoICM but estimates a
uniform diffusion probability throughout the network, that
is, κuv = κ. We refer to it as SimpleICM. This method
makes it possible to estimate the parameters robustly, but it
is not a flexible model.

3.2 Precision of Parameter Estimation
In the first experiment, we evaluate the proposed method

and the baselines by estimating the diffusion probabilities
from synthetic diffusion sequences for each dataset. Since
the proposed model controls the complexity of the model

1https://mixi.jp/
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Fig. 2: Average RMSE between true and estimated diffusion probabilities in each dataset

by changing the value of K, we adopt K value of 1, 3, 5,
7 and 9. Note that the true K values, which are used for
generating synthetic diffusion sequences for BLOG, ENRON
and MIXI, are five, five and seven, respectively.

Figure 2 shows comparison results of the estimation error
between the proposed method and each baseline for each
dataset. The vertical axis denotes the root mean squared error
(RMSE) between the true and estimated diffusion probabil-
ities, while the horizontal axis denotes the dimension of the
feature vector, K. In the results using BLOG and ENRON
data, respectively, the proposed model outperformed the
baselines except for when K = 1. The result obtained using
MIXI data is characterized by a large standard deviation
shown as a vertical bar on the proposed model. Nevertheless,
LFICM outperformed the baselines when K = 3, 5, 7.

To summarize these results, SaitoICM seems to be a
poor estimator compared with LFICM and SimpleICM,
even though it is the most flexible model. This is because
SaitoICM poses an over-fitting problem due to a lack of
observed data.

3.3 Estimation of degree of influence
Estimation method for degree of influence. Let us define
the degree of influence of node u as the average number of
active nodes affected by source node u. Thus, it consists of
the number of nodes that receive information transmitted
from node u directly and indirectly. We have studied a
method for estimating the degree using the ICM [15]. This
method is largely dependent on the performance of a selected
parameter estimation method. We simplify the algorithm of
[15] into Algorithm 3, and evaluate the estimated degree of
influence using the parameters with the proposed model and
the baseline values. In this experiment, we fix T = 50 in
Algorithm 3.

Evaluation method. We evaluate our model according to
the following procedure:

1) For each node, we calculate the degree of influence
using Algorithm 3 under the true parameter settings

Algorithm 3 INFLUENCEPREDICTOR

Require: network G，source nodes S，time-delay parame-
ter r，diffusion probability {κuv}(u,v)∈E，trials T .

1: influence← 0
2: for i← 1, 2, · · · , T do
3: dm ← ICMGENERATOR({κuv}(u,v)∈E , r,G,S)
4: influence← influence+ 1

T |di|
5: end for
6: return influence

shown in Table 2, and we define it as the true degree
of influence for each node.

2) We calculate the degree of influence under the parame-
ters estimated in Section 3.2, by LFICM，SaitoICM
and SimpleICM, respectively, and we define them as
the estimated degree of influence of each method for
each node.

3) We calculate the Pearson correlation coefficient and
Kendall’s tau coefficient between the true and esti-
mated degrees of influence for each method.

where, the Pearson correlation coefficient is calculated sim-
ply using the degree of influence, while Kendall’s tau
coefficient uses the rank of degree of influence for each
method. The values of these coefficients range from −1 to
+1, and if the value is close to +1, then we can consider
that the two compared values behave in the same way.

Experimental results. Tables 4 and 5 show results of
an evaluation of the Pearson correlation coefficient and
Kendall’s tau coefficient between the true and estimated
degree of influence, respectively. They are significantly cor-
related with significant probability p < 0.01. As shown in
these tables, with any of the proposed methods, LFICM, is
better than the baseline methods for each dataset.

However, we find that the K value of at which highest
correlation is reached does not necessarily coincide with that
one of the lowest RMSE. With the evaluation by RMSE
of the estimated diffusion probabilities, all the diffusion
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Table 4: Pearson correlation coefficient between the true and estimated degree influence .
LFICM LFICM LFICM LFICM LFICM SaitoICM SimpleICM
(K = 1) (K = 3) (K = 5) (K = 7) (K = 9)

BLOG 0.360 0.734 0.848 0.828 0.769 0.753 0.827
ENRON 0.442 0.730 0.703 0.669 0.657 0.539 0.656
MIXI 0.174 0.542 0.545 0.556 0.484 0.468 0.382

Note: numbers in bold indicate the best method for each set of data.

Table 5: Kendall’s tau between the true and estimated degree of influence.
LFICM LFICM LFICM LFICM LFICM SaitoICM SimpleICM
(K = 1) (K = 3) (K = 5) (K = 7) (K = 9)

BLOG 0.424 0.534 0.599 0.585 0.553 0.532 0.591
ENRON 0.293 0.379 0.371 0.370 0.370 0.372 0.369
MIXI 0.517 0.443 0.441 0.445 0.445 0.252 0.441

Note: numbers in bold indicate the best method for each set of data.

probabilities are used only once. Estimating each diffusion
probability itself with high generalization performance or
without outliers leads to a good result. On the other hand,
this experiment might evaluate the diffusion probability of
a link many times because the information passes through
nodes with a lot of links, i.e, authorities, many times in
our simulations. This fact makes it especially important in
this experiment to learn the probabilities of links extending
from the authority nodes to estimate the degrees of influence
of all the nodes. The proposed model is useful in complex
situations such as that represented by this experiment.

4. Conclusion and Future Work
In this paper, we proposed the Latent Feature Independent

Cascade Model (LFICM) for modeling information diffusion
phenomena and the predicting future trends to estimate
the diffusion probabilities of each link. In particular, we
newly incorporated two latent features for each node, which
represent the sensitivity to incoming information and the
power of influence. We then assumed that each diffusion
probability is calculated from the features of both termi-
nating nodes. To estimate the parameters of the LFICM
from observations we formulated the posterior probability
of the model and derived the parameter estimation method
based on the EM algorithm. In the experiments, the proposed
model outperformed the conventional estimation methods
with respect to the precision of the diffusion probability
estimation for four kinds of dataset. Moreover, we showed
that estimating the parameters of the ICM with the proposed
model allows us to understand precisely the degrees of
influence of nodes.

In realistic settings, the influence power and the sensitivity
of each individual vary widely and these variations are
unknown. To consider this fact, we will attempt to extend
the proposed model to a Bayesian model using proper prior
distributions so as to estimate standard deviations σX and σY

along with the other parameters. For K estimation, we can
use the cross-validation method and model selection methods
such as AIC and BIC.
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Abstract— An inference attack means that a database user
tries to identify, or narrow down the candidates for, sensitive
information from non-sensitive information such as queries
authorized to the user and their results, the schema of a
database, functional dependencies satisfied by the database,
etc. If the size of the candidate set is at least k, the database
is said to be k-secret. In our previous papers, we targeted
XML databases and proposed how to determine k-secrecy
without functional dependencies. In this paper, we show the
decidability of k-secrecy with functional dependencies pro-
vided that the functional dependencies satisfy a restriction
called the non-prefix restriction. To be specific, we reduce the
problem of finding a candidate to the satisfiability problem of
functional dependencies. Then, the decision algorithm of k-
secrecy is simply designed as an enumeration of candidates.

Keywords: XML database; inference attack; secrecy

1. Introduction
Direct access to a database is controlled in general.

That is, database management systems specify which users
can issue which queries. However, by using non-sensitive
information such as authorized queries and their results, the
schema of the database, and the functional dependencies
satisfied by the database, a user may be able to identify,
or narrow down the candidates for, the result of some
unauthorized query. Such indirect access to the result of an
unauthorized query is called an inference attack. In order
to maintain the secrecy of the database, it is important for
database managers to know of possible inference attacks in
advance. Below is an example of an inference attack.

Example 1: Consider an XML database containing infor-
mation on patients in a hospital. Suppose that three queries
T1, T2, and T3 are authorized to a user:

• T1 retrieves all the patients examined by Dr. Abe and
the day of the week of the examination;

• T2 retrieves all the patients in room 101 and the day of
the week of the examination; and

• T3 retrieves all the doctors who examine a patient in
room 102.

Also suppose that this XML database satisfies the following
two functional dependencies f1 and f2:

Abe AbeAbe

hospital

daydayday

exam

doctor

exam

doctor

exam

doctor

Mon. Mon. Mon.

broken
leg

disk
herniation

broken
leg

patient patient patient

disease disease disease

Figure 1: The result of query T1.

day

exam

Tue.

day

exam

Mon.

KanNoda

hospital

patient patient

namename

Figure 2: The result of
query T2.

exam

Abe

doctor

patient patient

exam

Abe

doctor

hospital

Figure 3: The result of
query T3.

• f1: the day of the week of the examination uniquely
determines the doctor; and

• f2: the room uniquely determines the disease of the
patients in the room.

The user is interested in the result of the following query
TS :

• TS retrieves the disease of patient Noda.
Suppose that TS is not authorized to the user, so the user
attempts indirect access to the result of TS .

Now, suppose that the results of T1, T2, and T3 are the
trees shown in Figures 1, 2, and 3. We can see in Figure 3
that there are two patients in room 102 examined by Dr.
Abe. Moreover, by f2, these two patients have the same
disease. Figure 1 indicates that Dr. Abe examines three
patients. Since two of the three patients are in room 102
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and have the same disease, the patient with disk herniation
is in a room other than 102. By f1 and Figures 1 and 2,
it can be concluded that Dr. Abe examines patient Noda.
Moreover, since the patient with disk herniation is the only
patient examined by Dr. Abe other than the patients in room
102, it can be inferred that patient Noda has disk herniation.

Note that in this example, if f2 is unavailable to the user,
the disease of patient Noda cannot be identified but the
candidates are narrowed down to disk herniation and broken
leg. On the other hand, if f1 is unavailable to the user, it is
impossible to even narrow down the candidates.

If the number of candidates narrowed down by the attacker
is large, it is hard to identify which candidate is the true
value and the database is considered safe. If the size of
the candidate set is at least k, the database is said to
be k-secret, and if the size of the set is not finite, the
database is infinity-secret [1]. Aiming at XML databases,
we previously proposed how to determine infinity-secrecy
and k-secrecy without functional dependencies [1]. We also
proposed how to determine infinity-secrecy with a single
functional dependency [2]. However, it remains an open
problem whether k-secrecy with functional dependencies is
decidable or not.

In this paper, we show the decidability of k-secrecy with
multiple functional dependencies provided that the func-
tional dependencies satisfy a restriction called the non-prefix
restriction. Roughly speaking, the non-prefix restriction re-
quires the paths constituting the functional dependencies
not to be prefixes of each other. Under this restriction, k-
secrecy is determined as follows. First, compute a set of
databases conforming to the given database schema and
for which the results of authorized queries are the same
as the target database. Next, enumerate databases in the
set that return distinct results for the unauthorized query.
Then, determine k-secrecy by checking whether there are
any such k databases or not. Technically, the decidability of
the satisfiability of multiple functional dependencies plays
an important role for the enumeration to work. This paper
shows that the decidability result of the satisfiability of a
single functional dependency [2] can be extended to the
multiple case under the non-prefix restriction.

The rest of this paper is organized as follows. Section 2
introduces several definitions. Section 3 shows the decid-
ability of k-secrecy. Section 4 discusses related studies. We
summarize the paper and conclude in Section 5.

2. Definitions
2.1 Trees

An XML database instance is represented by an unranked
labeled ordered tree, where the number of each node of a
tree is independent of its label. Let TΣ denote the set of all
unranked labeled ordered trees over Σ.

The position of a node of t ∈ TΣ is a sequence of positive
integers defined as follows: the position of the root node is
ε; if the position of a node v is p and vi is the i-th child
of v, then the position of vi is p · i. The nodes and their
positions have one-to-one correspondence, so hereafter, we
use the term position to mean the node itself. Let Pos(t) be
the set of the positions of t. Let t|p denote the subtree of t
at the position p.

Let λt(p) denote the label of the position p of t. Moreover,
let λ̃t(p) denote the label path from the root to the position
p in t, and let λ̃−

t (p) denote the label path obtained from
λ̃t(p) by removing the leading label. These two notations
are useful for expressing a concatenation of label paths
concisely, i.e.,

λ̃t(p · p′) = λ̃t(p) · λ̃−
t|p(p

′).

2.2 Tree automata
We use a finite tree automaton (TA) to represent a

schema or a set of candidates for the value of the sensitive
information.

First, we define a regular expression. A regular expression
(RE) over an alphabet Σ consists of constants ∅ (empty set),
ε (empty sequence), and the symbols in Σ, and operators
· (concatenation), ∗ (zero or more occurrences), + (one or
more occurrences), | (disjunction), and & (interleaving). The
concatenation operator is often omitted as usual. The string
language represented by a regular expression e is denoted
by L(e).

Next, we define an (unranked) TA over Σ. A TA A is a
4-tuple (Q,Σ, Q̂, R), where

• Q is a finite set of states,
• Σ is an alphabet,
• Q̂ ⊆ Q is a set of initial states, and
• R is a set of transition rules in the form of (q, a, e),

where q ∈ Q, a ∈ Σ, and e is an RE over Q.
Example 2: The following is an example TA AH repre-

senting the XML schema supposed in Example 1:
• Q contains Ho,Pa,Na,Di,Ro,Ex,Do,Da,PCDATA;
• Σ contains hospital,patient, name, disease, room,

exam,doctor, day;
• Q̂ = {Ho}; and
• R contains the following rules:

– (Ho,hospital,Pa∗),
– (Pa, patient,Na · Ro · Di · Ex),
– (Na,name,PCDATA),
– (Ro, room,PCDATA),
– (Di,disease,PCDATA),
– (Ex, exam,Do · Da),
– (Do,doctor,PCDATA),
– (Da,day,PCDATA).

The TA also contains states, symbols, and rules for
PCDATA, i.e., string data. In this paper we assume that string
data are encoded by trees in some appropriate way [1].
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Figure 4: A tree accepted by AH.

A (successful) run rtA of A on t is a mapping from Pos(t)
to Q with the following properties:

• rtA(ε) ∈ Q̂.
• For each position p, if p has n children, there exists a

transition rule (q, a, e) ∈ R such that
– rtA(p) = q,
– λt(p) = a, and
– rtA(p · 1)rtA(p · 2) · · · rtA(p · n) ∈ L(e).

We say that a tree t ∈ TΣ is accepted by A if there
exists a run of A on t. Let TL(A) denote the tree language
recognized by A, i.e., the set of trees accepted by A. For
q ∈ Q, let TL(A, q) be the tree language recognized by
A when the initial state is q. We extend the run to a set
P of positions, i.e., rtA(P ) = {rtA(p) | p ∈ P}. For
t ∈ TL(A), we define the state path r̃tA(p) to p on r̃tA
as follows: r̃tA(ε) = rtA(ε); r̃tA(p · i) = r̃tA(p)r

t
A(p · i).

We say A is unambiguous if the run rtA is unique for
each t ∈ TL(A). We say A is bottom-up deterministic
if TL(A, q1) ∩ TL(A, q2) = ∅ for any two distinct states
q1, q2 ∈ Q. Note that for any TA, an equivalent bottom-up
deterministic TA can be constructed.

Example 3: A tree accepted by AH is shown in Figure 4,
where the PCDATA parts are omitted. It is not difficult to
see that AH is unambiguous and bottom-up deterministic,
provided that so is the PCDATA part of AH.

2.3 Queries
We regard queries as tree-to-tree transformation functions.

Our verification method requires a query model which
preserves inverse recognizability [3]. That is, given a query
T and a TA A, a TA which recognizes {t′ | t ∈
TL(A), T (t′) = t} can be constructed. The construction is
called inverse type inference. Finite compositions of macro
tree transducers [4] is one of the query models satisfying
the requirement. It is also known that the model is powerful
enough to describe many real-world XML transformations.

In this paper, we do not mention a concrete query model,
and just assume that queries preserve inverse recognizability.

2.4 Functional dependencies
A functional dependency (FD) f is a triple (H,X, Y )

where H,X, Y are simple paths over Σ. For a simple path

H

X

Y

H

X
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Y(t, p')Y(t, p) t

Figure 5: Definition of an FD.

s and a tree t ∈ TΣ, Pos(t, s) is defined as follows:

Pos(t, s) := {p ∈ Pos(t) | λ̃t(p) = s}.

Pos(t, s) is the set of positions of t reachable from the root
by the path s including the root label. Also, for a position p
of t, let Pos(t, p, s) denote the set of positions of t reachable
from p by the path s excluding the label of p. Formally,

Pos(t, p, s) := {p · p′ ∈ Pos(t) | λ̃−
t|p(p

′) = s}.

We write the set of subtrees of t at positions in Pos(t, s)
(resp. Pos(t, p, s)) as s(t) (resp. s(t, p)). Given a tree t and
an FD f , t satisfies f if and only if for any two positions
p, p′ ∈ Pos(t,H), X(t, p) ∩X(t, p′) 6= ∅ implies Y (t, p) ∩
Y (t, p′) 6= ∅ (see Figure 5). For an FD f , let TL(f) denote
the set of trees which satisfy f . FDs f1,. . . , fN are said to
be satisfiable under a TA A if TL(A)∩

∩N
i=1 TL(fi) is not

empty.
Our verification method handles a finite number of FDs

f1,. . . , fN such that, letting fi = (Hi, Xi, Yi),
• for each i (1 ≤ i ≤ N), neither of Xi nor Yi is a prefix

of the other;
• for each i, j (1 ≤ i, j ≤ N , i 6= j),

– if Hi = Hj , then none of Xi, Xj , Yi, and Yj is a
prefix of any of the others;

– if Hi 6= Hj , then neither Hi nor Hj is a prefix of
the other.

We refer to this restriction as the non-prefix restriction.
Example 4: The two FDs f1 and f2 in Example 1 can be

represented as follows:

f1 = (hospital · patient · exam, day,doctor),
f2 = (hospital · patient, room, disease).

Unfortunately, the set {f1, f2} does not satisfy the non-prefix
restriction. However, the following FD f ′

1 is “equivalent” to
f1 under AH in the sense that TL(AH)∩TL(f1) = TL(AH)∩
TL(f ′

1):

f ′
1 = (hospital · patient, exam · day,exam · doctor).

Note that the set {f ′
1, f2} satisfies the non-prefix restriction.
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2.5 k-secrecy
Let tG be a target tree to be attacked. We assume that

the following information is available to the attackers: the
database schema AG of tG, authorized queries T1, . . . , Tn

and their results T1(tG), . . . , Tn(tG), an unauthorized query
TS , and FDs f1,. . . , fN . The sensitive information is TS(tG).
Suppose that the attacker infers the set LC of all the can-
didates for the value of the sensitive information consistent
with the above available information. That is,

LC = {TS(t
′) | t′ ∈ TL(AG) ∩

N∩
i=1

TL(fi),

T1(t
′) = T1(tG), . . . , Tn(t

′) = Tn(tG)}.

For a positive integer k, tG is k-secret (with respect to TS)
if |LC | ≥ k.

3. A decision algorithm of k-secrecy
Suppose that a target tree tG to be attacked, authorized

T1,. . . , Tn, unauthorized query TS , and FDs f1, . . . , fN with
the non-prefix restriction are given. In what follows, we show
a decision algorithm of k-secrecy of tG with respect to TS .

First, we compute

LINF = {t′ ∈ TL(AG) | T1(t
′) = T1(tG),

. . . , Tn(t
′) = Tn(tG)}

by inverse type inference, i.e., we construct a TA AINF

such that LINF = TL(AINF ). Then, letting A = AINF ,
we enumerate candidates for the value of the sensitive
information as follows:

• Decide the satisfiability of the FDs f1,. . . , fN under A.
If satisfiable, find a tree u ∈ TL(A) that satisfies the
FDs. Also, by inverse type inference, compute the set
of trees t such that TS(t) = u. Let A′ be a TA such
that TL(A′) is the difference of TL(A) and the set.

• Letting A = A′, repeat the above process until k trees
are found or the satisfiability check fails. The database
is k-secret if and only if k trees are found.

In what follows, we explain how to check the satisfiability
of FDs, and then, how to enumerate the candidates for the
value of sensitive information in detail.

3.1 Checking the satisfiability of functional de-
pendencies

Let A be a TA and f1,. . . , fN be FDs. To check the
satisfiability of the FDs under A, construct path-fixed au-
tomata A1

dv , . . . , A
l
dv as explained in Appendix. It holds that

TL(Ai
dv ) ∩ TL(Aj

dv ) = ∅ for each i and j (1 ≤ i, j ≤ l,
i 6= j), and TL(A) =

∪
1≤i≤l TL(A

i
dv ). Satisfiability check

is done for each of these path-fixed automata. That is, FDs
f1,. . . , fN are satisfiable under A if and only if there is some
TA Ai

dv under which FDs f1,. . . , fN are satisfiable.

A TA A is path fixed with respect to FDs f1,. . . , fN if A
is unambiguous and satisfies the following three conditions
for each f = (H,X, Y ) ∈ {f1 . . . , fN}:

1) ∀t, t′ ∈ TL(A).rtA(Pos(t,H)) = rt
′

A(Pos(t
′,H)).

2) ∀t, t′ ∈ TL(A).∀p ∈ Pos(t,H).∀p′ ∈ Pos(t′,H).
(rtA(p) = rt

′

A(p
′)⇒ ∀Z ∈ {X,Y }.

rtA(Pos(t, p, Z)) = rt
′

A(Pos(t
′, p′, Z))).

3) ∀t ∈ TL(A).∀Z ∈ {X,Y }.
∀p, p′ ∈ Pos(t,HZ).rtA(p) 6= rtA(p

′)⇒ t|p 6= t|p′ .

This is an extension of the notion of f -path fixity introduced
in [2] to multiple FDs. The first condition means that for
every tree in TL(A), the set of states assigned to the
positions in Pos(t,H) is fixed. The fixed set is denoted by
QA

H . The second condition means that for any tree in TL(A)
and any position p in Pos(t,H), the set of states assigned
to the positions in Pos(t, p,X) (resp. Pos(t, p, Y )) is fixed
on the state assigned to the position p. For each qh ∈ QA

H ,
the fixed sets are denoted by QA

qh,X
and QA

qh,Y
, respectively.

The third condition means that for any tree in TL(A) and
any two positions in either of Pos(t,HX) or Pos(t,HY ), if
the states assigned to the positions are distinct, then so are
the subtrees at the positions. Let QA

HX =
∪

qh∈QA
H
QA

qh,X

and QA
HY =

∪
qh∈QA

H
QA

qh,Y
.

For a tree t ∈ TL(A) and px ∈ Pos(t,HX), let
QP t

HX(px) denote the pair (rtA(ph), r
t
A(px)) of states of

A such that px = ph · p for some p and λ̃t(ph) = H . Let
QP t

HX denote the set {QP t
HX(px) | px ∈ Pos(t,HX)}.

Note that QP t
HX is fixed over all t ∈ TL(A) because of the

path fixity of A. The fixed set is also denoted by QPA
HX .

The satisfiability of FDs f1, . . . , fN under a path-fixed TA
A is equivalent to the existence of the following mappings
MHX and MHY for each f = (H,X, Y ) ∈ {f1 . . . , fN}:

• The domain of MHX is QPA
HX . For each (qh, qx) ∈

QPA
HX , MHX((qh, qx)) must be an element of

TL(A, qx). Moreover, for (qh1, qx), (qh2, qx) ∈ QPA
HX

such that qh1 6= qh2 and QA
qh1,HY ∩ QA

qh2,HY = ∅, it
must hold that MHX((qh1, qx)) 6= MHX((qh2, qx)).

• The domain of MHY is QA
HY . For each qy ∈ QA

HY ,
MHY (qy) must be an element of TL(A, qy).

Intuitively, for a tree t ∈ TL(A) satisfying the FDs,
mappings MHX and MHY represent the subtree of t at
position in Pos(t,HX) and Pos(t,HY ), respectively. Note
that for any qy ∈ QA

HY , TL(A, qy) is nonempty because the
definition of QA

HY is based on a successful run. Hence the
existence of MHY is always guaranteed, and the key point
is the existence of MHX . The next lemma formally states
this intuition.

Lemma 1: FDs f1, . . . , fN are satisfiable under a path-
fixed TA A with respect to f1, . . . , fN if and only if for
each f = (H,X, Y ) ∈ {f1, . . . , fN}, there exists a mapping
MHX satisfying the above condition.

Proof: If part. Consider an arbitrary tree t′ ∈ TL(A).
Since A is path fixed with respect to f1, . . . , fN , t′ has all
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of the paths H1X1,. . . , HNXN , H1Y1,. . . , HNYN . That is,
Pos(t′,HX) and Pos(t′, HY ) are nonempty for all f =
(H,X, Y ) ∈ {f1, . . . , fN}. Let rt

′

A be the unique run of
A on t′. Let t be a tree obtained from t′ by the following
replacement:

• for each px ∈ Pos(t′,HX), replace the subtree t′|px

of t′ with MHX(QP t′

HX(px)); and
• for each py ∈ Pos(t′,HY ), replace the subtree t′|py of

t′ with MHY (r
t′

A(py)).
Note that t is well defined because of the non-prefix re-
striction on FDs. Now, the tree t is obviously in TL(A).
Moreover, for all f = (H,X, Y ) ∈ {f1, . . . , fN} and
for any pairs of positions ph1 and ph2 in Pos(t,H), if
X(t, ph1) ∩X(t, ph2) 6= ∅, then Y (t, ph1) ∩ Y (t, ph2) 6= ∅.

Only if part. Suppose that for some f = (H,X, Y ) ∈
{f1, . . . , fN}, there is no mapping MHX satisfying the
above condition. Here, for any (qh, qx) ∈ QPA

HX ,
TL(A, qx) is nonempty because the definition of QPA

HX

is based on a successful run. Hence, there are some
(qh1, qx), (qh2, qx) ∈ QPA

HX such that qh1 6= qh2,
MHX((qh1, qx)) = MHX((qh2, qx)), and QA

qh1,HY ∩
QA

qh2,HY = ∅. Now, suppose contrarily that a tree t′ ∈
TL(A) satisfies the FD f . Because A is path fixed, there
are ph1, ph2 ∈ Pos(t′,H) such that rt

′

A(ph1) = qh1
and rt

′

A(ph2) = qh2. Moreover, by the path fixity of A
again, QA

qh1,HY ∩ QA
qh2,HY = ∅ implies that Y (t′, ph1) ∩

Y (t′, ph2) = ∅. Hence, in order for t′ to satisfy f , it must
hold that X(t′, ph1) ∩ X(t′, ph2) = ∅. However, this is a
contradiction to the assumption that the condition for MHX

cannot be satisfied because by choosing MHX((qh1, qx))
from X(t′, ph1) and MHX((qh2, qx)) from X(t′, ph2), it
would hold that MHX((qh1, qx)) 6= MHX((qh2, qx)). In
summary, there is no tree t′ ∈ TL(A) satisfying f .

In what follows, we show that existence of the mapping
MHX is decidable. Let qx ∈ QA

HX . Consider a subset Q′ of
QA

H such that for any distinct qh1 and qh2 in Q′,
• qx ∈ QA

qh1,X
∩QA

qh2,X
, and

• QA
qh1,Y

∩QA
qh2,Y

= ∅.
For qx, such Q′ is not unique. Let k(qx) denote the maxi-
mum size of such Q′.

Lemma 2: Fix f = (H,X, Y ) in {f1, . . . , fn}. Mapping
MHX exists if and only if |TL(A, qx)| ≥ k(qx) for all qx ∈
QA

HX .
Proof: If part. Suppose that |TL(A, qx)| ≥ k(qx) for

all qx ∈ QA
HX . Recall that the domain of MHX is QPA

HX .
Let QPA

HX(qx) denote the subset of QPA
HX such that the

second components of the elements are qx ∈ QA
HX . Let QPd

be a subset of QPA
HX(qx) such that

• QPd has k(qx) elements, and
• for any distinct pair (qh1, qx), (qh2, qx) in QPd, it holds

that QA
qh1,HY ∩QA

qh2,HY = ∅.
By the maximality of k(qx), for any (q′h, qx) ∈ QPA

HX(qx)−
QPd, there is (qh, qx) ∈ QPd such that QA

q′h,HY ∩QA
qh,HY 6=

∅. Now, define MHX as follows. MHX maps elements in
QPd to k(qx) distinct elements in TL(A, qx). Also, MHX

maps each (q′h, qx) ∈ QPA
HX(qx)−QPd to MHX((qh, qx))

such that QA
q′h,HY ∩ QA

qh,HY 6= ∅. Then MHX satisfies
that for any distinct (qha, qx), (qhb, qx) ∈ QPA

HX(qx),
QA

qha,HY ∩ QA
qhb,HY = ∅ implies MHX((qha, qx)) 6=

MHX((qhb, qx)).
Only if part. Suppose that |TL(A, qx)| < k(qx) for some

qx ∈ QA
HX . Define QPd as in the proof of the if part. That

is, |QPd| = k(qx) and for any distinct (qh1, qx), (qh2, qx) ∈
QPd, it holds that QA

qh1,HY ∩QA
qh2,HY = ∅. Hence, MHX

must map elements in QPd to distinct elements. However,
the image of MHX must be an element of TL(A, qx) and
we have ony |TL(A, qx)| < k(qx) = |QPd| elements. It is
concluded that mapping MHX does not exist.

Since it is decidable whether |TL(A, qx)| ≥ k(qx) for all
qx ∈ QA

HX , the following theorem is immediate.
Theorem 1: Let f1,. . . , fN be FDs satisfying non-prefix

restriction, and A be a general TA. Satisfiability of f1,. . . ,
fN under A is decidable.

3.2 Enumerating candidates for the value of
sensitive information

Using the decidability result of satisfiability of FDs, we
show the decidability of k-secrecy.

Theorem 2: k-secrecy against inference attacks using FDs
is decidable, provided that the FDs satisfy the non-prefix
restriction. Moreover, if k-secret, u1, . . . , uk ∈ LINF such
that TS(ui) 6= TS(uj) for any i and j (1 ≤ i, j ≤ k, i 6= j)
are computable.

Proof: The theorem is shown by induction on k.
Basis. Let k = 1. Since LC always contains TS(tG) for

the target tree tG, tG is always 1-secret. Hence, k-secrecy
is decidable when k = 1. Moreover, we can choose tG as
u1 ∈ LINF because tG satisfies f1,. . . , fN .

Induction. Let k > 1. Suppose that (k − 1)-secrecy is
decidable. Suppose also that if (k−1)-secret, u1, . . . , uk−1 ∈
LINF such that TS(ui) 6= TS(uj) for any i and j (1 ≤ i, j ≤
k − 1, i 6= j) are computable. The decision algorithm of k-
secrecy is as follows:

1) Run the (k − 1)-secrecy decision algorithm.
2) If tG is not (k − 1)-secret, then return “tG is not k-

secret.” Otherwise, do the following process.
a) Compute u1, . . . , uk−1 ∈ LINF such that

TS(ui) 6= TS(uj) for any i and j (1 ≤ i, j ≤
k − 1, i 6= j).

b) By inverse type inference on TS , compute a TA
AEQ

i such that TL(AEQ
i ) = {t′ ∈ LINF |

TS(t
′) = TS(ui)} for each i (1 ≤ i ≤ k − 1).

c) Compute a TA Ak such that TL(Ak) = LINF −∪
1≤i≤k−1 TL(A

EQ
i ).

d) Check the satisfiability of f1,. . . , fN under Ak.
If not satisfiable, then return “tG is not k-secret.”
Otherwise, do the following process.
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i) Compute a tree uk ∈ TL(Ak) satisfying FDs
f1, . . . , fN . This computation is possible by a
naive enumeration of unranked trees followed
by checking the membership of TL(Ak) and
satisfaction of f1, . . . , fN .

ii) Return “tG is k-secret,” with trees u1, . . . , uk.
The correctness of the above algorithm is almost obvious.

The algorithm returns “tG is not k-secret” only if tG is not
even (k − 1)-secret or there is no uk ∈ TL(Ak) satisfying
FDs f1, . . . , fN . On the other hand, the algorithm returns
“tG is k-secret” with trees u1, . . . , uk only if all of u1,. . . ,
uk are in LINF , all of them satisfy the FDs f1,. . . , fN , and
TS(u1),. . . , TS(uk) are all distinct.

4. Related Work
Inference attacks have been one of the most well-known

threats on databases for the past few decades. On relational
databases, aggregate functions can be used for inferring
sensitive information [5]. Disclosure Monitor [6] is a part
of a relational database management system that monitors
information disclosure by inference attacks. Roughly speak-
ing, Disclosure Monitor keeps track of users’ knowledge
obtained by queries issued so far. When a user issues a
query, Disclosure Monitor determines whether the result of
the query with the current knowledge of the user disclose the
sensitive information. According to the determination result,
Disclosure Monitor decides whether the query should be
allowed or not. Several stronger security definitions [7], [8]
require that authorized views and the answers of them do
not change the probability distribution of possible secrets.
As for XML databases, there have been a few studies on
secure view publishing [9], [10].

Security against inference attacks is often discussed in the
context of privacy protection. k-anonymity [11] is one of the
most famous security criteria, which assumes linking attacks
to privacy data in multiple tables. A set of attributes that
can be useful for identifying individuals is called a pseudo-
identifier. The concept of k-anonymity is based on the idea
that a database is safe if it contains many corresponding
tuples for each possible value of a pseudo-identifier. Another
famous criterion is l-diversity [12]. It is based on the idea
that a database is safe if it contains many candidates for
values of sensitive information for each possible value of a
pseudo-identifier. Our notion of k-secrecy is similar to the
notion of l-diversity but differs in that our model assumes
attackers infers all the candidates for the value of sensitive
information consistent with the information available to the
attackers. That is, it is assumed that attackers can perform
more than linking attacks. Our result is therefore useful for
guaranteeing higher secrecy than l-diversity.

Research on inference attacks is closely related to research
on incomplete information because an attacker’s knowledge
is considered as incomplete information on the sensitive in-
formation. Conditional tables [13] are a simple but powerful

representation of incomplete relational databases. In condi-
tional tables, unknown values are represented by variables,
and the domains of variables and the existence of tuples
are specified by conditional expressions. Actually, to keep
track of the user’s knowledge, Disclosure Monitor uses a
data structure similar to conditional tables. As for XML
databases, incomplete trees were proposed [14]. They can
handle trees with data values, but only a limited number
of tree shapes. In our formulation, data values are assumed
to be encoded by trees. Therefore, we can adopt finite
tree automata as a representation of incomplete information,
which have good closure properties, although comparisons
between data values are limited.

5. Conclusion
In this paper, we have shown that k-secrecy against

inference attacks using multiple FDs of XML databases is
decidable, provided the FDs satisfy the non-prefix restriction.
As demonstrated in Example 1, inference using multiple FDs
is strictly more powerful than inference using a single FD.
Our result shows that the risk by multiple FDs is detectable,
while it is not necessarily detected by existing methods.

The non-prefix restriction is critical for our decision
procedure to work correctly. For example, consider the fol-
lowing two FDs: f1 = (H1, X1, Y1) and f2 = (H2, X2, Y2).
Without the restriction, H2X2 might be a prefix of H1.
The number of possible subtrees at H2X2 could not be
independent of the numbers of possible subtrees at H1X1

and H1Y1. This means that it is impossible to decide the
satisfiability for each FD independently. Our future work will
include relaxing the non-prefix restriction so that k-secrecy
is still decidable.
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Appendix
Construction of path-fixed automata with respect to FDs

f1, . . . , fN consists of the following two steps: construction
of an FD automaton for f1, . . . , fN ; and division into path-
fixed TAs.

A Construction of an FD automaton
Given FDs f1, . . . , fN , we construct an FD automaton

AF which is the intersection TA of all the FD automata Afi

for each fi (1 ≤ i ≤ N ). In what follows, we provide a
construction method of the FD automaton Af with respect
to a single FD f = (H,X, Y ).

First, construct two TAs AHX and AHY as follows. Let
H = h1 · · ·hn and X = x1 · · ·xm. Then, AHX = (QH

X ∪
Q̄H

X ,Σ, {qh1 , q̄h1 , qh̄1
}, RH

X), where

QH
X = {qh1 , . . . , qhn} ∪ {qx1 , . . . , qxm},

Q̄H
X = {q̄h1 , . . . , q̄hn−1} ∪ {qh̄1

, . . . , qh̄n
}

∪{q̄x1 , . . . , q̄xm−1} ∪ {qx̄1 , . . . , qx̄m} ∪ {qany},

and RH
X consists of the following transition rules:

• for each i (1 ≤ i ≤ n− 2),
– (qhi , hi, (qhi+1

+ & q̄hi+1
∗ & qh̄i+1

∗)),
– (q̄hi , hi, (q̄hi+1

∗ & qh̄i+1

∗)),
– (qh̄i

, α, qany
∗) for each α ∈ Σ− {hi},

• for i = n− 1,
– (qhi , hi, (qhi+1

+ & qh̄i+1

∗)),
– (q̄hi , hi, qh̄i+1

∗),
– (qh̄i

, α, qany
∗) for each α ∈ Σ− {hi},

• for i = n,
– (qhi , hi, (qx1

∗ & q̄x1
∗ & qx̄1

∗)),
– (qh̄i

, α, qany
∗) for each α ∈ Σ− {hi},

• for each j (1 ≤ j ≤ m− 2),
– (qxj , xj , (qxj+1

+ & q̄xj+1
∗ & qx̄j+1

∗)),
– (q̄xj , xj , (q̄xj+1

∗ & qx̄j+1
∗)),

– (qx̄j , α, qany
∗) for each α ∈ Σ− {xj},

• for j = m− 1,

– (qxj , xj , (qxj+1
+ & qx̄j+1

∗)),
– (q̄xj , xj , qx̄j+1

∗),
– (qx̄j , α, qany

∗) for each α ∈ Σ− {xj},
• for j = m,

– (qxj , xj , qany
∗),

– (qx̄j , α, qany
∗) for each α ∈ Σ− {xj}, and

• (qany, α, qany
∗) for each α ∈ Σ.

Construct AHY in the same way.
Then, Af = (Qf ∪ Q̄f ,Σ, Q̂, Rf ) is the intersection TA

of AHX and AHY , where Qf = QH
X× (QH

Y ∪ Q̄H
Y )∪ (QH

X ∪
Q̄H

X)×QH
Y and Q̄f = Q̄H

X × Q̄H
Y . Since AHX and AHY are

unambiguous, so is Af .

B Division into path-fixed TAs
Given a TA A = (Q,Σ, Q̂, R) and the FD automaton

AF = (QF ,Σ, Q̂F , RF ) with respect to FDs f1, . . . , fN ,
we divide A into a finite set of TAs each of which is path
fixed with respect to f1, . . . , fN . We assume that A is a
bottom-up deterministic TA without loss of generality. In
what follows, we show a procedure for dividing A into a
finite set of path-fixed TAs with respect to f1, . . . , fN .

First, construct the intersection TA Ap of A and AF . Next,
let Q′

F be the subset of QF such that i-th component of the
elements is in Qfi for some i (1 ≤ i ≤ N ). Consider the
following binary relation ≺ over Q×Q′

F : q′ ≺ q if and only
if there is some rule (q, a, e) in Ap such that q′ appears in
e. From the construction of AF , no state in Q′

F is recursive
on AF , and thus the reflective transitive closure ≺∗ of ≺ is
a partial order. According to a topological ordering of ≺∗,
starting from the smallest state, for each q ∈ Q × Q′

F , do
the equivalence transformation of Ap as follows: if the rule
(q, a, e) exists in Ap, let Qe be the set of states appearing
in e. For each Q′ ⊆ Qe, create a new state qQ′ , and a new
rule (qQ′ , a, e′) such that e′ is the intersection RE of e and
(q′1

+
& · · ·&q′m

+
) where Q′ = {q′1, . . . , q′m}. Moreover, for

every rule (q′, a′, e′) such that q appears in e′, replace q
in e′ with q∅ | · · · | qQe . The equivalence transformation
eventually terminates because ≺∗ is a partial order. Let Adv

be the TA obtained by the equivalence transformation. By
this transformation, for each state appearing on the label
path HX or HY , the set of states assigned to their children
position is fixed in any tree accepted by Adv . Let Q̂dv =
{q̂1, . . . , q̂l} be the set of the initial states of Adv . For each
initial state q̂i ∈ Q̂dv , the TA Ai

dv obtained by restricting the
set of initial states to the singleton {q̂i} is path fixed with
respect to f1, . . . , fN . We have that TL(A) = TL(Adv) =∪

1≤i≤l TL(A
i
dv) and TL(Ai

dv) ∩ TL(Aj
dv) = ∅ for all i, j

(1 ≤ i, j ≤ l, i 6= j).
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Abstract—Since the data volume from various facilities keeps
growing rapidly in recent years, ”big data” processing frame-
works such as Hadoop have been developed as a scalable
architecture to process large amount of data in cloud computing
environment. We focus on intrusion detection problems which
require large amount of data to be processed in order to detect
malicious attacks. In this paper we discuss a Hadoop implemen-
tation of a multiple classifier system to enhance performances of
the learning process in intrusion detection.

I. I NTRODUCTION

Currently, the amount of data that has to be processed by
many companies has reached Petabytes and is expected to keep
growing in the future. Under these circumstances, it is critical
that these large amounts of data be efficiently treated. This
requires that useful information be gleaned from such data.
To do this, various Machine Learning approaches are being
proposed. This is also true in the field of Intrusion Detection
Systems (IDS). Many machine learning approaches have been
proposed in the field of IDS. These approaches include Support
Vector Machines (SVM), Neural Networks (NN), and classifier
systems (see [1]-[5]). IDSs need to to analyze large-scale
data quickly and respond promptly to any new intrusion
detected. However, if machine learning is applied to large scale
data, time becomes a critical issue.Here, we suggest an early
learning technique by executing multiple classifier systems
simultaneously (parallel) on Hadoop MapReduce framework
(see [8],[9]). Classifier systems are valid for a variety of input
environments. A multiple classifier system extends this concept
to facilitate the processing of big data. Recently, classifier
systems have been studied extensively as a powerful way to
learn large-scale data. In this paper, a proposed implementation
of such a multiple classifier system on the Hadoop MapReduce
Framework is presented. Hadoop is an open source software
for large-scale distributed data processing that enables users to
easily perform distributed processing (see [10]).

II. CLASSIFIER SYSTEMS

Classifier systems are the learning process of rule-based
machine learning system. They are composed of a set of rules,
called a classifier, which consists of IF/THEN statements. The
method by which a classifier system learns is described below
(Fig. 1).

A. Flow of learning in a Classifier System

Classifier systems can roughly be divided into five mod-
ules: i) action module, ii) renumeration assignment module,
iii) discovery module, iv) effector module, and v) detector
module. A classifier system first converts the input from the
environment to adapt it for use by the system. In the action
module, the system determines the classifier that should act
on the input data. In the renumeration assignment module, the
classifiers chosen in the action module return some rewards for
the classifiers. In the discovery module, a Genetic Algorithm
(GA) is executed in order to receive a better population of
classifiers.

In the action module, the system selects classifiers that
match the input from the environment and move them into
a message list. Classifiers have their own level of intensity.
Classifiers that have a high intensity perform in the message
list. When selecting an action classifier, we consider not only
intensity but also the number of hashes (＃). The method
by which classifiers are chosen depends on the nature of the
problem to be dealt with.

In the renumeration assignment module, a reward is as-
signed to the classifier population. The reward allocation
method heavily influences learning efficiency. Let us now look
at a typical reward allocation algorithm, called the bucket
brigade algorithm.

If the reward is only assigned to the classifier that acted, a
large deviation appears when learning with many test cases. It
is therefore impossible to perform learning by considering the
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Fig. 1. Structure of a typical Classifier System

turn in which classifiers acted. The bucket brigade algorithm
was proposed as a way to overcome this problem.
With the bucket brigade algorithm, the classifiers perform an
auction market using the intensity of the classifiers and acquire
their reward in this way. First, those classifiers that match
the input from the environment are put in a message list.
In this message list, the classifiers that act are chosen and
classifiers pay intensity for the classifier leading to a matching.
Only those classifiers that acted are kept in the message list,
classifiers that did not act are excluded from the list. Therefore,
those classifiers that remain in the list cause the next match.
Thus, by causing matching continuously, renumeration can
also be assigned to the classifier relevant to the classifier
outputted to the environment.

In the discovery module, a GA is executed on a classifier
population. GAs are approximative optimization algorithms
inspired by the process of biological evolution. In GAs,
the mechanisms of selection, intersection, and mutation are
represented by operations on bit strings. In a classifier system,
a classifier is considered to be a gene sequence (represented as
a bit string) and a GA is used to manipulate this gene sequence.
By performing the GA, a classifier population’s flexibility is
maintained and refined.

III. F LOW OF LEARNING IN A MULTIPLE CLASSIFIER
SYSTEM

In a multiple classifier system (MCS), input data is dis-
tributed to each machine and a classifier system is executed
by each machine. One classifier population is made by the
classifier from which it is shifted to execution by each machine
and is summarized in one place. Although learning big data
is attained in a short time using this method, the accuracy
of the learning depends on the composition of the population
collected in one place. Thus, the method that is used to conduct

Fig. 2. Structure of a typical Multiple Classifier System

the merge is very important. The efficiency of learning changes
significantly according to which classifier is entered into a
population and which classifier is removed.

A. Merge technique

In the merge technique, classifiers, which are sent se-
quentially, are sorted by the system according to intensity
and number of hashes (＃) in order to make a high-quality
population. The decision as to whether the system leaves a
classifier that has a high correspondence power or a classifier
that has high intensity is dependent on the learning objective
or contents. The performance of the population changes in
accordance with the kind of population constituted. There is no
absolute way that is good to constitute a population from any
kind of technique since many methods have been proposed.
Figure 2 ilustrates the system-wide flow in a typical MCS
(Fig. 2).

B. Bottlenecks in a multiple classifier system

It is required that an optimal classifier group be generated
by a suitable merge method in an MCS, as mentioned above.
Moreover, in order to obtain a better classifier and for group
flexibility, it is necessary to generate to some extent a large
group. In order that a problem does not arise here, a search
may be conducted by the merge technique for a group that
contains a new classifier. At this point the merge may take
time, so that the collective size becomes large.

IV. I NTRUSION DETECTION SYSTEM (IDS)

Intrusion detection is an adversarial classification task.
In recent years, it has become necessary to use big data
for learning of intrusion detection. To date, many types of
machine learning techniques have been proposed for IDS.
Nowadays, MCS are used for learning of intrusion detection,
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which leaves a track record. intrusion detection has two types
of detection methods: anomaly detection and misuse detection.
Misuse detection is based on a comparison of the current
connection pattern with known attack patterns. In contrast
to misuse detection, anomaly detection learns from normal
patterns of connection. The two types of detection methods
also have different respective features. Misuse detection has
a low false positive rate and a high detection rate for known
attack patterns. However, against new attack patterns it receives
it is weak. Anomaly detection can detect new attacks, but it has
a high false negative rate. In intrusion detection by machine
learning, the anomaly method is used in many cases. The
purpose of an IDS is to suppress the false positive rate and
keep the false negative rate low. In our proposed system, the
two types of detection methods, anomaly detection and misuse
detection, are utilized by dividing the gathering as a result of
the classifier system.

V. PROPOSED IMPLEMENTATION

A. Hadoop

Hadoop is an open source large-scale distributed process-
ing software that uses the MapReduce Framework. Hadoop
performs Terabyte to Petabyte levels of big data processing
that ordinarily takes a lot of time and is not dependent on an
expensive computer as the work is distributed over thousands
of nodes comprising ordinary servers that can be obtained
cheaply. By using the MapReduce Framework, underlying
details and troublesome problems, such as data distribution,
which must be solved in the usual distributed processing,
failure processing, and load balancing are taken care of.
Thus, parallel distributed processing can be performed easily.
Hadoop comprises MapReduce and HDFS: Data distribution,
node management, etc. are enabled by the Hadoop distributed
file system (HDFS). Hadoop simplifies the construction of
distributed processing programs. The typical layout of the
Hadoop MapReduce Frameowork is depicted in Fig. 3.

B. MapReduce Framework

A MapReduce Framework is divided into three phases:
Map, Shuffle, and Reduce. By passing data to each phase using
the value from the key/value pair, processing is performed
by each phase. Users can carry out distributed processing by
describing the processing in the Map and Reduce functions. In
Map processing, the input data are received as key/value pairs
and processing by analyzing the contents generates middle data
in the form of key/value pairs. The generated data is gathered
by key in Shuffle processing, and is sent to Reduce processing.
In Reduce processing, the value processed for every key is
generated and output as a result.

C. Mounting of the multiple classifier system on Hadoop

In Hadoop, classifier systems are individually mounted in
Map processing and merge is performed in Reduce processing.
The contents of mounting within each phase of processing is
explained below.

Fig. 3. Typical layout of the Hadoop MapReduce Framework

1) Map processing: A classifier system is individually
mounted in Map processing. A classifier is tagged by the kind
of environment the classifier is matched to by setting this tag
to key. The classifier is treated as value and outputted. The
processesed classifier is outputted with a parameter such as
intensity or others and is then sent to Shuffle processing.

2) Shuffle and Reduce processing:In Shuffle processing,
data is classified according to the middle value generated by
Shuffle processing for every tag, and the classified classifier
is put into Reduce processing. In Reduce processing, merge
is performed by each Reducer and a classifier population
generated. In Hadoop, Reduce processing is also arranged in
parallel by two or more machines. Therefore, if the number
of Reducers increases,the computation time in the merging
method is reduced.
A group corresponding to the inputs from various environ-
ments is generated by two or more groups classified according
to the input from environment is generated. If a classification
with a tag is increased and the number of Reducers is in-
creased, the system can learn during the merge execution time
even if in the whole group the number of individuals becomes
large.
A group forms the colony of the classifier, which reacts to
similar inputs so it is not subject to or influenced by learning
advance of classifiers with a far relation. With this method,
learning about rare inputs from which learning is seldom made
repeatedly can be performed efficiently.

VI. EXPERIMENT

A. Object problem

In our experiment, a classifier system was built to study
data for intrusion detection using the network communication
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dataof KDD Cup 1999 Data (international data-mining con-
test). The contents of the data are the study data used by a
teacher which is accompanied by data for result judging. The
environment was set up by binary coding this data to 0 and 1.

B. Execution environment

One hundred and thirty virtual machines (VM) were
launched on a CloudStack cloud platform and Hadoop version
1.0.4 mounted on them.

1) Key setup:An execution classifier was tagged according
to the kind of input data it processes. Keys were setup
according to attacks from 22 kinds of intrusion attack data.
The data were divided according to intrusion data and groups
made.

2) The merge method performed:In the classifier system
using Hadoop, the fall of the merge speed by hypertrophy
of a global model is avoidable by increasing the number of
Reducers. Therefore, even if the group becomes very large,
computation time is seldom influenced. The maximum global
size was set at 500. The groups were setup such that an
individual with a higher specialty nature (individuals with a
small number of hashes, ’#’) might remain since it is highly
possible to setup a maximum. In this experiment, classifiers
were sorted using conditions 1 and 2:
1) Keep those classifiers with a low number of hashes, #’s, in
the system.
2) If two classifiers have an identical number of hashes, #’s,
keep the one with the higher intensity in the system.

VII. E XPERIMENTAL RESULTS

The system was mounted and two or more Mappers started
learning in the multiple classifier system. Learning with a sim-
ple classifier system was compared with learning distributed
with the MCS using the method outlined in Section IV.
The number of nodes used by the Mapper was varied from

Fig. 4. Execution time versus number of Mappers

3 to 93 and execution time measured. The resulting execution
time is depicted in Fig. 4. Block count was also changed in
increments of 8 MB, 16 MB, 32 MB,... and so on in Hadoop,
when distributing a file. Like the upper graph, it turned out

Fig. 5. Execution time versus number of Reducers

that execution time decreased linearly.
As shown in Fig. 5, execution time decreased as the number of
Reducers increased. However, the change is not linear because
the execution time resulting from the change in the number of
Reducers is influenced by the items of learning data.
Next, we examined the change in the accuracy of learning
in terms of the change in the number of nodes. Here, the
accuracy is determined by the probability of the classifier
group generated to learn and judge a result correctly according
to the test data.
Figure 6 illustrates learning accuracy with respect to the

Fig. 6. Accuracy of learning versus number of Mappers.

number of Mappers. If the number of Mappers is increased
by too much, a state will be reached where there is hardly
any learning. Also, if a file is divided too much, learning
by each machine will become insufficient, and as a result,
the overall learning rate will fall. In this experiment, the size
of the learning data used was 740 MB. The accuracy of the
learning became low for sizes smaller than 64 MB. Thus, it
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was necessary to search the MCS on Hadoop to determine the
optimal file assignment size.
Next, learning with a simple classifier system was compared
with learning using our proposed MCS technique.
The column on the right of the graph shows learning with

Fig. 7. Accuracy of learning in simple and multiple classifier systems

the simple classifier system, while that on the left represents
learning by our proposed MCS. As can be seen in the graph,
the accuracy of the overall learning fell in the MCS. Since a
classifier system is what is originally risen and learned in one
classifier group, when it merges, as the whole group’s work,
it is inferior to the simple classifier system.
The pie chart depicted in Fig. 8 illustrates the items of learning
data used in the experiment. In the learning data used (740
MB), attack intrusion data of a very rare kind comprising only
about 20 KB (less than 1％ of the whole), such as guess
passed and nmap, was included. Next, we examined how the
learning rate varied with the small amount of attack data (Fig.
9). It was difficult for the above data to update the learning

Fig. 8. Learning data items, displayed according to their proportional
likelihood to be attacked.

intensity of the simple classifier system. Because there was the
possibility of obtaining learning by other inputs, leaking and
being removed from a group was high, so there was hardly
any learning. However, in our proposed technique, since the
classifier was gathered by distributing classifiers that received
and reacted to each small input in learning to each Reducer,

Fig. 9. Left: Learning of multiple classifier system. Right: Learning of simple
classifier system

it was possible to keep the learning rate high.

VIII. C ONCLUSION

Learning by a multiple classifier system, compared with
learning with a simple classifier system, can significantly
reduce the learning time and the effectiveness of the learning
method on large-scale problem data sets. Moreover, a time
reduction in the merge process was gained when executing
the proposed multiplier classifier system on the Hadoop Map
Reduce framework. However, it turns out that some accuracy
of learning is lost when using a MCS. In order to raise the
accuracy of learning, we have to consider a better merging
method and to further study the method of classifiers. When
learning data was distributed, It turned out, that the optimal
distribution of data is problematic. Learning by each machine
is inefficient, if the processed data is too small. Also, one
has to be careful with splitting data where the distribution of
important of data is unknown.To consider that Hadoop divides
a data file automatically, it seems that this issue becomes a big
subject to the proposed technique.
By the proposed technique, it was possible to learn without
leaking small input data. Even in large scale data, the proposed
technique was able to learn in a reasonable fast time without
leaking small input data.
Recently, an improvement of the MCS technique, such as
sharing classifiers and other parameters between individual
machines, has been proposed (see [2]). Such improvements
seems also to be promising for our proposed technique and
should be investigated further in the future.
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Abstract— This paper focuses on the relation between order 
book condition and price movement. The presented model is 
applicable to making trading strategies during the day and to 
estimating them in the Japanese stock market. Nevertheless, it is 
difficult to reveal the absolute mechanism of the financial 
market. We find that the information on order books are more 
meaningful in constructing a trading strategy rather than the 
information from traded prices and volume data. Particularly, a 
change of the balance on order book implies price trend not only 
in a moment, but also over a certain period, due to a memory 
effect. Additionally, it is indicated that thinning out data is still 
good enough to study intraday market movement, even if there 
are many HFT order flows. We can recognize that HFT requires 
algorithmic trade, but algorithmic trade does not require HFT. 
 
Keywords— Order Book, Ita, Stock Market, Market Impact, 
Algorithmic Trade, High Frequency Trade, Intraday movement. 
 

I. INTRODUCTION 
The price in financial markets seems to be determined 

when the quantity of demand which buyers wish and the 
quantity of supply which sellers wish balance. Although the 
sense that market mechanism balances demand and supply is 
common in economics, the price is not necessarily determined 
from the result of demand and supply in real financial markets, 
particularly in intraday movement. In the Japanese equity 
market, the price is caused from balancing demand and supply 
directly at the market opening and closing, but the price is not 
determined by the excess demand or excess supply during the 
trading hours. 

This paper shows that the methodology that approximates 
the demand or the supply with a power function during the 
trading hours in Japanese equity market is effective. Using the 
approximation model by a power function, we discuss the 
influence on a subsequent price change from the change of a 
demand-supply balance on an order book. A change of 
demand-supply balance on an order book may serve as an 
information source in an algorithmic trade or HFT. Finally, 
we refer why order book information is so important for 
regarding the relation between algorithmic trade and HFT.  

 

II. ORDER BOOK AND INTRADAY PRICE MOVEMENTS IN 
JAPANESE STOCK MARKET 

In the Japanese equity market, opening price and closing 
price are determined by the Ita-yose methodology. The Ita-
yose methodology is a system in which the price and the 
trading volume are determined by the intersection of a 
demand curve and a supply curve just before a certain time, 
such as opening or closing. In Japanese, the order book table 
is called “Ita” and the matching is called “Yose”, so we say 
Ita-yose for demand-supply matching. On the other hand, a 
market participant trades for Ita shown as Fig.1 during 
intraday-trading hours. We call this price and trading volume 
determinant system “Zaraba”. The key issue for the difference 
between Ita-yose and Zaraba is that the Ita-yose system 
reflects demand-supply, but Zaraba does not. On the Zaraba 
system, one market participant watches Ita, then he or she 
decides to trade at bid or ask. Depending on the order book 
information, he or she may get aggressive or hesitate to trade. 
This means intraday movement is caused from the 
information of demand-supply situation, not from demand-
supply condition directly.  

 

  
Fig. 1 Order book, “Ita” illustrated by Tokyo Stock Exchange 

 

III. THE MODEL OF MARKET IMPACT 
In order to recognize the information of demand-supply 

situation, a real Ita sample is shown in Fig.2. It is a snap shot 
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of the Sony order book at 9:00:01 on Feb 15th, 2012. Buy 
orders are positioned on the right hand side, and sell orders on 
the left hand side. The black bar indicates immediate 
executable price range where one order can make a price push 
up or down. The range is calculated from the current market 
price. In case of Fig.2, the current price is 1526, and the range 
corresponding to it is 80 yen, so one order may trigger to push  
the price up or down 5.24%.  

 

 
Fig. 2 A snap shot of Sony’s Ita at 10:00:02 on Feb. 15th, 2012  

 
Focusing on the range, we can draw a market impact curve 

that indicates the cost for the number of trading shares. Fig.3 
shows two impact curves for the market, one for the buyer 
and one for the seller. The horizontal axis is the order quantity, 
and the vertical axis is the trading cost. For example, if you 
wish to buy 500,000 shares of Sony stock at 10:00:02 on Feb. 
15th, 2012, your buying cost should be 1535.99 yen from the 
Ita condition. It should be noticed that impact curve indicates 
the cost not market price. 

 

 
Fig. 3 A snap shot of Sony’s Ita curves at 10:00:02 on Feb. 15th, 2012  

 

Observing a snap shot data of Ita, we can approximate the 
curve, (1) as a liner function, (2) as an exponential function, 
and (3) as a power function. 

 
impact =a ⋅S    (1) 

impact = a ⋅exp b ⋅S( )    (2) 

impact =a ⋅
CS    (3) 

 
In the function, S is trading shares, impact = Abs[executed 

price – current price], a is a scale coefficient, b is a 
exponential coefficient, c is a power low coefficient. 

Corresponding to curves in Fig.3, these 3 approximated 
curves are shown in Fig.4. A intraday movement in financial 
market is so unstable that these coefficient numbers are 
variable, even triggered by one order.  

 

 
Fig. 4 Approximating function curves for snap shot of Sony’s Ita  

 
Here, approximating functions are follows; 

A. Approximating Impact Functions in Buying(Red lines) 
1) The liner Approximation (the red line) 
        impact = 0.0000245× S ,   R2=0.97 
 
2) The Exponential Approximation(the red dashed lines) 
        impact =1.93× exp(0.0000032× S) ,   R2=0.91 
 
3) The Power Approximation (the red dot-dashed lines) 
        impact = 0.00105× S0.711 ,   R2=0.93 

B. Approximating Impact Functions in Selling(Blue lines) 
4) The liner Approximation (the blue line) 
        impact = 0.0000589× S ,   R2=0.98 
 
5) The Exponential Approximation(the blue dashed lines) 
        impact = 2.93× exp(0.0000045× S) ,   R2=0.87 
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6) The Power Approximation (the blue dot-dashed lines) 
        impact = 0.000137× S0.923 ,   R2=0.97 

 
Considering the variable market conditions and 

mathematical reason that the function should pass through 
point zero, the exponential function or the power function is 
better than the liner function. Analyzing for empirical data, 
the power function seems to be suitable for the approximating 
function for market impacts. Finally we propose the market 
impact model as follows; 

 
impacti (S, t) =ai t( ) ⋅

Ci (t )S(t)   (4) 

 
Here, i is a dummy index for recognizing stock, S is trading 
shares, t is a time parameter. 
 

IV. THE EMPIRICAL STUDY FOR JAPANESE EQUITY MARKET 

A. Data 
Tokyo Stock Exchange, Inc. calculates market impact 

parameters, ai in buying impact, Ci in buying impact, ai in 

selling impact, Ci  in selling impact, and publishes them 
every 5 seconds on the web site “TSE Market Impact View.” 

 

  
Fig. 5 TSE Market Impact View 

TSE also calculates Ita balance data by the following 
definition.  
 
	
 	
 ΔB = IB

buy − IB
sell = log SB

buySB
sell / (Pmid )2( ) 	
 (5) 

 
Here, IB

buy  is buyer’s impact at basic trading shares, IB
sell  is 

seller’s impact at basic trading shares, SB
buy  is basic trading 

shares on buyer’s,	
 SB
sell  is basic trading shares on seller’s, 

€ 

P mid is mid price, and basic trading shares are 10% of total 

shares within the immediate executable range on yesterday’s 
Ita. We show Sony’s intraday price movement and Ita balance 
movement on Feb. 15th, 2012 in Fig.6 as one example. The 
horizontal axis is time, the left vertical axis is stock price, and 
the right vertical axis is the degree of Ita balance in which 
plus values indicate more buyer’ s order shares and minus 
values do more seller’s order shares on Ita. The mid dot line 
separates the morning session and the afternoon session at 
11:30 am (the morning session close) or 12:30 pm (the 
afternoon session open). 
 

 
Fig. 6 Intraday price movement and Ita balance movement 

 of Sony on Feb. 15th, 2012 

 

B. Observing the relation between Ita balance value and 
price movement 

First, simply we observe the relation between Ita balance 
value and price movement of the next 5 seconds.  

 

 
              Fig. 7 The relation between Ita balance value and price change 
         of Sony on Feb. 15th, 2012 

Fig.7 shows the case of Sony on Feb. 15th, 2012. The red 
line is the linear regression as follow; 

 
  Pr iceChange = 0.000320× S + 0.0197 ,    R2=0.0000072 
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Fig. 8 shows a case of Fuji Film on Oct. 12th, 2012, and 
Fig.9 shows intraday movement for Fuji Film on the day, 
which are picked just as an example. The linear regression is; 

 
  Pr iceChange = 0.000188× S + 0.0018 ,    R2=0.0000140 
  

 
          Fig. 8 The relation between Ita balance value and price change
  of Fuji Film on Oct. 12th, 2012 

 
There seems to be no correlation between them according 

to Fig.7 and Fig.8. However, the most of market participants 
strongly believe that some relation exists and that market 
movement is not random walk.  On the next section, we 
discuss the issue whether the relation between order 
conditions and  price movements exist. 
 

 
Fig. 9 Intraday price movement and Ita balance movement 

 of Fuji Film on Oct. 12th, 2012 

 

C. Discussion for Ita balance  
If we accept the above previous pictures, the quantity of 

demand and supply seems to make no effect on the market. 
The key point in how we discuss their situations is that we 
should stand on a market participant’s point of view.  In case 
of the situation that there are many big selling orders on Ita, a 

buyer tends to wait and see the market situation. However in 
case of the situation that selling orders are decreasing, the 
buyer changes his or her attitude to pay more tension towards 
Ita and he ore she may buy immediately. It means the Ita 
balance value itself is not so important, but the change of the 
Ita balance value should be more focused on. 

Considering the above reaction, we observe the relation 
between the change of Ita balance value and price movement 
in Fig. 10 and Fig. 11. 

 

 
Fig. 10 The relation between the change of Ita balance value and price change   

of Sony on Feb. 15th, 2012 

 
Here, the red line is the linear regression as follow; 
 
Pr iceChange = −0.000557× S + 0.0189 ,    R2=0.0000077 

 
 

  
Fig. 11 The relation between the change of Ita balance value and price change   

of Fuji Film on Oct. 12th, 2012 

Here, the red line is the linear regression as follow; 
 
Pr iceChange = 0.000809× S + 0.0014 ,    R2=0.0000509 
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Comparing Fig. 7 with Fig.10 and Fig.8 with Fig.11, it is 
difficult to recognize the obvious correlation between them.  

Based on the above results, we try to apply a statistical test 
on them in order to find out whether the correlation between 
Ita balance and price movement exists or not.  

 

D. The Kendall rank correlation test  
Regarding intraday movement in financial market, price 

movement is not a random walk, so we should not premise 
normal distribution for price change. In this case, we should 
make a non parametric statistical test, then choose the Kendall 
rank correlation test in order to find out whether there is a 
correlation between Ita balance and price movement. The test 
process is as follows; 

1)  Null HypothesisH0 : population correlation coefficient is 
Zero. 

2)  Alternatives H1 : population correlation coefficient is   
not Zero. 

3)  Test Statistics : T =
rk

4n+10
9n(n−1)

 

n = sample size (= 3600), rk is Kendall’s rank correlation 
coefficient. 

4)  Critical region : α = 0.05 , Z(α / 2) =1.96  

5)  Calculate : We calculate 2 pair of Test Statistics T of 10 
stocks’ intraday data. One is the pair of Ita balance - price 
change on next 5 seconds, and the other one is the pair of 
Ita balance change and price change on next 5 seconds just 
after Ita balance change, for each day from Jan. 4th, 2012 
to Dec. 28th, 2012. 

 

V. THE RESULTS OF STATISTICAL TEST 
The calculated results are shown as Table.1. There are 248 

trading days in 2012, but stock trading may have suspended 
time due to huge amount of in-balanced order, so available 
data shown in the mid column is not the same among them.  

The results indicate 3 points as follows;  
1. The correlation between Ita balance and price 

movement may be observed only less than 30%, but it 
seems to exist. 

2.  The correlation between the change of Ita balance and 
price movement may be more observable than Ita 
balance itself on each stock. 

3. The change of Ita balance seems to be more useful 
information to predict intraday price movement, 
compared to Ita balance value. 

TABLE I 
THE RESULTS OF STATISTIC TEST 

 Ita balance 
and Price 
movement 

Ita balance 
Change 
and Price 
movement 

Code Stock Name number 
of data 

number of 
Reject H0 

number of 
Reject H0 

1379 Hokuto 247 41 72 
1925 Daiwa House 243 44 89 
2801 Kikkoma 246 73 84 
3401 Teijin 210 1 50 
4901 FujiFilm 230 35 50 
6301 Komatsu 210 21 41 
6758 Sony 212 13 45 
7201 Nissan 217 5 65 
8802 Mitsubishi Est. 233 69 49 
9432 NTT 203 2 36 
 

VI. DISCISSONS AND CONCLUSIONS 
Although market demand and supply seem to influence 

market price movement, it is difficult to find out the obvious 
correlation between shares on order book and price movement. 

 The main reason why it is hard to see the correlation is un-
stability on intraday trading circumstances. It is very common 
to trigger jumps or collapses by one order in the financial 
market, so the correlation as a linearity measure often 
disappears.   

The other reason is the features of time dependency. 
Normally a market, just after opening, is more volatile 
compared to the other time periods. It means market condition 
is not a homogeneity, particularly during the intraday trading 
periods. As we calculate the correlation using whole intraday 
data, statistical figures sometimes eliminate the important 
property.  

Today, information flow in the financial market is 
numerous and micro second movement occurs. It causes the 
idea that high-speed responses are necessary to trade. 
However, it is more important to recognize the current 
condition in market. Without recognition of the market 
condition, high-speed is meaningless. The essential matter 
should be to analyze the market features, and to reflect for 
trading strategy. A trading strategy is often realized by 
algorithmic trade, because it is necessary to manage huge 
information flows. After constructing management framework 
to trade, HFT technology gives us value-added methodology, 
not before. HFT is an addition to the last.  

This paper concludes that focusing on the change of Ita 
balance seems to be better than Ita balance value itself. Even 
the degree of the correlation between Ita information and 
price information is limited, but the relation exists, and it has 
a possibility to develop dynamic algorithm trading strategies.  

Lastly, we mention Ita information is suitable for HFT. 
Since Ita information is the current condition data, high-speed 
response needs the information which imply market 
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conditions. Lastly, executed price and traded volume are data 
in of the past. HFT should require the current information 
rather than the past information. 
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Abstract— We treat an image restoration problem through-
out a Poisson noise channel. The Poisson randomness might
be appeared in observation of low contrast object, and
its variable takes discrete and positive value. The Poisson
noise observation is often hard to treat in a theoretical
analysis. In our formulation, we interpret the Poisson noise
channel observation as a Bernoulli process, and apply a
latent variable method to transform the observation as a
Gaussian process with single latent variable. We formulate
the image restoration problem as a Bayesian approach, and
introduce a Gaussian Markov random field as its prior.
The latent parameters and Poisson parameters are treated
as hyper-parameters, and we infer them in the expectation
maximization framework.

Keywords: Poisson noise, Bayes inference, Image restora-
tion, Latent variational method

1. Introduction
The techniques of the noise reducing, which is called

image restoration in the field of digital image processing,
is an important in the meaning of the pre-processing.

From the theoretical view of Bayesian image restoration,
additive white Gaussian noise (AWGN) was mainly dis-
cussed as the image corrupting process. However, in the real
world, the noise corruption process could not be described as
such Gaussian process. For example, night photograph must
treat low contrast object observation as a Poisson process.
In this study, we treat image restoration with the Poisson
corruption process in the manner of the Bayesian approach.

Assuming Gaussian Markov random field as a prior of
Bayes inference, Poisson corruption process makes difficult
to derive posterior probability in analytic form, since the
Poisson variable take discrete and non-negative value. Thus,

Δ
x Block m

Δ
y

ζ
mk

K  units

Fig. 1: Schematic diagram of the relationship between Pois-
son and Bernoulli observation. The large rectangles shows
the pixel block and small indicates the minimum event unit
which can describe only two-state, that is on-off events.

we introduce a latent variational approximation in the in-
ference derivation [1][2][3]. In this study, we transform the
Poisson corruption process as the corresponding Bernoulli
process, and introduce the latent variable to approximate the
Poisson process as the Gaussian process[3]. Once, we get the
corresponding Gaussian process, we can infer the posterior
probability easily. In this formulation, we introduce several
latent parameters, so that, we should infer them. In order to
solve the problem, we introduce a expectation maximization
(EM) algorithm as a inference engine.

2. Formulation
2.1 Image Observation process

The digital image is defined by the 2-dimensional array of
pixels, and each pixel has some value. Considering Poisson
noise corruption means the pixel have some parameter, and
the observation is obtained by stochastic process under the
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parameter. Let us consider to assign the parameter ρ∆ and
derive the Poisson random variable z can be denoted as

p(z | ρ∆) =
(ρ∆)z

z!
exp(−ρ∆),

which means the number of observed photons dropping into
the pixel. The Poisson noise corruption process appears in
the low contrast object observation such like night photo-
graph, and some kind of computed tomography such like
positron emission tomography (PET). Assuming large pa-
rameter of ρ∆, this corruption process can be approximated
by the additive white Gaussian noise (AWGN) corruption
process, whose average and variance are both ρ∆, that is
N (z | ρ∆, ρ∆) whereN

(
x |m,σ2

)
means x is generated by

the normal distribution whose mean and standard deviation
are m and σ respectively.

However, in the the small ρ∆ area, the approximation
is not good enough since the negative observation value z

is sometimes appeared. Watanabe et al. treat the Poisson
corruption process of firing neuron as a Bernoulli process,
which counts the number of on-off event in the proper time
bins [3].ãĂĂ In the manner with the Watanabe’s method,
we should consider the dividing of the pixel area with
miniregions. Fig.1 shows the configuration of the dividing
system. The thick large rectangle shows the pixel area size.
On the other hand, the small rectangles show the miniregions
which have ∆x∆y = ∆ area sizes, so that one pixel include
several miniregions. We assume each miniregion has only
information of on-off event which means a photon drop
into the miniregion or not. We consider the image have M

pixels and denote the pixel index as m. Each pixel has K

miniregions whose index is denoted as k. And (m, k)-th
miniregion have an event value ζmk = ±1. The ζmk = +1

means the photon count is on, and ζmk = −1 is off.
Assuming the on-event probability in the pixel m is uniform
as ρm∆, we can define the observation probability as

p(ζmk | ρm) = (ρm∆)
1+ζmk

2 (1− ρm∆)
1−ζmk

2 . (1)

In the observation, each pixel value zm can be defined as
the sum of the whole on-events in the pixel:

p(zm | {ζmk}) = δ

(
zm −

∑
k

ζmk + 1

2

)
, (2)

where δ(·) denotes Kronecker’s function. Our interest in the
causality of the parameter ρm for the observed value zm.

Hence, we derive the probability by marginalization:

p(zm | ρm) =
∑

{ζmk}

p(zm | {ζmk})
K∏

k=1

p(ζdmk | ρm∆)

(3)

=

(
K

zm

)
(ρm∆)zm(1− ρm∆)K−zm . (4)

In this formulation, we can confirm the eq.(4) converges to
the Poisson process,

p(zm | ρm) =
(ρm∆)zm

zm!
exp(−ρm∆), (5)

in the limit of K →∞ with keeping ρm∆≪ 1.
In the following analysis, the non-negative parameter ρm

is not enough tractable, so that we apply the logit transform
in the manner of the Watanabe et al.[3]. The logit transform
from ρm to xm is denoted as

xm =
1

2
ln

ρm∆

1− ρm∆
, (6)

and we can also denote the inverted transform from xm to
ρm as

ρm∆ =
exm

2 cosh(xm)
. (7)

Thus, we can rewrite the Poisson noise corruption p(zm |
ρm) = (ρm∆)zm

zm! e−ρm∆ as the conditional probability

p(zm|xm) =
∑

{ζmk}

p(zm|{ζmk})
∏
k

p(ζmk | xm) (8)

=

(
K

zm

)
exp((2zm −K)xm −K ln 2 coshxm).

(9)

Thus, the image restoration problem can be interpreted as
the inference from the observation zm to the parameter xm.

2.2 Prior probability
Introducing the Bayesian inference requires several prior

probability for the image. In this study, we assume some
kinds of Gaussian Markov random field (GMRF). GMRF,
which is defined in collection of the neighborhoods pixel
value pairs, can be denoted as the multidimensional Gaus-
sian distribution, so that it can be applied in the theoretic
analysis[4]. Usually, GMRF is defined by the sum of neigh-
borhood differential square

∑
∥ρm − ρn∥2 where ρm and

ρn are neighborhood pixel values. Thus, the only difference
of these values ρm − ρn are effective, but the absolute
values are not effective in the GMRF. In this study, however,
we define the parameter of the prior as {xm}, which are
logit-transformed values for {ρm}. Hence the absolute value
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Fig. 2: Prior Probability under a Markov random field (MRF)
we introduced. Under the MRF prior, the neighbor units
values xm and xn are controlled to take similar values.
The absolute values of cause different effect since they are
defined in the logit-transformed space. Thus, we introduce
a compensate value umn for each bond.

of xm are effective when we define the GMRF with the
difference xm−xn where xm and xn are neighbor parameter
values. Thus we introduce a compensate value umn for each
neighborhood. We define the energy function of the prior as

Hpri(x) =
1

2

∑
(m,n)

((xm − xn)− umn)
2 (10)

p(x) = exp (−αHpri(x)) , (11)

where (m,n) means the neighborhood pixel indices. The
prior corresponding to the energy function can denote as

p(x | α,µ) ∝ exp
(
−α

2
(x− µ)TΛ(x− µ)

)
, (12)

, where Lambda is a correlation matrix, since eq.(11) is a
quadratic form of {xm}. Fig. 2 shows the simple example
of our GMRF configuration in 3 × 3 pixels image. In this
case, the image has 9 pixels, so that, the Lambda in the
eq.(12) becomes a constant 9× 9 matrix,

Λ =



2 −1 0 −1 0 0 0 0 0

−1 3 −1 0 −1 0 0 0 0

0 −1 2 0 0 −1 0 0 0

−1 0 0 3 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 3 0 0 −1

0 0 0 −1 0 0 2 −1 0

0 0 0 0 −1 0 −1 3 −1

0 0 0 0 0 −1 0 −1 2


.

(13)
When we denote the edge differential values umn as u, the
relationship between µ and u can be written as

Λµ =



∑
n∈B(1) u1n

...∑
n∈B(m) umn

...∑
n∈B(9) u9n


, (14)

where B(m) means the collection of pixels connected to
the m-th pixels. Anyway, inferring the µ is required and
sufficient for image restoration, so that, we only consider
the parameter µ in the following.

Considering the prior eq.(12), the inference sometimes
unstable since the determinant of the accuracy matrix
αLambda is 0. So that, we introduce some diagonal matrix
hI where h > 0 and I means the unit matrix for the accuracy
matrix. Thus, we rewrite the prior distribution as

p(x | α, h,µ) = N
(
x | µ, (αΛ + hI)−1

)
, (15)

and add h as inference hyper-parameter as well as α and µ

2.3 Image restoration with Latent variable ap-
proximation

Eq.(9) shows an exponential expression and it can be
as Gauss distribution family when we can approximate the
argument as the quadratic form. In this study, we introduce a
latent variable approximation [2][3]. Palmer et al. proposed
the super-Gaussian distribution can be approximated as
multiplied form of the Gaussian distribution and concave
parameter function[2], that is, any distribution function,
which denote as p(u) = exp(−g(u2)) where g(·) is a
concave, can be described as

p(u) = exp(−g(u2)) (16)

= sup
η>0

φ(η)N
(
u | 0, η−1

)
, (17)

φ(η) =

√
2π

η
exp

(
g∗
(η
2

))
. (18)

The function pair g(u) and g∗(η) is a convex conjugate
relationship which is derived from Legendre’s transform

g(u) = inf
η>0

ηu− g∗(η), (19)

g∗(η) = inf
u>0

ηu− g(u). (20)

In the eq(17), the stochastic value u is included in the
Gaussian distribution part, and non-Gaussian part is driven
into the φ(η) with latent-parameter η. Thus, ignoring the
supη>0 operator, we can treat eq.(17) as the Gaussian form.
Using this approximation form, we derive the observation
process defined by eq.(9) as the Gaussian form with latent-
parameter. In the eq.(9), the untractable term is ln 2 cosh(·).
When we introduce the latent parameter form, we obtain the
upper limit:

ln 2 coshx ≤ tanh ξ

2ξ
(x2 − ξ2) + ln 2 cosh ξ. (21)
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Thus, we introduce it into the eq.(9), we obtain

pξ(z | x) =
∏
m

(
K

zm

)
exp

(
−1

2
xTΞx+ zTx

)

exp

(
1

2
ξTΞξ −K

∑
m

ln 2 cosh ξm

)
, (22)

where z means observation vector

z = (2z1 −K, · · · , 2zm −K, · · · , 2zM −K)
T
, (23)

ξ means the collection of latent parameter {ξm}, and ma-
trix Ξ means a diagonal matrix whose components are
{ tanh ξm

ξm
}.

From the observation (9) and the prior (12), we can derive
posterior as

pξ(x | z, α,µ) ∝ pξ(z | x) p(x | α, h,µ), (24)

and the observation can be approximated by the latent-valued
form:

pξ(x | z, α,µ) ∼ N
(
x |m, (Ξ + αΛ + hI)−1

)
, (25)

m = (Ξ + αΛ + hI)−1(z + (αΛ + hI)µ).

(26)

Considering the inference parameter of x as the posterior
mean of the x, that is x̂ = ⟨x⟩, we can obtain the inference
parameter explicitly:

⟨x⟩ =
∑
x

x pξ(x | z, α,µ) = m. (27)

However, in this form, the variable parameter ξ and
the hyper-parameters α and h is undefined, so that, we
introduce expectation-maximization (EM) algorithm to infer
these parameters. For convenient in the following we derive
these inference parameter as θ = {α, h,µ, ξ}. The marginal
log-likelihood of p(z,x; | θ) is extracted as

ln p(z | θ) = ln
∑
x

p(x, z | θ)

≥ Q(θ | θ(t)) + S[p(x | z, θ(t))], (28)

where Q(θ | θ(t)) and entropy function S[p(x | z, θ(t))] can
be described as

Q(θ | θ(t)) =
∑
x

p(x | z, θ(t)) ln p(x, z | θ), (29)

S[p(x | z, θ(t))] = −
∑
x

p(x | z, θ(t)) ln p(x | z, θ(t)).

(30)

In the marginal log-likelihood (28), the inference parameter
is denoted as θ under the some fixed parameter θ(t). The
entropy function S[p(x | z, θ(t))] does not include the in-
ference parameter θ, so that we should find the theta which

maximize the function Q(θ |θ(t)). Then, we can consider the
iteration algorithm called EM algorithm with substituting the
obtained parameter θ into θ(t+1) in the eq.(28). From the EM
algorithm, we can derive update equations as following:

µ(t+1) = ⟨x⟩θ(t) , (31)

(ξ2m)(t+1) =
⟨
x2
m

⟩
θ(t) , (32)

Tr
(
(α(t+1)Λ + h(t+1)I)−1Λ

)
=

TrΛ(Ξ(t) + α(t)Λ + h(t)I)−1

+ (µ(t+1) − µ(t))TΛ(µ(t+1) − µ(t))

(33)

Tr
(
(α(t+1)Λ + h(t+1)I)−1

)
= ∥µ(t+1) − µ(t)∥2 (34)

In order to obtain the inference parameter θ, we should solve
the equation eq.(33) and (34).

3. Computer Simulation
In order to solve the eqs. (33) and (34), we introduce

eigenvalue extraction of the determinant. The left hand of the
equations come from the partial derivation for the ln |αΛ+

hI|. Thus, we assume {λi} as the eigenvalues of the matrix
Λ and obtain the relationship

ln |αΛ + hI| = M lnα+
∑
i

ln

(
λi +

h

α

)
, (35)

where M is the size of the matrix Λ. Then, the simultaneous
equations (33) and (34) can be denoted as

M

α
−
∑
i

h

αλi + h
= TrΛ(Ξ(t) + α(t)Λ + h(t)I)−1

+ (µ(t+1) − µ(t))TΛ(µ(t+1) − µ(t)),

(36)∑
i

α

λi + h
= ∥µ(t+1) − µ(t)∥2. (37)

We solve the simultaneous equations for the α and h and
assign them as α(t+1) and h(t+1) respectively.

In the computer simulation, we use 32× 32 pixels image
for evaluation, and assume the original image consists of a
spatial frequency. Each pixel is assigned event rate ρm∆,
which controls the on-off event described in the eq.(1).
We denote the lowest and highest event rates as Lmin and
Lmax respectively, and define the contrast as Lmax/Lmin.
In the simulation, each pixel divided into the K = 10000

miniregions.
In the initial value of the restoration image µ0 as the

observed image z, and the hyper-parameters α0 = h0 is
assumed as K. We use the relative errors of the restoration
image and hyper-parameters as the convergence condition of
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Fig. 3: Reconstruction result: The Left part shows the image with low spatial frequency and the right part shows the high
frequency. In each part, the left shows the source image defined by ρm∆, the middle shows the Poisson observed image,
and the right shows the restored image. The top row shows the case of low contrast image which means the minimum and
the maximum of the ρm∆ is 5 and 25 respectively, which denote as 5/25. The bottom row shows the high contrast case
with 5/45.

the EM-algorithm, that is,
∑

i |µ
t+1
i −µt

i|∑
i |µi| < 10−4, αt+1−αt

αt <

10−3, and ht+1−ht

ht < 10−3. In typical iteration requires
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Fig. 4: Quantitative evaluation of image restoration: The
horizontal axis shows the contrast ratio, and the vertical
shows the peak signal to noise ratio (PSNR). The thick line
shows the restoration result and the thin shows the observed
one.

about 200 times for convergence.

4. Results
Fig. 3 shows the restoration result of two spatial fre-

quencies. The left part shows the result for the low spatial
frequency image and the right one shows the high spatial
frequency. In each part, the left, middle, and right columns
show the original image {ρm∆}, observed image {zm}, and
restored image respectively. The top row shows the result
for low contrast image which ratio Lmax/Lmin equals 25/5.
The bottom shows the high contrast image with 45/5. In
the Poisson observation, the image contrast ratio controls the
noise strength. Thus, the top row corresponds to the low S/N
ratio, and the bottom shows the just higher than the top. Even
though the corruption is high in the top row, the restoration
image is just smoothed. On the contrary, the bottom row
shows just lower corruption, so that the observation and the
restoration images looks similar.

In order to evaluate restoration quantitatively, we intro-
duce the peak signal noise to ratio (PSNR). The PSNR is
defined as a kind of similarity between the reference image
q∗ and the test image q as:

PSNR(q, q∗) = 10 log10

(
max q∗ −min q∗

MSE(q, q∗)

)2

, (38)

MSE(q, q∗) =
1

M

∑
m

(qm − q∗m)2 (39)

(40)
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Fig.4 shows the PSNR between original image ρm∆ and
restored image with inverse logit transform. The horizontal
axis shows the image contrast Lmax/Lmin, and the vertical
shows the PSNR values. The right side of the plot means
the high contrast that means the low observation noise area
and the left means high observation noise. The evaluation
is carried out with 10 times trials and plot with median
with quantile deviation. From the plot, we can see the
improvement by the restoration in the high observation noise
area. On the contrary, in the low observation noise area, the
restoration does not reduce the image quality.

5. Summary & Conclusion
In this study, we propose a image restoration method for

the Poisson noised observation. For the inference of the Pois-
son parameters, we introduce a logit-transform and latent-
valued form, and treat the observation process as a Gaussian
function with latent-parameters. By this transformation, the
observation process becomes tractable in the meaning of
the Bayesian approach. By use of the GMRF like prior,
obtaining the posterior mean is easy to derive. The induced
latent-parameters and hyper-parameters are inferred by the
EM algorithm. Thus, our algorithm can infer whole unknown
parameters from the observation data.

In the computer simulation, we carry out several contrast
ratio examples with two spatial frequencies cases that are
defined on the small image plane 32× 32 pixels. In the low
contrast case that means high observation noise, we confirm
the smoothness operation works well by visual comparison.
For the quantitative evaluation, we introduce PSNR as the
measure for the restoration. We also confirm our restoration
algorithm works well within the low contrast area, and does
not reduce image quality in within the high contrast area.
Thus, we conclude our inference method work well with
adapting in the noise strength automatically.
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Abstract— Cloud computing brings new opportunities and
challenges to run applications’ scalability on a per-demand.
Migrating an application to the Cloud raises two main ques-
tions: (i) which configuration of VM (in terms of resources)
is appropriated for the application, while minimizing price?
and (ii) what are the appropriated configuration parameters
for the application, regarding the type of the VM? In this
paper we answer these questions by studying the case of
JEE n-tier applications, which are composed of several types
of servers, making their configuration very complex. Based
on experiments we have conducted in our private cloud
on a reference JEE benchmark (RUBiS), we show how to
migrate such applications to cloud platforms with their best
configurations.

Keywords: JEE; Cloud Computing; Performance

1. Introduction
Cloud computing brings new opportunities and challenges

to run applications’ scalability since it provides the capacity
to deliver IT resources and services automatically on a per-
demand, self-service basis over the network. IT resources
can be provisioned in a matter of minutes rather than days
or weeks like in traditional enterprises IT. One of the
main characteristic of the cloud technology is its pay-for-
use pricing model. Indeed, application providers (customers)
only pay for the resources they have used, for their uptime.
For these reasons, companies are increasingly migrating
their infrastructures to the cloud. When migrating to the
cloud, customers are faced with several configurations/types
of VMs (each with identify by a particular CPU, memory,
disk space, and bandwidth resources) provided by the cloud
platform. For example, Amazon EC2 defines 14 types of VM
and Windows Azure proposes 5. Even if some platforms
give some guidelines about the choice VM according to
the expected workload of the running server, this diversity
of VM configurations increases the difficulty of config-
uring applications, which depends on their hosting VM.
In summary, migrating an application to the Cloud raises
two main questions: (i) which type of VM is appropriated
for the application, while minimizing price? and (ii) what
are the appropriated value for the application configuration
parameters, regarding the type of the VM?

In this paper we answer these questions by studying the
case of JEE n-tier applications. These applications are com-
posed of several types of servers, making their configuration
very complex. A bad configuration of one participant server
can lead to a poor application performance (in terms of
throughput for example). We conduct several experiments
in our private cloud, on a reference JEE benchmark (RU-
BiS [10]) composed of a Tomcat server linked to a MySQL
server. According to the conclusion of [9], we focus on
their threads pool configuration parameters: maxThreads
parameter for Tomcat and max_connections parameter for
MySQL. (1) We observe that the appropriate configuration
value of the MySQL max_connections parameter is the
number of vcpu of the MySQL VM. (2) We show that even
if the bottleneck tier of such applications is the MySQL
tier, the Tomcat tier allows the application to maintain its
maximum throughput. (3) Finally, we show that replicating
Small VMs is more efficient than running Medium or Large
VM type, even if the latter have twice or four times the size
of the former in terms of resources.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the motivations of this work. Section 3, 4, 5,
and 7 detail experiments we have conducted. Section 8 and
9 present respectively the related work and the conclusion
of this paper.

2. Problem Statement and Experimental
Context
2.1 Problem Statement: JEE applications in
the Cloud

These last years have seen the development of the JAVA
technology (JEE) for complex web applications based on
the n-tier architecture. With the PHP technology, JEE appli-
cations are one the most executed applications in the web.
For that reason, most popular cloud platforms provide pre-
packaged virtual machines (VM for short) including JEE
servers ([2], [1], [3]). Deploying such applications to the
cloud raises two questions ([6]):

• (Q1) What is the best configuration for each tier of the
application?
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• (Q2) Which type of VM (e.g. small, medium, large)
is appropriated for each tier of the application while
avoiding resources waste, and minimizing cost?

2.1.1 Question Q1

As reported by [7], the configuration of a JEE application
is very difficult. In the scope of this paper, our consid-
ered JEE application (RUBiS) is composed of HAProxy
loadbalancer, Tomcat, MySQL-Proxy and MySQL servers.
Regarding the number of parameters, it is obviously non
feasible to tune all of them. Qingyang shows in [9] that
parameters which define thread and database connection pool
are very crucial. These parameters correspond to the Tomcat
maxThreads and the MySQL max_connections parameters
in our considered RUBiS configuration. Therefore, a bad
configuration of the Tomcat maxThreads or the MySQL
max_connections parameters impacts the overall perfor-
mance of the application. Fig. 1 (vUsers is the number of
emulated Internet clients) shows the behavior of the RUBiS
application when the Tomcat maxThreads parameter is set
to 1. We observe that the application is unable to maintain
a stable throughput (about 180req/s, Fig. 1(a)), whereas the
response time is under 10ms (Fig. 1(b)) and the Tomcat
server is not saturated (Fig. 1(c)).

2.1.2 Question Q2

Since the configuration of the JEE application depends on
the resources of machines housing its servers, this task be-
comes more difficult in the context of cloud computing. This
comes from the diversity of the configurations/types of VM
proposed by the cloud platform. Although cloud platforms
provide some guidelines to help customers to choose VM
configurations according to the expected workload of their
applications, these informations are not sufficient. In fact,
the cloud platform is not able to provide depth studies about
all existing applications.

2.2 Experimental context
2.2.1 The JEE application benchmark: RUBiS

The JEE application we use is provided by RUBiS [10]
(servlet version), a JEE benchmark. RUBiS implements an
auction web site modeled over eBay. It defines interactions
such as registering new users, browsing, buying or sell-
ing items. RUBiS is provided with a web client emulator
which implements the behavior of one/many e-commerce
customers, including human think time. This emulator is
equipped with different types of workloads, allowing it
to generate browsing and browsing mix traffics. We con-
figure this tool to progressively generate traffics for our
experiments. To remain within allowable page length, we
only present in this paper experiments results for browsing
requests.

2.2.2 Cloud environment
Our experiments were carried out using the

Grid’5000 [13] platform, which is composed of clusters
in different areas of France. We used two Grid’5000’s
clusters (Chinqchint and Chicon) to deploy the RUBiS
servers and the RUBiS client emulator servers separately.
The two clusters run OpenStack [12] and Xen hypervisors
(version 3.2) to set up a virtualized cloud providing three
types of VM with configurations similar to those defined
by Amazon EC2 [2]: Small, Medium and Large. They run
the same operating system as the nodes which host them:
Linux Ubuntu 10.0.4 distribution with a 2.6.30 kernel, over
a gigabit connection.

2.2.3 Experiments workflow
The workflow of experiments we have realized is the

following:
• First of all, we identify the first tier that we will begin

the experiment with. This corresponds to the bottleneck
tier.

• Secondly, we evaluate the appropriate configura-
tion value of Tomcat maxThreads and MySQL
max_connections parameters for each type of VM. This
experiment results in a guideline we propose concerning
the choice of these parameters.

• Thirdly, we determine which type of VM is appropri-
ated for Tomcat and MySQL tiers when they are well
configured.

• Finally, we evaluate the limit of each tier when in-
creasing the replication degree of the other tier. This
is helpful to implement scalability strategies, which is
commonly encountered in JEE applications.

2.2.4 Metrics
For these experiments, we considered the following met-

rics:
• The CPU and memory loads of VM servers;
• The response time for requests and their throughput;
• The number of vUsers.

We focus on the maximal throughput (given by the RUBiS
client emulator) provided by the application in various
configurations which all maintain a percentage of requests
under a given response time threshold. We consider that
the RUBiS application has reached is maximum capacity
when the response time for more than 10% of requests
exceeds this threshold (set to 5 seconds). This is in line
with the conclusion of [11], where a response time longer
than 5 seconds was described as likely to make 10% of
potential customers navigate away in a e-commerce appli-
cation. Based on these parameters, we defined the notions
of goodThroughput (respectively badThroughput), which
represents the throughput of requests below the threshold
(respectively above the threshold). The throughput metric
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Fig. 1: The consequence of a bad configuration of Tomcat maxThreads parameter (set to 1) on the RUBiS performance: (a)
application throughput, (b) response time, and (c) servers CPU and memory loads.

determines the capacity of the RUBiS application while
ensuring an SLO response time. In addition to throughput,
we considered the number of vUsers (emulated Internet
clients) causing application saturation.

3. The bottleneck tier
To prevent skewing the satisfaction results, the beginning

tier should be the first bottleneck tier, since its behavior may
bias the configuration of other tier if it is not well configured.
The first bottleneck tier was the one limiting application
performance (maximum throughput in our case). To identify
this tier, we tested a RUBiS configuration comprising a
Tomcat server linked to a MySQL server, each other runs on
Small VM. Their crucial parameters are kept to their default
value: maxThreads to 200 and max_connections to 100. The
results of this experiment are shown in Fig. 2. It is clear that
the MySQL VM CPU reaches 100% at 380 s (Fig. 2(a)),
while the Tomcat VM CPU load is negligible (close to 1%).
In terms of memory load, neither VM becomes saturated
(Fig. 2(b)). The maximum throughput for the application
(about 180 req/s) is shown to be achieved when the CPU
load of MySQL VM reaches 100%. In fact, the throughput
increases until 380 s, and remains constant for the remainder
of the experiment, whereas the number of vUsers continues
to increase (Fig. 2(c)). For the response time (Fig. 2(d)),
there is no badThroughput until the MySQL VM CPU
reaches 100% (time 380s, curve "Good SLA"). After this
time, some requests take more than 10 s to execute (curve
"Bad SLA"). In conclusion, the bottleneck tier is MySQL
and its bottleneck resource is the CPU. Thus, we start
investigating the configuration of the RUBiS application in
the cloud by MySQL.

4. Tuning the MySQL max_connections
parameter

We tested different values of max_connections from 1
to 500 (1, 20, 40, 60, 80, 100, 200, 300, 400, and 500).
These experiments were performed for the three types of VM
housing the MySQL server. During these tests, Tomcat was

deployed on a Small VM, and its maxThreads parameter was
maintained at its default value. This Tomcat configuration
does not affect the experimental results since MySQL is the
bottleneck tier, as shown above.

Small VM: The application has the same capacity (180
req/s) whatever the value of max_connections. Maximum
capacity is reached from 110 vUsers. However, although the
response time remains below the defined threshold, its grows
with the value of max_connections (Fig. 3). This is due to
the fact that the increase in max_connections increases the
number of threads running on the MySQL VM. This reduces
the server’s efficiency since its VM uses CPU time to switch
between process contexts.

Medium VM: Once again, the application has the same
capacity (210 req/s) whatever the value of max_connections
from 2 to 500. Maximum capacity is reached from 130
vUsers. However, a lower capacity (180 req/s) is noted
when max_connections is set to 1 because with 1 thread,
the Medium VM (2 vcpus) does not use its overall CPU
resources. The increase in response time observed is due to
the reasons outlined above.

Large VM: The application has a capacity of 240
req/s whatever the value of max_connections from 4 to
500. This throughput is reached from 130 vUsers. When
max_connections is set to 1, throughput is 180 req/s; it is
210 req/s with max_connections set to 2 and 3. The response
time increases with max_connections as for the other two
VM sizes tested.

Conclusion: The results of all these experiments are sum-
marized in Fig. 4. The appropriate value of max_connections
appears to be equal to the number of virtual CPUs
(vcpus) available on the VM hosting MySQL. Higher
max_connections values increase the response time, and
multiplying the resources available to the MySQL VM
does not result in a proportional increase in application
performance.
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Fig. 2: Bottleneck tier detection: the MySQL server is CPU-bound. (a) Server CPU load, (b) Server memory load, (d)
Application throughput, and (d) application response time (below and above the threshold)

Fig. 3: Tuning the MySQL max_connections parameter does
not significantly affect the application’s response time

Fig. 4: Recommended settings for the MySQL
max_connections parameter

5. Tuning the Tomcat maxThreads pa-
rameter

After the MySQL server, the second tunable parameter in
the RUBiS application is the Tomcat maxThreads setting.
For this experiment, MySQL was run on a Small VM with
max_connections set to 1 (its best value). We chose this type

of VM for MySQL because the other types only increase the
application’s throughput. They are therfore equivalent in this
second experiment. For the Tomcat server we tested a Small,
Medium and Large VM with the maxThreads parameter
varying from 1 to 2500 (1, 20, 40, 60, 80, 100, 200, 300, 400,
500, 1000, 1500, 2000, 2500). Because Tomcat is not the first
bottleneck tier, the same behavior was observed for all three
VMs. The application’s capacity is determined by MySQL.
The results of this second RUBiS tuning step are shown
in Fig. 5 for the Small Tomcat VM. This analysis reveals
that the maximum throughput for the application remains
unchanged whatever the value of maxThreads: 180 req/s
reached from about 110 vUsers. However, with maxThreads
set to 1 (Fig. 5(a)), the application cannot maintain this
throughput even though the response time remains below
the threshold. One thread is obviously insufficient to serve
all the injectors’ requests. At values between 20 and 400,
a constant response time is maintained throughout the ex-
periment (Fig. 5(b)); while the response time declines with
maxThreads from 500 to 2500 (Fig. 5(c)). This degradation
can be explained by context switching between processes
and the higher number of processes overall. Increasing
maxThreads results in increases in both CPU and memory
loads for Tomcat. However, Tomcat is still not the bottleneck
for the application since it saturates after the MySQL server.
Nevertheless, its saturation affects the application’s ability
to maintain throughput. In our experiments, the optimal
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Fig. 5: Impact of the Tomcat maxThreads parameter on
application throughput

maxThreads setting is 100.

6. Which type of VM for each tier?
After configuring Tomcat and MySQL servers for each

type of VM, let us now investigate what is the best type of
VM for each tier. Experiments we presented above show
that among the tree type of VM, the Small one is the
best candidate. In fact, concerning MySQL tier, Medium
VM (respectively Large VM) does not dubbed (respectively
quadruple) the performance of the application even if their
resources represent twice (respectively four times) the Small
VM. About Tomcat, the Small VM is sufficient since it is
not the bottleneck tier. Thus, for this tier, we need to know
if micro VM type (as also provided by Amazon EC2) can
provide the same performance as Small Tomcat VM. We

experiment two types of Tomcat micro VM and compare
their results with Small VM:

• [SmallV M ]/2: a half of a Small VM,
• [SmallV M ]/4: a quarter of a Small VM.
Fig. 6 and 7 show the comparison of the three types of

VM in terms of maximum throughput and the ability of the
application to maintain this throughput. We observe the same
maximum throughput (180req/s) whatever the type of VM
(Fig. 6). However, this throughput is not maintainable with
[SmallV M ]/4 (the application is down after 1200vUsers,
Fig. 6(a)). This is due to the saturation of Tomcat (CPU and
Memory). Regarding [SmallV M ]/2, it gives about the same
performance as Small Tomcat VM. However the application
maintains only 60% of goodThroughput in this configuration
("% of Good Throughput" curve in Fig 7(b)). The other
requests are performed with at least 20s of response time.
In conclusion, the micro VM [SmallV M ]/4 type is not
recommended. If the customer just wants to maintain the
maximum throughput, the [SmallV M ]/2 is sufficient for
Tomcat. If he wants both the maximum throughput with
good response time, at least the Small VM Tomcat is
required.

7. JEE tiers replication/scalability
We have shown in section 5 that MySQL is the first bot-

tleneck tier; in this step, we determined the saturation point
for the Tomcat server (i.e., how many replicated MySQL
servers are needed to make Tomcat into the bottleneck tier).
To do this, the experiment was repeated varying the number
of MySQL servers. Experiments were stopped when the
application’s capacity (maximum throughput) in the current
experiment (running n MySQL servers) was the same as
in the previous experiment (running n-1 MySQL servers);
n-1 MySQL servers are therefore required to saturate the
Tomcat tier. This was performed for one (Fig. 8(a)) and two
(Fig. 8(b)) Tomcat instances.

With one Tomcat instance (Fig. 8(a)) 18 instances of
MySQL fully saturate the Tomcat tier. Plotting the CPU
and memory loads for different servers in these experiments
reveals Tomcat as the first bottleneck tier, with a CPU load
of 100%.

With two Tomcat instances (Fig. 8(b)) the Tomcat tier
became saturated with 30 MySQL instances. Note that even
when the number of Tomcat instances is doubled, the number
of MySQL instances needed to saturate the Tomcat tier
does not increase proportionally. Indeed, the application’s
performance is not doubled either. This is also the case when
MySQL instances are doubled.

8. Related work
Few research works are conducted in order to help appli-

cations deployers (particularly JEE in our case) to configu-
ration their applications in cloud environments. [6] proposes
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Fig. 6: Comparison of micro Tomcat VMs ([SmallV M ]/2,
[SmallV M ]/4) with Small VM: the throughput view.

a self-provisioning system that help applications deployers
to choose the appropriate VM configuration according to the
workload of the application, considering the cost of the type
of VM. Many research works are done about the optimiza-
tion of resources usage for JEE applications. [14] describes
an analytic model for capacity planning of JEE applications
deployed in a large scale environment. It identifies the same
questions as us about the configuration of a JEE application
(bottleneck tier, resources needed, maximum throughput,
etc.). However, [14] is concentrated to the analysis of the
JEE application performance when receiving different type
of workloads. The impact of the configuration of each JEE
server is not treated as we have done. [15] is in line
with [14]. It proposes a performance prediction model for
JEE applications, based on messages exchanged between the

Fig. 7: Comparison of micro Tomcat VMs ([SmallV M ]/2,
[SmallV M ]/4) with Small VM: the throughput maintain-
ability view.

JEE components. In comparison with [14], the [15]’s model
operates at the application design phase and requires that the
JEE components communicate via a message server.

About JEE applications tuning, [16] studies the perfor-
mance of several implementations of EJB. It analyses the
influence of each type of EJB implementation on the overall
performance of the JEE application, and also compares an
JEE application based on EJB vs JEE application imple-
mented exclusively with servlets. [17] reports the importance
of threads pool parameters in JEE application, and proposes
a middleware to tune them automatically. [5] identifies
28 configuration parameters for an 3-tier e-commerce ap-
plication. As [17], it shows that threads pool parameters
are the most crucial. It analyzes their impact on the JEE
application performance. In comparison to our work, [5] only
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(a) (b)

Fig. 8: How many instances of MySQL makes Tomcat the bottleneck tier with one (a) and two (b) Tomcat instances?

experiments lower and higher allocation values. In the same
vein, [8] proposes a methodology to help administrators
to determine the appropriate configuration of each JEE
application layer. This methodology is based on random
configuration values for each parameter. The problem of this
methodology is that random values are chosen in a range
of values identified by authors, but without any justifica-
tion. [4] automates the generation of configuration files in
JEE applications composed of Apache, Tomcat and MySQL
servers. More important, [4] proposes a dependency graph
of parameters in such applications, which can be used to
determine the configuration workflow in such applications.

9. Conclusion
This paper explores the deployment of a JEE applications

in the Cloud. As reported by [7], this is a hard task. We have
realized several experiments in order to determine the ap-
propriate configuration of each JEE server, regarding cloud
provided VM configuration. Our experiments was carried
out in our private cloud, with a reference JEE application,
RUBiS: composed of Tomcat and MySQL servers. We have
explored several configurations of each JEE server, running
on thee types of VM (Small, Medium and Large) with
comparable characteristics as the Amazon EC2 cloud.

As a future research, we plan to extend this work with
browsing mix and write workloads.
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Abstract—Multicore systems open the door to compression in 
Grid environments with high-speed networks to enable "faster 
than network speed" transfers. GridFTP is a data transport 
protocol that can break up its transfer payload in such a way that 
streaming it through multiple cores is possible. With the 
additional parallel processing power added by multicore systems 
it is possible to pipeline compression and packet switching in such 
a way that seemingly faster than network speed transfers are 
possible. In this paper, we present the Globus XIO compression 
driver, which enables GridFTP to compress data on-the-fly. We 
also present a detailed performance study of the compression 
driver using XIOPerf, an Iperf-like tool and GridFTP.   

Index Terms— GridFTP, Compression, High-speed transfers 

I.  INTRODUCTION 
The need to move data faster is ever increasing. The use of 

compression to improve data transfer rates is not a new idea 
[1]. But this has not been adopted as a standard feature for 
data movement in Grid [2] environments. Also, for sites 
connected with by high-speed networks such as ESnet [3] and 
Internet2 [4], the network was not the bottleneck most of the 
time. But as host systems with many cores emerge, 
compression might provide benefits even on these high-speed 
networks. We have developed a compression driver for the 
Globus XIO framework [5] that compresses data as it is sent, 
and decompress, as it is received. The driver can under 
virtually any circumstances reduce network load by reducing 
the amount of data actually transferred. Under the right 
circumstances it can also help individual endpoints achieve 
higher-than-network speeds. This study will attempt to 
investigate under which circumstances this occurs, and when 
the driver is downright harmful. The answer to this question 
depends primarily on four factors: 

• System resources - assuming infinite system resources 
and finite network bandwidth the driver will virtually always 
be beneficial or have no effect. In the case where the 
transferred data is completely random, the amount of data 
transferred will increase by a few hundreds of a percent. We 
will not consider this a factor because of the miniscule amount 
of possible overhead, and because of the relative rarity of 
transferring completely random data. 

• Network bandwidth - assuming infinite bandwidth and 
finite system resources at the end-points, the driver will 
virtually always be a bottleneck to some extent. 

• Block size - the driver compresses one block at a time 
and compression algorithms behave differently depending on 
block size. 

• Data type - certain types of data (such as plain text) 
compresses nicely while others (such as random and already 
compressed data) do not.  

We present a detailed performance study of the 
compression driver using XIOPerf [6], an Iperf-like tool and 
GridFTP [7,8], and provide a number of insights. The rest of 
the paper is organized as follows. In Section II, we provide 
background on GridFTP and Globus XIO. In Section III, we 
describe the compression driver. In Section IV, we present the 
experimental results and describe the conclusions drawn from 
the experiments in Section V. In Section VI, we discuss future 
work. We summarize in Section VII. 
 

II. BACKGROUND 
In this section we provide details on GridFTP and the Globus 
eXtensible Input/Output (XIO) framework. 

A. GridFTP 
The GridFTP protocol is a backward-compatible extension 

of the legacy RFC959 FTP protocol. It maintains the same 
command/response semantics introduced by RFC959. It also 
maintains the two-channel protocol semantics. One channel is 
for control messaging (the control channel), such as requesting 
what files to transfer and the other is for streaming the data 
payload (the data channel). Once a client successfully forms a 
control channel with a server, it can begin sending commands 
to the server. In order to transfer a file, the client must first 
establish a data channel. This task involves sending the server 
a series of commands on the control channel describing 
attributes of the desired data channel. Once these commands 
are successfully sent, a client can request a file transfer. At this 
point a separate data channel connection is formed using all 
the agreed-upon attributes, and the requested file is sent across 
it. 
 

In standard FTP, the data channel can be used to transfer 
only a single file. Subsequent transfers must repeat the data 
channel setup process. GridFTP modifies this part of the 
protocol to allow many files to be transferred across a single 
data channel. This enhancement is known as data channel 
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caching. GridFTP also introduces other enhancements to 
improve performance over the standard FTP mode. For 
example, parallelism and striping allow data to be sent over 
several independent data connections and reassembled at the 
destination.  
  

Globus GridFTP is widely used to move large volumes of 
data over the wide area network. The XIO-based Globus 
GridFTP framework makes it easy to plug in other transport 
protocols. The Data Storage Interface [9] allows for easier 
integration with various storage systems. It supports non-TCP-
based protocols such as UDT [10,11] and RDMA [12]. It also 
provides advanced capabilities such as concurrency [13] 
multilinking [14] and transfer resource management [15].  

B. Globus XIO 
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Figure 1. Typical application interaction with various 
devices. 
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Figure 2. Application interaction with various devices via 
Globus XIO. 

XIO is an extensible and flexible I/O library written for use 
with the Globus Toolkit. XIO is written in C programming 
language and provides us with one API that currently supports 
many different wire protocols. All implementations of these 
protocols are encapsulated as drivers that are modular. 

GridFTP uses the XIO interface for network and disk I/O 
operations. The XIO framework presents a single, standard 
open/close, read/write interface to many different protocol 
implementations. The protocol implementations, called 
drivers, are responsible for manipulating and transporting the 
user’s data. Drivers are grouped into a stack. When an I/O 
operation is requested, the XIO framework passes the 
operation request down the driver stack. An XIO driver can be 

thought of as a modular protocol interpreter that can be 
plugged into an I/O stack without concern about the 
application using it. This modular abstraction is what allowed 
us to achieve our success here without disturbing the 
application’s tested code base and without forcing endpoints to 
run new and unfamiliar code. 

 

III. COMPRESSION DRIVER 
There are two types of drivers in XIO - transform drivers 

and transport drivers. Transport drivers are those that actually 
move data into or out of the process space. Examples of this 
are TCP and UDP. Transform drivers are those that 
manipulate, examine, frame, or change the data, or in other 
words, drivers that take any action other than moving the data 
across the process boundary. Examples of this are 
compression and logging. 

 
The compression driver performs compression and 

decompression of data for XIO. It supports zlib and lzo 
compression algorithms. It is designed with ease of further 
development in mind - adding different methods of 
compressing data is straightforward. Like any XIO driver, the 
compression driver implements the open, close, read and write 
functions. The driver is designed in such a way that the code 
that handles various aspects of the communication with XIO 
and the code that manipulates the data are clearly abstracted. 
These are entirely separate entities; the block functionality 
does not know and does not care what the data handling 
functions does with the data, as long as they fulfill certain 
requirements. This separation makes it easier to add new 
compression strategies. 

 

IV. EXPERIMENTAL RESULTS 
The experimental results were obtained using three 

different hardware configurations. Configuration 1: AMD 
Athlon 64 X2 3800+, Configuration 2: Intel Core2 Quad 
Q9300 Configuration 3: 2 Intel XEON 2.0GHz. In all 
configurations the hosts where connected by a 100Mbps local 
area network. 

We used the following datasets for our experiments: 
• ASCII - plain text. Original file consisted of 400MB of 

US census data. A common file type that is very compressible. 
• Binary - consists of various software libraries. A common 

type of data that is somewhat compressible. 
• MPEG - an MPEG encoded movie. This was used as an 

example of already compressed data, which will therefore be 
difficult to compress further. 

• Random - a file consisting of random data created from 
/dev/urandom. This is used to establish a lower bound for 
compressible data. 

• Zero - a file consisting entirely of zeros created from 
/dev/zero. This is used to establish an upper bound for 
compressible data. 

Each file was 1.2GB in size. In the case of the ASCII and 
binary data, the original files were concatenated to fit this size. 
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The original files were several hundred MBs in size, which 
ensures that no unfair advantage was given to the compression 
algorithms due to the repetition of data. 

 
The tests were performed using both the zlib and LZO 

compression libraries. In both cases the default compression 
level was used. The tests where done in a network 
environment which at times may have been used by others. To 
ensure that this did not affect the results, the tests where done 
during a time of year and times of day when the network could 
be expected to see minimal activity. Further, each test was run 
ten times and the results were taken as the average of each set 
of tests. In total, these results are the product of several days of 
network time. 

 
The results were obtained using XIOPerf and GridFTP. 

The XIOPerf results were obtained using configuration 1 and 
2. Configuration 3 was used for the GridFTP results. A brief 
description of XIOPerf is given below. 
 

A. XIOPerf 
XIOPerf, a network protocol testing and evaluation tool. 

XIOPerf is a command line program written on top of Globus 
XIO with a simple and well-defined interface to many 
different protocol implementations. XIOPerf was created to 
give users a way to quickly and easily experiment with an 
open-ended set of protocols over real networks to determine 
which will best suit their needs. XIOPerf presents a similar 
interface to that of IPerf. The main difference between IPerf 
and XIOPerf is that while IPerf is limited to TCP and UDP, 
XIOPerf is written on a framework that allows the user to plug 
in arbitrary protocol implementations. 
 

B. Compression Ratios 
Tables 1 and 2 show the compressed size of each type of 

data when transferred at a block size of 16KB for zlib and lzo 
respectively. In other words, this is the amount of data actually 
sent across the network when using the Compression Driver to 
transfer these 1.2GB files. 

 
Table 1: Compression ratio for zlib 

 

Table 2: Compression ratio for lzo 

 

C. XIOPerf Results for zlib Compression 
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Figure 3: Performance comparison of compression driver 
(zlib) + TCP driver with TCP driver alone for ASCII data 
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Figure 4: Performance comparison of compression  (zlib) 
+ TCP driver with TCP driver alone for Binary data 

1 2 4 8 16 32 64 128 256 512 1024 2048
−60

−40

−20

0

20

40

60

80

100

120
ASCII data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Binary data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
MPEG data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Random data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−100

0

100

200

300

400

500
Zero data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d 
re

la
tiv

e 
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

 

Figure 5: Performance comparison of compression (zlib) 
+ TCP driver with TCP driver alone for MPEG data 
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Figure 6: Performance comparison of compression (zlib) 
+ TCP driver with TCP driver alone for Randon data 
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Figure 7: Performance comparison of compression driver 
(zlib) + TCP driver with TCP driver alone for Zero data 

Figures 3 through 7 show the performance of using 
compression driver using zlib algorithm on top of the TCP 
driver in Globus XIO relative to that of using TCP driver 
alone, for various types of datasets. The results are mostly on 
the expected lines with zero files getting the big performance 
boost followed by ASCII. Interestingly, the performance for 
binary data is worse than random data especially for 
configuration 2.  

D. XIOPerf Results for lzo Compression  
Figures 8 through 12 show the performance of using 
compression driver using lzo algorithm on top of the TCP 
driver in Globus XIO relative to that of using TCP driver 
alone, for various types of datasets. The results are on the 
expected lines except that configuration 2 really did produce 
significantly lower results than configuration 1 at certain block 
sizes despite having much more powerful hardware. 
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Figure 8: Performance comparison of compression driver 
(lzo) + TCP driver with TCP driver alone for ASCII data 
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Figure 9: Performance comparison of compression driver 
(lzo) + TCP driver with TCP driver alone for Binary data 
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Figure 10: Performance comparison of compression  (lzo) 
+ TCP driver with TCP driver alone for MPEG data 
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Figure 11: Performance comparison of compression  (lzo) 
+ TCP driver with TCP driver alone for Random data 
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Figure 12: Performance comparison of compression  (lzo) 
+ TCP driver with TCP driver alone for Zero data 

E. Compression Driver Overhead 
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Figure 13: Compression driver overhead 

The driver has a mode where data is transferred without being 
compressed or modified. This represents the minimum amount 
of overhead that will be added due to the presence of the 
driver, regardless of which compression method is used and to 
what extent the data is compressible. As can be observed from 
Figure 13, the driver itself introduces very less overhead – less 
than 0.2% for block sizes 4KB or more – exceeds 1% only at 
block size 1KB. Values above zero should be regarded as 
random fluctuations - the driver cannot increase performance 
other than by compressing data. 

F. GridFTP results 
One of the features of GridFTP is that it can make use of 

multiple parallel streams. As each stream is a separate thread, 
this driver should theoretically see an increase in performance 
when used in a multi-core/multi-CPU setup. To test this 
theory, these tests were performed with GridFTP using four 
different degrees of parallelism. 

 

 

Figure 14: Performance of GridFTP with no compression   

 

Figure 15: Performance of GridFTP with compression 
driver (zlib) for different parallelism values 
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Figure 16: Performance of GridFTP with compression 
driver (lzo) for different parallelism values 

G. Fluctuations in the Results 
As noted above, each test was run ten times and the result was 
taken as the average. A general pattern could be noted that the 
fluctuations would be greater for highly compressible data. To 
get a feel for the these fluctuations, Table 3 presents the 
differences found in the results for ASCII and MPEG data 
using zlib-compression, at a block size of 16KB. 

Table 3: Deviations in the results 

 

V. INTERPRETING THE RESULTS 
A number of useful conclusions can be drawn by looking at 
the data that has been collected. 
 

A. Effect on Network Load 
The compression ratios measured tells us two important things 
about the performance of the driver. The first is the impact on 
network load. For example, when transferring the binary file 
used in these tests using zlib compression network load is 
reduced to 38.76%, to 97.70% for the MPEG, and so on. This 
means that in congested network environments using this 
driver may have a fortunate side effect – Increase the 
performance even for other applications and hosts by reducing 
total network load. 
 

B. Effect on Host-to-Host Throughput 
The second thing we learn looking at the compression ratios is 

the maximum change in speed the driver can achieve. We will 
refer to this as the optimal speed multiplier and is calculated 
by 1 / compression ratio. 
Consider the following example, which matches the results for 
configuration 1 using zlib compression at a blocksize of 
16KB: 
• Throughput sans the compression driver is 90 Mbps. 
• Throughput with the compression driver is 139 Mbps. 
• Compression ratio is 0.0815. 
If we could use hosts with infinite CPU resources, the 
observed speed would be roughly 90 * (1/0.0815) = 1104 
Mbps. Of course, there is no such thing as a host with infinite 
CPU resources. But this is still useful knowledge, because it 
gives us an idea of when the local hosts will be the bottleneck, 
and when the network will. In this case the hosts are clearly 
bottlenecks by a wide margin since the observed result (about 
139 Mbps) is a far cry from the theoretical maximum (1104 
Mbps). Second, it let's us derive the average speed at which 
data is actually sent across the network by the formula ‘s/opt’, 
where s is the observed speed when using the compression 
driver, opt is the optimal speed multiplier described above 
(inverse of the compression ratio). Continuing the above 
example, this means that the break-even point between the 
hosts and the network being the bottleneck for ASCII data 
occurs when the network allows a throughput of 139*0.0815 = 
11.33 Mbps. Similarly, we can predict that the speed will 
remain fairly constant at around 139Mbps so long as network 
throughput remains above 11.33Mbps. 
 

C. Effect of Data Type 
The formula s/opt for describing at which network speed the 
local hosts ceases to be the bottleneck can also tell us 
conclusively that the more a particular type of data can be 
compressed, the more strain it puts on the local hosts: Above 
we concluded that the host in configuration 1 can only output 
11.33 m/s of compressed ASCII data to the network. Consider 
the following example from the same test setup (configuration 
1, 16KB block size, zlib compression), but transferring MPEG 
data, which is very difficult to compress further: 
• Throughput sans the compression driver remains 90Mbps. 
• Throughput with the compression driver is 91.70Mbps. 
• Compression ratio is 0.977. 
The formula s/opt yields that throughput should about 
89.29Mbps - meaning that the CPU in this case can output 
compressed data essentially as fast as the network can transmit 
it. The results support this conclusion - configuration 2 is not 
able to exceed these results noticeably despite having a 
considerably more powerful processor. 
 

D. Choice of the Compression Algorithm 
In general, zlib offers the best compression while LZO beats 
zlib by a wide margin when it comes to speed. Which library 
is to be preferred depends on the situation - if the network is 
the bottleneck by a wide margin, zlib will likely be the better 
choice. If not, LZO will produce better results. LZO can be 
considered the safer choice, since it is less likely to have a 
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negative impact. Also note that there is no great difference in 
speed between configuration 1 and 2 at most block sizes when 
using LZO, except for ASCII and zero data. Identical 
performance tells us that the host CPUs were not bottlenecks 
in either case, even without doing the type of calculations 
described above - if they were, configuration 2 would have 
showed higher performance than configuration 1 due to the 
more powerful CPU. 
 

E. Effect of Block Size 
As noted above, compression algorithms perform differently 
depending on how much data they are fed at a time - the block 
size. Generally, this means that a higher level of compression 
will be achieved with larger block sizes. But, as we have 
concluded, higher compression level does not automatically 
translate into higher speeds. So which block size is to be 
preferred? When using zlib-compression the optimal block 
size seems to be 16KB, or possibly 32KB. LZO seems to 
perform better when the block size is bigger, with the notable 
exception of the drop in performance for configuration 2 at the 
highest block size for random and MPEG data. No answer has 
been found for why this drop takes place. Also note that these 
results may vary depending on hardware configuration - we 
cannot conclude from these results that 16KB will be the 
optimal size for zlib for all configurations. 
 

VI. FUTURE WORK  

A. Customizing the Driver 
Imagine you have a situation that matches that of 
configuration 1 using zlib compression - the driver is 
beneficial in some circumstances but detrimental in others. 
What you would want to do is add rules such as “only 
compress if block size is 4KB or larger, and if compression 
ratio is greater than 80%” which would mean that the driver 
would be detrimental under very few circumstances, if any. 
We plan to add the capability to allow this type of 
customization.  

B. Dynamically Determine the Compression Strategy 
We plan to add the ability to determine compression strategy 
dynamically. For example, do a test-compression of data using 
all available strategies and choose the one which gives the best 
ration. This should probably only be done once each transfer - 
if the first block compresses nicely, we can probably assume 
that the rest will also compress nicely. 
 

VII. SUMMARY 
We have developed a compression driver for the Globus XIO 
framework and presented a detailed performance study using 
different compression techniques for different hardware 
configurations. We have also showed how this driver can be 
used to compress the data on-the-fly for GridFTP transfers and 
how it can be used to speed up the transfers using parallelism 

to take advantage of the multiple cores in the hosts. Our results 
indicate that consistently higher speeds can be achieved across 
a 100Mbps LAN without using state-of-the-art CPUs, as long 
as the data sent is somewhat compressible. LZO is the 
preferred compression library in most situations. More 
compressible data does not automatically result in a speed 
increase, since more compressible data is also more 
demanding on the CPU. While the actual compression puts 
significant strain on the CPU, the driver itself adds very little 
overhead. 
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Abstract— In the scientific research domain, traditional
High Performance Computing (HPC) refers to the use of
supercomputers, grid environments and/or clusters of com-
puters to solve computation-intensive and/or data-intensive
problems. The traditional HPC systems are expensive and
sometimes require huge start-up investment, technical and
administrative support and job queuing. With the benefits of
cloud computing, cloud services such as Infrastructure as a
Service (IaaS) and Hardware as a Service (HaaS), enables
scientists and researchers to run their HPC applications in
the cloud without upfront investment associated with the
traditional HPC infrastructure. In this paper we analyze
the computational performance and dollar cost of running
HPC applications in the cloud when IaaS or HaaS is leased.
We find that HaaS significantly reduces the cost of running
HPC application in the cloud by 20% compare to IaaS
without significant impact to application’s performance.
We also found that there is a substantial improvement in
computational performance in HaaS compare to IaaS.

Keywords: HPC, cloud computing, HaaS, computation-intensive
applications, computational performance

1. Introduction
In the scientific research domain, traditional High Per-

formance Computing (HPC) refers to the use of supercom-
puters, grid environments and/or clusters of computers to
solve computation-intensive problems. Some common uses
of HPC systems include weather forecasting, aircraft crash
simulations, computational fluid dynamics for aerodynamics
studies and many other computation-intensive applications
[14], [20]. Today, HPC systems also offer new opportunities
in business. For example, in financial institutions HPC
systems are used in real time modelling to make informed
investment decisions. The most powerful HPC systems are
ranked on top500 [1]. Huge capital is needed to acquire the
HPC systems, this makes it difficult for research communi-
ties. Until recently, HPC systems would have been out of
reach for most research communities.

With the recent advancement in computing technologies,
computation-intensive applications are not only executed
in the traditional HPC systems but also in HPC system

in the cloud. Cloud computing [2], [3], [8] is a revolu-
tionary computing paradigm for storing data and running
applications, including computation-intensive applications.
It promises numerous benefits, which includes, no upfront
investments. Cloud computing also reduces development
time, staff (e.g., administrators), and hardware, resulting in
better service and significant cost saving. It is expected that
more computation-intensive applications will be deployed
and run in HPC systems in the cloud [5], [3]. Furthermore,
the Amazon Elastic Compute Cloud (Amazon EC2) cluster
recently appeared in TOP500 list [1], which shows that there
is a great future for HPC systems in the cloud.

With Cloud computing pay-as-you-go pricing model, sci-
entists and researchers can lease cloud services such as
Infrastructure as a Service (IaaS) and Hardware as a Ser-
vice (HaaS) for computation-intensive applications. These
services are relinquished when not in use. This avoids the job
queuing, which is a common phenomenon in traditional HPC
system. The price model is also attractive when compared
to traditional HPC systems that require huge investments
capital, administrative issues and allocation policies.

However, the cost of running HPC application on the
cloud may be high if the cloud services are not well
understood and the cost-effective cloud services chosen. If
the dollar cost of running HPC applications in the cloud is
high comparing to traditional HPC system, then the benefits
of running computation-intensive application on the cloud
may have been defected. HPC research communities are
concerned about the cost and computational performance of
different cloud services.

In this paper we analyze the computational performance
and dollar cost of running computation-intensive application
in HPC systems in the cloud when IaaS and HaaS are
leased. We find that the cost of executing computation-
intensive application when HaaS is leased is significantly
lower compared to the IaaS model. We show that there
is significant improvement in computational performance
of the application on HaaS if the computation-intensive
application is not a network intensive application. Our ex-
perimental setup uses the Message Passing Interface (MPI)
implementation [4]. We provide our test results, but do not
reveal the identify of the cloud providers, to avoid any head-
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to-head comparisons. However, we do include the relevant
technical details of the cloud instances.

In Section 2 we present the overview of Cloud services
for HPC systems in the clouds, while Section 3 presents
the experimental setup. MPI applications and benchmark
are presented in Section 4. Experimental results and Cost
analysis are presented in Section 5 and 6 respectively, while
Section 7 discusses related work. Finally, some conclusions
are presented in Section 8.

2. Overview of Cloud Services for HPC
Systems in the cloud

With the advent of cloud computing infrastructures, cloud
services providers such as Salesforce.com, Amazon [5],
Rackspace, Baremetalcloud [6], Microsoft Azure, SoftLayer
[7], Google, IBM offer different cloud services to cloud
users. Some of these services offered are Software as a
Service (SaaS), Platform as a Service (PaaS), Infrastructure
as a Service (IaaS), Hardware as a Service (HaaS), Network
as a Service (NaaS) and Storage as a Service (STaaS). Based
on the capability provided by the cloud service provider,
cloud computing services fall into four major competing
categories [8], [9]. Application as a Service, Platform as
a Service, Infrastructure as a Service and Hardware as
a Service. Figure 1 shows the architecture of the cloud
computing services.

Software-as-a-Service (SaaS)

Platform-as-a-Service (PaaS)
(Developers implementing cloud applications)

Infrastructure-as-a-Service (IaaS)
[(Virtualization, Storage Network) as-a-Service]

Hardware as a Service (HaaS)

Fig. 1: Cloud layered architecture [8]

Software as a Service (SaaS) is the highest abstraction
level in the cloud. It offers cloud users ready-to-use on-
line applications that are already deployed in the cloud.
This layer is hidden from the users and managed by the
SaaS providers. The users do not know where or how
these applications are deployed, but simply use them. SaaS
cloud applications can be accessed via the internet with
any internet-ready device such as a laptops, smart phones,
or iPads. This enables relatively dumb clients to perform
complex tasks, by shifting the real work, transparently to
the user, into the cloud. A good example of SaaS is the
commonly used Gmail (email services) provided by Google.

Platform as a Service (PaaS) provides cloud users with
a fully configured and managed computing platform, ready
to run custom software developed by the users. Each PaaS
platform is targeted to software developed in a specific

programming language or software framework (e.g., Java
EE) and ready to execute corresponding builds. PaaS cloud
users deploy and run their software, without setting up
servers and software stacks, without thinking about scala-
bility or clustering, and often even without knowing how
many computers or CPUs their application will run on.

Infrastructure as a Service (IaaS) is similar to HaaS, but
virtual machines are rented out instead of real hardware.
IaaS cloud users have to install, configure, and maintain
the virtual machines they rent and are free to choose the
operating system and software stack they install in their
VMs. Often IaaS users make use of a pre-installed and
preconfigured VM image supplied by their provider as base
installation. Users do not have root access to the hardware.
A good example of cloud provider that offers IaaS for HPC
applications is Amazon [5]. The Amazon Elastic Compute
Cloud (Amazon EC2) offers cluster compute instances for
HPC applications.

Hardware as a Service (HaaS); in this case, the
cloud provider basically rents out ‘bare-metal’ hardware
(e.g., server/host and storage). Notable examples of cloud
providers that offer HaaS are Baremetalcloud [6] and Soft-
Layer [7]. Cloud users connect to HaaS via the Internet,
install and configure (e.g., VMs) the server they leased.
Cloud users choose HaaS, because it gives them full control
of the server, operating system, and software/hardware stack,
as well as the number of VMs they execute on it. Research
communities do lease HaaS for computation-intensive and/or
data-intensive applications and configure HPC systems ac-
cording to their needs [8], [9]. Consequently, computation-
intensive applications that were traditionally run on HPC
systems can now be executed in the cloud. Figure 2 shows
the HaaS architecture and access level of the provider and
user.
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Fig. 2: An example of HaaS architecture with level of
involvement of key players

3. Experimental setup
We setup experimental environments to evaluate the

computational performance and dollar cost of running
computation-intensive application on IaaS and HaaS. Our
experimental setup includes two services we have leased
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from two cloud service providers; for the purpose of avoid-
ing head-to-head comparison of the two cloud providers,
we call them Cloud-A and Cloud-B. Cloud-A offers IaaS in
different kind of cluster instances for HPC applications: for
example, cluster compute instances. Cloud-B offers HaaS
which can be configured to run HPC applications.

3.1 Cluster Compute Instances from Cloud-A
(IaaS)

Cloud-A is one of the major cloud service providers.
They offer IaaS in different instances for HPC applications.
Table 1 shows a sample of cluster compute instances with
price details of on-demand instances from cloud providers.
The clusters compute instances are available with commonly
used Operating System (OS) (Windows and Linux) in 32-
bit and 64-bit platforms. For our experiments, we choose
the Ref-C virtual instance in the Table 1 because it is
widely used for HPC applications. The instances use Xen
full virtualization. The I/O network communication between
the cluster instance is 10 Gigabit Ethernet.

In order to compare the computational performance and
dollar cost of running HPC applications when IaaS and HaaS
services are leased. We leased a cluster compute instance
with a total of 16 processors. The details of the leased
cluster compute instance are shown in Table 2. We installed
OpenMPI 1.6 [23] on the node. OpenMPI is an open source
implementation of the Message Passage Interface (MPI).

Table 1: Virtual and HaaS Instances from Cloud-A and
Cloud-B

Instance type Memory CPU Disk

Cost
of in-
stance
for
Linux

Cost
of in-
stance
Win-
dow

Ref-A
Virtual
instance

30 GB 2x2.0 GHz
(sixteen-core)

500 GB $1.600
per
hour

$1.800
per hour

Ref-B
Virtual
instance

244
GB

2 x Intel Xeon
E5-2670 (eight-
core)

240 GB $3.500
per
hour

$3.831
per hour

Ref-C
Virtual
instance

22 GB 2 x Intel Xeon
X5570 (quad-
core)

1690 GB $2.100
per
hour

$2.600
per hour

Ref-D
Virtual
instance

23.00
GB

2 x Intel Xeon
X5570 (quad-
core)

1690 GB $1.30
per
hour

$1.610
per hour

Ref-E
Hardware
Instance

96 GB
DDR3-
1333

2x2.13 GHz
E5606 (eight-
core)

1000.0GB,
7200RPM

0.99
per
hour

$1.19
per hour

Ref-F
Hardware
Instance

48 GB
DDR3-
1066

2x2.66 GHz
X5650 (twelve-
core)

300GB,
10000RPM

0.73
per
hour

$0.93
per hour

Ref-G
Hardware
Instance

64 GB 2x2.0 GHz E5-
2650-OctoCore
(sixteen-core)

500.0GB 1.54
per
hour

$1.59
per hour

Ref-H
Hardware
Instance

32 GB 2x2.0 GHz (eight-
core)

250.0GB 1.25
per
hour

$1.3 per
hour

3.2 HPC system on HaaS in the cloud
As explained in Section II, HaaS allows users to have

full control of the system and control environment for mea-
suring system performance and other available experiments.
This enables users to determine the number of VMs to be
deployed for HPC applications. We have leased an HaaS
instance (Ref-G) with 64GB RAM from Cloud-B. Table 1
shows some of the cloud services that the HaaS providers
offer that are similar to cluster compute instances that Cloud-
A offers. The table also gives a summary of HaaS and price
of the service leased. The communication network between
each HaaS is a 1 Gigabit Ethernet.

The summary of the VM we provisioned on the HaaS is
shown in Table 2. We installed Xen hypervisor [11] on the
host. Xen hypervisor is an open source, industry standard
virtualization technology. Linux Operating System (Ubuntu
12.4 64-bit) runs on top of the Xen hypervisor. We imported
our pre-configured para-virtualised guest OS (Ubuntu 12.4
64-bit) on the HaaS instance. The pre-configured para-
virtualised guest reduces the time to setup the HPC system
on the HaaS instance. A para-virtualized OS uses a modified
kernel, and reduces the size of the image. The VM is
configured to have 16 processors with 60GB memory and
200GB hard drive. We installed OpenMPI on the node. This
setup is almost equivalent to the cluster compute instances
we leased from Cloud-A. The setup also allow us to have a
good comparison environment for IaaS and HaaS in terms of
computational performance and dollar cost. Table 2 shows
both the IaaS and HaaS environments we used.

Table 2: Computational environment for IaaS and HaaS
Cloud&A,)VM)of)IaaS Cloud&B,)VM)of)HaaS
RAM:%24%GB% RAM:%60%GB%
Architecture:%%%%%%%%%%x86_64 Architecture:%%%%%%%%%%x86_64
CPU%op;mode(s):%%%%%%%%32;bit,%64;bit CPU%op;mode(s):%%%%%%%%64;bit
CPU(s):%%%%%%%%%%%%%%%%16 CPU(s):%%%%%%%%%%%%%%%%16
On;line%CPU(s)%list:%%%0;15 Thread(s)%per%core:%%%%16
Thread(s)%per%core:%%%%2 Core(s)%per%socket:%%%%1
Core(s)%per%socket:%%%%4 CPU%socket(s):%%%%%%%%%1
NUMA%node(s):%%%%%%%%%%1 NUMA%node(s):%%%%%%%1
Vendor%ID:%%%%%%%%%%%%%GenuineIntel Vendor%ID:%%%%%%%%%%%%%GenuineIntel
CPU%family:%%%%%%%%%%%%6 CPU%family:%%%%%%%%%%%6
Model:%%%%%%%%%%%%%%%%%%%26 Model:%%%%%%%%%%%%%%%%%26
Stepping:%%%%%%%%%%%%%%%%5 Stepping:%%%%%%%%%%%%%%5
CPU%MHz:%%%%%%%%%%%%%%%2933.440 CPU%MHz:%%%%%%%%%%%%%%%2266.796
Hypervisor%vendor:%%%%%Xen Hypervisor%vendor:%%%%%Xen
Virtualization%type:%%%full Virtualization%type:%%%para

4. MPI applications and benchmark
We used a commonly used HPC benchmark and real HPC

application to analyze and evaluate the MPI applications
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running on IaaS and HaaS services. The benchmark was the
High Performance Linpack (HPL) benchmark [12] and the
application was ClustalW-MPI [14]. We desribe them below.

HPL [12] is a benchmark that is commonly used to
evaluate the computational performance of HPC systems for
example, top500 [1]. It measures the floating execution rate
of linear equations based on the problem size. We executed
the HPL benchmark with five different problem sizes of
2,000, 4,000, 6,000, 8,000 and 10,000 on the both cloud
services on VMs from IaaS and on HaaS. The execution of
each the problem sizes was carried twice and the average
execution time calculated. The five different problem sizes
enable us to obtain different wall clock execution times of
HPL. We recorded the wall clock execution time for each
problem size. We used the wall clock execution time to
analyse the dollar cost and computational performance of
the both platforms. Figure 3 show the results obtained on
computational-performance.

ClustalW-MPI [14] is a parallel implementation of
ClustalW [15] which is based on MPI. ClustalW is a tool
that is widely used in bioinformatics for multiple alignments
of nucleic acid and protein sequences. It uses three align-
ments steps: pairwise alignment, guide-tree generation and
progressive alignment. We ran a sample of ‘A full multiple
sequence alignment’, ‘A guide tree only seqence alignment’,
and ‘A multiple sequence alignment out of an existing’ on
nodes from IaaS and from HaaS. We recorded the execution
time of the three alignment steps to compare time to finish
executions with both IaaS and HaaS. The results are shown
in figure 4.

5. Results and Discussion
One of the major attractions to the Cloud-A cluster com-

pute instance is that it is relatively easy to set up the clusters
compared to setting up a cluster in HaaS. However, some
level of technical knowledge is required to setup cluster on
Cloud-A that will run HPC applications due to varying needs
of HPC applications. In order to reduce the time to set up an
HPC system on HaaS instances in the cloud, we uploaded
our pre-configured para-virtualized image to the cloud. There
are also similar VM images which can be downloaded from
different sites. We estimated that this technique reduces the
set up time by up to 80%. We did not compare the time to
setup HPC system in Cloud-A (IaaS) cloud and in Cloud-B
(HaaS) because setup time varies with individuals technical
experiences.

From the computational performance result of the HPL
benchmark shown in figure 3, we can see that the wall
clock execution time of HPL benchmark on a provisioned
instance on HaaS is shorter when compared to IaaS provided
by Cloud-A. We achieved this because the memory of the
virtual instances deployed on HaaS is 60GB. We chose
to allocate this amount of memory to our virtual instance
because we can predict the memory needed. This option is

not available for the IaaS instance (users cannot change the
memory of the virtual instance chosen). We also have full
control of the Hardware instance and virtual instances.
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Fig. 3: Computational performance of High Performance
Linpack on 1 node with 16 processors

As shown in Figure 3, executing the HPL on 1 node with
16 processor eliminates the bandwidth inequality on both
providers. The virtual instances HaaS out performs IaaS.
This is because we have full control of the applications
running of our HaaS instance and we allocated higher
memory to VM on HaaS. On IaaS, other VM instances may
have been hosted on the hardware which may have affected
the performance of the application running on our lease IaaS
instance. As shown in [19], high resource allocations on
infrastructure affect applications running on VMs.

The ClustalW-MPI results is shown in Figure 4. Cloud-A
IaaS uses 10 Gigabit Ethernet network, whereas HaaS we
leased uses a 1 gigabit Ethernet network. We could have
benchmarks with the same bandwidths, however the two
major providers of HaaS do not have 10 gigabit Ethernet
network. The results in Figure 4 show that there is no
significant impact on application running on IaaS and on
virtual instances on HaaS.

6. Cost Analysis
At the time of writing, Cloud-A offers different price

models to their cluster compute instance customers; The
primary price model which is widely used is called ’on-
demand instances’. The on-demand instances price model
allows users to pay hourly without contract while other price
models may require up front payments and/or contracts.

Cloud-B offers their customers a pay-as-you-go price
model, which is similar to on-demand instance prices offered
by Cloud-A. Therefore we use on-demand price instance
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Fig. 4: Performance of ClustalW-MPI application on 16
processors

to compare the cost of running computation-intensive ap-
plications on both cloud services. In addition to the on-
demand/pay-as-you-go instances prices, there are charges,
which are charged for some cloud services such as network
bandwidth and IP addresses which we do not consider to
avoid complexity. We used the results obtained from HPL
benchmarking to analyse the cost. As previously used in
a similarly cost analysis [18], we assume that 1 second is
equal to hourly rate which the both cloud providers offer.
This also allows us to do the analysis without paying the for
hours the experiment would have cost. We used the prices
of the leased services as shown in Table 1 and 2. The cost
analysis computation of IaaS and HaaS is shown in figure
5.

Based on the computational performance and cost analysis
it appears that it is more cost effective to lease HaaS and
configure the HPC systems. Cloud service users of HaaS
have full control of the hardware as well as the VMs they
provisioned. Application performance and other metrics can
be easily measured. From the result, it seems that the cost
of running HPC applications can be reduced by 20% when
HaaS is leased.

7. Related work
Cloud computing is a revolutionary computing

paradigm for storing data, running applications, including
computation-intensive applications. Cloud computing
promises numerous benefits, which includes no up front
investments for HPC applications, which is attractive,
compared to traditional HPC systems. Many studies have
evaluated the suitability of HPC systems in the cloud and
showed that it is expected that more computation-intensive
HPC applications will be run in the cloud HPC than
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Fig. 5: The cost analysis VM of IaaS and VM of HaaS

traditional HPC systems [16]. Furthermore, the Amazon
Elastic Compute Cloud (Amazon EC2) cluster recently
appeared in TOP500 list [1] in year 2010, which shows that
there is a viable future for HPC systems in the cloud.

Many past researches evaluating of HPC applications on
HPC systems in the Cloud with emphasis on Amazon EC2
have been carried out. These investigations focus on the
performance of Amazon EC2 and Traditional HPC systems
[16], [17], [18], [19].

Carlyle et al. [17] studied the cost effective HPC System.
They show that it is cost effective for institutions like Purdue
University to operate a community/traditional cluster than to
lease HPC resources from Amazon EC2. This study clearly
shows that Amazon on-demand cluster compute instances
prices are not cost effective for HPC applications for some
institutions. Their work focuses on Amazon EC2 service
IaaS and traditional HPC systems.

Deelman et al. [18] in their work on ’The Cost of Doing
Science on the Cloud: The Montage examples’; show that
the cost of cloud services could be significantly reduced
without significant impact on application performance, if
the right storage and compute resources are provisioned.
However, they did not consider different platforms like
HaaS. We extended their work, demonstrating that HaaS
can significantly reduce the cost of running computation-
intensive application on HPC in the cloud.

Ekanayake and Fox [19] compare HPC applications with
different needs and showed the performance of applications
with latency. However, they did not compare the cost of
executing computation-intensive application on different ser-
vices such as IaaS and HaaS.

Yao et al. [21] showed that optimal cost-performance ratio
can be achieved with th appropriate cloud instance. However,
they did not consider cost and computational performance

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 227



when IaaS and HaaS are leased.
To the best of our knowledge, our work is different from

other work in that we study the computational performance
and dollar cost of running computation-intensive application
in HPC in the cloud when IaaS and HaaS are leased.
We experimentally show that the dollar cost of running
computation-intensive application can be reduced as much as
20% with HaaS without significant impact to performance.

8. Conclusions and Future Work
Due to the huge capital investment required to own

a traditional HPC systems which typically involves job
queuing, using an HPC system in the cloud is a good
alternative. Cloud computing offers IaaS and HaaS for
deployment of cluster instances, which can be used to
run computation-intensive applications. IaaS provides almost
ready to use clusters with minimal deployment installation
tasks. With HaaS, virtual machines can be provisioned to
run computation-intensive application. We have conducted
experimental analysis to determine the performance and
cost when cloud services IaaS and HaaS are leased to
run computation-intensive application. We showed that the
dollar cost of running computation-intensive application in
the cloud can be reduced by as much as 20% when HaaS
is leased. We showed that there is no significant impact in
performance of the applications when executed on the leased
HaaS.

Acknowledgment
The authors would like to thank Bran Selic for providing

valuable comments and suggestions.

References
[1] http://www.top500.org/

[2] Armbrust, M., Fox, A., et al, “A view of cloud computing,” Commu-
nications of the ACM, 53(4), pp. 50-58, 2010.

[3] Mell, P., and Grance, T. “The NIST definition of cloud computing
(draft),” NIST special publication, 800, (2011), pp. 145.

[4] Message Passing Interface Forum, “MPI: A message-passing inter-
face standard,” International Journal of Supercomputer Applications,
8(3/4):165-414, 1994.

[5] Amazon. (2013), [Online], http://aws.amazon.com/ec2/

[6] Baremetalcloud [Online], http://baremetalcloud.com/
index.php/en/

[7] SoftLayer (2013), http://www.softlayer.com/

[8] Rimal, B. P., Choi, E., and Lumb, I., “A taxonomy and survey of
cloud computing systems,” In INC, IMS and IDC, 2009, NCM’09,
Fifth International Joint Conference on (pp. 44-51). IEEE, 2009.

[9] Egwutuoha, I. P., Chen, S., Levy, D., Selic, B. and Calvo, R., “A
Proactive Fault Tolerance Approach to High Performance Computing
(HPC) in the Cloud,” in The 2nd International Conference on Cloud
and Green Computing, Xiangtan, Hunan, China, 2012, pp. 268-273.

[10] http://www.mpi-forum.org/

[11] Xen hypervisor, [Online], http://www.xen.org/products/xenhyp.html

[12] Petitet, A., Whaley, C., Dongarra, J., and Cleary, A., (2008,
Sept), “HPL Benchmark,” [Online], http://www.netlib.org/
benchmark/hpl/

[13] Egwutuoha, I. P., Levy, D., Selic, B., and Chen, S., “A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems,” The Journal of Supercomputing,
Feb 2013, 10.1007/s11227-013-0884-0.

[14] Li, Kuo-Bin. “ClustalW-MPI: ClustalW analysis using distributed and
parallel computing,” Bioinformatics 19, no. 12 (2003): pp. 1585-1586.

[15] Thompson, Julie D., Desmond G. Higgins, and Toby J. Gibson.
“CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice” Nucleic acids research 22, no. 22
(1994): 4673-4680.

[16] Evangelinos, C., and Hill, C. N., “Cloud Computing for parallel Scien-
tific HPC Applications: Feasibility of running Coupled Atmosphere-
Ocean Climate Models on Amazon’s EC2,” ratio 2, no. 2.40 (2008):
pp. 2-34.

[17] Carlyle, A. G., Stephen L. H., and Preston M. S., “Cost-effective HPC:
The community or the Cloud?,” In Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International Conference on,
pp. 169-176. IEEE, 2010

[18] Deelman, E., Singh, G., Livny, M., Berriman, B., and Good, J.,
“The cost of doing science on the cloud: the montage example,” In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
(2008, November), (p. 50), IEEE Press.

[19] Ekanayake, J., and Fox, G., “High performance parallel computing
with clouds and cloud technologies” Cloud Computing (2010): 20-
38.

[20] Fox, G. C., and Coddington, P. D., “An overview of high performance
computing for the physical sciences,” In Proceedings of Mardi Gras
Conference: High Performance Computing and Its Applications in the
Physical Sciences, 1993.

[21] Yao, J., Ng, A., Chen, S. et al, “A Performance Evaluation of Public
Cloud Using TPC-C Benchmark,” The 1st International Workshop on
Analytics Services on the Cloud (ASC 2012), in conjunction with
ICSOC 2012: 1-7.

[22] Penguin Computing. http://www.penguincomputing.com/
services/hpc-cloud/pod/architecture.

[23] OpenMPI, http://www.open-mpi.org/

228 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



A Chord-based Architecture for Efficient Dynamic Service
Provisioning over Distributed Resources

D. Jaiswal1, S. Mistry2, A. Mukherjee3 and N. Mukherjee1
1Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India
2School of Mobile Computing and Communication, Jadavpur University, Kolkata-700098, India

3Innovation Labs, Tata Consultancy Services, Kolkata-700091, India

Abstract— The demand for distributed applications has
been increasing since the birth of internet. It has scaled geo-
graphical areas in search of information and computational
resources for processing. With the advent of Grid comput-
ing, ad-hoc Virtual Organizations have added an impetus
towards distributed applications by providing on-demand
service provisioning. The use of job-based paradigms and
strong coupling of current service-based paradigms with
static registries such as UDDI hinder the achievement of
complete dynamism over volatile resources of the Grid.
A possible solution is the use of structured peer to peer
overlay networks to keep a check on the resources as well
as handle the volatility of the system. In this paper, we
present an architecture of a web service based P2P Grid
framework for managing the services and resources using
the Chord protocol over a de-centralized registry which
facilitates demand driven provisioning of web services and
enables a virtual market place for computational resources.

Keywords: Grid Computing, SOA, Dynamic Deployment, P2P,
Chord, UDDI.

1. Introduction
In the recent past distributed computing has evolved as

a new paradigm where resources are shared among the
consumers over the Internet in collaborative manner. With
the advent of technologies like Service Oriented Architecture
(SOA), Grid Computing and Cloud Computing, a new era
of distributed computing has started which is characterised
by availability of high-end resources and services over the
Internet, access to the resources and services any time
anywhere and non-requirement for the consumers of owning
the resources - instead using them on demand and on pay-per
use basis. However, this era is also marked with challenges
like scalability, heterogeneity and dynamism of resources
which need to be handled for large-scale adoption of the
new technologies by the consumers [1], [2].

As Internet forms the basic communication backbone of
all the major distributed computing systems, provisioning
web services is a keystone to operating pay-per-use services
between businesses. Furthermore, to deal with the inherent
dynamic characteristics within a distributed environment,

there is a need for dynamic adaptation for provisioned
services to accommodate the ever-changing business require-
ments externally, as well as the computing resource status
internally, while maintaining the continuousness of service
provisioning. Hence, dynamic web service provisioning has
been one of the major research issues for quite some time [3],
[4].

In order to deal with the challenges mentioned earlier,
we have proposed a fully distributed SOA-oriented frame-
work [5] which offers loose coupling, robustness, scalability,
availability and extensibility for large-scale distributed sys-
tems. The proposed distributed architecture acts as the basis
of a service-oriented system using P2P as its communication
backbone, thus allowing more flexibility and dynamism
when compared with previous approaches [6], [4] used for
dynamic service deployment in distributed environments.
The main goals of the new architecture are mentioned below:

• To provide a distributed environment to overcome is-
sues associated with centralized registry based architec-
tures.

• To allow clients and service providers mention specific
requirements for a service in order to achieve desired
quality of service for clients.

• To provide scalability by load-balancing of deployed
instances and re-deploying on demand using a P2P
communication model.

One of the key features of this architecture is complete
segregation of provider of services and provider of resources.
Thus, providers of resources (platforms for service execu-
tion), i.e. the Host Providers (HPs) are placed in a different
layer as compared with the Web Service Providers (WSPs),
who provide services to the consumer and take care of all the
collaboration with hosts. Consumers are placed in the third
layer. In this three-layer architecture all the nodes act as
peers to each other providing P2P based service publication,
discovery, deployment and management. Resource discovery
and allocation are done in a heterogeneous environment as
per resource availability and metric of the Web Service.

In this paper we focus on the implementation of our
proposed architecture on a structured overlay peer-to-peer
(P2P) network, Chord [7], with the following goals:

1) de-centralizing the service registry in a structured

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 229



manner
2) making the registry adaptable with volatile set of

resources
3) deployment cost of a given service incurred by a single

WSP is shared among all WSPs.
4) making the registry scalable, having definite time

bounds for a service query
In the earlier approaches [5], though the registry is de-

centralized as multiple single-site registries, a service may
become unavailable if the hosting WSP goes down. To
increase the service availability, we propose that the service
is to be hosted from more than one WSP incurring a separate
set of deployments for the same service. The framework
presented in this paper provides a robust approach towards
dynamically deploying web services, as well as decentral-
izing the registry to meet the increased availability of the
services and maintaining its scalability at the same time.

The rest of the paper is organised as follows: Section 2
discusses the existing technologies and frameworks related
to our work, Section 3 explains the proposed architecture and
its implementation. The experimental results are presented in
the section 4 and section 5 provides a discussion and future
scopes of the proposed architecture.

2. Approaches for Dynamic Web Service
Discovery and Deployment

With the growth of the Internet and web technologies,
more and more complex services have come into exis-
tence spreading across organizational boundaries and multi-
layered architectures, which has also resulted in complexity
of cost-effective service discovery.

In this context, dynamic service discovery and deploy-
ment are two of the few most important issues for the
Grid/Web framework. The Web Services Resource Frame-
work (WSRF) utilizes tools like Monitoring and Discovery
System (MDS) [8] for such purpose. But, an MDS Index
Service registries are functionally similar to the centralized
UDDI [9] registries with some additional flexibilities, which
still are limited in terms of exploiting and reflecting the
complete dynamism of a Grid.

2.1 UDDI-based Approaches
Most service oriented architectures use the UDDI standard

for creating service registries. Since UDDI is based on XML,
platform independence and inter-operability is implicit, but
at a syntactic level. As UDDI uses a keyword-based service
query, the discovery process is limited to a certain precision.
With the increase in number of entries corresponding to
services in the registry, the efficiency of the service discovery
process and its scalability become a critical issue. The com-
mon model of a centralized UDDI is liable to single point of
failure when the demand is extremely high. Decentralizing
the registry, by having replicas of the service and the service

metadata over various sites may be considered as a solution
to the problem, but this distributed architecture makes the
discovery process even more complex and requires periodic
synchronisation to maintain an uniform view.

The concept of dynamic service deployment on available
resources using UDDI was introduced by DynaSOAr [3], [4],
[10] which was capable of deploying services on-demand,
based on consumer requests. The DynaSOAr architecture
offered a clear separation between Web Service Providers
(WSP) and Host Providers (HP) in order to better manage
the simultaneous tasks of service publication and discovery
and service execution. In this architecture, the consumers
send requests to the WSP, which in turn routes them to
an appropriate HP for completion. For an already deployed
service, the request is executed on the host and the result
is returned back to the consumer. In case of a request for
an yet undeployed service, the process involves its discovery
from the centralized UDDI registry used by WSP’s to publish
the available services, locating the repository for service
download and thereafter its deployment and the execution of
the request. But, due to that static nature of UDDI, there are
certain limitations related to service metadata and dynamic
nature of resources in the grid environment.

2.2 P2P-based Approaches
As opposed to the UDDI-based approaches, P2P networks

accomplish sharing of resources based on the discovery of
peers in the network involving various discovery strategies
and P2P network topologies. Hence decentralized P2P archi-
tectures coupled with Web Services as resources have the
potential to be able to exploit the dynamism of the Grid
more efficiently.

P2P overlays generally make use of DHT [11] to index
and store data items. Unstructured P2P overlays support
partial-match and complex queries, which fail to discover
rare items as compared to popular ones, within specified
time bounds. In contrast, structured P2P networks have
some definite algorithms to guide the resource discovery
process having an upper bound of the search time required
for example such as Chord [7], CAN [12], Pastry [13],
Tapestry [14]. Among these structured P2P networks the
architecture proposed in this paper is based on Chord. The
reason behind this is two-fold - (i) Chord is efficient in terms
of tracking the networked resources and (ii) Chord uses an
efficient mechanism of key assignment for network nodes as
well as the retrieval by locating the node responsible for the
key.

In recent years, the developments in decentralized P2P
techniques related to resource sharing and discovery have
ensured fault tolerance and scalability in the systems. At the
same time, researchers have also looked into the possibility
of incorporating P2P techniques with web service based
architectures to cater to dynamic provisioning of services.
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WSPeer [15] emerged as an interesting framework which
combines the benefits of P2P’s decentralized resource shar-
ing with the XML based web service technologies. One of
the major advantages of WSPeer is, consumers and service
providers are located in remote places and can use it as an
interface. This architecture provides the dynamic deployment
facility such a way that anyone can easily deploy their
application or part of application as web services. WSPeer
has two different approaches towards service publication
and discovery by the use of: (a) HTTP and UDDI cou-
pled together, and, (b) a P2PS [16] implementation with a
pluggable architecture of nodes. In the case of HTTP/UDDI
implementation, the static centralized registry still remains
a bottleneck of the infrastructure, which was removed in
the P2PS implementation. Since the peer can act as both
a service provider as well as service consumer a service
endpoint was made available only when the node remains
available in the network.

In recent years, there have been a lot of work on ef-
ficient ways of service discovery in Grid and SOA based
frameworks [17] applying different approaches such as key
word based matching, semantics or syntax based matching
for the discovery process. Some approaches also use a
ranking model to enhance the search procedure. All these
approaches differ from each other and it is claimed in
[17] that the suitability of the approaches depend on the
application requirements, which in turn makes the selection
of an appropriate service discovery process difficult. Further,
it is desirable that the service discovery process should also
be flexible enough for changing requirements. Hence, there
is a need for a service discovery mechanism coupled with a
registry which also caters to dynamic service provisioning.
Frameworks which provide a complete solution for the entire
cycle of web service publication to the deployment and
management of the resources are rare or are in their initial
stages of development.

A comparative study of the architectures mentioned in
this section reveals that a static registry such as UDDI is
a bottleneck for of any system based on SOA in terms
of availability, capability of handling volatile resources in
the network and system scalability. Since P2P systems are
capable of handling the volatility of networked resources,
a merger of the two concepts (P2P and SOA) may have
certain advantages. P2P systems make use of distributed
hash tables (DHTs) to keep track of the resources provided
by the peers in the networks. Considering the web services as
resources provided by peers in the system, the registry can
be decentralized. Making use of a structured P2P overlay
network with DHT implementation may further facilitate
discovery and retrieval of resources within definite time
bounds, making the registry scalable. DHT implementations
such as CAN, Pastry, Tapestry, Chord can help achieve the
above characteristics for a decentralized registry.

3. Using Chord for Dynamic Service
Provisioning

In the context of dynamic web service provisioning,
availability of services as well as provisioning based on
service requirements to meet its QoS play an important
role. The performance of such architectures totally relies on
two important factors: firstly, the computational resources on
which the web services are deployed and secondly discovery
of web services. Hence managing both i.e. web services and
computational resources, turns out to be an important issue.

In our previous work [5] we presented an architecture
enabling dynamic on-demand service discovery and deploy-
ment based on the concepts of P2P computing. It strives
to use the idle resources in the network via service de-
ployments among the distributed resources on the basis of
their capability and load factors. The services are made
available from the provider of services and are deployed on-
demand, after a proper matchmaking of the service metrics
with the capability of the resources available to provide
better performance. Successive deployments are made if the
existing deployments get loaded or fail to offer response with
some specified QoS. Though this approach could efficiently
manage the computational resources for service deployments
and their execution, web service discovery was limited to
multiple single-site registry, i.e. the web services known to
a given service provider were not known to other service
providers, hence the service was available from a single
service provider only. To increase the availability of a given
service, it must be hosted from multiple service providers.
In such a case deployment costs of a given service are
incurred separately from different service providers. Thus,
with an objective to provision web services on-demand,
in the proposed architecture we focus on de-centralizing
the registry, making it discoverable and thus increasing the
service availability and reducing the deployment costs by
sharing the current deployments. In the remaining part of this
section, we describe the improvements made to our earlier
work by decentralizing the registry using Chord after giving
a brief overview of the proposed architecture.

3.1 Overview of the Architecture
Figure 1 shows the architectural diagram of the proposed

framework. It consists of three loosely coupled entities as
follows:

• Client : To invoke web services as consumer/client
requests, using an interface provided by some WSP.

• Web Service Provider(WSP) : It acts as provider of
services in the system for establishing and managing
the registry of web services and provisioning them on
demand.

• Host Provider(HP) : It acts as provider of compu-
tational resources for deploying the web services and
serving client requests.
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Fig. 1: Basic Architecture Diagram

The Client is the simplest component of the architecture.
The clients can make service requests to the system by
making a search query to the registry, via the interface
provided by any of the WSP/s in the network. Apart from
the client, all the nodes contributing to the system are peers
to each other. Each peer can functionally act as either a
WSP or a HP which is to be determined before a peer joins
the network. The peers which aim to host web services,
join the network as WSPs, whereas the peers that aim to
provide computational resources join the network as HPs.
The main role of HPs is to provide a platform for carrying
out deployment of web service by WSPs. All the peers
share their dynamic load information with all other peers
to achieve better functionality and QoS for the clients.

WSP plays the most important role in the system. It is
mainly responsible for:

1) Providing an interface for the clients.
2) Establishing and maintaining the service registry.
3) Taking care of new and successive deployments of the

web services on the basis of current load information
of the peers, on demand basis.

4) Scheduling the incoming consumer requests to the
current deployed instances.

Figure 2 shows a snapshot of the interface provided by the
WSP to the client. It provides a list of services hosted by the
WSPs in the network, along with their status and link for
making the service requests. A prospective client can choose
a service among the available services or can choose to use
an already deployed service as per its service requirements,
to the WSP, which is then scheduled an appropriate HP as
discussed in [5]. If the client is unable to find a service, it
can attempt to make search query to the registry with the
name of the service via the search space provided by the
interface.

3.2 Decentralizing the Registry using Chord
Chord [7] - a DHT [11]-implementation over structured

P2P overlay network, is a distributed lookup protocol that
helps in efficiently locating a node that stores a particular
data item in p2p applications. It can adapt itself with a
changing set of resources (nodes) and hence can answer

Fig. 2: The Web Service Provider Interface

search queries even when nodes join and leave the system.
Chord uses consistent hashing of the resources over a ring of
node identifiers. This is achieved by a single operation: given
a key it maps the key onto a node identifier. The registry is
composed of a DHT of web services stored as [key, value]
pairs. It uses a hash function to generate unique keys from
the byte version of a service name, that are mapped to node
identifiers generated as hash value of nodes’ IP address.

Within our framework whenever a node wishes to join
the network as a WSP, it may or may not have web services
to host. In either case it joins the de-centralized registry
within the network and shares the web services as resources
with other WSP peers. This sharing and de-centralization
of the registry is achieved by use of Chord protocol. Since
the resources to be shared here are web services, the value
corresponding to a key is service metadata, which consists
of:

1) Name of Service
2) Status of the service (Available /Deployed)
3) Owner of the service i.e. WSP hosting the service.
4) List of HPs on which the service is currently deployed.

Such service metadata help in identifying the service, its
endpoints and other details necessary for proper execution
in SOA framework.

3.3 Workflow of Registry with SOA Frame-
work

In order to maintain and use to the registry for the dynamic
set of resources, three basic steps are required. These steps
are responsible for publish-find-bind notion of the SOA
framework that achieves interoperability of web services.

3.3.1 Publishing a Web Service
The first task performed by a WSP as it joins the network

is to publish the web services it owns. If a WSP is the first
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one to join the network, it initializes the service registry by
uploading its services to the DHT. It also identifies itself as
the bootstrap peer for the chord protocol, so as to facilitate
other WSP peers to join the network and contribute to same
DHT so formed. As the number of WSPs and the web
services hosted by them increases in the network, the entries
in the registry are distributed among the WSP peers with
respect to the Chord protocol. This is done by mapping
the keys to the respective node identifiers and distributing
the information over the nodes/WSPs in the network. Each
WSP also maintains a list of all web services (i.e. [key,
value] pairs) locally, assigned by chord along with the web
services it owns/hosts.

A WSP publishes a service as its owner in the registry,
it is now discoverable by clients and other WSPs, until and
unless it is explicitly removed by the owner itself. No other
WSP has the rights to perform administrative tasks for a
service such as publishing, deploying, replacing, modifying
and removing the service to or from the registry, except
the owner itself. Since the registry provides some service
metadata (i.e. value), which is sufficient enough to make the
service discoverable by different WSP and clients, it does
not provide the whole service package in order to maintain
the security of the service.

Once the service is published it may so happen that the
owner undergoes failure or leaves the chord ring, thereby
creating uncertainty of the environments. In such a scenario
the service still remains discoverable in the network. This is
possible because the keys of the services which the owner
in concern is responsible for and the services which it
owned are shared among the predecessor and successor of
the concerned peer in a structured fashion as per the chord
protocol. Such a phenomenon of exchanging information and
re-mapping the keys provides higher service availability.

3.3.2 Discovery of Web Services from Registry

A client can make a service request only when the service
endpoint is made available to the client via the interface. By
default the interface enlists all the services with endpoints
maintained locally as a list of DHT entries. Depending on
the list a client request can be made in two ways:

• Case 1: If the service is in the list then the service
endpoint is made directly available to client by which
a service request can be made.

• Case 2: If the service is not in the list then a service
query is made to the registry. As a result an endpoint
for the same is returned if the service exists.

Chord uses an efficient routing algorithm for locating a
key in the ring with an upper bound of O(log N), where N
is the number of nodes taking part in the chord ring [7],
thus even with increase in number of web services and
WSP’s the registry remains scalable as compared to previous
approaches.

3.3.3 Binding of Web Services with clients
After the service endpoint is made available to the client,

depending on the three parameters i.e. status of the service,
the WSP through whom the service request is being made
and the WSP who owns the service; a client request is sched-
uled accordingly among the available HPs. To represent the
work flow, the requests are modeled as a tuple of three
parameters i.e. [Name of Service, Request to WSP, Request of
WSP]. For example as shown in Figure 3, a service request
tuple [WS2, WSP#1,WSP#2] means a client request for web
service WS2, the request is made via WSP#1 and the owner
of WS2 is WSP#2. Describing the service request tuple in a
generalized manner denoting WSx be the name of the web
service owned by a WSP#x and WSy be a name of the
web service owned by WSP#y and so on, with respect to
these parameters four generic kinds of requests can occur as
depicted in Table 1 along with there scheduling criteria.

Fig. 3: Basic Architecture Diagram

Table 1: Service Request Types

Request Status Request Scheduling
Type Tuple Criteria

SR1 Deployed [WSx,WSP#x,WSP#x] Routed to HP
using WSP#x’s
scheduling strategy

SR2 Deployed [WSx,WSP#y,WSP#x] Routed to HP
using minimum
load criteria

SR3 Available [WSx,WSP#y,WSP#x] Routed to owner
i.e. WSP#x for
deployment

SR4 Available [WSx,WSP#x,WSP#x] Deployed on an
appropriate HP

From the above table it is evident that for a service
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which is deployed, a client request made directly to the
service owner (SR1) is routed using a default scheduling
strategy. A service request made to a WSP other than the
owner (SR2) of the service is routed to a minimum loaded
HP so that QoS is not compromised. If the service is not
deployed yet, a request made to a WSP other than the
owner (SR3) first routes the request to the owner for the
deployment of the service. After which a normal deployment
procedure is carried out similar to deployment request made
to same owner (SR4). As mentioned earlier, if the owner of a
service goes down, the service still remains discoverable and
hence can be used by client via SR2. Since the deployment
rights are constrained to the owner of the service, further
new deployments will not occur and all the incoming client
requests will be serviced from the existing deployments.

Catering the client requests employing the benefits of
chord protocol, thereby increasing the service availability
by de-centralizing the registry, provides a unique approach
for rendering a demand driven architecture for web service
provisioning. For proper utilization of resources at the same
time the incoming client requests needs to scheduled to
appropriate resources for execution.

3.4 Scheduling Strategies
The WSPs always use a scheduling strategy to route

the consumer requests for adequate resource management
based on the dynamic load information collected from the
HPs, with deployed instances of the services they own. The
scheduling strategies used as time slice based, i.e. an instance
among the all the deployed instances for a given service is
selected as a best node for a given time period. At the end of
the time slice the best node is changed as per the scheduling
strategy used below:

• Round Robin Reloaded (RRR) - selects the best node
in round robin fashion for every time slice, cycling over
the deployed instances.

• Least Recently Used Reloaded (LRUR) - selects
the least recently used instance as the best node if
the current instance is loaded, for the next time slice,
cycling over the deployed instances.

• Minimum Loaded First (MLF) - selects the instance
with minimum load as the best node for every time slice
among the deployed instances.

All the incoming requests of WSx made to WSP#x are
scheduled by the use of any one of the above mentioned
strategy. Whereas the incoming requests of WSx made to
WS#y are always scheduled via MLF strategy, to avoid the
overhead of constantly assigning a best node for the services
which they do not own.

4. Experimental Results
In this section we present the results of the experiments

performed for dynamically deploying web services and

managing client requests over a distributed registry. The tests
were conduct with 3 WSP peers, and 7 HP of different
node configuration. A web service for calculating the Nth
Fibonacci term is used with value of N=40. Nodes taken
into account were of configuration ranging from 1GB-4GB
of physical memory, 1.86GHz-3GHz dual-core processors.
The test were conducted by making 10000 client requests,
made to different WSPs each time, and hence calculating the
response times. The graphs are obtained by using different
scheduling strategies as discussed earlier and hence plotting
the service response times with number of service requests
made.

From the graphs we can observe that few requests which
incur the deployment costs (shown as red peaks) take higher
response times. For rest of the requests, the response time
required is comparatively low. Thus it can be concluded
that the initial deployment cost is shared over successive
consumer requests and the idea of deploy once and use many
times is well implemented, proving to be a major advantage
over the job-based framework.

Comparing the plots we can observe the cumulative re-
sponse time for RRR (Figure 4) strategy is high as compared
to other two strategies. This is because an instance with a
lower capacity is selected as best node in every cycle leading
to higher response time, which is not the case in other two
strategies. Hence RRR strategy implements better utilization
of resources at the cost of high response time. In contrast
LRUR (Figure 5) strategy achieves lower response times for
a longer time, till the current instance does not gets loaded.
At the same time it also guarantees to use all the instances
in a cyclic fashion, hence provides an approach with lower
response time and better utilization of resources as well.
Since MLF (Figure 6) does not cycles over the deployed
instances and hence provides the best possible response time
for every time slice, hence low cumulative response time as
compared to other strategies, though is suffers from poor
utilization of resources as the instances with lower capacity
may have load values higher as compared to instances with
higher capacity.

5. Discussion and Future Work
The architecture presented in this paper overcomes the

drawbacks of distributed environments by strongly coupling
it with the SOA. It uses on-demand web service provisioning
frameworks and employs service provisioning on the basis of
load balancing and meeting minimum service requirements
to achieve better performance with emerging demands of
web applications.

Further, incorporation of P2P technologies provides a
robust approach towards handling the uncertainty of grid
environments. It overcomes the scenario of single point
failure as it is devoid of any centralized mechanism of
service registry. The architecture not only decentralizes the
registry but at the same time dynamically adapts the registry
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Fig. 4: Plot for RRR

Fig. 5: Plot for LRUR

Fig. 6: Plot for MLF

to the volatile changes of the network. Since the service
information is distributed over the registry, and not the
service itself, this approach restricts WSPs other than the
owner of the service to perform any administrative tasks

of the service. This is because the security of the service
(executable code and service metrics) is an important issue,
still to be taken care of. The authors are of believe that
the security of the service is a separate research problem
focusing on what information and to whom and how the
service must be made available.

The framework also establishes new scopes for virtual
organizations which can take part as provider of services
as well as provider of resources. The approach towards
de-centralizing the registry may further enhance business
opportunities for cross hosting the web services, agreed on
some cost model. Combining SLA for client requests is
a future aspect still to be achieved which would provide
freedom for client to choose a cost model best suited for
them.
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Abstract - Aiming at the problem of cloud service selection 
based on global Quality-of-Service (QoS) constraints, this 
paper provides a hybrid algorithm of Simplex Method (SM) 
and Genetic Algorithm (GA). In this algorithm, some relevant 
variables are defined, some Simplex Method operations are 
proposed and the hybrid algorithm based on GA and SM is 
provided. The global convergence ability and local 
convergence capacity of GA can be gotten better. The hybrid 
algorithm can get more excellent composite service plan from 
a lot of composite plans on the basis of global QoS constraints 
because it accords with the characteristics of cloud service 
selection very well. Passed tests and analyses show that the 
hybrid algorithm proposed in this paper can be a good choice 
to solve the QoS-based cloud service selection problem. 

Keywords: Cloud service, Selection, QoS-aware, Genetic 
algorithms, Simplex method 

 

1 Introduction 
  Cloud computing [1-3, 31] is an emerging computing 
technology that allows businesses to implement their own 
services using on-demand IT infrastructures. These on-
demand infrastructures enable end users to access business 
services without installation, at any computer with Internet 
access. Cloud computing environments offer three major 
types of services: infrastructure as a service (IaaS), platform 
as a service (PaaS), and software as a service(SaaS)[4].These 
services are called cloud services. Cloud service composition 
is one of the motive forces of the development of cloud 
services. 

With the rapid development of cloud service technology, 
as well as intensified competition among cloud service 
providers, there are inevitably many cloud service providers 
to provide cloud services with same functionalities and 
different QoS. These cloud services can combine tens of 

thousands composite cloud services with same functions and 
different QoS. Therefore, we need to choose cloud service 
components from massive cloud services with same functions 
and different QoS based on user's QoS requirements. QoS-
based service selection plays an important role[5-6] in the 
combination of services.   

QoS-based service selection problem is one of the hot 
research areas. A lot of international research organizations in 
this field carried out relevant research work and have made 
some research results [7-25, 29-30]. But there are still certain 
deficiencies.  

Exhaustive methods [7-9, 12, 20-25] and approximate 
algorithms [10-11, 13-19] are two kinds of QoS properties 
calculation methods. To meet the global constraints and to 
find the optimal combination are under the scope of 
combinatorial optimization, and QoS-based service selection 
is NP-hard problem [11], therefore, approximate algorithm is 
more suitable to solve optimization combinatorial problems. 
Genetic Algorithm (GA) is a kind of approximate algorithm. 
Genetic Algorithm is a powerful tool to solve combinatorial 
optimizing problems [26]. It is an iterative procedure on the 
basis of population where each individual describes a solution. 
The design of Genetic Algorithm operators and parameters 
will have significant impact on itself [27]. Genetic Algorithm 
is not advantageous for the local convergence. Its efficiency is 
not enough and its speed of convergence is slow. In order to 
compensate for local search capability of Genetic Algorithm 
itself, the combination of Genetic Algorithm and some kind of 
local search algorithms is needed to enhance the local search 
capabilities of Genetic Algorithm.  

Based on the above analysis, this paper presents an 
improved Genetic Algorithm. To compensate for the local 
search capabilities of Genetic Algorithm itself, a hybrid 
algorithm of Genetic Algorithm and Simplex Method (SM) is 
introduced. 
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The remaining sections of this paper are as follows. 
Section two described researches of QoS-based cloud service 
selection computing. The proposed hybrid algorithm was 
discussed in detail in section three. Section four presented 
some simulation works and discussed the simulation results. 
Section five came to conclusions and noted that the next step 
in research content.  

2 Quality-based cloud service selection  
Based on all global QoS constraints, to select the best 

plan from a large number of cloud service composition plans 
is in the area of combinatorial optimization. To solve such 
problems, the calculation methods based on QoS attributes are 
divided into two categories. One category is exhaustive 
algorithm. In this kind of algorithm, all of candidate plans are 
calculated according to certain rules in order to choose the 
best plan. The methods used in the literatures [7-9, 12, 20-25] 
fall into this category. The other is approximate algorithm. In 
this type of algorithm, an ideal composition plan is infinitely 
close to the best one. At last, a plan that meets all QoS 
requirements but is not the best one will be gained. The 
methods in the literatures [10-11, 13-19] fall into this category. 

QoS properties calculation through the establishment of 
QoS matrix is a representative calculation method. The 
literature [7] presented a run-time services choice method in 
dynamic service composition. It could select a single better 
service, but it could not meet the entire QoS requirements. In 
the literatures [8, 9], a local optimization algorithm and a 
global optimization algorithm were proposed. The local 
optimization algorithm could not reach a global optimal 
solution. When the size of composition services was large, the 
compution of the global computational algorithm had 
increased a lot. The literature [12] expanded the methods in 
the literature[9]. It analysed the conditions of triggering 
service re-selection in detail, gave the idea of the service re-
selection and gave the constraint expression for a stateful 
cloud service selection. 

The service selection problem based on QoS belongs to 
NP-hard problem[11], so the exhaustive combinatorial 
optimization method is poor scalability and has large 
calculation. Heuristics method can be used to obtain an 
approximate solution. 

In the literature [13], a multidimensional 0-1 knapsack 
problem model was used for multiple QoS constraints 
selection. A method based on branch-and-branch was 
proposed for solving MMKP (Multi-dimension Multi-choice 
Knap sack Problem) optimal solution and heuristic-based 
method for solving second-best solution. In the field of 
combinatorial optimization, the solution based on Genetic 
Algorithm is a novel global optimization one. The literatures 
[10-11, 14-18] used Genetic Algorithm for the optimization of 
service composition. The literature [10] used Genetic 
Algorithm to solve the QoS-based service selection. It used 

one-dimensional chromosome encoding method to describe 
the combination of services. The literature [11] also used an 
one-dimensional chromosome encoding method to describe 
the combination of services. The literatures [17] and [18] 
proposed a combination service method based on Genetic 
Algorithm. Through Genetic Algorithm, it could be ensured 
that the results of services choice met the restrictive 
conditions. 

To compensate for the local search capability of Genetic 
Algorithm itself, Genetic Algorithm and some kind of local 
search algorithms need to be combined to enhance its local 
search capabilities and to achieve fairly good results. 

3 Genetic algorithm with simplex method 
In this section, we present a novel genetic algorithm with 

Simplex Method in order to solve quality-driven selection.  

3.1 Definition of relevant variables 

Suppose that a composite cloud service includes n tasks. 
The ith (1 i n≤ ≤ ) task ti has Ni candidate services. The 
sign sij is used to represent the jth ( i1 j N≤ ≤ ) candidate 

cloud service. The sign Qijq denotes the qth QoS attribute of sij 
candidate cloud service. The weight value of Qijq is Wq. 

The symbol yij denotes a decision variable. In a 
composite cloud service instance, the value of yij is 1 only 
when the cloud service sij is selected, otherwise its value is 0. 
For the task ti, only one decision variable value is 1, the rest 
values are 0. Its formula is the following formula (1). 

                         
1

1j

N i

j

iy
=

=∑ , [ 0 , 1 ]jiy ∈                 (1) 

In addition, in normal circumstances, the value of Ni of 
every task is usually not equal one another. Suppose that m is 
the maximum value in all of Ni, namely, m = Max {N1, N2, …, 
Nn}. Therefore, in order to build a decision variable matrix 
formed by all decision variables, the number of candidate 
cloud services of every task needs to be expanded to m. The 
following is the method. If iN m<  for a task i (1 i n≤ ≤ ), 
the value of i jy is 0 in the case of 1iN j m+ ≤ ≤ . 

Accordingly, the total number of the decision variables is 
expanded to n m× . Since the new expanded candidate cloud 
services will never be selected, the corresponding decision 
variable values are always 0. 

Based on the above expansion, all of decision variables 
i jy  (1 i n≤ ≤ ,1 j m≤ ≤ ) can constitute a n m×  class of 

decision variable matrix that is denoted by Y. Its formula is 
the following formula (2). 
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In Y, each row represents the decision variable vector of 
all candidate cloud services of a task. 

3.2 Main steps of the simplex operations 

Genetic Algorithm can effectively handle the 
optimization problem with multi-variable and complex 
functions. However, local convergence of Genetic Algorithms 
is not an advantage. Therefore, in order to compensate for 
Genetic Algorithm itself in lack of local search capability, 
Genetic Algorithm needs to be integrated with some kind of 
local search algorithms to enhance its local search capabilities.  

Simplex Method is a local optimization approach. A 
combination of Genetic Algorithm and Simplex Method can 
form a hybrid algorithm [28] that includes the global 
optimization algorithm and the local optimization algorithm. 
The two algorithms complement each other. Genetic 
Algorithm ensures that the hybrid algorithm has the global 
search capability and can find the global optimal point. 
Simplex Method can add a number of parallel searches in 
many local areas and it can use local search methods to direct 
the search. It can not only speed up the process of global 
optimization, but also solve the "premature" problem of 
Genetic Algorithm to a certain extent. Better convergence 
speed and search capability can be gotten at the same time. 

Based on the research about the combination of simplex 
method and Genetic Algorithm, this paper presents a hybrid 
algorithm that is the combination of Genetic Algorithm and 
Simplex Method. This hybrid algorithm will be used to solve 
the cloud service choice problem. 

The following is the main idea of the hybrid algorithm. 
After Genetic Algorithm produces a new generation of 
population, some local initial simplexes are composed by 
some randomly selected individuals in a certain probability. 
Individuals with higher fitness values are introduced through 
continuous reflection operations and they will replace the 
individuals whose fitness values are lower. So, a number of 
new better individuals will be included into the next 
generation of population and will participate in genetic 
manipulations in the next generation of population. In 
addition, during the reflection operation, the decision variable 
matrix will be used. 

Some Simplex Method operations are joined between 
two generations of population. After a series of reproduction, 
crossover and mutation operators, a number of individuals are 
randomly selected to form a certain number of initial 

simplexes. Some local Simplex operations are run in parallel. 
After all initial simplexes have completed their simplex 
operations, more excellent individuals are obtained. We can 
proceed with the next generation of genetic manipulations. 

N s  is the number of generated initial simplexes. The 
formula of N s is the following formula (3). 

                          ( / )Ns floor Ng n=                         (3) 

In the formula (3), N g  is the population size of 

Genetic Algorithm, that is, it is the number of individuals in 
each generation of population. The symbol n is the length of a 
chromosome.  

For each initial simplex, the main steps of the simplex 
operations are as follows: 

3.2.1 To establish an initial simplex 
n+1 individuals are selected randomly from the current 

population and form an initial simplex in a n-dimensional 
space. Each individual's fitness function value shall be the 
function value of the corresponding vertex in the simplex. 

3.2.2 To select the worst individual 
After the function values of n+1 vertices are compared, 

the vertex with the smallest function value is found and its 
corresponding individual is denoted by 1nC + . The 
individuals corresponding to the remaining n vertices are 
indicated respectively by 1 2, , , nC C C⋯ . 

3.2.3 To construct the decision variable matrix of 
every vertex 

The decision variable matrixes 
1 2 1, , , ,n nY Y Y Y +⋯  are built respectively for the 

individuals 1 2 1, , , ,n nC C C C +⋯ . As shown below 

is the specific method of construction. Only when the jth 
candidate cloud service of the ith task is selected, the 
component i jy is 1 in the decision variable matrix kY , 

otherwise the value of i jy  is 0. 

3.2.4 To calculate the decision variable matrix of 
reflection center 
cC  is the reflection center that is about n individuals 

except the worst individual 1nC + . The decision variable 
matrix cY  about cC  can be built according to the 
following formula (4). 
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3.2.5 To compute the decision variable matrix 
about the reflection point  
0C  is the reflection point of the worst individual 
1nC +  on cC . Its decision variable matrix is 0Y . Its 

formula is the following formula (5). 

                            0 c - n + 1Y 2 Y Y=                  (5) 

3.2.6 Boolean the decision variable matrix of the 
reflection point 

Boolean-oriented approach is to reassign 0 or 1 to each 

component i jy in the decision variable matrix 0Y .  

The value 1 will be set to the largest component in each row 
vector kY  of 0Y and the remaining components are 
assigned the value of 0. Thereby, a boolean decision variables 
matrix 0 'Y  will be generated. In the Boolean process, if 
there are multiple components with the same and maximum 
value in a row vector, the value 1 will be set to random 
component among them. The remaining components in the 
row vector are 0. 

3.2.7 To generate the new individual 
corresponding to the reflection point 

A new individual 0C  is generated on the basis of the 
decision variable matrix 0 'Y .  For each row vector in 

0 'Y , the only component with the value of 1 is used to 
select its atom service instance. The atom service instance will 
is assigned to corresponding gene locus on a chromosome. 
After all of gene loci are set atom service instances, the 
formation of a new individual 0C  will be done. 

3.2.8 To determine whether the new individuals 
meet the user's global constraints 

If the new individual's fitness is greater than the worst 
individual and the new individual meets the user’s global QoS 
constraints, the new individual will replace the worst one in 
population and joins the next generation population evolution. 
Otherwise, if the new individual's fitness is less than the worst 
individual or the new individual does not meet the user’s 
global QoS constraints, the new individual will also replace 
the worst one in population and form a new simplex to 
continue with the next iteration of the simplex algorithm. We 
can end the operation of the simplex until a new individual's 
fitness is greater than the worst individual and the new 
individual meets the user’s global QoS constraints. 

In accordance with the above steps, simplex operations 
are done in N s  initial simplexes in turn.  After every 

simplex has gained a new individual whose fitness value is 
better than the worst individual in the simplex and that is able 
to meet the global user constraints, these new individuals will 
be generated and added into the population to participate in 
the next generation of population genetic manipulations. 

On the one hand, because individuals are randomly 
selected to compose an initial simplex, the randomness of 
Genetic Algorithm can be ensured. And the opportunities to 
generate new individuals are increased. On the other hand, 
Simplex Method can control the evolution direction of 
Genetic Algorithm to make better solutions. It is parallel 
searches in a number of local solution spaces not only that 
enhances the local search ability bus also that accelerates the 
global convergence and solves the "premature" problem of 
GA to a certain extent. 

3.3 GA with SM 

In this section, we present a novel genetic algorithm 
mixed by SM. This GA is available in figure 1. 

 
Fig.1. GA with SM operations 

The SM operations promote the search ability of GA. 
The hybrid GA can gain better composition services. 
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4 Tests and analyses  
The proposed cloud service selecting algorithm in this 

paper improves simple Genetic Algorithm. That is to build a 
more powerful and efficient hybrid search algorithm that is 
composed by Genetic Algorithm and Simplex Method. 
Through the above improvement, this algorithm has better 
search ability. Here are tests results and test analyses through 
which the capacity and efficiency of presented hybrid 
algorithm will be validated. 

4.1 Test data preparation 
In order to verify the effect of cloud services choice done 

by the hybrid algorithm, some comparison tests between 
simple Genetic Algorithm and the hybrid algorithm were 
made. 

In order to fairly test the two algorithms, they would run 
in the same hardware and software operating environment, 
including CPU, memory, OS, development language and IDE, 
etc. In the comparison tests, the two algorithms solved the 
cloud service selection problems with the same size of cloud 
services combination. In every comparison test, the number of 
tasks in cloud service composition was same. The values of 
specific QoS attributes were randomly generated within a 
certain range. 

Some global limits for a part of QoS properties were 
randomly generated. The overall limits were applied to all 
specific cloud service compositions through the penalty 
function method. 

In addition, the simple Genetic Algorithm and the hybrid 
algorithm used initialization parameters as following. The 
population size is 500. The crossover probability is 0.7 and 
the mutation probability is 0.1.  

4.2 Tests and analyses  
Based on the above preparation of test data, simple 

Genetic Algorithm and the hybrid algorithm were run for 50 
times respectively at different scale of problems (that is, the 
number of different tasks and different number of candidate 
cloud services). The test results were analyzed from both 
convergence speed and search capabilities. 

Algorithm convergence rate refers to the generation 
where the biggest fitness value is reached.  The average 
running time was taken too. Search capability is that the 
algorithm can find the optimal solution in a solution space. It 
can be measured by the quality of the solution that the 
algorithm searches. In Genetic Algorithm, the algorithm 
search capability can be measured through the fitness value of 
the final selected individual. In the hybrid algorithm, the 
bigger the fitness value is, the better the selection result is. 

The average values of the final fitness values at all running 
time were taken. 

A few of test data are listed in Table 1. SGA is the 
abbreviation of simple Genetic Algorithm. 

Table.1.Comparison data (SGA : Hybrid algorithm). 

Tasks  
Num 

Average  
Maximum  
Fitness 

Average  
Time 

Average  
Generation 

10 
0.134:0.13
9 

256:537 343:284 

25 
0.061:0.17
3 

983:2135 386:297 

30 
0.031:0.10
5 

2676:537
5 

352:308 

As can be seen from Table 1, when the number of tasks 
is added, the running time will increase. 

The efficiency of simple Genetic Algorithm is still 
unsatisfactory, although to a certain extent it solved the cloud 
service selection problem. As described in Table 1, 
comparison of data can fully verify that the hybrid algorithm 
has faster convergence than the simple Genetic Algorithm and 
can get better results of cloud service selection. 

When in the face of the selection problem with the same 
size of combination cloud services, the hybrid algorithm can 
get higher average final fitness value than the simple Genetic 
Algorithm. When the scale of the composition problem is 
small, the advantage of the hybrid algorithm is not clear. But, 
when there are a larger number of tasks in a combined service 
flow, the hybrid algorithm can get much better solutions than 
the simple Genetic Algorithm. In the test conditions of this 
article, when the number of tasks is more than 25, the hybrid 
algorithm clearly has stronger search capabilities. This shows 
that the hybrid algorithm has better search capabilities, 
especially in the larger scale of cloud service selection, that 
the search capabilities are more prominent. The reason is that 
the presented hybrid algorithm in this paper has greatly 
enhanced the local convergence rate and capability with the 
combination of Simplex Method and Genetic Algorithm. 

But, the average running time of the hybrid algorithm 
were larger than the SGA. This means that the running of 
Simplex Method raises the running time of the hybrid 
algorithm. Some improvement methods should be established 
in the future. 

5 Conclusions 
Since cloud services technologies have become more 

sophisticated, more and more easily used cloud services with 
the stability characteristics are shared on network. But a single 
atomic cloud service can provide limited functionalities. In 
order to more fully utilize the shared cloud services, it is 
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necessary to combine shared cloud services to form a new 
combination of cloud services to provide more powerful 
service functions. 

With the progressive development of cloud services 
technology and application, it is inevitable for a task to appear 
a large number of candidate cloud services with the same 
function properties and different non-functional attributes 
(mainly referring to QoS attributes). It has become an urgent 
problem that how to fast and flexibly select a high-availability, 
high reliability, high performance and the best cloud service 
to meet user’ needs from massive candidate cloud services. 
Namely, it is QoS-based cloud service selection problem. 

This paper presents a combination cloud services 
selection algorithm based on a hybrid algorithm. Based on the 
analyses of composite cloud service selection problem, a 
simple Genetic Algorithm combines a local optimization 
algorithm – Simplex Method. In order to compensate the lack 
of the ability of local search of Genetic Algorithm itself, 
Genetic Algorithm and Simplex Method are applied to the 
formation of a new hybrid algorithm. In the result, the search 
ability and convergence speed can be improved at the same 
time. 

Through the realization of the above-mentioned 
algorithm, some strong validations of the proposed algorithm 
in capacity and efficiency effects were done. The hybrid 
algorithm can be a good solution to QoS-driven cloud 
services selection. 

In the future, some ways should be adopted to decrease 
the running time of the hybrid algorithm. In the above 
experiments, the number of individuals in populations is the 
same in the face of different combination sizes. If the 
populations with different sizes can be adopted for different 
composition scales, the efficiency of algorithm will be greatly 
improved. Therefore, the next study will examine the dynamic 
adaptive mechanism of population size. An approach of 
Genetic Algorithm with ant colony algorithm is used to select 
concrete services in the literature 19. MMAS (Max-Min Ant 
System) has abilities of parallel processing and global 
searching. MMAS can put feedback information to Genetic 
Algorithm. So, another future work is about how Genetic 
Algorithm works together with MMAS in dynamic cloud 
service selection environment. 
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Abstract - In an attempt to reduce costs by taking advantage of 

efficient computing resources, new developed technologies and 

architectures are gaining wide acceptance in the market. One of 

such technologies is cloud computing, which uses existing 

technologies, such as virtualization, trying to solve problems 

like energy consumption and space allocation in data centers or 

large companies. This paper presents a study on cloud 

computing, describing their main characteristics, models of 

deployment, services, and architectures, including an analysis 

over its benefits, risks and challenges. It also presents a study 

over some open-source cloud managers, presenting its 

advantages and drawbacks. All of this is presented aiming to 

provide a clear guide for those that are evaluating the possible 

adoption of cloud technology for their IT problems. 
 

Keywords: Cloud Computing, Architecture, Virtualization. 

INTRODUCTION 

ith the constant growth in the use of computers 

problems such as power consumption and storage 

space for data centers are becoming a commonplace. Several 

solutions have been launched to solve this problem, including 

Cloud Computing, as named from IBM in 2007 [1]. 

Cloud computing is devised as a strong trend nowadays, 

with most of the organizations using or planning to use it. The 

advantages brought by cloud computing include the reduction 

in hardware's acquisition and maintenance cost, accessibility, 

flexibility, and a highly automated process for software 

upgrades [2]. 

The cloud can be defined as a network infrastructure based 

in the share of computing resources along the Internet. The 

major differential is that clouds try to make the infrastructure's 

complexity transparent for users. This is performed through 

the offering of “services” that deliver clients' requests using 

the Internet. Such offering is enabled by the use of 

virtualization technologies throughout datacenter’s 

infrastructure, storing and processing users data outside their 

local resources [3].  

Although the rise in its application, cloud computing is still 

evolving. Open issues include how clients pay for resources 

and what resources have to be paid for. Also, there are open 

problems in its maintenance cost, accessibility, and flexibility. 

In this paper we provide a concise review of the main 

concepts involved with clouds, including virtualization, virtual 

machines and hypervisors. We also provide a description of 

some characteristics that must or should be present in clouds. 

We finish with an evaluation of three open-source cloud 

managers. 

VIRTUALIZATION 

Virtualization is an important concept for the cloud 

architecture. Most of modern processors support native 

virtualization, with several solutions implementing virtual 

machines present in the market. This is useful since it is rare to 

find dedicated servers using most of its processing capacity. 

Therefore it is costly to maintain several physical hosts with a 

different operating system in each one, making desirable and 

viable to have several virtual machines running in a single 

physical one. 

Virtualized environments are designed through the 

insertion of a virtualization layer between the hardware and 

the virtual machine (VM), as shown in Figure 1. A VM enable 

a more efficient use of hardware resources while executing the 

user's applications running in a given operating system [4].  
 

 
Figure 1. Architecture of hardware virtualization [4]. 

A.  Virtualization Environment 

The virtualization layer is the software responsible by the 

hosting and management of all virtual machines through a VM 

monitor (VMM). It is a hypervisor running directly over the 

hardware, with different capabilities for each different 

architecture. Each VMM executing in the hypervisor 

implements a hardware's abstraction of the virtual machine 

and runs a guest operating system. All VM share CPU, 

memory, and peripherals in order to successfully build a 

virtualized environment [4]. 
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Unfortunately some hardware instructions cannot be 

effectively virtualized, since they have different semantics 

when executed in non-privileged modes. The approaches to 

circumvent such problems are: 

Total virtualization with binary translation: any x86-

based operating system can be virtualized by a combination of 

binary translation and straight execution techniques. This 

approach translates the kernel to replace non-virtualizable 

instructions with macros that have the intended effect in the 

virtual hardware [4]. 

Assisted Virtualization or Paravirtualization: modifies 

the guest OS kernel in order to replace non-virtualizable 

instructions with hypercalls that directly communicate with 

the hypervisor layer. The hypervisor also provides interfaces 

(named hypercalls) to other kernel's critical operations, such as 

memory management, interrupt management, or time 

management. Paravirtualization differs from total 

virtualization in the sense that here the unmodified OS does 

not know that it is being virtualized and sensitive system calls 

are captured through binary conversion [4]. 

Hardware Assisted Virtualization: hardware providers are 

rapidly adopting virtualization, improving the resources to 

make it easier. Improvements here include Intel's 

Virtualization Technology (VT-x) and AMD's AMD-V. In 

both cases the technique is to provide new modes to execute 

privileged instructions [4]. 

B.  Hypervisor 

The hypervisor is a software layer between hardware and 

operating system, controlling the access of the guest OS to the 

hardware's resources. In order to work correctly, the 

hypervisor needs to have control over the real system's 

resources. It also needs to satisfy certain constraints, such as to 

provide an exact copy of the real execution environment to the 

applications running in the virtual machine. There are several 

hypervisors available, including Xen, VMware, KVM and 

QEMU [4]. 

CLOUD COMPUTING 

A cloud is a system using concepts as virtualization, 

emulation, OVF (VM configuration patterns), and Libvirt (an 

API to manage guest operating systems), and to assemble a 

new architecture from them. This new architecture basic idea 

is to provide computing power from demand, where more 

virtual machines can be added to the cloud when an user needs 

it. Actual machines can be added in order to increase the 

computing power and/or storage capacity. 

Since hardware virtualization allows the creation of 

multiple virtual machines over a real machine, cloud 

computing uses it to create an environment (the cloud), 

allocating instances (guest operating systems) accordingly to 

the available resources (physical hosts). These virtual machine 

instances are allocated to the convenient actual hosts that 

compose the computing cloud [5]. 

The key to achieve cloud computing is the “cloud”, which is 

a massive network of hosts (servers or simple machines) 

connected as a grid. These computers may work independently 

or in parallel, when resources are combined in order to create 

a high performance system [6]. 

As shown in Figure 2, individual users access the cloud 

from their own computers, or portable devices, using the 

internet. For these individual users, the cloud can be seen as a 

single application to share documents or devices. Both 

hardware and operating system are made transparent for the 

user, simplifying the cloud's access by the user. 

 

Cloud
Servers

 
Figure 2 – A typical, simplified, cloud system [7]. 

 

A.  Classification schemes 

According to Sasikala [8], computing clouds can be 

classified accordingly to the type of users sharing/providing 

their services/resources. The defined classes are: 

Public cloud: the infrastructure is provided to many clients 

and managed by a third party, that is paid by its usage. In this 

class several companies may be involved in the same 

environment. 

Private cloud: the infrastructure is built aiming specific 

clients inside one organization. It can be managed by the own 

organization or by a third party. In this case, virtualization can 

be made using proprietary tools. 

Community cloud: the infrastructure is shared among 

several organizations, usually with a common goal. It can be 

managed by the organizations or by a single service provider. 

Hybrid cloud: is composed by two or more of the previous 

models, demanding transparency in all transfers between 

them. 

B.  Architecture 

According to Zhang, Cheng and Boutaba [9], the 

architecture of a cloud computing environment can be divided 

in four layers: hardware/datacenter, infrastructure, platform 

and application layers, as shown in Figure 3. The description 

of these layers follows: 

Hardware layer: it is responsible of managing the cloud's 

physical resources, including servers, network devices, 

electrical power, and cooling systems. It is usually 

implemented through datacenters, with hundreds or thousands 

of servers in order to deal with issues such as fault tolerance 
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and traffic routing. 

Infrastructure layer: it is also known as virtualization layer 

and creates a pool of resources for storage and processing, 

allocating physical resources through hypervisors such as Xen, 

KVM or VMware. This layer is essential in the cloud 

environment since dynamic resource allocation and other 

important features are provided by hypervisors. 

Platform layer: it is built over the infrastructure layer, 

consisting of the operating systems and frameworks for 

software applications. It is designed aiming the reduction in the 

cost of developing applications directly for VM stubs. As an 

example, the Google App Engine operates in this layer in order 

to provide a support API for the development of databases, 

storage and typical businesses rules for web applications. 

Application layer: in the top level of this hierarchy, the 

application layer is composed by actual cloud applications. 

These applications differ from conventional ones since they 

can take advantage from automatic resizing in the resources in 

order to achieve a better performance, availability and 

operational cost. 

This layered architecture resembles the OSI reference 

model for computer networks, providing modularity, 

flexibility and independence from changes in each layer. This 

allows the reduction in costs of management and maintenance, 

at the same time it can execute a wider range of applications.  

In order to achieve such characteristics it is expected that a 

cloud computing environment would offer the following 

properties [10], also appearing in Figure 3: 

 

CLOUD

COMPUTING

AUTO SERVICE
ON DEMAND

ACCESS THE
NETWORK SERVICE MEASURABLE

SERVICES

POOL OF 
RESOURCES

RAPID
ELASTICITY

 
Figure 3 – Cloud computing properties [11]. 

 

Automatic service on demand: computational services are 

provided automatically, without human intervention over the 

service provider; 

Wide access to network services: since computing 

resources are available through the internet, they must be 

easily accessible via standard protocols by any kind of device 

(mobile, handheld, or desktops); 

Pool of Resources: provided computing resources 

(physical or virtual) have to serve multiple users, being 

allocated and reallocated accordingly to the demand; 

Rapid Elasticity: services must be fast and made available 

whenever necessary. Users of them must feel as they have 

unlimited resources, which can be acquired in any amount, 

anytime. The elasticity property appears in three components: 

linear scalability, use by demand, and payment of what is 

consumed; 

Measurable Services: the management systems used by 

the cloud must control and monitor each resource, 

automatically, for each kind of service (storage, processing, 

and bandwidth). This monitoring must be transparent for both 

entities involved (service provider and user). 

Zhang, Cheng and Boutaba [9] establish that cloud 

computing provides services in a form that largely differs from 

the form provided by conventional computing datacenters. 

The differences include: 

Multiple tenants: in a cloud environment services owned 

by multiple providers can be located in a single data center. 

With this approach the issues with performance and 

management of these services can be dealt by all service and 

the infrastructure providers. The layered architecture offers a 

natural division of duties, that is, the owner of each layer will 

have to deal only with the specific goals associated with that 

layer. Unfortunately, the multiple tenancies also create 

problems in the understanding and management of the 

interactions between parts. 

Sharing of the pool of resources: the infrastructure 

provider offers a pool of resources that can be dynamically 

allocated to the resource consumers. This capability creates a 

great flexibility to the cost-effective management of resources. 

As an example, a service provider can take advantage of the 

technique of VM migration in order to maximize resource 

utilization, what implies in the reduction of costs associated 

with cooling and power consumption. 

Access through a worldly distributed network: clouds 

are usually accessible from the Internet, therefore, any device 

connected to it, either a cell phone or a desktop, is capable of 

using the cloud services. Even more, in order to achieve a high 

performance and availability, many of the current clouds are 

composed by several datacenters distributed over the world.  

Service Oriented: cloud computing adopts a service-

oriented operational model, putting a strong emphasis in 

service management. Each provider offers his service trying to 

guarantee a Service Level Agreement (SLA), which is 

negotiated with the users of that service. 

Dynamic resource provisioning: differently from 

conventional systems, where resources are fixed, in clouds we 

have the capability of dynamically adjust the amount of 

offered resources by the acquisition and publishing of extra 

resources by the service provider, guided by current demands. 

Self-organization: the property of dynamic resource 

provisioning implies in the ability of providers and clients to 

adjust their resources upon demand. Resources can be 

allocated or returned to the pool depending the current needs. 

This flexibility results in the elasticity property. 

Price-based utilities: cloud computing uses an economical 

model based in “pay what you use”. The exact price of 

processing may be different for different services. For 

example, a software provider may rent a VM in a by-hour 

basis, while other may charge the service by the number of 

clients served. Although services priced by-use may reduce 

client’s costs, they introduce difficulties in the management of 

the whole operation. 

There are also important differences that distinguish the 
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model of cloud computing from the traditional model of 

computing. Table I, adapted from [12], summarizes these 

differences. 
TABLE I 

DIFFERENCES BETWEEN CONVENTIONAL AND CLOUD MODELS 

  Conventional Computing Cloud Computing 

Acquisition 

Model 

Hardware 

Physical space 

Infrastructure of installation and 

operation 

Service acquisition 

  

  

Business 

Model 

Cost and depreciation of assets 

Administrative overhead 

(maintenance, support, safety of 

equipment, refrigeration) 

Payment based on demand 

Access 

Model 

Internal network 

Intranet 

Internet, through various 

types of devices (not just 

desktop computers) 

Technical 

Model 

One tenant 

Without sharing 

Static 

Scalable, 

Elastic, 

Dynamic 

Additionally it is known that cloud computing and grid 

computing share some goals, including cost reduction, 

flexibility and reliability through the use of third party 

hardware. They differ in the way they allocate resources, 

where in grids it is attempted a more homogeneous allocation 

and in a cloud the allocation occurs on demand. Also, the 

virtualization in cloud computing allows for a greater 

separation between the resources used by all users. 

C.  Classes of services 

Services in cloud computing have different levels of 

support, accordingly to what is offered to clients. There are 

three classes of services, depicted in Figure 4, named IaaS (for 

infrastructure), SaaS (for software) and PaaS (for platform) 

[5]. A short description of them follows: 

End User

Software as a 
Service (SaaS)

Platform as a 
Service (SaaS)

Infrastructure 
as a Service 

(SaaS)

Application

Business Applications,
Web Services, Multimedia

Platforms

Software Framework 
(Java/Python/.Net), Storage (DB/File)

Infrastructure

Computation (VM) Storage (block)

Hardware

CPU, Memory, Disk, Bandwidth

Resource Managed at Each 
Layer

 
Figure 4 – Cloud computing architecture (Adapted from [9]). 

 

Infrastructure as a Service (IaaS): in this type of service 

clients are provided with processing, storage, network 

bandwidth, and other computing resources, being able to 

reconfigure them as needed. Clients do not manage or control 

the infrastructure of the remaining cloud, paying only for what 

is used. Amazon Elastic Compute Cloud (Amazon EC2), 

Eucalyptus, OpenNebula and OpenStack are examples of 

providers in this class [8]. 

Platform as a Service (PaaS): in this class clients get an 

environment for development, test and deployment of their 

own applications, disregarding the needs of infrastructure 

(memory, storage, processors, etc.). Google Apps and 

Microsoft Azure are examples of services in this class [8]. 

Software as a Service (SaaS): here the applications are the 

service provided, with clients demanding the execution of 

specific programs.  The applications can be accessed from 

several types of devices, usually from a web browser. The 

client has no control over the infrastructure or even the 

application [8]. 

D.  Benefits from cloud computing 

According to Veras [11], the main benefit brought with the 

use of cloud computing is scalability. With the resource 

provisioning provided by the cloud, based on demand, it is 

easier to scale the system, introducing more resources when 

they are needed. This allows for reduction in power 

consumption and management effort, optimizing the use of 

servers, network and storage space. The economics of clouds 

involve the following aspects: 

Economy of scale from the providers view: it is achieved 

from big datacenters, minimizing operating costs related to 

power consumption, personnel, and management. The 

minimization is a direct result of the assembly of multiple 

resources in a single domain. 

Economy of scale from the demand view: occurs due to 

the demand aggregation, reducing inefficiencies resulting from 

load variations, increasing server's usage. 

Economy of scale from the multitenancy view: since the 

degree of sharing can be increased, it is possible to reduce the 

cost of management of servers. 

EVALUATION OF OPEN SOURCE CLOUD MANAGERS 

We analyzed three open-source cloud managers, 

OpenStack, Eucalyptus e OpenNebula, which were chosen 

because they have better documentation available.  In order to 

perform the evaluation we used six personal computers, 

configured with 4GB of memory, running 2.66GHz Core 2  

Quad processors, linked through a 1 Gbps network and 

running Ubuntu Server 10.10 64bits. One computer was used 

as the cluster's manager, while the remaining five were used as 

computing nodes, using KVM and working as an IaaS model. 

A. Eucalyptus manager 

As the other managers, Eucalyptus can work in the all-in-

one model, where the main services include data storage, VM 

images server, cluster control and cloud management, and are 

offered through a single or distributed servers. A single server 

topology can be seen in Figure 5. 

It operates verifying which nodes are part of the cloud and 

aggregating their resources accordingly to the profiles of the 
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VM instances present. The cluster uses a round-robin policy to 

select and execute a VM image in a given node. Once started, 

that instance can be accessed through its public IP address, 

attributed by the manager. 

SOAP/ReST

Cloud controller

Node controller

Walrus

Storage controller

Machine 1

Cloud controller

Machine 2 Cluster 1

 
Figure 5 – Eucalyptus topology for a single cluster [13]. 

 

As it can be seen from Figure 6, a cluster with 5GB of 

memory can generate five profiles with different amounts of 

RAM in each one. They can be selected afterward by the 

demand needs from each client. 

Figure 6 – Profiles of VM instances in Eucalyptus. 

B. OpenNebula manager 

OpenNebula uses the Ruby language to implement 

communication among nodes.  

 

 
Figure 7 – Libvirt API 1.4 API [14]. 

It also uses Libvirt (a framework for the creation of VMs), 

as shown in Figure 7. In OpenNebula the requests for the 

creation of VM are managed with Libvirt, which translates 

them to the different hypervisors. 

C. OpenStack manager 

OpenStack is a collection of open-source projects that can 

be used, by companies and service providers, to configure and 

run their storage infrastructure. NASA and Rackspace, among 

others, contributed massively for its maturation. Rackspace 

provided a platform for object storage, while NASA 

contributed with OpenNebula's platform. As it can be seen in 

Figure 8, there are three main service components in 

OpenStack: 

• Computing node (Nova); 

• Storage (Swift); 

• Image service (Glance). 

The computing node (Nova) is the OpenStack's controller. 

All activities necessary to support the life cycle of the VM 

instances are managed on it, using the Libvirt API to interact 

with the supported hypervisors. 

Swift provides a distributed object storage service. It is 

similar to the Amazon Web Services – Simple Storage Service 

(S3). 

Glance is a search engine and a VM image retrieval system. 

It can be configured to use any of the storage back-ends 

available. 

 

API Layer

OpenStack Compute

OpenStack Imaging 
Service

OpenStack Object 
Storage

 
Figure 8 – OpenStack's architecture [15]. 

 

OpenStack has also several installation options, being able 

to be installed in one or more servers, with or without 

virtualization support. It has to be noted that when there is no 

virtualization support, it is necessary to emulate it through 

QEMU. 

D. Identified limitations in the managers 

With our analysis some flaws, or limitations, were 

identified in the managers evaluated: 

Failover: all tested managers do not have systems against 

failures, either for the manager or its nodes. For example, if 

the manager crashes, the remaining nodes can still work 

normally, but if a node becomes unavailable, that instance is 

lost, needing a human intervention in order to upload it in 

another VM. 

Scheduler: the choice of which physical node will receive 

each VM instance is done by the manager's scheduler, what is 

more effective if dynamic algorithms are in use. Eucalyptus 
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has three algorithms for instance scheduling, round-robin, 

Greedy (allocates to first found node), and PowerSave (turn 

off nodes that are not running any VM). OpenNebula and 

OpenStack have also similar static algorithms. In all cases, the 

manager is unable to schedule nodes in a dynamic, and more 

efficient, approach. 

Geographical dispersion: for geographically distributed 

clouds, the manager should be able to reschedule a given VM 

instance accordingly to the region from which it gets more 

accesses. However, in many situations, virtualized 

applications are not ready to be accessed through the network, 

and do not take location as a parameter in the VM creation. 

Power consumption: nodes that are not executing any 

instance should be turned off or put in a low consumption 

mode. However, in order to achieve this manager has to have 

schedulers capable of activating or reactivating nodes as soon 

the demands requires that. Among the managers evaluated 

Eucalyptus has the PowerSave algorithm that is capable of 

this. 

Data protection: in all open-source cloud managers there is 

no a policy or control for data backup. Another issue is that 

the managers use third party solutions for storage, such as 

NFS or SAN. These solutions make harder to guarantee data 

redundancy, especially due to network bandwidth that 

constrains the speed of data transfers among the nodes. At 

current systems, this bandwidth should be at least 10Gb/s, in 

order to be efficient. 

In Table II we present a short review of the problems just 

described. From that it is possible to devise that none of them 

present solutions for those problems. It is important to note 

that some of them are managed by proprietary managers. 
 

TABLE II 

PROBLEMS WITH OPEN SOURCE CLOUD PROVIDERS 

Manager 
Storage 

Virtualization 
High Availability Scheduler 

Recovery 

Data 

 

Eucalyptus No No Static No 

OpenNebula No No Static No 

OpenStack No No Static No 

CONCLUSION 

Since cloud computing is becoming more present 

nowadays, with several companies and organizations adopting 

this approach, it is very important to understand it. To have 

this understanding is useful to a better dimensioning of its 

capabilities, vulnerabilities, and risks. Among the major 

benefits from clouds there are the minimization of power 

consumption and physical space, easier provisioning, and 

easier access to external interfaces (APIs), among others 

characteristics.  

Accordingly to the performed tests, OpenStack presented 

the best results. This includes a complete documentation, 

active community, concerns with bug fixes, easy installation, a 

good quantity of different VM images, allowing assisted 

instance migration (in the licensed version). 

The other two managers presented some deficiencies, such 

as lack of documentation, obscure architecture, and use of 

third party solutions in the platform. These problems are an 

obstacle for a faster adoption of cloud computing by some 

organizations.  

Therefore, before adopting cloud computing it is important 

to identify which provider offers services that are more 

relevant to the company or person adopting it. This includes 

checking for reliability, reputation, accessibility, migration 

capabilities, and clear contracts, for example. 

Finally, we hope to have provided an useful guide for 

people interested in adopting cloud computing. To do so, we 

provide a concise description of clouds and the technologies 

associated to them, as well a brief comparison of the most 

relevant open-source cloud managers. 
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Abstract— Simultaneous Multi-Threading (SMT) has been
widely studied to lend modern-day CPUs a mechanism
to improve resource utilization so as to lead to a higher
instruction throughput by allowing concurrent execution of
multiple independent threads with sharing of key datapath
components. The key to a high-performance SMT is to opti-
mize the distribution of shared resources among temporally
competing threads. Allowing any of the threads to overwhelm
these resources not only leads to unfair thread processing
but also may severely degrade overall system throughput.
Write buffer is one of the most critical shared resources in
SMT systems due to its size constraint and potentially long
occupancy latency from its data. In this paper, we show
that, by limiting the number of write buffer entries each
thread is allowed to occupy in the commit stage, the overall
system throughput is enhanced by a substantial margin. An
improvement in IPC of up to 26% and 95% is observed
when the proposed technique is applied to a 4-threaded and
an 8-threaded SMT system, respectively.

Keywords: Simultaneous Multi-Threading; Superscalar; Write
Buffer

1. Introduction
Noting the resource utilization deficiencies in the tradi-

tional superscalar processors, Simultaneous Multi-Threading
(SMT) offers an improved mechanism by allowing instruc-
tions from different threads to be issued in the same clock
cycle in order to exploit the full potential of the shared re-
sources. Essentially SMT improves the overall performance
by exploiting Thread-Level Parallelism (TLP) among threads
to overcome the limitation of Instruction-Level Parallelism
(ILP) presented in a single thread [1], [2].

There have been numerous research efforts targeting in
improving SMT performance by adopting scheduling algo-
rithms for effective resource allocation, including advanced
fetch policies and other resource partitioning methods ap-
plied in multiple stages on various buffers such as Instruction
Fetching Queue (IFQ), rename registers, Re-Order Buffer
(ROB) and Issue Queue (IQ), etc. A significant amount of
work has been emphasized in instruction fetching including:
in ICOUNT [5] a higher priority in fetching instructions
is assigned to a thread with fewer instructions in pre-issue
stages; a fetch policy taking L2 cache misses into considera-
tion is adopted in STALL and FLUSH [6]; a dynamical fetch

policy based on memory performance of each thread and
exploiting parallelism beyond stalled memory operations is
presented in DCRA [7]. Advances in other stages of pipeline
have also been proposed including: Hill-Climbing [8] is a
learning-based algorithm that uses performance feedback
to partition the shared hardware resources in the pipeline
including rename registers, ROB and IQ; APRA [9] dy-
namically assigns IFQ, ROB and IQ to threads according to
the changes of threads’ behavior; IQ-capping in [10] limits
each thread’s occupancy in IQ to obtain a more effective and
fair resource allocation; Instruction-Recalling in [11] further
improves IQ utilization by recalling stalling instructions
from IQ; Speculative-Control in [12] significantly reduces
the amount of flush-out due to miss-speculation to improve
threads’ overall flow in IQ.

Note that the common resources in an SMT system shared
by threads include various machine bandwidths (e.g., inter-
stage bandwidth, read/write ports for register files and mem-
ory, etc.), inter-stage buffers (e.g., Issue Queue), functional
units, write buffer, etc. Our analysis in a later section shows
that the write buffer proves to be the most critical shared
resources in affecting overall performance No research in the
literature so far has investigated issues regarding the sharing
of this critical buffer among threads in an SMT system. How
to effectively assign the write buffer to competing threads
to prevent long-term blocking due to lengthy and dominant
occupancy from slower thread(s) is the main theme of this
paper.

A new technique is developed in this paper to effectively
relieve the pressure of the write buffer in an SMT system so
as to achieve better resource utilization. Write operations in
a program tend to be bursty in nature and thus a sequence
of writes from one program could easily overwhelm the
whole write buffer. In order to prevent any single thread
from disproportionately occupying the write buffer, a simple
capping algorithm is proposed in this paper by limiting the
number of buffer entries each thread is allowed to occupy
at any given time. Our simulation results show that IPC
(Instructions Per Clock-cycle) improvement can be as high
as 26% for a 4-threaded workload and a whopping 95% for
an 8-threaded workload.

2. Write Buffer
A write buffer (or referred to as “store buffer” in some

articles) is designed to hide long write latency when CPU
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encounters cache misses [3], [4], [13], [14]. A typical two-
level cache organization with write-back policy at both levels
is shown in Figure 1. Modern-day processors usually have a
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Fig. 1: A Typical Two-Level Cache Organization with a
Write Buffer

multi-level cache architecture and may adopt different write
policies, write-through and write-back, at different levels,
which in turn may require a different design for the write
buffer.

Write-merging (also known as write-coalescing) is a tech-
nique aggregating writes to the same cache block (line) to
reduce miss penalty as well as the buffer size requirement,
which is prevalent in most modern processors [4]. In a write-
coalescing buffer, a data read operation retrieves its target
data from either the L1 data cache or the write buffer (if
the target data is still residing in the buffer from a previous
write yet to finish); a write operation will be merged into an
existing write in the buffer if they belong to the same block
(cache line), i.e. they will share the same entry in the buffer
until the write operation finishes. When no merging exists,
a write will not be allowed to commit if the buffer is full.
Some researchers have focused their work on designing more
efficient write buffer management for a generic superscalar
CPU system including the study of effects from write buffer
depths, retirement and load-hazard policies [13], and a new
write option update policy in [14], etc.

In a superscalar system, all instructions have to be com-
mitted in order to ensure precise exception and correct
speculative processing. Thus, if a write instruction cannot
commit due to a full write buffer, all subsequent instructions
will be blocked as well. In an SMT system where multiple
threads are processed concurrently, blocking of one thread
due to a full write buffer may very well mean blocking
of another thread if it also has a write operation waiting
to commit. What makes the difference between superscalar
and SMT systems is that in the superscalar one if such a
blocking happens it is an inevitable one since the order
of committing instructions in the only program cannot be
changed. On the other hand, in an SMT system, the order
of committing instructions from different threads does not
have to be fixed and therefore the order to committing write

instructions from different threads may affect the overall
system flow dramatically.

Since the write buffer is an on-chip component, to retain
a large write buffer can be both cost and clock-timing
prohibitive. For example, the 3rd generation of Intel XS-
cale microarchitecture has a write buffer with only 12 en-
tries [15]. Without employing a larger buffer, exploitation of
TLP among threads in SMT will be thus severely hampered –
contention among threads in this buffer may prevent “faster”
threads (with faster writes) from committing their writes. To
fully exploit both TLP and ILP, proper intelligence has to be
incorporated into this resource sharing mechanism to ensure
that threads share this component in an efficient and fair
manner.

The cache design shown in Figure 1 will be assumed in
our discussion with both levels of cache using the write-back
policy. Note that there is very minimal effect on the write
buffer performance from adopting a different write policy. In
this paper, our proposed algorithm is tested in such a system
with the feature of write coalescing.

3. Simulation Environment
The simulation environment adopted by our research,

including the simulator and the workloads used are described
in this section.

3.1 Simulator
We use the M-Sim [16], a multi-threaded micro-

architectural simulation environment model, to estimate per-
formance of the proposed scheme. The detailed configuration
is shown in Table 1.

Parameter Configuration
Machine Width 8 wide fetch/dispatch/issue/commit
L/S Queue size 48-entry Load/Store queue
ROB & IQ size 128-entry ROB, 32-entry IQ

Function Units & 4 Int Add (1/1)
Latency (total/issue) 1 Int Mult (3/1) / Div (20/19)

2 Load/Store (1/1), 4 FP Add (2/1)
1 FP Mult (4/1) / Div (12/12) /

Sqrt (24/24)
Physical registers integer and floating point

256 (for 4-thread) / 512 (for 8-thread)
L1 I-cache 64KB, 2-way set-associative

64-byte line
L1 D-cache 64KB, 4-way set-associative

64-byte line
write-back, 1 cycle access latency

L2 Cache unified 512KB, 16-way set-associative
64-byte line

write-back, 10 cycles access latency
BTB 512 entry, 4-way set-associative

Branch Predictor bimod: 2K entry
Pipeline Structure 5-stage front-end (fetch-dispatch)

scheduling (for register file access:
2 stages, execution, write back, commit)

Memory 32-bit wide, 300 cycles
access latency

Table 1: Configuration of the Simulated Processor
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3.2 Workloads
Simulation runs for multi-threaded workloads in this paper

all use the mixed SPEC CPU2006 benchmark suite [17]
with mixtures of various levels of ILP for diversified repre-
sentation of workloads. ILP classification of each benchmark
is obtained by initializing it in accordance with the procedure
mentioned in Simpoints tool and simulated individually in
a simplescalar environment. Three types of ILPs, low ILP
(memory bound), medium ILP and high ILP (execution
bound), are so identified. As shown in Table 2 for 4-threaded
workloads and Table 3 for 8-thread workloads, a number of
multi-threaded workloads are used with threads of various
mixtures of ILP types.

Mix Benchmarks Classification (ILP)
Low Med High

Mix 1 libquantum, dealII, gromacs, namd 0 0 4
Mix 2 soplex, leslie3d, povray, milc 0 4 0
Mix 3 hmmer, sjeng, gobmk, gcc 0 4 0
Mix 4 lbm, cactusADM, xalancbmk, bzip2 4 0 0
Mix 5 libquantum, dealII, gobmk, gcc 0 2 2
Mix 6 gromacs, namd, soplex, leslie3d 0 2 2
Mix 7 dealII, gromacs, lbm, cactusADM 2 0 2
Mix 8 libquantum, namd, xalancbmk, bzip2 2 0 2
Mix 9 povray, milc, cactusADM, xalancbmk 2 2 0
Mix 10 hmmer, sjeng, lbm, bzip2 2 2 0

Table 2: 4-threaded Workload for Simulation

Mix Benchmarks Classification (ILP)
Low Med High

Mix 1 libquantum, dealII, gromacs, namd, 0 4 4
soplex, leslie3d, povray, milc

Mix 2 libquantum, dealII, gromacs, namd, 4 0 4
lbm, cactusADM, xalancbmk, bzip2

Mix 3 hmmer, sjeng, gobmk, gcc, 4 4 0
lbm, cactusADM, xalancbmk, bzip2

Mix 4 libquantum, dealII, gromacs, soplex, 2 3 3
leslie3d, povray, lbm, cactusADM

Mix 5 dealII, gromacs, namd, xalancbmk, 3 2 3
hmmer, cactusADM, milc, bzip2

Mix 6 gromacs, namd, sjeng, gobmk, 3 3 2
gcc, lbm, cactusADM, xalancbmk

Table 3: 8-threaded Workload for Simulation

3.3 Metrics
For a multi-threaded workload, total combined IPC is a

typical indicator used to measure the overall performance,
which is defined as the sum of each thread’s IPC:

Overall_IPC =

n∑

i

IPCi (1)

where n denotes the number of threads per mix in the
system. However, in order to preclude starvation effect
among threads, the so-called Harmonic IPC is also adopted,
which reflects the degree of execution fairness among the
threads, namely,

Harmonic_IPC = n/
n∑

i

1

IPCi
(2)

In this paper, these two indicators are used to compare
the proposed algorithm to the baseline (default) system.
The following metric indicates the improvement percentage
averaged over the selected mixes, which is applied to both
Overall_IPC and Harmonic_IPC, namely,

Perc_Improved = (
m∑

j

IPCnew
j − IPCbaseline

j

IPCbaseline
j

×100%)/m

(3)
where m denotes the number of mixes of the workload in
our simulation.

4. Motivation
The technique proposed in this paper is based on the

conjectures that a write buffer of limited size tends to be the
bottleneck for the pipeline operation, especially in an SMT
system. What contributes to this bottleneck is a combination
of high buffer occupancy and imbalanced occupancy among
the threads. This section is devoted to the discussion to
support these conjectures. The simulation results in this
section are based on the system configuration with the ten
mixes of 4-threaded workload as described in Section 3.

4.1 Write Buffer Size Analysis
We first analyze how critical the size of write buffer is

to the overall throughput. Figure 2 shows the average of
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Fig. 2: IPC vs. Write Buffer Size

overall IPC from using different sizes of write buffer. When
the size of the buffer (denoted as B) increases from 12 to
64 the overall IPC increases by almost 60%. In order to
reach the highest possible IPC, a minimum of 64 entries
are required, which is beyond nowadays-acceptable size for
such an on-chip buffer. This minimum size becomes even
larger when the number of threads further increases. This
clearly indicates that the write buffer could easily become the
performance bottleneck if its size is kept within the practical
range.

4.2 Write Buffer Occupancy
The next analysis is to determine how often the write

buffer and how much of it is occupied. Figure 3 shows
the percentages of clock cycles during which the given
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Fig. 3: Write Buffer Occupancy Distribution

percentage of entries are occupied in the write buffers with
B = 12 and B = 16. In almost 70% (55%) of time the
buffer is completely occupied for B = 12 (B = 16), and
for 90% of time more than 80% of entries are occupied
for either case. An explanation to the write buffer’s high-
occupancy rate would be the long latency of some write
instructions staying in the buffer, which in turn leads to the
investigation on this latency. Figure 4 shows the average
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Fig. 4: Access Latency Distribution of Store Instructions

buffer latency distribution of the ten workload mixes. Note
that there are two peaks in this distribution – one at one
clock cycle and the other at about 330. The first peak which
accounts for about 30% of all is from the store instructions
with L1 cache hit which requires only one clock cycle as the
“default delay” (meaning no waiting for the block that may
be in the process of loading from L2). The second peak at
330 obviously corresponds to the instructions that encounter
an L2 cache miss which incurs a default delay including
the memory access latency (300 clock cycles according to
simulator parameter setting) and the access latency to the
two levels of cache plus some extra overhead for block
transfer. All other occurrences in the distribution are from
writes with various levels of hit/miss which, in addition to
the corresponding default delay, take on additional delays
from bus contention with other read and/or write operations.
The delay from the bus contention varies depending on the
severity of the competition with other cache misses. Due to
this, some of the buffer latency values can go beyond 500.

Another even more intriguing and damaging factor to
the SMT’s performance is that the write buffer can be
completely overwhelmed by a single thread. Figure 5 shows
the percentages of time that at least one thread is occupying
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Fig. 5: Write Buffer’s Single-Thread Dominance Rate

at least the given percentage of the write buffer entries. As
expected, the smaller the write buffer is the more prominent
the said dominance becomes. For example for B = 12 or
B = 16, in about 90% of time there is at least one thread
occupying half of the write buffer entries, and in over 40% of
time at least one thread uses at least three quarters of entries,
clearly indicating the imbalance of the resource usage. Even
when the write buffer size increases to 32, there is still
at least one thread occupying half of entries for over 50%
of time. Such a single-thread usage dominance may easily
lead to performance degradation when the dominating thread
has mostly long-latency write operations, leaving very few
precious entries for other threads to compete for.

4.3 A Larger Write Buffer?
As discussed above, the write buffer is obviously a bottle-

neck in an SMT system, and to retain a larger write buffer
does not seem to be an economical or practical solution.
Control logic required to support a larger buffer can be
difficult to justify or simply becomes infeasible timing-wise.
Even if a larger-size buffer is attainable, its utilization can be
discouraging due to the intrinsic nature of write operations.
Statistics from the benchmark programs employed in this
study show that store instructions account for only about
10% to 18% of all instructions and not only their occurrences
are mostly bursty in time but the distribution of their buffer
latency (i.e. their hit/miss behavior) is also egregiously
bursty, which easily leads to a very uneven occupancy level
in time. This is clearly illustrated by Figure 6 where, under
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Fig. 6: Write Buffer Occupancy Rate

a large write buffer (B = 96), for at least a given number
of entries occupied the percentage of cycles is tallied. Very
much to our amaze, about three quarters of the buffer entries
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are actually left unused in 50% of time, a strong testament to
the decision in not using a large buffer. Instead, one should
resort to developing a better allocation algorithm to utilize
the limited buffer space in a more intelligent manner.

5. Proposed Method
The proposed allocation technique is considered a mod-

ification to the commit stage of the default algorithm by
imposing a very simple control mechanism on assigning the
write buffer entries. This technique is based on a simple
intention to prevent the buffer from being overwhelmed by
any single thread. In this technique, a “cap” value (denoted
as (C) is set to limit the number of write buffer entries
any thread is allowed to occupy at any time. In order to
have a simpler and more systematic comparison among using
different buffer sizes, instead of using the absolute cap value,
we adopt the ratio between the cap value and the buffer size
(B), denoted as the “cap fraction (F )” for our simulation
where F = C/B. A thread will stop committing any store
instruction (at the head of ROB) once this thread has reached
its cap value. The complete commit stage algorithm is shown
in Figure 7 modified with the proposed technique (the shaded
region in flowchart).
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Fig. 7: Flow Chart of Modified Commit Algorithm

A write instruction from a thread when reaching the head
of its ROB may come across three separate delays waiting
for each of the following shared resources: (1) commit
bandwidth (2) write port and (3) write buffer, as depicted
in the three condition checking steps in the flowchart. Most
of the delays are from the third condition waiting for the
write buffer, if left uncontrolled. The newly imposed fourth
condition is added to reduce this delay.

Note that any control technique aimed at eliminating the
intended overwhelming occupancy problem, no matter how
complicated the technique is, will suffer a drawback in
compromising the flexibility that the true shared resource
offers. The main compromise between the benefits and
drawbacks from the techniques depends on the setting of
the cap fraction value. If the cap fraction is set too high,
the intended function of this technique in suppressing single
thread’s dominating occupancy will not be effective. On
the other hand, if the cap fraction is set too low, overall
performance may suffer if concurrent writes from multiple
threads do not happen often enough. Our simulation to be
presented in the next section will be used to study the effect
of this compromise and to lend us a good indication of where
a good range of cap fraction should be.

6. Simulation Results
Based on the simulation environment and the workloads

described in Section 3, the proposed technique is tested com-
pared to the default system. As aforementioned, throughout
the simulation, the notion of cap fraction will be adopted for
a systematic comparison when buffer size is varied, and the
fraction value is adjusted with a fixed increment of fraction
of 1/16 no matter what value of B is chosen. That is, for
each simulation run the cap fraction is set to d/16 where d
varies from 1 to 16 (the cap fraction value is always rounded
down to the next integer).

Figure 8 shows the result of IPC improvement when the
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Fig. 8: Average Percentage of IPC Improvement (B = 16)

proposed technique is applied to 4-threaded and 8-threaded
workloads. Improvement from this technique can go up
to 12.5% and 66.4% for the 4-threaded and 8-threaded
one, respectively. This result in general solidifies all our
aforementioned claims. First of all, the effectiveness of our
technique is more prominent for an 8-threaded system than a
4-threaded one due to higher competition. Secondly, optimal
setting of the cap fraction is above the point of 1/n – the
optimal cap fraction happens at 7/16 for the 4-threaded
system and 3/16 for the 8-threaded system. Thirdly, there
exists an obvious compromise between the ensuing benefit
and drawback from setting a different cap fraction value.
When the cap fraction is set higher than the optimal point,
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the higher the cap is the less benefit this technique can
produce, and there is virtually no more improvement once
the cap fraction is set to be at least 14/16. On the other hand,
once the cap fraction is set lower then the optimal value,
the tighter (lower) the cap is, the less flexible the buffer
allocation becomes and the benefit of sharing becomes less.
In the 4-threaded case, when the cap fraction falls below
2/16 any benefit from the technique is completely offset by
its ensuing detrimental effect.

However, in the 8-threaded case, very much to our sur-
prise, there is still a very significant performance improve-
ment (43%) even when the cap fraction is set to the lowest
1/16 (i.e. a cap of ”one” entry). This scenario clearly
indicates that, in such a high competition environment: 8
threads for a buffer size of 16, any capping is better than
no capping and, if left uncontrolled, constant dominating
occupancy situation from one or very few threads.

Figure 9 further shows per-mix IPC improvement in a 4-
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Fig. 9: Per-Mix IPC Improvement vs. Capping Value for
4-threaded Workload (buffer size = 16)

threaded system, from which we can see that most of the
mixes have the similar trend of IPC improvement and the
highest IPC improvement gained by a mix can be up to 87%.

Figure 10 demonstrates the proposed technique’s influence
on the performance with different write buffer sizes varying
from 12 to 64. This result further solidifies our claim in
how the effective of our technique can be swayed by the
buffer size, achieving a maximum improvement of 26% and
95% with B = 12 on 4-threaded and 8-threaded workloads,
respectively. On the other hand, in the 4-threaded case, there
is minimal gain from this technique when the buffer size
exceeds 32. In the 8-threaded case, the technique somehow
still maintains a discernible amount of improvement (up to
3.6%) even the buffer is increased to 64.

In order to reflect the degree of execution fairness among
the threads when the proposed technique is applied, Fig-
ure 11 shows the percentage of improvement of Harmonic
IPC for 4-threaded and 8-threaded workloads. As the result
shows, when cap fraction is set too small, the harmonic
IPC tends to suffer even when the system sees an improved
IPC. In a system with more threads, the effect in balancing
resource among threads brought by the proposed technique
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Fig. 10: Performance Comparison with Varying Write Buffer
Size for 4-threaded and 8-threaded Workloads

is much more significant. For example, in a 4-threaded
system, our algorithm gains a harmonic IPC improvement
of up to 10.8%, while in a 8-threaded system, the maximal
improvement can be as high as 46.7%. One would also notice
that the optimal cap fraction for harmonic IPC usually is
not the same value as that of IPC, which means in the
practical systems, one needs to choose the best cap fraction
by compromising the improvement between overall IPC and
harmonic IPC. Similar to the trend in overall IPC, this
result also indicates that the proposed technique leads to
more improvement in harmonic IPC when more threads are
involved and a smaller write buffer is employed, due to the
additional fairness it provides to the system.

An analysis that can directly reveal how the proposed
technique is capable of effectively relieving the pressure on
the write buffer is the comparison on write buffer occupancy.
Figure 12 shows the comparison of the write buffer occu-
pancy rate between the default system before and after the
modified commit algorithm. The displayed result is for a 4-
threaded system with the write buffer size equal to 16 and
the capping fraction set at 7/16. With the proposed method
applied, the percentage of cycles with a high-occupancy
write buffer shrinks dramatically. The percentage of time
when the buffer is completely full is reduced from 56% to
14%, a huge improvement leading to the necessary buffer
space to sustain a less disrupted write traffic.

7. Conclusion
This paper clearly demonstrated that uncontrolled utiliza-

tion of resource shared among the threads in an SMT system
could significantly affect the overall performance. Due to the
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Fig. 11: Harmonic IPC Comparison with Varying Write
Buffer Size for 4-threaded and 8-threaded Workloads
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Fig. 12: Write Buffer Occupancy Rate Comparison (buffer
size = 16)

limited size of the write buffer and long latency from some
write operations, write buffer easily becomes a bottleneck
that severely limits performance of an SMT system. By
capping the write buffer usage of each thread, utilization
of this critically shared resource can be vastly improved and
consequently leads to a very considerable performance gain.
Another noteworthy aspect in this technique is that such an
improvement is achieved without having to invest much extra
hardware nor imposing extra constraints on the clock rate
and can be incorporated with further intelligence into such a
control technique for even more performance improvement.
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Abstract— This work describes the development of a flexible
and adaptable distributed file system model where the main
concepts of distributed computing are intrinsically incor-
porated. The file system incorporates characteristics such
as transparency, scalability, fault-tolerance, cryptography,
support for low-cost hardware, easy configuration and file
manipulation.

Keywords: Distributed file systems, fault-tolerance, data storage.

1. Introduction
The amount of stored data increases at an impressive rate,

demanding more storage space and compatible processing
speeds. Aiming to avoid complete data loss from failures or
system overloads, it became usual to adopt the distributed
files model [1] [2].

Therefore, a distributed file system (DFS) is a system
where files are stored along distinct computers, linked
through a communication network. Even though several
DFS are capable of attending several characteristics, such as
access/location transparency, performance, scalability, con-
currency control, fault-tolerance and security, to attend them
simultaneously is complex and difficult to manage. Another
important aspect to consider is that when one characteristic
has its complexity increased, the remaining ones may be
negatively affected. This explains why most of the DFS are
developed aiming at fulfilling specific scenarios [2] [3] [4].

This paper proposes a novel model for a flexible DFS,
named FlexA (Flexible and Adaptable Distributed File Sys-
tem), that can be adapted to the environment where it
is being used. This flexibility allows for DFS features to
be adapted or even replaced by other including but not
limited to the cryptography algorithm, level of replication,
application programming interfaces, move some tasks from
servers to clients and several configurations of software and
hardware.

In the following sections we start with a brief description
of other DFS in use, focusing on ones that are the basis for
the model presented here. Then we focus in the description
of the proposed model, including its main characteristics and
architecture. Results from the model evaluation are presented
next, finishing with conclusions drawn from this evaluation
and directions for future work.

2. Related work
Among the several existing DFSs, this work focused on

exploring the key features of some models of DFSs based
on traditional designs and some newer systems, allowing
to extract features for the development of a DFSs that has
characteristics such as high performance, fault-tolerance and
easiness of use.

2.1 Network File System
Network File System (NFS) [2] [3] is a DFS based

on remote procedure calls (RPC) providing a convenient
medium to applications through a virtual layer (Virtual File
System - VFS) that enables a transparent access to NFS
components [5] [6] [7].

2.2 Andrew File System
Andrew File System (AFS) was designed aiming scala-

bility to several users. In order to achieve this, aggressive
cache policies are implemented on the client side, as well
as efficient techniques for consistency [2] [3].

2.3 Google File System
Google File System (GFS) operates on an architecture

composed by parallel server clusters. GFS is distinguished
by the serialization and file distribution directly to chunk
servers that are the actual storage nodes, without the need
for additional accesses to the main server, called "master"
[1].

2.4 Tahoe - The Least-Authority Filesystem
Tahoe-LAFS is a DFS in the user space, where file sharing

occurs through a sequence of characters manipulated by the
Uniform Resource Locator (URL). This form of sharing
allied to a decentralized security model, based on individual
access control, allowed Tahoe-LAFS to manage directories
and files as independent objects, which can be referenced by
several processes using different names [8].

2.5 Another systems
Besides the systems just presented, other works seek to

establish different priorities for their DFS models, such as
SPRITE [9], CODA [10], IBM General Parallel File System
[11], Ceph [12], XtreemFS [13], HDFS [14], Red Hat Global
File System [15] and GlusterFS [16]. Among these DFSs, the
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choice of NFS, AFS and GFS is justified by extensive docu-
mentation available, allowing to explore problems commonly
encountered in the development of DFSs. As regards the
Tahoe-LAFS, its importance for this project was motivated
by his development in an open-source project, providing a
model for access to files by upload/download and the use
of the Principle of Least Authority [17] to distribute files.

3. A model for DFS
This work describes a DFS model that incorporates the

important characteristics of NFS, AFS, GFS and Tahoe-
LAFS. It is expected to work in a controlled environment,
offering support to heterogeneity, flexibility, easier file man-
agement, fast and secure cryptographic mechanisms, and
fault-tolerance tools.

The main characteristics of this model are listed in this
section.

3.1 Adaptability and Flexibility
Adaptability allows clients to become part of the server

group for helping in the provision of distributed files.
Through this feature, resources of the client station such
as disk space can be shared. Also, the client can become
a host server completely. The concept of flexibility comes
from the possibility of making changes in FlexA to adjust
the scenario utilized, in other words, providing a means to
modify their functionality by replacement or adjustment of
the model components. The components that can be modified
are designed to be independent of the set, among them
can be emphasized the modification or replacement of the
cryptographic algorithm, the changing levels of replication
and the adaptation interface for other applications such as,
for example, using the file system through a web browser.

3.2 Access Control
Our model uses a set of hash sequences to generate the

encryption key file and its variations, providing two levels
of access: read-write and read-only. The methodology used
for this process is adapted from the cryptographic security
model of the Tahoe-LAFS, which follows the Principle of
Least Authority. With this model, the files and directories
are managed directly by the user through independents
handlers, which are responsible for identifying and providing
the permissions for that type of file/directory, replacing the
traditional fields of "login" and "password". As a result, our
model enables users to interact with DFS without the need
of system administrator privileges [8].

3.3 Low Cost Hardware
The specification of this our model was based on an open

language, widely used in operating system implementations.
It also expected that the client stations are in charge of most
of the process involved on serving files to the distributed
system. This inversion of which side does the processing,

allows for several gains in the server side, making it more
reliable (less failures due to overloads) and less expensive.
Moreover, the rapid advances in of-the-shelf hardware for the
client has brought better conditions for the user to effectively
use these resources.

File storage is managed by the local file systems, making
it easier to adapt to individual operating systems. This also
makes model implementation, management and manipula-
tion easier [1] [8].

3.4 Fault-Tolerance
Fault-tolerance is achieved through the division of a

file into smaller blocks (chunks), which are transferred to
a set of servers. This process allows the client to work
with distributed chunks, thus avoiding compromising data
integrity due to isolated problems in specific servers.

File chunks are stored in two groups of servers: write
and replica. The former is composed of a fixed set of three
servers in charge of receiving or providing file chunks, and
is capable of reading and writing operations. The latter is
composed of replicas of the first group and allows only
reading operations of file chunks. Consistency is achieved
by modifications initiated by servers from the first group [1]
[3] [8].

The use of replicas is optional, enabling the control of
chunks availability according to the demand for such chunks.

For agreement and consistency purposes, it is necessary
for the write group to have two of the three servers active.
All transfer operations only occur under this condition.

3.5 Performance
FlexA tries to minimize the number of interactions with

the servers, bringing most of the operations to the client side.
Accessing a local file improves the overall performance. To
achieve this, the DFS uses a load/update model where the
client transfers the file chunks to the local file system before
executing operations on the file.

The use of a cache in the client prevents future interactions
on files already transferred. In the situation where the file’s
version becomes outdated, the client will be warned about
the availability of a newer version in the servers group.

Chunks are transferred in parallel from different servers,
using variable sized blocks. The smallest size of a block is
4096 bytes.

4. Project overview
4.1 Architecture

Differently from the conventional client-server model,
FlexA, as shown in Figure 1, eliminates the concept of a
main server that would be in charge of manage all requests
to the files.

This architecture resembles a peer-to-peer architecture,
enabling clients to interact with storage groups without the
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Fig. 1: FlexA architecture

presence of a central manager. Another point is that, due
to the access control model, a certification centre is not
necessary, since each client is responsible for controlling the
access permissions to its own files, without the intervenience
of managers or super-users.

In this model, computers belonging to the DFS are ad-
ministered in specific groups, which can be of three types:
reading, writing and clients. The first, called writing group
or primary servers, comprises computers with active server
process, and it is responsible to manage and store files
with their metadata. The second group, called replicas or
secondary servers, consists of computers that can be clients
and servers at the same time, creating a backup set of
primary servers for assistance in case of overload or failures.
The third group is formed by the client workstations, which
are responsible for encryption and distribution chunks of the
file to the primary servers.

Files can be read in parallel from several storage comput-
ers, either from the write or the replica group. The transfer
of new or update files can only be performed by computers
in the write group.

Network latency is minimized by the elimination of in-
termediary servers and the addition of concurrent access to
different sets of servers. These characteristics also allow the
prevention of possible bottlenecks in the transfer process.

As stated before, the migration of most of the operations to
the client side, including cryptography and file partitioning,
also provides gains in the model’s performance. Indeed, this
also reduces the usage of hardware resources in the storage
nodes.

4.2 Security
The access to files is determined by the client’s handler,

which can be read-write or read-only. Each handler has two
keys: one cryptographic and other for validation.

The "write" cryptographic key (WK) is given by WK
= SHA256Trunc(Key), where Key is a 16 bytes sequence
randomly generated, and the function SHA256Trunc is the
hash 256 bits (32 bytes) with output encoded in Base64 and
truncated in 32 bytes. The "read" cryptographic key (RK)

is given by RK=sha256Trunc(WK). Each file is encrypted
using its RK and the symmetric AES 256 bits algorithm in
the CBC (Cipher Block Chaining) mode [18]. This allows
modifying a WK to a RK, but not the other way round. These
steps are illustrated in Figure 2.

Chunk handle - read-onlyChunk handle - read-write

Token

Verify Key Valid Write Metadata

Key = Random()

Write Key = 
SHA256Truncate(Key)

Read Key = 
SHA256Truncate(Write Key) AES 256 bits

File

Valid Write = 
SHA384(Write Key)

Verify Key = 
SHA384(Key)

Verify Key Write Key Verify Key Read Key

File
Token

File
Token

File
Token

Fig. 2: FlexA security

Two other keys determine the validation process: Verify
Key (VK) and Valid Write (VW), both in 48 bytes. The VK
is present in the client handler and in the token sent to
the servers. It is used to certify the communication between
nodes and it is generated by VK = SHA384(Key). The VW
is also generated by the client, but only the servers have
its copy. It is used to verify the validity of the client’s WK.
This key is given by VW = SHA384(WK). If the result from
the client’s VW is equal to the stored chunk’s VW, the file
modification is executed in the write group.

File decryption can be performed only through the keys
generated by the client. This is true independently of the
communication channel in use or the server security level.
This process produces three chunks, each one with one token
containing file attributes, VK and VW and the handlers that
allow the user to change the permissions.

4.3 Client
Three separated modules make up the client process,

as shown in Figure 3: Collector manages the data input,
Synchronizer manages outward data transmission, and Com-
municator identifies which hosts are active and which are in
the replica group or are clients.

In each client there is a reduced part of the storage server
database. This part contains some information about the
availability and locality of file chunks. This local database
helps for a fast search/recovery of data, without the need of
performing these operations in the storage servers.
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4.4 Storage
The servers, in the DFS model proposed here, have the

function of store file chunks, validate client requests and
execute replication between the groups of servers. Since
there is no specific server in charge of the communication
management or acting as a central unit, all servers follow
architecture close to the client’s model.

The chunk organization is performed through the local
database, which provides the file properties with its routing
table and keys for verification and validation.

4.5 Communication
Communication between the components of FlexA occurs

with TCP/IP protocol and persistent connections. Each file
chunk is transferred this way.

The Communicator module scans the network searching
for active hosts and looking at what functions they execute.
This operation enables the interaction between clients and
storage groups. Periodically, the identified hosts exchange
messages in order to keep their status updated.

The user performs the choice between a client or storage
station, whilst the definition of the write servers group is
made independently. The independent definition of write
servers guarantees that the needed number of storage servers
is satisfied.

In case of a failure in the servers of the write group, it is
possible to relocate stations from the replica group through
an election process. Specifically, a Bully algorithm is used
to determine a new candidate to the write group through the
priority of each member of the replica group. Once the new
station is defined, all active process in FlexA are informed
of the new member [19].

4.6 Synchronization
Chunk synchronization occurs automatically through

client interactions with the write group. These interactions

are propagated to the replica group and the active clients are
informed about new updates.

Indexers present in each local database are used to iden-
tify if the copies in cache are obsolete in relation to the
write group. The update of these copies, however, is only
performed when a user tries to use them.

Since each station keeps a record of the status of every
other station, services can be re-established quickly in case
of failures or a host crash.

The consistency of the chunks is determined by its version
in the database on each station, which is controlled by write
group. All clients and the read group are notified about every
operation that modifies a file in a server. Periodically, stations
communicate with the write group to update its data base.

The entry of a new station needs a token from the write
group, that token contains information about the actual state
of all stations.

5. Performance evaluation
5.1 Micro-benchmarks

Performance evaluation used a set of computers with
Intel Pentium Dual E2160 - 1,8 GHz processor, 2GB of
RAM memory, hard disk of 40GB at 7200RPM, Ubuntu
Linux operating system with 64-bit and interconnected by
Ethernet 100 Mbps full-duplex using a 3Com switch. To do
the performance tests, we used operations of reading and
writing (upload/download) of files of 1MB, 5MB, 10MB,
25MB and 50MB. These files seeking include the variation
of data found in the academic environment, which can be
text files, music, photos, videos and applications.

5.2 Evaluation
The evaluation process considered five cases of access to

the servers. Each one contains sequential access of writing
and reading for each one the clients simultaneously.

For each test scenario, levels of interactions were used
12 times for each size in each read and write operation,
totalising 120 interactions for each client. In tests with more
than 1 client, simultaneous interactions followed the same
read/write sequences with same sized files.

For evaluation and comparison of performance we used
Tahoe-LAFS, because it is precursor of FlexA, and NFS
because it is a client-server DFS without additional layers.

For the comparison between DFSs, the tests were consid-
ered with 5 concurrent clients using 5 types of files to read
and write operation.

For the write operation, as shown in Figure 4, it is possible
to verify that the NFS in environment with multiple requests
becomes slower, affecting the overall system performance.
Even in an environment small-scale, centralized architectures
may represent a factor of performance degradation and risks
of failure.

The write operation using FlexA and Tahoe-LAFS has
similarity, because the logic of this operation (encryption,
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split and distribution) is similar, differing in some aspects
such as the encryption without using RSA asymmetric keys
in FlexA, in the splitting the file in 66% compared with 50%
for Tahoe-LAFS and distribution using TCP/IP compared
to the HTTP in Tahoe-LAFS. However, the write operation
using Tahoe-LAFS is faster than FlexA during the evolution
of files, being less optimized for files smaller than 4MB, to
which FlexA is slightly faster than Tahoe-LAFS (8MB/s in
FlexA and 5MB/s in Tahoe-LAFS). The reason for FlexA
be significantly slower than Tahoe-LAFS for writing files
over 5MB is justified by the large number of divisions and
distributions of chunks of files that FlexA does for set of
three servers, totaling 66% of the file for each computer
against 50% of a file in Tahoe-LAFS.

Considering the read operation, showed in Figure 4, FlexA
has the highest rate of evolution for the transfer. Because of
its number of divisions of the file and the process of choice
for distributed chunks, the read operation in FlexA can uses
all the available servers of the writing group. This situation
does not happen with the Tahoe-LAFS which is limited to
a few servers to restore the file again.

The fact that the client station is responsible for data
processing (division and cryptography) causes a small part
of the consumption of the hardware resources compared
with NFS, but much smaller compared to Tahoe-LAFS, as
is shown in Figure 5.
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The advantage of our DFS model is to permit a larger
quantity of simultaneous operations to big client files, while

the storage server only concentrates on receiving and orga-
nizing the chunks.

Another point implemented in our model is the direct
replication by the client, allowing more control and security
for the user if failures occur in some servers.

6. Conclusion
The developed model is a way of expressing the possi-

bility of aggregating the characteristics of others DFS and
making it functional.

The simplicity of its construction brought flexibility to the
utilization of computational resources, a more efficient use
of the client’s processing power and less conditions for an
overload in the servers.

The adaptation of the model of decentralized permissions
allowed more independence for system administrators and
a quicker cryptography process. This is due to the smaller
number of steps that are used to achieve an acceptable
security level.

It brought more data reliability with the use of cryptog-
raphy directly on the files, avoiding cases where security
failure or fault of the storage set compromises data integrity.

The use of storage groups guarantees availability of the
files and presents conditions for fault tolerance by distribut-
ing data among several nodes.

FlexA model was constructed to create an environment
favouring the client, to provide a DFS that is easier to
implant and use in normal conditions, and offer some of
characteristics that are found in most file systems.

In this evaluation, focusing only on the technical up-
load/download the files, there is a similarity between FlexA
and Tahoe-LAFS. FlexA has better read rate than Tahoel-
LAFS, but Tahoe-LAFS has the best writing performance.

The best performance in FlexA in read operation is
explained by the division factor of the files in order to
simultaneously use 3 servers, which therefore creates greater
consumption in the writing process than Tahoe-LAFS.

At this stage, this research work presents the components
that are needed for an operational use in a controlled
environment. Among the next steps of the research are
the enlargement of the model’s functionality, aiming at
providing a more convenient way of interacting with the
operating system, support for efficient chunk compression,
optimize cryptography, support mobile devices, and other
characteristics.
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Abstract— MapReduce simplifies parallel programming,
abstracting the responsibility of the programmer, such as
synchronization and task management. The paradigm allows
the programmer to write sequential code that is auto-
matically parallelized. The MapReduce Frameworks devel-
oped for multi-core architectures provide large processing
keys which consequently growth intermediate data structure,
which in some environments causes the use of all the
available main memory. Recently, with the development of
MapReduce frameworks for multi-core architectures that
distribute keys through the memory hierarchy, the problem
of using the entire main memory, by the data generated
was minimized. But in an environment where all threads
access the same hard disk, certain situations may lead a
competition between the threads, to take keys generated from
main memory to the hard disk, thus creating a bottleneck.

Based on the behavior of threads and the growth of
intermediate data structure in multi-core environments, we
present an improvement of access to the hard disk in
MapReduce frameworks for multi-core architectures. The
main objective is to ensure that distinct threads do not
compete to take the keys processed, from the memory until
the hard disk.

Keywords: MapReduce, Multi-Core, Main Memory, Thread, Vir-
tual memory.

1. Introduction
The massive use of multi-core processors in recent years

has opened the possibility of creating new parallel applica-
tions. The idea of these new applications is to take advantage
of the use of parallel processing offered by the existence of
more than one processor or core on the same architecture.
These applications force developers to manage a series of
low-level details, such as thread creation, synchronization,
concurrency, resource management and fault tolerance [1].
Within this context, creating a scalable, and correct parallel
application has become a complex task.

MapReduce assumes that the programmer needs to ex-
press two functions to develop the application, Map and
Reduce [2]. The Map function processes the input file and

*This paper is addressed to the PDPTA’13 Conference

generates a set of intermediate pairs of key/values. The
Reduce function joins these pairs through an intermediate
sum or some kind of aggregation, using each key as an
index, and the framework takes care of the parallelization
details.

The MapReduce frameworks for multi-core architectures
have been designed to work on the main memory, avoiding
the need to use any type of secondary memory [3]. However,
the increase in the number of keys processed, may consume
the entire main memory, because of the growth of inter-
mediate data structure. Previous studies [4] have shown the
dependence that exists between the execution time and the
distribution of keys in the input file. The same dependence
is seen in the growth of intermediate data structures in
the MapReduce framework, and therefore the use of main
memory.

This situation has resulted in implementation of a MapRe-
duce framework that distributes keys through the memory
hierarchy, main memory and hard disk, preventing the entire
main memory to be consumed [5]. However, we identified
that in environments with an increasing number of threads,
with a single hard disk, there may be competition between
the threads to take the keys generated from main memory
to the hard disk.

Our goal is through the administration of limits and
priorities among different threads, avoid a situation where
multiple threads need to take large amount of keys to the
hard disk at the same time.

The objective is to evaluate the system dynamically, define
a set of execution parameters, and manage intermediate
data structures and access of the framework to hard disk
by distinct threads. The focus in this paper is the use of
applications involving a relatively large number of unique
keys. A word count application represents this scenario,
where there may be a large amount of unique keys.

To reach our goal, we developed and implemented an
model, which evaluates the use of main memory dynami-
cally. Based on the usage of main memory, determines the
moment that a certain amount keys should be moved from
main memory to the hard disk at different times by distinct
threads.

The rest of this paper is organized as follows. In Section 2
we introduce the MapReduce paradigm, and present an ex-
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tension to Metis that distributes keys between main memory
and hard disk, the basis for this work. In Section 3 we present
the main issue on which we dedicate ourselves to this work.
In the section 4 we show our proposed model. In section 5
we present a summary of the environment, the benchmark
application and the evaluation method implemented in this
work. Finally in section 6 we present a brief conclusion of
this work.

2. Related Work
There are different studies and implementations of the

MapReduce model in different types of architectures. Of the
model introduced by Google [2], there are implementations
for clusters, such as Hadoop [6], or multi-core architectures
as Phoenix [1] [3], Metis [7] and Phoenix++ [8], as well
as the extension of Metis that distributes keys through the
memory hierarchy [5]. This section summarizes the basic
principles of the MapReduce model, and the basis for this
work.

2.1 MapReduce Programming Model
MapReduce [2] is a paradigm created by Google, to

support parallel processing of large data sets. The goal of
this paradigm is to make easy the programmer creating
parallel applications, where it is only necessary to provide a
sequential implementation, expressed by two main functions,
Map and Reduce.

MapReduce is able to achieve a high degree of data
parallelism because it breaks workloads down into tasks that
can be processed independently of each other [9]. In theory
MapReduce splits the input file into M parts and sends each
Map worker. Each Map worker using the functions provided
by the programmer, processes their own part of the input
file, generating a list of key/values pairs. When all parts
end up to be processed by the Map tasks, the MapReduce
framework invokes the function Reduce, which performs
data reduction through a sequential implementation provided
by the programmer, one task for each distinct key produced
by the Map tasks. Each Reduce worker generates an output
of key/value, which are usually aggregates to generate a final
output.

One problem that MapReduce solves, is to take the output
of the Map phase to Reduce phase through an intermediate
structure, which receives the keys of Maps tasks [7].

In the multi-core architectures, the structures used are
placed in main memory.The entire organization of Map
output is critical to the performance of MapReduce appli-
cations, since the entire set of intermediate data need to be
rearranged between the Map and Reduce phases. In short,
the data produced by the Map phase are dumped in the
same order they are read from the input file, while the
Reduce phase the data are grouped by key. In multi-core
architecture, the whole application performance is dominated
by the operations performed on the intermediate structure,

which is in main memory. To guarantee the performance
of MapReduce applications on multi-core architectures, the
system should provide enough main memory to run of the
application.

2.2 Metis
Using Phoenix [3] as a base, Metis [7] has been devel-

oped as a library of MapReduce, an improvement to store
intermediate data in a new data structure, to improve the
performance with most types of workloads.

To reduce the amount of data stored in intermediate
structure, Metis uses a combiner function, as proposed by
Google the original idea of MapReduce paradigm. The
combiner performs data reduction per Map thread before the
Reduce phase starts, in a way to avoid all the main memory
be consumed.

Metis uses as an intermediate data structure, a hash table,
where each entry contains a B+tree, as shown in figure 1.
The idea is to take advantage of the complexity O(1) in
search of the hash table, to find the entrance of certain key,
and then down in the tree using O(logN) complexity of the
B+tree to find the key position. If the key already exists,
the framework adds a new value to list of this key. Using
the combiner function that list of occurrences is reduced to
only one item, which represents the number of occurrences
of a given key. If the key does not exist, then the new key is
inserted into the tree. To avoid competition between different
threads on the same memory region, each thread has its own
Hash+tree, which is represented by each row of the matrix
shown in figure 1.

Fig. 1: Metis Data Structure.

All the Map workers share the same hash table size, and
the same hash function, which attempts to ensure a good
distribution of keys throughout the hash table.

3. The Problem
In Metis, there are two types of memory allocation. The

first of these occurs in the prediction phase, when the size
of the hash table is set, depending on the number of distinct

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 265



keys. This size is fixed and is not changed during use of
the intermediate structure. The second memory allocation is
observed in the creation of trees, which occur dynamically,
depending on the number of levels and nodes.

Metis tries to keep an average of 10 distinct keys for
each hash entry, however for environments that provide an
execution of many threads in parallel, this number is usually
lower. For example, for an input of 100 million distinct
keys using the standard 10 distinct keys for hash entry,
are necessary 10 million of hash entries. In an environment
where there are 24 threads for example, this would create
a hash table of 24 rows by 10 million of columns, or 240
million hash entries.

Assuming that the framework takes to hard disk only the
key and value, where each key is a word of 20 characters and
the value is an integer, each line would have a cost around
228 megabytes of data. In the worst case, depending on the
memory usage, move all keys from the intermediate data
structure to the hard disk in an environment of 24 threads,
would cost about 5472 megabytes. Move large set of keys
in an environment where all the threads can not access the
hard disk at the same time, requires that the operating system
serialize the access.

In short, while a thread takes their own keys to the hard
disk, all other threads are waiting. With the waiting threads,
no more key are processed, resulting in a cost-time.

4. Implementation
Using the extension of Metis that distributes the keys

through the memory hierarchy as a base [5], we propose
a solution using a model of soft and hard limit on all the
threads, which move keys through the memory hierarchy,
preventing threads to compete for access to the hard disk.

The main goal is to use a high limit, in this case hard
limit to derive the soft limits, in this case an individual limit
per thread, which must be distributed among the available
threads, giving more priority to certain threads to access the
hard disk.

In theory, the focus of this strategy is to allow the
application decide the moment that the keys should be stored
on the hard disk according to the thread, and the amount of
keys that must be stored, also preventing the threads compete
for access to the hard disk.

4.1 Map phase
Map phase is where the keys are are inserted in the

intermediate data structure, it is essential to manage the
growth of this structure, and the consumption of main
memory.

As may be seen in figure 2 item 2, when a key is emitted
by the Map task in the function emit_intermediate,
the thread searches the entry in the hash table in which this
key corresponds. When the hash entry is found the thread
traverses down on the tree contained in the entry, until it

finds the key position. Each new key, inserted into the hash
entries, has a cost in memory usage. At the end of the Map
task, an amount of keys have been generated and stored in
main memory, generating main memory consumption. The
memory consumed by Map Task is variable, depending on
the amount and distribution of unique keys in the hash table.
Knowing that the B+tree is a order 3 tree, and may be up to 7
keys per node, each time that a new key is inserted into a new
node, is allocated space for seven keys. In short, if the key
distribution occurs in different hash entries, the consumption
of main memory will occur more rapidly, dominant situation
when there is an large amount of different keys.

At the end of the Map task, the same thread
executes the function verify_hard_limit and
verify_soft_limit, as may be seen in figure 2
items 3 and 4. The verify_hard_limit function
returns the maximum memory that can be used in the
environment, i.e. the most critical memory usage. This
value is the same for all threads, which serves as the basis
for determination the soft limit, returned by the function
verify_soft_limit. The soft limit is unique to each
thread, and determines the time that each thread can start
to take the keys to the hard disk, i.e., while a thread move
keys between main memory and hard disk, another thread
can continue processing new keys and inserting on the
intermediate data structure.

If the soft limit of the running thread has been reached
or exceeded, the same thread copies the keys stored in
the last column of its own line of the hash table using
copy_keys, as is shown in figure 2 item 5, to the buffer
through buffer_keys on item 6. When the copying of
keys is completed, the same thread back to check if the
main memory was reduced to below the limit. If memory
usage is not reduced sufficiently, the same thread performs
the same operation by copying the keys from the last column,
in direction to first column. The thread moves to the next
task only if the memory is reduced enough or column zero
is reached.

The buffer where the keys are copied has a fixed size, and
just spills the keys on the hard disk through spill_keys,
as is shown in figure 2 item 7, when the task is completed
or the buffer is full. Each thread running generates a file on
the hard disk, where it stores its keys. The goal is that at the
end of Phase Map, if the memory is not enough, some of the
keys are stored in the main memory through the intermediate
data structure, while the other part of the key are stored on
the hard disk. The idea is to take the keys that exceed the
limit of main memory to the hard disk, providing space in
main memory, so that the Map tasks can continue processing
keys without the use of swap.

The use of a device such as the hard disk, means inserting
overhead in the framework. The objective is hiding the
latency of hard disk and minimize the overhead generated,
through a set of proposed strategies to prevent the movement
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of keys be made between main memory and swap.

Fig. 2: Map Phase.

4.2 Evaluation of main memory available
To avoid that the amount of keys generated by the Map

tasks use the entire main memory, monitor the environment
and the amount of available main memory becomes essential.
We created a set of functions that aims to evaluate the
amount of memory available at the end of each Map task.
Each thread at the end of its execution verifies that the limit
set has been reached.

4.3 Hard Limit and Soft Limit
To avoid competition between different threads to take

the keys to hard disk, we set two parameters to the limits,
soft limits and hard limits. The goal is to treat each thread
differently, so that disk access is done at different times.

The value of the hard limit, is calculated in percent on the
total amount of main memory. To calculate the base of the
soft limit, the running thread divides the hard limit by total
number of threads. To find the corresponding soft limit, the
running thread calculates (Nt ∗ SoftLimit+ SoftLimit),
where Nt corresponds to the number of the running thread,
and SoftLimit corresponds to the base of the soft limit
previously calculated. Using as an example an environment
with 6 threads, where the total amount of available main
memory is 24 gigabytes, and using a hard limit of 50%
would result in the following limits soft shown in table 1.

Table 1: Memory Limit.
Thread Soft Limit(MB) Hard Limit(MB)

0 2.000 12.000
1 4.000 12.000
2 6.000 12.000
3 8.000 12.000
4 10.000 12.000
5 12.000 12.000

In small environments with few threads, the competence
for access to the hard disk becomes small. In this situation

the use of soft limit creates a situation of overhead. To avoid
adding overhead when the number of threads is less than 4,
in this case only the hard limit is checked.

4.4 Spill Buffer
Before spilling the keys on the hard disk, the thread

responsible should copy the keys to a buffer. To manage
these keys, we create a spill buffer, which has the same
number of rows as the original hash table, i.e., the amount of
threads that are running, but that does not have hash function,
and simply performs sequential storage. Although the keys
were removed from the intermediate data structure and taken
to spill buffer are in memory, until the spill buffer is full
or the task ends. Each key stored in spill buffer occupies
less space as opposed to the tree. Since this is only an
intermediate buffer, without search purpose, only sequential
insertion, each line consists of an array that stores only keys
and value. Each B+tree which contains 10 different keys,
occupies about 726 bytes in the intermediate structure of
Metis, while in our array the same 10 keys occupy 540 bytes.
Thus freeing memory until the keys of the Spill buffer has
been spilled on the hard disk.

4.5 Reduce phase
Knowing that part of keys that exceed the memory is

on the hard disk, and should be brought back to the main
memory to be processed by the Reduce workers, we turn
to the problem of how to keep all keys in main memory.
To avoid the risk of running out of main memory, the keys
must be brought from the disk on demand. In this case we
took advantage Reduce tasks are performed in sequence, i.e.,
column 0 to the N column or last column. Before the Reduce
phase starts, a certain amount of keys is moved from the hard
disk to fill the first group of columns which will be reduced.
Until the read_data_disk finishes copying the keys to
the first group of columns, all the threads stay blocked.

When the copy is complete, the threads are liberated to
effect the reduction of keys and store them in the final buffer.
To know what the limit is of columns to be reduced before
brings the next sets of keys from the hard disk, we maintain
a column counter. When the counter reaches the value of the
next group, again all threads are blocked waiting for a copy
of a new set of keys that are on the hard disk. Before starting
to copy the keys from the hard disk into main memory, the
thread that is running to make the copy, checks the memory
usage using verify_hard_limit. If the amount of main
memory used reached or exceeded the limit, the running
thread makes a copy of the keys stored in the final buffer
through the copy_keys, and stores it in the spill buffer
with buffer_keys to be spilled back into the hard disk
using spill_keys, freeing up space in the main memory.

When all columns of intermediate data structure are
reduced by Reduce workers, if there are keys on the hard
disk, they are all copied to the buffer for the merge phase
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through the read_data_disk_merge.To start the Merge
phase, all the keys that were on the hard disk needs to be
brought back to memory. The entire scheme of phase Reduce
can be seen from figure 3.

Fig. 3: Reduce Phase.

4.6 Influence of key distribution
Performance optimization is directly linked to key dis-

tribution in the hash table entries, i.e., the number of keys
stored in each entry when the workers begin to copy them
to the hard disk. If workers begin to copy keys to the hard
disk too early, it may be that find a few keys stored in the
hash entries, occupying the time of the workers, however
making little reduction of main memory. The decision to
start taking the keys to the hard disk, depends directly on
the consumption of main memory, and the memory usage
limit set.

If other applications are consuming the main memory, the
framework will choose to start store the keys on the hard
disk in the execution of the first Map tasks. This scenario is
not favorable to our optimization, since many hash entries
may still be empty. Each thread executes only one copy of
keys from its own line, in short, if a Map task verifies that
a given entry in the hash table has no keys stored, this task
proceeds to the next hash entry. If the data structure exceeds
the available memory, and the framework decides spill keys
on the hard disk, just will be copied keys of hash entries
that have not been verified by Map tasks. So if the copies
of keys, is made by the last Map task, will be copied more
keys than if the copy is made by first Map tasks. In the
worst case, the Map tasks will take to hard disk few keys,
for having started the spill too soon. The result of this is a

little reduction in memory usage, consequently the increased
use of swap and more page faults.

4.7 Experimental Method
The measurements have been taken in two environments:

(1) a multi-core processor with Intel Core Duo 3GHz and
6GB of main memory in 64-bit Linux, and (2) a dual-socket
Intel(R) Xeon(R) E5645 2.4GHz with 6 cores each one, and
96GB of main memory in 64-bit Linux. We use a benchmark
like Word Count, used in the original Metis.

For environment with 2 cores, we set a limit of memory
usage by 70%, because it is a small environment with only
6GB of memory, and this limit would be reached quickly,
being possible check for page faults. While the environment
of 12 cores, the limit was set at 30%, 12% and 10%, to be a
relatively larger environment, with 96GB of main memory,
and the inputs used are the same used in the environment
of 2 cores. The idea of the experiments in the second
environment, is see how much overhead is created by hard
disk access, besides the advantage of using the strategy of
soft limit and hard limit.

As dataset for this evaluation, we use a key distribution,
where all the input files have different keys, which can be
seen in Table 2.

Table 2: Workload.
Input Size Keys Words

228MB 10.000.000 10.000.000
457MB 20.000.000 20.000.000
686MB 30.000.000 30.000.000
915MB 40.000.000 40.000.000
1100MB 50.000.000 50.000.000
1373MB 60.000.000 60.000.000

Working on the problem described in section 3, we show
in Figure 4 and 5, the reduction in the use of main memory,
obtained in the Map and Reduce phases for the optimized
version. To the input files of 10, 20 and 30 million keys,
it can be seen that there is no change from the original,
because for these types of workloads, the memory limit is
not reached. As the memory consumption does not exceed
the limit, there is no change on the way that the MapReduce
framework works.

As seen in Figure 4 and 5, for input files of 40, 50 and 60
million of keys, memory usage is exceeded, the framework
this way makes the decision to make use of our optimization.

As can be seen in figure 4, to the inputs of 40, 50 and
60 millions of keys, it is possible to note an increase at
execution time Map phase observing the columns of opti-
mized version against the main memory reduction observed
by line corresponding. This increase in execution time is
justified by the spill of keys on the hard disk, each Map
task has responsibility to manage it own keys. While the
keys do not end up to be taken to the hard disk, the Map
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task does not resume emitting new keys in main memory.
Each keyset brought to hard disk allows the release of new
memory space, preventing the main memory to be fully
consumed, this would force the system to use the swap,
increasing the number of page faults. Also in figure 5 we
can observe the same behavior as figure 4, but with a smaller
reduction in main memory. This situation is justified by the
fact that the Reduce phase needs more data in memory to
make the reduction. Unlike the Map phase where the main
work consists of producing and storing keys in a intermediate
data structure, Reduce phase the data must be read from
an intermediate structure, processed and stored in a second
structure, forcing the framework to hold more keys a time
into memory.

Although the Reduce phase is normally faster than the
Map phase, becomes difficult to avoid the increase in ex-
ecution time, because of the constant interaction with the
hard disk. First for keys that have been stored by the Map
phase in the hard disk, and must be brought back to main
memory for processing. And second, by taking the reduced
keys back to the hard disk if the memory is close to the limit,
i.e., double of interactions with the hard disk that Map phase

Fig. 4: Execution time and memory usage on Map phase.

Fig. 5: Execution time and memory usage on Reduce phase.

The system uses the swap as an extension of memory,
which normally causes the pages faults. In contrast, we
define in this first model, the need to reduce these pages
faults, since the constant interaction of the system with the
hard disk becomes costly to the execution time. Sending a
set of keys to the hard disk before the main memory to be
consumed, prevents the system to need use the swap, this
way it is possible to decrease the page faults, also reducing
the constant and disordered hard disk access. In Figures 6
and 7 is possible to see the decrease of page faults, both in
the Map and the Reduce phase. Take the keys to the hard disk
in groups, before the memory is fully consumed, reduces the
influence of latency of access to hard disk at execution time,
effect that can be observed by the use of swap.

Fig. 6: Map phase major page faults.

Fig. 7: Reduce phase major page faults.

In the figure 8 it is possible see that for execution with
a limit of 10%, where only hard limit is used, there is a
significant increase in runtime. This situation is result in the
use of the 24 threads available to take large amounts of keys

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 269



to the hard disk.
Increasing the hard limit, i.e., increasing the difference

between the soft limits of threads, can be seen a greater
reduction of execution time as is shown in the execution
with hard limit of 30%, because fewer threads access the
hard disk. The increase in the hard limit, and combining
with the type of input and memory usage, reflects in more
keys taken to hard disk and a greater reduction of memory, or
fewer keys taken to hard disk and a lower memory reduction.
The knowledge of type of workload in use, combined with
the configuration of these parameters may provide better
performance of the framework.

Fig. 8: Soft and Hard Limit strategy.

5. Conclusions

Addition to the original implementation where we pro-
mote reduction in the use of main memory, and reduction
of page faults, we also show in this paper a better way
to access the hard disk by the MapReduce framework,
using different limits for the threads. The parameters limit,
buffer size and number of hash entries taken to hard disk,
open a new line of research where it can further improve
the execution time of the implementation presented in this
paper. This implementation opens the way for improving the
MapReduce framework on multi-core architectures, allowing
the framework to adapt to different workloads.

As an extension, our implementation does not predict
solve all problems for the use of large data sets in systems
with limited memory, but rather open up a straight of
research for future solutions.
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Abstract— Performance gain for computer systems through

Moore’s Law is jeopardized by the limitations of clock rate

growth due to power considerations and the limitations in

instruction-level parallelism improvement from processor core

computer architecture experienced over the last decade. High

performance computer architectures are addressing this chal-

lenge through multicore processors that combine many pro-

cessing units on a single chip. For this class of machines,

conventional programming and execution practices, while still

effective for some application algorithms, are suffering in

scalability for many others. Multithreaded runtime systems offer

convenient many-tasking execution model implementations that

show increased efficiency and scalability through exploiting

medium-grained thread parallelism. This paper provides an

overview of the existing runtime systems and libraries used

for many-tasking computation. They are empirically examined

in terms of overheads and the potential impact resulting on

application performance. Intra-node performance aspects are

investigated using synthetic benchmarks.

Keywords: runtime systems, thread parallelism, benchmarks

1. Introduction
Sustaining performance growth of high performance comput-

ing systems through device technology improvements reflected

by Moore’s Law is becoming increasingly challenging using

conventional static programming and execution methods. Due

to power limitations, processor core clock rates are constrained

and in some cases even reduced. Also, opportunities for in-

struction level parallelism (ILP) within core architectures have

been exhausted as well. Thus, the two principal means of

performance growth of microprocessor cores that have served

high performance computing (HPC) for more than two decades

have ceased to be a significant factor. Alternative architecture

strategies based on multi-core processors accelerators to deliver

continued performance growth have introduced the need for

abundant and continually increasing medium-grained paral-

lelism to achieve scalability.

While the concept of runtime systems is not new, their

application to HPC is extremely constrained due to the prob-

lems of additional overheads being introduced. But runtimes

offer the possibility of dynamic adaptive resource management

and task scheduling employing information during time of

execution that is not available at time of programming or

compilation. It is postulated that access to runtime information

may provide the means to dramatically improve operational

efficiency while achieving significant increases in scalability.

Such runtime systems must reduce typical sources of work

starvation, latency effects, overhead, and waiting for contention

resolution to shared resources (physical or logical).

In a multiprocessor setting, task schedulers can implic-

itly load balance computations and more easily enable fine

grain computations. Asynchrony management constructs re-

move global barriers and enable codes to overlap phases of

computation to improve performance. In a distributed setting,

this introduces the capability to hide network latency and better

overlap computation and communication. Both Charm++ [1]

and Unified Parallel C (UPC) [2] have for a long time ex-

hibited the major benefits of task parallelism along with a

shared address space. Other more recent approaches include

the Intel Threading Building Blocks library (TBB) [3], the High

Performance ParalleX (HPX) runtime system [4], Cilk plus [5],

Chapel [6], Qthreads [7]. Even MPI and OpenMP [8] have been

used to accomplish task parallelism.

This paper provides an overview of the existing runtime

systems and libraries used for many-tasking computation.

They are empirically examined in terms of overheads and

the potential impact resulting on application performance. The

approach taken starts by characterizing cumulative overhead

of task initialization, execution, and end-synchronization for

several many-tasking runtime systems and libraries, namely:

TBB, Cilk plus (both Intel and gcc versions), OpenMP (both

Intel and gcc versions), Charm++, HPX, and Qthreads. We

explore the impact of NUMA awareness and the TCMalloc

allocator [9] separately for each runtime system and library.

Two micro benchmarks are presented: homogeneous task spawn

and heterogeneous task spawn.

2. Related Work

In spite of the significant interest in task parallelism, there

exists relatively few side by side comparisons of the various

overheads in implemented many-tasking execution models.

This is partially explained by the fact that the functional capa-

bilities of a fundamental task vary widely from implementation

to implementation and depend upon the particular many-tasking

execution model that the runtime system intends to implement.

This makes direct comparisons difficult. However, some key

similarities are shared among the various execution models and

some studies have been conducted to compare these overheads.

Burkhart et al. [10] examined Chapel, Unified Parallel C,

OpenMP, and MPI using a generic stencil computation as the

unified performance test. system. The work by Olivier et al.

[11] discusses an approach to compare the performance of a
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Fig. 1: General task state diagram. The nodes (marked with

letters) represent states; the edges (with number labels) signify

transitions between the states. The life cycle of a task starts in

the creation state C identified by the arrow and ends in finished

state F; both are represented by shaded circles to emphasize

the transition endpoints. The remaining states include active

(or execution) state A, suspended state S, and migration state

M.

few runtime systems, including OpenMP, Cilk, Cilk++, and

Intel TBB using a highly unbalanced task graph in order to

introduce challenges arising in work balancing, scheduling,

and termination detection. Other comparison works include

comparing Cilk with MPI for finite differencing [12].

3. Task benchmarks

Central to a many-tasking execution model performance

quantification is the threading characteristics of a simulation as

it scales to larger core counts. Some implementations support

thread asynchrony management thereby enabling activation, mi-

gration, and suspension of tasks. Other implementations support

a much smaller subset of possible thread states. Quantification

of these overheads is fundamental to the development of a

performance model for design and deployment of many-tasking

based applications.

Figure 1, even though substantially simplified, illustrates the

significant number of possible task states and transitions, each

with an associated latency and implementation overhead, in a

many-tasking execution model. Note that while some runtime

systems do not explicitly use the notion of tasks, this term

is often equivalent to a work unit executed by a user level

thread (cf. HPX, Qthreads). Among the possible task states

are creation and initialization (C), migration (M), active (A),

suspended (S), and finished (F). Every task’s life cycle begins

in the creation state C. The creation state involves a potentially

complex sequence of operations, ranging from creating an entry

in the runtime system’s task table or queue, allocating the

memory to hold the necessary description of task state, function

to execute and its arguments, hooks to the related runtime

system data structures and functions, etc. An initialized task

typically transitions along edge 2 from the creation state C to

the active execution state A. In rare cases when the work in

the application has been already completed but an abundance

of tasks has been created to increase the parallelism or condi-

tionally explore additional branches of program execution, they

will be automatically terminated after moving to state F. The

active execution state A is a superposition of internal states in

which a task may actively execute on a processor, may await

the assignment of a physical execution resource, or be queued

in scheduler’s run queue. These internal states share a common

characteristics: all data dependencies required by the task to

perform the next logical operation must be satisfied. If this

condition is not true, for example, the task needs data returned

by a pending I/O operation or data that has to be conveyed by

a message from a remote node, the runtime system places the

task in a suspended state S. Similarly to the active state, the

suspended state may internally include a number of variants.

The efficient utilization of the hardware resources depends on

the runtime system’s ability to identify tasks blocked due to

data dependencies and removing them from the active state;

note that this is not always straightforward as such knowledge

may be available only at the operating system level. Over the

lifetime of a complex task, the transitions 6 and 7 between

active and suspended state may happen many times. Other

transitions from the active and suspended states lead to either

termination F or migration M. Currently, only few runtime

systems support migration of task state at a global (distributed

machine) scale; moreover, additional restrictions may be placed

on which tasks are permitted to migrate to remote execution

locales. Most general implementations will support migration

for both suspended and executing tasks (although the latter

will have to be preempted from the execution resource and

removed from the active queue before the state migration

sequence is initiated). Since recreation of task structures on

the remote end shares many similarities with creation of a

new task (with possible differences in initialization phase),

transition 3 from migration leads to the initial state C. All tasks

entering the finished state F are terminated. Their representation

is removed from the runtime system data structures and all

related resources are reclaimed. Entering this state may not

always cause the immediate release of the resources used by the

task. In cases where the final value computed by a task has to

be communicated to other tasks (akin to thread join), the related

portion of task state may linger long after its execution phase

is over. Additionally, other dedicated system entities, such as

garbage collectors, may ultimately decide when to reclaim the

terminated task’s storage.

We first consider the most fundamental task phases in a

many-tasking implementation shared by all aforementioned

implementations: task initialization, task execution, and final

synchronization. They are directly related to the task states

described above. The task initialization corresponds to the

creation state C, perhaps with the added overhead of an external

loop generating the task instances. Task execution is a super-

position of active (A) and suspended state (S), since migration
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was not explored in our tests. Given that the single work

grain does not include any blocking operations, once a task is

moved to the active state, it will remain there until completion.

The synchronization at the end of workload certainly involves

transition of individual tasks to the F state, but also includes

transition between states A and S of the master task (spawner)

that monitors the execution. This may be caused, for example,

by the readout of an atomically updated counter representing

the number of completed tasks, or by checking the state of a

future object which hasn’t been updated yet. Note that such

updates may be performed either by the code of individual

tasks directly, or by a background system thread, depending on

the implementation. For the former, additional A↔S transitions

(possibly multiple) may occur at the very end of task execution

during periods of high contention when competing for access

to the shared resource.

The cumulative overhead of these task phases is crucial in

determining the optimal task granularity for a specific applica-

tion simulation. The tests described in the next two subsections

analyze the task spawn performance on various systems using

two modes of operation; homogeneous and heterogeneous.

3.1 Homogeneous Task Spawn

In the homogeneous task benchmark presented in this sec-

tion, we spawn a fixed number of tasks, 5 × 105 in this

case, where each task has the same work unit defined by a

function given in Listing 1. The grain size given the work

unit is specified by the number of iterations in the for loop

in Listing 1. It is varied across several orders of magnitude

from 0, 10, 100, 1000, and 10,000 in order to reflect fine to

medium grain application simulations. Code listings for this

benchmark are given for OpenMP (Listing 2), HPX (Listing 3),

Cilk+ (Listing 4), Charm++ (Listing 5), Qthreads (Listing 6),

and TBB (Listing 7).

Listing 1: Work function used in conjunction with the various task
spawn tests [13]

void worker(){

double volatile d = 0.;

for (uint64_t i=0; i<delay; ++i)

d += 1. / (2. * i + 1.);

}

Listing 2: OpenMP task spawn [13]

#pragma omp parallel

#pragma omp single

{

for (uint64_t i=0; i<tasks; ++i)

#pragma omp task untied

worker();

#pragma omp taskwait

}

Listing 3: HPX task spawn [13]

for (uint64_t i=0; i<tasks; ++i)

register_work(HPX_STD_BIND(&worker));

do suspend();

while (get_thread_count() > 1);

Listing 4: Cilk+ task spawn [14]

for (uint64_t i=0; i<tasks; ++i)

cilk_spawn worker();

cilk_sync;

Listing 5: Charm++ task spawn

main::main(CkArgMsg *m){

mainProxy = thishandle;

count = tasks;

for (uint64_t i=0; i<tasks; ++i)

CProxy_worker::ckNew();

}

void main::results(){

if (0 == --count) CkExit();

}

worker::worker(){

double volatile d = 0.;

for (uint64_t i=0; i<delay; ++i)

d += 1. / (2. * i + 1.);

mainProxy.results();

}

Listing 6: Qthreads task spawn [14]

for (uint64_t i=0; i<tasks; i++) {

qthread_fork(worker_task, NULL, NULL);

do qthread_yield();

while (donecount != tasks);

}

Listing 7: TBB task spawn [14]

// body of worker::execute()

// identical to Listing 1

tbb::task *spawner::execute(){

set_ref_count(tasks+1);

for (uint64_t i=0; i<tasks; ++i){

worker& a =

*new(tbb::task::allocate_child())

worker();

if (i != tasks-1) spawn(a);

else spawn_and_wait_for_all(a);

}

}

int tbb_main(){

spawner& a =

*new(tbb::task::allocate_root())

spawner();

tbb::task::spawn_root_and_wait(a);

return 0;

}

int main(int argc, char **argv){

tbb::task_scheduler_init init(tasks);

return tbb_main();

}

The task spawn tests were benchmarked on a computer

equipped with dual 8-core E5-2670 Intel processors running at

2.6 GHz and 32 GB of memory. This machine is representative

of the type of nodes commonly found in recent supercomputer

configurations. The hyper-threading was explicitly disabled in

BIOS to avoid issues related to inconsistent enumeration of
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Package Version

Compilers

GNU binutils 2.23.1
gcc 4.6.3 release
gcc Cilk+ patch 4.8.0 (20121210)
Intel Composer 2013.1.117

Support libraries

boost 1.52.0
hwloc 1.6
Google Performance Tools 2.0

Runtime systems

Charm++ 6.4.0
HPX git hash a0786ed (12/12/2012)
Qthreads git hash f2ae33d (01/02/2013)
TBB 4.1.20121003

Table 1: Versions of software packages used in task spawn tests.

Iterations 0 10 100 1,000 10,000

Duration 2.5 ns 103 ns 1.059µs 10.61µs 106.2µs

Table 2: Actual duration of the work units used in the tests.

logical processors between different libraries used for NUMA

affinity management. Red Hat Enterprise Linux version 6.3

provided the basic operating environment. It was augmented

with the prerequisite libraries and compilation tools required by

runtime systems tested; they are listed in Table 1 for reference.

The work unit durations for various grain sizes collected on a

minimally loaded system are listed in Table 2. To obtain them,

many runs were performed in sequence to alleviate the effects

of finite timer resolution and ensure full cache initialization.

Since the E5 Xeon processors feature Turbo Boost technology

(temporary increase of clock speed when executing workload

on a limited number of cores), the presented numbers are very

close to the minimal possible execution times per task on that

architecture.

Unless stated otherwise (in particular for Cilk+ and OpenMP

tests), all runtime system libraries and test codes were compiled

using gcc-4.6.3. Using more recent 4.7 series resulted in

unstable code in some instances. Whenever possible, production

or release configurations were used, with optimization flag

of “-O2” and no debugging information. Since certain im-

plementations exhibit measurable performance improvements

when using additional external libraries, separate tests were

performed for these configurations. They include NUMA affin-

ity management (typically using hwloc library), and thread-

aware memory allocation (e.g., tcmalloc from Google Per-

formance Tools suite). The impact of these packages in a

typical case can be seen in Figure 2. The NUMA-aware thread

assignment improves the performance for lower numbers of

cores by limiting the degree of freedom in distributing the

OS threads across available NUMA domains; these benefits

are gone when the number of underlying OS threads matches

the core count. Contrariwise, tcmalloc effects are greatest

for high OS thread counts, as these cases exhibit the highest

access contention to shared resources used by conventional

memory allocation routines. To avoid excessive clutter in charts

comparing the performance of multiple runtime systems, only

the best performing configurations were selected, with relevant

details embedded in plot labels.
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Fig. 2: Impact of NUMA-aware OS thread placement and

thread caching memory management on many-tasking perfor-

mance in HPX using a medium granularity where each tasks

performs ∼ 1µs of workload.

Special care was taken to ensure that the simulated work unit

is identical between the benchmarks and no unfair optimiza-

tions are taking place. For this reason, the work unit function

was placed in a separate compilation unit and inter-procedural

analysis in the linkage phase was suppressed. The memory

management calls, required by several systems to create and re-

lease required data structures representing individual tasks were

removed outside the timed region, or low-overhead equivalents

provided by the runtime systems were used where possible.

Similarly, detection of the completion of task execution phase

relied on optimized techniques suggested by the programming

manuals or was leveraged from code examples distributed with

the runtime systems.

Figures 3–7 present the results of homogeneous task spawn

for various runtime systems and libraries. The data are gener-

ated for the plots using the following methodology: each data

point is independently computed ten times; the four largest

outliers in the data are then discarded and the remaining six

points are averaged to produce the data point. Figure 3 shows

the results for the lightest weight tasks with only ∼ 2 − 3 ns

of work per task. Nearly all problems scale poorly in this test,

with Cilk+ showing the best performance. Figure 4 presents

comparisons using ∼ 103 ns per task resulting in a much closer

result between the flavors of Cilk+ and Qthreads. Figures 5

and 6 use ∼ 1µs and ∼ 10µs tasks, respectively. We begin

to observe scaling for most systems in these medium grain

274 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



cases with Qthreads optimal in both the 100 and 1,000 iteration

cases and TBB along with HPX closely following the Qthreads

performance in the 1,000 iteration case. A peculiar performance

drop is observed for OpenMP after 8 cores in Figure 6, which

may be attributed to insufficient NUMA support in the OpenMP

runtime libraries, coupled with the default affinity policies

enforced by the OS. In Figure 7 we explore a medium-heavy

grain size with each task taking ∼ 106µs. Here all systems

show sustained scaling while the best performance is achieved

for Cilk+ and OpenMP using Intel compilers. Many of the

remaining runtime systems show very similar performance

across the processor counts tested at this granularity.
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Fig. 3: Homogeneous task spawning with 500,000 tasks where

each task has a work unit of approximately 2-3 ns. Poor

scaling is generally observed throughout as the task overhead

significantly exceeds the amount of work done per task. The

two flavors of Cilk+, gcc and icc, significantly outperform the

other alternatives in this regime.

In large applications, we do not expect all tasks to have

the exact same work unit. This naturally leads us to explore a

benchmark where tasks have various sized work units selected

from a stable probability distribution.

3.2 Heterogeneous Task Spawn

The heterogeneous task benchmark spawns 5×105 tasks just

as in the homogeneous task benchmark; however, this time the

work unit per task is varied. The code used for heterogeneous

tests is almost identical to that of the homogeneous tests

(Listing 1- 7), except that each task was assigned a delay

parameter (the number of iterations from Listing 1) taken

from a probability distribution. The delay parameters in the

heterogeneous test were drawn from three stable distributions:

the Normal distribution, the CMS distribution, and the Lévy
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Fig. 4: Homogeneous task spawning with 500,000 tasks where

each task has a work unit of ∼ 103 ns. The results here share

much in common with those of the null tasks in Figure 3 except

that the flavors of Cilk+ and Qthreads are much more similar

in terms of performance.

distribution. These distributions are stable and are also attrac-

tors in probability space making them physically relevant for

performance modeling.

The probability density function of a Normal distribution is

defined as follows:

f(x) =
1

σ
√
2π

exp

[
−
1

2

(
x− µ

σ

)]2
,

where µ is the expectation, σ is the standard deviation, and x ∈
(−∞,∞). The standard deviations of σ = 25 and σ = 75 were

used in the experiments presented in Table 3; an expectation

of µ = 100 was selected for the heterogeneous experiments in

order to compare with the homogeneous results presented in

Figure 5.

The CMS distribution [15] provides much fatter tails than the

Normal distribution along with a parameter to control skewness.

A generic characteristic function for this distribution is as

follows:

f(t;α, β) = exp

[
−|t|α exp

(
−
1

2
πβk(α) sign(t)

)]
,

with 0 < α ≤ 2, α 6= 1, where parameter β controls skewness,

function k(α) = 1− |1− α|, α controls the leptokurtosis, and

t is the Fourier transform variable. This formula assumes a

location parameter of zero and dispersion parameter of unity.

Random variables from this distribution are translated to have

a location parameter of 100 in order to better compare results

with those in Figure 5. The other parameters selected were

skewness β = −1 and α = 1.0744 producing a near-Cauchy

distribution. These parameters reflect the observation that tasks
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Fig. 5: Homogeneous task spawning with 500,000 tasks where

each task has a work unit of ∼ 1µs. The flavors of Cilk+

perform worse at this grain size than they did in Figures 3

and 4. Qthreads substantially outperforms the other packages

at this grain size while the flavors of OpenMP still do not show

any sustained scaling.

on occasion take minimally faster than the average time but

often much longer than that; hence a non symmetric fat tail

towards longer work units.

The probability density function of the Lévy stable distribu-

tion [16] is given by

L(z) =
1

π

∫ ∞

0

exp(−γqα) cos(qz)dq,

with parameters γ and α, and z ∈ (−∞,∞). Like CMS, the

location of the extremum in this probability density function

was selected to be 100, with α = 1.5 and γ = 1.

A comparison between the homogeneous and heterogeneous

measurements is presented in Table 3. Within each probability

distribution, each test used the exact same set of random

numbers describing the work unit sizes. The largest work unit

sizes in the task set for the CMS and Lévy distributions were

3×105 and 1×106, respectively. In the table, the largest percent-

age difference in the heterogeneous run from the comparable

homogeneous run is presented when run across 1 – 16 cores.

The maximum difference in execution time of heterogeneous

vs homogeneous task spawn did not exceed 2% for any of

the distributions, runtime systems or libraries, or core counts

explored. The runtime systems and libraries tested are fairly

robust against variations in task work unit size. The results

suggest that Cilk and OpenMP may be slightly more sensitive

to both Lévy-distributed and CMS task spawn experiments; in

case of Normally-distributed delays, HPX, OpenMP, and Cilk

were the most sensitive systems found.
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Fig. 6: Homogeneous task spawning with 500,000 tasks where

each task has a work unit of ∼ 10µs. OpenMP code generated

by the Intel compiler performs best on up to 8 cores after which

its performance degrades significantly likely due to insufficient

NUMA support in the implementation. Qthreads, HPX, and

TBB scale well with the number of cores, showing similar

characteristics at this grain size. This similarity increases even

further for larger task sizes, as in Figure 7.

RTS CMS, Lévy, Normal, Normal,
3e5 1e6 25 75

Charm++ 0.0456 0.9871 0.0260 0.0404

Cilk+-gcc 0.0358 1.2718 0.0355 -0.1197

Cilk+-icc 0.1104 1.2603 0.1452 0.0805

HPX 0.1214 0.8918 0.1955 0.2526

OpenMP-gcc 0.2523 1.2677 0.2977 0.3510

OpenMP-icc 0.0814 1.2440 -0.4012 -0.2708

Qthreads 0.0260 1.1783 -0.0091 0.0272

TBB 0.0995 1.1943 0.0700 0.0599

Table 3: The largest percentage difference in runtime between

the heterogeneous and homogeneous benchmarks is presented

here for three different probability distributions and eight

runtime systems (RTS) or libraries when run on 1 – 16 cores.

Within each probability distribution, each test used the exact

same set of random numbers describing the work unit sizes.

The largest work unit sizes in the task set for the CMS and

Lévy distributions were 3× 105 and 1× 106, respectively. The

standard deviations used in the Normal distribution (σ = 25 and

σ = 75)) are given in the Normal column header. The largest

difference of heterogeneous vs homogeneous runs across all the

runtime systems or libraries, probability distributions, and core

counts is lower than 2%. These results suggest that the runtime

systems explored here are fairly robust in terms of execution

times even when there is a broad mix of both lighter and heavier

weight tasks in the task scheduler.

276 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



2 4 6 8 10 12 14 16

Number of cores

100

101

102

E
xe
cu
ti
o
n
 t
im
e
 i
n
 s
e
co
n
d
s

Charm++-NUMA-tcmalloc

Cilk+-gcc

Cilk+-icc

HPX-NUMA-tcmalloc

OpenMP-gcc

OpenMP-icc

Qthreads-NUMA

TBB

Work unit: 10,000 iterations

Fig. 7: Homogeneous task spawning with 500,000 tasks where

each task has a work unit of ∼ 106µs. The Intel OpenMP and

Cilk+ flavors outperform the other runtime systems and libraries

at this grain size. The remaining systems, with the exception

of Charm++, begin to behave in almost exactly the same way.

4. Conclusions
With the continued dominance of multi-core processors in

HPC systems and the emergence of a number of many-tasking

capable runtime systems and libraries, some performance com-

parisons and characterization of overheads are critical in order

to better understand and leverage dynamic execution capa-

bilities with balancing overhead costs. These overheads have

important implications for determining the grain size at which

an application using one of these runtime systems behaves

optimally. We have examined a number of many-tasking run-

time systems in the context of task initialization, execution and

finalization, both for uniform and varying workload sizes in

order to better characterize the overheads introduced by the

runtime system itself.

In the synthetic benchmarks examined, we found that Cilk

plus behaves better at close-to-zero-workload tasks while

OpenMP outperforms the other runtime systems for the largest

workloads examined. We did not find a significant sensitivity

to the fat tails in the heterogeneous task spawn benchmark. The

results also revealed a few surprises. The first is that there is

no “one size fits all” solution that performs uniformly well for

all workload granularities. The second is that despite the old

age, some runtime systems still manage to stay competitive to

relatively modern implementations in a number of scenarios.

The synthetic benchmarks presented here contain a minimal

number of synchronization types compared to what a full appli-

cation would contain. Such synchronizations would introduce

potentially expensive context switches with a different overhead

characteristic to each runtime system. Future work in char-

acterizing the runtime system overheads will include context

switches and synchronization primitives. Future work will also

incorporate these characteristic overheads into a discrete event

simulator for application performance modeling.
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Abstract—Nowadays, virtualization is present in almost all
computing infrastructures. Thanks to VM migration and server
consolidation, virtualization helps in reducing power consumption
in distributed environments. On another side, Dynamic Voltage
and Frequency Scaling (DVFS) allows servers to dynamically
modify the processor frequency (according to the CPU load) in
order to achieve less energy consumption. We observe that while
DVFS is widely used, it still generates a waste of energy. By
default and thanks to the ondemand governor, it scales up or
down the processor frequency according to the current load and
the different predefined threshold (up and down). However, DVFS
frequency scaling policies are based on advertised processor
frequencies, i.e. the set of frequencies constitutes a discrete range
of frequencies. The frequency required for a given load will be set
to a frequency higher than necessary; which leads to an energy
waste. In this paper, we propose a way to emulate a precise
CPU frequency thanks to the DVFS management in virtualized
environments. We implemented and evaluated our prototype in
the Xen hypervisor.

Keywords—DVFS, frequency, emulation.

I. INTRODUCTION

Nowadays, cloud computing is one of the widely used IT
solutions for distributed services. Almost 70% of companies
are interested in it and 40% of them plan to adopt it within
one year [1]. Cloud computing can be defined as a way
of sharing hardware or/and software resources with clients
according to their needs. The idea of cloud computing is
to simulate an unlimited set of resources for users and to
guarantee a good Quality of Service(QoS), while optimizing
all relevant costs [2].

Cloud computing mainly relies on virtualization.
Virtualization consists of providing concurrent and interactive
access to hardware devices. Thanks to his live migration
properties, it is possible to migrate applications on a few
number of computers, while ensuring good QoS and security
isolation. This advantage is highly exploited by cloud
computing to effectively manage energy consumption and to
efficiently manage resources [3].

Recent advances in hardware design have made it possible
to decrease energy consumption of computer systems through
Dynamic voltage and frequency scaling (DVFS) [4]. DVFS is
a hardware technology used to dynamically scale up or down
the processor frequency according to the governor policy and
the workload demand.

Knowing that, the processor power consumption is related
to the frequency processor and its voltage [5], increasing
or decreasing processor frequency will influence the general
power consumption of a system. In this context, the choice of
the processor frequency is of great importance.

Furthermore, DVFS aims at setting the CPU frequency to
the first available one capable of satisfying the current load
to avoid wastage. However, there may be situations where the
selected frequency is still the subject of wastage because it is
higher than the required frequency.

In this paper, we explore and propose a way to emulate
a precise desired processor frequency in a virtualized and
single-core environment. After presenting the context and
the motivation of our work in section 2, we will describe
our contributions in section 3. In section 4, we present
experiments to validate our proposal. After a review of related
works in section 5, we conclude the article in Section 6.

II. CONTEXT AND MOTIVATION

In this section, we present some concepts of virtualization,
DVFS and how this later is applied in virtualized systems.

A. Context

1) Virtualization: According to a general observation, the
rate of server utilization was around 20% [6]. Thanks to
virtualization, the rate has increased and allows efficient server
utilization. Indeed, virtualization is a software-based solu-
tion for building and running simultaneously many operating
systems (called guest OS or Virtual Machine) on top of a
”classic” OS (called host OS). A special application, named
Virtual Machine Monitor (VMM) or hypervisor emulates the
underlying hardware and interprets communications between
guests OS and devices.

Among existing virtualization technologies, we adopt par-
avirtualization as the base of our experience. With paravirtu-
alization, the VMM is placed between the hardware and the
host OS. Guest OS is modified to use optimized instructions
(named hypercall ) from VMM to access hardware.

Paravirtualization is used because of its good VM
performance and its implementation on all types of processors.
In fact, with full virtualization, VM performance is more
than 30% degraded [7]. Meanwhile Hardware-assisted
virtualization requires specific processors though the
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performance of guest OS are close-to-native performance.

Paravirtualization is highly adopted and vulgarized by
Xen [8] and VMWare ESX Server [9]. In this context, our
work is based on Xen platform because it is prevalent in many
computing infrastructures, as well as in the vast majority of
our previous work.

2) Dynamic Voltage and Frequency Scaling (DVFS): To-
day, all processors integrate dynamic frequency/voltage scaling
to adjust frequency/voltage during runtime. The decision to
change the frequency is commanded by the current processor’s
governor. Each governor has its own strategy to perform
frequency scale. According to the configured policy, governor
can decide to scale processor speed to a specific frequency,
the highest, or the lowest frequency.

Several governors are implemented inside the Linux kernel.
Ondemand governor changes frequency depending on CPU
utilization. It changes frequency from the lowest (whenever
CPU utilization is less than a predefined (low therehold) to
the highest and vice-versa. Performance governor always keeps
the frequency at the highest value while slowest CPU speed
is always set by powersave governor. Conservative governor
decreases or increases frequency step-by-step through a range
of frequency values supported by the hardware. Userspace
governor allows user to manually set processor frequency [10].
In order to control CPU frequency, governors use an un-
derlying subsystem inside the kernel called cpufreqq [11].
Cpufreq provides a set of modularized interfaces to allow
changing CPU frequency. Cpufreq, in turn, relies on CPU-
specific drivers to execute requests from governors.

As aforementioned, effectively usage of DVFS brings the
advantage of reducing power consumption by lowering proces-
sor frequency. Moreover, almost all computing infrastructures
possess multi-core and high frequency processors. Thus, the
benefit from using DVFS has been realized and achieved in
many different systems.

The next section describes the motivation of this work.

B. Motivation

During the last decade, several efforts have been made in
order to find an efficient trade-off between energy consump-
tion/resources management and applications performance.
Most of them relies on DVFS, and are highly explored due
to the advent of new modern powerful processors integrating
this technology.

According to the ondemand governor (the default gov-
ernor policy implemented by DVFS), the CPU frequency is
dynamically changed depending on the CPU utilisation. With
this governor, the highest available processor frequency is set
when the CPU load is greater than a predefined threshold
(up threshold). When the load decreases below the threshold,
the processor frequency is decreased step by step until the one
capable of satisfying the current process load is found.

However, in most CPUs, the DVFS technology provides a
reduced number of frequency levels (in the order of 5) [12].
This configuration might not be enough for some experiments.

Suppose a virtualized muti-core processor Intel(R)
Xeon(R) E5520 with 2.261 GHz and the DVFS technology
enable. Consider its six frequencies levels distributed as fol-
lows: 1.596 GHz, 1.729 GHz, 1.862 Ghz, 1.995 Ghz, 2.128
GHz and 2.261 GHz. Assume the host OS with a global load
which needs 1.9285 Ghz to be satisfied. Knowing that the
computation of the best execution time of an application is
made on a basis of the maximum frequency of a processor,
scheduling it with a lower frequency would end up with a
lower than expected performance. From the SLA point of view
and because of the non-existence of the expected frequency, the
ondemand governor will set the CPU frequency to the first one,
higher that the required frequency, capable of satisfying the
current load. Precisely in our example, the ondemand governor
will set the processor frequency to 1.995 GHz.

However, it would be more beneficial in terms of energy to
assign to the processor the exact required frequency. Indeed,
the DVFS technology consists of concurrently lowering the
CPU voltage and the CPU frequency. By lowering them, the
current total energy consumption of the system is globally de-
creased [13]. To improve this well-known energy management,
we will realise some adjustments on the DVFS technology.
Hence, instead of setting the CPU frequency to the first higher
available frequency, we decided to emulate some of the non-
existent CPU frequency according to the system needs.

Concretely, emulating a CPU frequency, in our work, con-
sists of executing the processor successively on the available
frequencies around the desired CPU frequency. Our emulation
process is essentially based on the conventional operation of
the DVFS. The use of the DVFS possesses as asset the fact of
generating no overhead while switching between frequencies
because it has been done in the hardware.

The next section describes our contributions.

III. CONTRIBUTION

As previously mentioned, the main idea of this paper is
to emulate a CPU processor frequency based on periodic
oscillations of frequencies between two levels of successive
frequencies. This extension will suggest a way of decreasing
power consumption in virtualized systems while keeping good
VM performance. The next section will expound our approach
and the implementation we made.

A. Our appraoch

Our approach is two folds: (1) To determine the exact
processor frequency need by the current load and (2) to
emulate it if necessary.

Let’s assume a host with several VMs running on it.
Suppose that they generate a global load of Whost. Consider
that we need our CPU to be running at processor frequency of
fhost to satisfy the current load (Whost). However, the desired
processor frequency fhost is not present among the available
processor frequencies of our host. This frequency need to be
emulated.

A weighted average can be defined as an average in which
each quantity to be averaged is assigned a weight. These
weightings determine the relative importance of each quantity
on the average. Weightings are the equivalent of having that
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many similar items with the same value involved in the
average. Indeed, the emulation of CPU processor is based
on weighted average of CPU frequency around the frequency
to emulate. Although it is possible to determine in advance
the neighboring processor frequencies, the computation of the
execution time for each of them is not realistic.

Firstly, we need to determine the required frequency and
later the both frequencies around the desired one. Assume that
fhigh and flow are the frequency above and below the desired
frequency respectively. To emulate fhost, we need to compute
our load during thigh at fhigh and during tlow at flow so that
the required frequency fhost is the weighted-average of fhigh
with thigh as weight and flow with tlow as weight. It means
that:

fhost =
(fhigh × thigh) + (flow × tlow)

thigh + tlow
(1)

Unfortunately, it is not possible to determine beforehand
the exact execution times allowing to fulfill the equation 1.
Instead of considering thigh and tlow as the execution time, we
exploited it as the occurrence count. Meaning that to emulate
fhost, the processor needs to be executed thigh times in higher
frequency fhigh and tlow times in lower frequency flow.

It is important to note that, the real execution time at
each processor frequency level can be computed as follows:
NumberOccur × TickDuration . Where NumberOccur
represents either thigh or tlow and TickDuration the duration
of each tick of reconfiguration.

To validate this assumption, let’s consider the small exam-
ple of II-B. By executing our processor, once on the lower
frequency (that means at 1.862 Ghz) and once on the higher
frequency (that means 1.995 Ghz), we will obtain the required
frequency (1.9285 Ghz).
It means that: fhost = 1.995×1+1.862×1

1+1 = 1.9285

As aforementioned, the number of executions at each
processor frequency cannot be known at the beginning of the
experiments. It must be dynamically computed.

The next section presents our implementation.

B. Implementation

In this section, we address the design and the implementa-
tion choices of our frequency emulator, and the conditions of
his exploitation.

Our implementation is two folds: (1) checking the appropri-
ate processor frequency for the current load and (2) emulating
If it is not existing.

1) Appropriate processor frequency: By default DVFS
advertises a discrete range of processor frequencies. It means
that, only a fixed and predefined number of processor frequen-
cies are available.

To fulfill the first aspect of our work (determine the
adequate frequency), we assume that, on each processor, it
is possible to have a continuous range of frequencies. Know-
ing that the difference between two successive frequencies
is practically identical, we virtually subdivided them into 3
(value obtained thanks to analysis and successive experiments).
Indeed, this subdivision allowed the obtaining of the more

moved closer frequencies. This nearness at the level of the
frequencies so allowed to satisfy at best the processor’s loads.

Assuming that the frequency range is now continuous, it is
then always possible to have a precise processor frequency for
a given load. The return of the suitable processor frequency
is made according to the frequency ratio presented in our
proposal in [8].

Indeed, at each tick of the scheduler, a monitoring module
gathers the current CPU load of each VM. It then aggregates
the total Absolute load of all the VM and computes the new
processor frequency and the frequencies surrounding it, as
depicted in the algorithm below (Listing 1) where

• LFreq[]: represents a table of 3 processor frequencies
classified as follows: the required frequency and the
surrounding ones (higher and lower respectively)

• VFreq: value obtained after the division of the interval
between consecutive frequencies by 3. It is used to
obtain some virtual processor frequencies.

• Freq[]: represents the available processor frequencies.
The table is sorted in descending order.

We iterate on the processor frequencies (line 2). Following
our assumption regarding frequencies (it will be validated in
section IV-B1), we compute for each frequency the frequency
ratio (line 3) and check if the computing capacity of the
processor at that frequency can absorb the current absolute
load (line 6). If the current frequency can not satisfy the load,
we iterate on virtual processor frequencies (line 22 to line 29).

1 void computeNewFreq(int LFreq[], int VFreq) {
2 for (i=1; i<=fmin; i++) {
3 int ratio = Freq[i]/Freq[1];
4 int NFreq;
5

6 if(ratio * 100 < Absolute_load){
7 if ((i == 1) || (i == fmin){
8 LFreq[0] = LFreq[1] = LFreq[2] = Freq[i];
9 }

10 else{
11 LFreq[0]= Freq[i] + VFreq;
12 LFreq[1]= Freq[i-1];
13 LFreq[2]= Freq[i];
14 }
15 }
16 else{
17 NFreq= Freq[i] - VFreq;
18 LFreq[1] = Freq[i];
19 LFreq[2] = Freq[i+1];
20 ratio = NFreq/Freq[1];
21

22 while (ratio * 100 > ratio){
23 if (NFreq != Freq[i+1]){
24 NFreq -= VFreq;
25 ratio = NFreq/Freq[1];
26 }
27 else
28 break;
29 }
30 if (ratio * 100 < Absolute_load){
31 NFreq += VFreq;
32 if (NFreq == Freq[i]){
33 LFreq[1] = LFreq[2] = Freq[i];
34 }
35 LFreq[0] = NFreq;
36 }
37 }
38 }

Listing 1. Algorithm for computing the adequate processor frequency and
the surrounding frequencies
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By the end of the algorithm, if the required frequency is not
among the known frequency of the processor, it is immediately
emulated.

2) Processor frequency emulation: The emulation is based
on the cumulative functions principle. It is convenient to
describe data flows by means of the cumulative function
f(t), defined as the number of elements seen on the flow
in time interval [0, t]. By convention, we take f(0) = 0,
unless otherwise specified. Function f is always wide-sense
increasing, it means that f(s) ≤ f(t) for all s ≤ t.

Suppose 2 wide-sense increasing functions f and g, the
notation f + g denotes the point-wise sum of functions f and
g.

(f + g)(t) = f(t) + g(t) (2)

Notation f ≤ (=,≥) g means that f(t) ≤ (=,≥) g(t) for
all t [14].

To exploit this notion, we defined 3 cumulative frequency
functions: CumFhigh(t), CumFlow(t) and CumFhost(t).
Where CumFhigh(t), CumFlow(t) and CumFhost(t) repre-
sent the functions for the higher processor frequency , the
lower and the required processor frequency respectively. In
our case, we defined the cumulative frequency corresponding
to a particular value as the sum of all the frequencies up
to and including that value. Meaning that: CumFhigh(t) =∑t

k=0 fhigh.

At each tick of the scheduler and for each frequency
involved (including the emulated frequency) in the emula-
tion of the frequency, we compute its cumulative frequency
(Listing 2). The computation of each cumulative frequency is
executed as follow:

• Initially, the cumulative frequencies functions are
equal to zero (their initial value). This value is reini-
tialized when the current load need a different fre-
quency or when the current one is already emulated
(line 17),

• At each tick, the cumulative frequency of the emulated
frequency (CumFhost(t)) is incremented by its value:
CumFhost(t) + = fhost (line 7 and line13),

• At each tick, only one frequency is set (either fhigh
or flow). The choice of the frequency is carried out as
follows:

◦ The sum of CumFhigh(t) and CumFlow is
computed according to the equation 2 and the
result is compared to CumFhost(t) (line 3),

◦ If the sum is lower than CumFhost(t), then
the processor frequency is set to fhigh during
the next quantum (line 6),

◦ Else, if the sum is higher than CumFhost, the
processor frequency is set to flow during the
next quantum (line 12),

◦ If both are equal, the desired frequency was
emulated and the different cumulative frequen-
cies are reinitialized (line 17).

Through these iterations and these oscillations, we managed
to emulate our desired frequency. It should be mentioned that,
the emulated frequency and the neighboring frequencies are
obtained with the algorithm presented in Listing 1.These later
(table LFreq[]) are passed as a parameter to the algorithm
below.

For instance, if we consider our example of section II-B,
the goal was to emulate a processor frequency of 1.9285 Ghz.
The surrounding frequencies are 1.995 Ghz and 1.862 Ghz.
The execution of the algorithm of Listing 2 is as follows
(Table I ):

Init. CumFH = CumFL = CumF = SumFreq = 0
cpuid = 0 ; NumbFH = NumFL = 0
LFreq[0]=1.9285; LFreq[1]=1.995; LFreq[2]=1.862

Step 1 SetFreq(0, LFreq[1]); CumFL = 0
CumFH = 1.995 ; CumF = 1.9285
NumbFH = 1;NumFL = 0 ; SumFreq= 1.995

Step 2 SumFreq ¿ CumF ⇒ SetFreq(0, LFreq[2]);
CumFL = 1.862 ; NumFL = 1; CumFH = 1.995
CumF = 3.857 ; NumbFH = 1, SumFreq = 3.857

Step 3 SumFreq = CumF ⇒ Init
NumFL = 1 and NumFH = 1

TABLE I. ALGORITHM VALIDATION

This execution validates the number of time needed to
emulate 1.9285 Ghz as presented in section III-A.

1 void EmulateFrequency(int LFreq[], int CumFH,int CumFL,
int CumF,int cpuid) {

2 int SumFreq;
3 SumFreq = CumFH + CumFL;
4

5 if (SumFreq < CumF){
6 SetFreq(cpuid,LFreq[1]);
7 CumF += LFreq[0];
8 CumFH += LFreq[1];
9 }

10 else{
11 if (SumFreq > CumF){
12 SetFreq(cpuid,LFreq[2]);
13 CumF += LFreq[0];
14 CumFL += LFreq[2];
15 }
16 else{
17 CumF = CumFH = CumFL = 0;
18 }
19 }
20 }

Listing 2. Emulate processor frequency

During this execution, we remind that there is a trigger
in charge of the computation of the absolute load and the
notification of the current desired frequency. This situation
also leads to a reinitialization of all the cumulative frequencies
value.

The next section presents some experiments to validate our
proposal.

IV. VERIFICATION OF OUR PROPOSAL

We previously presented our approach and its implementa-
tion in the default Xen credit scheduler. In this section, we will
present the experiment environment, the application scenario
and some experiments to validate our proposition.
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A. Experiment environment and scenario

Our experiments were performed on a DELL Optiplex 755,
with an Intel Core 2 Duo 2.66GHz with 4G RAM. We run a
Linux Debian Squeeze (with the 2.6.32.27 kernel) in a single
processor mode. The Xen hypervisor (in his 4.1.2 version)
is used as virtualization solution. The evaluation described
below was performed with an application which computes an
approximation of π. This application is called π-app. In this
scenario, we aim at measuring an execution time.

B. Verification

1) Proportionality: In our validation, we rely on one main
assumption: proportionality of frequency and performance.
This property means that if we modify the frequency of the
processor, the impact on performance is proportional to the
change of the frequency.

This proportionality is defined by:

Fi

Fmax
=
Tmax

Ti
(3)

which means that if we decrease the frequency from
Fmax down to Fi, the execution time will proportionally
increase from Tmax to Ti. For instance, if Fmax is 3000 and
Fi is 1500, the frequency ratio is 0.5 which means that the
processor is running 50% slower at Fi compared to Fmax. So
if we consider an application that runs in 10 mn at Fmax, the
same application will be completed at 10

0.5 = 20mn at Fi.

To validate this proportionality rule, we conducted the
following experiment. We ran different π-app workloads at
different processor frequencies and measured the execution
times, allowing us to verify the proportionality of frequency
ratios and execution time ratios. Figure 1 gives some of the
results we obtained, which shows that frequency ratios and
execution time ratios are very close, as assumed in equation 3.

Fig. 1. Proportionality of frequency and execution time

2) Validation: Our textbed advertises the following pro-
cessor frequency: 2.66GHz, 2.40GHz, 2.13GHz, 1,86GHz and
1.60GHz.

The first part of our validation consists on validate our
approach of emulation. For this validation, we executed our π-
app application initially at 2.4 Ghz. Based on our proposal, we
will execute the same computation by emulating the frequency
2.4 Ghz. We started by a well-known frequency for this

workshop, but others experiences not presented here emulate
the non-existent frequency.
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Fig. 2. Execution of π-app at 2.4Ghz
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Fig. 3. Emulation of 2.4Ghz with oscillations

According to figure 2, the execution time of the π-app
is about 410 Units. While emulating the same processor
frequency, we obtained an execution time of 415 Units, as
depicted by the figure 3. Based on this first use case, we can
validate our approach. Furthermore, with similar experiences
(not presented here), we have proved that the oscillation of the
frequency in non intrusive.

The second part consists of validating the emulation of
a non-existent frequency. We executed our π-app application
of the maximum frequency (figure 4 )and we recorded its
execution time for future comparisons (Cf. Table II ). Then,
we choose two of our virtual processor frequencies (2.222
Ghz and 2.576 GHz); we have emulated them to execute our
application (respectively figure 5 and figure 6). Their execution
time is used for comparison with the expected execution
time according to our proportionality rule (Cf. Table II). The
expected time formula is: Ti = Fmax×Tmax

Fi

Thanks to this scenario, we can validate our implementa-
tion approach. After execution, we can conclude that the real
execution time are almost equal to the expected time. Further
evaluations are to be done in order to identify the possible
weaknesses/advantages of this proposal.

The next section presents the related works.
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Fig. 4. Execution of π-app at maximum frequency
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Fig. 5. Execution of π-app at emulated frequency 2.22Ghz

V. RELATED WORKS

Numerous research projects have focused on optimization
of the operating cost of data centers and/or cloud computers.
Most of them concerned efficient power consumption [15].
Proposed solutions are based on either virtualization or DVFS.

In virtualized environment, power reduction is made possi-
ble through servers’ consolidation and live migration. Classic
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Fig. 6. Execution of π-app at 2.578Ghz

Frequency Execution Expected time (s)
(GHz) Time (s)

2.667 108.65

2.222 131.52 Ti = 2.667×108.65
2.222 = 130.41

2.578 112.79 Ti = 2.667×108.65
2.578 = 112.40

TABLE II. EXECUTION TIME RESULTS

consolidation consists on gathered multiples VMs (according
to their load) on top of a reduced number of physical comput-
ers [16].

In [17], Verma et al. aims at minimizing power consump-
tion using consolidation after server workload analysis. They
design two new consolidation approaches based respectively
on, peak cluster load and correlation between applications
before consolidating. Mueen et al. Strategy for power reduction
consists in categorizing servers in pools according to their
workload and usage. After categorizing, server consolidation
is executed on all categories based on their utilization ratio in
the data center [18].

As for the live migration, it consists of migrating a VM
from a physical host to another without shutting down the
VM. Korir et al [19] proposes a secure solution of power
reduction based on live migration and server consolidation.
Their security constraints are related to VM migration. Indeed,
critical challenge of VM live migration appears when VM is
still running when migration is in process. Well known attacks,
such as Time-of-heck to time-of-use (TOCTTOU) [20] and
replay attack, can be launched. In their solution, they design a
live migration solution capable of avoiding VM to be exposed
to eventual attacks.

One of the most rising approaches in power reduction is
Dynamic voltage and frequency scaling(DVFS) [21], where
voltage/frequency can be dynamically modified according to
the CPU load. In [22], the authors design a new scheduling
algorithm to allocate VMs in a DVFS-enabled cluster by
dynamically scaling the voltage. Precisely, Laszewski et al.
minimizes the voltage of each processor of physical machine
by scaling down their frequency. In addition, they schedule
the VMs on those lower voltage processors while avoiding to
scale physical machine to high voltage.

In general, those previous approaches only are focused
on well-known processor frequency. In [12], Blucher et al.
suggests some approaches of the CPU performance emulator.
Precisely, they propose and evaluate three approaches named
as : CPU-Hogs, Fracas and CPU-Gov. CPU-Hogs consists of a
CPU-burner process which burn and degrades the initial CPU
processor according to a predefined percentage. CPU-Hogs
has the disadvantage of being responsible for deciding when
CPUs will be available for user processes. With Fracas, every
decision is made by the scheduler. With Fracas, one CPU-
intensive process is started on each core. Their scheduling
priorities are then carefully defined so that they run for the
desired fraction of time. CPU-Gov is a hardware based solution
base. It consists on leveraging the hardware frequency scaling
to provide emulation by switching between the two frequencies
that are directly lower and higher than the requested emulate.
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Although, those approaches are related to the CPU perfor-
mance, they aim at emulating a predefined known processor
frequency. Concretely, their goal is the answer this question:
Given a CPU (characterized by its CPU performance for
example), how can we emulate another CPU with a pre-
cise characteristics? Their emulation is done once and ex-
periments are executed on it. In our case, it consists of a real-
time emulation of CPU and it constitutes a base for an energy
aware resources management.

VI. CONCLUSION AND PERSPECTIVES

With the emergence of cloud computing environments,
large scale hosting centers are being deployed and the energy
consumption of such infrastructures has become a critical
issue. In this context, two main orientations have been suc-
cessfully followed for saving energy:

• Virtualization which allows to safely host several guest
operating systems on the same physical machines
and more importantly to migrate guest OS between
machines, thus implementing server consolidation,

• DVFS which allows adaptation of the processor fre-
quency according to the CPU load, thus reducing
power usage.

We observe that DVFS is mainly used, but still generates a
waste of energy. In fact, the DVFS frequency scaling policies
are based on advertised processor frequency. By default and
thanks to the ondemand governor, it scales up or down the
processor frequency according to the current load and the
different predefined threshold (up and down). However, the
set of frequency constitutes a discrete range of frequency. In
this case, the frequency required for a specific load will almost
be scaled to a frequency higher than expected; which leads to
a non-efficient use of energy.

In this paper, we proposed a technique which addresses this
issue. With our approach, we are able to determine and allocate
a more precise processor frequency according to the current
load. We subdivided the interval between two frequencies of
the processor into tinier virtual frequencies. This leads to
simulate a continuous processor frequency range. With this
configuration and the ratio proportionality rule, it is thus
almost possible to set the suitable frequency for a given load.
Furthermore, thanks to oscillations, made possible through the
principle of cumulative frequency, between the frequencies
surrounding the desired one, it was possible to emulate a non-
existent frequency.

Our proposal was implemented in the Xen hypervisor
running with its default Credit scheduler. Different scenarios
were used to validate our assumptions and our proposal.

Our main perspective is to sustain this proposal with a real
world benchmark before a complete validation. Furthermore,
we aim to investigate and address the issue of energy conserv-
ing while eventually exploiting this operation.
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Actions, Objects, and Subjects
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Abstract— This paper proposes an action-oriented compu-
tational model to be used as the low-level implementation of
programs, hence effectively omitting processes. The benefits
of the model are that concurrent execution, mutual exclu-
sion, and synchronisation are automatically provided without
explicit programming, messages are not needed between
executing bodies, deadlocks do not exist at the action level,
and the system uses implicitly as many parallel execution
units as possible.

However, action orientation is not a natural way to think
for humans. Therefore, also subjects, which are objects
providing liveness, are introduced to make programming
sequential, but still making it easy to implement the program
as actions, hence getting the benefits listed above.

Keywords: Concurrent languages, concurrent programming, par-
allel processors

1. Introduction
Concurrent execution has become a more and more im-

portant part of software. Many systems are distributed and
processors have several cores. Traditionally, each process
computes one task, and in some cases, interacts with other
processes or threads. This interaction may take place as
common variables, causing critical sections to appear, or by
message passing, where messages carry data from process
to process. Anyway, introducing concurrency causes needs
for mutual exclusion and synchronisation mechanisms, and
creates problems like starvation and deadlock.

To overcome the problems caused by concurrency, pro-
gramming languages offer concepts like monitors, message
passing, channels, futures, or rendez-vous. However, the
basic problems, i.e., mutual exclusion and synchronisation,
still exist, and the programmers have to understand them
to cope with them. In most cases, concurrency has to be
programmed explicitly into programs, the main exception
being parallel processing in scientific computing.

The action-oriented execution model used in this paper
was independently suggested by Chandy and Misra as Unity
[2], by Back and Kurki-Suonio as Joint Actions [1], and
by Lamport as Temporal Logic of Actions (TLA) [8]. The
model makes critical sections obsolete, and hence also mu-
tual exclusion. The model also has a built-in synchronisation
mechanism. These are evident benefits if compared with
the traditional process-oriented execution model. However,
although this model has been used in several research
projects, the models have not been adopted in practical
software production. There are probably two main reasons

for that. First, humans tend to think causally and find causal
relations even if there are none [6]. Using actions is in
contradiction to this causality. Second, all these methods
are intended for specification and the real implementation
still has to be process-oriented. Since changing the program
structure from action-oriented to process-oriented is not a
trivial task and there are no tools to automatically do it, this
may consume all benefits that action orientation can offer. In
short, the action-oriented paradigms have been suggested for
high-level specification, and the implementation is assumed
to be process-oriented.

In this paper, a low-level action-oriented system is in-
troduced with high-level sequential programming bodies,
subjects. The benefits of the idea are that synchronisation and
mutual exclusion is implicitly solved by the action-oriented
model, but the programmer will still be able to describe
the system as programs where statements have the human-
expeced causal relationships.

This paper is organised as follows: First, action system
with objects are discussed, then action execution at low
level is introduced, and before brief discussion subjects are
described through an example.

2. Action-oriented execution model with
objects

In action-oriented models, actions can be considered either
state transitions from a state to another, or relations between
two states. Hence, actions do not contain any memory, but
the whole state of the computation is stored in variables.
In contrast, in process-oriented systems the state of the
computation is in the variables and program counters of the
processes or threads. The DisCo specification language uses
the same model as [1], [2], and [8], but its variables are
collected into objects [4]. The action-oriented approach is
discussed in detail by Kurki-Suonio in [7].

2.1 Concurrent Actions
Actions alter the state, but do not consume time ideally. In

TLA, an action A can be expressed as a predicate between
two states, e.g. s[[A]]t, where s and t are states. Starting
from a state s0, we can see a sequence of actions take place,
forming a behaviour. Formally, a behaviour is an infinite
sequence of states σ = s0, s1, s2, s3...

There is a non-stuttering1 action between each state of

1Stuttering actions do not alter the interesting set of variables; they can
be added anywhere. Altering the set of interesting variables, alters the set
of stuttering actions, too, and an alternative behavior is constructed.
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a behaviour. If two actions access distinct sets of vari-
ables, their order can be changed without violating TLA
formulas, since TLA does not have operators next step or
previous step. Hence, behaviours σ0 = s0, s1, s2, s3, ... and
σ1 = s0, s2, s1, s3, ... are different, but there are no TLA
predicates that can distinguish these behaviours from each
other (note that if the sets of accessed variables are not
distinct, this is probably not the case, but then action guards
may prevent either behaviour).

In action-oriented models, therefore, concurrency is mod-
elled by nondeterministic selection of actions to be executed.
Further, actions accessing distinct variables can be executed
concurrently, since we can serialise them in any order. To
be precise, we can execute actions concurrently, if the sets
of assigned variables are distinct and action do not refer to
variables assigned to by other actions. Formally, if VAa

is
the set of variables assigned (and referred) to by action A,
and VAr is the set of variables referred only by action A,
then parallel execution is possible for a set of distinct actions
S, where

∀A,B ∈ S, A 6= B :

VAa
∩ VBa

= ∅ ∧ VAa
∩ VBr

= ∅ ∧ VBa
∩ VAr

= ∅ (1)

This means that even if the action models are originally
sequential, we can execute actions concurrently, provided
that (1) holds for each set of actions executed concurrently.
Since actions do consume time in real computation, this
might have other consequences as well, but they are not
discussed in this paper. When variables are collected into
objects, (1) can be used for objects instead of variables. In
some cases, this may appear as unnecessarily strict, but this
is good enough for many practical purposes.

In this paper, the action-oriented execution model is
used as the lowest mechanism in computation instead of
processes. Since the model allows concurrent execution of
distinct actions, we get a system which can use as many
parallel processing units as there are distinct actions enabled.
There are huge benefits in this idea: without the concept of
processes, programmers do not need to take care of mutual
exclusion or synchronisation, deadlocks cannot happen at
action level, and there is no need for message passing. All
execution takes place in actions that alter the contents of
objects that participate in them.

The basic components of the action-oriented execution
model are objects and actions. In this paper, we use a model
derived from DisCo [5]. Actions, objects, and their properties
in this model are briefly introduced.

2.2 Objects
An object may contain any kind of data, data structures,

containers, or combination of them. In this paper, objects are
unnamed entities that contain data; from the programmer’s
point of view they can be considered record types.

Objects are usually created by the initialisation of the sys-
tem. However, the model allows the creation and destruction
of objects and actions during execution.

2.3 Actions
An action can be considered a potential state transition

between two states determined by the objects of the system.
The action has participants (objects) that participate in the
action in roles, and two parts: a guard and a body. The guard
indicates when the action can be selected for execution, i.e.,
the action is enabled. The body contains a piece of program
code that is executed whenever the action is selected for
execution. The participants are distinct, i.e., an object may
participate in an action in one role only. In contrast to DisCo,
syntactic actions are not models that introduce a set of TLA
actions whose participants are computed in run-time, but
actions have fixed participants and parameters that are given
at the creation time.

Action guards and bodies may refer to the data of the
action participants only. Any datatype can be part of an
object. Since actions may not refer to data outside its
participants, referencing through pointers or references is
allowed only in those cases where the target data is also
either a participant of the action or part of a participant
object.

The action guards in Joint actions, Unity, TLA, and DisCo
can be divided into three parts:

1) Global part that can refer to any variable or object in
the system. The reference is possible by quantifications
or closures.

2) Common part that can refer to the contents of several
participants.

3) Local part that can refer to the contents of a single
participant only.

Although a very powerful expression, global part of the
guard is hard to implement and very inefficient if imple-
mented. They are not included in the action model of this
paper. Furthermore, action guards are syntactically separated
to local and common parts to make the implementation of
the scheduler more efficient. For example, the local part of
the guard has to be evaluated only, if the contents of the
participant are changed, and if any of local parts of the action
guard is false, there is no use to evaluate the common part.
Once evaluated, the value of the common part can be stored
for further use until the contents of an action participant is
changed.

2.4 Objects in Action-oriented Systems
In traditional object-oriented systems, classes contain both

the data and the methods that access the data. This is
illustrated on the left side of Figure 1. Whenever the values
of objects are needed or updated, corresponding method is
invoked. Method calls are indicated by arrows in Figure 1 to
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Fig. 1: Classes and methods (left), Classes and actions (right)

emphasise that an external caller is needed. The methods are
printed in black, since normally their contents are private.

On the right side of Figure 1, the action A (illustrated
by a large diamond) contains the calls illustrated on the left
side of the picture. Action B is another action with two
participants; it shares the first method of object C with action
A. Methods are white, since they are programmed as part
of the action. Although private implementations of methods
could be used also with actions, in any case an action has to
contain some code of its own to make the methods interact.
An action may be selected for execution if it is enabled.
Hence, an external caller is not needed and lines are used
instead of arrays to emphasise this.

3. Action Execution
This part describes the high-level idea of execution where

basic primitives are actions instead of processes. Without
going to details, there exists an experimental environment
where this model has been tested.

The system consists of a scheduling processor and n
processing units that execute the actions. These can be tra-
ditional processors. For efficiency, they should be connected
to each other by special hardware, but the experimental envi-
ronment we have is built to run on a normal multiprocessor
computer. The overall structure is illustrated in Figure 2.

The model works as follows: First, the scheduler selects a
set of enabled actions from the action store to the action
queue, remembering that actions to be selected shall be
distinct from each other and actions already in the queue
or in execution. Second, one of the processing units takes
an action description from the queue, loads the action code
and accessed objects into its local memory2, and executes the
action. Third, when the execution is finished, altered objects
are copied to the common memory, and action is returned
to the action store.

2Loading is not needed if the processors have access to the common
memory.
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Fig. 2: The overall structure of action execution.

In short, synchronisation conditions are expressed by
action guards, and mutual exclusion is automatically taken
care of by the scheduler. This means that the basic primitives
for concurrent execution are handled by hardware and the
scheduler instead of the programmer, much like how the vir-
tual memory is taken care of by hardware and the operating
system instead of manual overlay by programmers. Note that
the code to be executed is not affected when processors are
added or removed.

3.1 Crossing roads
An example of crossing roads is used to show how action-

oriented approach works. Consider a crossing of two roads,
one north to south and the other west to east.

There is a lane to go forward or turn right and a separate
lane of its own to turn left, all of these for each direction.
Each lane has a corresponding traffic light, as illustrated in
Figure 3.

The lanes are named as follows: the first letter gives the
approaching direction, and second and third letters give the
destination. So, SW stands for from south to west, and SNE
from south to north and east. One possible set of pairs that
are safe to have green lights on at the same time is NSW
and SNE, WES and EWN, NE and SW, and WN and ES.
Running this sequence will eventually give all directions a
green light.

There are three classes that can be identified: a traffic light,
a lane, and a car. The car is not part of the system but an
external object. The lane is an abstraction that is connected
to traffic lights: the traffic light can be green or yellow only
if the lane is safe, i.e. all lanes crossing the lane have the
corresponding traffic light red.

The simplest class is Lane. It has to contain a variable
indicating if the lane is safe or not. Class Traf_light includes
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Fig. 3: Crossing with lanes SW and SNE and their signals
illustrated.

class Lane is
safe: Boolean:=false;

end;

class Traf_light is
lamp: (RED, YELLOW, GREEN):=RED;

end;

Fig. 4: Classes Lane and Traf_light.

a state variable that corresponds to the colour of the traffic
light. Classes Lane and Traf_light could be combined to one
class since they are closely connected, but this would make
the objects less intuitive. The classes are given in Figure 4.

Actions set_red, set_green, set_yellow, free_lane, and
reserve_lane are using these classes. The first four actions
have participants of the given classes only and they are
shown in Figure 5.

Action set_green puts the green light on, if the cor-
responding Lane is safe. Action participants are defined
between keywords is and body of the action. Expression after
participant name list (after the colon) is the local guard of
the participant.

Note that the connection between participants lane and
light could be expressed in the common guard using iden-
tities (e.g. lane.id=light.id), but since these relations never
change, the condition is left out, and actions are created for
only those pairs of lanes and traffic lights that are connected.

Action set_yellow is enabled, if the traffic light is green
and given time have been elapsed. It has only one participant,
green_on, indicating the time green light should be on. This
value is given when the action is created. Function timeout
returns true if given time has elapsed since last update of
the object. This requires that also the time of the update is
stored when updating an object. Action set_red is almost

action set_green is
Lane as lane: safe;
Traf_light as light: lamp=RED;

body
light.lamp:=GREEN;

end;

action set_yellow(green_on: seconds) is
Traf_light as light:
lamp=GREEN and timeout(green_on);

body
light.lamp:=YELLOW;

end;

action set_red (yellow_on: seconds) is
Traf_light as light:
lamp=YELLOW and timeout(yellow_on);

body
light.lamp:=RED;

end;

action free_lane (margin: seconds) is
Lane as lane: safe;
readonly Traf_light as light:
lamp=RED and timeout(margin);

body
lane.safe:=false;

end;

Fig. 5: Actions set_green, set_yellow, set_red and free_lane.

identical to action set_yellow.
Action free_lane waits margin seconds after the execution

of set_red to be sure that there are no cars on the lane before
freeing it.

To enforce any sequence to go through all lanes, a
control object is needed to guide the behaviour of action
reserve_line. The control class has four states indicating the
current phase of the system; this ensures all directions will
get green light in a steady basis. The control class, action
reserve_line are in Figure 6.

3.2 Initialisation
The initialisation code has to create the traffic lights, lanes,

and actions. It is intended to be sequential code executed
before the action system is invoked. Note that new actions
and objects can be created and deleted also in run-time. The
code in Figure 7 shows how the participants and parameters
of actions are given static values in creation, hence making
it possible to omit common parts of guards describing the
relations between the objects.

This system will execute forever. In some cases execution
will lead to a situation where no actions are enabled and the
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type Safe_pairs is
(NSW_SNE, NE_SW, WES_EWN, WN_ES);

class Control is
state: Safe_pairs:=NSW_SNE;

end;

action reserve_lane
(current, next: Safe_pairs) is
Control as cont: state=current;
readonly Lane as old_1, old_2:
not safe;

Lane as new_1, new_2: not safe;
body
cont.state := next;
new_1.safe, new_2.safe:=true, true;

end;

Fig. 6: Action reserve_line

initially
nsw, sne, ne, sw, wes,
ewn, wn, es: Lane; // Creates lanes

tl_nsw, tl_sne, tl_ne, tl_sw, tl_wes,
tl_ewn, tl_wn, tl_es: Traf_light;

control: Control;
// Some constant values
green_on, yellow_on: seconds:=20, 5;
margin: seconds:=8;
// Create actions for a lane
create set_red(yellow_on, nse);
create set_yellow(green_on, nse);
create set_green(nse, tl_nse);
create free_lane(margin, nse, tl_nse);
// etc. for each lane
create reserve_lane(NSW_SNE, NE_SW,

nsw, sne, ne, sw);
// etc. for each safe pair

end initially;

Fig. 7: Initialisation code for the action version

system terminates. This means that deadlocks are possible at
the application level although at action level the deadlocks
caused by the mutual exclusion of objects as resources are
prevented.

4. Subjects
As mentioned in the introduction, the action-oriented view

is not close to the way humans think. For example, reading
and changing the algorithm that controls which lanes are
given turn is not easy. Hence, even if the traditional problems
of concurrency and scalability for n processors could be
solved by actions, there is no much hope to alter the way
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Fig. 8: Subjects versus actions and objects.

of human thinking. Virtual memory was referred to as an
analogous example. It also gives a good next goal, since one
cannot see from the source code if the application is made
for a virtual memory computer or not. Unfortunately, action
orientation abandons the basic abstraction of processes and
use actions instead and this is too drastic a change to be
completely hidden from the programmer.

To make programming for action systems closer to se-
quential thinking characteristic for humans, a concept of
subjects is introduced. Note that although term subject is
used, the model does not follow subject-oriented program-
ming introduced in [3]. However, there are some similarities.
In [3] subjects are different views to an object; in this paper,
subjects are different views to a set of objects.

On the left side of Figure 8, there are the same actions and
objects as were on the right side of Figure 1. On the right
side of Figure 8 is a subject code, from which the actions
are recognised and implemented. Note that there can be both
private and open methods; however, their details are not it
the scope of this paper.

In contrast to action-oriented systems, subjects provide
an illusion of sequential behaviour; this is maintained by
an implicit control object (not shown in Figure 8) and
writing the code sequentially. The compiler recognises the
boundaries of actions, and transforming this to an action
system can be hidden from the programmer. Concurrency is
implicit, if there are more than one subject in the system,
and the programmer does not need to worry about the mutual
exclusion or synchronisation of objects.

The example of crossing roads is revisited to illustrate
how subject-oriented approach works. We can observe this
example from three points of view. These views are first
described informally as follows.

First, the car (or the driver) sees the crossing as the
following sequence of events:

1) Approach the crossing and select correct lane x.
2) Arrive at the stop line of lane x. Stop if light x is red

or yellow has been on for some time.
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3) Go if light x is green or yellow has just appeared.
4) Leave the crossing.
Since the car is not part of the system, this is an interface

of the system, and hence not implemented.
Second, the traffic light for each lane is internal to the

system and runs repeatedly the following sequence:
1) Show red light.
2) The lane is safe, show green light.
3) Time out for green, show yellow light.
4) Time out for yellow, show red light.
5) Time out for safety margin, release the lane.
Third, the internal control logic may repeat the following

sequence:
1) Wait lanes are free and reserve the first pair of lanes.
2) Wait lanes are free and reserve the second pair of lanes.
3) Wait lanes are free and reserve the third pair of lanes.
4) Wait lanes are free and reserve the fourth pair of lanes.
Naturally, the control logic could be much more sophis-

ticated. For example, each step could check if there are
cars approaching on the corresponding lane. However, we
continue with this simple system.

We can identify the following objects: cars, traffic lights
for each lane, and the lanes. Cars are not part of the
implementation, and lanes and lights could be united, but
since the lights are actually control objects (subjects) and
lanes are mostly abstractions within the system, we keep
them separate. Using these objects we can write subjects
Traf_light and Control (Figure 9) from the informal de-
scription (the cars and initialisation of the system have been
omitted to save space). Note that although class Lane of
Figure 4 is used, the introduction of subject Traf_light makes
separate class for traffic lights obsolete.

Each wait statement on Control and Traf_light can be
represented as an action. For example, the first wait of
Control could be transformed to the action Control_1 in
Figure 10 that resembles action reserve_line in Figure 6.

The detailed semantics of the programming language used
for subjects is not in the scope of this paper. Actually, any
object-oriented programming language will do, if subjects
and statements wait and collection are added.

The wait statement means that the execution of the subject
in that branch is stopped until the given condition is true. In
translating to actions, the condition is used as the guard of
an action and its statements form the action body.

The collection statement indicates alternatives that may
take place; each of them is actually an action of its own,
and if they are distinct, they can be executed in parallel.
This statement was not needed in this example.

The following rules to transform sequential code of sub-
jects to actions are created from the notes above.

1) Create a control object with a control variable for the
subject.

2) The guard of the first action is a test if the control
variable is in the initial state.

subject Traf_light (lane: Lane,
green_on, yellow_on, margin: seconds)

is
lamp: (RED, YELLOW, GREEN);

begin
lamp:=RED;
loop
wait lane.safe then
lamp:=GREEN;

end;
wait timeout(green_on) then
lamp:=YELLOW;

end;
wait timeout(yellow_on) then
lamp:=RED;

end;
wait timeout(margin) then
lane.safe:=false;

end;
end loop;

end Traf_light;

subject Control (
p1s, p1t, // pair 1: straight and turn
p2s, p2t, p3s, p3t, p4s, p4t: Lane) is

begin // Lanes are initially unsafe
loop
wait not (p4s.safe or p4t.safe) then
p1s.safe, p1t.safe:=true, true;

end;
wait not (p1s.safe or p1t.safe) then
p2s.safe, p2t.safe:=true, true;

end;
wait not (p2s.safe or p2t.safe) then
p3s.safe, p3t.safe:=true, true;

end;
wait not (p3s.safe or p3t.safe) then
p4s.safe, p4t.safe:=true, true;

end;
end loop;

end Control;

Fig. 9: Subjects Traf_light and Control

action Control_1 is
readonly Lane as p4s, p4t: not safe;
Lane as p1s, p1t;
Control as cont: status=1;

begin
p1s.safe, p1t.safe:=true, true;
cont.status:=2;

end Control_1;

Fig. 10: Action Control_1 generated from subject Control
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3) The body of the first action starts immediately after
begin, and ends when a collection, wait, or a loop
containing wait(s) is encountered.

4) A loop containing waits introduces a new control
object that is used within the loop, applying these
same rules. If the loop does not include waits, it is
implemented as a traditional loop in the action body.

5) The condition of a wait becomes the guard of the next
action.

6) The code until the next collection, wait, or loop
containing wait(s) becomes the body of the action.

7) Add update code for the control variables into each
action body, and the corresponding tests of the control
variables to the action guards.

Actions can be automatically generated from the subject
descriptions and directly executed by the action model
computer described earlier as illustrated in Figure 8. The
objects participating in actions can be resolved relatively
easy by the compiler.

Subjects and objects are closely related. Objects provide
room for local variables and methods associated with them;
so do subjects, but they also make something happen. When
methods describe potential things that can happen, i.e., safety
properties, subjects also introduce liveness properties for the
system, just like processes have implicit liveness properties.

5. Discussion and Conclusions
The action-oriented model can be used on top of a general

purpose operating system as was done when the concept was
tested by an experimental environment built on Posix threads
interface. The experiments show that the action-oriented sys-
tem is working in principle, but the existence of the operating
system and its scheduler makes it impossible to determine
if this paradigm is really competitive in comparison with
a traditional process-oriented system. The experiments also
indicate that action-oriented programs work logically equally
well regardless of the number of processors available.

The model is expected to work better in specialised en-
vironments having multiple processors. Hence, actual hard-
ware supporting the action orientation as shown in Figure
2 together with measurements are needed—in other words,
the idea needs empirical results to support it.

The main difference with action orientation and most other
approaches is to completely omit the idea of processes,
and gather data to objects that participate in actions. In
spite of the benefits of action systems, they are as such
not very attractive, since they are in contradiction to the
way humans think. Our thinking is based on causality, and
we even tend to find causality when there is none. Hence,
working with actions requires a lot of effort. Introducing
subjects that describe the system from the viewpoints of
active interfaces gives the programmer possibility to think
causally, and makes it easy to implement the program as
actions.

The proposed approach has several benefits:
1) implicit mutual exclusion
2) implicit synchronisation
3) the prevention of most of the potential deadlocks
4) less starvation possibilities
5) still sequential programming
6) power control is implemented easier.

Starvation and high-level deadlocks may still occur. These
deadlocks are either programmed (i.e., the computations
should terminate anyway) or high-level logical errors. Star-
vation cannot happen without mutual exclusion. Hence, it
is possible, but its possibility can be considerably decreased
by a good action scheduler.

The power control has not been mentioned before. Shortly,
if a processor finds the queue empty, it can enter a power-
saving mode. The scheduler can wake up processors if the
queue is longer than the number of active processors.

The proposed subject-oriented programming idea hides
the actions of action-oriented models, but does not harm
the benefits of action orientation: implicit mutual exclusion
and synchronisation, no low-level deadlocks and implicitly
parallel execution whenever possible.

Overall, this approach seems to be very attractive es-
pecially in environments where computation power and
efficient power control is needed. However, although tested
in principle, it is still mostly an idea, which requires a lot
of further research.
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Abstract - In this paper, we present a replacement policy for 
use in sub-block memory system caches. Sub-block caches aim 
at reducing area overhead of tag RAMs in cache 
architectures. By merging multiple cache-lines (sub-blocks) to 
make up a wider cache-line, these sub-block caches are able 
to index multiple sub-blocks with a single tag line, thereby 
reducing the tag hardware overhead. However, this causes all 
sub-blocks indexed by a tag to be replaced or evicted together, 
which could degrade the performance of sub-block caches 
when compared with conventional caches. To address this 
drawback, we present a replacement policy that considers 
cache sub-block information in making replacement decisions. 
For experimentation and evaluation of this policy, we 
implemented a sub-block cache simulator by modifying the 
Simplescalar Toolset. Our extensive simulations indicate that 
sub-block caches using our proposed replacement policy 
reduce sub-blocking miss rate penalty by up to 34%.  

Keywords: memory; cache; replacement; performance. 

 

1 Introduction 
  Increase in Microprocessor speed has exceeded the rate 
of improvement in Dynamic Random Access Memory 
(DRAM) speed in recent years [1]. Although there is a 
continued drive for better processor performance, memory 
systems have to be carried along to enable this improved 
performance. The widening performance gap between 
processors and Memories [2] created several challenges for 
computer designers. To solve this problem, designers turn to 
memory performance improvements which ultimately dictate 
the performance and power consumption of a processor. 
Caching is a common approach used to achieve memory 
system speed up, by storing data that has been recently used in 
a local memory. Using a large cache could increase the access 
hit rate, which in turn improves processor speed but this 
approach comes with a cost of increased hardware and higher 
energy consumption. As a result, there is always a trade-off in 
memory system design since not all accessed memory 
locations can be stored in faster memories such as caches. 
Current memory systems designed with SRAMs, DRAMs 
and/or CAMs [3,4], have not been able to catch up with 
processor performance. Attempting to cover this shortfall by 
just memory size increments incur significant hardware and 
power overhead as memory sizes increase. 

Several architectures have been proposed [5] that attempt to 
increase cache performance without paying a huge price in 
hardware/energy overhead. One approach is requesting wider 
cache lines than needed from farther memories. Only the 
desired bytes are then selected using enable bits while the 
other bytes are cached for future usage. This approach 
requires wider buses at the different memory hierarchies. 
Alternatively, the wider block could be made up of smaller 
blocks that are allocated independent of each other. This 
approach, known as sub-blocking, allows the interfaces to 
retain smaller cache-block width and is completely 
transparent to software. For example, a cache with block size 
of 256-bytes could request only 64-bytes from next level 
cache at a time. These 64-byte sub-blocks (SB) can be 
allocated independently to the 256-byte cache block with 
individual valid bits to differentiate between the different 
fetched/allocated blocks. This is very similar to a 
conventional 4-way cache with 64-byte cache blocks except 
that the two (2) LSBs of the tag are not stored in the tag 
RAMs and fewer tag lines are required for indexing. These 
two LSB bits from an incoming cache access are used as 
index to the specific sub-block in the wider cache block. This 
process of grouping multiple sub-blocks to a single wider 
block is referred to as aggregation throughout this paper. 
Therefore, aggregates share a common tag. Figure 1 shows a 
simple example of a single cache way with four cache lines 
and four sub-blocks per cache line along with the 
corresponding valid bits.  

 

Figure 1: A Sub-block Cache with four cache lines 

1.1 Motivation 
 Using additional DRAM cells to implement a large cache 
may appear as a simple solution to the memory bottleneck 
problem, but this would lead to other setbacks in the design, 
like large tag array sizes. For example, a 48-bit byte-
addressable physical address access, to a 16-way set 
associative 1MB cache with 64-byte line size and 1024 sets 
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requires 30 bit (i.e. approximately four bytes) per tag entry. 
This tag entry may require extra metadata (e.g., replacement 
bits, coherence state, and shared information) which could add 
up to 2 bytes in tag overhead. Therefore, at 6-bytes of tag 
overhead and 64-byte cache-lines, about 9.3% of the total on-
chip storage is used for tag storage. This overhead could be 
significant in larger caches. For example a 1GB DRAM would 
have 96MB tag overhead. This large tag overhead has been 
observed by other researchers, and a common approach to 
reduce this overhead is cache line increase [24,25]. For 
example, using 4KB instead of 64-byte cache lines reduces the 
tag overhead by about 98%. This is because a single 6-byte tag 
used to index a 64-byte line can now be used as index to a 
4KB line (i.e. 64*64-byte line). Very large cache lines are 
known to suffer from fragmentation problems; in the worst 
case, only a 64-byte sub-block will be used from each 4KB 
cache-line allocated. Also, moving 4KB data chunks at a time 
could cause significant bus contention off-chip, leading to 
substantial performance degradation throughout the cache 
hierarchy. Similarly, large cache-lines can cause severe false-
sharing in multi-threaded applications [26] although the 
fragmentation problem is usually of a greater concern [27]. 
Moving unused blocks back and forth also wastes power and 
uses up bandwidth [28]. Supporting large cache-lines also has 
other challenges like mapping data across more than one 
physical DRAM row and timing constraints. 

Sub-blocking has been shown to alleviate fragmentation and 
false sharing problems [29] and it is achieved by breaking a 
large cache-line/super-block (e.g. 4KB) to multiple smaller 
cache-lines/sub-blocks (e.g., 64 chunks of 64-byte). The entire 
cache-line is still indexed by a single tag entry, but additional 
valid and coherence bits are added for each sub-block. For 
example, using 3-bits for coherence and 1 valid bit in our 
previous example of 4KB line ( 64-byte sub-lines) leads to 
64*4 (256) bits. This increases the overhead of the tag array 
compared to a single large cache-line approach, but offers 
about 92% tag array reduction when compared to a 
conventional cache with 64-byte lines. The sub-block cache 
consumes bandwidth and power to fetch only requested sub-
blocks, compared to a large cache-line approach that transfers 
the entire cache-line. Sub-blocking still does not address the 
problem of tracking only a limited number of cache-lines. For 
workloads with low spatial locality, the large cache-lines can 
result in high miss rates. Selective caching of the most 
frequently used cache-lines can alleviate some of this effect 
[24, 30], but applications with large active working sets will 
still suffer. Therefore we explore a new replacement policy 
that uses sub-line information in addition to existing 
replacement policies to determine cache-line replacement. 

Whenever a tag is present in the cache tag RAM and 
satisfies a new request, it is called a "Cache Hit". When this 
occurs, data is read directly from the indexed location in 
cache and is therefore faster than the case of a "Cache Miss", 
where the request must be forwarded to a slower (secondary) 
memory. The most common caching algorithms include First 
In First Out (FIFO), Last In First Out (LIFO), Least Recently 

Used (LRU), Most Recently Used (MRU), Least Frequently 
Used (LFU) and Most Frequently Used (MFU) [6].  Of the 
several replacement policies available, LRU is often regarded 
as the most efficient [7][8] and therefore the basis of the 
different replacement policies discussed in this paper. For 
ease of hardware implementation, Pseudo-LRU is often 
considered the best choice [31]. 

Since sub-block (SB) caches are capable of using a single 
tag to index multiple data blocks, conventional replacement 
(also called eviction) policies may significantly degrade the 
performance of SB caches, depending on the number of sub-
blocks in each cache block. This is because replacement 
decision is at the cache-block/super-block granularity and 
such replacements do not consider the individual state of the 
sub-blocks that make up the larger/wider cache block. For 
example, the LRU cache-block of a set may contain four valid 
sub-blocks and another non LRU block of the same set may 
contain only one valid sub-block. Replacing one of the four 
sub-blocks in the LRU entry will require evicting or 
invalidating the other three valid entries because the tag has 
to be updated with the new entry which will render the 
existing tag entry invalid. This multiple sub-block evictions, 
based in LRU, could be more detrimental to cache 
performance than evicting a non LRU cache-block that 
contains a single valid sub-block.  In this paper, we introduce 
a replacement policy that factors the degree of aggregation of 
a super-block in replacement, and we run simulation on 
CPU2006 benchmarks to show this new replacement policy 
outperforms existing policies in sub-block caches. 
Implementation details are summarized in Section 2.  

For evaluating different cache eviction policies presented in 
this paper, we use existing LRU policy as reference. Firstly, 
we simulate a conventional LRU cache configuration with 64-
byte lines, then with wider cache-lines and sub-blocking with 
full cache line/super-block evictions, and finally a sub-block 
cache using our newly proposed replacement policy.  This 
approach enables us to quantify the performance degradation 
due to sub-blocking and compare with the performance 
regained by our proposed replacement policy. Further details 
of these policies are given in Section 3 of this paper. 

1.2 Key Contributions 
The major contribution of this work is twofold. Firstly, we 

describe an eviction policy that is specific to sub-block cache 
architectures. Secondly, we describe both the hardware and 
our implementation of a modified simulator that allows for 
the seamless simulation of different cache configurations and 
replacement policies. We specifically focus on partial 
eviction of sub-blocks to minimize the miss rate. To achieve 
this, a few additional bits are used to track the different sub-
blocks indexed by a single tag. For simulation/evaluation of 
this architecture, we implement a cache simulator based on 
the Simplescalar Toolset [9] to mimic the behavior of 
memory systems designed with sub-block caches. We finally 
test our new architecture by running SPEC2006 benchmarks 
on the modified Simplescalar simulator.  
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1.3 Prior Work 
The three main principles that influence the design of 

memory systems are: (i) making frequent accesses fast, (ii) the 
concept of temporal and spatial localities and (iii) achieving 
maximum speed with minimal size. The above principles 
suggest that recently accessed items should be placed in the 
fastest memory available which is the basis of cache 
architectures. These fast memories often come with a cost. 
TCAMs were introduced by memory system designers to 
reduce hardware cost because of their ability to store don’t 
care value. However, TCAMs are known for high power 
consumption. Some methods for reducing TCAM power have 
been proposed, including routing-table compaction and 
partitioning techniques with current solutions mainly using a 
two-level architecture [18][19].  Other common power 
reduction solutions involve the use of binary search trees, B-
trees, ASICs, and so on. Several other strategies - e.g., [20], 
[21], [22], and [23] - have been proposed to reduce TCAM 
power by taking advantage of  a feature in contemporary 
TCAMs which allows the selection of a portion of the TCAM 
array for search. However, these methods have not completely 
removed the power and area overhead due to TCAMs. 

Another approach for reducing power consumption in 
memory is by reducing the tag area of an on-chip cache. Hong 
Wang et al. [10] studied the locality property of memory 
references and after extensive simulation experiments, 
observed that address tags of cached data are usually clustered 
at a given time frame during program execution. The 
spatial/temporal locality property of references causes many 
tags to be identical during a period of time, effectively making 
the working set of unique tags much smaller than the working 
set of data references. This suggests that tag area can be 
significantly reduced by grouping multiple blocks into a single 
larger cache-line. This larger cache-line/super-block is then 
indexed by a single tag which yields smaller tag array but with 
the possibility of several unwanted replacements. 

Modern processor designs employ various replacement 
policies such as Random [2], LRU (Least Recently Used) 
[11], Round-robin (or FIFO – First-In-First-Out) [12], and 
PLRU (Pseudo LRU) [13] indicating there is no single optimal 
cache replacement policy. All these policies except the 
random replacement policy rely on access history to predict 
the entries to be replaced and therefore require additional 
hardware which increases with associativity. The Random 
policy however, suffers from performance degradation. Across 
different SPEC2000 benchmarks, LRU policy gives the best 
performance on the average [14].  Therefore, multiple flavors 
of LRU policy have been proposed over the years to improve 
cache hit rate. The detection of temporal locality coupled with 
existing LRU policy have been used [15] in level two caches 
to improve the cache miss rate over pure LRU policy. Other 
replacement policies based on the LRU include the Early 
Eviction LRU [16], which adapts to reference patterns at all 
scales and has been shown to give 10-30% improvement over 
pure LRU. An LRU Insertion Policy (LIP) has also been 

proposed [8] which protects the cache from thrashing and 
gives close to optimal hit rate for applications that have a 
cyclic reference pattern. Bimodal Insertion Policy (BIP) which 
is an enhancement of LIP [8] adapts to changes in the working 
set while maintaining the thrashing protection of LIP. Another 
policy is the Dynamic Insertion Policy (DIP) [8] which 
dynamically chooses between BIP and the traditional LRU 
policy depending on which policy incurs fewer misses. All 
these policies act on individual cache entries and are still not 
efficient for SB caches where multiple sub-blocks have been 
combined to a super-block indexed by a single tag entry.  

2 SB Cache Architecture 
 In sub-block cache architectures, a single tag entry is 
capable of indexing multiple sub-blocks depending on the 
level of sub-blocking desired. Since, a single tag now indexes 
multiple aggregated sub-blocks, a few of the tag LSBs are not 
stored in the tag array but rather used as index to the accessed 
sub-block of a cache-line. For the ease of indexing, we store 
sub-blocks in specific locations given by the tag LSBs not 
stored. For example, suppose we have a 32 bit address request 
to a cache-line with four sub-blocks as shown in figure 2, with 
bits “[9:2]” reserved for set indexing. The SB cache uses only 
bits [9:4] for set indexing, reserving the log24 (i.e. 2) LSBs for 
sub-block indexing. This reduces the number of tag lines by 
75%, from 2(9-2+1)=256 to 2(9-4+1)=64, and removes the need to 
store 2*2(9-4+1) bits for the dropped LSBs. Individual valid bits 
are added for each sub-block, making it possible to both 
allocate and de-allocate a sub-block entry independent of the 
other sub-blocks. They also give the additional information 
used to implement the replacement policy presented in this 
paper. The overhead due to valid bits is the same as in an 
equivalent conventional cache with cache-line equal to the 
sub-block size (i.e. 2(9-2+1) *1 = 2(9-4+1) *4). Significant tag 
array reduction is therefore the major benefit of sub-blocking. 
 

 
Figure 2: A Single Way of a Sub-block Cache 
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3 Sub-Block Replacement Policies 
Given that multiple sub-blocks are indexed by a single tag 

in sub-block caches, replacements need to be handled 
differently than in a conventional cache to minimize 
unwanted evictions or invalidations of aggregate sub-blocks. 
For example, if eight sub-blocks have been allocated to a 
single super-block that is to be evicted but there exists 
another way with only one (1) valid sub-block in its super-
block, existing replacement policies will still replace the 
super-block with eight valid sub-blocks if that superblock has 
been chosen by the replacement policy. This could lead to 
significant cache performance degradation.  

In this section, we present different eviction schemes based 
on the LRU policy because it is considered the most efficient 
of the different replacement policies [16]. In what follows, we 
will provide detailed description of two replacement policies 
along with the architectural implementation in our simulator.  
The first policy in Section 3.1 is used as a reference for 
comparison with our newly proposed policy. All cache 
accesses in this work are at the sub-block granularity to 
minimize the bus width at the different interfaces and 
maintain consistency across the whole architecture. 

3.1 Full Eviction of LRU Super-Block (FE) 
 The FE replacement policy based on the Least Recently 
Used – “LRU” replacement policy and is included here 
specifically as a reference policy for comparing the 
performance of our new sub-block replacement policy 
described later in Subsection 3.2. Since the LRU replacement 
policy is already implemented in the Simplescalar toolset, we 
added logic to enable sub-blocking. The FE policy causes 
replacement of an individual sub-block of an LRU super-
block, in addition to invalidating all other sub-blocks that were 
aggregated to make the super-block entry. For example, in a 
four sub-block cache with 8-bit wide address tag, only the 6 
MSBs are stored, such that if the following four tag accesses -  
11111100, 11111101, 11111110 and 11111111 occur to the 
same set, they are all stored in the same super-block and 
indexed by “111111” tag. If a single new request with tag 
“11001101” is determined by LRU to be allocated to the same 
superblock currently indexed by tag – “111111”, then the sub-
block allocated to the second location (i.e. entry  11111101 
indexed by the same two LSBs - 01) is replaced and the other 
sub-blocks are invalidated. This implies sub-blocks are 
marked valid individually but sub-blocks belonging to the 
same way are all marked invalid as a super-block to enable 
grouped replacement. In this policy, the MRU entry takes 
priority if both the LRU and MRU sub-blocks belong to the 
same super-block or cache way. This causes both the LRU and 
MRU sub-blocks to be retained, along with all other sub-
blocks that belong to the same super-block. The effect of this 
is degradation in the hit rate of a SB cache when compared 
with an equivalent sized conventional cache with cache-lines 
equal to that of the SB cache sub-block. The advantage, 
however, is significant savings in  tag array hardware.  

3.2 Least Aggregated Entry Eviction 
 Our LA replacement policy aims at keeping the most 
entries possible in the cache. It does this by tracking the total 
valid sub-blocks in each super-block of a set and elects the 
least aggregated super-block for replacement. This requires 
keeping a count of all sub-blocks that have been allocated to a 
super-block and evicting the entry with the lowest count. In a 
scenario where multiple super-blocks contain equal valid sub-
blocks, we use LRU as tie breaker. This approach obviously 
places priority on keeping maximum entries in the cache 
rather than the most recently used entry. The advantage of this 
scheme becomes more pronounced as we increase the number 
of sub-blocks per cache-line/super-block. It is obvious that 
SB caches benefit more in terms of performance from 
replacement schemes that keep more entries in the cache after 
replacements because these policies retain the maximum 
possible entries after allocation of sub-blocks. This also 
minimizes contention with other memory accesses off chip. 

To implement this replacement policy in hardware, an n-bit 
counter is used to track valid sub-blocks of each super-block 
where n = log2N and N is the number of sub-blocks in a cache-
line. It is worth noting that “n” is also the number of tag LSBs 
that are not stored in the tag array. These n bits of the tag array 
are instead used to store the current counter value for each 
super-block. On a miss with tag match but invalid sub-block, 
the accessed super-block count value is incremented while the 
miss is being fetched. On the other hand, a miss with tag 
mismatch causes the current count value for all super-blocks 
of the accessed set to be compared and the super-block with 
minimum count is elected for eviction/replacement. Since 
allocation only occurs on a miss, it is expected that this 
counter comparison or increment operation is completed in the 
background while the missed entry is being fetched from a 
higher level memory location. Also, since only one miss is 
processed in any given cycle, a single comparator and adder 
pair is sufficient to support this replacement policy, thereby 
minimizing extra hardware overhead.  

4 Modified Simplescalar Simulator 
Our sub-block cache simulator builds on the Simplescalar 

toolset. We extended the existing interface to allow SB cache 
configuration inputs to be easily fed into the simulator. Most 
of the changes were implemented in the “sim-cache”, “sim-
outorder” and “cache” Simplescalar codes. The approach used 
was to keep the existing implementation of the cache 
architecture and adding command line control to enable the 
use of the existing simulator code or switch to any of the other 
configurations we added to the simulator. Most modifications 
were made to the behavioral code that models the behavior of 
the cache whenever there is a hit, miss or replacement in the 
cache. This allows for easy comparison of the new architecture 
with the existing as reference.  

The simulator was implemented and validated through 
extensive experimentations by leveraging the existing cache 
way model to implement the sub-block cache simulator. 
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Firstly, we developed a mechanism for linking multiple cache 
lines to form a super-block. This was achieved by adding extra 
logic that links multiple tag entries to form a single aggregated 
tag entry. We ensure the total number of ways is equal to those 
of an equivalent conventional cache. Then, we link “n” of the 
ways together based on the degree of sub-block aggregation 
desired, to form a single way/super-block, where “n” is the 
number of sub-blocks in a super-block. Secondly, we 
implemented comparator and adder as previously described in 
Section 3.2. Since replacement decisions only occur on a miss 
and in the background while a miss is being fetched, we used a 
non time consuming routine. Finally, we added code segments 
to mimic the two replacement policies described in this paper. 
Eviction is allowed to take place normally, followed by 
additional sub-block evictions/invalidations depending on the 
chosen replacement policy. 

5 Experimental Results 
5.1 Configuration and Simulation setup 

For the purpose of simulations, we populated five different 
configurations as follows. The conventional configuration 
(conv) which represents the default non sub-block 4-way 
conventional cache, two sub-block configurations for the LA 
and FE replacement policies using only two sub-block per 
super-block, and finally, two sub-block configurations for the 
LA and FE replacement schemes that use four sub-blocks per 
super-block. All these were configured to have the same cache 
size for accurate comparisons. Our measurements were taken 
for L1I miss rate, L1D miss rate and L2 miss rate across 
different SPEC 2006 benchmarks. We chose 8KB L1 caches 
and 32KB L2 unified cache to create multiple replacements 
and therefore stress the replacement policies. 

5.2 Simulation Results 
 As expected, there is a miss rate increase as we move from 
conventional cache to the sub-block cache when using the FE 
replacement policy. This is a result of evicting all entries of a  

super-block whenever it is the LRU entry. It becomes more 
pronounced as we increase the number of sub-blocks used per 
super-block since this increases the possible number of 
unwanted sub-block invalidations. We use FE as a reference 
for comparison with our newly proposed replacement policy – 
LA. The simulation results below show that we can close a 
significant amount of the gap in performance between a 
conventional cache and an equivalent tag array saving sub-
block cache by using our LA replacement policy. These 
results also reveal that the different replacement policies do 
not perform consistently across all benchmarks. This is 
expected because sub-block aggregation is heavily dependent 
on locality of reference and this varies across different 
programs [17]. However, overall average results improve by 
up to 33% for LA. Figure 3 shows the comparison of L1I miss 
rate across the different benchmarks, with sub-block caches 
having higher miss-rate due to super-block evictions. 2SB and 
4SB represent two and four sub-blocks per super-block 
respectively. Dynamic selection between different replacement 
policies is being deferred for future work.  

Figures 4 and 5 capture the Level 1 Data (L1D) and Level 2 
(L2) unified cache hit rate across different SPEC2000 
benchmarks. It is obvious from the Miss Rate plots that sub-
block caches using existing replacement policy (FE) suffer 
performance degradation due to eviction of aggregates during 
sub-block replacement. Although the LA policy did not 
completely close the gap between the performances of the 
conventional cache and SB cache, it did give a significant 
improvement over FE across most of the SPEC2006 
benchmarks. This is even more pronounced in the Level 1 
instruction cache results shown in Figure 3. The “soplex” 
benchmark shows LA policy outperforms the conventional 
cache in unified L2 miss rate. Dynamically choosing between 
the two replacement policies could benefit from the different 
policies but is outside the scope of this paper. In a few cases, 
the LA policy did not perform better than the reference FE 
policy. This shows that keeping the most aggregated entry is 
not always the best decision in SB cache replacement, 
especially when using fewer sub-blocks per super-block. 

 
Figure 3: L1I Miss Rate for different Replacement Policies -SPEC 2006 
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Table II gives a summary of the performance improvement 
achieved by our newly proposed eviction policy when 
compared with the reference replacement policy – FE.  We 
specifically measured the improvement given by the LA 
replacement policy and normalized it over the difference 
between the conventional cache using LRU replacement 
policy and a SB cache using the FE replacement policy. On 
the average, the LA gave the best performance improvement 
in the L1I cache as expected because of the temporal nature 
of program accesses. The hit rate regained by LA policy in 
the unified L2 cache serving the two L1 caches is not exactly 
the average of the L1I and L1D cache hit rate improvements 
because the effective traffic pattern from both streams, 
independently contribute to the overall performance. 

Table II: Performance Improvement Summary 

 
Hit Rate Percentage gain 

 
L1I L1D L2 Unified 

FE→LA (% Gain) 33.38 27.58 30.34 

 

 
 
 
 
6 Conclusions 
 The use of sub-blocks in the design of a cache allowed us to 
use a smaller number of tags to index cache data entries, 
depending on the degree of sub-blocking. The penalty 
incurred is degradation in hit rate due to multiple evictions of 
aggregate sub-blocks. We proposed a new replacement policy 
LA that minimizes the hit penalties associated with sub-block 
caches. A second replacement policy – FE was used as a 
reference for comparison.  

     The LA replacement policy presented in this paper is novel 
to SB cache architectures since existing replacement schemes 
make decisions at the super-block level. The simulation results 
show that the performance of this new eviction scheme varies 
across the different SPEC2006 benchmarks but outperform the 
default FE replacement policy  Our results also show that our 
LA policy is capable of gaining back some of the performance 
lost to multiple evictions of aggregated sub-blocks.  
 

 

Figure 4: L1D Miss Rate for different Replacement Policies -SPEC 2006 
 

Figure 5: L2 Unified Cache Miss Rate for different and Replacement Policies - SPEC 2006 
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Abstract - We propose an adaptability judging method 
applied to sparse matrices and the target cache memory using 
two metrics based on spatial locality and temporal locality. 
For indirect access sequences of sparse matrix-vector 
multiplications, one metric is the number of valid data within 
a cache line, and another metric is average reference interval. 
We also develop a set of analysis tools to generate the above 
performance metrics, histograms of reference intervals and 
theoretical cache hit rates. As an experimental result, a cache 
memory behavior which was difficult to explain from the view 
point of spatial locality becomes explicable from that of 
temporal locality. Outputs of the tool show that return on 
investment is too thin to increase the cache memory capacity 
unless all the elements of a column vector with the same size 
as the number of columns of the sparse matrix are stored in 
the cache memory. 

Keywords: Sparse matrix; Cache memory; Spatial locality; 
Temporal locality; Workload characterization. 

1 Introduction 
Recently there are serious considerations [1] in Japan in 

order to put exascale machines to practical use in 2018. We 
make a prediction that the exascale machines will adopt a 
complicated memory system because of inevitable memory 
bandwidth problems. A very high demand for memory 
bandwidth includes applications of simultaneous linear 
equations (sparse matrix-vector multiplication) with large 
sparse matrix coefficient. Since such simultaneous linear 
equations are used in calculations for important scientific 
theme in Japan, there is a great need for them.  

In the meantime, big data processing such as large-scale 
graph processing draws global attention. In general, large-
scale graphs are represented as large and complicated sparse 
matrices with small number of non-zero elements. 
Recommendations/preferences of information retrieval or 
large-scale ad hoc information search[2] such as PageRank, 
which gives an importance of the website, needs that a sparse 
matrix processing expanding the scale and speeding up. 

The K-computer that is the world's third fastest 
supercomputer in the Top 500 list of Nov 2012 has a 
relatively simple memory system based on two levels of 
cache memory. However, it is not easy to optimize in spite of 

its present simplicity. Optimization experts work only for a 
few selected applications and they do their best of 
optimization using the specific characteristics of the 
applications[3]. On the other hand, users of scientists can not 
take enough time and give any hands for performance tuning 
for the other applications without optimization experts and 
the applications with a short life cycle. Just looking at the 
applications formed with sparse matrices, there is a great 
variety of placements for non-zero elements as the University 
of Florida sparse matrix collection [4] shows. For such 
applications, parallelizing compilers and/or pre-optimized 
libraries are very important. In the exascale machines with 
complicated memory systems, the importance of automatic 
optimization mechanism is widely informed. 

The above consideration leads us to start the development 
of a sparse matrix library that provides a universal adjustment 
function without the application-specific optimization 
techniques and auto-tuning new methods for sparse matrices 
by selecting the access mechanism. As a first step of the 
development, we propose a characteristic metric about spatial 
locality of sparse matrices. Furthermore, we propose a 
characteristic metric about temporal locality as well as spatial 
locality for their combinatory use. We develop a set of tools 
to calculate the metrics which measure the characteristics of 
various sparse matrices and investigate the correlation 
between the proposed metrics and L1 cache hit rates that have 
a strong correlation with the GPU processing speed. 

The paper is organized as follows. In section 2 we 
marshal the locality of data accesses. We propose a 
combination of a characteristic metric based on spatial 
locality and another characteristic metric based on temporal 
locality, which compensates the spatial index, for sparse 
matrices in section 3. We explain the overview of analysis 
programs based on the proposed metrics and the application 
of the programs to optimize in section 4 and 5, respectively. 
In section 6, we describe some experiments using the 
proposed indices. Related works are given in section 7. 

2 Locality of references 
This section is organized in terms of locality of reference 

that cache memory is used to increase the speed of memory 
accesses. 
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2.1 Spatial locality 
If a particular memory location is referenced at a 

particular time, then it is likely that the other memory 
locations around the particular memory will be referenced in 
the near future. Usually, in order to make effective use of the 
locality reference characteristic, a block (a cache line) of data 
addressed near the memory is able to judge cache hit or miss, 
move the cache line in the case of cache miss, or access the 
external memory by cache line. A lot of processors including 
the K-computer and GPUs are equipped with 128 bytes line 
size caches. The reason of the 128 bytes line size is that data 
transfer efficiency can be improved by making the burst 
length longer than a certain length. Furthermore many 
benchmarks evaluate the trade-off between the magnitude of 
the penalty per cache miss and the advantage of having the 
number of lines fitting into the limited cache memory 
capacity, which is described later as making use of temporal 
locality. It may be greater in the future because there is a 
tendency that the larger cache memory capacity is, the larger 
cache line size is. 

However, the Graph500 benchmark and applications with 
strong random accesses of several sparse matrix-vector 
multiplications exhibit a lack of spatial locality. Even when 
just 4 bytes of a cache line is used, the whole 128 bytes 
including other 124 bytes in the cache line must be 
transferred from the external memory, and the transferred 
cache line causes a very inefficient performance as the result. 
Therefore, it is very important to control the spatial locality in 
sparse matrix accesses in order to speed up sparse matrix 
processing. 
In particular, it is very difficult for software to control the 
spatial locality within a cache line. Solving this problem 
requires the memory system of vector supercomputers without 
cache memory, some hardware level supports such as the 
gather function of DIMMnet-2 combined with a cache-based 
system[5], or Hybrid memory Cube with gather function[6]. 
When sparse matrices with low temporal locality and low 
spatial locality are to be processed, the above hardware level 
supports are a promising solution. 

2.2 Temporal locality 
If a particular memory location is referenced, then it is 

likely that the same location will be referenced again in the 
near future. Usually, in order to make effective use of the 
locality reference characteristic, cache memory is composed 
of many lines so that it increases the probability of hitting 
cache by the accesses except the last access. Theoretical study 
of temporal locality has a long history. Denning et al. have 
proposed the concept [11] of working set (t, T) which is 
defined with the current time t and the window size T in 1968, 
and a new algorithm [12] to calculate the average working set 
size from the set of references within one pass. 

A tiling method, which divides a matrix into smaller parts 
of matrices, may be a useful technique to improve the 
temporal locality of memory references in matrix processing 
such as dense matrices multiplication. However, the tiling 

method is not valid for most sparse matrix processing because 
sparse matrices have various non-zero elemental locations. In 
this case, by performing the replacement of the row and 
column numbers to change the order of memory references, 
the sparse matrix can improve its own temporal locality. That 
means temporal locality is controllable by software to some 
extent. 

 
3 Matrix characteristic metrics based 

on reference locality 
3.1 Matrix characteristic metrics based on 

spatial locality of references 
We propose the "spatial locality of column-index 

sequences" as a new metric on the characteristics of sparse 
matrix that contributes to the classification of sparse matrix 
adaptability for cache memory. Fig. 1 shows the conceptual 
diagram.  
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Fig. 1. The proposed metric 1 (spatial locality of column-index sequences) 

The following are the definitions used to represent the 
characteristic value of sparse matrix.  
1. Store just the non-zero elements of a sparse matrix in CRS 

(Compressed Row Storage) format. 
2. When read the index array from the top used to load 

column vectors, count the number of indexes they match 
except lower 5 bits which come from 32 data per line. 

3. If upper bits of the new index do not match with them of 
the last index, it means cache-miss. Record the counter to 
count[line_ID], reset the counter to 1, increment the 
line_ID and continue reading the index array (i.e., go to 
step2). 

4. The spatial locality of column-index sequences is defined 
as the average of the count numbers recorded in 3. 
Measuring the spatial locality of column-index sequences 

of sparse matrices with various formats and memory reference 
orders, we can find the impracticability of a sparse matrix to 
the target cache memory architecture which is not controllable 
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by software. Namely, when the metric is not improved by just 
changing the orders and/or formats, it requires some hardware 
support to get better performance. 

3.2 Matrix characteristic metrics based on 
temporal locality of references 

In the previous subsection, we explain the spatial locality 
of references within a cache line and propose a metric for 
spatial locality of column-index sequences. In this subsection, 
we propose a combinatorial use of the temporal locality of 
references within the same cache line in addition to the spatial 
locality. To measure the temporal locality by cache line, we 
use a line identifier line_ID[t], which is obtained by right-
shifting the number of column-index sequences by the 
number of bits corresponding to the number of items (5 bits, 
which represent 128/4=32, in the case of 128 byte cache line 
and single-precision floating point) in the cache line, as input 
address sequences. 

The temporal locality is concretely calculated as follows. 
We apply the Denning’s algorithm [12] that generates a 
histogram of reference intervals for cache lines, and we 
measure the resultant temporal locality for each column-index 
sequence of a sparse matrix to obtain the adaptability of the 
sparse matrix to the target cache memory. Figure 2 shows the 
conceptual diagram of reference intervals for cache lines used 
as the temporal locality of column-index sequences. The 
reference interval for a cache line is the time interval between 
time t which is the time when the cache line is accessed and 
time TIME[line_ID[t]] which means that the last time the 
cache line has been accessed. In the above algorithm, it 
records the current time t into TIME [line_ID [t]] before 
updating the time t. 

As a metric about the temporal locality of references for 
cache lines, we use average reference interval or average 
working set size that is calculated by multiplying the average 
reference interval with the cache line size. There is no need to 
generate a histogram as necessarily in Denning’s algorithm 
for those calculations. So the histogram should not be 
generated by default since the calculation time for temporal 
locality must be short as the front-end part of our target sparse 
matrix library. 

The performance metrics about spatial locality and 
temporal locality are computable within one pass since they 
use the same column-index sequences. In particular, it is 
better to calculate them within one pass when the column-
index sequences are in a file rather than calculate them 
separately to shorten the whole processing time. In the above 
algorithm to calculate the reference intervals, the cache hit 
ratio can be obtained by dividing the access numbers where 
the reference interval does not exceed the number of the cache 
line by the total access numbers. Since the calculation of the 
cache hit rate requires an assumption of the FIFO cache line 
replacement algorithm, the calculation may have some error 
with different replacement algorithms or different way 
numbers of set associability. 
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Fig. 2. The proposed metric 2 (temporal locality of column-index sequences) 

4 Overview of the programs based on 
the proposed metrics 

4.1 Input 
One of the most parts of the calculation time of user 

applications is sparse matrix-vector multiplications. The 
access patterns of them are given by index array of sparse 
matrix. Our programs require sparse matrix files as their 
inputs to be given by users. These files represent the 
characteristics of applications for analyzing memory access 
properties. At this time, the programs accept the format of 
MatrixMarcket. It is one of the most popular formats, and it is 
also valid for University of Florida Sparse Matrix Collection. 

4.2 Output and Component 
The outputs and components of the programs are listed 

below. 
(1)  Translator for CRS format 

It reads sparse matrix files with the MatrixMarket format 
to save the data structure with the CRS format in 
memory. 

(2)  Translator for GPU related formats 
It converts sparse matrices with the CRS format 
generated in (1) into the data structure with applying a 
pre-processing for GPUs, the Fold method [7], which 
consists of 0-padding, folding and transposition. The 
pre-processing tends to generate the data structures with 
completely different access patterns from the CRS 
format. As a result, a sparse matrix with the CRS format 
having low access performance is converted to a data 
structure having high access performance using the pre-
processing, and vice versa. 

(3)  Measurement program for spatial locality 
Giving the output data structures of (1) or (2), it 
calculates the performance metric for spatial locality 
proposed in the previous section. In either case, sparse 
matrices with low (close to 1) calculated values for 
spatial locality are considered as having low adaptability 
to the cache memory because the practically available 
memory bandwidth decreases so much in the case that 
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the L2 cache memory cannot keep the whole column-
index vectors. 

(4)  Measurement program for temporal locality 
Giving L1 and L2 cache size of the target cache memory 
systems as well as the output data structures of (1) or (2), 
it calculates the performance metric (average reference 
interval or average working-set size) for temporal 
locality and theoretical L1 cache hit rate described in the 
previous section. A histogram of reverence intervals is 
optionally computable. Analyzing the histogram, it can 
be estimated how large cache memory capacity is 
required to get reasonable speed-up of the sparse matrix 
processing. 
 

5 Qualitative optimization strategy 
The average working set size, which is expressed in byte, 

indicates how much cache capacity it needs in order to be 
stable for the cache hit rate. Comparing the average working 
set size with the cache memory capacity of the target platform, 
it is expected that we know how the cache memory works 
from the view point of temporal locality and whether the 
cache memory should be used aggressively or not with 
automatic optimization. Table 1 qualitatively summarizes the 
optimization strategy with the performance metrics of spatial 
locality and temporal locality. 

Table 1. Optimization strategy based on dual properties of access locality 

 Low temporal locality High temporal locality 
High spatial 
locality 

Explore the other 
ordering. 

Use cache. 

Within L1 : Use cache. 
Low spatial 
locality Use hardwired gather. Overflow from L1 : Use 

hardwired gather. 
 

From the view point of high spatial locality, a high cache 
hit rate is expected while extremely low temporal locality may 
cancel out the performance effect. In this case, since the 
spatial locality is already high, a memory system with gather 
functions may not work well and the cache memory benefit is 
very limited. However, it is possible for the temporal locality 
to be improved by changing memory reference orders, so the 
automatic optimization should be performed with ordering 
changes. Since changing ordering tends to induce the changes 
of temporal and spatial locality, it is possible to be included in 
a different category in Table 1. 

On the other hand, from the view point of high spatial 
locality (a high cache hit rate), when the average working-set 
size is sufficiently-small compared with the cache memory 
capacity, the temporal locality is extremely high and it cancels 
out the effect. In this case, the use of cache memory does not 
really degrade the execution efficiency. Therefore, the 
automatic optimization should be performed using the cache 
memory. 

In the case of low spatial locality and not extremely high 
temporal locality, the effect of a memory system with gather 

functions is very promising, and the automatic optimization 
should adopt it. 
 
6 Evaluation 

6.1 Environments and matrices for 
experiments 

Table 2 and 3 shows the computing environment and 
matrices used in the experiment, respectively. These matrices 
are selected from the University of Florida sparse matrix 
collection, which is a collection of sparse matrices found in 
real-world applications. These sparse matrices are often used 
by researchers in numerical linear algebra for the 
development and performance evaluation of sparse matrix 
algorithms. In this experiment we chose the sparse matrices to 
focus on the non-zero elements that look like scattered in 
irregular shapes (the optimization is difficult for cache 
memory) on the matrix diagram. They are derived from the 
sparse matrices of structural analysis, electronic circuit 
analysis, web analysis, and road network analysis. 

Table 2. Experimental environment 

CPU Intel®Xeon®*  X5670 @ 2.93GHz 
GPU Nvidia Tesla C2050 (# of core : 448) 
Device memory 144GB/s, 3GB 
Host I/F PCI express x16 Gen.2 (8GB/s) 
OS RedHat Enterprise Linux Client release5.5  
CUDA Cuda3.2 

Table 3. Experimented matrices 

Name # of non 0 
elements # of rows 

crankseg_2 7,106,348  63,838 

nd24k 14,393,817 72,000 

thermal2 3,489,300  147,900 

hood 5,494,489  220,542 

F1 13,590,452  343,791 

msdoor 10,328,399  415,863 

rajat29 4,866,270  643,994 

ASIC_680ks 12,329,176  682,712 

apache2 2,766,523  715,176 

ldoor 23,737,339  952,203 

webbase-1M 3,105,536  1,000,005 

delaunay_n20 2,097,124  1,048,576 

roadNET-TX 1,281,106  1,393,383 

Hamrle3 5,514,242  1,447,360 

G3_circuit 4,623,152  1,585,478 

roadNET-CA 1,844,404  1,971,281 

                                                           
* Intel, Xeon are trademarks of Intel Corporation in the U.S. and/or other 
countries. 
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6.2 Experiments 
We measure the proposed performance metrics of sparse 

matrices with the CRS format and pre-processed sparse 
matrices as well as the L1 cache hit rates for the pre-
processed sparse matrices. We use the fold method [7] as the 
pre-process, which converts the access order of index arrays 
of CRS format sparse matrices into the transposed order for 
GPUs. The change of the access order affects the cache hit 
rate. Namely, the converted access order has better 
compatibility to cache memory rather than the CRS format, 
the effect of the pre-processing is easily observed. 

We examine the correlation between the L1 cache hit rate 
of a GPU and the proposed metrics for spatial locality. The 
results are shown in Fig.3. Figure 3 clearly shows that there is 
a majority group showing positive correlation between the L1 
cache hit rate of the GPU and the proposed metrics (the sparse 
matrices group surrounded by a green ellipse), a minor group 
showing no correlation (surrounded by a blue ellipse), and an 
isolated sparse matrix (surrounded by a red circle). It means 
that only the metric for spatial locality is insufficient for 
judging the adaptability of a given sparse matrix to cache 
memory in advance. 
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Fig. 3.   The relation between L1 cache hit rate of GPU(C2050) and  the 
number of valid data/line (Pre-processed by Fold-method) 

Table 4 shows the average inter-reference interval and the 
average working set size of each sparse matrix. Thermal2 and 
roadNET-TX obviously have small average working set sizes, 
and they are less than or equal to the GPU L1 cache size 
(16KB in the case of Fermi). We think this is the reason why 
our experiments described in the previous subsection show 
the relatively high cache hit rates in spite of low spatial 
locality. This is the notable effect that becomes obvious with 
the combinatorial use of temporal locality as well as spatial 
locality. Considering the cases of thermal2 and roadNET-TX 
from the view point of automatic optimization, they have low 
spatial locality as well as high temporal locality where most 
working sets are cacheable in the L1 cache memory, so we 
conclude the cache memory first strategy is appropriate. L1 
cache may overflow in case of the kernel implementation in 
which both the index parts and data part of sparse matrices go 
through L1 cache. In the case with cache-overflow, the 
memory system should have gather functions. 

Table 4. Outputs about temporal locality from tools 

Name Ave.  inter-reference 
distance [line] 

Ave. working 
set size [B] 

crankseg_2 41.8 5,344  

nd24k 73.6 9,418  

thermal2 103.2 13,206  

hood 335.9 42,989  

F1 135.7 17,370  

msdoor 135.0 17,281  

rajat29 463.3 59,306  

ASIC_680ks 442.6 56,647  

apache2 1,088.5 139,323  

ldoor 97.3 12,448  

webbase-1M 360.5 46,141  

delaunay_n20 403.8 51,681  

roadNET-TX 130.7 16,730  

Hamrle3 345.9 44,277  

G3_circuit 499.1 63,886  

roadNET-CA 652.5 83,526  

 
On the other hand, apache2 has a larger average working 

set size than the other four applications in the blue group from 
the view point of temporal locality. From the fact that it is 
significantly larger than the L1 cache memory size, we can 
explain that the L1 hit rate is observed low in apache2 in spite 
of the high spatial locality. This is also the notable effect that 
becomes obvious with the combinatorial use of temporal 
locality. 

Figure 4 shows the relationship between the average 
reference intervals measured in the experiments and the L1 
cache hit rate of a GPU (C2050). The correlation coefficient 
is -0.682, and any abnormal samples deviating significantly as 
shown in Fig.3 in the spatial locality are not found although 
the variance is slightly loosened. A linear approximation 
formula is expressed as hit =-0.018d +41.267. 
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Fig. 4.   The relation between average inter reference distance and L1 cache 
hit rate of GPU(C2050) 
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Fig. 5.   The histogram of inter-reference interval for sparse matrices 

 
Figure 5 shows the histograms of reference intervals for 

each sparse matrix. The right end of each histogram is the 
sum of the number of reference intervals that are larger than L 
and the number of the initial cache misses. In this 
measurement we measure the average interval to assume the 
window size L corresponding to the L2 cache memory size of 
8MB, which is one of the largest ones at this point. The 
histograms of reference intervals of sparse matrices in Fig.5 
show the properties about the adaptability of the sparse 
matrices to the target cache memory. For example, in the case 
of apche2 of which cache hit rate is low, there are no sample 
points but both ends and the cache misses in the right end are 
not improved by the cache memory with insufficient capacity. 
Since the spatial locality in this state is extremely high, the 
effect of the memory system with gather functions is not 
expected at all. There are two possible optimization for speed-
up. One is to change the memory reference orders to improve 
the cache hit rate and another is to change folded point of pre-
proccessing in order to reduce padded zero which improves 
inflated spatial locality and degrades the effect of the memory 
with gather functions . 

Although other sparse matrices in Fig.5 show that the 
histograms are divided in both ends, samples less than several 
hundredths of the left end are presented in the middle. They 
can be improved by enlarging the cache memory capacity to 
several MB that is significantly larger than the average 
working set size. However, the return on investment is very 
thin because the number of samples in the middle parts is very 
small compared with both ends. Therefore we conclude that 
increment of the cache memory capacity is not cost-effective 
unless the whole column vector is stored in the cache memory. 

7 Related work 
On the K-computer, optimization with specific character 

of two applications of which main calculation is for sparse 

matrix is performed by human hands. For example, the 
applications are optimized provided that the maximum 
number of nonzero elements in a row of the sparse matrix is 
set to 27 [3]. As general purpose oriented approaches, 
automatic tuning, which selects suitable software 
automatically, has been studied. For example, selecting 
storage schemes of matrices is reported for GPUs [8]. 
However, as far as we know, there are no reports to measure 
both spatial and temporal locality of column-index sequences 
of sparse matrices in advance as the specific characteristics of 
the sparse matrices or their pre-processing to be used for 
automatic tuning. Locality in sparse matrix-vector 
multiplications, which is a similar research to be focused on 
sparse matrix and memory reference locality, has been 
investigated by Heras [9]. In this research, three distance 
functions are proposed as metrics. Since the selection of 
suitable window size or indices is given by experimental 
results, it cannot be used for automatic tuning. Our research 
and Perarnau’s research [10] are focused on the locality of 
sparse matrix. The target of Perarnau’s research is the AMG 
method, which makes use of trace data from real machines. 
On the other hand, the target of our research is sparse matrix-
vector multiplication. We use the column-index sequences, 
which is placement pattern of nonzero elements of the sparse 
matrix. As for temporal locality, Denning’s working set is 
widely known [11][12], and we measure performance metrics 
based on inter-reference interval, which is derived from 
Denning’s working set. There are many existing researches 
[14-16] that uses the Reuse distance (Stack distance) 
proposed by Matson [13]. They are using only the metric for 
temporal locality. On the other side, we calculate the spatial 
locality, we can know the efficiency of memory bus and cache 
and can judge which sparse matrix should be located on the 
memory with gather functions. 
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8 Conclusions 
We guess that the exascale machines adopt a complicated 

memory system. Toward the implementation of a sparse 
matrix library to be possibly used for the exascale machines, 
in this paper we proposed an adaptability judging method 
applied to sparse matrices and the target cache memory using 
metrics of spatial locality within a cache line and temporal 
locality among cache lines. For indirect access sequences of 
sparse matrix-vector multiplications, the former metric is the 
number of valid data within a cache line, and the latter metric 
is average reference interval and average working set size. 
We also developed a set of analysis programs to generate the 
above metrics, histograms of reference intervals and 
theoretical cache hit rates. We evaluated the proposed metrics 
based on the analysis programs and the University of Florida 
sparse matrix collection. As a result, a case that a cache 
memory behavior was difficult to explain from the view point 
of spatial locality becomes explicable from the view point of 
temporal locality. Thus, we could strengthen the basis for 
deriving more appropriate optimization strategies just by the 
placement patterns of non-zero elements of sparse matrices. 

Now we can estimate how much the cache memory 
capacity should be increased to reasonably optimize the 
sparse matrix processing using the reference interval 
histogram generated by the program. The access 
characteristics to sparse matrices in the experiments are 
classified into two groups; small reference intervals where 
most accesses hit the L1 cache memory and long reference 
intervals where considerable numbers of accesses do not hit 
any cache memory. It means that return on investment is too 
thin to increase the cache memory capacity unless all the 
elements in a dense column vector are stored in the cache 
memory. 

As described above, just generating a sparse matrix for the 
target application, the proposed programs make scientists with 
a poor knowledge of computer architecture judge in advance 
whether it works efficiently on a cache memory based 
processor or a special library for sparse matrices judge it at 
runtime. In addition, we can obtain useful information for 
future computer designers to investigate appropriate and 
possible cache memory capacity or consider the use of the 
memory system with gather functions. 

Our future work includes comprehensive survey of sparse 
matrices and sparse matrix library with auto-tuning 
mechanisms using the proposed metrics. 
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Abstract: Manycore processor bring new programmability 

challenges. Shared memory with cache coherency greatly 

simplifies their programmability but faces scalability and 

cost issues. Eisley et als. proposed an original In-Network 

Cache Coherence (IN-CC) protocol with linear scalability. 

In this paper we extend Eisley’s protocol with many 

improvements : deadlock prevention mechanisms for both 

message routing cycles and resource reservation, support of 

MOESI states and acceleration of data transfers by  

splitting  the network in two parallel parts. Eventually, we 

realize an implementation of the improved protocol on 

FPGA for the purpose of functional validation and 

performance measurements.  

Keywords: Manycore processor, Cache Coherency, 

Memory Consistency, Protocol, Distributed Directory 

 

1 Introduction and related works 

Manycore architecture has been recognized as an efficient 

solution for exploiting the available silicon resource on a 

single chip. On one hand, the limitation of bus-based 

communication leads to the necessity to consider the more 

scalable network-based interconnection. On the other hand, 

programmers still require shared memory as programming 

model, and hence cache coherence still represents a highly 

preferred hardware feature. Since snooping does not scale 

on a network, directory-based solutions are preferred in 

manycore architectures. But then, both the cost of storage 

required for the directories and the amount of coherency-

related messaging become critical constraints.  

Various scalable directory-based cache coherency protocols 

have been proposed. Authors of [4] proposed a distributed 

directory scheme based on the Scalable Coherent Interface 

(SCI). The directory is implemented as a history-ordered list 

linking nodes sharing common cache lines (sharers). The 

major drawback with this organisation is the ordering of the 

list that does not match the topological proximity of sharers, 

thus leading to high latency and bandwidth overheads. The 

same drawbacks apply to the singly linked list directory 

proposed in [3]. Furthermore, a deadlock-free 

implementation of such algorithms becomes highly 

complex, particularly for the resolution of conflicts. 

Authors of [2] proposed hierarchical directory schemes to 

reduce the size of the directory. However the introduction of 

a hierarchy in a regular 2D-mesh CMP architecture leads to 

sub-optimal behaviours when a sharer is located near the 

requester but is not in the same region.  

In [5], the directory is centralized in the home directory with 

a fixed cost thanks to dynamic tracking of sharers. The list 

of sharers is stored in a centralized linked list and when the 

memory containing the list is full, a sharer is invalidated to 

free the corresponding list entry. The cost of the directory 

scales logarithmically well with the number of processors in 

the system. The European Catrene/TSAR [7] project 

proposes a more flexible scheme: when the heap of the 

memory is full, the system can switch to a source snooping 

scheme. The major drawback with centralized directories is 

the serialisation point of the home directory which can be 

overwhelmed by requests when a data is shared by too many 

processors. 

Eisley and al. proposed a new in-network cache coherence 

protocol (IN-CC) in [1] combining both scalability and 

sharer’s proximity exploitation. By linking nodes of the 

network to build trees of sharers, each entry in the directory 

costs only five bits, one for each direction, and read requests 

can be routed in the tree to a nearby sharer. Thus 20% of 

average read latency reduction is observed. The major 

drawback of the IN-CC implementation resides in its 

complexity which leads to a relative weak performance and 

a posteriori resolution of deadlock configurations. 

Recently, authors of [6] proposed a virtual tree directory 

scheme by storing sharers identification at a coarser 

granularity than IN-CC. This granularity may exceed the 

cache line size. Moreover, multiple memory regions may be 

mapped into the same tree, thus reducing the number of 

trees in the system and so the cost of tree management. In 

this approach, the home node is a synchronization point for 

operations on cache lines. It simplifies acknowledgements 

and thus the whole protocol, but since all requests go to the 

home node, this protocol does not benefit from data 

replication in sharers. 

Contribution : our works target the implementation and 

extensive analysis and validation of a MOESI cache 

coherence protocol distributed in the network. Our 

implementation has been adapted from the IN-CC protocol 

proposed in [1]. For the purpose of verification, the protocol 

has been designed with an optimally simplified architecture 

and implemented in a FPGA technology, thus providing the 
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ability to validate at RT level, thus taking into account 

potential link level deadlocks, inconsistencies due to the 

dynamic evolution of the context and micro-architecture 

issues due to resource sharing. In addition, such 

implementation provides accurate area and performance 

estimation. 

Outline : in the first part, we briefly review the original 

protocol. Then we introduce the NoC-based macro 

architecture and the node micro architecture. Next, we 

describe the main issues encountered during protocol 

analysis and validation phases. Afterwards, we present our 

validation methodology and the results of logic synthesis and 

performance measurements in simulation. At the end, we 

discuss these results, and suggest perspectives for future 

works. 

2 IN-CC implementation 
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directory
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node node

directory

 

Figure 1: IN-CC System on Chip 

2.1 Context 

Our context is a system made of nodes to which can be 

attached either clusters of processing elements, memory 

interface or both. Nodes are physically linked via a 2D-mesh 

NoC (Network on Chip). We consider a single L2 cache per 

cluster, and all clusters see the distributed memory as a 

unique address space.  The memory is logically partitioned 

into segments that are further divided into cache lines. The 

memory interface to each segment (either a L3 cache or 

DDR controller) is handled by a node, called the Home for 

this segment. For each cache line, the system must be able to 

identify all the sharers, i.e. L2 caches holding a copy, in 

order to insure cache coherency. In IN-CC, this information 

is organized as a dynamic pointer tree called Virtual Tree 

whose vertices are mapped onto directory entries, contained 

in the nodes. Nodes exchange messages. Those messages, 

such as read request, acknowledge, cleanup, used for data 

access, change the structure of the tree or the internal state 

of its vertices. 

2.2 Tree building 

When a processor reads a cache line not present in the L2 

cache, the node attached to this L2 cache emits a read 

request message which is routed towards the Home node. 

Whenever the request message reaches a node holding a 

directory entry which matches the cache line, the request is 

rerouted through the tree to a node containing a copy of the 

line. 

If no copy is already present in the network, the Home node 

is in charge of fetching the data from the memory interface, 

and building a new tree, i.e. a branch from the Home to the 

requester considered then as the Root of the tree. The tree is 

oriented towards the Root, so insuring that any request 

propagating through the tree will eventually reach a copy. 

Each time a new sharer is added in the tree, a new branch 

may be built up to this sharer along with the response 

message.  

So, each node directory entry contains the address tag, the 

list of the links to the neighbouring nodes of the tree (by 

means of a short bit vector), a flag “Copy” (the cluster owns 

a copy), the direction (link number) to the root and other 

pieces of information that will be detailed further. An entry 

is valid when at least one link is valid. An example of virtual 

tree implementation into the system is shown in fig. 2 
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Figure 2: Tree implementation 

2.3 Tree teardown 

A tree is removed on a L2-cache exclusive read request, 

Root cache eviction or Node directory eviction. When a 

processor attempts to write into a line, the L2 cache must get 

its exclusive ownership first. So it sends an exclusive read 

request to the Home.  If a valid tree already exists for this 

line, it must be removed; this process called “teardown” is 

described in next paragraph. Then, a new tree is built with 

the exclusive owner as the Root of the tree. However, the 

Root may share the modified line with other nodes further, 

but it can no more change its value (Owner state). Our 

policy is write-back; therefore the memory is updated only 

on the next tree invalidation.  
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Figure 3: Teardown process 
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As shown in fig. 3, a smart process, called teardown, is used 

to invalidate the tree by propagating invalidate requests 

through the tree from any starting node of the tree, and then 

collecting acknowledgement responses (called ack 

afterwards) from the sharer nodes, gradually removing the 

branches of the tree down to the Home: as a node receives 

an ack from a link, it removes this link, and when only one 

link remains, it is the home direction. Then the node sends 

its ack and invalidates itself in turn. If the Root cluster 

modified the line, the data are returned to Home node in 

order to update the Memory. The teardown has the 

following properties:  

1) Several invalidate messages can propagate concurrently 

through the tree. Each directory entry has a flag “Touched”; 

the first invalidate processed at a node sets this flag in the 

corresponding entry and is propagated on other links of the 

tree, the following are ignored.  

2) Invalidate requester identity is not relevant.  

3) After return of all acks, the last remaining link is oriented 

towards the Home therefore the Home direction is not stored 

into the directory entry.  

L2 caches notify any line eviction by means of a cleanup 

message in order to increase the protocol efficiency: the 

associated node resets the “Copy” bit and will stop 

interfering with the L2 cache on further read requests. The 

cleanup process prunes the tree, i.e. releases the relevant 

node directory up to a junction to a branch which is still 

valid. If the Root L2 cache evicts the line, the entire tree is 

removed. 

3 System Architecture 

We introduced 2 physical NoCs: one for protocol 

messages, the other for data packets that have different 

properties and constraints. Synchronization mechanisms 

between them must be added due to side effects of some 

messages. 

3.1 Two networks 

Protocol messages are routed through arbitrary virtual trees, 

so deadlocks are unavoidable, as demonstrated further in 

section V. Messages have reduced size (1 or 2 flits 

according to the link width). For efficiency purpose, the 

node processes the message only once it is integrally 

received, so avoiding to hold a critical resource. This leads 

to use rather a store and forward or virtual cut through 

routing policy. 

Data packets have larger size (1 header flit and 8 data flits in 

our case) as they contain full cache lines. Moreover they are 

protocol independent and so may use an out-of-tree 

deadlock-free routing (e.g. X-first then Y, called X-Y 

afterwards). The relevant information is located in the 

header flit to route the packet. This leads to use a wormhole 

policy because it allows reducing FIFO sizes, thus reducing 

the cost of the NoC. 

Another advantage of this approach is that the two networks 

may have different topologies according to their respective 

needs. Nevertheless, in our implementation we used the 

same 2D-mesh topology for both networks. 

3.2 Synchronization 

However this organization brings extra cost. The separation 

between both networks requires extra synchronization: 1) 

read response messages must be added on protocol side, in 

order to build new branches of the trees. This leads to add a 

new virtual channel on protocol side and consequent 

buffers. 2) The two networks need to synchronize each other 

at Home and requester nodes:  a requester node must wait 

for data if protocol response arrives first, and a Home node 

must be aware of data change if the tree is torn down before 

data arrival. We added only one bit “Wait Data” in the node 

directory entry for the two situations although they may 

occur simultaneously, leading to a more complex state 

machine but less costly solution.  

Finally we defined 3 virtual channels in protocol network 

and only one channel in data network : 

messages physical virtual 

read / exclusive read protocol read 

read response protocol response 

invalidate/ ack/ protocol teardown 

data data data 

 Table 1 : list of network messages 

4 Node micro-architecture 

We designed a simple serialized architecture for the node, 

since our first goal was to validate the protocol. As 

illustrated fig. 4, the Node model is split in 2 parts: Protocol 

part and Data part. Each one is connected to the 

corresponding 2-D Mesh physical network, i.e. to 4 

neighbouring nodes (except for the side nodes) in addition 

to the local processor cluster. 
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Figure 4: Node micro-architecture 

The data channel transfers data packets using the X-Y 

routing strategy, which is known as deadlock-free. 

Arbitration to go from input buffer to outputs is made in a 

clock cycle. This part also accesses to the piece of external 

memory, associated to the node that is modelled as a local 
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RAM with immediate access. The protocol part receives all 

protocol messages, competing to access to a single 

directory, which contains the description of the virtual tree 

nodes. So the protocol part has to arbitrate to access this 

directory, and only one request is processed at a time.  

A 3-stage pipeline (arbitration, directory consultation, 

decision) is able to process a new request every clock cycle 

(unless dependency detection). The request arbitration is 

executed in one clock cycle, with two stages: 1) round robin 

arbitration between source directions for each virtual 

channel, 2) fixed priority arbitration between virtual 

channels. The second clock cycle is fully dedicated to the 

single port SRAM directory read, and tag comparison. At 

the third clock cycle, the Protocol Engine decodes the 

request and the directory state, in order to generate a list of 

actions (output requests, directory update, etc.) that is 

registered into output buffers. Furthermore, conflicts 

between requests to the same address are detected by using 

address comparison in most input and output buffer entries.  

There is one output buffer per output virtual channel and per 

direction. Therefore the output buffers compete to access to 

each output direction and a round robin arbitration per 

direction is used. The Protocol Engine was generated 

automatically from a table of the 140 identified elementary 

rules of the protocol expressed as an AND of elementary 

conditions. 

Three other objects are not displayed in fig. 4: 1) the 

Directory Update FIFO, to give priority to requests over 

updates, 2) the Pending request buffer, to wait teardown 

completion before re-scheduling conflicting reads, 3) the 

Eviction Buffer, to process evicted entries, allowing re-use 

of the directory entry before the eviction is achieved 

5 issues 

From the protocol analysis, 3 transaction processes appear  

1) read request downto response reception 2) teardown or 

cleanup process 3) an exclusive read request may combine 

the 2 preceding ones. Our analysis methodology was 1) to 

analyze each transaction individually, 2) then to considerer 

the evolution of trees on atomic transaction sequences: the 

identified issue is the cycle forming inside a tree 3) to 

consider atomicity at node/microarchitecture level, i.e. 

situations where transactions occur simultaneously, or 

message concurrence during a teardown. Races create 

inconsistencies and deadlocks inside a same tree since the 

only interaction with another tree is to initiate a teardown by 

cache or directory eviction. Issues involving different trees 

are deadlocks due to resource access competition. Finally, 

we classify these issues into 3 categories: 1) cycles, 2) 

deadlocks, 3) races. Most interesting issues are highlighted 

hereafter. 

5.1 Cycles 

The dynamic construction of the virtual trees is likely to 

create cycles. Indeed we did not find routing strategy that 

avoids cycle forming in the trees. The cycles must be broken 

because they are fatal for the tree teardown. 

5.1.1 Cycle forming 

We chose an adaptive routing for read responses in order to 

reduce the number of nodes of a tree. So we reuse the 

already existing branches as far as possible while coming 

closer to the requester (choosing as a priority X direction if 

both X and Y are possible), and use non adaptive X-Y 

routing once out of the tree. The figure 5 shows an example 

of cycle forming in a tree, which is described hereafter.  

First, the L2 cache of node R sends a read request to the 

home node H going up the path R-A-H. Once the Home has 

processed the request, it sends back a protocol read 

response to R and concurrently reads the line data onto 

memory, data are then returned to R on separate data 

network. The read response progression creates the first 

branch H-A-R of the tree. Let us note that the read response 

has a flag “init” to indicate that the response is creating a 

new tree and the requester will become the Root. If the flag 

“init” is set, the Root direction for the current node is the 

output link of the response, else it is the source link. Then 

node B transmits the read request of its L2 cache towards 

the Home, the request goes to node A according to the X-Y 

routing strategy. As A is in the tree, A transmits the request 

to R (according to root orientation). Node R requires data to 

its own L2-cache, and sends a read response to B, using 

first Y direction, as it comes closer to B while remaining in 

the tree. Then the link A-B is created.  When C requests 

data in turn, the request goes directly to R, and the response 

creates the branch R-C. Then D sends its request to H that 

transmits it to R following the tree orientation. At node R, as 

X and Y directions remain in the tree, X direction is chosen 

to send the response to C, that proceeds propagating the 

response to B and a cycle is formed. 

5.1.2 Effect of a cycle on tree teardown 

In this example, when the node D sends its ack, it has no 

more link and becomes invalid. A, B, C and R nodes are in 

deadlock, because each one of these nodes remains with two 

links, once its cache returned its ack, preventing the node 

from sending its own ack in turn. 
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Figure 5: Cycle forming 

5.1.3 Cycle breaking  

As a read response, once it has left the tree, is not allowed 

to come back into the tree, we added in the response 
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message a flag “exit” indicating that the message exited the 

tree at the previous node output. Initially a read response is 

produced by a Node in the tree (exit=0). When the node C 

of the fig. 5 decides to propagate the response out of tree, 

i.e. to a direction that is not an edge of the tree, the node sets 

the exit flag of the response, and adds the direction in the 

link list of the directory entry corresponding to the tree. As 

the node B is a vertex of the tree, B detects that a cycle is 

being formed when it processes the response with flag 

exit=1. Then node B sends a cleanup to the response source 

direction (e.g. to C), in order to remove the unwanted new 

branch. The response can proceed from the current node B 

to D (with exit=1). A new branch B-D is created and the 

branch B-C is removed. 

5.2 Deadlocks 

Our implementation of the INCC protocol obeys to different 

tradeoffs with a constant concern for reducing hardware 

complexity. Unfortunately, our realization of the messaging 

protocol cannot avoid the occurrence of deadlocks. In other 

words, we cannot relax any of the four Coffman 

characteristic conditions for deadlocks [8]:   Only one 

message can hold a node input buffer at a time, thus the 

mutual exclusion condition is fulfilled.  This is inherent to 

the underlying NoC transport protocol used.  The message 

transfers may hold one output finite size buffer while 

requesting an input buffer, which is the resource holding 

condition.  However we partially relaxed this condition by 

routing different message types into independent virtual 

channels. By using several virtual channels, we avoid 

message-dependent deadlocks between reads and responses, 

read or response and teardown messages [9]. We do not 

separate invalidates, acks and cleanup because the tree 

teardown is a complex process itself implying message 

concurrence. Therefore a single channel avoids buffers and 

extra logic to solve race issues. However, this channel 

virtualization reduces the probability of resource conflicts 

but does not suppress it. Next, there is no provision for 

preemption in the transport infrastructure, which implements 

a strict FIFO order in the routers.   Finally, circular wait is 

possible:  we can easily imagine situations where trees are 

nested in such a way they form a cycle leading to routing-

dependent deadlocks. Figure 9 displays a situation where 

two flows of messages of same type are inter-locked (any 

type is concerned). The messages may address different 

trees or the same tree (read/response). The trees may have 

same topology or overlap. 
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Figure 9: Routing-dependant deadlock. 

As a consequence, since we cannot prevent the deadlocks, 

we implement detection and correction for them. A 

deadlock of any virtual channel is detected with a timeout 

on the next request waiting to go out in the output buffer.  

Deadlock correction of read and response channels : the 

output request is cancelled and a retry response is sent to 

the requester. However for the response channel, all the 

responses of the output buffer at the same address are retried 

and if the first outcoming response has the flag “exit” set, 

then a cleanup is processed by the Protocol Engine in order 

to remove the branch being added.  

Retry messages are used to help solving conflicting 

situations.  This response indicates to the requester that its 

read request did not succeed and it has to retry later. Retry 

messages specify if the requester must wait for data (retried 

response) or not (the request was retried before reaching the 

data). As the retry has no more interaction with the tree, it is 

routed through the data channel with a deadlock free (X-Y) 

routing strategy. 

The teardown messages are not retryable because the emitter 

of the message is probably removed from the tree when the 

conflict is detected. Furthermore, the teardown of a tree 

cannot be aborted without creating incoherent situation.  

Our deadlock solution for teardown channel  is to free 

the input buffers. So the deadlocked nodes will 

progressively enable the service of next output requests, 

which unlocks the situation. As an input request 

(invalidate/ack/cleanup) is propagated inside the tree, the 

Protocol Engine updates the line state in the directory and 

notifies in this entry that a teardown must be resumed. In 

order to do that, our minimal solution adds only one flag 

“Pending teardown” in the directory entry, and pending 

invalidates are not differentiated from pending acks. 

Therefore, invalidates may be repeated wrongly, but 

invalidates can be repeated without violating the protocol. 

Cases where an ack must be output are non ambiguous 

because they occur when only one link remains.  

Therefore, when the situation is unlocked, an independent 

process resumes the pending requests. This process scans 

the directory by sending resume requests to the Protocol 

Engine. It competes with the input buffers with low priority. 

Once a directory entry is processed, the “Pending” flag is 

reset. Each time the resume process is stalled by a 

successive deadlock, the process fairly restarts from the 

stalled address, and proceeds circularly until it succeeds to 

make a complete turn without interruption.  

5.3 Inconsistencies inside a tree due to races 

As we cannot implement protocol transactions in an atomic 

way, races between transactions for the same tree may occur 

and cause inconsistencies. This phenomenon is worsened 

considerably by the distributed aspect of the protocol. Tree 

construction and teardown may occur simultaneously; new 

branches may be created by responses while other parts of 

the tree are removed partially by cleanup or completely by 

invalidates. The concurrent requests progress at different 

speeds according to the arbitration contentions and FIFO 
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occupations. Multiple conflicting situations were identified, 

adding even more detection logic and sophistications to 

basic mechanisms. We distinguish different types of race 

issues:  

1) a read request encountering a teardown is stalled at 

Home node. A read request is retried when it comes into a 

L2-cache that is sending a cleanup message to its node, or is 

still invalid because the data have not been received yet. 

2) races during edge construction: 

Atomicity: the building of a new branch cannot be atomic 

due to the distributed aspect of the protocol: several nodes 

may decide to propagate responses concurrently. 

Particularly, edge building between 2 vertices is not atomic. 

In a first time, only the edge initiator node has a link 

towards the target node. The edge is entirely built when both 

initiator and target nodes have a link towards the other node, 

as shown fig. 6. Therefore different situations may occur at 

a node: they are detected by using flag “exit” of the 

response, valid state of the node and source link of the 

response. In a cycle free situation, when a response exited 

the tree, it comes into a node from a direction that is not a 

link of the tree. The following table summarizes the 

different situations and the reactions of the Protocol Engine: 

when the situations are considered as too problematic, the 

response is changed into a retry response. The case where a 

response crosses a cleanup will be detailed in following 

paragraph V-3. 

 invalid node valid node 

invalid src  link 

valid node 

valid source link 

response 

exit =1 

normal 

situation: 

resp. proceeds 

cycle forming: 

cleanup to src 

resp. proceeds 

resp. crossing: 

cleanup to src 

resp. proceeds 

exit=0 cleanup cross: 

retry response 

cycle series: 

retry response 

normal : 

resp. proceeds 

Table 2: response processing by the Protocol Engine 

    Cycle series occurs when a further response is 

propagated through a link that creates a cycle, before the 

cleanup removes this link. This case is easily drawn by 

adding a node E at the North at node D in the fig. 5. Node E 

may send a read request just after D. Then the 2 responses 

follow the same path. 

    Response crossing: a case where 2 responses cross on a 

link and form a cycle is given is given by Fig. 6, and 

illustrates how unexpected situations may occur when 

concurrent branch constructions progress at different 

speeds. Starting from an initial tree H-A-R, branches of the 

tree are successively built by responses: R-D at t7, R-B at 

t9, B-E at t11. We assume that request from C proceeds 

towards the Home before the link D-R is registered in the 

directory of node D, and stays at the input of node E, until 

node E gets a copy of the line. The response to F exits the 

node R at t8, before branch R-B is created, but as the branch 

R-D already exits, it follows this link, and stays for a long 

time at the input of the node D (due to FIFO saturation, 

dependencies, etc). At clock cycle t14, node E sends its 

response to C, and node D sends its response to F. The two 

responses cross on the same link at the same time, each one 

coming from the opposite node, just after adding the link in 

the tree list.  By applying the rule given in Table 2, both 

nodes D & E detect the situation and send back a cleanup to 

the other node. 
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Figure 6:  cycle forming by response crossing 

3) races occurring during a teardown may :a) create  an 

incoherent branch , b) insulate  an invalidate message that 

will kill further the tree, c)  block a teardown due to ack 

mismatch.  

a) avoiding the creation of an incoherent branch: 

The read responses in progress during a teardown are 

retried because they are creating new branches to be deleted. 

It is necessary to prevent the creation of a separate branch 

disconnected from the tree being deleted. So read responses 

are changed into retry responses by a Protocol Engine when 

the Node is already “Touched”. But as invalidates and 

responses are in different virtual channels, they may be 

processed by a PE in any order. For example, an invalidate 

may pass beyond a response : it finds an invalid state if this 

response is building a new edge, so the invalidate is 

ineffective and the response will build  a separate branch. In 

order to remedy such situations, when an 

invalidate/ack/cleanup message is processed by a node 

Protocol Engine, all the responses to the same address, 

staying inside input or output buffers of the node, are 

transformed into retry response. But in some cases, the 

conflict cannot be detected because the response is hidden 

to the other requests while crossing through the physical 

link. To solve this issue, we created a new request called 

cleanback, and an associated virtual channel. Each time a 

PE processes an invalidate or cleanup, it firstly sends a 

cleanback onto the source link of this request with a high 

priority. As soon as it is received by the source node, the 

cleanback cancels the invalidate and retries the responses at 

the same address, arrived before in the input buffer from the 

same link. The drawback of the cleanback solution is to 

bring non negligible traffic on the links in case of teardown. 

b) insulation of an invalidate message: 

An invalidate request must be cancelled itself by a 

cleanback when it is staying in the input buffer of a node. If 

this node already completed the teardown while the 

invalidate crossed through the link, the invalidate may be 

processed after, while a new tree is being built, therefore 

this tree is removed wrongly. 
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c) acknowledge mismatch: 

A teardown is blocked if a node waits in vain for an ack 

which will never be generated. The rules to avoid such 

situations are the following. A cleanup request is interpreted 

as an ack, when it is received by a Node already marked as 

“Touched”. The Protocol Engine propagates a cleanup to 

the source link of a response retried in the input buffer. 

When a response staying in the output buffer of a node, with 

attribute exit=1, is retried, the output buffer manages the 

acknowledgement phase of the teardown in place of the 

destination node: it generates an internal cleanup to the PE. 

If the response is an initial response, cleanup is replaced by 

an ack. 

6 Results 

6.1 Protocol validation  

A model of the system was written in Verilog in order to 

make reliability tests on a FPGA platform. The model is 

reduced in order to put more nodes onto the FPGA. 

However the reduction of address space and directory sizes 

favours the occurrences of conflicts and critical situations 

for the protocol. Each cluster is replaced by a transactor in 

charge of generating requests to the network, and to provide 

responses to the requests coming from the network. The 

transactor detects output request timeout and non-consistent 

data or responses using a system reference memory. 

Requests are generated in a pseudo random way under 

constraints and the transactor holds 8 outstanding requests. 

The external memory or L3 level is modelled by a local 

FPGA RAM with rapid access.  

Software simulations were performed on several NoC 

configurations of up to 16x16 nodes, each one during 

around 1M clock cycles.  Executions on FPGA board 

(Altera/ Stratix III EP3SL150) DE3 of Terasic were done on 

configurations 2x2, 4x4 and 16x1, each one during 100 

Gcycles @ 40MHz without error. 

6.2 evaluation of performances and cost  

Although we use a reduced node architecture (32-bit 

addresses, 1K-entry directory), we get a total area of 

0,7mm2 from a logic synthesis of the node, in a 65nm 

CMOS LP technology from STMicroelectronics (with 70% 

cell area ratio). For a 4x4 network , throughput per node is 

about 30K (29334) reads for 1M clock cycles (3%) , e.g. a  

33-cycle average  delay between 2 reads. Directories of 

central nodes are clearly the bottleneck since they are busy 

up to 98% of time, due to uniform addressing and X-Y 

routing. For a 8x8 network, optimum insertion delay is 

about 75 cycles and resulting throughput per node is about 

1080 reads for 1M cycle (0,1%), i.e. a  93-cycle average  

delay between 2 reads. Furthermore, the system is also auto-

limited by the number of possible outstanding requests of 

each L2-cache. 

   Unsurprisingly, the performances of the reduced 

architecture are insufficient, even if uniform request address 

distribution is a worst case. Node directory access is the first 

bottleneck to solve. In [1], it is claimed that “the virtual tree 

cache is assumed to be maximally ported; there is a read and 

write port for each of the 5 router ports”, but such memories 

cannot be implemented on real hardware. In order to draw 

near this ideal, we could use 1) dual port RAM to 

read/update status simultaneously, 2)  adopt a multi-bank 

architecture (minimum 4 banks) for the directory, that leads 

to multiply the number of buffers and to increase the stage 

number of arbitration, having strong impact on area and 

consumption. 

7 Conclusion  

This paper addresses many issues found in the 

implementation of the IN-CC [1] protocol, most of them are 

related to the handling of concurrent requests resulted in 

building and/or removing simultaneously branches of virtual 

trees. This work illustrates the implementation complexity 

of a distributed protocol versus a centralised protocol. 

Efficient solutions have been proposed to avoid the creation 

of loops during virtual tree expansion and to recover from 

deadlocks during the teardown process. Specific corrective 

action has been founded for each race issue, increasing 

however the protocol complexity. Finally, our experiences 

demonstrate that the IN-CC protocol necessitates a more 

sophisticated switch architecture in order to provide better 

performances. Those considerations are parts of our present 

and future works. 
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Abstract – Distributed algorithms implemented 
using MPI are often concerned with time and 
message complexities. These measures mainly 
address the quantitative aspect of the distributed 
programs. The qualitative aspect, which is the 
performance of the distributed program, can be 
ascertained only by measuring the concurrency of the 
distributed program.  Raynal, in 1992, developed a 
method of computing concurrency of distributed 
computations based on the volumetric abstractions of 
cones and cylinders. Both cone and cylinder 
abstractions make use of the values: weight, volume 
and height. With the help of these 3 values, the 
measure of concurrency can be calculated for both 
cone and cylinder abstraction.  In this research, a 
visualization system was developed that measures 
and analyzes the concurrency of a distributed 
program by making use MPICH event clog2 event 
trace files and the above cone and cylinder 
abstractions.  This paper will discuss the 
development of this visualization system and the 
accuracy and efficiency of the visualization tool. 
 
Keywords: Concurrency measurements, distributed 
systems, software visualization tools, MPI, vector 
clocks.  
 
1. Introduction 

In distributed algorithms, time and message 
complexities are the two measures that are used to 
identify the efficiency of a distributed program.  
However, these two measurements are quantitative 
and do not answer address any concerns regarding 
the quality of the distributed program, or amount of 
concurrency in a program.  Without a measure to 
calculate the quality of the distributed program, it is 
not certain to know if the execution is well 
distributed and if the execution will have delays due 
to synchronization constraints [8]. 

These questions can be answered by finding the 
amount of concurrency in the distributed 
computation. The underlying theoretical approach, 
used in this research and visualization system, is 
quoted in [8].  According to this approach, the degree 

of concurrency can be calculated by quantifying the 
synchronization delay.  Synchronization delay is a 
delay that might exist between two successive events 
in the same process.  

In order to measure the concurrency, this 
research makes use of two abstractions, a cone and a 
cylinder.  These geometric shapes are used to 
quantify the synchronization delay and to find the 
concurrency measure. The cone abstraction is 
associated with individual events, whereas the 
cylinder abstraction is associated with the whole 
program computation.  Three values are associated 
with both the abstractions: weight, volume and height.  

Cone and cylinder abstraction will be discussed 
further in section 2. The design of the visualization 
system that automates the calculation of concurrency 
by making use of the said approach will be discussed 
in section 3. The evaluation of the visualization 
system is tested on a sample program as is discussed 
in section 4.  Section 5 will present future work and 
conclusions. 
 
2. Background and Related Research 

To implement the concept to causality relation in 
distributed system, Lamport proposed logical clocks 
in 1978 [6].  He proposed the concept of causality 
relation (also known as happen before relation) 
denoted by “→” which described the causal ordering 
of events.   

In [5] and [7], Fidge and Mattern independently 
proposed vector clocks that overcame the limitation 
of logical clocks. A vector clock of a system of 
N processes is a vector of N logical clocks, one clock 
per process. In vector clocks, a local copy of the 
global clock array is kept in each process.  However, 
a vector clock only provides the timestamp of the 
event. The use of these timestamp values to find the 
interval between 2 events but the concurrency of the 
distributed computation cannot be known from the 
vector clock elements. 

 
2.1. Concurrency Measures 
While calculating a concurrency measure, it is 

assumed that the message passing is instantaneous. It 
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is also assumed that each event consumes 
approximately the same amount of computing time. 
This computing time is known as time unit. 

 

 
Figure 1: Sample time-event diagram. 

 
The time-event diagram shown in Figure 1 has 3 

processes and each process contains some events.  
Vector timestamps are shown on each event. The 
delay between two events is known as 
synchronization delay.  The purpose of concurrency 
measure is to effectively measure the number of 
synchronization delay.  This idea was first introduced 
in [3]. 
 

2.2. Cone and cylinder abstractions 
In order to effectively measure synchronization 

delay, cone and cylinder abstractions were 
introduced. Cone abstraction deals with the 
concurrency measure of the individual event. 
Cylinder abstraction deals with the concurrency 
measure of the entire computation. 

From [8], with cone and cylinder abstractions, 
three values are associated: volume, weight and 
height.  Weight, denoted by wt, in a cone abstraction 
is the exact number of events that causally precede an 
event e.  Weight in a cylinder abstraction is the 
number of events that are produced in the total 
computation.  Volume, denoted by vol, in a cone 
abstraction is the maximum number of events that 
could possibly precede an event e.  Volume in a 
cylinder abstraction is the maximum number of 
events that can be produced in the entire 
computation. Height, denoted by ht, in a cone 
abstraction is the number of events that could come 
before the event e but it has to be on the longest 
causal path ending with event e.  Height in a cylinder 
abstraction is the largest logical time associated with 
an event e. 
 

 
 

Figure 2: Cone abstraction on time-event 
diagram. 

 
Note: a similar analysis can be constructed for a 
cylinder abstraction on a time-event diagram. 
 
2.3. Calculating Concurrency 
From [8], the concurrency measure is calculated 

for cone and cylinder abstraction using the following 
formulas, 

 
For cone abstraction: 

 
 
For cylinder abstraction: 

 
 
In the above equations the numerator denote the 

total number of synchronization delay which have 
actually occurred and the denominator denotes the 
maximum number of synchronization delay which 
could have possibly occurred. 

Once the value of α’ e (e) and α’ (C) are 
calculated, it is subtracted from 1 in order to get the 
concurrency measure. The reason it has to be 
subtracted from 1 is because as it is seen in both [3] 
and [4], when α = 1, the computation is said to be 
maximally concurrent and when α = 0, the 
computation is said to be sequential. Hence by 
subtracting by 1, the concurrency measure calculated 
in [8] can be made compatible with [3] and [4]. 

 
3. System Design 

The input to the visualization system is a clog2 
trace file that is generated by the program written 
using MPICH2.  The clog2 is a default log format of 
Multi-Processing Environment (MPE), which is a 
suite of performance analysis tools for programs 
written for MPI.  The visualization system was 
written solely in Java and supporting tools.  The 

!′! ! = !!"# !"# ! −!"(!"#(!))
!"# !"# ! − !"(!"#(!))  

!! ! = !"# !"# ! −!"(!"#(!))
!"# !"# ! − !"(!"# ! )  
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concurrency measure database was created using a 
MySQL database and the bridge between Java and 
MySQL was made with the help of Hibernate.  Third-
party Java libraries such as JFreeChart were used to 
display graphs and Jssh was used to establish 
connection with the Linux server. 

As shown in Figure 3, the user would initiate the 
application by giving authorization to make a 
connection to the Linux server by entering the 
hostname, username and password. 

 
Figure 3: Concurrency visualization system 

design. 
 
Once the connection is established with the 

server, Figure 3 shows the GUI that is displayed 
prompting the user to enter the name of the MPI 
program, number of processes and a command line 
argument, which is optional. The application can 
access the MPI program file on the server written in 
C/C++ only when it is stored in a folder called 
“Project” and has a makefile. The application then 
executes the MPI program on the server multiple 
times and each time the MPI program executes, the 
clog2 file will be converted from binary to text 
format using the “clog2_print” UNIX command and 
then the contents of clog2 file will be written and 
stored in a text file on the client machine. With the 
help of these clog2 files, the visualization system can 
measure the concurrency of the distributed 
computation and it stores the concurrency measures 
in the concurrency measure database. When all the 
concurrency measure values have been calculated, 
the output GUI is displayed.  From the output GUI, 
the user can select a graph to view. 

 

 
Figure 4: System input GUI screen. 

 
Once the generate button is pressed, the user’s 

input would be used to generate several script files to 
control the execution of the program.  The program 
will then generate a series of clog2 files which are 
then parsed and imported into a database for further 
analysis.   

One of the challenges of this research was to 
determine the structure of the clog2 file generated by 
the MPE environment when an MPI program is 
executed.  The original clog2 file is passed through 
this parser to find the size of the communicator and 
the number assigned to the starting and ending event 
of the internal event. Scanning each line of the clog2 
file searching for some specific words does this.  The 
first word is “max_comm_word_size”, the variable 
assigned to this word will be the size of the 
communicator. The size of the communicator is 
extracted and stored in the variable “size”. The words 
“s_et” and “e_et” corresponds to start event and end 
event respectively and the number assigned to both 
start and end event are extracted, as shown in Figure 
5.   

Once the have the size, start event and end event 
are determined, the document can be searched for 
only the required information.  The parser scans each 
sentence, searching for the occurrence of “send”, 
”recv” (start event, and end event).  The lines that 
contain these words will be written to another text 
file.  This text file will be named as the name of the 
program entered by the user in the input GUI 
followed by “_required info”.  The newly created text 
file will be used by the application to measure the 
concurrency of the distributed computation. 

The text file created in the previous section will 
be passed through this parser, which is known as 
“InfoParser”. This parser would first scan the text file 
line by line determining which event is occurring on 
each line.	
  	
  

If the event is a send event then the “Send 
Event” method is called which will update the vector 
clock of the sender process. It first checks if the clock 
has been initialized, if the clock has already been 
initialized it will call the “Update Clock” method 
otherwise it will call the “New Clock” method. 
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Similarly the vector clock of the receiver process is 
updated if the type of the event is internal event. In 
the case of the receive event, the receiver process will 
be updated similarly to send and internal event, 
however it has an additional method call “Receiver 
Update”.	
  

Figure 5: Sample clog2 file. 
 
 The parser will create two new vector clocks for 

each event in the distributed computation. The first 
vector clock is known as “LocalClock”, this vector 
clock is like any other vector clock. However, the 
second vector clock, which is known as 
“WeightClock”, is a special vector clock, as it keeps 
tracks of the synchronization delays between the 
events. 

Summaries of methods created for this 
visualization system are described here. 

• Method Line separator: When a line is read 
from the text file, the parser will determine if the 
event is a send, receive or internal event by looking at 
the type of the message and call the appropriate 
subordinate method. 

• Method Internal event:  If the event is an 
internal event then it will either call the “New Clock” 
method (first call) or the “Update Clock” method. 

• Method Send event: If the event is a send 
event then it will either call the “New Clock” method 
(first call) or the “Update Clock” method.  

• Method Receive event: If the event is a 
receive event then it will either call the “New Clock” 
method (first call) or the “Update Clock” method. 
After updating the vector clock of the receiver 
process, receive event will call “Receiver update” to 
update its value by comparing with the vector clock 
of the corresponding send event. 

• Method Receiver update: Receiver update is 
called to update the vector clock of the receiver 
process by comparing it with the vector clock of the 
sender process. In the case of multiple send events as 
seen in send event, receiver update will first retrieve 
the corresponding vector clock of the send event 

from the array list and then each position of the 
vector clock in receiver process is compared with the 
corresponding position in the vector clock of the 
sender process. The maximum of the two values is 
then updated in the vector clock of the receiver 
process.  The above procedure only works when a 
corresponding send event has already occurred before 
this receive event. In some cases, it was noticed that 
the clog2 text file had receive events occurring before 
send events. Simulating a send event solved this 
problem. For example, if receive event occurred 
before the send event at the very start of the clog2 file 
then the vector clock of the receive event will be 
updated vector clock with 1 in the ith position, where i 
is the rank of the sender process and keeping the 
remaining elements as zero. If the receive event 
occurred before the send event in the middle of the 
clog2 file, then the vector clock of the receive event 
will be updated with the latest vector clock of the 
sender process where the ith position of the vector 
clock has been incremented by 1 to simulate the 
occurrence of send event. 

• Method New clock: New clock is called to 
initialize the vector clock. It initializes the vector 
clock by first creating a list.  

• Method Update clock: Update clock is 
called to update the vector clock. It updates the 
vector clock of the event by first retrieving the latest 
vector clock of that process i and then it increments 
the ith position of the vector clock. 

• Method ConcCal: This method calculates 
the measure of concurrency. This method takes the 
weight, volume and height as arguments. After 
receiving the values, it computes in the formula to 
calculate the measure of concurrency [8].  

• Method Cylinder abstraction: After all the 
values have been calculated for “LocalClock” and 
“WeightClock”, the method “CylinderCal” is called. 
This method first takes the ith position of each process 
i and stores it in an array. It then adds the elements of 
the array to find the weight of the cylinder. The 
height of the cylinder is calculated by taking the 
“WeightClock” of the last event of the distributed 
computation and finding the maximum value among 
them. Volume is calculated by simply multiplying the 
height with the number of processes. Once the value 
is known for weight, volume and height, the 
concurrency can be easily calculated by sending the 3 
values as arguments to ConcCal method, which after 
calculating the concurrency of the cylinder returns it 
back to “CylinderCal”. 

• Method Cone abstraction: Since the cone 
abstraction is associated with individual events, its 
concurrency must be calculated after completion of 
each event. This can be achieved by having 3 
methods for weight, volume and height.  
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Once the value of weight, volume and height is 
known for each event, the method “ConeCal” is 
called. This method will remove the first element 
from the lists “Weight”, “Volume” and “Height” and 
then it sends the 3 values as arguments to the method 
“ConcCal”, which after calculating concurrency 
returns it backs to “ConeCal”. This is repeated until 
the 3 lists are empty and the measure of concurrency 
for each event in the distributed computation. 

The output GUI consists of 6 buttons, 5 of the 6 
buttons corresponds to a type of graph and the 6th is 
the exit button, as shown in Figure 6.  

 
Figure 6: Output graph selection GUI screen. 
 
The 1st button when clicked would display the 

graph plotted with percentage of concurrency 
measure on the y-axis and the number of processes 
on the x-axis as shown in Figure 7. The 2nd button 
when clicked would display the graph plotted with 
percentage of concurrency measure on the y-axis and 
the number of events on the x-axis as shown in 
Figure 8.  

 
Figure 7: Sample graph of % concurrency vs. 

number of processes. 
 
The 3rd button when clicked would display the 

graph plotted with percentage of concurrency 
measure on the y-axis and time (in milliseconds) on 
the x-axis as shown in Figure 9. The 4th button when 
clicked would display the graph plotted with 
percentage of concurrency measure on the y-axis and 
time (in milliseconds) on the x-axis, however the 
concurrency measure of each process is displayed 
separately as shown in Figure 10. The 5th button 
when clicked would display the graph plotted with 
percentage of concurrency measure on the y-axis and 
time (in milliseconds) on the x-axis, however this 

graph is a collection of smaller graphs stacked one 
over the other, where each graph corresponds to a 
process as shown in Figure 11. 

 

 
Figure 8: Sample graph of % concurrency vs. 

number of events. 
 

 
Figure 9: Sample graph of % concurrency vs. time 

(individual process). 
 

 
Figure 10: Sample graph of % concurrency vs. 

time (combined processes). 
 
 

 
Figure 11: Sample graph of % concurrency vs. 
time (stacked processes). 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 317



4. Experimental Results 
The visualization system was tested on several 

benchmark and sample student-programming 
assignments.  (Author’s note: Due to page length 
limitations only one such program is discussed.- 
MCS)  This section provides the testing and 
demonstration of a distributed algorithm for leader 
election using a ring of processes.  In this program 
there are two functions, manager and worker. The 
manager is responsible for assigning a unique 
identifier to each process and then sending a message 
to process 1 to initialize the election algorithm. The 
worker function is responsible for electing the leader, 
once the election initialization message is received 
from the manager, it will start the election algorithm. 
In the election algorithm it performs 3 checks, it 
checks if the received identifier is less than, greater 
than or equal to itself. If the received identifier is less 
than its own identifier, then it will forward its own 
identifier to its neighbor. If the received identifier is 
greater than its own identifier than it will simply 
forward the received identifier to its neighbor and 
finally if the received identifier is equal to its own 
identifier then it means that it has the highest 
identifier and it will elect itself the leader and 
forward an elected message to its neighbor. The 
elected message goes round the ring until it reaches 
back to the process which was elected the leader and 
the program terminates. 

Figure 12 shows the graph for the percentage of 
concurrency with respect to the number of processes. 
It can be seen from the graph that the change in 
number of process will result in change in 
concurrency of the distributed computation. 

 

 
Figure 12: Leader election % concurrency vs. 
number of processes. 
 
Figure 13 shows the graph for the percentage of 
concurrency with respect to the number of events. It 
can be seen from the graph that the change in number 
of events will result in change in concurrency of the 
distributed computation. Since this program does not 
take any command line arguments, the graph would 
be plotted by counting the events occurring in the 

program and finding the concurrency, so in some of 
the cases the number of events can be same for two 
or more programs. 

 

 
Figure 13: Leader election % concurrency vs. 

number of events (single process). 
 
Figure 14 shows the graph for the percentage of 
concurrency with respect to time in milliseconds. It 
can be seen from the graph that the concurrency of 
this program oscillates between 0 and 1 in the 
beginning and then it slowly reduces with time. 
 

 
Figure 14: Leader election % concurrency vs. time 
(single process). 
 
Figure 15 shows the graph for the percentage of 
concurrency with respect to time in milliseconds. It is 
interesting to see in the graph that one process 0 had 
concurrency of 100% while the concurrency of other 
processes was in the range of 0 to 10%. 
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Figure 15: Leader election % concurrency vs. 
number of events (all processes). 
 
Figure 16 shows the graph for the percentage of 
concurrency with respect to time in milliseconds. It 
can be seen from the graph that the concurrency of 
process 0 was 100% and the remaining processes had 
maximum concurrency of 10%. 
 

 

Figure 16: Leader election % concurrency vs. 
time (stacked processes). 

5. Future Work and Conclusions 
In this research, a visualization system to 

measure the concurrency of a distributed computation 
is implemented. The visualization system is based on 
the approach proposed in [8].  

The proposed visualization system is designed to 
be very user friendly. The user can enter the input 
values in the user interface and the tool does all the 
necessary calculations to compute and visualize the 
concurrency of a program. 

This tool was able to accurately measure the 
concurrency for both cylinder and cone abstraction. 
By looking at the graphs generated by this tool, we 
were able to easily differentiate between a sequential 
program and a program that was written 
concurrently. 
The visualization system can be further improved by 
implementing a scanner at the very start of the 
program. The function of this scanner would be to 

scan the clog2 file and find any inconsistencies and 
try to rectify them.  

It is known that sometimes the test programs 
can be large and may take a lot of time to measure 
the concurrency. In the future, having a proper 
database to store the concurrency values of each 
program can solve this problem.  The GUI could be 
modified where the user can select the name of the 
program that has already run through the tool and the 
tool will just load the values from the database and 
display them instead of calculating them again. 
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Abstract—Algorithmic skeletons have proved to be a good
solution to the problem of implementing parallel applications
with specify communication structures. They define the overall
structure of the computation, hiding the complex communication
details. Nowadays, the different frameworks available offer a
fixed set of skeletons. The programmer can implement efficient
programs if the computation and communication patterns match
the available skeletons. Because of that, the usage of skeleton
frameworks has been limited to an important but relative small
set of patterns featuring the most common parallel structures,
such as map, pipeline, farm, or wavefront.

In this paper, we present a programming model that can be
used to implement efficient and portable parallel skeletons. We
also discuss its implementation and integration into Hitmap, a
tool for hierarchical tiling and mapping. This combined proposal
allows to develop tailored static and dynamic skeletons while
still hiding implementation and communication details. The
performance of the implementation is measured against a well-
known skeleton framework.

Keywords—Algorithm skeletons, Parallel programming models,
Dynamic computation

I. INTRODUCTION

Development of parallel software is a quite complicated
task. Typically, programming for parallel machines is based
on message passing libraries such as MPI [1] or shared
memory APIs like OpenMP [2]. These solutions allow to write
portable code for different machine architectures. However, the
programmer has to deal with several non-trivial issues such
as problem decomposition, data distribution across processes,
local computation, data exchanges, load balancing, or synchro-
nization. Consequently, implementing and debugging a parallel
application can be a tedious and error-prone task.

Algorithm skeletons [3], [4] offer the programmer a differ-
ent view, based on the fact that many parallel algorithms share
common computation patterns. Skeletons are a high-level par-
allel programming model that aims to encapsulate the overall
structure of computation, hiding the complex details of parallel
applications. With skeletons, programmers do not have to write
the code to perform the coordination or communication. They
only have to provide the specific code to solve the problem,
using the skeleton as a template.

The skeletons could be classified in two groups depending
on the nature of their computation structure. A skeleton with
a static computation structure (i.e. based on a stencil) can
be implemented with coarse-grain partition techniques, using

a static scheduling that can be pre-calculated at compilation
or initialization time. However, in a dynamic computation
structure (i.e. a farm), where data dependent tasks flow through
diverse computation stages, dynamic load-balancing solutions
are needed to develop efficient programs.

Due to the advantages provided by the use of algorithmic
skeletons, a significant number of frameworks and libraries
have been developed so far. However, each one of them offers
a limited set of skeletons focused on particular techniques or
architectures. Thus, the programmer has to choose a solution
that may not be ideal for the problem and/or not portable,
betraying the original idea of the skeletons.

We propose to simplify the implementation of efficient and
portable skeletons with a simple and generic programming
model. This model is based on Petri nets [5], [6], a well-
known and established formalism for modeling and analyzing
systems. Our model represents the task flow of a skeleton
with two simple element types (processes and containers).
These elements can be combined to model the structure of
any skeleton. The model supports both static and dynamic
structures. However, we focus on dynamic skeletons since
the static ones can be more easily implemented with static
scheduling techniques.

This paper also shows how to efficiently implement the pro-
posed model. We have developed an implementation integrated
into Hitmap, a tool for hierarchical tiling and mapping of dense
arrays and sparse structures. Hitmap already offers solutions
to automatize programs with static computation structures. It
incorporates data partition techniques that automatically adapt
the program to the current data size and current available
computational units. Our extension adds support for dynamic
skeletons in Hitmap.

Experimental work has been conducted to prove that the
implementation achieves good performance with a case of
study. Any framework using the proposed abstraction layer
can take advantage of this generic model to design skeletons
while obtaining efficient implementations.

The rest of the paper is organized as follows. Section II
describes some related work in the field. A list of common
skeletons and related concepts is given in Sect. III. Section IV
discusses the design of our solution model. Section V provides
an overview of the Hitmap library, while Sect. VI shows the
implementation of our solution in Hitmap. Section VII presents
experimental work conducted to test this implementation.
Finally, Section VIII concludes our paper.
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II. RELATED WORK

This section describes some related skeleton frameworks.
Each one of them has a different approach, offering a set of
skeletons, or focusing on a particular architecture. A more
exhaustive survey can be found in [7].

Some skeleton frameworks are designed with a distributed
memory model in mind. For example, the Edinburgh Skeleton
Library (eSkel) [8] is a C library that uses the standard mes-
sage passing interface (MPI). It defines several data and task
skeletons that are presented as collective operations involving
groups of processes.

Another distributed skeleton framework is the Münster
Skeleton Library Muesli [9]. It also uses MPI for communi-
cations. Muesli follows a two-tier model, where data parallel
skeletons can be nested inside task parallel ones. This library is
implemented with C++ and takes advantage of object-oriented
features, such as polymorphic types.

A successful solution for shared-memory multi-core archi-
tectures is Threading Building Blocks (TBB) [10], a library
developed by Intel. TBB provides a portable implementation
of parallel patterns, thread-safe containers, and synchronization
primitives. The core of the library is a thread pool managed
by a task scheduler. This scheduler efficiently maps tasks
onto threads, balancing the computational load using a work-
stealing algorithm.

A well-known model for processing large data sets is Map-
Reduce [11]. It is a two-stage model and it is used to process
pairs of key/value elements. There are several implementations
of this model, for example the open-source project Apache
Hadoop.

Finally, SkelCL [12] is a GPU skeleton library based on
data-parallel algorithmic skeletons. It generates OpenCL code,
that is compiled by OpenCL at runtime.

III. A SKELETON TAXONOMY

Skeletons are generally classified as data parallel and task
parallel. Previous surveys add an extra category with part
of the task skeletons class, named resolution skeletons [7],
[9]. Data parallel skeletons work with data structures and
manipulate their elements according with computation patterns
in a fine grain. Task parallel skeletons compute workflows of
tasks. Resolution skeletons solve a family of problems with
iterative phases of computation, communication, and control.

We propose to classify the skeletons in static or dynamic.
depending on the nature of their computation structure. Static
skeletons maintain the same structure during all their execu-
tion, whereas dynamic skeletons have a mutable computation
structure. Static skeletons can take advantage of static schedul-
ing methods pre-calculated during the initialization phase.
While dynamic skeletons need dynamic scheduling and load
balancing techniques.

Table I shows the relation between both classifications.
Data parallel skeletons are static. On the other hand, resolu-
tions skeletons are dynamic because their computation struc-
ture depend on the particular data being processed. Finally, we
find in the task-parallel skeletons class both static and dynamic
examples.

Static Dynamic

Data parallel map, fork, zip, reduce,
scan, stencil -

Task parallel pipeline, wavefront farm

Resolution -
divide and conquer (D&C),
branch and bound (B&B),

mapreduce

TABLE I. ALGORITHM TAXONOMY.

A. Summary of skeleton solutions

There are several design concepts that have to be taken
into account when developing a new skeleton framework.
This section collects the details introduced previously in the
literature.

a) Nesting mode: If a skeleton uses internally another
one, there are two possible nesting modes: transient or persis-
tent [8], [13]. In a transient nesting, the outer skeleton calls
an inner one to process some internal data. The inner skeleton
only exists during the invocation of the external stage. A new
instance is created each time. In a persistent nesting, the input
and output of the outer skeleton is mapped to the inner one.
The instance is persistent between invocations.

b) Interaction mode: This concept defines the relation-
ship between the skeleton input and output. There are two
possible interaction modes: implicit and explicit [8]. In an
implicit interaction mode, a skeleton produces an output for
each consumed input. In an explicit interaction mode, a stage
in the skeleton can produce an output arbitrarily without a
previous input. Moreover, a skeleton can process an input
without producing a result.

c) Task scheduler: Several skeletons such as Farm or
Divide&Conquer are composed of a set of workers. This kind
of skeleton needs a mechanism to send the tasks to workers and
to collect the results. The use of a dispatcher and a collector
is one of the possible solutions. However, it has been proved
that this solution does not achieve a good performance [14].
Instead, distributed solutions, such as the TBB scheduler [10]
or a distributed work pool [15], are preferred because they
avoid the contention and bottleneck that may arise with the
use of a centralized scheme.

d) Task distribution: A work pool requires a distribu-
tion scheme to assign task to workers. Since the time required
to process a particular task is usually not known, many work
pools assume that each one requires the same time. Under these
conditions, there are two independent distribution schemes:
Random and cyclic. Both schemes lead to similar performance
when there are a big number of tasks. However, a cyclic
distribution performs a fairer distribution when the number of
tasks is small [14]. More complex schemes with load balancing
can be applied if there is information about the actual load of
each task and worker.

IV. UNIFORM MODEL FOR SKELETON IMPLEMENTATION

In this section we present our proposed model to represent
algorithm skeletons. The model is based on Petri nets [6],
[5], a mathematical modeling language for the description of
systems. A Petri net is a particular kind of directed bipartite
graph, whose nodes represent transitions. We will add new
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Fig. 1. Representation of the composition operators.

concepts to the original Petri nets definition to describe the
tasks involved in the computational patterns of skeletons.

The top level element of the model is an Application. It
corresponds to a Petri net, and it is defined as a 3-tuple, A =
(C,P, F ) where:

• C = {c1, c2, . . . , cn} is a finite set of Task Containers.
This is one of the partitions of the bipartite graph.
The task containers correspond to the Petri net places,
although task containers are typed and store tasks
instead of tokens. The task type has to agree with
the container type.

• P = {p1, p2, . . . , pm} is a finite set of Processes. They
are the equivalent to the Petri net transitions. This
set of process is the other partition of the bipartite
graph. A process executes a function with state, they
are defined by the user to implement the particular
skeleton application. The function has r inputs and s
outputs: fi : x1, x2, . . . , xr → y1, y2, . . . , ys

• The last element of the application F ⊆ (P × T ) ∪
(T × P ), is a set of Flow Relationships (Petri arcs)
between task containers and processes, and vice versa,
defining the edges of the bipartite graph.

Based upon the arcs, we can define the input containers. A
container is called an Input Container for a process if there is
an arc from it to the process. Output Containers can be defined
analogously.

An application net can be nested inside a process node.
Transient and persistent nesting modes can be represented with
this model. In transient nesting, a process will execute another
Application as part of the function, while in persistent mode a
process can be replaced by another net, keeping its inputs and
outputs.

A. Composition operators

We define two operators that help to define the structure of
the application: succession and collaboration. The succession
operator links several processes one after the other using
containers and creating the flow relationships between them.
The collaboration operator creates a different structure where
the processes share the input and output containers. Fig. 1
shows the representation of the composition operators.

B. Execution semantics

Once created, the structure of an application is fixed,
although its state (the distribution of tasks in the containers)
can change. The behavior of the application is described in

Pipeline
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Fig. 2. Common skeletons using the model. A circle represents a container
and a rectangle indicates a process.

term of those states. The tasks in the containers are consumed/-
generated by the processes based on the following rules:

• At the initial state, the containers are empty.

• When a process is executed, it consumes tasks from
each of its input containers. There have to be at least
one task at each of them.

• The retrieved tasks are fed to the process function.
The result tasks are sent to the output containers. The
process function may do not produce tasks for all the
output containers.

• The evolution of the application is not deterministic.
When more than one process could be executed, we
can not tell which one will be executed first.

• The execution finishes when all tasks have been pro-
cessed.

C. Representing skeletons with this model

We discuss in this section how the algorithm skeletons
can be represented using processes and containers. We have
selected one representative example from each group defined
in the taxonomy of secction III. Fig. 2 shows the structure
for each example. The figure uses the standard Petri net
representation, where a circle indicates a container, a process
is shown as a rectangle, and the flow relationships are arrows
from/to elements.

e) Pipeline: A Pipe skeleton is composed of a set of
connected stages. The output of one stage is the input of the
following one. The structure of this skeletons is just a set
of processes (one for each stage) that exchanges tasks using
containers. As shown in Fig. 2, a process can receive tasks
from several stages using different containers, leading to a
more complex pipeline structure. In the same way, a process
can feed tasks to more than one output container.
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f) Farm: A Farm skeleton, also known as master-
slave/worker, consists of a farmer and several workers. The
farmer receives a sequence of independent tasks and schedules
them across the workers. In a farm skeleton structure, the
farmer and the workers are independent processes. There exist
two tasks containers. The first one is shared by all the workers
and it keeps the tasks that are scheduled to them. The other one
is used to store the output results. In some farm configurations,
the workers can add more tasks to the input container.

g) Stencil: Although the model is more useful to rep-
resent dynamic structure skeletons, it can also represent static
ones. A Stencil skeleton updates the value of each element
of a data structure applying an operation with the values of
their neighbor elements. Fig. 2 shows an example of an 1D
stencil. The structure to represent this skeleton has a container
for its local elements and containers for the values of the
neighbors. Each process updates its local part and inserts the
values needed by its neighbors in the appropriate containers.

h) Map-Reduce: This is a distributed programming
model used by Google for efficient large-scale computa-
tions [11]. The model proposes two steps: map and reduce.
The computation in the map step takes a set of input key/value
pairs and processes them in parallel. The result for each pair is
another set of intermediate output key/value pairs. The reduce
step merges together all the intermediate pair associated with
the same key, returning a smaller set of output key/value pairs.
A Map-Reduce structure has a pair of process sets, one with
the processes performing the map operation and the other
performing the reduction. They are connected by several task
containers that hold the intermediate key/value pairs.

V. THE HITMAP LIBRARY

Before describing the implementation of this model in
Hitmap, we will briefly show the main features of the Hitmap
library.

Hitmap [16] is a library for hierarchical tiling and mapping,
with support for dense and sparse data structures [17]. It
is based on a distributed SPMD programming model, using
abstractions to declare data structures with a global view,
automatizing the partition, mapping, and communication of
hierarchies of tiles, while still delivering good performance.

Hitmap was designed with an object-oriented approach,
although it is implemented in C language. The classes are
implemented as C structures with associated functions.

Hitmap abstractions allow to represent different data do-
mains with a single interface. This interface has currently
implementations for dense arrays, subspaces of array indexes
with regular jumps, and sparse domains, such as Compressed
Sparse Row (CSR) or Bitmaps. Hitmap also has functionalities
to modify the domains, make selections, allocate memory for
an index subspace, or make efficient data copies.

Hitmap has a runtime plug-in system to distribute the
data domains. Plug-ins with different partition methods can
be selected. They divide the domains according to the actual
processors arranged in a virtual topology. Hitmap has differ-
ent partitioning and load-balancing techniques implemented.
Moreover, programmers may include their own new tech-
niques. It also allows to define communication patterns in

HitWorker

Input

buffers

Output

buffers

Task list function

Work stealing

mechanism

Farm model

Farm implementation

Fig. 3. Implementation of the HitWorker class, and an example of the farm
skeleton.

terms of the mapping results and neighbor relationships, that
automatically adapt the data distribution and communication
scheme at execution time.

The library is built on top of the MPI communication
library, for portability across different architectures. Hitmap
internally exploits several MPI techniques that increase per-
formance, such as MPI derived data-types and asynchronous
communications. The Hitmap library is publicly available [18].

VI. SKELETON MODEL IMPLEMENTATION USING HITMAP

This section explains how we have extended the Hitmap
library to implement the proposed model.

This extension constitutes another step in the development
of Hitmap. The library has functionalities to deal with static
computation structures, being able to partition different kinds
of data structures at initialization time. This proposal adds
support for load balancing, and dynamic distribution of tasks.

i) Implementation of the model elements: The current
implementation of the model adds two new classes to the
architecture: a HitTask, and a HitWorker. A HitTask class, an
abstract datatype, is used to encapsulate the data that flows
between application stages. This HitTask class has a weight
attribute that is used in load-balancing decisions. A HitWorker
is a generic worker that runs over a process, executing a user
function.

The containers of the model are implemented as lists of
tasks inside the workers. When a worker generates a task for
another process, the task is sent using MPI communications,
and it is inserted in the worker task list. If several processes
share an input container, for example in a farm structure, it
is implemented as a distributed list. Each worker has a local
list and the tasks are communicated using a work stealing
mechanism to balance the load.

The arcs of the bipartite graph are task channels between
workers, creating successor-predecessor relations. This allows
them to be arbitrarily nested. Fig. 3 shows the internal details
of an example HitWorker object with two input and three
output channels. It also shows how several workers can be
linked to implement a farm skeleton structure defined using
the model.
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j) Worker operations: There are several operations that
can be processed at the same time in a worker: Tasks recep-
tion, task sending, function execution, and work stealing. To
minimize the impact between operations, the worker has been
implemented using several threads that handle these operations
independently. A worker works in the following way:

• There is a thread that waits to receive tasks from any
of its predecessors, inserting them in the local list.

• Another thread executes the user function. This func-
tion processes the available tasks in the list. The
execution of the function can: (1) generate new tasks
for the local list, (2) generate new tasks for the
successors, or (3) produce no output.

• If the list is a distributed one, a work-staling mech-
anism runs in the background. When the local list is
going to be emptied, it tries to get tasks from the other
workers that share the virtual container.

A. Optimization details

This section describes the most relevant optimization de-
tails of the implementation described above. Using MPI to
communicate a single task is not efficient in a generic case,
due to the time and memory overhead of the communication
operations. To avoid this, we have implemented input and
output tasks buffers that group tasks before communication.
The granularity of the buffers can be modified in terms of task
weights. These buffers use asynchronous blocking MPI calls
managed by different threads. In this way, communication op-
erations can overlap. In addition, MPI Communicators are used
to isolate message contexts for the work-stealing mechanism,
also allowing skeleton nesting.

Special care has been taken to design the worker’s in-
ternal list of tasks. The different threads of the worker can
modify this list, so mutual exclusion should be ensured to
avoid inconsistent states. Moreover, the task in the list can
be originated from different sources: predecessors workers,
work stealing exchanges, and locally generated tasks. The user
function extracts and inserts tasks using one end of the list
while the input buffers and worker stealing mechanism use
the other one. This improves task locality for the applications
that can exploit it.

Our tool allows to change different parameters in order to
test which configurations are better for a given program. We
can change the list and buffers sizes, change the task grouping
policy, or disable the work-stealing mechanism.

To allow explicit, as well as implicit interaction modes,
the required user function is executed once. This allows to
declare and free internal data structures to keep state, wrapping
the task management loop. The implementation offers to the
programmer of the function an API of methods to retrieve tasks
from the list, access the data of the tasks, create new tasks, or
send tasks to the output buffers. The input and output are not
limited to the one to one relation of the implicit interaction
mode. The programmer is free to combine the functions of
this API to created any skeleton stage.

Support for both transient and persistent nesting modes has
been considered. Persistent mode is achieved just by linking

workers. The transient mode poses a bigger challenge, it im-
plies that sub-skeletons could be created during the execution
of the upper one. This is solved with a pile of execution
contexts.

B. Implementation examples

This section exemplifies how to create skeletons with our
implementation of the model. Fig. 4 shows an example of a
pipeline. The function in line 5 creates a three stage pipeline.
It receives three function pointers as parameters, one for each
stage. These user functions must receive a HitWorker structure
as defined in the typedef of their prototype on line 2. The
pipe3 function creates three workers with the corresponding
user function and defines the number and types of the inputs
and outputs. Then, it combines the workers with the succession
operator to create the relationships. The result is another
worker that encapsulates the previous ones. We can use it to
execute the whole pipe with a single call in the main function
(line 19).

Creating a farm is a similar process but uses the collabo-
rator operator instead. More complex computation structures
can be created manually defining how the inputs and outputs
of the different workers are linked.

VII. EXPERIMENTAL RESULTS

Experimental work has been conducted to show that the
implementation developed achieves good performance with
different configurations, and compared with another skeleton
framework. We use two different experimental platforms with
different architectures: A multicore shared-memory machine
and a distributed cluster of commodity PCs. The shared-
memory system, Geopar, is an Intel S7000FC4URE server with
four quad-core Intel Xeon MPE7310 processors at 1.6GHz
and 32GB of RAM. The distributed system is a homogeneous
Beowulf cluster composed by 20 AMD Athlon 3000+ single-
core processors at 1.8GHz and 1Gb of RAM each. The cluster
is interconnected by a 100Mbit Ethernet network. The MPI
implementation used is MPICH2.

A. Mandelbrot set benchmark

We have chosen a simple benchmark with no complex
application interactions, to focus on the efficiency of the imple-
mentation. The selected benchmark calculates the Mandelbrot
set [19], one of the best-known examples of mathematical
visualization. It has become popular as a benchmark in parallel
computing since it is easily parallelizable but introduces a load-
balancing problem [1]. Several skeleton frameworks use it as
a case study [4], [12].

The Mandelbrot set is defined in the following way. Given
a complex number c ∈ C and the sequence zn+1 = zn +
c, starting with z0 = 0, c belongs to the Mandelbrot set if,
when applying the iteration repeatedly, the sequence remains
bounded regardless of how big n gets.

The benchmark computes the iterative equation for each
point to calculate whether the sequence tends to infinity. If
this sequence does not cross a given threshold before reaching
a given number of iterations, it is considered that the sequence
will converge. This problem is straightforwardly parallelizable
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1 // Typedef for the user function pointer.
2 typedef void (*HitWorkerFunc) (HitWorker*);
3

4 // Three-stage pipeline
5 HitWorker pipe3(HitWorkerFunc f_ini, HitWorkerFunc f_mid, HitWorkerFunc f_end){
6 HitWorker pipe;
7 HitWorker * workers = malloc(3 * sizeof(HitWorker));
8

9 hit_workerCreate(&workers[0], f_ini, 0, 1, HIT_DOUBLE);
10 hit_workerCreate(&workers[1], f_mid, 1, 1, HIT_DOUBLE, HIT_DOUBLE);
11 hit_workerCreate(&workers[2], f_end, 1, 0, HIT_DOUBLE);
12

13 hit_workerOpSuccession(&pipe,3,&workers[0],&workers[1],&workers[2]);
14

15 return pipe;
16 }
17

18 // Main function
19 int main(int argc, char ** argv) {
20

21 hit_comInit(&argc,&argv);
22 HitWorker pipe = pipe3(init,process,end);
23 hit_workerExecute(&pipe);
24 hit_comFinalize();
25 }

Fig. 4. Fragment of code showing the creation of a pipe and a farm.

because the calculation of the equation on a particular point
is independent on the result from any other point. However, it
can present significant load imbalances, because some points
reach the threshold after only a few iterations, others could
take longer, and the points that belong to the set require the
maximum number of iterations.

B. Performance

To test the performance obtained by the implementation of
the model, we measure and compare the run-time of several
implementations of the Mandelbrot benchmark: (1) the Hitmap
implementation; (2) the Hitmap implementation with the work
stealing mechanism disabled, (3) a code using the Muesli
skeleton framework [9] forced to use only MPI processes, and
(4) the Muesli code forced to use OpenMP threads instead of
MPI processes.

The two plots in Fig. 5 show the results of the previously-
described implementations of the benchmark for both ar-
chitectures considered. The programs have been run with a
square matrix of 4 000 × 4 000 elements, a limit of 2 000
iterations, and task grain of 16 × 16 elements. Hitmap obtains
a good scalability in the shared-memory machine. In the
cluster, the results are not as good because the selected task
grain is not enough, and the communications drag down the
scalability. The difference of using work stealing in Hitmap is
not noticeable for this application. The Muesli implementations
do not scale as good as Hitmap. It is specially noticeable
in the Beowulf cluster. As expected, in the shared-memory
machine, the experiment with the Muesli code using only
OpenMP threads has slightly better performance than using
MPI processes. It is remarkable than Hitmap performs better
in both cases.

The plots in Fig. 6 show the performance of the Hitmap
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Muesli implementations of the Mandelbrot benchmark.
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Fig. 6. Execution time comparison for different task grain sizes and
communication buffer sizes of the Hitmap implementation.

implementation with different task grain sizes and buffer sizes
using the same configuration as the previous experiments. The
results for the architectures not presented in the plots are
similar on both of them. The plot comparing the task grain
shows that extreme values (1 element and 32 × 32 elements
block) do not achieve good performance and scalability. A
granularity value which is appropriated for the target system
should be chosen. The last plot shows that the buffer size does
not have a clear impact on the performance for this application.

VIII. CONCLUSIONS

In this paper we present a simple model that can be used
to represent algorithm skeletons. We focus our solution on
dynamic-structure skeletons, the ones which impose dynamic
task-creation, load-balancing, or data-flow issues.

We discuss how to use the proposed model to represent
a set of well-known skeletons. We have also developed an
implementation of the model, integrating this skeleton support
into Hitmap, a library for efficient partition and communication
of dense and sparse data structures.

To illustrate the usage of the implementation, we have
implemented a simple task skeleton benchmark. We have used
it to compare our solution with the Muesli skeleton framework.
Our experimental results show that the implementation is
highly efficient and configurable.

Our ongoing work includes the creation and encapsulation
of more complex skeletons using this model to show its
applicability for production parallel applications.
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Abstract - SequenceL is a small, statically typed, purely 

functional programming language, whose semantics enable 

compilation to parallel executables from function definitions.  

This paper reports the results of experiments on the 

performance of parallel programs automatically generated 

by the SequenceL compiler. In particular we examine the 

parallel speedups obtained in running SequenceL programs 

on multicore hardware. 

Keywords: SequenceL, Functional Programming, Parallel 

Programming  

 

1 SequenceL 

  SequenceL is a simple, general purpose, purely 

functional programming language [Cooke et.al. 2008]. By 

simple, we mean that the entire syntax and semantics of the 

language can be described in about 20 pages, including 

examples. By general purpose, we mean the language is not 

specific to any domain; and by purely functional we mean 

that SequenceL programs consist of equations defining 

functions, without any I/O or assignment. To be part of a 

working executable program, SequenceL programs are 

compiled to C++ and linked with so-called “driver code” that 

orchestrates I/O operations. 

 

 The original aim of SequenceL was to give programmers 

a way to describe computations in terms of the relation 

between input and output data, without direct reference to a 

particular procedure for obtaining them [Cooke et. al. 2009]. 

On its surface, this sounds like the aim of functional 

languages in general, but in reality 

almost all functional languages act as 

shorthand for known procedures. For 

example,  the author of a Haskell or 

Lisp program does not necessarily have 

to think about how his program will be 

executed (say, left to right lazy 

evaluation, or left to right eager 

evaluation, respectively), but if he does 

think about it, he may know exactly 

how it will execute because the 

language semantics make guarantees 

about the order. The semantics of SequenceL make no such 

guarantees. 

 

 Because SequenceL makes no guarantees about the order 

of evaluation, it is not possible for a SequenceL programmer 

to optimize their code in a compiler-independent way. On the 

other hand, this means the compiler may perform 

optimizations in ways that are not constrained as in other 

languages. In particular, since the language makes no 

guarantees about the order of evaluation, evaluations may be 

done in parallel. SequenceL’s Normalize-Transpose semantic 

(see Section 2) is particularly amenable to parallelisms being 

automatically discovered and exploited by the compiler. This 

automated parallelism was first pointed out in 

[Cooke/Andersen 2000], and implemented as a prototype 

with encouraging results reported by Nemanich [Nemanich 

et. al. 2010]. In 2009 the patent on SequenceL’s semantics 

was licensed to Texas Multicore Technologies (TMT), who 

have since been engaged in commercial scale development of 

the compiler. 

 

2 Parallelizations by SequenceL 

2.1 Normalize-Transpose 

 The parameters of a SequenceL function are explicitly 

typed according to their depth. Depth can be thought of as the 

dimensionality of an expression. For example, scalars have 

depth 0, lists have depth 1, matrices have depth 2, etc. One 

way in which SequenceL alleviates the need for iterative or 

recursive algorithms is with Normalize-Transpose (NT). NT 

is a method of function application that applies some 

operation on every element in a list. A function defined on 

 

Figure 1: NT Illustration 
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arguments of depth D can be applied to a list of arguments of 

depth D. The result is the function applied element-wise. 

 For example, since the scalar addition function (+) is 

declared with scalars (depth 0) for both arguments, the 

expression [10,20,30] + 1, where the first argument is a list, 

triggers an NT and has a value of [11,21,31]. Similarly 

because of NT, the value of the SequenceL expression 

[10,20,30] + [1,2,3] is [11,22,33]. The NT semantic is one 

device that allows SequenceL to automatically extract 

parallelizations. It can be proven that the parallelisms 

generated are free of race conditions and other parallel 

anomalies. 

 

2.2 Indexed Functions 

Another way SequenceL avoids the use of recursion is 

through a construct called indexed functions. Using indexed 

functions a programmer can specify a nonscalar data 

structure element-wise, a function of the parameters of the 

function. This is very similar to the way vector and matrix 

valued functions are often defined in informal mathematics. 

Take for example the Identity function defined below -- 

where for each nonnegative integer N, Identity(N) is the NxN 

identity matrix: 

 

Figure 2: Identity Matrix as Indexed Function 

 

2.3 Consume-Simplify-Produce 

The third source of automatic parallelizations in 

SequenceL is that parameters of a function call may be 

evaluated in parallel. This is known as Consume-Simplify-

Produce, or CSP.  

When SequenceL is compiled to C++ CSPs, indexed 

functions, and NTs are compiled into highly parallel 

programs, capable of running on an arbitrary number of 

processor cores. The number of cores can be specified at 

runtime. 

3 Heat Map and its Explanation 

A set of benchmarks informally known as a heat map is 

periodically run to test the performance of compiled 

SequenceL. The heat map problems have been chosen 

essentially at random from modules that have been written 

for commercial TMT customers over the past three years. 

Tables 1 and 2 list all of the heat map problems that are at 

least 70 lines of SequenceL code. The cut-off at 70 lines of 

code was chosen to represent problems that cannot be 

trivially parallelized by hand. 

 

The problems in Table 1 (LU factorization, 2D Fourier 

Transform, and the Barnes-Hut N-body problem) have well 

known specifications and can be considered repeatable 

experiments, which can be used for performance comparison 

between SequenceL and other methods including by-hand 

parallelization. The problems in Table 2 (Semblance, 

Compare Predicates, Speech Filter, and WirelessHART) are 

not repeatable in the sense that they contain algorithms 

proprietary to TMT customers. They are listed here as 

anecdotal observations. 

 

The heat map reports the average run time over 10 

executions of several different programs and compares the 

performance of the SequenceL on 1, 2, 4, 8, 12, 16, 20 and 

24 cores. The following table shows the average run times 

over 10 executions when run on a Centos 6.3 machine with 

16GB of memory, and a 1333MHz / E5-2620, running at 2.0 

GHz. 

 

Figure 3: CSP Illustration 
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Table 1: Standard Algorithms 

Cores LU 

Factorization 

2D Fourier 

Transform 

Barnes-Hut N-Body 

1 12.426 2.690 29.850 

2 6.335 1.347 15.976 

4 4.130 0.674 8.830 

8 2.973 0.338 4.765 

16 2.494 0.245 3.483 

12 2.400 0.218 3.297 

20 2.425 0.215 3.174 

24 2.511 0.203 3.007 

 

Table 2: Proprietary Algorithms 

Cores Semblance Compare 

Predicates 

Speech 

Filter 

WirelessHART 

1 20.993 3.341 108.742 21.996 

2 11.335 2.167 54.364 18.000 

4 5.962 1.129 29.324 14.668 

8 4.038 0.654 20.021 13.194 

12 3.100 0.593 14.353 12.993 

16 2.542 0.608 16.185 13.196 

20 2.902 0.607 11.142 13.484 

24 3.371 0.559 9.979 13.770 

 

 

4 Conclusions and Future Work 

The SequenceL compiler generated parallel algorithms 

automatically, without human intervention between the 

functional description of the solution and the parallel 

executable. Parallel speedups were obtained in every case. In 

most cases the speedups continued nearly linearly up to 

around 8 cores. Above 8 cores, performance either increased 

slightly or decreased slightly as more cores were added, with 

the exception of speech filter in which substantial speedups 

were obtained up to 24 cores. 

 

This “core ceiling” phenomenon for linear speedups is not 

unexpected in general, since any parallel program running on 

a physical machine will eventually reach such a threshold due 

both to communication overhead and to the theoretical limits 

of parallelization for the algorithm. The fact that the 

threshold (of 8 cores) was consistent across problems 

indicates that in this case the ceiling may have been hardware 

dependent. This is especially plausible here, because the 

machine used in this experiment has only 12 distinct physical 

processors, with up to 24 simulated through hyper-threading. 

 

In our experience this performance is competitive with the 

performance of hand coded parallel algorithms -- though of 

course the reader with similar or greater experience may 

draw their own conclusions. Future work includes a 

comparison of this performance with hand coded parallel 

implementations of the same algorithms, comparison with 

the performance of hand coded sequential algorithms, and 

running the experiment on different hardware. 
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Abstract - A new design methodology for a pattern generator 
based on build-in self-test (BIST) scheme is proposed. The 
phase of pattern generation consists of two components: a 
pseudo-random test sequence followed by a deterministic one 
generated by a controlled linear-feedback shift-register 
(LFSR). Based on theoretical analysis of the proposed test 
architecture, a controlled linear shift test generation method 
for deterministic test is proposed. Simulation results for 
benchmark circuits show that the proposed method can obtain 
complete fault coverage for the single stuck-at fault, while 
deriving lower overhead of test generation and shorter test 
application time compared with other recently-published 
methods. 

Keywords: Designs for Testability, Test-Per-Clock Testing, 
Test-Per-Scan Testing, Build-In Self-Test, Test Generation 
 

1 Introduction 
  With the complexity of VLSI designs growing, huge 

amount of necessary test data prolongs the testing time and 
demands complicated and expensive Automatic Test 
Equipment (ATE). In order to alleviate these testing problems, 
Build-in Self-Test (BIST) has been widely adopted in the 
industry [1], which enables the chip to test itself and evaluate 
the responses within an acceptable cost. Moreover, an 
efficient BIST should possess three properties, including high 
fault coverage, low hardware overhead, and short test 
application time. 

Many recent BIST methods have been proposed to find 
some trade-off among these three aspects that are mutually 
antipodal. In LFSR-ROM test scheme [2], Linear-feedback 
shift-register (LFSR) is used to detect easy-to-detect faults 
with an acceptable test length, while the ROM provides a 
small number of test patterns for remaining random-pattern-
resistant faults. Another mixed BIST technique [3] used a 
combinational block to produce the deterministic test patterns, 
which needs no memory elements. Weighted random testing 
[4] is also one of the most known approaches for reducing 
both test application time and LFSR size, in which the LFSR 
code words are modified by a weighting logic. However, the 
main drawbacks of these techniques are that they are only 
suitable for small size circuit testing, and a surfeit of 
additional logics may enlarge the delay of the circuit. With the 

growth of the size of the circuit, the rapid increase in test 
length of the pseudo-random pattern generation and the 
overhead of extra logic blocks will be unacceptable. 
Reference [5] used control bits to skip irrelevant pseudo-
random test patterns, and reference [6] proposed a scan 
disabling technique to block irrelevant pseudo-random 
patterns slices. They achieve a high compression gain by 
storing the control signals instead of the test set. Another 
technique that can be used to achieve high fault coverage 
while reduce the size of the ROM is the LFSR reseeding 
techniques [7-8]. In these techniques some selected seeds are 
stored in ROM instead of full test patterns. Seeds are serially 
loaded into LFSR as different initial states to generate the 
deterministic test patterns.  

By transforming the CUT from a sequential one into its 
combinational parts in test mode, as the most popular designs 
for testability (DFT) technique, the full-scan based method 
significantly improves the CUT’s testability. However, in 
conventional test-per-scan schemes, test patterns are shifted 
into the chain of scan registers (scan chain) and the test 
response is shifted out to the Response Analyzer through a 
serial interface. With the test data volume increasing 
ceaselessly, test-per-scan schemes expose drawback of long 
test application time during the shift process. 

This paper presents an efficient test-per-clock BIST 
design using LFSR-ROM architecture. The design employs an 
LFSR to generate pseudo-random patterns first, and then 
adopts a controlled linear shift test generation method to 
target the remaining faults, where the control bits are stored in 
a ROM. Experimental results demonstrate that the proposed 
method can achieve a complete stuck-at fault coverage, with a 
less test data storage and a short application time. 

This paper is organized as follows. Section 2 presents 
the proposed test architecture. Determination of the length of 
pseudo-random test sequence followed by a deterministic test 
generation algorithm is described in section 3. Simulation 
results are shown in Section 4. Section 5 concludes this paper. 
  

2 Proposed Hybrid BIST Architecture 
 The proposed BIST architecture shown in Fig. 1 is 
composed of a Test Pattern Generator (TPG) and a Response 
Analyzer (RA). The TPG consists of an LFSR and a control 
bit stream provider. The LFSR plays two roles during the 
mixed-mode test: a free one and a controlled one. First, the 
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LFSR generates pseudo-random test patterns freely to detect 
easy-to-detect faults (the input 0 of MUX is selected), where 
the Counter records the length of pseudo-random test 
sequence. Then the LFSR is controlled by the bits stream 
from the ROM to generate deterministic test patterns for the 
remained faults. The internal scan chain constructed by all 
internal flip-flops is serially fed by the rightmost bit of the 
LFSR. In every test clock, a new test pattern is generated and 
applied to the CUT. 

As a test-per-clock BIST architecture, the hardware 
overhead of response analyzer may be considerably high. 
Zero-error-aliasing linear space compactor [9] has been 
employed in BIST schemes to compress the test responses 
from a k-output circuit to q signature streams, where q<<k. 
Thus, the test responses appearing at the end of outputs can be 
compacted by a zero-aliasing space compactor and a 
Multiple-input Signature Register (MISR). In this paper, we 
no longer address the problem of Response Analyzer. 
 

M
U

X

 
Figure 1. Controlled Shift BIST Architecture. 

It can be seen from the above, the total test application 
time is the sum of the time of pseudo-random test and the 
time of deterministic test. During the deterministic test 
sequence generation, the control bits stream stored in the 
ROM determines the patterns in next clocks, as well as the 
hardware overhead of test data store and the total time of test 
application. The key issues of the shown test scheme lie on 
how to determine the appropriate length of pseudo-random 
test and how to specify the control bits stream to complete 
test generation in efficiency. The next section will describe 
them in detail. 

3 Test Generation 
 The proposed test patterns generation includes a 
pseudo-random test sequence using free LFSR and a 
deterministic one using controlled LFSR. The determination 
of free LFSR test sequence length and deterministic test 
generation algorithm are presented in this section, 
respectively. 

 

3.1 Determination of Pseudo-random Test 
Sequence Length 

 The length of pseudo-random test sequence affects the 
total test application time and the followed deterministic test 
generation. By means of statistical testing, we found that the 
number of faults newly detected falls sharply as the pseudo-
random test generation continues. Furthermore, LFSRs using 
different initial values have a similar characteristic. Fault 
detection scatter diagram statistics for circuit S5378 are 
shown in Figure 2. 10000 pseudo-random patterns are applied 
50 times with different initial values, 3 of 50 random samples 
and the average are shown in the figure. It can be seen that 
the fault number newly detected by each new generated 
pattern is rather rare after 5000 patterns, and the average 
value tends to 0. In this paper, we take advantage of this 
phenomenon to determine the length of pseudo-random test 
sequence. 
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 Figure 2. Fault Detection Statistics For S5378. 

3.2 Deterministic Test Generation Algorithm 
 Before the description of our deterministic test 

generation algorithm, theoretical analysis on the proposed test 
architecture is discussed. 

Definition 1: As shown in Fig. 1, n-stage LFSR and m-
stage internal scan chain compose an L-stage shift register 
(L=n+m). 

Theorem 1: For an L-stage shift register (n-stage 
LFSR+m-stage internal scan chain), it will certainly be able to 
shift the current pattern to any other targeted pattern by 
applying L′ (L′≤L) control bits to the input of the LFSR. 

Proof: Assume the current pattern: A={ xn-1, xn-2 ... x1, x0, 
am-1, am-2 ... a1, a0}, the targeted pattern: B={ yn-1, yn-2 ... y1, y0, 
bm-1, bm-2  ... b1, b0 }, the control bits stream: C={c1, c2 ... ci  ... 
cL }.  

At the first clock, control bit c1 is shifted into the shift 
register, and the pattern in the shift register turns into: 

A1={ 12-m1-m012-n1-n

1

0
1 a ... a,a,x, x... x,x,c ∑

−

=

+
n

i
ii xh } (1)  
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where ∑
−

=

+
1

0
1c

n

i
ii xh  is modulo 2 add operation, and hi 

denotes a feedback network. Since c1 is the only unknown 

variable in ∑
−

=

+
1

0
1c

n

i
ii xh , it is denoted by f(c1). 

In the same way, at the second clock, when control bit c2 
is shifted into the shift register, the pattern turns into:  

A2={
21-m01-n111

2

0
12 a ... ,a, x... x),(),(c cfcfhxh n

n

i
ii −

−

=
+∑ ++ } (2) 

we also take f(c1, c2) substituting for )(c 11

2

0
12 cfhxh n

n

i
ii −

−

=
+∑ ++ . 

Deduced by analogy, when cL is shifted into the shift 
register, the pattern turns into:  

AL={ )(),,(...)...,(),...,( 12112121 cfccfcccfcccf LL −
}        (3) 

The description above is equivalent to the problem of 
solving a set of linear equations as follows: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
=

=
=

−−

−−

01

121

2121

1121

)(
),(

...
)...,(
),...,(

bcf
bccf

ycccf
yccccf

nL

nLL

                                   (4) 

This is a modulo 2 operator equations, and it has a 
unique solution. At the ith (i≤L) clock, current pattern Ai may 
be equal to the targeted pattern. That is to say, by applying L′ 
(L′≤L) control bits, the existing pattern in the shift register can 
turn into any other targeted pattern. 

Now, we analyze this issue from another view. Assume 
that the initial pattern A={aL-1, aL-2 ... a1, a0} in shift register is 
specified  with random values (every bit is 1 or 0), and the 
targeted pattern B has a probability λ  (0≤λ ≤1) of don’t 
care bits (Xs) for each bit. The probability that the initial 
pattern A is compatible to B is: 

LLp )
2

1()
2
1)1(1(0

λλλ +
=×−+×=                       (5) 

At every test clock, the shift-in bit can be temporarily 
regarded as an X. After L′ test clock cycles, the current pattern 
in the shift register turns into {XL′, ..., X1, aL-1, aL-2 ... aL′}. 
Now, the probability that current pattern A′ is compatible to B 
is: 

             '
' )

2
1( LL

LP −+
=

λ
                                   (6) 

As we known, PL′ increases with the decrement of 
'LL − and the increment of λ . In other words, higherλ  of a 

test set will deduce a shorter control shift time L’. 
The flow of the proposed deterministic test generation 

algorithm is shown in Figure 3. After the pseudo-random test 
generation, the remained faults are obtained. In order to 
obtain a high λ  for each pattern, one corresponding pattern 
with X bits is generated for each remained fault, and these 

patterns constitute the original test repository ORG_T. We use 
the modified ATPG tool ATALANTA [10] as the basic 
pattern generator. As Figure 3 shows, the algorithm is mainly 
divided into three steps. Step 1 is the process to find the 
targeted pattern with the minimal shift. If there exists more 
than one satisfied pattern, the pattern that has the least number 
of Xs is selected. As mentioned before, higher λ  patterns left 
may enhance the matching possibility later. Step 2 is the 
process of solving equations. The related patterns are updated 
with solved control bits and added to the new test set T. In 
order to accelerated the fault detecting, when the last bit of 
current pattern is X, it is specified with a random value, while 
its related patterns also need to be updated. Step 3 is the 
process of fault simulation. When a fault is detected, it is 
deleted from the fault list F, and its corresponding pattern is 
deleted from test repository ORG_T simultaneously. When 
the fault list F is empty, the algorithm is finished; otherwise it 
continues to find the next optimal targeted pattern. 

 

Given: ORG_T, T=
Fault list F after PRPG

Select the optimal pattern

Is the last bit of  solved patterns X?

Assign  X with random value
Restore patterns 

Is F empty?

Finished 

No 

Step 2

Step 3

Yes No  

Solve the control bits 

Update the related patterns add to T

Fault simulate, update F and ORG_T

Yes 

Step 1

 

Figure 3. Flow of Deterministic Test Generation 
Algorithm. 

. The time complexity of the deterministic test generation 
algorithm is )( 22 NoFLO ⋅ , where L and NoF denote the 
number of bits of a pattern and the number of initial remained 
faults after pseudo-random test generation, respectively. 
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4 Experimental Results 
 In this section, we evaluate the effectiveness of the 

proposed method for the larger ISCAS’89 benchmark circuits. 
The performance results are implemented in the C language 
on a PC (Intel Core i3 550, 2.0GB RAM). The fault 
simulation tool is based on HOPE [11]. 

Table 1 shows the results of the proposed test generation. 
The first three columns give the circuit name, the size of 
LFSR and the number of redundant faults. Consideration for 
layout constraints and wiring overhead, the LFSR is usually 
constructed only by additional flip-flops added at each 
primary input (PI), but somtimes by the whole scan chain 
when the number of PIs is very small, such as S9234, S38584, 
etc. The pseudo-random test length of LFSR is shown in the 
column “Ran_TL”, which is determined by the method 
described in section 3.1. The following two columns show the 
minimal and the average control bits storage of the 
deterministic test generation. In all the cases the algorithm 
runs 20 times. The average total Test Application Time (TAT) 
and computation time (in seconds) of our proposed test 

generation algorithm is shown in the last two columns, 
respectively.  

Note that the CPU time includes the time of pseudo-
random test generation and fault simulation. For every circuit, 
the fault coverage achieves 100% for detectable faults. As 
shown in Table 1, the proposed test generation method shows 
high performance. It takes tolerable computation time, 
deriving a less test storage and short test application time. 

Table 2 compares the proposed method with previous 
work including scan disabling-based test scheme [6], test-per-
clock based LFSR Reseeding [7]  and test-per-scan based 
LFSR Reseeding [8]. Column “TAT” and column “Store” still 
give the test application time and the volume of test data of 
each approach. As can be seen from the table, our proposed 
method represents efficiency both in test application time and 
test data storage. The average TAT reduction and ROM 
reduction are shown in the last row, where the “Ave. Red(%)” 
is calculated as:  

)100*
]Reference[#

Proposed]-#Reference[#Average(Red(%) Ave. =     (7) 

Table 1. Experimental Results of Proposed Approach. 
Circuit N #Red Ran_TL Min_Store Ave_Store TAT CPU(s) 

S5378 35 40 5000 711 754 5754 1.35 
S9234 247 452 10000 6023 6658 16658 18.52 
S13207 31 151 5000 2899 3033 8033 31.04 
S15850 611 389 5000 3038 3451 8451 22.55 
S35932 35 3984 1500 202 204 1704 15.67 
S38417 1664 165 10000 13256 14568 24568 1335.58 
S38584 1464 1506 5000 3922 4023 9023 225.25 

 
Table 2. Results for Comparisons with Previous work. 

Proposed [6] [7] [8] 
Circuit 

TAT Store TAT Store TAT Store TAT Store 
s5378 5754 754 11014 11014 23112 11440 13182 5040 
s9234 16658 6658 20543 20543 11808 1935 19957 7931 
s13207 8033 3033 16472 16472 21731 6696 47600 7723 
s15850 8451 3451 17739 17739 8550 3505 45947 9423 
s35932 1704 204 1295 1295 12180 5508 N/A N/A 
s38417 24568 14568 96645 96645 34510 34965 210329 36884 
s38584 9023 4023 25685 25685 8052 8790 139372 15622 

Ave.Red(%)   39.7 82.3 28.7 16.3 69.9 60.0 
 

5 Conclusions 
In this paper we propose a BIST scheme using LFSR-

ROM architecture for full-scan circuits. In addition to using 
the LFSR to generate pseudo-random test patterns, a ROM is 
used to store the control bits stream to generate deterministic 
test patterns. Through theoretical analysis of the proposed test 
architecture, an efficient controlled linear shift feedback test 
generation method for the following deterministic test is 
proposed. Experimental results show that the proposed 
scheme shows high advantages on short test application time 

and low overhead of test data storage. The drawback of the 
proposed method is that, as a test-per-clock test, the proposed 
scheme needs to capture the responses in every test clock, 
which leads to an expensive Response Analyzer. However, 
this can be alleviated by the Space Compactor as mentioned 
before, moreover, when this test scheme is applied to 
Register-transfer Level (RTL) testing, where the method of 
partitioning testing is utilized, the Response Analyzer can be 
partially or totally constructed by internal resources of the 
CUT [12]. In addition, the control bits are directly stored in 
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ROM which needs no extra decode logics, the area overhead 
of the TPG is less.  
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Abstract— Programming parallel/distributed applications
is a difficult task that requires a high degree of knowledge
and expertise, especially to achieve the potential perfor-
mance offered by HPC. Analysis and tuning tools can
be helpful for automatically improving applications perfor-
mance. In particular, dynamic analysis and tuning tools
are necessary for applications that vary their behaviour
at execution time. MATE is a tool that, employing per-
formance models, can automatically and dynamically tune
parallel applications. This work presents how a theoretical
performance model has been integrated into MATE for
dynamically tune the data distribution and the number of
workers of Master/Worker applications. The results show the
effectiveness of using performance models for dynamically
tuning parallel applications, and the achieved reduction in
time when the application modifies its behaviour during its
execution.

Keywords: dynamic performance analysis; dynamic and auto-
matic tuning; performance models; parallel/distributed computing

1. Introduction
Currently, software applications are used to solve complex

problems in several areas of science and engineering. Many
of these problems have very high computing requirements
that can only be addressed through parallel/distributed pro-
cessing. Therefore, performance is usually the most im-
portant issue related to parallel applications. In this work,
we apply a methodology, based on performance models,
for automatically and dynamically tuning the performance
of parallel applications. In particular, we focus on the
implementation and integration of a performance model for
Master/Worker applications in MATE [1].

When a programmer develops a parallel application, he
or she wishes to achieve a level of performance close to
the expected theoretical performance. Unfortunately, this
is not usually the case because the development of this
type of applications is a difficult task. So, with the aim of
increasing the performance of their applications, developers
must undertake a performance improvement process. This

This paper is addressed to the PDPTA’13 Conference

process includes 3 successive phases: monitoring, analysis
and tuning. First, during the monitoring phase, information
about the application behaviour is captured. Then, by study-
ing this information, the analysis phase looks for bottlenecks,
deduces their causes, and tries to determine what the correct
actions to eliminate the problems are. Finally, in the tuning
phase these actions are applied to the application to solve
the problems and improve its performance. As a result, de-
velopers must be familiar with the application, the software
layers involved, and the behaviour of the system on which
it is executed.

Various approaches and tools have been developed to
support the performance improvement process [2] [3]. In
particular, one of these approaches is the automatic and
dynamic tuning of the application without stopping, recom-
piling, or rerunning it. This type of performance tuning
approach is especially recommended for applications that
behave differently depending on input data, or may even
change their behaviour during each execution. In such cases,
it is not worth carrying out a post-mortem performance ana-
lysis and tuning because conclusions based on one execution
may be invalid for another. MATE (Monitoring Analysis
and Tuning Environment) is a tool that implements this
approach. It is able to automatically and dynamically tune a
parallel/distributed application using the knowledge provided
by a performance model.

The remainder of this work is organised as follows.
Section 2 briefly describes MATE. In Section 3, we present
an overview of the performance model developed for dy-
namically tuning Master/Worker applications. Section 4 ex-
plains the integration of the performance model into MATE.
In Section 5 we present the results of the experiments
conducted using MATE to improve the performance of a
Master/Worker application. Section 6 presents the related
work in automatic and dynamic tuning. And finally, Section
7 details the conclusions of this study.

2. MATE
MATE is a tool that performs monitoring, analysis, and

tuning of MPI parallel applications. Its objective is to
improve the performance of a parallel application at run-
time, by adapting it to the variable conditions of the system.
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First, at run-time MATE instruments the application to gather
information about its behaviour. During the analysis phase
MATE receives events, searches for bottlenecks and specifies
solutions for solving the performance problems encountered.
Finally, the application is dynamically modified by applying
the given solutions. MATE uses dynamic instrumentation [4]
to modify the application at run-time, so it does not need to
be recompiled or restarted.

MATE is composed of the following modules which coo-
perate to control and improve the application’s performance
[5]:

• The Application Controller (AC) is a daemon that
controls the execution and the dynamic instrumentation
of each individual MPI task.

• The Analyzer is a centralised process that carries out
the application performance analysis, and decides on
monitoring and tuning. It automatically detects ex-
isting performance problems on the fly and requests
appropriate changes to improve the application’s per-
formance.

• The Dynamic Monitoring Library (DMLib) is a
shared library that is dynamically loaded by the AC
in the application tasks to facilitate collecting data and
delivering it to the Analyzer.

Performance models constitute the knowledge used by
MATE to conduct the performance analysis process. Each
performance model is encapsulated in MATE in a piece
of software called a tunlet. Each tunlet implements the
logic to overcome a particular performance problem by
encapsulating information concerning to the measurement
points to insert instrumentation in the target application to
gather performance information, the performance functions,
which are a set of expressions that mjodel the application’s
behaviour, and the tuning points, which are the points of
the applications that can be changed by a tuning action to
improve its performance.

3. Master/Worker Performance Model
The goal of performance analysis is to identify and

solve the application performance problems. This process
may be supported by a performance model that can be a
combination of analytical expressions and heuristics. The
parameters needed for evaluating the model correspond to
the measurements gathered during the application execution.
We have implemented and integrated into MATE a tunlet
with the Master/Worker performance model described in [6].
It is designed for Master/Worker iterative applications, where
all process repeatedly performs all operations. The condi-
tion of the iteration-based application behaviour implies the
existence of a significant number of iterations and persistent
performance problems between iterations.

This performance model includes two phases to solve
Master/Worker application performance problems: a load

balancing strategy, and an analytical model to evaluate and
predict the appropriate number of workers for the appli-
cation. In the following subsections we summarise both
phases, and how to represent them in terms of the knowledge
organisation required by MATE.

3.1 Load Balancing

Load balancing techniques try to avoid that some pro-
cesses complete their processing before others. Some of
these techniques are based on distributing the tasks in
portions of decreasing size called batches.

In particular, we have implemented the strategy called Dy-
namic Adjusting Factoring (DAF) [7]. This technique divides
the task set into different sized batches using a partition
factor xi whose value is dynamically adapted to the current
load conditions of the application through expressions (1)
and (2) located at Table 1. This factor depends on the mean
µC and standard deviation σC of task processing C, and the
number of workers N . Table 1 shows the Dynamic Adjusting
Factoring strategy definition, represented according to the
MATE knowledge requirements.

Table 1: Definition of the load balancing strategy

Parameters - N , number of workers
- C, task processing time, ms

Performance
functions

Partition factor of the first batch of the
iteration:

x0 = 1+
(
σC
√
N/2

)
/µC (1)

Partition factor of the remaining
batches of the iteration:

xi = 2+
(
σC
√
N/2

)
/µC (2)

Tuning
points/actions

Partition factor. Its value can be
modified throughout the iteration.

3.2 Adapting the Number of Workers

For determining the appropriate number of workers of the
application, we have used the performance index Pi proposed
in [6]. This index relates the execution time to the efficient
use of resources in order to maximise the performance
without wasting resources. Following the requirements of
knowledge representation in MATE, the definition of this
tuning strategy is presented in Table 2.

The parameters m0 and λ are statically configured taking
into account the characteristics of the computing platform. α
is calculated as the sum of task sizes sent to workers while
the total communication volume, V , is the sum of task sizes
sent/receive to/from workers. Finally the total computation
time, Tc, is obtained by adding the computation time of
workers in an iteration.
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Table 2: Definition of the adjust number of workers strategy

Parameters

- m0, start up time per message, in ms
- λ, communication cost per byte, in
ms/byte.
- V , total communication volume, in bytes.
- α, portion of V sent to workers, in bytes.
- Tc, total computation time, in ms.

Performance
functions

Performance index for different number of
workers x:

Pi(x) = xTt(x)
2

Tc
/µC (3)

Execution time of one iteration for x
workers:
Tt(x) = 2m0+

b((x−1)α+1)λV Tcc
x

/µC (4)

Tuning
points/actions

The number of workers. Its value can be
modified at the beginning of each iteration.

4. Tunlet Implementation
To dynamically tune the performance of Master/Worker

applications, we have developed a tunlet that integrates
the tuning strategies presented in Section 3. A tunlet is
a library that encapsulates the information about a perfor-
mance problem, implementing a particular tuning technique.
Its implementation must use the Dynamic Tuning API [1]
provided by the MATE’s Analyzer module.

Earlier works featuring MATE show applying separate
tuning techniques to load balancing [8] or to adapting the
number of workers [9]. It is worth noting the complexity of
the developed tunlet as it encapsulates two tuning phases,
taking into account the interactions between them. In parti-
cular, the phase for adapting the number of worker considers
that the application is balanced.

For the proper development of the tunlet, its definition
should include the identification and interpretation of a set
of elements related to the performance model and the type
of the applications under study. From the point of view
of the performance model, the following must be defined:
measurement points, analytic performance functions and
tuning points/actions. With respect to the application, in our
work we have taken into consideration:

• The programming model followed by the applications.
• The variables or values that can be manipulated, with

the aim of locating variables to tune.
• The functions whose execution must be detected to

gather behavioural information.
In order to implement the tunlet based on the presented

Master/Worker performance model, we have followed a
tunlet design and development process [10] consisting of
four steps which are explained in the following subsections.

4.1 Identify Application Actors
The designed tunlet needs information about the different

types of application processes that cooperate to solve a

concrete problem. This knowledge is required because each
type of process should be instrumented depending on the
role that it plays in the application. The application to be
tuned follows a Master/Worker paradigm, so, two types of
process can be identified: the master and N workers.

4.2 Identify Measurement Points
Performance model evaluation requires determination of

which points in the application execution - measurement
points - must be monitored in order to collect behavioural
information about the application to calculate the parameters
of the model’s analytical expressions, which are shown in
Tables 1 and 2.

The measurement points are located in either the entry
to or exit from a function. One value is extracted of each
of these points. However some parameters require multiple
values and multiple measurement points for being calculated.

4.3 Identify Events
Events are messages in which the values extracted at the

measurement point are sent to MATE’s Analyzer module.
These events are explicitly defined within the tunlet. Multiple
values obtained at the same measurement point can be
encapsulated in a single event and these values will be used
by the Analyzer module for calculating the parameters for
evaluating the performance model.

Table 3 presents the relationship between events and mea-
surement points required by the analysis process. For each
measurement point the table shows the actor, the function
where it is situated, whether it is the entry to or exit from
this function and the value which will be obtained.

4.4 Identify the Tuning Points and Actions
The last step consists of identifying the specific variables

that will be modified by MATE at runtime. Consequently, a
Master/Worker application must include a variable indicating
the partition factor to be applied to the set of tasks for the
load balancing strategy, and a variable indicating the current
number of workers. Once MATE has taken all measurements
to calculate the parameters of the analytical expressions, the
performance model can be evaluated, and depending on the
results of this evaluation, the adequate point to modify the
associated variable should be determined.

For the load balancing strategy, the evaluation of the ex-
pressions is triggered when two separate events are received
by the Analyzer: Start Iteration and End computing worker.
At the beginning of the iteration, the tunlet has gathered all
the information for calculating the mean µC and standard
deviation σC of the task processing time for the previous
iteration. This allows the calculation of the partition factor
values for the first and second batch of the current iteration.
On the other hand, when a worker has ended computing,
the tunlet can verify if the information about the processing
time of each worker that has participated in the computation
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Table 3: Relationship between events and the required measurement point by the analysis process.

Parameters Measurement Points EventsActor Function Location Value obtained
Number of Master Global send Entry #workers Start iterationworkers N to workers

Task
processing

time, C

Worker Receive tasks Entry Clock time, Start computingfrom master #tasks from master

Worker Send tasks Exit Clock time End computingto master

Total
communication

volume, V

Master Send to Entry #tasks to Master sends
worker i worker i to worker

Master Receive tasks Exit #tasks from Master receives
from worker i worker i from worker

Total
computation

time, Tc

Worker Receive tasks Entry Clock time Start computingfrom master

Worker Send tasks Exit Clock time End computingto master

of a particular batch has been collected. If so, the tunlet can
calculate the partition factor for the following batches taking
into account the current load balancing conditions.

Then, the tuning action can be invoked and the partition
factor modified at any time during the iteration. On the other
hand, for adjusting the number of workers, the evaluation of
the expressions is triggered when the Start iteration event
arrives to the Analyzer. At this moment, the tunlet has all
the required information from the previous iteration (Tc,
V , λ, and m0). If the number of workers calculated by
the Analyzer differs from the current number of workers,
the tuning action is invoked between two iterations, and
the predicted number of workers will be used in the next
iteration.

5. Experimental Results
In this section, we present the experimental results ob-

tained to validate the efficiency of the developed tunlet
when it is integrated into MATE for dynamically tuning of
Master/Worker applications. To conduct the experiments, we
selected a computationally intensive Forest Fire Propagation
parallel application called Xfire [11]. It is a Master/Worker
MPI application that simulates fire line propagation follo-
wing the Andre-Viegas model [12]. It iteratively calculates
the next position of the fire line considering the current
fire line position and environment aspects, such as weather,
wind, vegetation, topology, etc. In each iteration, the master
distributes the fire line among the workers and waits for the
results. Then, it composes the new fire line and starts the next
iteration. Workers calculate the evolution of the received fire
line and send it back to the master. The application presents
computational imbalance, with processing time differences
between 20% and 100% among workers.

Experiments were conducted on a 33 node homogenous
cluster running 3.00 GHz Intel Xeon Dual-Core processors,
SuSE Linux 10, and connected by dual Gigabit Ethernet.

The experiments were performed using 2, 4, 8, 16 and
31 workers. Each worker, the master, and the Analyzer
were executed on a dedicated node. We have conducted our
experiments using four scenarios:

1) Xfire was executed for different numbers of workers
without tuning.

2) Xfire was executed with MATE, but only tuning the
load balancing following the DAF algorithm. The
initial partition factor was 0.5, and during the exe-
cution this value was adjusted to the load balancing
conditions.

3) Xfire was executed with MATE, but only tuning the
number of workers. The application started with two
workers, and during the execution this number was
changed according to the model described in Section
3.

4) Xfire was executed with MATE applying the en-
tire developed tunlet, i.e., Xfire was tuned using the
load balancing strategy and adjusting the number of
workers.

Table 4 summarises the results obtained. The comparison
of the execution times obtained for scenario 1 and 2 shows
that dynamic tuning of the partition factor improves the
Xfire performance because MATE is able to detect the load
imbalance and correct the factor to reduce the execution
time.

Table 4: Execution time (seconds) of Xfire in the different
scenarios

Scenario #Workers
2 4 8 16 31

1 48.08 24.38 13.67 8.75 6.08
2 37.19 18.10 10.54 7.38 6.68
3 Starting with two workers 7.49
4 Starting with two workers 6.48
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Regarding scenario 3, MATE starts with two workers and
then, upon receiving data from each iteration it adjusts the
number of workers being employed. As it can be seen in
Figure 1, as time passes, computational load variations cause
changes in the number of workers in the application in
order to achieve an optimal performance, making efficient
use of the available resources. These changes in the compu-
tational load are due to varying condition in the weather,
wind, vegetation or topology as the fire line progresses,
and consequently the calculation of the new fire front may
have a greater or lesser complexity. It can be observed that
the execution time of Xfire with MATE is close to the
best execution time obtained by different fixed number of
workers, however with a better user of resources.

Figure 2 shows the execution time of Xfire application
considering different number of workers and in the last
column the execution time of Xfire under MATE applying
the entire developed tunlet. It can be seen that tuning both
the partition factor and the number of workers gives a lower
execution time than when applying just one of the tuning
policies, while at the same time making efficient use of the
available resources.

6. Related Work
MATE presents an approach that automatically and dy-

namically improves the performance of parallel applications.
This approach is based on the use of dynamic instrumenta-
tion and performance models as the intelligence engine of
the analysis process. Currently, there are other tools which
perform dynamic tuning processes.
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Fig. 1: Evolution of the number of workers with a variable
computational load.
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Fig. 2: Execution time of Xfire with different number of
workers and under MATE applying the entire tunlet.

Autopilot [13] is a project for dynamic performance
tuning in heterogeneous environments. It is based on the use
of real-time techniques, which dynamically adapt the system
to different demands and resource availability. Similar to
MATE, Autopilot monitoring process is based on dynamic
integration of sensors, which extract information about the
application. The information analysis and decision proce-
dures are performed using fuzzy logic. The application tun-
ing is done by dynamically inserting actuator processes that
adjust the application behaviour. This requires knowledge
about the application.

Active Harmony [14] is a framework, which allows dy-
namic adaptation of an application to the network and avail-
able resources using automatic adjustment of algorithms,
data distribution and load balancing. Its structure is based on
a client-server model. The client is the harmonised applica-
tion, which sends performance information to the server. The
server performs the tuning based on this information. In this
tool, the monitoring process gathers measures for various
libraries with the same functionality. Then, it uses heuristic
techniques to explore the application optimisation space and
to adjust the tuning values.The tuning process is based on
choosing the best implementation among the libraries.

PerCo [15] is a framework for performance monitoring
in heterogeneous environments. It is able to manage the
distributed execution of applications using migrations, for
example, in response to changes in the runtime environment.
PerCo monitors execution times and reacts according to a
control strategy to adapt the performance when significant
changes occur in the application behaviour. The performance
analysis and tuning process is performed using historical
data, and combining time series and data adjustment me-
thods.

The main difference between MATE and presented tools is
in the analysis phase. In MATE, the analysis is based on per-
formance models, whereas Autopilot, Active Harmony and
PerCo use fuzzy logic, heuristic techniques, and historical
data and time series respectively.
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7. Conclusions and Future Work
Achieving high performance for parallel applications is a

complicated task that requires a high degree of experience,
especially when dealing with applications with dynamic
behaviour, or those running on heterogeneous systems. In
these cases, the dynamic tuning performance is the most
adequate approach. MATE is a tool that implements this
approach for tuning applications.

In this work, the implementation of a theoretical per-
formance model for Master/Worker applications and its
integration into MATE has been presented. MATE has been
extended to improve application performance by balancing
the load and determining the appropriate number of workers.
The performance model has been encapsulated in a MATE
component called a tunlet. To correctly design and develop
the tunlet, it has been necessary to identify and interpret the
relation between the performance model, the type of tuned
application, and the tuning tool. The developed tunlet can be
used to tune other applications based, as in the case of Xfire,
on iterations and a Master/Worker paradigm. It would only
be necessary to adapt the application to the tuning process,
adjusting the names of certain functions and tuning variables.

The experimental results present the applicability of the
MATE dynamic tuning environment and performance mo-
dels to reduce the execution time significantly adapting the
application to changing conditions and using the resources
efficiently.
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Abstract— The importance of Graphic Processing Units
(GPU) as high performance accelerators has been increas-
ing since the late 90’s. However, a limiting factor of the peak
performance that a GPU can achieve lies in the bandwidth
limitations of the interface used to connect the GPU to the
rest of the system. The Accelerated Processing Unit (APU)
was developed as an attempt to deal with this limiting factor.
Aiming to provide insights of the behavior of memory-bound
kernels in APU systems, we develop a performance model
for the Matrix-Matrix Multiplication (MMM) algorithm as
it is executed in the APU. The model is elaborated from the
analysis of a tiling MMM kernel. By studying the different
aspects of the execution in the APU hardware and utilizing
a statistical approach we developed a model to estimate
the impact of hardware characteristics in the performance
and attempt to explain the nature of the experimental
results. The formula consist of a linear combination of
three terms, global memory accesses, local memory accesses
and floating-point operations times. These three factors are
integrated into a performance model formula by applying the
Least Squares Method (LMS). We show that the estimation
obtained by this formula closely matches the experimental
results.

Keywords: GPU, APU, Performance Modeling,

1. Introduction
Since the late 90’s, the GPUs has successfully been used

as accelerator hardware in addition to their original purpose
as graphics processors. The reason behind this success is the
price to performance ratio they offer and being a massively-
parallel computing engine widely available. It has been
demonstrated that the raw floating-point performance of even
a low-end GPU is higher than the most sophisticated CPU
available [2]. However, because the system’s memory and
the GPU memory are physically separated, the data that is
processed by the GPU must be copied to the GPU memory,
typically using the PCIe port. Due to its limited bandwidth,
this port becomes a performance bottleneck. A great amount
of effort has been made to overcome this limitation and a
number of algorithmic as well as hardware solutions have
been developed. A system where the GPU is closely coupled
within the same chip as the CPU is one of the proposed
solutions. One of such hybrid systems is the Accelerated

Processing Unit (APU). In an APU, the GPU processing
cores and shared memory are integrated into the same silicon
die as the CPU cores. Including the CPU and GPU in
the same chip eliminates the need of communicating data
through the PCI port. This is opposed to traditional discrete
GPUs in which the GPU hardware resides in a separate card
that is attached to the system via an I/O port.

Because GPU hardware is so complex and different from
the CPU and even though modern GPUs have a more and
more general purpose computation-oriented architecture, a
programmer still has to spend certain time to write a program
that produce the desired results, and even more time to
optimize that program. GPUs are a special kind of acceler-
ators with a very particular architecture. This is because the
original purpose of including a GPU engine in a system was
to handle graphic tasks that slowed down the CPU. Compu-
tations on graphics are easy to perform concurrently and ex-
hibit predictable memory access patterns, programming tools
are mature and well developed in the graphics processing
area. However in General Purpose GPU development, the
amount of effort centered around developing and supporting
tools for performance analysis has been minimal compared
to that devoted to application development. For example,
even though proprietary tools and academy-developed tools
are advocated to provide program execution statistics (e.g.
executed instructions counters, memory requests counters,
etc.), these tools do not provide insights about how the
statistics relate to program performance. In our research we
develop a performance model of kernel execution for the
APU. The has been build by analyzing the kernel execution
flow and considering GPU hardware characteristics such as
the number of compute units and the size of the shared
memory space. The model breaks-down the time costs of the
three major operations: floating-point computations, global
memory transfers, and shared memory transfers. The model
also takes into consideration how the chosen thread-group
size affects the kernel execution time.

The rest of this paper is organized as follows. A brief de-
scription of the OpenCL programing model and an overview
of the APU hardware necessary to understand the GPU pro-
gram execution flow appears in section 2. Section 3 describes
the methodology followed to develop the model. Section
4 presents the performance analysis of a Matrix-Matrix
Multiplication algorithm. The experiments and results used
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to validate the model are presented in section 5. Section 6
features the related work. Finally section 7 summarizes the
paper with the conclusions and the future work.

2. Programming Model and APU Hard-
ware

In order to understand how GPU are constituted and the
performance implications of different programming tech-
niques and hardware configurations, it is necessary to know
the programming models and the hardware characteristics
used in the design of the APU. The APU was developed by
AMD and the programming model available to program it is
OpenCL. OpenCL is based on the Single Program Multiple
Data (SPMD) programming. To enable the use of a GPU in a
program, it is necessary to employ an API. For this purpose,
the non-profit organization Kronus Group have developed
the OpenCL libraries. Using the OpenCL libraries enables
the use of a wide range of special accelerator hardware and
this includes GPUs from all vendors. In order to make use
of the GPU programmers must write at least two source
code files that includes the appropriate calls to the OpenCL
libraries. One of them is the Host program, that is the
program that will be compiled an run in the CPU, and a
Kernel program, that will contain the functions that will
execute in the GPU.The host initialize and prepare the
system to execute kernels in the devices. When a kernel is
submitted for execution a index space containing a defined
number of software threads is defined. Because the GPU
operates with the SPMD model, the index space purpose is
to provide a mean for processing threads to know which data
elements they operate on. In OpenCL terms, a processing
thread is referred as work-item and as in the traditional sense
of software threads, a work-item represents a light-weight
process that is running a set of computer instructions and has
allocated resources. Work-items are grouped unto a larger
logical instance called Work-group. The most important
aspect of work-groups, is that communication is enabled
across work-items only if they belong to the same work-
group. In the next paragraph we briefly describe the main
hardware components of a GPU and how they relate to the
concepts in the OpenCL programming model.

In general, GPUs are throughput-oriented devices made up
of hundreds of processing cores that allow a high level of
concurrency. Figure 3 shows a block diagram that includes
the general components of all GPU devices. In modern
GPUs architectures, the processing elements have a two-level
hierarchical architecture. The top level is made of vector pro-
cessors, called Compute Units (CU) that operate in a Single
Instruction Multiple Data (SIMD) fashion. In the next level,
each vector unit contains an array of processing elements
(PE). All the PEs inside a CU are able to communicate
through an on-chip, user-managed memory known as shared
memory. When a work-group is created within a program,

Fig. 1: General block diagram of a GPU device. The different
levels of the memory hierarchy are show. It is important to
notice that the global memory is separated from the system’s
memory

all wok-items in that work-group are assigned to the same
CU. The purpose is to ensure scalability, allowing a program
to run across different generations of GPUs with different
number of CUs. Although the vector processors can process
an arbitrary number of work-items within some constraints,
the scheduler always arrange work-items in groups of 64 or
32 depending on the vendor. Such group of work-items is
known as a Wave-front and it is the smallest scheduling unit.
This means that if some number smaller than 64 work-items
need to be executed, the schedulers in the CU will still create
64 work-items and since not all the theads have useful work
to do, some of them will be idling. The performance impact
of this idling is a reduced computational throughput.

3. Model Design
In this section we first briefly discuss how the total

execution time of a kernel time is measured for an APU
device; then we describe how the model was developed and
the characteristics of the GPU hardware that have a major
impact on the behavior of the performance curve.

3.1 Calculating Kernel Execution Time
A simple formula for modeling the execution time of

any given algorithm in a computer system can be obtained
by dividing the number of clock cycles required by the
algorithm and the duration of one clock cycle. For simplicity,
we measure elapsed time instead of clock cycles. Taking one
step ahead in the analysis of computation time, The time
required to complete an algorithm can be divided into the
time spend into performing numerical computations and time
spend copying data from one level of the memory hierarchy
to another as shown in equation 1.

RunningTime = ComputationTime+DataTransferTime
(1)
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A more refined model suited for GPU computations
considers that the data transfer inside a GPU is divided into
two categories. The First category refers to the data transfers
from global memory to shared memory inside the GPU, then
from the shared memory to the registers of the processing
cores. In our model we do not consider transfers between
system memory and global memory because we assume
zero-copy data buffers, the main advantage of an APU
system [5]. An important observation is that it is not possible
to measure with perfect accuracy the time elapsed for either
the floating point operations or the memory transfers. Taking
this into consideration, we obtain equation 2 that its a linear
combination of three terms.

RunningTime =α1 · ComputationTime+
α2 · LocalMem.TransferTime+
α3 ·GlobalMem.TransferTime (2)

We will refer to the proposed model as Linear Perfor-
mance Breakdown Model (LPBM). The α parameters in
the equation define the weight of each individual term of
the equation. They also help to interpret the breakdown
of the performance, indicating which component represents
a greater contribution to the total processing time so that
optimization effort can be applied in the correct direction.

3.2 Linear Performance Breakdown Model
In the present subsection we first describe how we de-

veloped each of the components of the LPBM based on
the hardware characteristics of the APU. To determine how
the kernel execution parameters affect the performance, it
is necessary to consider the characteristics of the APU, and
how kernels are scheduled for execution in the hardware re-
sources of the device. When using the GPU for non-graphic
related algorithms, the achievable amount of parallelism is
an important parameter that will define the execution time
of an algorithm. It is linked to the mapping of work-groups
to the Compute Units (CU) and to the scheduling of wave-
fronts. All GPU devices are massively parallel processors, it
is important to understand the source of parallelism in GPU
hardware. As an example, in a multi-core CPU environment
a parallel task can be partitioned in n sub-tasks, where n is
the number of cores in that particular CPU. The source of
parallelism then is well defined as the number of cores. On
the other hand, even the low-end GPUs count with several
hundreds of cores and the attainable parallelism is dependent
on factors like the resource usage of the work-items of the
executing kernel and the mapping of wave-fronts in the
CU units. As mentioned in section 2 instructions schedulers
in GPU have a constraint for the number of threads that
can be created and launched for execution, called wave-
front size. Any number of threads different to that value
will cause idling processing cores in the GPU. Figure 3.2

Fig. 2: wave-front scheduling in relation with the work-group
size. If the number of work-items in a work-group is not a
multiple of the wave-front size, some of the work-items will
be idle.

shows examples for three different work-group sizes, and
the resultant scheduling of wave-fronts. When the number
of work-items is less than than the wave-front size (In the
APU and other AMD GPUs is 64 work-items), one wave-
front is enough to compute all the elements in the tile.

However, when the size increases, it is necessary to
generate and schedule more than one wave-front. When the
number of work-items is different to the wave-front size, the
effective work that the GPU will do will be reduced since
it is not possible to schedule a fewer amount of work-items
for execution than the wave front size. This situation affects
performance because there will be processing cores idling
and also the efficiency of the data transfers is reduced.

As equation 2 shows, the total execution kernel is di-
vided in 3 main tasks. First, the amount of time that it
takes to perform the numerical computations (P1), The data
movement from global to shared memory (P2), and from
shared to private memory in the compute units (P3). We
summarize then, the total execution time (TT ) into the
following formula:

TT = α1 · P1 + α2 · P2 + α3 · P3 (3)

Each of the Pn terms is estimated as described in the
following discussion. In a sequential system, P1 can be esti-
mated as the number of floating-point operations necessary
to finish the task. This would yield the total amount of
Time Slots to complete the execution of an algorithm, and
by multiplying the number of times slots by the execution
time of a single time slot, we can have an estimate of the
computation time. However, in a multi-core system such as
the GPU, operations are executed with some degree of con-
currency. The key is to estimate the degree of concurrency
that can be achieved by taking into account the capabilities
of the hardware. An important parameter is the total number
of wave-fronts required to execute all the work-items in a

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 345



APU

System Memory

Global Memory

Local Mem.

Computing Unit

Local Mem.

Computing Unit

Local Mem.

Computing Unit

1

2

3

Fig. 3: Kernel execution phases. When a kernel is executed
in an APU, data must be copied between global and local
memory, local and private memory where the computations
occur.

Table 1: Work-groups allowed to reside in a CU in function
of LSD usage

Memory/Work-group Limit of Work-groups
Less than 4kB 8
4.0kB-4.6kB 7
4.6kB-5.3kB 6

kernel launch, and in turn, the total number of wave fronts
that can be executed concurrently in the GPU. There is a
number of factors that affect the actual level of parallelism
achievable, however the influence of such factors is not as
critical as the hardware resources mentioned. Taking this
into consideration will yield an estimate of the time slots
required to complete a kernel execution. The maximum
number of wave-fronts that can be executed concurrently
in the GPU is determined by the resources needed by each
work-item and those available in each CU, These resources
are the number of registers and the size of the Local Data
Store (LDS), a especial portion of memory inside each
CU. To determine total amount of wave-fronts that can
be executed at the same time across the GPU, we must
know how many wave-fronts can be executed in a single
CU. This is done by calculating the amount of memory
from the Local Data Store that a work-item uses and then
refer to the hardware specifications [5]. Table 1 summarizes
the most relevant information regarding this aspect. The
maximum number of concurrent wave-fronts value depends
on per work-group memory needs. With that information it
is possible to calculate how many work-groups can reside in
a CU, then the total amount of work-group that can execute
concurrently across the GPU is the obtained value multiplied
by the amount of CUs in the GPU.

The term P2 corresponds to the total amount of global
memory transfers. In a simple, straight implementation of
a blocked algorithm, there would be 2N2 + N3 loads
and stores in total, approximately the same number of
arithmetical operations. Because a work-item will load an
element from global memory to shared memory, and then
that element will be used by t work-items in the same group,
(where t is the tile width) the number of global memory
transactions will be reduced as t increases. A more detailed
explanation of the tile size effects regarding the reduction
of global memory traffic can be found in [3]. Finally, the
term P3, that corresponds to the memory transfers from
shared memory to the processing cores inside each CU.
For this term, the amount of phases required to compute
an output value in relation with the tile size (i.e. N/t) is
an important factor. The number of phases directly affects
the number of data requests from the shared memory to the
global memory. The total amount of shared memory request
is then the number of phases times the number of tiles in the
matrix, then the resulting number multiplied by the number
of required wave-fronts for a tile. This is because each row
in a tile generates a memory request, and all the elements of
that tile row are fetched at the same time. The memory in
the GPU works in a similar way to the main system memory,
where contiguous data elements are transferred in a single
bus burst. Thus, by having a small tile width, more request
are generated since the number of tiles to cover a matrix is
larger compared to the case where the tile width increases.
Summarizing, the formula is the amount of phases multiplied
by the number or tiles in the matrix by the number of
requests requests each tile generates. The resulting formula
5.

TT (t) =α1 ·
d N2

WWF e
d t2

WWF e ∗MWF
+

α2 ·
N2

t
+

α3 ·m ∗
N2

t
∗ d t2

WWF
e (4)

Where WWF is the number of work-items that are
grouped in a wave-front, for current AMD GPUs, it is equal
to 64. The term WWF/GPU stands for Maximum number
of wave-fronts that can reside in the GPU in any given
moment, and as we explained at the start of the present
section, , its equal to the maximum allowable work-groups
per CU by the number of CUs in the GPU. To estimate
the αn parameters, statistical regression algorithms such as
Kalman filter, Least Square Method (LSM) and recursive
Least Square Method can be applied. We adopted LSM
because it is a well-known method that used to estimate
the best fit for the data set. The objective of applying the
LSM consists of adjusting the parameters of our model
function to best fit the data set obtained in our experiments.

346 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



The data set consists of n points (data pairs) xi, yi, with
i = 1, 2, · · · , 16, where xi is an independent variable, tile
width, and yi is a dependent variable whose value is the
execution time observed experimentally. The model function
has the form f(x, β), where the adjustable parameters are
held in the vector β. The goal is to find the parameter
values for the model which best fits the data. Obtaining the
parameters will tell us to which extent each one of the factors
contained in the formula impact the performance, which is
also helpful to decide in which step of the algorithms the
optimization efforts must be directed. For our experiments
we use a concrete example of a matrix-matrix multiplication
to obtain the data necessary to estimate the parameters and
validate the model though the use of a linear regression
method, in the next section, we present the experimental
setup used to obtain the required experimental values needed
to validate the model.

4. Performance Analysis of Tiled
Matrix-Matrix Multiplication based
on LPBM

In order to obtain the experimental data necessary to apply
the LSM and validate the model, a program that executes the
kernel function and profiles the execution time was used. The
kernel code is shown in listing 1. The program was run with
all the possible ranges of values for t for a matrix size of
1000. The t values range is from 1 to 16. It is not possible
to create a tile of a width larger than 16 because currently
OpenCL restricts the maximum size of work-groups to 256
elements.

Listing 1: MMM kernel with tiling
float output_value = 0;

for(int m = 0; m < Width/TILE_WIDTH; m++) {
local_tile_a[ty][tx] =

input_a[Row * Width + (m*TILE_WIDTH + tx)];
local_tile_b[ty][tx] =

input_b[(m*TILE_WIDTH + ty) * Width + Col];
barrier(CLK_LOCAL_MEM_FENCE);

for(int k = 0; k < TILE_WIDTH; k++)
output_value += local_tile_a[ty][k] * local_tile_b[k][tx];

}
barrier(CLK_GLOBAL_MEM_FENCE);
output[Row * Width + Col] = output_value;

In our algorithm we work with single precision floating-
point numbers grouped in tiles ranging from one elements
to blocks of 16 by 16 elements, to store the values for our
MMM kernel, we need at most 162 · 4 bytes of memory for
one tile. Since a work-group will be composed of three tiles,
each tile need 3 kB, hence the maximum allowed number
of Work-groups is equal to the maximum possible amount.
With this information, it is possible to calculate how many
work-groups can reside in each CU and the total amount of
work-group that can execute concurrently across the GPU by

Table 2: Machine Characteristics
APU Model AMD A8-3820
Clock freq. 3.0 GHz

System memory 12 GB
Compute Units 5

GPU Clock freq. 400 MHz
Global Memory 256 MB
Local Memory 32 kB

multiplying by the number of CUs in the GPU. To obtain
the timing data, we make use of the timers provided by the
OpenCL specification to inquire the total kernel execution
time. The timers have a resolution of 1ns. The program was
run 1000 times and the execution time is an average of all
the measured timings for each tile size. The employed APU
is based in the Evergreen family of GPUs. The hardware
resources and configuration of the APU hardware are shown
in table 2

5. Experiments and Results
After running the experiments and collecting the data, the

LSM is applied to estimate the αn parameters in our model
equation. The calculated performance from the experimental
results as well as the values calculated from the model is
shown in figure 2 As shown in figure 5, we can observe that
the obtained results for the model closely match those for the
experiments. The reason for the discrepancies are manifold,
they can be attributed to non-uniformity in the execution
of the kernel, like bank conflicts and not enough latency
hiding in some cases; as well as another execution details not
considered in the model like the influence of caches. Caches
are relatively a new addition in the graphics hardware and
were not considered in this paper for simplicity purposes.
However, the accuracy achieved with the proposed model
reflects that the considered parameters are those who have a
major impact on the performance like the maximum number
of wave-fronts that can run concurrently across the GPU and
the impact of the tile size in the number of memory request
that must be generated to transfer all the data elements.
These factors explain the observed saw tooth pattern when
the tile size is greater than 8, because in the ideal case
the performance should continue scaling like the observed
curve while the tile size is less than eight. The values of the
parameters in the model is also useful to observe the different
impact on the performance each separate component have,
how much they contribute to the total time amounted for the
execution of a kernel. If we breakdown the total execution
times, so we can observe each term contribution, we obtain
the column chart depicted in figure 3. In this figure we
can observe that, as expected in a GPU device, the term
P1 that corresponds to the floating-point calculation time
adds a small portion of the execution time and the major
portion of the execution time is contributed by the memory
transfers. Specially global memory that in the case of a tile
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Fig. 4: APU general block diagram

size of 1 (i.e, no tiling applied) it amends to more than 60%
of the total execution time. With the increase of the tile
width, the global memory transfer time is greatly reduced
for the reasons explained in section 2. It is also worth
observing that at some point, the reduction in execution time
is not significant anymore with larger tile widths. This hints
that enabling the hardware for a larger number of threads
per work group will not be synonymous of an important
improving in tiling algorithms. It is also worth noticing that
since the global memory transfer times is reduced for large
values of tile width, an important portion of the total time
is attributed to the local memory transfers. This means that
a improvement on the nature of this kind of memory could
bear a good impact on the performance of the algorithm. As
mentioned in the previous sections, another advantage of the
LSM method is that it provide us with the estimation for the
model parameters. This parameters can be used to produce
a performance breakdown graph like the one show in figure
5. Each corresponding αn tell to what extent each of the
computation steps adds to the total computation time. This is
useful because programmers can have a better understanding
of where the optimization efforts can provide the best gains
or to know in which steps the application is not performing
as it is expected.

6. Related Work
Although a there have been much effort devoted to ap-

plication development and algorithms optimization in the
GPU communities, most, if not all of the available works
help the designer to exploit the parallelism in the problem
to take advantage of the GPU high computational throughput
or provide useful techniques to improve performance by
reducing memory transfer and execution times. Concerning
modeling for performance on GPU architectures, there is
limited reported work. in [6] the authors relate to the lack

Fig. 5: Performance Breakdown

of a GPU performance model and recognize the difficulties it
derives like the possibility of evaluate the suitability of the
GPU to solve a particular problem. Likewise, [7] address
the importance of having access to a modeling framework
recognizing the fact that for GPU programs, developers
should devote large amounts of time to write a program that
functions correctly, yet alone utilizing the hardware to its
best performance. The result of their work is a framework
to generate predictive models that allows the comparison
between GPU and CPU performance in a per-application
base. We chose instead to focus the analysis in the GPU
architecture, since we believe that at this point it is clear
that if the task exhibits a good amount of parallelism, the
GPU will present better performance than CPU. In 2009,
Hong et al. [16] presented a study on GPU power and
performance modeling. In their study, the authors demon-
strate the development of an analytical model based on an
abstraction of the architecture of Nvidia GPUs and then
execute the related experiments to confirm the model. In
the study we present in this paper, we first design and
execute the set of experiments that provide us with the
performance results. Then develop a model that is composed
by the costs for floating-point computations and shared and
global memory transfer costs, identify as the factors with
major impact on performance and its relation with the tile
size. In [8], the author proposes a model for execution-less
performance modeling for linear algebra algorithms in CPU
machines. The authors develops their model focusing on L1
cache misses, and analyze the correspondence between their
model and the experimental results obtained in a Barcelona
AMD CPU and a Intel Penryn. We extend the focus to
systems with a fused GPU-CPU architecture and include in
the analysis the cost of transfers between the various level of
the GPU memory hierarchy. In our work we observe that the
performance behavior due to changes in the tile size exhibits
a non-uniform behavior, the first half of the experiments
shows a constant increase in performance while the later
half have a different behavior that forms a saw-tooth curve.
The factors that influence this behavior are many-fold and
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we develop our model with the ones we consider are the
key components. In [9] the author discuss the effects of
factors such as sequential code, barriers cache coherence
and scheduling in general shared memory multiprocessors.
The author parts from the Amdahl’s law and analyze shared
memory systems (GPUs belong to this classification) to
derive several models, one for each separate factor. Our
approach is instead combine the most important factors into
a single equation using a special case of Shared memory
system and apply then the LSM method to evaluate the
impact of each factor.

7. Conclusions
We developed a Lineal Performance Breakdown Model

(LPBM) for the Accelerated Processing Unit (APU) and
validated it with experimental data obtained from the ex-
ecution of a Matrix-Matrix Multiplication (MMM) kernel
optimized by tiling to observe the performance impact of
work-group size. The experimental results closely matched
the data obtained with the LPBM. The LPBM is also useful
to estimate the time consumed by the main aspects of
kernel execution: numerical computations and data transfers
between the global, shared and private memory. Obtaining
this breakdown of performance in the major components
serves as guidance for optimizations, allowing to focus
the optimization efforts in the right direction. We have
confirmed that our preliminary model successfully captures
the computation time cost for the execution on the APU
for fixed matrix size. In our future work, we will extend
the proposed model to accommodate more variables, e.g.
the matrix size, so that the model can be generalized and
used to predict the performance of the process for any given
matrix size. Another possible application of this research is
its application as a performance analyzer in an automatic
optimizer framework. The LPBM provides useful feedback
about the changes in time consumption for the different
execution aspects that can be used for reference about the
effectiveness of certain optimizations applied to the kernel
code.
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Abstract— Optimizing the performance of HPC applications
requires a great effort when writing and executing in multi-
core clusters. Many variables (bandwidth of communication
channels, computing cores, workload, process mapping, etc.)
could affect performance, especially speedup and efficiency,
when executing in these clusters. Considering that the Single
Program Multiple Data (SPMD) paradigm is highly sensitive
to these variables and that the failure probability increases
when running applications for several hours or using many
computational resources, we have designed a framework
which permits us to improve performance while giving re-
silience to SPMD applications. The main objective is to allow
programmers to write applications that automatically make
better use of the available resources taking into account
the trade-off relationship between speedup, efficiency and
reliability. Finally, our framework analyzes the machine and
the application characteristics with the aim of determining
the ideal number of cores and the workload that have to be
assigned to each core in order to achieve maximum speedup,
while the efficiency is maintained over a threshold using a
message logging protocol.

Keywords: Performability Framework; SPMD; Efficiency; Fault
Tolerance

1. Introduction
Parallel applications that are executed on High Perfor-

mance Computing (HPC) clusters try to take advantage of
the parallelism in order to execute more work in a short
amount of time. The SPMD paradigm is one of the most
used when writing parallel applications [1]. It consists of
executing the same program in all processes but with a
different set of tiles. Applications that belong to this paradigm
have high communication rate and synchronicity through tile
dependencies. These communications may seriously affect
the performance and even more so when an hierarchical com-
munication architecture is used and applications are written
using an MPI library. In this sense, the current HPC clusters

*This research has been supported by the MICINN Spain under contract
TIN2007-64974, the MINECO (MICINN) Spain under contract TIN2011-
24384, the European ITEA2 project H4H, No 09011 and the Avanza
Competitividad I+D+I program under contract TSI-020400-2010-120.

This paper is addressed to the PDPTA’13 conference

are composed of multicore nodes that have heterogeneous
communication levels with different latencies and bandwidths
(in some cases these differences are between an order of
magnitude of up to one and a half in latency for a packet
size [1]).

Hence, if we do not consider SPMD applications character-
istics (a computation step follow by a neighbor data exchange
using MPI communications) and the system characteristics
(core homogeneity and different communication channels),
the execution may present serious performance degradation,
especially in speedup and efficiency [2]. In this sense, in a
previous work [3], we have presented a method to manage
the inefficiency by properly selecting the number of cores
to be used and the problem size needed in order to find
the maximum speedup, while the efficiency is maintained
over a defined threshold for SPMD applications on multicore
clusters, but without considering faults impact. The main idea
of this method is to manage the communication latencies by
knowing the characteristics of applications (e.g communica-
tion and computation ratio).

An example of the inefficiencies generated by executing
SPMD applications on multicore clusters can be detailed in
Figure 1. The figure shows how the tiles are computed in
a similar time due to the homogeneity inside the cores, but
the communication times can be totally different because they
can be performed using different communication paths (inter-
core, interchip, internode, etc.). Then, our method attempts
to minimize these inefficiencies adding more computation,
while the communications are being performed.

Another aspect to be considered is that the mean time
to failure in computer clusters has reduced due to increase
of components and systems aging [4]. The fault probabil-
ity when running parallel applications has increased, and
so accordingly, the execution of applications without fault
tolerance (FT) support may not reach their end, then the
implementation of measures to deal with this is gaining
importance. Current parallel applications may not only try
to reach the best possible performance, but they also may
need to add FT support as a new property. Managing the
FT tasks in order to be the least intrusive may enable us
to achieve better performability metrics than only applying
them without considering their effects on performance. In this
sense, when using a pessimistic message logging approach
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Fig. 1: Execution of SPMD application on Multicore Clusters

the inefficiencies caused by communications increase, for
example, if every message is saved in a different node, all
messages are forwarded using the slowest communication
channel and the communication time increases (Figure 1).

Under this focus, in this paper we present the Per-
formability Improver Methodology for Parallel Applications
(PIMPA) framework that allows programmers to write SPMD
applications taking advantage of an overlapping technique
between computations and communications in order to avoid
performance degradation. The main objective is to permit
applications to achieve maximum speedup while the whilst
maintaining efficiency over a threshold, using a message
logging protocol as FT technique. However, the SPMD
applications that we consider have to fulfill the following
characteristics: static, local communication, regular and fi-
nally, they have to be N-dimensional problems.

The PIMPA framework has been adapted to use our FT
solution called Redundant Array of Distributed and Indepen-
dent Fault Tolerance Controllers (RADIC) [5] in order to
improve the application reliability. RADIC is an application-
transparent rollback/recovery based fault tolerance architec-
ture that uses the available resources in the system and it does
not rely on any central element. It also scales side by side
with applications. RADIC uses an uncoordinated checkpoint
strategy in combination with a pessimistic receiver based
message logging protocol.

Finally, this framework allows users to include their com-
putation function and communication pattern in the sections
specified, and the framework itself handles in a transparent
manner the load balancing, mapping and distribution of tiles
in order to hide communication inefficiencies. The PIMPA
is based in the concept of Supertile (ST). An ST is an
unit which integrates a set of tiles where these tiles are
divided into two types: internal and edge. The STs are
assigned one per core and they deal with the communication
heterogeneity and also eliminate wasted communication time
of parallel execution. This method takes advantage of the
communication time, assigning more computation tiles and
hiding the communication effects[3]. PIMPA also, allows

us to increase applications performability by hiding the
overheads of a pessimistic receiver based logging approach.
PIMPA can estimate execution time of an SPMD application
and it may also consider the impact of a pessimistic message
logging approach in its estimations. This framework is based
on the methodology that has been presented in [3].

This paper is structured as follow: the related works are
described in section 2. Section 3 focuses on how to increase
performability in SPMD applications and introduces PIMPA.
Section 4 shows the PIMPA framework. Section 5 shows
example applications and finally Section 6 draws the main
conclusions and refers to future works.

2. Related Work
Several tools for measuring or analyzing performance of

parallel applications have been developed [6]. Performance
analysis tools are usually made with the objective of finding
inefficiencies during the execution of a parallel application
in order to provide information on how to fix or tune
applications to obtain better performance metrics. On the
other hand, there are also many tools that provide fault
tolerance support to parallel applications and also many MPI
libraries provide their own fault tolerant mechanisms based
on message logging approaches [4][7]. Nevertheless, when it
comes to tools that allow development of parallel applications
that consider performance and dependability features we lack
options.

Liebrock [8] presented a method that allows programmers
to execute applications in hybrid parallel systems with the
aim of improving adaptability, scalability and fidelity. How-
ever, this work does not concern efficiency and does not
consider the usage of a fault tolerant technique.

When it comes to characterizing the parallel environment
where a parallel application will be executed, NetPIPE
[9] performs simple ping-pong tests, bouncing messages
of increasing size between processes, but it does not exe-
cute analysis with systems under full use. Considering this,
PIMPA framework implements its own network characteriza-
tion module which allows it to determine the communication
latencies between processes.

FT-SPMD [10] is a framework that eases programming
of parallel applications with fault tolerance support. In case
of failure, non-failed processes may be forced to rollback
because it relies on a checkpoint scheme where recovery lines
are formed and it does not concern performance.

In [11] a tool has been presented that allows programmers
to write SPMD applications that can be executed in a
minimum time while the efficiency level is maintained over
a threshold. Nevertheless, this work does not consider the
effects of fault tolerance tasks on the applications.

We propose a framework that helps programmers to write
code that makes an efficient use of the parallel machine
allowing them to reach high speedup and that also concerns
the fault probability. PIMPA tries to increase performability
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Fig. 2: Computation and Communications ST overlapping

of SPMD applications and it allows programmers to write
code without considering the mapping and scheduling of the
parallel execution.

3. Increasing Performability of SPMD
Applications using PIMPA

Currently, the executions of parallel applications cannot
be done without a previous analysis of the environment and
the application itself if we hope to obtain an increment
in performance metrics. In this sense, PIMPA framework
has been designed taking into consideration diverse aspects:
One of them is the environment and the application itself,
second is the FT architecture, and finally the method for
improving the performance which give us the relationship
between speedup and efficiency [1].

3.1 SPMD Applications on Multicore Clusters
In this work we consider SPMD applications that have the

following characteristics: Static: which defines the commu-
nication pattern and this cannot vary during the execution.
Local Communication: which determines the neighboring
communication and it is maintained throughout the execution.
Regular: because communications are repeated for several
iterations and finally, they also are N-dimensional. There are
many scientific applications especially in the simulation field
that accomplish all these characteristics, such as fluid dynam-
ics, heat transfer, laplace model, wave equation, problems of
finite differences, etc.

The SPMD paradigm consists of executing the same
program in all parallel processes but using different set
of tiles to compute and communicate. These tiles need to
exchange information with neighboring tiles during a set of
iterations, this can create imbalance issues that affect per-
formance. Therefore, when SPMD applications are mapped
into multicore clusters, the programmer must consider the
communication heterogeneity and how this can affect the
performance. The different communication patterns can vary
according to the objective of the SPMD applications.

We have proposed a method that allows us to deal with
communication inefficiencies using the Supertile (ST) def-
inition [3]. Figure 2 shows how the overlapping technique
is applied with and without using message logging, as can
be evidenced the overheads added can be hidden in order
to avoid inefficiencies. The problem of finding the optimal
ST size has been formulated as an analytical problem, where
the ratio between computation and communication of tiles
has to be found with the goal of determining the ideal
size that maintains a close relationship between speedup and
efficiency.

3.2 Executing SPMD applications using a Pes-
simistic Receiver based Logging Protocol

In this work we use RADIC [5] in order to provide
resilience to applications. RADIC is fault tolerant architec-
ture based on a rollback-recovery protocol which uses a
pessimistic receiver based message logging associated with
uncoordinated checkpoints. It does not need any coordinated
or centralized action or element to carry out their fault
tolerance tasks and mechanisms, so application scalability
depends on itself. RADIC acts as a transparent fault tolerant
layer between the MPI standard and the parallel machine,
providing a fault-resilient environment. RADIC middleware
has been included in a message passing library, specifically
Open MPI. Summarizing, RADIC provides a transparent,
decentralized, scalable and flexible fault tolerance solution.

Figure 3a shows how the RADIC architecture is composed.
Every message exchanged between processes pass through a
component called the Observer and is saved in a component
called Protector (Ti) that resides in another node. When
failures occurs (Figure 3b) RADIC detection mechanism
will notice this and could transfer checkpoints and message
logs to a Spare Node (Figure 3c) in order to restart the
failed processes and continue (Figure 3d). By using Spare
nodes, initial computational capacity could be maintained and
performance will be affected only during recovery, because
we avoid overloading a node [5].

As every received message should be logged in a different
node (even messages passed between processes on the same
node), there is a considerable increase in the transmission
time of each message when using RADIC (Figure 3a). Thus,
when executing a tuned parallel application with message
logging, the whole scenario changes, because the parallel
processes will be waiting a longer time for each message
and the computation will be affected by the logger threads,
then the application efficiency will decrease considerably.

Figure 2 shows how our framework characterizes and hides
the communication effects with the computational time of
the Supertile, as can be observed when using fault tolerance
communications which are longer and we need more data to
compute in order to hide these communications, thus, bigger
Supertile size is needed and fewer cores than when executing
without fault tolerance.
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Fig. 3: RADIC Scenarios: a) Fault free execution. b) Failure in Node 7. c) Inclusion of Spare Node , transference of
checkpoints, Heartbeat/watchdog restoration and assignation of a new protector to processes of Node 8. d) Restart of faulty
processes in Spare Node.

3.3 Methodology to Improve Performability
In order to improve the performance metrics of an SPMD

application and find the maximum speedup for an application
while the CPU efficiency is maintained under a defined
threshold [1], when a general purpose fault tolerant archi-
tecture such as RADIC is part of the environment, we need
a previous analysis of how the application is affected by the
fault tolerant tasks.

PIMPA tries to couple performance and dependability
objectives by considering the environment where the SPMD
application is going to be executed, then distributes the work
among the processes and uses overlapping techniques in
order to improve the performance metrics. PIMPA relies on
4 principal phases which are:

1. Characterization: In order to make an effective use
of the parallel environment, we first characterize it. We use
an application kernel or the real computation section of
the SPMD program in order to obtain the communication-
computation ratio (λft(ρ)(ω), where ρ indicates the commu-
nication link used, and ω indicates direction (e.g. up, right,
left or down). We consider the architecture of the parallel
machine (number of cores, communication levels, network
topology) and then we distribute MPI processes in a subset
of nodes filling up all used nodes with the processes in order
to analyze the system under full use. We force a process per
core (application processes and message logging processes)
by using core affinity, this allows us to know what commu-
nication channels (intercore, interchip, internode) are using
the processes when communication occurs. In this sense,
we have to analyze both, computing and communications
effects in a parallel execution. We can divide the computation
in the internal tile (Cptint) and the edge tile computation
(Cpted). The internal is divided in the original computation
of a tile1 (Cpttile) plus a piece of the overhead added by
the logger threads (FTCptint) in the protection step of the

1The Cpttile is the original tile computation used on the method without
fault tolerance approach [3].

FT approach. Then the computation is measured as follow:
Cptint = Cpttile + FTCptint.

The edge tile computation without FT (Cpttile_ed) needs
to consider the time spent in packing and unpacking the
sent and received tiles, plus the time of computing them
(Cpttile_ed = Pack_Unpack + Cpttile). However, when
calculating the edge tile computation time using FT (Cpted =
Cpttile_ed + FTCpted), we should consider the overhead
caused by the logger process (FTCpted).

The communication time is divided in the communication
of a tile (Commtile(ρ)(ω)) and the overhead of the log
operation (FTComm(ρ)(ω)), hence the tile communication
is calculated with: CommT (ρ, ω) = Commtile(ρ, ω) +
FTComm(ρ, ω). Then, the communication-computation ra-
tio is estimated using Eq. (1), considering that Cpted is not
overlapped.

λft(ρ, ω) = CommT (ρ, ω)/Cptint (1)

When characterizing, we analyze all communication links
(e.g. Intercore, Interchip and Internode) for determining the
channel with higher communication delay. However, Figure
4a shows the behavior of the worst communication channel
(internode) with and without message logging. As can be
detailed, the overhead added in a message when we apply
the message logging technique has a considerable impact,
which has to be considered for the model precision. As the
logger threads of the protectors also consume CPU cycles, we
cannot avoid that fact when characterizing the computation.
Considering this, our characterization tool is designed to
extract the computation time of each tile and the overhead
added by the logger (an example can be observed in Figure
4b). Then, there are two overheads that have to be managed
when overlapping (FTCptint, FTComm).

2. Distribution Model: Once the environment is charac-
terized, we can obtain the size of the Supertile (ST) and the
communication-computation ratio (Eq. (1)). The analytical
model for improving performability begins by calculating
the ideal Supertile size (Kn) which allows us to find
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the maximum speedup under a defined efficiency, if fault
tolerance is being used, we consider the message logging
effects. Considering the problem size (Mn), where n is the
application dimension(e.g 1,2,3, etc), the ideal number of
cores to be used (Ncores) could be calculated using Eq.
(2).

Ncores =Mn/Kn (2)

However, in order to obtain the value of K, we have to
start by Eq. (3), which represents the execution time of the
SPMD application using the overlapping strategy. We can
first calculate the edge tile computation time EdComp(i)
(Eq. (4)), then we add the maximum value between internal
tile computation IntComp(i) (Eq. 5) and edge tile com-
munication EdComm(i) (Eq. 6)(applying the overlapping
strategy). This process will be repeated for a set of iteration
iter. When using message logging, all these values depend
on the log effects in computation and communication that
have been obtained in the characterization phase.

Texi =
∑iter

i=1 (EdCompi +Max(IntCompi, Edcommi)) (3)
EdCompi = (ST − (K − 2)n) ∗ Cpted (4)

IntCompi = (K − 2)n ∗ Cptint (5)
EdCommi = Kn−1 ∗Max(CommT (ρ, ω)) (6)

Eq.(7) represents the ideal overlapping that allows us to
obtain the maximum speedup, while the efficiency effic
is maintained over a defined threshold. Therefore, we start
from an initial condition, where the edge communication time
(with or without message logging) is bigger than the internal
computation time divided by the efficiency. This division
represents the maximum inefficiency allowed by the model.
However, Eq. (7) has to consider a constraint defined in Eq.
(8) where Edcomm(i) can be bigger than IntCpt(i) over
the defined efficiency (Eq. 7), but the Edcomm(i) has to be
slower than the IntCpt(i) without any efficiency definition.

Kn−1 ∗Max(CommT (ρ, ω)) ≥ (K−2)n∗Cptint

effic (7)

Kn−1 ∗Max(CommT (ρ, ω)) ≤ (K − 2)n ∗ Cptint (8)

However, the edge communications are in function of the
CommT . For this reason, we need to equalize the equation
in function of Cptint. This is achieved using Eq. (1). Having
the internal computation and edge communication in function
of Cptint, the next step is to find the value of K, replacing
all the values in Eq. (7). Depending on the dimension of the
SPMD application, we can obtain for example an quadratic
equation, cubic equation, etc (Eq. 9).

k2 − 4 ∗ k − effic ∗ λft(ρ)(ω) ∗ k + 4 = 0 (9)

The next step is to calculate the ideal number of cores
(Eq. 2). The ideal ST size and number of cores will vary
depending on whether or not we are using fault tolerance.

3. Mapping: The aim of this phase is to allocate the ST
into each core with the aim of minimizing the communication

Fig. 4: Characterization of the Laplace Solver App. (SZ:
1400x1400): a)Network Channel Characterization with and
without Message Logging. b)Computation Time Characteri-
zation.

effects. The ST assignations are made applying a core affinity,
which allows us to allocate the set of tiles according to
the policy of minimizing the communications latencies. This
affinity is also applied to the logger threads in order to
guarantee that their overhead is distributed among all cores.

4. Scheduling: To take advantage of the overlap between
internal computation and edge communications, we create
two threads. One is in charge of computing the internal tiles,
while the other communicates the edge tiles. Thus, we hide
the logging overheads by giving more tiles to compute to a
processor while edge tiles are being sent and logged.

Finally, our method allows us to obtain an ideal number
of cores to execute a task with a defined efficiency threshold
while the application is protected with a pessimistic receiver
based logging protocol. Usually, logging approaches are com-
bined with an uncoordinated checkpoint approach (such as
the one used inside the RADIC architecture). For calculating
our estimations, in this work we do not consider the added
overhead that will be caused by checkpoints.
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Fig. 5: Flowchart of PIMPA framework.

4. PIMPA Framework
As has been presented, PIMPA allows us to write SPMD

applications that can reach maximum speedup under a CPU
efficiency threshold. We now present the PIMPA framework
which allows us to automatize the tuning of SPMD ap-
plications that are going to be executed on HPC clusters
considering the option of a fault tolerance approach as part of
the execution environment, and in this work we specifically
consider the option of using the pessimistic message logging
approach of RADIC. In order to ease the analysis and due to
the computation homogeneity, we consider that the time spent
in uncoordinated checkpoints will be added to the execution
time and it will depend exclusively on the application size
and number of checkpoints.

In order to use the framework with fault tolerance support,
the MPI library used should be the one that has RADIC
included [5]. Our framework has been written taking into
consideration that the user code is written in the C language
using MPI to carry out communications between processes.

Figure 5 shows the flowchart of the PIMPA framework
(user’s input data is highlighted in green). The user introduces
the application inputs, number of iterations (i), the commu-
nication code is introduced with metadata that describes the
behavior (e.g. number of neighbor communications) and the
computation code that details the code that each parallel
process should carry on. The user should also introduce
the parallel environment, specifying number of cores that
each node contains and internode configuration (cache levels,
cores that share cache) obtained with HWLoc [12]. Using the
input, we characterize the environment obtaining the commu-
nication and computation time with and without considering
the impact of message logging.

Once characterization is over, the distribution model and

Fig. 6: Execution of a parallel Heat Transfer Application
using PIMPA framework without using message logging.

the analytical model are applied, obtaining the ideal num-
ber of computational cores that can be used to obtain the
requested efficiency (information about expected execution
time with and without fault tolerance support will be avail-
able to the users). After confirming the execution with the
obtained number of cores(Ncores) and Supertile size (ST )
the user will have the source code written.

When launching the execution, at first the mapping step
takes place and all the work is divided between the number of
processes (one process per core). Each process is attached to
a core by using an affinity procedure and then two threads are
created per process: Computing thread and Communication
thread. The computing thread computes the border and then
computes the internal tiles. The Communication thread is in
charge of transmitting the border values to neighbors, this
operation is overlapped with the internal computation. The
operations of both threads are repeated for the number of
iterations (i) of the problem. Also, the logging operation is
hidden because of the overlap between the internal compu-
tation and communication of borders. All RADIC operations
are user-transparent, the main difference between whether or
not to use fault tolerance resides in the number of cores and
Supertile size.

5. Sample Applications
In this section we show some parallel applications that

have been written using the PIMPA framework. Figure 6
shows pseudocode sections of an Heat Transfer application
and a trace that shows us how the computation section
of the SPMD application is overlapped with the border
communications. Some communications take more time than
others, but when defining the Supertile size PIMPA consider
the slowest communication channel. In addition, when the
message logging operation of RADIC is being used, the
communications will have higher latencies and the Supertile
size will increase in order to hide these inefficiencies.
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Fig. 7: Performance Analysis of: a) Heat Transfer App. - Size: 1000*1000, Iter: 10000. b) Laplace Eq. Solver - Size:
1400*1400, Iter: 10000

Experiments have been carried out using a Dell PowerEdge
M600 with 8 nodes, each node with 2 quad-core Intel R©

Xeon R© E5430 running at 2.66 GHz. Each node has 16
GBytes of main memory and a dual embedded Broadcom R©

NetXtreme IITM 5708 Gigabit Ethernet. RADIC features
have been integrated into version 1.7 of Open MPI.

Figures 7a and 7b show executions of the Heat Transfer
Application and Laplace Equation Solver under the PIMPA
framework with different number of cores and Supertile sizes.
Ideal values obtained by PIMPA with and without message
logging are highlighted (the analytical values obtained by
the framework are shown in the tables below each figure). In
both cases PIMPA framework obtains the maximum speedup
possible under an efficiency threshold (85% for Heat Transfer
and 80% for Laplace Solver) with an error rate around 7%
for the worst case.

6. Conclusions
This paper has presented the PIMPA framework that al-

lows users to write performability-aware SPMD applications.
PIMPA framework provides a tool to users for characterize
the parallel environment where the SPMD application is
going to be executed, considering the hierarchical com-
munication levels of current HPC systems. PIMPA deals
with mapping and scheduling of applications by using a
distribution model that obtains the best number of cores
and Supertile size to achieve maximum speedup considering
an efficiency threshold. PIMPA creates threads that allow
overlapping between communications (app. communication
and message logging) and computations.

The sample applications written using PIMPA framework
show that the ideal number of computational cores and Super-
tile size obtained allow more efficient executions, even when
using a message logging approach as fault tolerance support.
Future work will focus on extending the PIMPA framework
in order to consider the effects of the checkpoints models

and checkpoint interval impact on parallel applications.
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ABSTRACT 

In this paper, we describe SuperViewer, an 

interactive visual interface which facilitates 

exploration of the “Top500” list, the biannual list 

of the world’s most powerful supercomputers 

(1993-present). SuperViewer is both intended as a 

visual knowledge discovery tool for computer 

science students as well as a dynamic presentation 

tool for supercomputing experts to represent and 

debate points of view on critical technological and 

entrepreneurial developments in the industry, 

including the industry’s past and projections for 

future innovation. The tool offers four ways to 

view and interact with historical data to explore 

and represent the rapid pace of innovation and 

competition in the industry. 

 

Keywords: supercomputing, information 

visualization, education, visual knowledge 

discovery, visual interfaces 

 

1. INTRODUCTION 

By all accounts, the historical pace of change in 

the supercomputing industry has been staggering. 

In this paper, we describe an effort to build an 

interactive visual history of entrepreneurial 

activity in the supercomputing industry, 

considering computers’ speeds, manufacturers, 

and design architectures to represent and explore 

broader technological disruptions shaping the 

industry. We present ongoing work on an 

interactive visual interface we name SuperViewer, 

which offers four ways to view data from the 

Top500 list for all the periods of the biannual list’s 

existence (1993-2012).  

SuperViewer has two intended purposes. First, it 

offers those teaching about supercomputing new 

tools to visually present and characterize historical 

developments (e.g., to new students of computer 

science).  Second, it allows field experts to 

visually represent and debate points of view on 

critical entrepreneurial and technological 

developments in the industry, including the 

industry’s past and projections for future 

innovation.  

As an interdisciplinary project, our aim is to 

exploit domain knowledge in information 

visualization [1][2], interface design [3][4], and 

visual knowledge discovery [5] to provide 

windows into the concept of creative destruction 

[6][7][8]. Creative destruction is the foundational 

idea in entrepreneurship that technological 

disruption, market upheaval and specifically new 

venture successes and failures drive industry 
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evolution and economic development [6]. The 

development of SuperViewer is part of broader 

effort to develop new, interactive teaching tools to 

highlight the dynamism of industries and 

entrepreneurship phenomena.  

 

2. THE SuperViewer 

We designed this application entirely in java.  

This enabled us to place the application on the 

web for researchers, educators and students to 

easily access it using Webstart technology. The 

link to the home page of the project where the 

application can be launch is: 

http://faculty.cs.wit.edu/~ldeligia/PROJECTS/Top

500/index.html. The data was retrieved from 

top500.org as individual files; we extracted all 

critical fields and compiled one single data 

repository.   

Top500.org publishes its data twice a year, once 

in June and once in November.  The data is 

available from June 1993 to November 2012.  The 

data are not consistent across all years and the 

format is not the same in all data files, so there 

was a considerable amount of data cleaning/data 

checking.  No unique identifier is available for 

supercomputers listed on the site, thus we created 

a unique identifier as the concatenation of the 

“ComputerName” and the “SiteName” fields, 

which effectively served this function. For 

example, we found that the same Top500 

computer name in one year could be miss-spelled, 

parts of it capitalized, containing or missing 

spaces or underscores, etc.  The data is likely 97% 

clean at this point but additional checks are 

needed.   

Description of what fields are provided by 

top500.org is given on their web site.  Two of the 

fields that we use in all four visualization tools are 

the Rmax, which is the maximal LINPACK 

performance achieved by a supercomputer, and 

Rpeak, which is the theoretical peak performance.  

Both fields are measured in GFlops. Our 

application consists of four visualization methods 

and they are described in the sections below. 

 

2.1. Visualizer “Ranking” 

The Visualizer “Ranking”, shown in figure 1, 

visualizes the top 500 supercomputers per year.  

For each year, we plot the data of all 500 

supercomputers based on their Rpeak and Rmax 

values, which are measured in GFlops.  There are 

two ways of plotting the data, the first is (max-

per-year) and the second is (max-overall).  In 

max-per-year mode, the maximum scale on the Y 

axis is the top Rpeak/Rmax value of the number 1 

or fastest supercomputer for the selected year.   

In max-overall mode, the maximum value on the 

Y scale is the maximum value of the top 

supercomputer of all time/all years.  This way, 

one can compare the top 500 computers within a 

year (max-per-year), or one can compare the 

overall speed (max-overall) of the computers by 

keeping the scale the same for uniform 

comparison across all years.  We also provide the 

ability for a user to display the Moore's law curve 

for the past data and make predictions for future 

data.  The user interacts with this visualizer using 

a Combo box to select the type of visualization, 

and a slider.  The Combo box, shown in figure 2, 

is used to select the Rpeak/Rmax variables for 

visualization as well as the mode (max-per-year, 

and max-overall) of visualization. The slider is 

used to select the year of the dataset to be 

visualized. 
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Figure 1. The Visualizer “Ranking”, visualizes the top 500 supercomputers per year based on their Rpeak 

and Rmax values. 

 

 
Figure 2.  Variable and mode of visualization in visualizer “Ranking”. 

 

 

2.2. Rank Animator 

The Rank Animator, shown in Figure 3, is a 

highly interactive visualization tool built on top of 

a spring-embedded algorithm that animates the 

Top500 ranking data as it changes over time.  The 

user can select the top N supercomputers to 

visualize.  Then the user can use a slider to 

retrieve and visualize these top N supercomputers 

for specific years.  The left and right arrow-

buttons can be used to move forward or backward 

one year at a time. Or the user drags the slider 

instead to adjust the viewed time frame.  

This spring embedded visualizer automatically 

arranges the top N supercomputers from left to 

right based on their rank (Rmax value).  The user 

can double click nodes to drill down and get more 
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information about a particular supercomputer of 

interest.  As the user clicks the buttons or drags 

the slider, the new ranking of the supercomputers 

is shown.  The spring-embedded algorithm 

animates and rearranges the graph for the user to 

observe how the ranking is modified between 

different times (top 1-20 or as otherwise 

specified).  Each node is labeled with its name and 

on top of it, within a circle, showing its ranking in 

the selected time period.  The visualizer also 

annotates in color new supercomputers that were 

not part in the previous visualization frame as 

yellow.  Bluish nodes indicate that a particular 

computer was at the same rank in the previous 

frame as the current frame.  Green nodes illustrate 

that these nodes were part of the graph in the 

previous frame, but that their rank has changed in 

the current frame.  The visualization in Figure 3 

below shows green nodes (e.g., nodes 3-5), as 

well as notations for changes in rankings for 

individuals computers.  For example, the “4->5” 

annotation below node 5 indicates that this 

computer used to rank number 4 in the previous 

frame, but now it ranks number 5. 

 

 
Figure 3. The “Rank Animator” is a highly interactive visualization tool that animates and arranges, in 

rank order, a sub-list of the Top500 supercomputers as they change over time. 

 

2.3. Visualizer “Track #1s for all years” 

This visualizer is used to visualize the history of 

all number-one spot supercomputers (e.g. the Top 

1 in the Top500 list).  It visualizes, in a single 

window, all number one computers and their 

ranking as the years progress. A number one 

computer in 1995 becomes number 4 the next year 

and number 20 the year after and so on.  The 

green circles indicate a new super computer 

introduced at the specific year.  Its history is a line 

moving downwards as the years pass by, as shown 

in figure 4.  The zoom-factor slider is used to 

zoom in the data to see the history in more detail 

as shown in figure 5.  A number above a green 

node indicates the number of cores/processors for 

this particular supercomputer.   
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Figure 4.  The visualizer “Track #1s for all years” visualizes the history of all number-one spot 

supercomputers; all number one computers and their ranking as the years progress. 

 

 
Figure 5.  The zoom-factor slider is used to zoom in the data to see the history in more detail. 

 

 

2.4. Visualizer “Track N starting in a year” 

This visualizer is similar to the previous visualizer 

in regards to visualizing the downfall of top 

supercomputers of a specific year.  In this 

visualizer, a user selects the top N supercomputers 

of a selected year.  The visualizer then displays 

their ranking as the years progress, as shown in 

figure 6.  The ranking of the supercomputers is 

based on the Rmax value.  Moving forward in 

time, we see how fast highly-ranked 

supercomputers become less powerful as new 

faster supercomputers replace them.  An 

alternative to this type of visualization could have 

been a matrix-based representation, which is 

suitable for large and dense graphs [9].  However, 

because of the simplicity of the data we found that 

matrix-based representation does not add any 

value to this tool. 
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Figure 6.  The visualizer “Track N starting in a year” visualizes the history of the top N supercomputers 

beginning at a user specified year. 

 

3. TRACKING Roadrunner 

Roadrunner earned the number one slot in the top 

500 list of supercomputers in June and November 

of 2008 and once again in June of 2009. In March 

of 2013, Roadrunner was declared obsolete and 

was scheduled to be dismantled [10][11].   

 

Figure 7. Visualizing the history of Roadrunner. 

This IBM-built supercomputer was designed to 

model the decay of the US nuclear weapons 

arsenal. It is still powerful enough to hold the 

22nd slot in the list of the top 500 

supercomputers.  However, it is considered an 

energy inefficient machine and that is the main 

reason for considering it obsolete. 

Figure 7 is a compact snapshot of the Visualizer 

“Track #1s for all years”.  It displays the number 

of processors, and the decline in ranking since 

June 2008, from the number 1 rank down to 

number 22. Figure 8 consists of 10 snapshots of 

the Rank Animator.  This figure visualizes 

Roadrunner from June 2008 to November 2012.  

We annotated (with current rank in red circles) the 

figure to easily track Roadrunner through history 

and its rank changes.  
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Figure 8.Ten snapshots of the Rank Animator while visualizing the history of the supercomputer 

Roadrunner. 

 

 

4. FUTURE WORK 

Future work aims to expand the range of data and 

views examinable in SuperViewer.  We are in the 

process of adding other data fields and 

visualization possibilities to the tool, including the 

ability to superimpose information about 

computer architectures, manufacturers, 

international site locations, public or private 

ownership and other technical specifications for 

1993-2012. Data has been collected but we need 
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to work on techniques to visualize and display this 

information. Future opportunities also include 

adding statistics to presentations, for instance 

capturing average computer performance by year 

(e.g., Rpeak or RMax) as well as other 

informative descriptive statistics. Overall, the aim 

is to create, test and offer a user-friendly viewer 

that enables students and field experts alike a tool 

to explore and represent data to characterize both 

evolutionary and revolutionary changes in the 

industry.  

 

5. CONCLUSION 

SuperViewer offers supercomputing experts and 

students an interactive visual tool to present 

historical developments in the industry. Through 

simple controls, the viewer provides access to the 

dynamism of the industry, considering both 

entrepreneurial and technological developments--

all with a streamlined interface that facilitates data 

querying and representation. While the 

development of SuperViewer is in progress, a key 

aim of the project is ultimately to engage global 

supercomputing experts in order to identify other 

design and interactivity dimensions for the tool 

which will support the representation and 

exploration of key changes in the industry.  
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Abstract— Master/worker is a commonly used paral-
lel/distributed programming paradigm. Many applications
are developed following such paradigm. This paradigm can
be easily implemented using message passing programming
libraries (MPI), but moreover, the multicore features of
current nodes can be exploited at the node level by applying
thread parallelism (OpenMP). In this way Master/Worker
applications are implemented as hybrid applications. How-
ever, reaching the expected performance indexes is not
so easy, because there are several parameters (number of
nodes, number of threads per node, data distribution, ...) that
must be tuned for each particular application or even during
the execution of the application to reach a successful perfor-
mance. So, a performance model for hybrid Master/Worker
applications has been developed and is presented in this
paper. This model can be applied during the execution of
a Master/Worker application to determine dynamically the
adequate configuration of the system and/or application to
reach the best possible performance.

Keywords: MPI, OpenMP, Hybrid applications, Master/Worker,
Performance model.

1. Introduction
Nowadays, multicore processors are widely spread and are

integrated in most computing nodes, from personal comput-
ers to supercomputer processing nodes. In this context, every
computing node in a parallel/distributed system that includes
several cores that can be exploited to reduce the execution
time of parallel applications. One way of exploiting such
features is to distribute application processes to different
nodes of the system and execute different threads at the
core level in each node. A commonly used programming
approach for these systems is a hybrid approach with MPI
processes communicated using message passing [1] and
OpenMP threads exploited inside each node [2].

It is quite easy to develop applications following such
hybrid approach, but reaching a successful performance
index is not so easy. In this hybrid approach, there are
several parameters that must be considered to determine
the configuration of the application that provides the best
execution time. The number of nodes that must be used,
the number of threads on each node, the data distribution
among processes and threads, and so on, are parameters
that seriously affect the performance of the application. On

one hand, the appropriate value of such parameters depends
on the architectural features of the system (communication
latency, communication bandwidth, cache memory size and
architecture, computing capabilities, ...) and on the other
hand, on the features of the application (communication pat-
tern, computation involved). Moreover, the adequate value
of the parameters depends on issues that depends on every
execution of the application or even can vary dynamically
during the execution of the application such as the workload
being processed. So, determining the adequate value of the
parameters must be determined for each execution of each
application, or even tuned dynamically.

This problem is a very wide problem that cannot be
tackled directly in a general way, but it is necessary to
determine solutions to some particular cases to derive some
general solution. So, a particular kind of application has been
selected and a performance model for such kind of applica-
tion has been developed to determine the value of some of
the parameters and dynamically tune the performance of the
application.

The master/worker programming paradigm [3] has been
selected because it is a very well known paradigm for paral-
lel/distributed applications. On the other hand, this paradigm
has been deeply studied in the context of the monocore
distributed systems. In particular, a performance model that
determines the adequate number of workers for such ap-
plications for monocore architectures was developed in a
previous work [4]. In the new context of parallel/distributed
systems based on multicore nodes there are several aspects
that must be taken into account and must be introduced in the
performance model. One point that must be considered is the
overhead introduced by the thread management and another
one is the heterogeneous communication among cores and
among nodes. So, this points have been introduced and a
new performance model has been developed to determine
the adequate values of the parameters to reach a successful
performance.

The rest of this paper is organized as follow. Section 2
describes the general issues related to Master/Worker pro-
gramming paradigm and analyses the involved parameters.
Additionally, it’s presented the mathematical expressions
that represents the model. Section 3 summarizes some
experimental results to demonstrate the correctness of the
proposed model. Finally, section 4 concludes the paper and
summarizes the ongoing work.
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2. Modeling Master/Worker iteration ex-
ecution time

The Master/Worker paradigm is a well-known parallel
programming structure because it enables the expression, in
a natural way, of the behavioral characteristics of a wide
range of high-level parallel application patterns. Basically,
this paradigm includes a Master process which distributes
data to a set of Worker processes, then each worker makes
some kind of computation on the received data and sends
the results back to the Master.

Depending on the nature of the problem, the Master
process might have to wait for the results from all the
Workers before sending them new data, which means that
the application execution is organized in iterations. In this
case, if it is assumed that the load is balanced among
the Worker processes, the performance of the application
mainly depends on two factors: the number of Workers
on the system and the number of cores dedicated to each
Worker process. In this paper we will study the number of
workers considering that each worker is executed given a
fixed number of threads per node (4 cores in this case).

So, the first goal is to develop a performance model
that determines the execution time of one iteration of the
Master/Worker application. This model can be used for
tuning the number of workers to gain an improvement
in performance and efficiency of the applications at runtime.

One iteration of the Master process worker involves the
following steps:

• The Master process makes some processing before
distributing the data to the Workers.

• The Master process distributes the data to the Workers.
• All the Workers receive the corresponding data.
• The Workers manage the indicated number of threads

(create, distribute data, collect data, join).
• The Threads of each Worker computes the data.
• The Workers send the results to the Master process.

So, a model for estimating the execution time of one iteration
of the application must consider all these steps. Based on a
proposed methodology for developing performance models
for hybrid applications [5] and previous model presented in
[4], a general expression to estimate the execution time of
one iteration of a master-worker hybrid application including
the previously mentioned issues can be derived:

T = µm(W ) + λm−w(W,P ) +
µserial(W )

(P ∗ Thr)
+ Θ(W,Thr) + λw−m(W,P ) (1)

where W is the size of the workload, P is the number of
MPI worker process, Thr is the number of threads have
been used by all the workers. This equation includes the
terms representing the steps mentioned above:

• µm is defined as the processing time spent by the master
on preparation of a new set of tasks.

• λm−w is the sum of all communication times from
master to all workers.

• µserial is the empirical serial time for processing the
total workload which must be distributed among the
total number of Workers P and threads Thr.

• Θ is the additional OpenMP overhead.
• λw−m is the time spent by the last worker to send back

the result data to the master.
Note that expression µserial(W )

(P∗Thr) is the processing time spent
by the last worker to finish its task. This expression assumes
a perfect scalability for the computation region.

In the next subsections, the details on how the commu-
nication time, OpenMP overhead and execution time are
estimated are described.

2.1 Communication time estimation
Unlike previous models [4], our proposal considers that

the cost of communication behaves non-linearly with packet
size. This behavior has been studied in the literature [6]
and justifies the use of bechmarks [7] to reach a more
accurate characterization of MPI communication. Therefore,
for the evaluation of the communication time, MPIBench [8]
have been used. This benchmark is included within Level
Architectural Characterization Low Benchmark Suite [9].

Figure 1 shows the characterization results of the block-
ing point-to-point communications obtained by running the
benchmark. As was expected, the communication time is
not proportional to the size of message sent. The function
for obtaining the communication time for sending MPI
messages is constructed through a linear interpolation of
the results previously obtained with the benchmark. The
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Fig. 1: Characterization of blocking communications

information obtained from this benchmark is the basic in-
formation used to evaluate the expressions λm−w(W,P ) and
λw−m(W,P ). In the case of the first expression, the result
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is the addition of all individual communications from the
master to a particular worker. Figures 2(a) and 2(b) show
the errors on the communication time estimation considering
8 and 30 Workers respectively. These are the time spend in
one iteration of the Master to send messages to all workers.
It can be observed that the biggest error of the estimation is
less than 2%. In case of the communication between the last
Worker and the Master, the message size is extremely small
and, therefore, the amount of time involved is negligible in
the total iteration time. In this communication, the error is
around 35% but it is important since it represents less than
3% of the execution time of one iteration of the application.
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Fig. 2: (a) Communication error Master to 8 workers; (b)
Communication error Master to 30 workers.

2.2 OpenMP overhead estimation
To evaluate the additional time incurred in OpenMP

regions Θ(W,Thr) it is necessary to estimate the time
required for creation, synchronization, scheduling and re-
moving threads. The time for creation and deletion of threads
only depends on the amount of threads. However, the cost
of the scheduling and synchronization of threads depends on
the workload.

To obtain these overhead times, we used the EPCC
OpenMP Microbenchmark [10] to evaluate time overhead
for all the different OpenMP pragmas. From the information
obtained through the benchmark a function was built that
provides an overhead estimation based on the OpenMP
pragmas used in the application. In case of scheduling
overhead, the time estimated is proportional to the number
of iterations involved in the FOR clause (Figure 3).

2.3 Computation time estimation
The most difficult time to estimate is the computation

time of each Worker. The serial time could be measured
by executing the application once on a single processor, but
executing the application on a single node single core system
is a completely different environment where many aspects
does not appear. So, the idea is to measure the execution time
of a single iteration of the application. If the assumption
that the application is well balanced is acceptable, then
multiplying the obtained execution time in one of the cores
by the number of nodes and cores is a good approximation
of µserial. However, if the application is not well balanced

0 2000 4000 6000 8000 10000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

OpenMP overhead (scheduling)

iterations

T
im

e(
s)

1 thr

2 thr

3 thr

4 thr

Fig. 3: OpenMP scheduling overhead for different numbers
of threads.

it is necessary to measure and add the execution time of
one iteration in all the nodes and then add all the values
obtained. So, it is necessary to execute one iteration of the
application using a certain number of nodes and cores and
measure the execution time to estimate µserial.

3. Performance prediction results
For validating the performance model developed in pre-

vious section an experimental study has been carried out.
As a test application a matrix multiplication master-worker
application has been developed.

It calculates the result of a expression expressed in
postfix notation. For example, A(5, 5)B(5, 5)∗ represent a
multiply operation between matrix A and B where both
have a size of 5 rows per 5 columns. Table 1 summarizes
the key features of such cluster: The master process is

Cluster Characteristics
32 IBM x3550 Nodes 2 x Dual-Core Intel(R) Xeon(R) CPU 5160

3.00GHz 4MB L2 (2x2)
12 GB Fully Buffered DIMM 667 MHz
Hot-swap SAS Controller 160GB SATA Disk
Integrated dual Gigabit Ethernet

Table 1: Cluster characteristics.

responsible for creating all matrices with random values
to be multiplied, transposing the second and sending the
appropriate fragments from the first and the second matrix
to each workers. In turn, each worker calculates its matrix
fragment and then send back the resulting matrix fragment
to the master that update the global result matrix with all the
data received. The master process uses a single core for the
transpose operation. The Workers use 4 cores for the matrix
multiplication operation. Experiments were performed on an
IBM cluster with 32 nodes.

3.1 Performance prediction with a fixed work-
load

Figure 4(a) shows the real execution time of the matrix
multiplication application and the model predicted execution

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 367



time for the case of multiplying matrices of 2000 x 2000
using different number of workers (from 2 to 30) and 4 cores
for each worker. For this experiment the expression to be
evaluated is A(2000, 2000)B(2000, 2000) ∗C(2000, 2000)∗
executed 20 times using 4 threads in the OpenMP region on
each worker.
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Fig. 4: (a) Real vs. Model using execution time for 8 process
(b) Prediction error.

In this case µserial has been obtained using 8 workers
as it is highlighted with the black circle on the figure.
The predicted execution time for the rest of the number
of workers is calculated applying the performance model
described in the previous section. The black line represent
the real phase execution time and the dotted gray line is the
performance time resulting for evaluating the model for the
rest number of workers. For all cases, the number of threads
have been used in each worker remains constant. For all
cases, considering from 2 to 30 Workers, the error is below
5% compared with the real iteration execution time. Figure 5
show the iteration execution time (real and predicted) using
24 Workers to estimate µserial. In this case, model error
increases when the number of Workers used is significantly
lower than that used to estimate µserial (for example 2 or
4 instead of 24). The main reason that explains the error in
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Fig. 5: (a) Real vs. Model using execution time for 24
process (b) Prediction error.

the prediction is the function that estimates the time spent
by the last worker to finish its task. This function does
not consider the architectural features of the system. For
example, when the number of Workers is larger, the same
amount of data must be divided among more Workers and
therefore, the amount of data assigned to every Worker is
smaller. So, it is possible that the data assigned to each
Worker fits in the cache memory of one node. However,
when the number of Workers is smaller, then a larger amount
of data is assigned to every Worker and then it is possible
that the data size assigned do not fit in the cache memory
of the node provoking a high cache miss ratio.

Figure 6 shows the real and predicted iteration execution
time when matrices size is 6000 x 6000, and the number of
Workers used to estimate µserial was 24. In this case the
predicted and real execution time fits very well from 24 to 4
Workers. In all these configurations, the error is lower than
5%. However, when the number of workers is 2 the error is
around 28%. In this case the data size is larger and does not
fit in the L1 cache level of the node, although it fits in the
L2 level. However, when the number of Workers is 2, the

368 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



0
10

0
20

0
30

0
40

0

MW Matrix Workload 6000

Workers

T
im

e(
s)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

real
pred

2 4 8 12 16 20 24 28 30

Error for Workload 6000

Workers

E
rr

or
(%

)

0
10

20
30

40
50

Fig. 6: (a) Real vs. Model using execution time for 24
process (b) Prediction error.

size of the data increases and then it does not fit in the L2
level and L2 misses interfere the prediction time.

So, it can be concluded that the iteration execution time
prediction model fits very well the real behavior of the
Master/Worker applications when the application is properly
balanced and the features of the system does not affect
significantly the application behavior.

The presented model can be used to determine the most
adequate number of workers to execute the following it-
erations of the application using that number of Worker
processes.

3.2 Performance prediction considering vari-
able workload

In the previous subsection, the accuracy of the presented
performance model has been analyzed showing some experi-
mental results. In this analysis, the workload was considered
fixed and the variable parameter was the number of Workers.
However, in most cases, the workload is also a variable
parameter and when a new execution or even a new iteration
is executed the workload can be significantly different. So,

it is necessary to analyze the robustness of the performance
model under variable workload. Again, the most difficult
parameter of the performance model to estimate is the
µserial. This parameter represents the execution time of one
iteration of the application on a single processor and core. It
is clear that the execution time depends on the data size. It
is assumed that the execution time does not depends on the
data values themselves, but it only depends on the data size.
So, the iteration execution time for some particular values of
the workload and a certain number of Workers can be used to
apply some regression technique to determine the predicted
iteration execution time for a new workload value.

The main idea is using a 3-order polynomial regression
using all performance time prediction for almost 4 previous
iterations of the application as a input data. For each
number of Workers, the regression technique is applied
taking at least 4 previous values for the same number of
workers. The order of the polynomial is 3 according with
the complexity of the application have been used in the
experiments.

Figure 7 shows the predicted iteration execution time
considering different workloads (1500x1500, 3000x3000,
5000x5000 and 6000x6000) when µserial is evaluated on
those particular workloads and considering 8 Workers. In the
next iteration, the workload is 4500x4500 and the iteration
execution time is predicted considering different numbers
of workers. Figure 8 shows the predicted and real iteration
execution time and the error.

Using all these performance prediction results, the perfor-
mance prediction for matrix multiplication with a workload
of 4500x4500 is estimated by applying the 3-order polyno-
mial regression. The real and predicted iteration execution
times are shown in figure 9.

Once again, black line represent the real execution time
for this iteration and the gray one is the predicted execution
time for this iteration. The biggest prediction error obtained
is around 30% but there are some cases where is lower
than 20%. But, the most significant point is that both curve
presents the same behavior. So if we determine a suitable
value for the number of Workers based on the method
prediction, the number of Workers selected will provide
a successful iteration execution time. At this point, the
robustness of the methodology can be tested by considering
that µserial for each workload has been estimated based on
the execution on a different number of Workers. Figure 10
shows the prediction results for the first 4 iterations, using
in each case a different number of Workers and the different
workload.

For the first iteration, the application was executed with
4 worker using a workload of 1500x1500, for second it-
eration 12 worker have been used to process a workload
of 3000x3000, in the third one the number of Workers
was 20 and the workload is 5000x5000, and finally in the
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Fig. 7: (a) Performance prediction results for different workloads using samples execution time for 8 workers.

●

●

●
●

●
●

● ●

●

0
50

10
0

15
0

Pred vs Real Workload 4500

Workers

T
im

e(
s)

2 4 8 12 16 20 24 28 30

●

●

●

●
● ● ● ● ●

real
pred

2 4 8 12 16 20 24 28 30

MW Matrix Workload 4500 Error

Workers

E
rr

or
(%

)

0
10

20
30

40
50

Fig. 8: (a) Prediction vs Real for matrix with 4500x4500 (b) Error.

4th iteration the number of workers is fixed to 28 and the
workload is 6500x6500.

The prediction result in general are quite similar to the
previous ones. In most cases, error is around 20%. But, once
more, the most significant point to be considered is that the
real and predicted execution times present the same behavior.
This means that using the prediction value to determine the
number of Workers is a quite successful approach.

4. Conclusion
We propose a performance model for hybrid MPI-

OpenMP application that allows to predict the iteration
execution time for Master/Worker applications when the
workload is fixed. On the other hand, a technique for perfor-
mance prediction when workload is varying is introduced.
This technique is based on using information about previous

iterations as an input data to apply polynomial regression to
get prediction for the new workload.

As soon as we achieve small error in the performance
prediction, we can determine dynamically the appropriate
number of worker trying to reach the best possible per-
formance. Unfortunately, the effects caused by data cache
misses ratio are affecting the prediction accuracy.

In the future, we are focus on adding to the current perfor-
mance model, a function to estimate additional performance
penalties for memory accesses misses rate. On the other
hand, a more accurate function will have to include how
application is exploiting spatial and temporal locality for a
different number of threads. This two factor can also impact
significantly the application performance.
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Abstract—The accurate simulation and emulation of mobile
radios requires the computation of RF propagation path loss in
order to accurately predict connectivity and signal interference.
There are many algorithms available for computing the RF prop-
agation path loss between wireless devices including the Longley-
Rice model, the transmission line matrix (TLM), ray-tracing,
and the parabolic equation method. Each of these methods has
advantages and disadvantages but all require a large number
of floating point operations during execution. In this paper
we investigate using general purpose graphics processing units
(GPGPUs) to provide the computational capabilities required to
perform these RF path loss calculations in real-time in order
to support large scale mobile ad-hoc network emulation. Three
specific methods, namely the Longley-Rice, TLM, and ray-tracing
methods are explored including usage cases and performance
analysis on GPUs. The Longley-Rice algorithm is solved in real-
time for 1000’s of transmitters and receivers, the TLM method
is well suited for GPU acceleration as is ray-tracing. We will
discuss the algorithm modifications required for efficient GPU
use, precision issues and optimization.
Keywords: Mobile Ad-Hoc Network, Emulation, GPGPU,
RF Propagation Path loss, Longley-Rice, Transmission Line
Matrix, Ray-Tracing

I. I NTRODUCTION

Large scale testing, evaluation and analysis of mobile ad-hoc
network (MANET) platforms is an expensive proposal with a
limited parameter space and repeatability under experimental
conditions. [1] Therefore, simulation and emulation tools have
been developed that provide researchers with a controllable
and repeatable environment for analysis of MANET platforms.
In particular, emulation holds great promise for limiting the
amount of live experimentation required for MANET plat-
form development. Emulation provides for hardware-in-the-
loop (HIL) testing and analysis where the physical medium is
replaced by a virtual environment and a physical or simulated
radio can be used with real applications. Much effort has been
performed in this area to make the virtual environment as phys-
ically meaningful as possible [1]–[3] but one limitation that
remains for real-time emulation is the accurate computation
of the RF propagation path loss between radios.

RF propagation path loss predictions for MANET emulation
has traditionally relied on either off-line link analysis using
various models including high fidelity finite difference time
domain (FDTD) and ray-tracing methods [2] or real-time
calculations with stochastic models. [3] When calculations are

performed off-line it is assumed that either the node mobility
is known apriori or some large data set of node locations
are computed and stored in a look-up table. Limiting the
mobility apriori can be a severe limitation when experiments
may involve live components or mobility is controlled by a
third party application such as a force modeling simulation.
One method to remove this limitation is to use interpolation
between known data points but the accuracy and efficiency
of this method is limited by a number of factors. These
factors include the physical size of the virtual environment,
machine memory for storing and accessing a look up table,
signal phase, and fading affects from small obstructions are not
captured because of the computed grid size. Computationally
inexpensive methods such as the various free-space models
are not a satisfactory solution either, as they do not capture
the effect of terrain, vegetation, precipitation or man-made
structures on RF propagation path loss.

RF propagation models play an essential role in the plan-
ning, analysis and optimization of radio networks [1], [4]–[7].
For instance, coverage and interference estimates of network
configurations are based on field strength predictions, routing
is also highly dependent upon computed path loss data. [1]
The increasing fidelity of MANET emulations from packet-
level to signal-level [8] analysis will require fast and accurate
modeling of the physical layer. [9], [10] Using GPUs to
provide the floating point performance required to compute
the RF propagation path loss algorithms in real time it is
possible to provide a more realistic physical layer for MANET
emulations and simulations. The first algorithm discussed
will be the Longley-Rice method as implemented within the
irregular terrain model (ITM). The ITM is well suited for
large scale emulations of 1000’s of devices located in a non-
urban environment. The second method investigated is the
transmission line matrix or TLM which is targeted towards
pico-cell scenarios within buildings or in relatively localized
urban environments. The final method investigated, the ray
tracing method, is used primarily for small scale to large scale
urban environments.

II. BACKGROUND

The scale and complexity of MANETs used by the Depart-
ment of Defense (DoD) continues to increase, and is increasing
particularily within the Army as a mobile fighting force. The
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military is rapidly becoming a network-centric force, with
substantial access to sensor-derived surveillance information as
well as an increasingly complicated application layer running
over many different devices. Each layer introduces significant
advantages to the war fighter, but also brings in new depen-
dencies and new risks from the rapid change in configurations
of the MANETs that provide network access across the
battlefield. Headed by the U.S. Army Research Laboratory
(ARL), the Mobile Network Modeling Institute (MNMI) was
established in 2007 to exploit High Performance Computing
(HPC) resources through the development of computational
software. Thus enabling the DoD to design, test, and optimize
networks at sufficient levels of fidelity and with sufficient
speed to understand the behavior of network technologies in
the full range of conditions under which they will be deployed.
Operational goals of the MNMI include the development of
scalable computational modeling tools for simulations and
emulations, the ability to understand apriori the performance
of proposed radio waveforms in the field, and to optimize
the network for U.S. Army war fighters. The results of the
MANET modeling effort presented here are from an effort at
the ARL that is focused on the development of a framework
for large scale MANET emulations, e.g. up to 5000 emulated
devices. A large scale emulation environment will provide
a testbed for the research, development, and evaluation of
network algorithms, applications and devices in a controlled
environment. [11]

III. RF PROPAGATION PATH LOSSALGORITHMS

As previously mentioned, there are many approaches for
field strength prediction and they can be roughly divided into
semi-empirical, time-domain methods and ray-optical mod-
els. For example, the semi-empirical COST-Walfisch-Ikegami
model [12] estimates the received power predominantly on the
basis of frequency and distance to the transmitter. Ray-optical
[13] approaches identify ray paths through the scene, based
on wave guiding effects like reflection and diffraction. Semi-
empirical algorithms usually offer fast computation times
but suffer from inherent low prediction quality. Ray-optical
algorithms feature a higher prediction quality at the cost of
higher computation times, while time-domain methods typi-
cally increase accuracy further with even higher computational
costs.

At the physical layer, the interactions between devices is
governed by the RF propagation characteristics of the environ-
ment. MANET emulation with HIL capabilities further require
that the RF path loss data must be computed and provided to
the emulation environment in real-time. The algorithms used
to compute path loss must be computed in real-time for each
of the possible propagation paths. Initially assuming that all
devices in a single emulation scenario are within propagation
range of each other the computational complexity of the RF
path loss algorithm isO

(
n2

)
, where n is the number of

transmitter/receiver device pairs in the scenario. Although the
computational cost varies, the methods available for computing
the RF path loss data all require a large number of floating

point operations, necessitating a high FLOP (floating point
operations) rate for real-time path loss predictions.

Recently, the use of GPUs has been identified as a solution
to provide the raw floating point performance [14] required
to compute the RF propagation path loss in real-time. [6], [7]
Originally, GPUs were developed in order to quickly compute
rasterization which requires a large number of simple floating
point operations. This targeted design is the reason that the
architecture has been able to exceed the performance of CPU
architectures for raw FLOP rates. [15] The MANET emulation
environment used here is EMANE (Extendable Mobile Ad-
hoc Network Emulator) from DRS (formerly Cengen Labs)
[16]. In EMANE, the GPS locations of all mobile radios are
transmitted over an IP multicast group that is monitored by
the emulated devices for self-location.

Although a number of path loss algorithms exist, we down-
selected the methods based on various scenarios we typically
encounter. For instance we have criteria for large scale non-
urban environment, large scale urban environments and very
localized analysis for moderate numbers of devices. In or-
der to provide a robust path loss calculation for the non-
urban environments we selected the Longley-Rice model. The
Longley-Rice model is capable of predicting path loss in
an area or point to point mode, with the later used here.
Longley-Rice is designed for frequencies between 20 MHz
and 20 GHz and for path lengths between 1 km and 2000
km [17], both within our scenario operating ranges. In point-
to-point mode the model considers input parameters such
as distance, antenna height, surface reflectivity, climate and
the terrain profile between the transmitter and receiver. [18]
The rest of the environmental parameters can be transient
or fixed upon initialization. This implementation is robust in
that it allows all parameters to change each time the GPU
kernel is executed. The TLM method [19] is related to the
FDTD method and as such discretizes space and time for
computing the electromagnetic field. One advantage of the
TLM method over FDTD for this application is the larger
spatial discretization possible, and is well-suited for analysis
of local areas or pico-cells. The final method investigated
is ray tracing [13], using the shooting bouncing ray (SBR)
method. The ray tracing method is computationally expensive
but many of the algorithms required to compute this method
translate efficiently onto GPUs, and is capable of producing
results for large urban environments. In the interest of space
we will give details below on the implmentation of the TLM
algorithm before discussing the achieved performance for all
three methods.

A. The Transmission Line Matrix Algorithm for Real-Time
Radio Wave Propagation Path Loss in Pico-Cells

The transmission line matrix method or transmission line
modeling method relies on the relationship between electro-
magnetic field quantities and voltage and current on transmis-
sion lines. [20] The formulation followed in this work is the
three-dimensional symmetrical condensed node (SCN). [21]
Although this method is more efficient that the FDTD method
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Fig. 1. TLM kernels showing those ported to GPU on the right andwhere
communication can be limited but increasing the number of steps per burst.

that requires approximately 10 grid points per wavelength,
each node in the cubic mesh requires solution of 12 values.
More details of this algorithm can be found elsewhere [19]–
[22].

1) TLM Implementation Details for the GPU: The TLM
implementation used in this work is solved using a regular
Cartesian grid and therefore memory accesses from neighbor-
ing grid points is well defined and memory efficient. This
is very important for porting of an application to the GPU
architecture as cache misses are much more expensive than on
a general purpose CPU. In our implementation the memory
access is based on a 3D stencil and calculations are mostly
MADDs (Multiply-Add). The TLM code is based on a pre-
vious FDTD code optimized for GPUs using the Brook+ lan-
guage. The algorithm, illustrated in Figure 1, is composed of
7 primary functions. Of these functions Initialization, Stream
Read, Stream Write and Finalization are executed on the
CPU. The functions within the Nburst loop, namely Apply
Excitation, TLM Update Local and TLM Update Exchange are
all executed on the GPU hardware. By increasing the ratio of
computation to communication the transfer of data across the
PCIe bus between CPU and GPU can be limited, potentially
increasing performance significantly.

In the TLM implementation used here the number of
time steps (Nstep) for which the entire grid of Voltages is
computed is predefined. This is reasonable since for a regular
grid size, the maximum distance that a wave will travel before
the input Voltage is insignificant can be estimated from the
medium attenuation coefficient. The maximum mesh size,△l,
can be estimated from the following equation.

△l

λ
≤ 0.1 (1)

Where△l is the mesh size andλ is the wavelength of interest.
[20]

2) TLM algorithm optimization for GPUs: As previously
discussed, the TLM method is well suited for the GPU
architecture. An important optimization developed by one of
the authors is called shuffled grids. Using this method it is
possible to efficiently combine 4 single precision floating point
operations of the TLM method into a single float4 SIMD

Fig. 2. The memory layout for the shuffled grid method using a 15offset.

operation. In Figure 2 consider the simple 1D stencil.

g1 = a ∗ f0 + b ∗ f1 + c ∗ f2 (2)

In order to leverage float4 SIMD operations the memory is
shuffled as shown in Figure 2. The calculation from Equation
2 is then rewritten using float4 SIMD operations.

G1 = c0 ∗ F0 + c1 ∗ F1 + c2 ∗ F2 (3)

Which is equivalent to performing the following set of calcu-
lations.

g1 = a ∗ f0 + b ∗ f1 + c ∗ f2 (4a)

g16 = a ∗ f15 + b ∗ f16 + c ∗ f17 (4b)

g31 = a ∗ f30 + b ∗ f31 + c ∗ f32 (4c)

g46 = a ∗ f45 + b ∗ f46 + c ∗ f47 (4d)

Although there is a small amount of bookkeeping associated
with the shuffling and unshuffling of grid points, these are per-
formed as pre- and post-processing steps with little overhead.
While the potential performance gains for the TLM algorithm
are close to a 4x speedup.

IV. N UMERICAL STABILITY AND CONSISTENCYACROSS

ARCHITECTURES

As noted previously, single precision floating point compu-
tations are used on the GPU in order to achieve maximum
performance, the trade-off being possibly decreased accuracy.
Since the Longley-Rice model uses statistical estimates to
compute the variability of signal path loss due to situation,
time and location. The actual received signal is expected
to deviate from the computed value due to these variables
but the model still provides a reasonable estimate. Therefore,
small variations due to single versus double precision are not
expected to invalidate the computed results for its intended
purpose of estimating signal loss over irregular terrain. For
the Longley-Rice algorithm there are a large number of
transcendental functions that do not have a double precision
computation available. Algorithm development with single-
precision accuracy raised concerns with numerical stability
and consistency, especially, in the context of forward and
inverse transcendental functions with small angles. Whereas
it is possible, although not guaranteed, that reasonably precise
consistency might be expected across these architectures for
simple algorithms based on multiply-add operations, the com-
plexity and reliance upon complex transcendental operations
makes exact agreement here unlikely. Factors impacting the
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difference in results include extended bit precision used in
some operations, differences in rounding behavior, and differ-
ences in the software implementation of complex operations.
Additionally, the GPU implementation introduces the possi-
bility of order-of-operation effects as a result of the fine-grain
parallelism within some kernels.

An issue identified across many elements of the algorithm
was the repeated use of forward and inverse transcendentals
at small angles. An example of this small-angle effect is the
use of great circle calculations over small areas in which the
correction due to the curvature of the earth was small. A
serious numerical instability was identified with the pattern
of successive operations of cosine, followed by a minor
calculation, and then followed by an arc cosine. Such patterns
had the potential to produce an intermediate value slightly
greater than 1.0 and a final result of NaN (not a number). The
effects of this numerical instability can be complicated and the
impact on the final path loss can range from a small error to an
undefined result (NaN). In some cases a less severe numerical
error results from differences in transcendental functions at
limiting values. Secondary impacts were also identified, for
example differences in the projected map location within
the digital terrain map can introduce differences in elevation
within the extracted height profile that only impact results
by changing the statistical metrics calculated for these height
profiles. The solution to many of these issues was to re factor
the formulas found in the original reference implementation
and introduce forms with greater stability at the limiting ranges
found within the typical uses cases. Consider the original
distance calculation, that begin by first calculating,

a =cos(90 − lat2) ∗ cos(90 − lat1)+

sin(90 − lat2) ∗ sin(90 − lat1)∗
cos(lon2 − lon1)

(5)

Where lat1, lon1 refer to the transmitter coordinates and
lat2, lon2 refer to the receiver coordinates. Using the valuea

computed in Equation (5),

b =arccos (a) (6)

Where for the earth,

distance = Rearth ∗ b (7)

Here Rearth is the radius of the earth. For small angles this
calculation can be unstable using single precision so we used
the following approximation,

∆lon =lon2 − lon1 (8a)

∆lat =lat2 − lat1 (8b)

a =(sin(∆lat))
2
+

cos(lat1) ∗ cos(lat2) ∗
(

sin

(
∆lon

2

))2 (9)

b =2 ∗ arcsin(min(1,
√

a)) (10)

Distance is then computed using Equation (7). Efforts to
improve the numerical stability resulted in good agreement
between a CPU and AMD Cypress and Cayman GPUs. We
take as an assumption that the CPU hardware provides a
reasonable baseline for comparison since the implementation
of all relevant math operations are well established, more
thoroughly tested, and provide better edge cases relative to
GPUs. Results for the NVIDIA Fermi GPU exhibited notable
discrepancies, with a complete understanding of the cause
remaining for further investigation. Numerical consistency was
tested across these architectures using a simple synthetic test
case involving an 8 by 8 uniform grid of radio transceivers over
a DEM (digital elevation map) with 1.2M elevation points.
Table I shows the percentage of the point-to-point path loss
results calculated on a particular GPU architecture that agree
with the results calculated on the CPU to within a tolerance
of 1 dB, 2 dB, and 10 dB, respectively.

TABLE I
CONSISTENCY OF THE RESULTS CALCULATED WITH VARIOUSGPUS

COMPARED TO THE BASELINE RESULTS FROM THECPU.

Processor <1 dB <2 dB <10 dB
ATI Radeon HD 5870 98 % 99 % 100 %
AMD Radeon HD 6970 98 % 99 % 100 %
NVIDIA Tesla C2070 86 % 90 % 94 %

As observed in Table I, the ATI/AMD devices provide a
result more consistent with the baseline CPU. We have been
unable to determine at this time the cause of the discrepancy
between the two vendors but the ATI/AMD solution consis-
tently provided results more consistent with the CPU baseline
calculations.

V. PERFORMANCE ANDSCALING

In this section we explore the achieved performance on each
of the algorithms on several GPU platforms. In the process
comparing vendor we also compare solutions from ATI/AMD
and NVIDIA. Each of the algorithms has its own peculiarities
that affect performance, for instance the Longley-Rice algo-
rithm is heavily dependent upon transcendental functions and
not on more typical MADD (multiply add) operations, whereas
TLM has very structured memory accesses and contains
almost exclusively MADD operations. This results in come
interesting comparisons as the reported FLOP rates are for
MADD operations, and transcendental function performance
is not directly related.

A. ITM Performance

The ITM algorithm was the first method investigated and
therefore this section contains a number of results and compar-
isons. We start by giving the overall application computation
times in Table II which lists the wall clock time required for
three different architectures to compute all point-to-point RF
path loss values using the Longley-Rice algorithm.

As illustrated in Table II using the current ITM imple-
mentation, all of the tested GPU architectures are capable of
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TABLE II
T I MING RESULTS FOR256TRANSMITTERS/RECEIVERS USING THE

OPENCL VERSION OF THELONGLEY-RICE ALGORITHM RUN ON AMD
AND NVIDIA GPUS.

Processor Time (s)
ATI Radeon HD 5870 0.72
AMD Radeon HD 6970 0.55
NVIDIA Tesla C2070 0.39
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Fig. 3. Plot of total ITM (Longley-Rice) calculation time versus number
of transmitters/receivers. The 0.5 second line represents the maximum time
allowed for real-time computations.

providing computed RF path loss results for 256 transceivers,
or 65,536 point-to-point calculations, in less than 1 second
on a single GPU device. For 256 radios, the fastest time to
solution is reported as 0.39 sec using an NVIDIA C2070
[23] as compared with 0.72 sec and 0.55 sec using an ATI
Radeon HD 5870 and AMD Radeon HD 6970, respectively.
[24] Complete performance results are plotted in Fig. 3 for a
range of 32 to 1024 transceivers.

In Figure 3 a line is drawn at 0.5 seconds to show
approximately the number of transceivers a particular GPU
is capable of considering in real-time. It is interesting to note
that the theoretical peak FLOP rate of the AMD Radeon HD
6970 is 2.703 TFLOPs and the NVIDIA C2070 is only 1.288
TFLOPs. Conversely, the number of radios supported by the
Longley-Rice algorithm in less than 0.5 seconds of compu-
tation time is higher for the NVIDIA GPU. This apparent
inefficiency in the AMD hardware is due to the fact that many
of the floating-point operations in the Longley-Rice algorithm
are transcendental functions such as cosine, sine, tangent, co
secant, etc., The performance of a specific architecture on the
Longley-Rice algorithm is therefore not easily predicted by
theoretical peak performance. Additionally, the memory access
patterns within the kernels are non-trivial, and this will also
contribute to the observed performance.

Performance of complex multi-kernel algorithms can be
impacted by many factors including pure computational load,
memory access, host-device data transfer, and kernel launch
latency. In the case of the 10 kernels in the ITM implemen-
tation, each individual kernel shows a very low execution

time when directly measured in a fully blocking mode of
operation. In order to investigate whether the ITM imple-
mentation is effectively using the GPU compute capability,
the stripe size over which the computation is distributed was
varied to observe the effect of changing the amount of work
performed per kernel execution. Initially the stripe size was
set at 4096 with subsequent test cases of 2048 and 1024
point-to-point calculations. The results in Table III show
an improvement on the order of 10% when increasing the
block size from 1024 to 4096, thus providing more work
per kernel execution. This indicates that the block size of
4096 is performing only slightly better than the block size of
2048, therefore increasing the block size further would yield
diminishing returns. Increasing the block size further would
also decrease the efficiency of performing calculations where
the number of point-to-point paths was not commensurate with
block size. For example, with a workload of 65536 point-to-
point calculations, increasing the block size will approach the
size of the work load resulting in an efficient calculation when
the work load is not a multiple of the block size.

TABLE III
PERFORMANCE FORAMD AND NVIDIA GPUS AS A FUNCTION OF

BLOCK SIZE IN TERMS OF THE NUMBER OF POINT-TO-POINT PATHS
EVALUATED PER KERNEL EXECUTION.

Processor Block Size Time (s)
ATI Radeon HD 5870 1024 0.83
ATI Radeon HD 5870 2048 0.75
ATI Radeon HD 5870 4096 0.72

AMD Radeon HD 6970 1024 0.65
AMD Radeon HD 6970 2048 0.58
AMD Radeon HD 6970 4096 0.55

NVIDIA Tesla C2070 1024 0.42
NVIDIA Tesla C2070 2048 0.40
NVIDIA Tesla C2070 4096 0.39

B. TLM Performance

As noted previously, the TLM algorithm, much like FDTD,
is well suited for the GPU architecture. In this case the biggest
bottleneck is expected to be data transfer across the PCIe
bus which is known to be a bottle neck for applications
executing on GPUs. By limiting the number of times results
are transported across the PCIe bus in the TLM algorithm
we were able to optimize the calculation time by an order of
magnitude, Figure 4.

Notice in Figure 4 that the time per step for CPUs remains
fairly constant from 10 to 1000 steps, whereas the GPU results
show an order of magnitude decrease in time per step. This
illustrates the importance of increasing the computation to
communication ratio when using GPUs as a co-processor.
In Figure 4 the cpu-opt and gpu-opt lines refer to the use
of the shuffled grid method discussed previously. The gpu-
opt time per step line shows a nearly ideal 4x speedup
over the unoptimized version, whereas the cpu-opt line shows
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Fig. 4. Plot of time per step computed showing performance increases for
GPUs with modest gains for CPUs. By increasing the nsteps parameter the
ratio of computation to communication is increased. Notice the power scale
on the y-axis.

Fig. 5. Side view of 3D polygon data from Tonsberg, Norway usedfor ray
tracing algorithm development.

about a 1.2x speedup over the unoptimized CPU version. The
nearly 4x speedup indicates that the algorithm is able to take
advantage of the GPU ability to perform MADD functions on
4 32-bit floating point values simultaneously.

C. Ray Tracing Performance

The primary factor in determining execution time for the
ray tracing algorithm is the number of rays generated and
computed. The total number of rays in the system depends
on the number of rays emitted by individual transmitters,
the number of reflections, scattering, diffraction and refrac-
tion allowed as well as the number of planar surfaces with
which the rays can interact. Note that in this experiment,
we are solely focusing on emitted and reflected rays. The
environment in use in our research is a polygon-based 3D
representation of the town of Tonsberg, Norway, Figure 5.
As noted earlier this model contains 68,356 triangle and the
benchmark scenario contains two transmitters that spherically
emit rays in all directions. The emission angles of individuals
rays is dependent upon the user-specifiednθ and nφ values.
The values ofnθ and nφ are equivalent over each run and
vary their values between 64, 128 and 256. Each emitted ray
is traced throughout the environment to generate reflected rays
based on their interactions with the planar surfaces. The path
of the reflected ray is computed based on the laws of reflection
in light propagation.

Fig. 6. The number of rays generated during the ray tracing calculation with
a maximum of 1 to 6 reflections and an angular partitioning of 64, 128 or
256 partitions.

The ray tracing method is developed using OpenCL in order
to take advantage of multiple platforms, although for these
results we used an NVIDIA Quadro FX4800 GPGPU with
1.5GB GDDR3 of GPU memory. The total number of rays
in the system is computed, and Figure 6 plots the number
of rays in the system fornθ and nφ as they vary from 64
to 256. In Figure 6 the maximum number of reflections that
individual rays are permitted to undergo is varied from 1 to
6. It is expected that some predetermined maximum number
of reflections or unfolded ray length will be used to limit the
run time while preserving accuracy.

Using the parameters from Figure 6 the run time for each
configuration is collected and plotted against the number of
rays generated, Figure 7. Figure 7 shows a linear relationship
between run time and number of rays, but with offsets de-
pending on the initial angular partitioning used. This is related
to the cost of initial ray generation and generating new rays
after intersection with a surface has occurred. The offsets are
approximately equivalent to the difference between the squares
of the number of angular partitions. E.g.1282 − 642 = 12288
and2562 − 1282 = 49152. Note that for each ray, the system
currently needs to analyze all of the 68,356 planar surfaces in
the environment to determine its endpoint. Future performance
enhancements will therefore focus on the size of the model and
the number of polygons that need to be interrogated for each
ray.

VI. CONCLUSIONS ANDFUTURE WORK

MANET emulation of large scale networks is a useful tool
for network analysts but without realistic RF propagation the
accuracy of the results are questionable. Using GPUs we have
developed three RF propagation path loss methods that can run
in real time or near real time along side a MANET emulation
to provide realistic path loss data. These algorithms cover a
broad range of the typical scenarios encountered by MANETs
in the field, namely, non-urban large networks, large scale
urban networks and pico-cells of around 20 nodes in a local
area. We have investigated the use of the standard OpenCL
language against vendor solutions such as Brook+ and CUDA.
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Fig. 7. Ray Tracing algorithm run time versus number of generated rays. The
three different slopes correspond to the number of initial angular partitioning
of 64, 128 and 256 partitions.

We have also shown how algorithm development for GPUs
is very important for achieving maximum performance, such
as the shuffled grid method, modifying calculations to use
single precision where possible, etc. Additionally for the ITM
it was possible to use reduced precision calculations, through
the use of alternative calculations for edge cases to improve
performance on GPUs. Load distribution and communication
costs were mimed by the creation of computation blocks that
limit kernel calls and minimize wasted computation cycles.
These developments enable the emulation framework at ARL
to provide real time situational awareness data to live field
exercises and will have applicability to the integration with
future modeling simulations and the fielding of upcoming
devices.

Although vendor supplied languages for GPUs have shown
to currently provide superior performance we have settled
on using a portable standard for parallel computing systems,
namely OpenCL. Using OpenCL we have developed the
Longley-Rice ITM and ray tracing methods for real time RF
path loss computations that supports MANET emulation. En-
abled MANET emulation provides the capability to augment
live exercises, integrate MANET emulation with simulations
and to drive programmable attenuators for laboratory exper-
imentation with physical devices. Prior to the development
of these capabilities with GPUs, the wireless node mobility
and path loss for a scenario needed to either be computed
apriori or to use a large number of (i.e. 10,000) CPU cores,
dedicated to path loss calculation. This was not acceptable
because the CPUs cores are required to host virtual machines
for MANET emulation and by using GPU co-processors it has
been possible to over come this hurdle for efficient large scale
MANET emulation.
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Abstract A hyper-star graph HS(2n, n) is

promising as a generic topology for intercon-

nection networks of parallel processing sys-

tems because it has merits of a hypercube

and a star graph. This paper proposes an

O(n2 log n) algorithm that constructs a fault-

free path between a pair of non-faulty nodes

in HS(2n, n) with faulty nodes. For each node

and each distance, the algorithm first calcu-

lates an estimated value of the probability of

existence of a non-faulty minimal path to an

arbitrary destination node with the distance

from the node. Then it tries to construct a

fault-free path based on the estimated values.

In addition, we conduct a computer experi-

ment to show its effectiveness.

Keywords: interconnection network, hypercube,

star graph, faulty nodes, performance evaluation

1 Introduction

Recently, research on parallel and/or dis-
tributed computation is getting more impor-
tant because significant progress of perfor-
mance in sequential computation cannot be ex-
pected in the future. For these two decades,
studies on so-called massively parallel systems
have been very active, and many new topolo-
gies for interconnection networks [3, 6, 10, 12,
18] have been proposed instead of conventional
simple topologies such as rings, meshes, tori,
hypercubes [19], and so on. A hyper-star graph

HS(m,n) is one of such topologies. It combines
merits of a hypercube and a star graph, and it
is promising as a generic topology for intercon-
nection networks of parallel processing systems
[13].

In a massively parallel system, it is in-
evitable to have faulty elements. Therefore,
it is necessary to establish algorithms that
assume existence of faulty elements. Hence,
in this paper, we focus on a regular hyper-
star graph HS(2n, n) and propose an adaptive
fault-tolerant routing algorithm between a pair
of non-faulty nodes in anHS(2n, n) with faulty
nodes. If each node collects the global infor-
mation of all faulty nodes, fault-free shortest
paths can be found. However, this approach
requires the same order of memory space as the
number of nodes in the graph, and it is imprac-
tical. On the other hand, if each node collects
the local information of neighbor nodes only,
fault-tolerant routing with high reachability
cannot be achieved. Therefore, there are some
studies in which a part of global information is
collected as the restricted global information to
achieve high reachability [4, 5, 11, 20]. Hence,
in this paper, we propose a fault-tolerant rout-
ing algorithm that attains high reachability by
collecting the restricted global information.

The rest of this paper is organized as fol-
lows. We first explain related works in Section
2. Next, we introduce a definition of a hyper-
star graph and other necessary definitions in
Section 3. Then, in Section 4, we explain our
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algorithm in detail. We also conduct a com-
puter experiment to verify effectiveness of the
algorithm, which is explained in Section 5. Fi-
nally, in Section 6, we give a conclusion and
future works.

2 Related works

Al-Sadi et al. have proposed a stochastic fault-
tolerant routing algorithm in a hypercube [1,
2]. The time complexity of the algorithm is
O(n2). On the other hand, Duong and Kaneko
have proposed a stochastic fault-tolerant rout-
ing algorithm in a faulty hypercube and its
improved version independently of Al-Sadi et
al. [7, 8]. Their algorithms show better per-
formance than those by Al-Sadi et al. though
the time complexities of the algorithms by
Duong and Kaneko are both O(n3). Myojin
and Kaneko have proposed an algorithm ob-
tained by improving the algorithm by Al-Sadi
et al. [15]. Its time complexity is O(n2), and it
shows better performance than the algorithm
by Al-Sadi et al.

Nishiyama et al. have proposed a fault-
tolerant routing algorithm in a hyper-star
graph and its improved version [16, 17]. The
time complexities of these algorithms are both
O(n2), and they show better performance than
a simple greedy fault-tolerant routing algo-
rithm.

3 Preliminaries

In this section, we give definitions of a regular
hyper-star graph, routing probability, and its
estimated value.

Definition 1 (A regular hyper-star graph
HS(2n, n)) An HS(2n, n) is an undirected
graph, which have 2nCn nodes. Each node
a consists of 2n bits (a1, a2, . . . , a2n) where
n bits are 1 and the remaining n bits are 0
(a ∈ {0, 1}2n,

∑2n
i=1 ai = n). For two nodes

a = (a1, a2, . . . , a2n) and b = (b1, b2, . . . , b2n),
there is an edge (a, b) between them if and only
if k(∈ {2, 3, . . . , 2n}) exists such that b1 = ā1,
bk = āk = a1, and bi = ai (2 ≤ i ̸= k ≤ 2n).

Figure 1 shows an example of HS(6, 3). In
HS(m,n), sub graphs that are induced by
the node sets whose right-most elements are
0 and 1 are isomorphic to HS(m − 1, n) and
HS(m− 1, n− 1), respectively. Table 1 shows
a comparison of a hyper-star graph HS(2n, n),
a hypercube Qn, and a hierarchical hypercube
HHC2n+n [14], and a hierarchical cubic net-
work HCN(n) [9].
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Figure 1: A hyper-star graph HS(6, 3).

In HS(2n, n), for two nodes a =
(a1, a2, . . . , a2n) and b = (b1, b2, . . . , b2n), their
distance d(a, b) is defined by

∑2n
i=2 ai ⊕ bi. In

addition, the subset of neighbor nodes of a
that are on the shortest paths to b is defined
by Pre(a, b) = {n | n ∈ N(a), d(n, b) =
d(a, b)−1}, while the subset of the other neigh-
bor nodes is defined by Spr(a, b) = {n | n ∈
N(a), d(n, b) = d(a, b) + 1}.

We introduce the routing probability P ∗
h (a)

of a node a with respect to a distance h in
HS(2n, n). It can be used as an index to show
the probability of existence of fault-free mini-
mal paths for all the non-faulty nodes with the
distance h from the node a.

Definition 2 (Routing probability) For an ar-
bitrary non-faulty node a in an HS(2n, n), the
routing probability of a with respect to a dis-
tance h, P ∗

h (a), is defined to be the probability
that a fault-free path of length h exists from a
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Table 1: Comparison of a hyper-star graph with other topologies.
#nodes degree connectivity diameter

HS(2n, n) 2nCn n n 2n− 1
Qn 2n n n n

HHC2n+n 22
n+n n+ 1 n+ 1 2n+1

HCNn 22n n+ 1 n+ 1 n+ ⌊(n+ 1)/3⌋+ 1

to an arbitrary non-faulty node with the dis-
tance h from a.

Without collecting the global information of
all faulty nodes, it is impossible to calculate the
routing probabilities P ∗

h (a). Hence, in the rest
of this paper, we define and use their estimated
values Ph(a). Note that for a node b with a
distance h from a node a, the number of the
neighbor nodes of a on the shortest path from
a to b is equal to ⌈h/2⌉, that is, |Pre(a, b)| =
⌈h/2⌉ where h = d(a, b).

Definition 3 (Estimated values of routing
probabilities) For a node a in an HS(2n, n)
with a faulty node set F , the estimated values
of the routing probabilities of a with respect
to a distance h, Ph(a), is defined as follows:

Ph(a) =



1 (h = 0)
0 (1 ≤ h ≤ 2n− 1,a ∈ F )∑
I⊂N(a)

|I|=⌈h/2⌉

max
n∈I
{Ph−1(n)}

/
nC⌈h/2⌉

(1 ≤ h ≤ 2n− 1,a ̸∈ F )

If the distance from a to the destination
node d is zero, that is, h = 0, it means that
the current node a is the destination node it-
self. Hence, the message can be delivered with
probability 1. Therefore, P0(a) = 1 holds.
In case that 1 ≤ h ≤ 2n − 1 and a ∈ F ,
there is no possibility that the message from
the node a arrives to the destination node
d. Hence, Ph(a) = 0 holds. Otherwise, if
1 ≤ h ≤ 2n − 1 and a ̸∈ F , the message is
transferred to the node among I = Pre(a,d)
that has the largest estimated value of the rout-
ing probability. Then, the estimated value

of the routing probability of a with respect
to the distance h becomes maxn∈I{Ph−1(n)}.
Because the estimated value of the routing
probability, Ph(a), is the expected value of
the above values for all the nodes which have
the distance h from the node a, Ph(a) =∑

I⊂N(a)
|I|=⌈h/2⌉

maxn∈I{Ph−1(n)}
/
nC⌈h/2⌉ holds.

It would be very time consuming if we calcu-
late the estimated values of the routing proba-
bilities following the definitions. Hence, we in-
troduce a simplified calculation method based
on the following lemma.

Lemma 1 For a node a in an HS(2n, n) with
a faulty node set F , if a ̸∈ F , the follow-
ing equation about the estimated values of the
routing probabilities Ph(a) with respect to a
distance h (1 ≤ h ≤ 2n− 1):

Ph(a) =

( n∑
k=1

k−1C⌈h/2⌉−1pk

)/
nC⌈h/2⌉

where p1 ≤ p2 ≤ . . . ≤ pn are obtained by
sorting {Ph−1(n) | n ∈ N(a)} in an ascending
order.
(Proof) In the definition of Ph(a), pk =
maxn∈I{Ph−1(n)} holds if and only if both
pk ∈ ∪n∈I{Ph−1(n)} and ∪n∈I{Ph−1(n)} ⊂
{p1, p2, . . . , pk} hold. Therefore, the number of
cases where pk becomes the maximum value is
equal to k−1C⌈h/2⌉−1. Hence, this lemma holds.

Now, for a node a in an HS(2n, n), we re-
gard it faulty if its neighbor nodes are all faulty,
that is, N(a) ⊂ F . Even if the node a is non-
faulty, it cannot communicate with any other
node. Hence, this assumption is consistent.
Then, the following lemma holds.
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Lemma 2 For an arbitrary node a in an
HS(2n, n), a ∈ F holds if and only if there
exists h (1 ≤ h ≤ 2n− 1) such that Ph(a) = 0.
(Proof) Sufficiency is trivial since if a ∈ F ,
Ph(a) = 0 holds for an arbitrary h (1 ≤ h ≤
2n − 1). For necessity, we prove the lemma
based on mathematical induction on h. In
case that P1(a) = 0, if a ̸∈ F , P1(a) =∑

n∈N(a) P0(n)/n = 1 from the definition of
P1(a). Because this result is contradicting, a ∈
F must hold. For h such that 2 ≤ h ≤ 2n− 1,
if Ph(a) = 0, for an arbitrary neighbor node
n of a, Ph−1(n) = 0 holds from the definition
of Ph(a). From the hypothesis of induction,
N(a) ⊂ F holds, and therefore a ∈ F holds.

From Lemma 2, if a node a is non-faulty, for
an arbitrary distance h, Ph(a) > 0 holds. Fur-
thermore, if a is non-faulty, there exists a non-
faulty neighbor node n such that Ph−1(n) > 0
and Ph+1(n) > 0 hold.

4 Our fault-tolerant routing
algorithm

Figure 2 shows a procedure RP, which repre-
sents our fault-tolerant routing algorithm in an
HS(2n, n) with a faulty node set F . To send
a message from a non-faulty node s to a non-
faulty node d, we can call the procedure by
using the format RP(s, d, F).

The procedure RP first calculates the dis-
tance h from the current node c to the desti-
nation node d. Next, if h = 0, that is, the cur-
rent node and the destination node are identi-
cal, the message is delivered to the destination
node. Otherwise, the procedure finds the node
n∗
p in Pre(c,d) that has the maximum esti-

mated value of the routing probability, and the
node n∗

s in Spr(c,d) that has the maximum es-
timated value of the routing probability. Then,
if Ph(n

∗
p) > 0, the message is forwarded to the

node n∗
p. Otherwise, the message is forwarded

to the node n∗
s.

From Lemma 2, if the current node c is non-
faulty, there always exists a non-faulty neigh-
bor node n of c. Therefore, at least either

procedure RP(c, d, F)

begin

h := d(c, d);
if h = 0 then

delivery the message to d
else begin

n∗
p := argmaxn∈Pre(c,d){Ph−1(n)};

n∗
s := argmaxn∈Spr(c,d){Ph+1(n)};

if Ph−1(n
∗
p) > 0 then

RP(n∗
p, d, F)

else

RP(n∗
s, d, F)

end

end

Figure 2: Fault-tolerant routing algorithm
based on estimated values of routing probabil-
ities.

Ph−1(n
∗
p) > 0 or Ph+1(n

∗
s) > 0 holds. Hence,

the message can be forwarded to either n∗
p or

n∗
s. In other words, in this procedure RP, a fail-

ure of message delivery is always caused by an
infinite loop.

The next theorem estimates the time com-
plexity of the calculation of the estimated val-
ues of routing probabilities.

Theorem 1 In each node in anHS(2n, n), the
time complexity to calculate the estimated val-
ues of routing probabilities with respect to all
distances is O(n2 log n).
(Proof) From Lemma 1, we calculate the num-
bers of cases kCj for 0 ≤ k, j ≤ n in advance
so as to use them to calculate the estimated
values of routing probabilities. For this pur-
pose, it takes O(n2) time complexity. On the
other hand, in a node a, to calculate an es-
timated value of a routing probability Ph(a)
with respect to a distance h, it is necessary to
collect Ph−1(n) from each node n in the neigh-
bor node set N(a) and sort them. For this, it
takes O(n log n) time complexity. Therefore, it
takes O(n2 logn) time complexity to calculate
the estimated values of routing probabilities for
all h (2 ≤ h ≤ 2n− 1). From above discussion,
the overall time complexity to calculate the es-
timated values of routing probabilities with re-
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spect to all distances is O(n2 log n).

5 Evaluation

To evaluate performance of our algorithm, we
carried out an computer experiment to com-
pare it with the algorithm based on the di-
rected safety levels by Nishiyama et al. [17].
The experiment is conducted based on the fol-
lowing procedure:

1. In an HS(2n, n), for the ratio of faulty
nodes α = 0, 0.1, . . . , 0.8, repeat Steps 2
to 4 for 10,000 times.

2. Set ⌊α2nCn⌋ faulty nodes randomly in the
HS(2n, n).

3. Select two distinct nodes s and d ran-
domly such that there exists a fault-free
path between them.

4. Apply our algorithm based on the esti-
mated values of routing probabilities and
the algorithm based on the directed safety
levels by Nishiyama et al., and check if the
message is delivered to the destination or
not.

Figures 3, 4, and 5 show the results of
the experiment with HS(16, 8), HS(14, 7), and
HS(12, 6), respectively.
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Figure 3: Ratio of successful routings by al-
gorithms base on routing probabilities and di-
rected safety levels in HS(16, 8)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 o

f 
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

 
 

Routing Probability

Directed Safety Level

Figure 4: Ratio of successful routings by al-
gorithms base on routing probabilities and di-
rected safety levels in HS(14, 7)
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Figure 5: Ratio of successful routings by al-
gorithms base on routing probabilities and di-
rected safety levels in HS(12, 6)

According to these figures, we can see that
our algorithm is superior to the algorithm by
Nishiyama et al. The reason that the ratios of
successful routings increased with α = 0.8 is
that the ratio of faulty nodes is so high that
the pairs of s and d could be found with short
distances only.

6 Conclusion

In this paper, we have proposed a fault-
tolerant routing algorithm in a hyper-star
graph HS(2n, n). The algorithm is based on
the estimated values of routing probabilities.
The time complexity to calculate the estimated
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values is O(n2 logn). From a computer exper-
iment, we have compared our algorithm to the
conventional algorithm and verified high reach-
ability of our algorithm.

Future works include finding the better esti-
mated values, and improving the algorithm so
that the estimated values can be utilized more
effectively. In addition, it is also interesting for
us to apply our approach to other topologies.
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Parallel routing in exchanged hypercubes
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Abstract. Parallel routing and diameter are two important issues in
interconnection networks. The hypercube is one of the most popular
interconnection networks for parallel systems due to its attractive prop-
erties such as low diameter and efficient parallel routing. The exchanged
hypercube, which is a variant of the hypercube by removing some spe-
cific edges, remains several desirable properties of the hypercube. This
paper discusses parallel routing in exchanged hypercubes and show the
wide diameter of exchanged hypercubes.

Key words: parallel routing, exchanged hypercube, diameter, wide di-
ameter.

1 Introduction

A graph G is a two-tuple (V,E), where V is a nonempty set, and E is a subset
of {(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and
E is the edge set. A multi-processor system or a network can be modeled as a
graph, in which vertices represent processors or computers, and edges represent
connections or communication links. The terms network and graph can be used
interchangeable throughout this paper. Two vertices, u and v, of a graph G are
adjacent if (u, v) ∈ E(G). A path P of length k from vertex u to vertex v in a
graph G is a sequence of distinct vertices written as x0 → x1 → x2 → · · · → xk

where x0 = u, xk = v, and (xi, xi+1) ∈ E(G) for every 0 ≤ i ≤ k − 1 if k ≥ 1.
A path P can be written as u→ P → v to emphasize its beginning and ending
vertices. A cycle is a path with at least three vertices such that the last vertex
is adjacent to the first one. For clarity, a cycle of length k is represented by
x1 → x2 → . . . → xk → x1. The length of a path P , denoted by l(P ), is the
number of edges in P . The distance between two distinct vertices u and v in
graph G, denoted by dG(u, v), is the length of the shortest path between u and
v.

The hypercube is one of the most popular interconnection networks for paral-
lel computer/communication system due to its many attractive properties such

⋆ Correspondence to: Professor Jimmy J.M. Tan, TEL:886-3-5712121 ext.56618 e-mail:
jmtan@cs.nctu.edu.tw.
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as regularity, recursive structure, vertex and edge symmetry, maximum connec-
tivity, effective routing and broadcasting algorithm, [2, 4]. The definition of hy-
percubes is presented as follows. A hypercube Qn is a graph with 2n vertices and
each vertex u is denoted by an n-bit binary string u = unun−1 . . . u1. Two ver-
tices are adjacent if and only if their strings differ exactly in one bit position. Let
u = unun−1 . . . u1 and v = vnvn−1 . . . v1 be two n-bit binary strings. The Ham-
ming distance dH(u, v) between two vertices u and v is the number of different
bits in the corresponding strings of both vertices. Clearly, dH(u, v) = dQn(u, v)
, where dQn(u, v) denotes the distance between two vertices u and v in Qn, i.e.,
the length of a shortest uv-path in Qn. In particular, Qn is a vertex-transitive
and edge-transitive bipartite graph, and has diameter n [10].

As a variant of the hypercube, the exchanged hypercube proposed by Loh
et al. [5] is defined by removing some edges from the hypercube. However, it
maintains several desirable properties of the hypercube such as low diameter [5],
bipancyclicity [7] and super connectivity [8]. In this paper, we shall give internally
disjoint paths in exchanged hypercubes and show the wide diameter of exchanged
hypercubes.

In Section 2, some definition and properties of exchanged hypercubes are
given. Section 3 deals with parallel routing in exchanged hypercubes and show
the wide diameter of exchanged hypercubes.

2 Exchanged hypercubes

The exchanged hypercube is defined as an undirected graph EH(s, t) = G(V,E),
where s ≥ 1, t ≥ 1. The set of vertices V = {as−1 . . . a0bt−1 . . . b0c | ai, bj , c ∈
{0, 1} for 0 ≤ i ≤ s− 1, 0 ≤ j ≤ t− 1}, and the set of edges E = E1 ∪ E2 ∪ E3.
The edge set E1 = {(v1, v2) ∈ V × V | v1[s+ t : 1] = v2[s+ t : 1], v1[0] ̸= v2[0]},
E2 = {(v1, v2) ∈ V ×V | v1[t : 1] = v2[t : 1], H(v1[s+t : t+1], v2[s+t : t+1]) = 1,
v1[0] = v2[0] = 0}, and E3 = {(v1, v2) ∈ V × V | v1[s + t : t + 1] = v2[s + t :
t+ 1],H(v1[t : 1], v2[t : 1]) = 1, v1[0] = v2[0] = 1}, where v[x : y] denotes the bit
pattern of v from dimension y to dimension x, and H(u, v) denotes the Hamming
distance between u and v.

By the definition of EH(s, t), we know that the number of vertices is 2s+t+1

and the number of edges is (s+ t+2)2s+t−1. Since EH(s, t) is a subgraph of the
(s+ t+1)-dimensional hypercube Qs+t+1, it is also a bipartite graph. Loh et al.
[5] state some properties of exchanged hypercubes. For example, the diameter
of EH(s, t) is (s+ t+ 2), EH(s, t) is isomorphic to EH(t, s), and EH(s, t) can
be decomposed into two copies of EH(s− 1, t) or EH(s, t− 1).

The subgraphs induced by the vertices of the form

s︷ ︸︸ ︷
∗ · · · ∗ bt−1 · · · b00 and

as−1 · · · a0
t︷ ︸︸ ︷

∗ · · · ∗ 1 in EH(s, t) are isomorphic to Qs and Qt, respectively, where
∗ ∈ {0, 1}. The subgraphs induced by the vertex sets V (Qs) and V (Qt) are
denoted by S and T , respectively. Then S ∼= Qs and T ∼= Qt. So there are 2t

distinct induced subgraphs Qi
s in EH(s, t) for 1 ≤ i ≤ 2t, and there are 2s
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distinct induced subgraphs Qi
t in EH(s, t) for 1 ≤ i ≤ 2s. We denote that the

hamming distance between u and v in the induced subgraphs Qs of EH(s, t),
called hs(u, v) (simply abbreviated as hs), is the number of bits in which labels
of u and v differ from dimension t + 1 to s + t. Similarly, we denote that the
hamming distance between u and v in the induced subgraphs Qt of EH(s, t),
called ht(u, v) (simply abbreviated as ht) is the number of bits in which labels
of u and v differ from dimension 1 to t.

3 Parallel routing and wide diameter

A vertex set F ⊆ V (G) is a separating set or a vertex cut if G−F is disconnected.
The connectivity of G, written as κ(G), is the minimum size of a vertex cut. A
graph G is k-connected if the connectivity κ(G) is at least k. Moreover, a graph G
has connectivity k if G is k-connected but not (k+1)-connected. Let δ(G) be the
minimum degree of G. It follows from Menger’s Theorem that the connectivity
of a graph is at least k if and only if there exist k internally vertex-disjoint
(abbreviated as disjoint) paths between any two vertices.

Let α and β be two positive integers such that α ≤ κ and β ≤ κ− 1. Given
any two distinct vertices u and v of G, let D(u, v) denote the set of all α disjoint
paths between u and v. Each element of D(u, v) consists of α disjoint paths.
The number of elements in D(u, v) denoted by |D(u, v)|. Let li(u, v) denote the
longest length among these α path of the ith element of D(u, v). We define that
dα(u, v) = min

1≤i≤|D(u,v)|
li(u, v). The α-wide diameter of G, denoted by Dα(G), is

defined as Dα(G) = max
u,v∈V

{dα(u, v)}. In particular, we call Dκ(G) to be the wide

diameter of G. Note that D1(G) is simply the diameter D(G) of G.

Obviously, D(G) ≤ Dκ(G). For the hypercube Qn, Latifi [3] proved that
Dn(Qn) = n + 1 for n ≥ 2. For the crossed cube CQn, Chang et al. [1] proved
that Dn(CQn) = ⌈n2 ⌉ + 2 for n ≥ 2. In this section, we shall discuss the wide
diameter of exchanged hypercubes, and prove that Ds+1(EH(s, t)) = s + t + 3
for 3 ≤ s ≤ t.

Lemma 1. [6] The connectivity of the exchanged hypercubes EH(s, t) is s + 1
for 1 ≤ s ≤ t.

From Menger’s Theorem, there exist s + 1 internal disjoint paths between
any two distinct vertices in exchanged hypercube EH(s, t).

Lemma 2. [9] Let u, v be any two vertices of the n-dimensional hypercube Qn

and assume that dQn(u, v) = k. Then there are n disjoint paths between u and v
such that k of them are of length k, and the remaining n− k paths are of length
k + 2.

Lemma 3. [7] The vertices in the vertex set Vc ={as · · · a1bt · · · b1c | ai, bj ∈
{0, 1} for 1 ≤ i ≤ s, 1 ≤ j ≤ t} (c ∈ {0, 1}) are vertex-transitive.
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The following theorem gives lower bound of the wide diameter of the ex-
changed hypercube. For convenience of the proof of the following theorem, we
abbreviate some symbols. If there are s consecutive 0’s, then we denote it by 0s,

that is, 0s =

s︷ ︸︸ ︷
00 · · · 0. If there are t consecutive 1’s, then we denote it by 1t, that

is, 1t =

t︷ ︸︸ ︷
11 · · · 1.

Theorem 1. Ds+1(EH(s, t)) ≥ s+ t+ 3 for 1 ≤ s ≤ t.

Proof. By Lemma 1, the connectivity of the exchanged hypercubes EH(s, t) is
s+1. From Menger’s Theorem, there exist s+1 internal disjoint paths between
any two distinct vertices, denoted by u and v, in EH(s, t). We consider that u =

s︷ ︸︸ ︷
00 · · · 0

t︷ ︸︸ ︷
00 · · · 0 0 (simply abbreviated as 0s0t0) and v =

s︷ ︸︸ ︷
11 · · · 1

t︷ ︸︸ ︷
11 · · · 1 1 (simply

abbreviated as 1s1t1). Let u′ = 0s0t1 be a neighbor of u and let V ′ = N(u)−u′.
The shortest path P between u and v in EH(s, t)− V ′ must pass u′. Loh et al.
[5] showed that the length of the shortest path between u′ and v is H(u, v)+2 =
s + t + 2. The +2 is because routing has to use dimension 0 twice: 1 → 0 and
0 → 1. For clarity, we write P as < u, u′, R, v >, where R is the shortest path
between u′ and v in EH(s, t)−V ′. Since |R| = d(u′, v) = s+ t+2, it follows that
dEH(s,t)−V ′ = 1 + d(u′, v) = s + t + 3. As a result, Ds+1(EH(s, t)) ≥ s + t + 3
for 1 ≤ s ≤ t. ⊓⊔

The following theorem gives upper bound of the wide diameter of exchanged
hypercubes.

Theorem 2. Ds+1(EH(s, t)) ≤ s+ t+ 3 for 3 ≤ s ≤ t.

The proof of Theorem 2 can be derived from the following Lemmas 4 to 15.

Lemma 4. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If u[0] =
v[0] = 0, and ht(u, v) = 0, then there exist s+1 internally disjoint paths Pi(1 ≤
i ≤ s + 1) between u and v such that hs of them are of length hs, s − hs paths
are of length hs + 2, and one path is of length hs + 6.

Proof. By Lemma 3, without loss of generality, we consider u = 0s0t0 and
v = 0s−hs1hs0t0 are in the same induced subgraphs, denoted by Q1

s. By Lemma
2, there exist s internally disjoint paths Hi(1 ≤ i ≤ s) between u and v in
the induced subgraph Q1

s such that hs of them are of length hs, and the other
s − hs paths are of length hs + 2. Without loss of generality, we set |Hi| = hs

for 1 ≤ i ≤ hs and |Hi| = hs + 2 for hs + 1 ≤ i ≤ s.
The following sets of s+1 internally disjoint paths can be set between u and

v.
For 1 ≤ i ≤ s,

Pi : u = 0s0t0→ Hi → v = 0s−hs1hs0t0,
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where |Pi| = hs for 1 ≤ i ≤ hs and |Pi| = hs + 2 for hs + 1 ≤ i ≤ s.

Ps+1 : u = 0s0t0→ 0s0t1→ 0s0t−111→ 0s0t−110→ L→ 0s−hs1hs0t−110

→ 0s−hs1hs0t−111→ 0s−hs1hs0t1→ v = 0s−hs1hs0t0,

where |Ps+1| = hs + 6. Note that the path L is of length hs in another induced
subgraph, denoted by Q2

s. ⊓⊔

Lemma 5. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If u[0] =
v[0] = 0 and ht(u, v) ̸= 0, then there exist s+ 1 internally disjoint paths Pi(1 ≤
i ≤ s + 1) between u and v such that hs + 1 of them are of length hs + ht + 2,
and s− hs paths are of length hs + ht + 4.

Proof. By Lemma 3, without loss of generality, we may assume that u = 0s0t0
and v = 0s−hs1hs0t−ht1ht0. Depending on hs, two cases are distinguished.

Case 1: hs = 0. Consider u = 0s0t0 and v = 0s0t−ht1ht0 are in distinct
induced subgraphs, denoted by Q1

s and Q2
s, respectively. The following sets of

s+ 1 internally disjoint paths can be set between u and v.
For 1 ≤ i ≤ s,

Pi : u = 0s0t0→ 0s−i10i−10t0→ 0s−i10i−10t1→ Ri → 0s−i10i−10t−ht1ht1

→ 0s−i10i−10t−ht1ht0→ v = 0s0t−ht1ht0,

where |Pi| = ht+4. Note that the path Ri is of length ht in the induced subgraph,
denoted by Qi

t.

Ps+1 : u = 0s0t0→ 0s0t1→ Rs+1 → 0s0t−ht1ht1→ v = 0s0t−ht1ht0,

where |Pi| = ht + 2. Note that the path Rs+1 is of length ht in the induced
subgraph, denoted by Qs+1

t .

Case 2: 1 ≤ hs ≤ s. Consider u = 0s0t0 and v = 0s−hs1hs0t−ht1ht0 are
in distinct induced subgraphs, denoted by Q1

s and Q2
s, respectively. By Lemma

2, there exist s internally disjoint paths Hi(1 ≤ i ≤ s) between u and v′ =
0s−hs1hs0t0 in the induced subgraph Q1

s such that hs of them are of length hs,
and the other s − hs paths are of length hs + 2. Without loss of generality, we
set |Hi| = hs for 1 ≤ i ≤ hs and |Hi| = hs + 2 for hs + 1 ≤ i ≤ s. We set
0s0t0 → H ′

i → 0s−hs1hs−i01i−10t0 → 0s−hs1hs0t0 as Hi for 1 ≤ i ≤ hs, and
0s0t0 → H ′

i → 0s+hs−i10i−hs−11hs0t0 → 0s−hs1hs0t0 as Hi for hs + 1 ≤ i ≤ s.
We denote that Ni(v) = 0s−hs1hs−i01i−10t−ht1ht0 is the neighbor of v in Q1

s for
1 ≤ i ≤ hs, and Ni(v) = 0s+hs−i10i−hs−11hs0t−ht1ht0 is the neighbor of v in Q1

s

for hs + 1 ≤ i ≤ s.

The following sets of s+1 internally disjoint paths can be set between u and
v.
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P1 : u = 0s0t0→ H1 → 0s−hs1hs0t0→ 0s−hs1hs0t1→ R1

→ 0s−hs1hs0t−ht1ht1→ v = 0s−hs1hs0t−ht1ht0,

where |P1| = hs + ht + 2. Note that the path R1 is of length ht in the induced
subgraph, denoted by Q1

t .

For 2 ≤ i ≤ hs,

Pi : u = 0s0t0→ H ′
i → 0s−hs1hs−i01i−10t0→ 0s−hs1hs−i01i−10t1→ Ri

→ 0s−hs1hs−i01i−10t−ht1ht1→ 0s−hs1hs−i01i−10t−ht1ht0

→ v = 0s−hs1hs0t−ht1ht0,

where |Pi| = hs + ht + 2. Note that the path Ri is of length ht in the induced
subgraph, denoted by Qi

t.

For hs + 1 ≤ i ≤ s,

Pi : u = 0s0t0→ H ′
i → 0s+hs−i10i−hs−11hs0t0→ 0s−hs−i10i−hs−11hs0t1→ Ri

→ 0s+hs−i10i−hs−11hs0t−ht1ht1→ 0s+hs−i10i−hs−11hs0t−ht1ht0

→ v = 0s−hs1hs0t−ht1ht0,

where |Pi| = hs + ht + 4. Note that the path Ri is of length ht in the induced
subgraph, denoted by Qi

t.

Ps+1 : u = 0s0t0→ 0s0t1→ Rs+1 → 0s0t−ht1ht1→ 0s0t−ht1ht0→ L

→ v = 0s−hs1hs0t−ht1ht0,

where |Ps+1| = hs+ht+2. Note that the path Rs+1 is of length ht in the induced
subgraph, denoted by Qs+1

t , and L is of length hs in the induced subgraph Q2
s.
⊓⊔

Because the proof of Lemmas 6 to 15 are long and similar to Lemmas 4 and
5, we omit the proof of Lemmas 6 to 15 here, and only state the lemmas.

Lemma 6. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If u[0] =
v[0] = 1, and hs(u, v) = 0, then there exist t+1 internally disjoint paths Pi(1 ≤
i ≤ t+1) between u and v such that ht of them are of length ht, t−ht paths are
of length ht + 2, and one path is of length ht + 6.

Lemma 7. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If u[0] =
v[0] = 1, and hs(u, v) ̸= 0, then there exist t+1 internally disjoint paths Pi(1 ≤
i ≤ t + 1) between u and v such that ht + 1 of them are of length hs + ht + 2,
and t− ht paths are of length hs + ht + 4.
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Lemma 8. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If u[0] ̸=
v[0] and hs(u, v) = ht(u, v) = 0, then there exist s + 1 internally disjoint paths
Pi(1 ≤ i ≤ s+ 1) between u and v such that s of them are of length 7, and one
path is of length 1.

Lemma 9. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If u[0] ̸=
v[0], hs(u, v) ̸= 0 and ht(u, v) = 0, then there exist s+1 internally disjoint paths
Pi(1 ≤ i ≤ s + 1) between u and v such that hs of them are of length hs + 5,
s− hs paths are of length hs + 7, and one path is of length hs + 1.

Lemma 10. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If
u[0] ̸= v[0], hs(u, v) = 0 and ht(u, v) ≥ s, then there exist s + 1 internally
disjoint paths Pi(1 ≤ i ≤ s + 1) between u and v such that s of them are of
length ht + 5, and one path is of length ht + 1.

Lemma 11. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If
u[0] ̸= v[0], hs(u, v) = 0 and 1 ≤ ht(u, v) ≤ s − 1, then there exist s + 1
internally disjoint paths Pi(1 ≤ i ≤ s+ 1) between u and v such that ht of them
are of length ht+5, s−ht of them are of length ht+7, and one path is of length
ht + 1.

Lemma 12. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If
u[0] ̸= v[0], hs(u, v) = s and ht(u, v) ≥ s, then there exist s + 1 internally
disjoint paths Pi(1 ≤ i ≤ s + 1) between u and v such that s of them are of
length s+ ht + 3, and one path is of length s+ ht + 1.

Lemma 13. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If
u[0] ̸= v[0], hs(u, v) = s, 1 ≤ ht(u, v) ≤ s − 1, then there exist s + 1 internally
disjoint paths Pi(1 ≤ i ≤ s+ 1) between u and v such that ht + 1 of them are of
length s+ ht + 3, s− ht − 1 of them are of length s+ ht + 5, and one path is of
length s+ ht + 1.

Lemma 14. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If
u[0] ̸= v[0], 1 ≤ hs(u, v) ≤ s − 1 and ht(u, v) ≥ s, then there exist s + 1
internally disjoint paths Pi(1 ≤ i ≤ s + 1) between u and v such that hs + 2 of
them are of length hs + ht + 3 and s− hs − 1 paths are of length hs + ht + 5.

Lemma 15. Let u, v be two distinct vertices of EH(s, t) for 3 ≤ s ≤ t. If
u[0] ̸= v[0], 1 ≤ hs(u, v) ≤ s− 1 and 1 ≤ ht(u, v) ≤ s− 1, then there exist s+ 1
internally vertex-disjoint paths Pi(1 ≤ i ≤ s+ 1) between u and v such that the
following two cases are distinguished.

1. If hs + ht ≥ t+ 1, then t+ s− hs − ht − 1 of them are of length hs + ht + 5
and hs + ht − t+ 2 paths are of length hs + ht + 3.

2. If s ≤ hs+ht ≤ t, then s− 1 of them are of length hs+ht+5 and two paths
are of length hs + ht + 3.

3. If hs + ht ≤ s − 1, then hs + ht + 1 of them are of length hs + ht + 5,
s − hs − ht − 1 of them are of length hs + ht + 7 and one path is of length
hs + ht + 3.
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According to Lemmas 4 to 15, the internally disjoint paths of exchanged
hypercubes can be obtained. And by Theorems 1 and 2, we obtain the wide
diameter of exchanged hypercubes as Theorem 3.

Theorem 3. The wide diameter of the exchanged hypercube EH(s, t) is s+t+3
for 3 ≤ s ≤ t.
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Swarm Architecture Toward P2P VoD without Playback Suspension
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Abstract— This paper proposes a method to reduce the
playback suspension in a Video-on-Demand system based on
the Peer-to-Peer technology (P2P VoD). Our main contribu-
tion is twofold. The first is the proposal of a hierarchical P2P
architecture with the notion of swarms. Swarm is a group of
peers to have similar playback position and those swarms
are connected so that requested pieces are forwarded from a
swarm to another swarm in a bucket brigade manner, where
the forward of pieces is regulated by the super-peer (SP)
of the swarm. The second contribution is the proposal of
a match making scheme between requests and uploaders.
The result of simulations indicates that the proposed scheme
reduces the total waiting time of a randomized scheme by
24% and the load of the media server by 76%.

Keywords: Peer-to-Peer, video-on-demand, playback suspension,
match-making.

1. Introduction
With the widespread of broadband accesses to the Internet,

video streaming has attracted many users in recent years. For
example, YouTube attracted more than one trillion views
in 2011 and it is forecast that the streaming will occupy
55% of the global consumer traffic by 2016 [4]. In video
streaming services, the playback of a video concurrently
proceeds with an acquisition of the video stream from the
media server. Thus, the heavy load of the media server will
easily degrade the quality of streaming services, such as the
delay, jitter and the temporary suspension of the playback.
With such a background, video-on-demand using peer-to-
peer technology (P2P VoD, for short) has recently attracted
considerable attention as a way of reducing the load of the
media server [3], [5], [6], [8], [9], [11].

In P2P VoDs, each video file is divided into small frag-
ments calledpieces and those pieces are disseminated to
the client peers over a logical network called P2P overlay.
Each peer acquires pieces by repeating local communication
among nearby peers in the overlay, in such a way that
pieces close to the playback position is acquired earlier than
others. When a piece could not be acquired by the time
of playback, the playback issuspendeduntil the piece is
acquired. Such a suspension causes considerable stress and
will significantly degrade the satisfaction of users concerned
with the streaming service.

In order to avoid such a playback suspension, we need to
regulate the behavior of uploaders as well as the behavior

of downloaders, since a requested piece could not be ac-
quired by the deadline if the uploader does not select the
downloader as the target of upload. In addition, it would
also be a crucial issue for each peer that how to become
adjacent with peers to have enough pieces to be downloaded.
In the literature, there are several proposals such that peers
requesting pieces close to their deadline are selected as
the downloader [1], [13], [14]. However, if each uploader
independently conducts such a selection, we could not avoid
the duplicated uploads to a specific peer, which causes the
waste of the upload bandwidth of the overall network and a
reduction of the upload performance.

In order to overcome such issues, in this paper, we propose
a hierarchical P2P architecture with the notion of swarms.
Swarm is a group of peers to have similar playback position.
In other words, peers in a swarm “share” pieces close to
their playback position. With this notion, peers in the P2P
system can organize a logical structure such thatrequested
pieces are forwarded from a swarm to another swarm in a
bucket brigade manner. The forward of pieces is regulated
by the super-peer (SP) of the swarm, so that the performance
degradation due to the independent selection of downloaders
could be avoided. More specifically, each SP conducts a
match making between sets of requests and uploaders, in
such a way that the number of requests realized by an
uploader is maximized. The performance of the proposed
method is evaluated by simulation. The result of simulations
indicates that the proposed scheme reduces the waiting time
of a randomized scheme by 24% and the load of the media
server by 76%.

This paper is organized as follows. Section 2 describes the
model of P2P VoD. Section 3 overviews related work. Sec-
tions 4 and 5 describe the proposed swarm architecture and
the scheduling algorithm, respectively. Section 6 describes
the result of simulation. Finally, Section 7 concludes the
paper with future work.

2. Model
2.1 P2P Network

Let P be a P2P network consisting of a media server, a
tracker andN homogeneous peers. Peers inP are directly
connected with the server and are mutually connected with
a logical network called P2P overlay. Peers and the server
can communicate with each other by sending messages over
links connecting them. We assume that the capacity of links
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andthe download capacity of each peer are sufficiently large.
However, as for the upload capacity, we make the following
assumptions:

• The server and a peer can transmit several messages to
its neighbors at a time, where each message consumes
a certain amount of upload bandwidth.

• The upload capacity of the server isus and the upload
capacity of peerp is up for eachp.

2.2 P2P VoD
Consider a P2P VoD constructed over the P2P network

described above. LetF be the content file to be delivered.
F is divided into several pieces of constant size by the media
server, and is delivered to all peers inP through the overlay.
Let n be the number of pieces obtained from fileF . Each
piece is given a unique ID (piece ID) from 1 ton, and after
receivingn distinct pieces from the neighbor, each peer can
restore the original fileF from them. Each piece corresponds
to a part of the content file, and can be played independently.
Let η(p) be a variable representing the ID of piece currently
played by peerp, which is defined only for the peers which
have started the playback. In the following, we callη(p) the
playback position (PP) of peerp. If p did not acquire a piece
andη(p) reaches the position of the missing piece, then the
playback ofp is “suspended” until it acquires the missing
piece. If the following, we call the time period during which
the playback is suspended (after starting the playback) the
waiting time for the playback.

In order to realize a continuous playback without suspen-
sion, each peer must acquire every missing piece before its
playback time. As a concrete method to be aware of the set of
pieces acquired by its neighbors, we adoptbuffer map (BM)
which is commonly used in many P2P VoDs. BM for fileF
is a bit array of lengthn, and thejth element in the array
represents whether it acquired thejth piece (value 1) or not
(value 0). BM is periodically exchanged among neighboring
peers so that each peer can learn the set of pieces acquired
by each neighbor in almost real-time.

2.3 Behavior of Each Peer
Suppose that peerp newly joins the system. The behavior

of p before leaving the system is described as follows.
Preparation: At first, peer p asks the tracker to send

back a list of peers in the overlay. After receiving the list,p
contacts each peerq in the list to become a neighbor ofq.
It then generates its BM and exchanges a copy of BM with
its neighbors. The BM ofp is updated when it acquires a
new piece, and the exchange of a copy of BM is periodically
conducted until it leaves the system.

Playback: Peerp acquires the first few pieces of fileF
from the media server. After that, it starts the playback from
piece 1. In the succeeding steps,p executes the acquisition
and the playback in a concurrent manner. Pieces to be
acquired are determined by thepiece selection rule. The

request for a selected piecej is sent to an adjacent peer
holding the piece, wherep can judge whetherq holds j
by referring to a copy of BM received fromq. A request
received from a neighbor can be forwarded to another
neighbor if necessary. Suppose thatp holds several pieces
requested by other peers. If the number of requests exceeds
up, then p selectsup requests using an appropriatepeer
selection algorithm.

Departure: Each peer can leave the P2P VoD at any
point in time. In general, the leave of peers can be classified
into two types, i.e., leave with normal procedure and leave
without normal procedure. In the following, we assume
that peers can leave the system without conducting normal
procedure except for specific peers such as super peers.

3. Related Work
BiToS is a P2P VoD based on the following piece selection

rule [10]. Each peer divides the set of un-acquired pieces
into two groups by the closeness to the PP and conducts the
selection of a piece in the following two steps: 1) select
a group with a certain probability, and 2) select a piece
from the selected group according to the rarest first rule [2].
Although the piece selection rule adopted in BiToS is widely
used as a reference in the literature [16], it is pointed out
in [7] that the selection of pieces from the high priority set
should be conducted in such a way that both of the rareness
and the closeness to the PP are taken into account.

In [13], a way of constructing an overlay such that each
peerp is adjacent with peers to have as many un-acquired
pieces ofp as possible. More concretely, 1) for each neighbor
q, p maintains the number of pieces which are held byq but
are not held byp, and 2) when this number becomes less than
a threshold,p asks the tracker to recommend a candidateq′

for a new neighbor such that the PP ofq′ is close to the PP of
p. An apparent drawback of this approach is that the tracker
should keep track of the PP for all peers participating in the
system, whose cost significantly increases as the number of
peers increases.

In [14], BitTorrent is extended so that each request carries
the deadline of the request and upon receiving such requests,
each peer determines the target of upload in the descending
order of the criticalness of deadline. A similar idea has been
proposed in [1]. In this method, the set of neighbors is
dynamically divided into high priority group and low priority
group, and in selecting the target of upload, it first selects a
group with a certain probability and then selects requests in
the descending order of the criticalness of deadline.

The way of selecting appropriate uploaders by download-
ers is also considered in the literature [7], [14]. In general,
a peer which receives many requests could not respond to
given requests appropriately. In the method proposed in [14],
each peer keeps the number of un-responded requests for
each neighbor, and sends a request to a neighbor to have the
least un-responded requests. Such a selection of uploaders
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consideringthe load balancing could effectively avoid the
concentration of requests compared with a scheme in which
the downloader sends a request to all of the relevant peers.

4. Swarm Architecture
4.1 Overview

As was described previously, in order to realize a contin-
uous playback of a video stream, each peerp must collect
pieces close to its playback position (PP) as soon as possible,
where the PP ofp continuously goes ahead as the playback
of the stream proceeds. An efficient way to realize such a
continuous piece acquisition is to contact a peerq whose
PP is slightly ahead ofp and to askq to upload pieces to
p. In addition, if there are several possible uploaders, those
uploads should be appropriately regulated so as not to cause
a duplicated upload nor the missing of urgent pieces.

In order to solve such issues, in this paper, we propose
a hierarchical P2P architecture such that peers to have
similar PP organize a group of peers calledswarm. In this
architecture, each peer belongs to exactly one swarm which
has exactly one super peer (SP) selected from the members
of the swarm. Those SPs are connected with an overlay
described later, and any two peers participating in the system
can communicate with each other via SPs corresponding to
them. Each SP manages the information on all peers in the
corresponding swarm such as the residual upload capacity
and the latest BM to regulate uploads conducted by the peers.
Each request (for a piece) issued by a peer is sent to the SP
of the same swarm, and as will be described later, it will be
forwarded to other SPs and the media server if necessary.

The overlay of SPs can be used to support VCR operations
as well. In fact, since each swarm consists of peers to have
similar PP, if peerp could identify an SP with a PP close to
the piece requested byp through the overlay of SPs,p can
quickly identify a swarm associated with it after conducting
a VCR operation. Concrete way for such an identification
will be described later.

4.2 Construction of Swarm
In the proposed architecture, all swarms are generated by

the tracker, and are given a sequence number starting from
0. For each swarm, the first peer in the swarm is selected
as the (first) SP of the swarm. More concretely, the tracker
keeps two variablesx andy, wherex indicates the sequence
number of the latest swarm andy indicates the number of
normal (i.e., non-super) peers in the latest swarm, and those
variables are updated as follows:

• When a new peer arrives at the system,y is incremented
by one in moduloγ, whereγ is a parameter indicating
the intended swarm size.

• When y becomes zero,x is incremented by one and
the first peer in the new swarm becomes the SP of the
swarm.

The succeedingγ−1 peers automatically become the mem-
bers of the swarm, where in order to establish a connection
to the corresponding SP, the tracker notifies the information
about the latest SP to each peer arriving at the system.

Each peer including SP is allowed to leave the swarm at
any point in time. However, if an SPp wishes to leave,
it should select a successor according to the following
procedure, and notify the information on the successor to
the tracker and all members of the swarm before leaving:

• For each peerq, let σq denote the piece ID such that:
1) all pieces from PP toσq are acquired byq and 2) the
next piece ofσq is not acquired byq or σq is the last
piece of the given video file. In the following, we call
σq theacquisition position of q. Note thatσq indicates
the status of piece acquisition byq ahead of the PP.

• Let q∗ be a peer in the swarm managed byp such that
“σ q∗ is the most ahead among all peers in the swarm.”
Then,p selectsq∗ as the successor ofp.

A reason of why we useσp instead of PP is to take into
account the status of piece acquisition rather than the status
of playback. Intuitively, we expect that the new SP acquires
more pieces than any other peer in the swarm.

4.3 Overlay of SPs
SPs construct an overlay such that for each swarmX, the

SP ofX is connected with the SP of another swarmpre(X)
which acquired more pieces thanX. The role of the overlay
is to realize a continuous upload of pieces frompre(X) to
X, which is completely regulated by the SP ofpre(X), and
to notify necessary information frompre(X) to X such as
the list of peers and the set of latest BMs. See Figure 1 for
illustration.

A key point of our proposal is that such a “pre” relation is
defined so that there are fewX ′s satisfyingpre(X ′) = X for
eachX. Let us say thatX ′ is a “fol ” of X if pre(X ′) = X.
Suppose that the tracker keeps the time of generating each
swarm in addition to variablesx andy. Then, swarmpre(X)
is determined by the tracker whenX is generated, according
to the following procedure:

• if there is a (non-empty) swarm generated earlier than
X by more thanτ time units, then among such swarms,
select a swarmY with the leastfol swarms aspre(X),
whereτ is an appropriate parameter, and

• otherwise, select the oldest swarm aspre(X).

In this method, the tracker determines the predecessor of
swarmX (i.e., swarmpre(X)) by referring to the generation
time and the number of successors of the existing swarms
without communicating with SPs1. A critical point is that
a swarmY ′ which is generated “just before”X may not

1In other words, it assumes that the time after the generation precisely
reflects the status of piece acquisition. However, such an assumption does
not hold in general particularly when the playback is frequently suspended.
How to compensate this issue is left as a future work.
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have enough pieces forX. For example, consider the case
in which many peers arrive at the system almost at the same
time. In such a case, swarmsX andY ′ have a similar status
of piece acquisition. Thus, even if we construct a “pre-fol ”
relationship among those swarms, it is highly probable that
pre(X) does not have enough pieces forX, which would
result in a long delay for the piece acquisition. This indicates
that we should select a swarm, which stays in the system for
a long time and has enough pieces forX, as the predecessor
of swarmX.

In the following, we denote the set of peers inpre(X) as
pre(X) and the set of peers infol swarms ofX as fol(X).

4.4 Efficient Support of VCR Operations
This section describes how to support VCR operations in

the proposed architecture. Suppose that the PP of peerp in
swarmX is updated toη by conducting a VCR operation.
Then,p moves to a swarm to have enough pieces ahead of
η, in the following manner.

1) Starting from swarmX, p traverses predecessors as

pre(X), pre(pre(X)), pre(pre(pre(X))), . . . ,

and identifies the “first” swarmY such that the acqui-
sition position of the SP is ahead ofη and the “last”
swarmZ such that the acquisition position of the SP
is behind ofη. Note thatY may not exist in general.

2) Peerp moves to swarmY if it contains a peer holding
the piece with IDη and moves toZ otherwise.

If we merely consider the benefit of the moving peerp,
it would be better to select the oldest swarm as the target
of the move. However, as the age of the target swarmX ′

increases, it becomes harder forp to contribute to the other
peers inX ′ ∪ fol(X ′) as an uploader. Thus, in the proposed
method, we select a swarm to have an acquisition position
sufficiently close toη (i.e. Y or Z) as the target of move.

The reader should note that since it sequentially checks
swarms starting fromX, in the worst case, it takes a time and
communication cost proportional to the number of swarms in

the system. An improvement of the method using a technique
similar to DSL (Dynamic Skip List) [12] and VMesh [15]
is an important open problem.

5. Assignment of Uploaders
In this section, we describe how to assign peers to the

requests received from downloaders. As was described pre-
viously, each peer in swarmX can acquire pieces from peers
in X ∪ pre(X). In the proposed scheme, it first partitions
received requests into two classes, i.e., priority ones and
normal ones, and conducts an assignment of uploaders for
each class so as not to cause the waste of resources nor
the missing of urgent pieces. The reader should recall that
although each peer can simultaneously issue several requests,
each uploader consumes one upload port for each request
assigned to it.

5.1 Classification of Requests
In the proposed method, each peer requests pieces in the

same order with the playback. However, since the acquisition
of a piece generally takes a longer time than the playback in
P2P environment, we assume that each peer should reserve
at leastα (≥ 1) pieces ahead of the playback position (PP)
in its local buffer. More concretely, when the difference
between the PP and the earliest lacking piece (i.e., the next of
the acquisition position) is less than or equal toα, the lacking
piece is directly acquired from the media server2. The other
pieces are acquired from neighbors (as an exceptional case, it
can acquire a piece from the media server if it could not meet
the deadline). Requests for such pieces are classified into two
types by an appropriate thresholdβ (> α), as follows:

• it is a priority request if the difference to the PP is
smaller than or equal toβ, and

• it is a normal request, otherwise.

5.2 Preliminaries
In the following, we assume that each request is identified

by a pair of peer ID and piece ID. LetR be the set of
requests received by the SPp of swarmX. The reader should
note thatR consists of requests issued by peers inX ∪
fol(X). As was described above,p is aware of the upload
bandwidth and the latest BM of the peers in swarmX. The
objective of the assignment algorithm is that givenR andX,
to calculate a matching betweenR andX. If such a matching
is given, each peer inX can autonomously decide the target
of uploads and pieces to be uploaded. More concretely, we
consider the problem of maximizing the number of requests
assigned to the uploader, subject to the following constraints:

• The number of requests assigned to peerp does not
exceedup (constraint on the upload capacity).

2If the number of direct requests is sufficiently small, the media server
can respond to all of such requests since the upload bandwidth of the media
server is generally much wider than that of normal peers.
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• Eachrequest is assigned to at most one peer (avoidance
of duplicated upload).

• If a peer is assigned to a normal request and it has a
piece requested by a priority request, then the priority
request must be assigned to some peer by the assign-
ment (preference of priority requests).

This problem is equivalent to the problem of finding a
maximum matching in bipartite graph with vertex setR∪X
if we neglect the priority of requests. If the given bipartite
graph hasn vertices andm edges, the maximum matching
problem can be solved inO(n1/2m) time. However, in P2P
VoDs considered in this paper, each SP (the scheduler) must
complete an assignment of requests to the set of uploader
within one second, which means that the running time of the
above optimum algorithm is not satisfactory for our purpose.
Hence in the proposed scheme, we will take an approach to
calculate a quasi-optimal solution using heuristic method.

5.3 Algorithm
Given setR of requests and setP of peers, let us construct

a bipartite graphG = (R,P,E), as follows: verticesr ∈ R
andp ∈ P are connected by edgee ∈ E, if and only if the
piece requested byr is held byp. Let d(u) denote the degree
of vertexu in G. Then the proposed algorithm proceeds as
follows:

1) Select peerp∗ ∈ P such thatd(p∗) = maxp∈P {d(p)}.
Let R∗(⊆ R) be the set of neighbors ofp∗ andr∗ be
a request inR∗ such thatd(r∗) = minr∈R∗{d(r)}.

2) Add edge{r∗, p∗} to the solution, i.e., determine that
“requestr∗ is assigned to peerp∗.”

3) Remover∗ and its all incident edges fromG, and if the
number of edges incident top in the solution becomes
up, then removep and its all incident edges fromG.

4) If E becomes empty, then terminate the algorithm.
Otherwise, go to Step 1.

In the proposed scheme, we apply the above algorithm
to priority requests and normal requests sequentially in this
order. More concretely, we first execute the algorithm by
letting R be the set of priority requests andP := X ∪
pre(X), and then execute the algorithm by lettingR be the
set of normal requests andP := X. The reader should note
that the upload port of several peers inX are used after the
first assignment, and that in the first assignment, the SP of
X assigns peers inpre(X) to the priority requests issued
by X (a way of resolving such “conflicts” of assignments
will be discussed in the next subsection). The running time
of the algorithm depends on the number of vertices in graph
G. More precisely, since the size ofR decreases by at least
one in each iteration and a minimum (or maximum) element
in a set can be found in logarithmic time by implementing
it using heap, the running time of the algorithm is bounded
asO(|R|(log |P |+ log |R|)). In our swarm architecture, the
number of peers in each swarm is bounded byγ on average,
and the number of requests issued by the peers in a swarm

can be bounded by a constant. Thus, each SP can generate
a quasi-optimal solution in a short computation time.

5.4 Conflict Resolution
In the proposed scheme, such an assignment is executed

by all SPs in parallel. Hence each peer in swarmX will be
regarded as an uploader by several SPs, i.e., the SP of swarm
X and SPs of itsfol swarms. The conflict of assignments
conducted by those SPs is resolved by the following rule:

1) Assignment of priority requests conducted by the SP
of X is given the highest priority.

2) Assignment of priority requests conducted by the SP
of fol swarms is given the second highest priority.

3) Assignment of normal requests conducted by the SP
of X is given the lowest priority.

In other words, each SP tries to use resources in its own
swarmX as much as possible, and resources inpre(X) can
be used by the peers inX only when there remains a room
in pre(X) after the first assignment. The reader should recall
again that if there remain unassigned (urgent) requests, they
are forwarded to the media server to meet the deadline, as
long as the server has enough residual upload capacity.

6. Simulation
6.1 Preliminaries

We conducted simulation to evaluate the performance of
the proposed scheme. In the following, we assume that all
peers are synchronized to the global clock, and the time for
sending requests and conducting assignments are negligible.
200 (= N) peers sequentially arrive at the system according
to the Poisson distribution with mean 12 sec. A new peer
starts its playback after collecting the first 3 pieces and leaves
the system after completing the playback of the last piece.
No peer conducts VCR operation. The media server is the
last resort to acquire pieces by the deadline, although if the
server receives more thanus requests, it selectsus requests
in the descending order of the piece ID.

We compare the performance of the proposed scheme
with the following randomized scheme. Peerp in swarm
X requestsδ (≥ β) pieces ahead of the PPη(p) to peers
in the same swarmX, where if the requested piece is
within distanceβ from η(p), the request is also sent to
swarmpre(X). Peerq receiving requests selects at mostuq

requestsindependently and randomly, and uploads them to
the corresponding peers. The reader should note that in the
simulation, we do not use a deterministic scheme in which
the target of upload is selected by the priority of requests,
since it easily causes a duplicated upload and a missing of
low priority pieces. Those two schemes are evaluated with
respect to the following metrics.

• Startup timeWs(p) and waiting timeW (p) of peerp,

whereW (p) includesWs(p). Let Wall
def
=
∑N

i=1 W (i).
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Fig. 2: Waiting time of each peer (us = 20).

• The amountMs of uploaded data per second and the
total number of piecesUp uploaded by the server.

Parameters are fixed as follows. We consider a video file
of length 1600 sec with playback bit rate of 512 Kbps, which
is divided into 534 pieces of size 192 KB each. Hence the
playback of a piece takes 3 sec. The upload capacity of
the server is 20 Mbps and the upload capacity of each peer
is 3 Mbps. In other words, the server (resp. a peer) can
upload at most 13 (resp. 2) pieces during the playback of
a piece. Two thresholds used in the proposed scheme are
fixed asα = 1 and β = 3, and the threshold used in the
randomized scheme is fixed asδ = 4. That is, one piece
ahead of the PP is acquired from the server, two pieces are
acquired using priority request, and additional one piece is
acquired by the randomized scheme. The size of each swarm
is fixed toγ = 20 and parameterτ is fixed to 10 sec.

6.2 Waiting Time
The average waiting time of the proposed and the random-

ized schemes are 3.05 sec and 3.95 sec, respectively, i.e., it
attains a reduction of 24%. Figure 2 illustrates the value
of W andWs for each peer. In the proposed scheme, the
waiting time equals to the startup time (i.e., 3 sec) except for
the first three peers, i.e., they do not encounter the playback
suspension after starting the playback. This is best possible
for our setting, since it needs at least 3 sec to acquire a piece,
where the acquisition from the server might take longer time
if the server becomes busy. In other words, the above result
indicates that the server has enough residual capacity so that
new peers can certainly acquire pieces from the server.

On the other hand, in the randomized scheme, the frequent
playback suspension occurs in early steps of the simulation.
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Fig. 3: Upload rateMs of the media server.

Those peers are members of the first swarm. They should
acquire pieces from the media server because they have no
enough predecessors, but since the server should (continu-
ously) upload the first few pieces to newly joined peers, the
inefficiency of the randomized scheme increases the waiting
time as the number of participants increases. In addition
to peers in the first swarm, several peers encounter a long
startup time of more than 3 sec, which indicates that the
load of the server keeps high during the simulation.

6.3 Server Stress
Playback suspension occurs if a piece is not acquired from

the media server by the deadline. Since newly arrived peers
rely on the download from the media server, whenMs is
low and there remains enough capacity at the media server,
we could simultaneously reduce the frequency of playback
suspension and the startup time of each peer.

Figure 3 illustrates the temporal transition ofMs. The hor-
izontal axis is the number of rounds (one round corresponds
to 3 sec in our simulation). In the proposed scheme,Ms is
bounded by 15 Mbps and a peak occurs only when the server
simultaneously uploads to a peer with the most ahead PP and
newly joined peers. On the other hand, in the randomized
scheme, many peers continuously rely on the server and after
the 130th round,Ms frequently reaches the upload capacity
20 Mbps. The number of piecesUp actually uploaded from
the media server is 2577 in the proposed scheme and 8618
in the randomized scheme, which indicates that the proposed
scheme reduces the load of the server by 76%.
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6.4 Impact of Upload Bandwidth of Server
Finally, we evaluate the impact of the upload capacity to

the performance of the schemes by varying it from 26 to
18 Mbps. The average waiting time of the proposed scheme
is around 3.05 sec regardless of the value ofus. However,
in the randomized scheme, while it attains 3.05 sec when
us is 26 Mbps, it significantly degrades asus decreases. In
fact, although the difference to the proposed scheme is kept
small until 20 Mbps, it rapidly increases to more than 45
sec for 18 Mbps, which is apparently because a “chain of
playback suspension” violates the continuous flow of pieces
from predecessors to the successors.

Similar phenomena could be observed for the number of
uploaded piecesUp. Figure 4 illustrates the result. Although
Up is stable regardless of the value ofus in the proposed
scheme, in the randomized scheme, it slightly increases by
decreasingus from 26 to 20 Mbps and significantly increases
by further decreasing it to 18 Mbps, which is because of the
increase of the number of requests forwarded to the server.
By the above results, we can conclude that the superiority of
the proposed scheme becomes significant particularly when
the upload bandwidth of the media server is not large, i.e.,
it would be a good choice for the designers who wish to
realize a P2P VoD with low construction cost.

7. Concluding Remarks
This paper proposes a hierarchical P2P architecture with

the notion of swarms for P2P VoDs without playback sus-
pension. The result of simulations indicates that the proposed
scheme reduces the total waiting time of a randomized
scheme by 24% and the load of the media server by 76%. A
future work is to evaluate the performance of the proposed
scheme in an environment in which several peers conduct
VCR operation such as pause, jump and fast forward.
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Abstract 
OSN runs at the worst operating environments. 

OSN requires more reliable and more stable 

operating conditions to extend the network lifetime 

compared to other WSN. In this paper, we propose a 

MCM based clustering algorithm for OSN. As 

properly managing the number of cluster member 

nodes, our proposed algorithm increases the 

lifetime of network nodes, enhances the network 

efficiency, and predicts the network performance 

and reliability. In addition, NS-2 simulation results 

show that our algorithm has the better performance 

compared to LEACH and extends the network 

lifetime. 

 
Keywords: OSN, WSN, MCM, clustering 

algorithm, network reliability 

 

 

1. Introduction 
 

Recent advances in wireless sensor network 

technology have made it possible to develop many 

real-time sensor networks for monitoring a marine 

ecosystem. The network consists of various sensor 

nodes, which are able to measure light, sound, 

motion, wind velocity, surface reflection, and salt 

concentration. Collected raw data acquired from 

these nodes can be used for ocean weather forecast 

enhancement and marine ecosystem understanding.  

An ocean sensor network (OSN) is an ad 

hoc wireless networks deployed in a wide area with 

tiny, low-powered smart sensor nodes to monitor a 

marine phenomenon. A node gathers sensing data 

and sends it to a sink node, which aggregates the 

data sent from these nodes [1]. The aggregate data is 

then sent to a user for further data processing.  

The operating conditions of OSN such as ocean 

surface reflection and the ocean weather is worse 

than any other WSN. OSN should be designed with 

more stable and more reliable requirements than any 

other WSN. In addition, OSN is once deployed and 

operated until the sensor battery died without node 

maintenance and battery recharging. The routing 

algorithm of OSN should be an energy-efficient 

routing algorithm to maintain a long network 

lifetime. 

The clustering routing algorithm is appropriate to 

require a hierarchical communication structure such 

as OSN. One of a noble clustering algorithm is 

LEACH (Low Energy Adaptive Clustering 

Hierarchy). LEACH requires high communication 

overheads on cluster heads. The drawback causes to 

reduce the network lifetime and to make a network 

partitioning problem due to the unbalanced battery- 

consumption of nodes. 

In this paper, we propose a MCM(Maximum 

Cluster Members) based Clustering algorithm for 

OSN. This algorithm aims to reduce communication 

loads of cluster heads, to extend the network 

lifetime with maintaining balanced node battery 

consumption, and eventually enhance the network 

reliability.  

Section 2 describes the operating environment of 

OSN and LEACH as a noble cluster routing 

protocols and then identifies problems. Section 3 

presents detailed designs of our algorithm such as 

basic concept, cluster composition, cluster factors 

(BS, cluster heads, cluster members) and network 

reliability. In Section 4, we will discuss the results of 

our simulation with comparison to LEACH and 

finish with our final conclusions. 

 

2. Related Studies 

 

2.1 Ocean Sensor Network (OSN) 

 
The ocean sensor network (OSN) has many 

design considerations compared to the typical 

wireless sensor network (WSN). The ocean has the 

worst operational conditions for wireless sensor 

network. The reflection rate of the sea surface is 

bigger. The ocean weather and the wind speed 

changes rapidly. The probability that sensor nodes 

are lost is larger. Also the deployment and 

maintenance of OSN is difficult. In addition, as the 

delay time and the error rate are high, OSN requires 

more stable, reliable, and energy-efficient network 

to maintain a long lifetime [1]. The cluster structure 

is known to be suitable in OSN [2].  
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In a cluster based OSN, sensor nodes are 

partitioned into many clusters, which integrates data 

collected from sensor nodes and transmits them to 

the sink node of the network. A cluster has a cluster 

head which collects data from sensor nodes within 

its group. The head completes data aggregation, and 

sends it to the sink node of the network. Such data 

aggregation can reduce the consumption of node 

energy and the transmission delay as compared to 

the multi-hop routing protocol. Many clustering 

algorithms have been proposed. One of novel 

algorithm is LEACH (Low Energy Adaptive 

Clustering Hierarchy). 

 

2.2 LEACH 
 

LEACH [3][4][5] is a cluster routing protocol in 

which a cluster head collects data from sensor nodes 

belonging to the cluster and sends the data to the 

sink node after data aggregation. To make all sensor 

nodes in this network consume their node energy 

equally and extend the life time of the network, this 

algorithm randomly changes the cluster head, which 

in turn uses more energy than any other node belong 

to the cluster, every time period. To reduce overall 

communication costs, the cluster head   performs 

data aggregation and then send the data to the sink 

node. 

The cluster head is determined by the following 

function (1): 
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where Pt is the desired percentage of cluster heads, r 

is the current round number, G is the set of nodes 

that have not been cluster-heads in the last 1/Pt 

rounds. 

A round consists of two phases; a set-up phase 

and a steady state phase. The former is a stage for 

configuration of a cluster head and a cluster, and the 

latter is a stage for data transfer by the TDMA 

schedule. 

When a new round starts, each sensor node 

generates a random number in the range of 0 and 1, 

computes a threshold value by using equation (1), 

and compares the two numbers. If the generated 

number is smaller than the threshold value, the node 

is nominated as a cluster head; otherwise it neglects 

the number and remains a plain node. 

The nominated cluster head broadcasts 

advertisement messages over neighbor nodes. The 

neighbor node that receives the advertisement 

messages selects one of broadcasting nodes that 

transmits the strongest broadcasting signal as its 

head cluster node, and sends a “Join-REQ” message 

to the head cluster. After receiving the “Join- REQ” 

message, the head cluster registers the node onto its 

own member node table. The cluster head makes a 

TDMA schedule for data transfer within the cluster 

network and broadcasts the schedule to its member 

nodes. It is at this point that the setup phase to select 

a cluster head is complete. 

In the next steady state phase, each node in a 

cluster network sends information data to its cluster 

head by the TDMA schedule. The cluster head 

sends the aggregated data to the sink node, called its 

base station. To reduce the overhead of the cluster 

head selection once a cluster head has been selected, 

many rounds of data frame transfer are performed 

followed by a repeat of the cluster reconfiguration 

procedure. 

Since LEACH uses probability in selection of 

cluster heads, its advantage is that all nodes have a 

chance of becoming a cluster head. Since LEACH 

periodically performs the set-up phase, it spends 

much battery power on cluster configuration. Also 

since LEACH does not have any restriction of the 

cluster size, the heads of a big cluster that has many 

member nodes spend more power and are exhausted 

earlier than the others. 

 

3. MCM Clustering Algorithm 

 

Due to LEACH’s drawbacks such as unbalanced 

node power consumption, we have introduced a 

MCM clustering algorithm that extends the network 

lifecycle and enhances the efficiency of sensor’s 

energy consumption. The algorithm can assign the 

maximum number of cluster nodes during clustering 

composition and reduce communication overhead of 

cluster heads and data processing loads. In addition, 

this scheme provides a metric to determine the 

reliability of communication between base nodes 

and sensor nodes. 

 

3.1 Basic Concept 

 
The ocean sensor node has a limited battery 

power. It is impractical to repair the node and to 

recharge the node battery. It is necessary efficiently 

to manage node battery-power consumption in order 

to extend the lifetime of the sensor network. If 

possible, we need to keep battery-power 

consumption of nodes balanced and minimize dead 

nodes. In our proposed algorithm, we make a 

formation of clusters, each of which has a cluster 

head and consists of a limited number of nodes. The 

cluster head aggregates node data in its own cluster 

and forwards data to the base station (BS). We can 

reduce the power consumption caused by 

communication overheads between BS and nodes. 
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The bigger the size of a cluster is, the larger the 

number of member nodes is. As a result, 

communication burden of cluster heads is increased 

and causes to shorten their lifetime. 

In the next section, we show an operation 

procedure and cluster configuration of our proposed 

algorithm to reduce unbalanced power consumption 

of nodes. We define the maximum number of 

member nodes in a cluster as MCM. First, sensor 

nodes begin to make a clustering formation with 

MCM. Failed nodes during the clustering formation 

retry to perform new cluster configuration. Repeat 

these processes. Since a cluster has a limited number 

of nodes, we prevent the cluster head from excessive 

consumption of its batter power for communication 

and data aggregation with node members. The 

criterion of cluster configuration which makes the 

cluster size consistent enhances the reliability of 

collected data and the validation of ocean sensor 

networks. 

 

3.2 Cluster Composition 
 The nodes received MSGh reply a cluster-join 

message MSGj to a cluster head candidate. When the 

preliminary cluster heads receive reply messages 

MSGj, they build a table for their cluster member 

information and send a confirmation message 

MSGconfirm to the cluster member node. 

 

Figure 1. Overview of MCM Cluster network 

(MCM =10). 

When sensor nodes receive MSGconfirm, the nodes 

finish the cluster configuration. However, sensor 

nodes that do not receive MSGconfirm, they, as a new 

cluster head candidate, try to flood a cluster head 

candidate message MSGh again until the requirement 

for cluster configuration is satisfied. A operation 

flow chart for cluster configuration is shown in 

Figure 2. 

 

Figure 2. Flowchart of MCM cluster 

configuration. 

3.2.1 Base Station (BS) 

 
BS is a central data collection device that 

aggregates Information data received from all sensor 

nodes. BS commands all sensor nodes including 

cluster heads and manages the network operation 

procedures, and also sends collected data to the 

central data management center for further 

processing. BS transmits a clustering starting 

command MSGc for cluster configuration. MSGc is 

flooded over all nodes and some cluster heads are 

elected. The cluster configuration message, MSGh, 

as shown in Figure 5, includes BS Identification 

(BID), Message types, and the maximum Cluster 

Members as MCMc that indicates the maximum 

number of node a cluster.  MCMc can limit the 

number of node in a cluster and protect the cluster 

head from early node death due to battery power 

exhaustion. 

 

3.2.2 Cluster Head (CH) 

 
As a cluster configuration command is 

broadcasted from BS, a cluster head election 

process starts. A cluster head candidate advertises a 

cluster management message (MSGh) and builds a 

cluster node management table with reply messages 

(MSGj) of cluster node members. The table, as 

shown in Figure 3, includes Member ID, the 

cumulative renewal of cluster members, message 

type, and remaining batter energy information. The 

cluster head send the replied nodes a confirmation 

message that finalizes the cluster formation. The 
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confirmation message includes a ordered list of 

member nodes in terms of residual battery energy 

and the number of cluster members.  

 
Cumulative 

renewal 

Member 

ID 

Message 

Type 

 Remaining 

energy of 

members 

2 #1 Detection 

data 

### 

1 #8 Composit

on reply 

### 

… … … … 

Figure 3. A table for management of cluster nodes. 

In our algorithm, a cluster head is elected among 

nodes with much battery power and when the 

residual energy reaches a threshold value, another 

cluster head election process starts in order to 

choose a node with more residual batter energy as a 

cluster head. The change of the cluster head is 

informed to BS. The cluster head utilizes a 

cumulative renewal count (Countcr) to determine 

whether the node succeeds in joining a cluster or not. 

If Countcr is less than 30% of MCM, the cluster 

head regards a sensor node as a failed node and 

excludes the node from a cluster member list. 

 

3.2.3 Cluster Member 

 
The cluster member (CM) uses two types of 

messages. When CM receives an advertise message 

MSGh from a cluster head candidate, CM send a 

reply message for cluster joining. And CM becomes 

a cluster member after receiving a confirmation 

message, MSGconfirm, from the cluster head. CM 

sends the cluster head both its remaining battery 

information data and explored information data. 

Also CM has a memory buffer to store configuration 

messages and advertise messages for cluster 

formation. When CM does not get MSGconfirm even 

after sending MSGj, CM sends another cluster-join 

message, MSGj’, to the next cluster head candidate 

from an ordered list of cluster head candidates. 

Otherwise, CM can advertise a cluster head 

candidate message MSGh to operate as a preliminary 

cluster head. 

 

3.2.4 Cluster Reconfiguration for Reliable 

Operation 

 
The sensor node is have a lifetime for operation 

due to limited battery power. Also they get in 

inoperable status due to other failures and bad 

environments. To recover such fault situations, an 

alarm message is used for network system 

reconfiguration, as shown in   Figure 4. The alarm 

message is issued when CMs and CHs report a fault 

conditions to BS in order to keep on performing 

network functions properly. Based upon reported 

alarm messages, BS recognize that some of nodes 

are malfunctioning or performing in inoperable 

conditions. In that case, BS issues a cluster 

reconfiguration message for reliable operation. Also 

BS estimate numbers of operable nodes and failed 

nodes by counting the accumulated alarm messages. 

Based on the number of available and operable 

nodes, the validation of the ocean sensor network is 

determined. 

 

 

Figure 4. Flowchart of MCM cluster 

Reconfiguration. 

4. Performance Evaluation 
 

For performance evaluation of proposed MCM 

and LEACH, a simulation is performed using 

NS-2[6]. We use the same simulation parameters in 

LEACH for performance comparison and assign the 

maximum number of members, MCMc, to 

implement our MCM algorithm. The simulation 

analyses the number of living nodes over time in 

respect with network lifetime and node energy 

efficiency. The validation of the ocean sensor 

network is evaluated based upon the number of 

survival nodes and the alarm message count of 

nodes. 

 

4.1. Simulation Environment  
 

Table 1. Simulation parameters. 

 
Parameters Values 

Network Size 100 m X 100 m  

The number of nodes 100 

MCM(Maximum of  

Cluster Members) 

10 

Threshold for alarm occurence Less than 5 

Initial energy of a node   2J 

Data Packet Size 512 bytes 
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Energy consumption 600 mW 

Simulation Time 1300 sec 

 

In this simulation, our experiment model consists 

of 100 nodes that were randomly distributed in a 

100×100 square meter area. A hundred of nodes are 

randomly deployed. The simulation parameters are 

used as shown in table 1.  

 

4.2. Network Lifetime 
 

We observed the number of living nodes Numln 

for the network lifetime every 100 seconds during 

simulation. Figure 5 presents a comparison of Numln 

for two algorithms (LEACH and MCM). As shown 

in Figure 8, Numln in LEACH start linearly 

decreasing from 800 seconds, whereas Numln in 

MCM gradually decreases from 900 seconds. The 

reason is that LEACH performs reconfiguration for 

cluster heads selection in a period while MCM does 

when necessary. In addition, LEACH makes 

unbalanced clusters, some of which have a large 

number of nodes and the other which has a small 

number. Some cluster heads consume their battery 

power more than the other heads. That increases the 

number of dead nodes and shortens the network life 

time. As a result, MCM has a longer network 

lifetime than LEACH 

 

 

Figure 5. Comparison of Numln for LEACH and 

MCM. 

 

4.3. Network Reliability 

 

Figure 6 shows a comparison of the survival 

rate of nodes and the accumulate renewal rate 

of alarms for MCM. In MCM, the cluster head 

sends BS an alarm message when the size of a 

cluster is less than 30% of MCM. As the 

cumulative renewal count, Countcr increases, 

the number of survival nodes decreases. In 

other word, the survival rate of nodes can be 

estimated with Countcr . The survival rate can 

be used as a metric for evaluation of network 

reliability and availability. 

 

Figure 6. Comparison of the survival rate of 

nodes and the accumulate renewal rate of alarms  

for MCM. 

 

5. Conclusions 
 

In this work, we proposed a MCM based 

clustering algorithm for OSN. The algorithm 

restricts the number of cluster nodes with MCM. 

Also this algorithm avoids building such clusters 

that the number of cluster nodes is less than the 

threshold. The restriction reduces the unnecessary 

battery-power consumption of cluster heads and 

eliminates unstable clusters that cause excessive 

communication overheads. Our algorithm maintains 

that the battery-power consumption of nodes is 

balanced. The balanced power consumption makes 

the lifetime of nodes longer and eventually extends 

the network life time. Also since the number of 

survival nodes is countable, the network reliability 

can be predictable. Our simulation shows that our 

algorithm has a better performance than LEACH in 

terms of the network lifetime and the battery power 

consumption. Consequently, it is our belief that our 

proposed algorithm can effectively extend the 

network lifetime without other critical 

communication overheads and performance 

degradation. 
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Abstract— This paper proposes an incentive scheme for
P2P resource management systems which encourages the
users to evaluate the “trustworthiness of evaluations” given
by the other users. More concretely, in the proposed scheme,
each user earns a reward from other users by evaluating
their evaluations, and a user which acquires a large number
of evaluations will be granted a right to access high quality
services. To this end, we introduce the notion of evaluation
points which mediates the “evaluation of services” and
the “evaluation of evaluations.” The performance of the
proposed incentive scheme is evaluated by simulation. The
simulation results indicate that: 1) the proposed scheme
certainly encourages the users to conduct an evaluation of
evaluations, 2) it encourages users to provide high quality
evaluations of the services, and 3) a rational strategy for the
users is to repeat evaluation of evaluations after conducting
a certain number of evaluations of services.

Keywords: Peer-to-Peer resource management, reputation, incen-
tive scheme.

1. Introduction
In recent years, Peer-to-Peer systems (P2Ps) have attracted

considerable attention in the field of distributed computing
and network applications. A P2P consists of a large number
of autonomous computers calledpeers which can play the
role of a client and a service provider at the same time.
P2Ps have many advantages such as the fault-tolerance and
the high scalability compared with traditional client/server
systems, so that they are used in many network applications
such as file sharing, live streaming, and IP phone. However,
due to the anonymity of participants and the openness of
the underlying network, P2Ps involve several critical issues
such as the lack of authenticity and the low reliability of
transactions which should be conducted with anonymous
clients and/or service providers.

To overcome such a weakness of P2Ps, the use of trust
management systems has also attracted attention in recent
years. So far, many types of trust management systems have
been proposed in the literature [17], [2], [15], [6], [7]. The
main objective of the trust management in P2Ps is to make
assessments and decisions regarding the dependability of
potential transactions, and to allow users and the system
managers to increase and correctly represent the reliability

of themselves and their systems [5]. It is also commonly
recognized that a key challenge in designing a trust man-
agement system in P2P environment is how to overcome
the lack of central authorities to conduct assessments and
necessary decisions (i.e., each user must make a decision
about the trust of other users on her own responsibility while
she could refer to the decision of other users collected to
a central server), and how to overcome the lack of prior
information concerned with other participants, since they are
distributed systems consisting of many anonymous users.

In general trust management systems, the “reputation” of
customers is commonly used as the source of information
concerned with the trustfulness of service providers. In fact,
online auction systems such as eBay1 and customer review
services in shopping sites such as Amazon2, try to increase
their reliability by allowing customers to make an assessment
of their past counterparty or of their product reviews, and
by disclosing the result of such assessments to all users.
Even in the P2P environments, the outcome of assessments
on past transactions could be effectively used to identify
(and sometimes to exclude) malicious users who involve
potential risks, such as the upload of inauthentic files, a long
delay of transactions and a sudden cancellation of ongoing
transactions.

A critical issue in the reputation-based trust management
in P2Ps with no central authorities, is thatthe reputation
given by a malicious user may not be reliable. Although
it would be possible to omit “all” reputations given by
suspected users, we cannot identify a sufficient number
of reliable users under such a pessimistic approach if the
number of unsuspected users is not large. We need to
carefully take into account the reputation given by every
user (including suspected ones) to identify as large number
of reliable users as possible. Another critical issue in actual
reputation management systems is that it tends to lack the
number of evaluations provided by the participants. For
example, in KaZaA file sharing system, only 1% of shared
files are evaluated by the users [8]. Too small number of
evaluations would degrade the accuracy of the resultant
reputation, even if we could effectively eliminate less reliable
evaluations by using a scheme proposed in [11], for example.

1eBay: http://www.ebay.com/
2Amazon.com: http://www.amazon.com/
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In this paper, we propose an incentive scheme which
encourages the users to evaluate the trustworthiness of
evaluations given by the other users. More concretely, in
the proposed scheme, each user earns a reward from other
users by evaluating the evaluation given by them, and a
user which acquired a large number of evaluations will be
granted a right to access high quality services. To this end,
we introduce a formal model of the evaluation cost as well as
the definition of evaluation point which mediates the “eval-
uation of services” and the “evaluation of evaluations.” The
performance of the proposed incentive scheme is evaluated
by simulation. The simulation results indicate that: 1) the
proposed scheme certainly encourages the participants to
conduct an evaluation of evaluations, 2) it encourages to
provide high quality evaluations of the services, and 3) a
rational strategy for the participants is to repeat evaluation of
evaluations after conducting a certain number of evaluations
of services.

The remainder of this paper is organized as follows.
Section 2 overviews related works. Section 3 describes a
model of P2P reputation systems. Section 4 describes an
incentive scheme proposed in this paper. Section 5 shows
the simulation results. Finally, Section 6 concludes the paper
with future works.

2. Related Work
How to give an incentive to the users to evaluate received

services has been a main concern in realizing practical P2P
reputation systems. Miura and Kawaura [10] focused on
a knowledge-sharing community called Yahoo!Chiebukuro3

and analyzed the motivation of users to provide answers to
given queries using a questionnaire survey. In the analysis,
they classified the motivation of users into four types,
i.e., 1) assistance motivation, 2) reciprocal motivation, 3)
social motivation and 4) reward motivation, where each type
respectively means: 1) the tendency of helping a questioner,
2) repaying a kindness in the past and expecting future
benefits, 3) social meaning of answering behavior and 4)
rewards acquired by answering.

Different from knowledge-sharing communities, in P2P
reputation systems, the assistance motivation and the re-
ciprocal motivation do not work well, since the target of
assistance is not clear in P2Ps and it has a strong anonymity
in nature. In fact, existing incentive mechanisms designed for
P2Ps promote the reward motivation to encourage peers to
reciprocally cooperate. For example, in eMule [4], a higher
priority is given to a downloader if it shares a large number
of files with the other peers, and BitTorrent [1] adopts the
Tit-for-Tat strategy in such a way that a peer which uploaded
chunks to another peer will be granted a right to download
chunks from that peer.

3Yahoo!Chiebukuro: http://chiebukuro.yahoo.co.jp

In this paper, we will focus on the reward motivation
similar to existing works. However, unlike conventional
schemes which use the provisioning of resources such as
an upload bandwidth and shared files as a concrete con-
tribution, in our scheme, we will use the “evaluation of
evaluations” as the source of contributions. This enables the
participants to make a contribution to the system much easier
than conventional schemes which are merely based on the
resource provisionings. Note that the notion of evaluation
of evaluations has already been proposed in the literature
in a slightly different context [13]. The main difference to
our scheme is that in the previous scheme, the evaluation
of evaluations called feedback reputation is linked with
the evaluation of services so that the feedback reputation
concerned with a service is automatically notified to all
peers which evaluated the service in the past, when (and
only when) a peer makes the evaluation of the service. In
contrast, in our scheme, we explicitly separate the evaluation
of evaluations and the evaluation of service so as to increase
the chance of contributing to the system as an evaluator.

3. Model
3.1 Model of P2P

In this paper, we consider a model of P2P consisting of
a tracker and a set of peers. The set of peers might contain
a malicious peer, but it must follow the protocol described
below (more concretely, the only parameter controlled by a
malicious peer is services and evaluations). The set of peers
is divided into two subsets, i.e., a set of Service Providers
(SPs) and a set of Client Peers (CPs), where the intersection
of those subsets is not empty in general. Each CP can receive
a service from an SP, whereas each SP can provide several
services to CPs. The tracker issues (virtual) points to CPs
in reward for an evaluation. Such a behavior of the tracker
is realized either by using a server as in hybrid P2Ps or by
using a secure authentication chain proposed in the literature
[3].

The quality of a service isevaluatedby CPs by describing
a survey report, where the evaluator of a service must be a
recipient of the service. In the following, we call such an
evaluation of services aqualification. Each qualification is
associated with a real number in[0, 1] called qualification
value, where value 1 indicates that the quality of the service
is absolutely high and value 0 indicates that the quality of
the service is absolutely low. We use symbolQp,s to denote
the value of a qualification of services evaluated by CPp.

In addition to the qualification of services, in our model,
each CP can evaluate qualifications given by other CPs by
designating a real number in[0, 1], where similar to the case
of qualifications, the evaluator of a qualification must be
a recipient of the corresponding service. In the following,
we call such an evaluation of qualifications avote. In a
vote, value 1 indicates that the evaluator completely agrees
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with the qualification. We use symbolV s
p,q to denote the

value associated with a vote which is given by CPp on a
qualification of services conducted by CPq.

The reader should note that in the above framework, the
target of evaluation is either a service or a qualification,
and it does not directly measure up the SP who provided
the service nor the CP who provided a qualification. This
reflects a natural insight such that a good player might not
always exhibit a good performance.

3.2 Model of Evaluation

Next, we describe the model of evaluation conducted by
each node. The parameter controlled by each evaluator is the
cost of evaluation as well as its opinion on the target, and
the resulting quality of evaluations is determined by the cost
and several parameters while we assume that the evaluator
is not aware of those parameters. Letcs be a local variable
representing the cost of qualification. Before conducting a
qualification, each CP sets a value in range[cmin, cmax] to
its local variablecs, which indicates that “how much effort
will be necessary to complete the qualification.” The quality
of qualification monotonically increases ascs increases, and
increases in proportion to theskill of the evaluator repre-
sented by a real number in range(0, 1] (the skill of evaluator
is not disclosed to any CP including the evaluator itself).
More precisely, we assume that the quality of qualification
is defined as follows:

Ψ(cs, σ) :=

(
cs

cmax

)k

× σ (1)

where σ denotesthe skill of the evaluator andk is an
appropriate parameter greater than one. The reader should
note thatΨ is a convex function with respect tocs, which
is intended to model a situation in which less effort leads
to much worse quality. In addition, the reader should re-
mind that the quality of qualification is independent of the
qualification valueQp,s given by the evaluator.

Let cr denote the cost of voting. In the following, we
assume thatcr takes a fixed value smaller than or equal to
cmin. This definition reflects an intuition such that a vote
simply judges whether a given qualification is useful and
match its own opinion concerned with the corresponding
service. More specifically, the value ofV s

p,q is determined
by the evaluation of the qualification valueQp,s and the
evaluation of the quality of qualification given by Equation
(1). A detailed model of such evaluations used in simulations
is given in the Appendix. The key idea behind the model is
that each user in the real world cannot be completely ob-
jective in providing a vote, since her vote on a qualification
should be biased by the closeness of the qualification to her
opinion.

A list of parameters used in our model is summarized in
Table 1.

Table 1: Parameters used in the model of evaluations (the
last three parameters are used in Appendix).

Parameter Meaning
Qp,s ∈ [0, 1] Qualificationof services evaluated by CPp
V s
p,q ∈ [0, 1] Vote given by CPp on a qualification

of services conducted by CPq
cs ∈ [cmin, cmax] Costof qualification

cr (≤ cmin) Costof voting
σ ∈ (0, 1] Skill of evaluator in providing a qualification
k > 1 Parameter used in functionΨ
t∗p Credibility of evaluatorp

Es
p,q Secondpart of vote given byp

on a qualification of services conducted byq
Q̂p,s Qualificationon services given byp

if it wasconducted byp.

4. Proposed Scheme
4.1 Incentive Scheme

A collection of qualifications “approximates” the actual
quality of the corresponding services. However, it might
contain malicious qualifications which intentionally provide
wrong values to illegally control the “reputation” of the cor-
responding services. Although the impact of such malicious
qualifications could be reduced by increasing the number of
collected qualifications, it is difficult to collect many quali-
fications since the cost of qualification is generally large. In
order to overcome such a problem, our model adopted the
notion of voting. In other words, if we collected a sufficient
number of votes for each qualification, we could evaluate
the trustworthiness of qualifications and accurately evaluate
the quality of services without increasing the number of
qualifications.

In this paper, we propose a point-based scheme to en-
courage voting and qualification. The proposed incentive
scheme, which is based on the notion ofevaluation point
andcontribution point, is described as follows (see Figure
1 for illustration):

• By conducting a qualification, the CP receivesPs

evaluation points from the tracker, and
• When CPp votes for a qualification given by CPq, 1)

p receivesPr evaluation points fromq and 2)q receives
Pc contribution points from the tracker, where

– if the evaluation points possessed byq are less than
Pr, then any CP can not vote for the qualifications
given byq,

– Pr is fixed to satisfy inequalityPr ≤
(

cr
cmax

)
×

Ps in order to encourage qualification rather than
voting, and

– Pc equals to V s
p,q ∈ [0, 1], i.e., as the value

associated with the vote increases, the contribution
point received from the tracker increases.

4.2 Service Differentiation
Service differentiation is a common technique used in

many incentive schemes. In the proposed scheme, we realize

412 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



(a) Qualification.

(b) Vote.

Figure 1: Flow of points in the proposed scheme.

a service differentiation using contribution points. More
precisely, by paying contribution point to an SP, the CP is
granted to receive a high quality service from the SP. Since
it can receive contribution points from the tracker equivalent
to the value associated to the acquired votes, it works as an
incentive to give a high quality qualification which attracts
many votes with a high evaluation value. In addition, the
notion of evaluation points works as another incentive to
give a vote for existing qualifications, although it is not
directly connected to the service differentiation. In fact, in
order to acquire many votes from evaluators, it must have
enough evaluation points which can be earned only through:
1) the issue of a qualification on a service, or 2) a vote for
a qualification given by another CP.

4.3 Lifetime of Evaluation Points
In the above point-based scheme, evaluation points can

be infinitely provided to the system by the tracker. Thus, to
avoid an “inflation” of the evaluation points which reduces
the relative value of the evaluation points, we introduce the

Table 2: The probability of selecting each action.
WhenP < 30.

QUAL VOTE NONE
Type1 80% 10% 10%
Type2 10% 80% 10%
Type3 10% 10% 80%
Type4 80% 10% 10%
WhenP ≥ 30.

QUAL VOTE NONE
Type1 40% 10% 50%
Type2 10% 80% 10%
Type3 10% 10% 80%
Type4 40% 10% 50%

notion of lifetime to the evaluation points, so that a point is
expired from the system if the lifetime of the point becomes
zero. The lifetime is set toL at the time of provisioning
by the tracker and is linearly decreased as the elapsed time
increases, while it is “reset” toL when it is transferred to
another CP as a reward of voting. The notion of lifetime has
an important side effect such that CPs should continuously
conduct evaluations to keep a sufficient amount of evaluation
points. Such an effect of lifetime will be evaluated by
simulation in the next section.

5. Simulation
5.1 Setup

We conducted simulations to evaluate the performance of
the proposed scheme. In the simulation, we consider a P2P
consisting of a single SP and several CPs, where the number
of services provided by the SP is fixed to 150. The reader
should note that the SP models a collection of independent
SPs, i.e., we do not consider a situation in which several SPs
simultaneously provide services to a CP in a collaborative
manner. The simulation time is divided into 500 intervals
called time steps, and in each time step, each CP conducts
one of the following three actions:

QUAL:Randomly select a service and receive it. After that,
conduct a qualification of the service by spending
a cost selected from[cmin, cmax] := [1, 5].

VOTE:Randomly select a qualification of a service which
has been received by the CP, and vote for it.

NONE:Randomly select a service and receive it, but no
qualification is conducted.

With respect to the way of contribution to the system, we
assume that CPs are classified into the following four types:
A CP is said to be of Type 1 (resp. 2 and 3), if it prefers to
action QUAL (resp.VOTE and NONE) and the credibility
of the CP is high (i.e., 0.9), where the credibility of each
service is randomly selected from range[0, 1] and a model
of evaluations which takes into account the credibility of
evaluations is given in the Appendix. A CP is said to be of
Type 4 if it prefers to actionQUAL but the credibility of the
CP is low (i.e., 0.0). More detailed specification of the setting
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Figure 2: Time transition of contribution points earned by
each CP.

Figure3: Time transition of contribution points per cost.

used in the simulations is summarized in Table 2. As shown
in the table, we assume that the behavior of a CP depends
on the evaluation pointsP possessed by the CP. Namely, if
P is smaller than a threshold, which is fixed to 30 in the
simulation, it follows probabilities shown in the left table and
otherwise, it follows probabilities shown in the right table.
It should be noted that the probability of choosing action
QUAL by a CP of Type 1 or 4 becomes small if it possesses
enough evaluation points. This reflects a natural intuition
such that the incentive to conduct qualifications should
become weak if it possesses enough evaluation points.

Under the above settings, we simulated the behavior of
CPs and observed earned contribution points and the cost
required for the evaluations. The other common parameters
are fixed as follows: 1) the number of CPs is 30 for each
type, 2) the amount of evaluation points earned through
evaluations arePs = 5 and Pr = 1, and 3) the lifetime
of each evaluation point is 20 time steps.

5.2 Comparison by Types
At first, we evaluate the behavior of CPs by their types.

Parameters used in Equation (1) are fixed ascs = 5, σ = 1.0,
andk = 2.0.

Figure 2 illustrates the time transition of the average con-

Table 3: The stats about evaluation points
Average possession Receive Pay Expired

Type1 43.13 1045.47 189.20 813.14
Type2 24.73 593.87 55.40 513.73
Type3 12.44 311.93 56.43 243.06
Type4 42.60 1038.50 188.90 807.00

Figure4: Time transition of contribution points without CPs
of Type 2.

tribution points earned from the tracker, where the horizontal
axis is the elapsed time and each curve is associated with a
type of CPs. CPs of Types 1 and 4 earn many contribution
points over time, since they conduct moreQUAL’s than
the other two types. Although there is a difference between
Types 1 and 4 which is due to the difference of the credibility
of CPs, the influence of the credibility is limited. Such a
trend slightly changes if we consider the evaluation cost.
Figure 3 illustrates the time transition of contribution points
per cost. While CPs of Type 3 earn only few contribution
points, the contribution point per cost gradually approaches
to Type 1 and eventually overtakes it. Such a high efficiency
of Type 3 is due to the expiration of the evaluation points.
See Table 3. This table summarizes that: 1) how many points
are earned (the second column), 2) how many points are
paid as a reward (the third column), 3) how many points
are expired (the fourth column), and 4) how many points
are possessed on average (the first column). Although CPs
of Type 3 earn a small amount of evaluation points, the
ratio of expired points to the earned points is 78% which is
smaller than 87% of Type 2. Thus, although the number of
qualifications is small and they are rarely chosen as the target
for a vote in an early stage of the simulation, as the number
of (accumulated) qualifications increases, the low probability
of selectingQUAL improves the efficiency of Type 3 with
respect to the earned contribution points per cost.

The reader might think that CPs of Type 2 are “useless”
since they exhibit the worst performance with respect to
both of the above two metrics, but it is not true. They
actually play a crucial role in the proposed scheme. Figure
4 shows the result of simulation without CPs of Type 2.
The amount of contribution points earned by the CPs (of

414 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



Figure5: Impact of qualification costcs to the contribution
points.

Figure6: Impact of qualification costcs to the contribution
points per cost.

Types 1, 3 and 4) significantly decreases compared with
Figure 2, which indicates that under the proposed scheme,
VOTE is necessary for all CPs to earn a sufficient amount
of contribution points.

By the above observations, we can conclude that a rational
strategy for CPs to quickly, efficiently earn contribution
points is to repeat voting to keep the amount of evaluation
points after conducting a certain number of qualifications.
In practical situations, however, such a simple strategy is not
enough since older qualification becomes less attractive to
earn many votes with a high evaluation value. Thus, CPs
should repeat such a strategy with an appropriate interval.

5.3 Impact of Qualification Cost
In the second simulation, we evaluated the impact of qual-

ification costcs to the contribution points, by considering a
P2P consisting of a single SP and CPs of Types 1 and 4.
Parameters are fixed as in the first simulation except for the
qualification cost of CPs of Type 1. More specifically, we
partition Type 1 into three Types such that a CP is said to
be of Type 1A (resp. 1B and 1C) if it setscs to 5 (resp. 3
and 1). We prepare 30 CPs for each of the above four types.

Figure 5 illustrates the time transition of contribution
points earned by the CPs. The amount of contribution

points monotonically increases ascs increases, since we are
assuming that the quality of qualifications is a monotonic
function of cs in Equation (1). In addition, CPs of Type
4 earn more contribution points than Types 1B and 1C,
which indicates that the amount of contribution points is
more sensitive to the spent qualification cost rather than the
credibility of evaluators. This encourages CPs to provide
high quality qualifications by spending more cost.

Figure 6 illustrates the time transition of the contribution
points per cost. We can see that CPs of Type 1C earn
contribution points much more efficiently than the other
three types. The badness of Types 1A and 1B compared
with Type 1C could be explained as follows. The first
reason is that in the simulation, qualifications to be evaluated
are randomly selected without considering the quality of
qualifications. In other words, the increase ofcs does not
always increase the chance to be evaluated. The second
reason is that the amount of earned contribution points was
a concave function of the qualification cost. In other words,
although CPs of Type 1A spent qualification cost which is
five times as large as the qualification cost spent by Type 1C,
the amount of earned contribution points is only the twice of
Type 1C. To overcome such an inefficiency for CPs which try
to provide high quality qualifications, we should introduce
another mechanism so that the earned contribution point
increases according to a concave function of the acquired
vote values. This important and interesting matter is left as
a future work.

6. Concluding Remarks
In this paper, we propose an incentive scheme for P2P

reputation management systems focusing on the cost of
evaluations. The proposed scheme is based on the notion
of evaluation points which mediates between the evaluation
of services and the evaluation of evaluations, and the notion
of contribution points which is used for the service differ-
entiation. The performance of the scheme is experimentally
evaluated by simulation.

The topics for future work are listed as follows:

1) We need to evaluate the effectiveness of the proposed
scheme under a more practical setting. The applica-
tion of the scheme to existing reputation management
systems would be a perspective way to do so.

2) We need to carefully examine the influence of the
anonymity to the incentive scheme, since in actual
reputation systems, the opinion of a big name strongly
affects the reputation given by other normal users.

3) We need to evaluate the robustness of the scheme
against malicious attacks, and try to increase the ro-
bustness without incurring additional cost to the users.
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Appendix

Each qualification given by CPp is associated with a real
numberQp,s representing the quality of the corresponding
services, where the criterion for determining the value of
Qp,s depends on applications. For example, in the case
of video streaming, the criteria would include download
speed, interruption of playback, picture quality and others.
In addition, since it is purely subjective, it differs for each
evaluator, and of course, it is generally different from the
actual (i.e., objective) quality of the corresponding service.
To model such a variance of qualification valueQp,s, we use
the RBA model recently proposed by Nishikawa and Fujita
[11]. More concretely, we assume thatQp,s is a random

value selected from the following range:[
max{0, Qs + t∗p − 1},min{1, Qs − t∗p + 1}

]
wheret∗p is the credibility of evaluatorp andQs is the actual
quality of services. Thecredibility of an evaluator is a real
number in [0, 1] which means the accuracy of evaluations
conducted by the evaluator. The reader should note that
parametert∗p is introduced only for the modeling of the
behavior of the evaluator and the value oft∗p is not disclosed
to any CP including the evaluator.

The evaluation of the quality of qualifications, which is
the first part of a vote, is conducted in a similar way. More
concretely, we assume that it is a random value selected from
the following range:[

max{0,Ψ+ t∗p − 1},min{1,Ψ− t∗p + 1}
]
,

where t∗p is the credibility of the evaluatorp andΨ is the
quality of the qualification calculated by Equation (1). The
evaluation of valueQq,s, which is the second part of a
vote, is conducted as follows. Letp be the evaluator and
let Es

p,q denote the outcome of the evaluation. The key idea
of our model is to focus on the proximity betweenQq,s and
p’s opinion on services. Such a proximity is used by the
evaluator in providing a vote consciously or unconsciously.
Let Q̂p,s be the qualification value on services which is
given byp if it was conducted byp. Then, the value ofEs

p,q

is calculated as follows:

Es
p,q := 1−

∣∣∣Qq,s − Q̂p,s

∣∣∣ .
Finally, the valueV s

p,q associated to a vote for qualification
Qq,s is calculated by taking an average of the above two
values.
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Abstract— A hierarchical cubic network (HCN) is a
topology based on hypercubes which has been intro-
duced as interconnection network for massively par-
allel systems. Benefiting from interesting properties, it
supersedes classic hypercubes networks on several as-
pects. For example, while retaining a similar diameter,
the number of links per node is significantly lower than
that of a hypercube of the same size. Finding a node
set of minimum size such that removing these nodes
from the network also eliminates all the cycles in the
network is known as the decycling problem. Solving
this problem is critical as it has many important
applications, such as preventing resource allocation
issues like deadlocks and starvations. In this paper,
we describe an efficient algorithm generating in an n-
dimensional HCN a decycling set of at most 22n−1 −
(22n−2/n+ b2n−1/nc) nodes.

Keywords: algorithm, parallel processing, interconnection
network, feedback vertex set, HCN

1. Introduction
Modern massively parallel systems contain hundreds

of thousands of computing nodes. For instance, the
Fujitsu K computer, ranked no. 1 in the TOP500 list of
world’s supercomputers as of November 2011, includes
705,024 CPUs [1]. Considering this huge number of
nodes, interconnection networks are a critical compo-
nent of such systems in order to efficiently connect
CPUs and thus retain high performance. Such networks
have to deal with physical limitations of today’s hard-
ware. For example, there is a restriction on the number
of links per node. Hence, for a network topology to be
suitable as interconnection network, it must enable the
connection of a large number of nodes while at the
same time keeping the number of links per node low.
The network diameter (i.e. density) is also a critical
topological property to ensure efficient communication.

So as to address these issues, several topologies have
been introduced in the literature; we can cite dual-
cubes [2] and pancake graphs [3] as examples. In this
paper, we focus on hierarchical cubic networks (HCN)
[4]. An HCN has a two-level hierarchical structure:
nodes are grouped into clusters, which are in turn
connected each other. Clusters are hypercubes. So,
an HCN can benefit from the hypercube topology
properties inside clusters, such as a short diameter, and
can also connect many nodes while retaining a low
degree and a short diameter compared to a hypercube
of the same size. Precisely, an n-dimensional HCN can
connect 22n nodes with a degree of n + 1, whereas a
hypercube of the same size has a degree of 2n.

Aiming at retaining performance high, several rout-
ing algorithms in an HCN have been described: optimal
shortest-path routing [5], node-to-node and node-to-
set disjoint-path routing [6], [7] are some examples.
Closely related, we focus in this paper on the decycling
problem in an HCN. This problem is about finding a
node set of minimum size such that excluding these
nodes from the network removes the presence of any
cycle; we say that the network is acyclic. This is an
important problem which has a broad range of appli-
cations, from combinatorial circuit design to artificial
intelligence, and, critical for distributed computing,
lock-free resource allocation, meaning that notorious
resource allocations problems such as deadlocks, live-
locks and starvations are guaranteed never to occur [8].

This famous problem has been largely studied. Karp
showed that finding a decycling set of minimum size
for an arbitrary graph is NP-complete [9]. On the
other hand, there exist polynomial solutions for several
graph categories, such as 3-regular graphs [10], convex
bipartite graphs [11] and permutation graphs [12]. We
propose in this paper an efficient algorithm finding in
an n-dimensional HCN a decycling set of size at most
22n−1 − (22n−2/n+ b2n−1/nc).
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2. Preliminaries
In this section we introduce notations and definitions

used hereinafter. We start by defining a hypercube and
an HCN.

An n-dimensional hypercube, denoted by Qn, is
made of 2n nodes, each having a unique n-bit address.
Two nodes a and b of a Qn are adjacent if and only if
their Hamming distance H(a, b) is equal to 1.

An n-dimensional HCN, denoted by HCN(n), is
made of 22n nodes, each having a unique 2n-bit ad-
dress. Nodes are grouped into clusters, each isomorphic
to a Qn; there are 2n such clusters. So, the first n bits
of a node address identify the cluster containing the
node, it is the clusterID. The remaining n bits of a
node address distinguish nodes inside a same cluster,
it is the nodeID. Thus a node a can be written as a pair
of two n-bit sequences, say a = (u, v), and the cluster
of a is denoted by Qn(u). Two nodes a = (u, v) and
b = (w, z) of an HCN(n) are adjacent if and only if
they satisfy one of the three following conditions:

1) u = w and H(v, z) = 1
2) u = z and v = w
3) u = v and w = z = ū

where ū is the complement (binary negation) of any
bit sequence u. We give a different name to these
three edge categories. Condition 1 induces internal
edges, that is edges inducing clusters. Conditions 2
and 3 induce external edges. More precisely, we say
that Condition 2 induces external edges of type 1,
whereas Condition 3 induces external edges of type
2. An example is given in Figure 1. Thus, an HCN(n)
has a degree of n+ 1 and 22n−1(n+ 1) edges.

A cluster with a clusterID of even parity (resp. odd
parity) is simply referred to as even cluster (resp. odd
cluster). Similarly, a node with a nodeID of even parity
(resp. odd parity) is simply referred to as even node
(resp. odd node).

In a graph G, for a node a ∈ G, let N(a) denote
the set of the nodes of G that are adjacent to a, and
let d(a) = |N(a)| denote the degree of a. An edge
between two nodes a, b is similarly denoted by a→ b
or b→ a.

The algorithm presented in this paper will remove
and revive nodes of an HCN. Removing a node a
from a graph G means that the graph G \ {a} is
considered, where naturally all edges incident with a
are discarded. Reviving a node a happens only when
a had been previously removed. It means that the

01

(01, 01) (01, 11)

(01, 00)
(01, 10)

11

(11, 11)(11, 01)

(11, 10)

(11, 00)

00

(00, 00) (00, 10)

(00, 01)
(00, 11)

10

(10, 10)(10, 00)

(10, 11)
(10, 01)

Fig. 1: A 2-dimensional HCN, HCN(2). External
edges of type 1 and type 2 are coloured in blue and
green, respectively. ClusterIDs are also represented.

graph (G \ {a})∪{a} = G is considered. Importantly,
reviving a also revives the edges incident with a in the
original graph G.

Regarding the size of a decycling set, Beineke and
Vandell established in [13] a lower bound as detailed
in the following theorem.

Theorem 1: [13] In a graph G = (V,E) of maxi-
mum degree ∆, any decycling set S satisfies

|S| ≥
⌈
|E| − |V |+ 1

∆− 1

⌉
Lastly, the decycling problem in a hypercube has

been extensively researched [13], [14], [15]. As of
today, the best upper bound on the size of a decycling
set for a hypercube has been established by Pike [16].
It is recalled in the following theorem.

Theorem 2: [16] In an n-dimensional hypercube, a
decycling set S of minimum size satisfies

|S| ≤ 2n−1 − 2n−1

n
In other words, in a Qn, a decycling set of minimum
size contains at most 2n−1 − 2n−1/n nodes.

3. Decycling algorithm
We propose in this section an efficient algorithm

producing a decycling set S of competitively small size
for an HCN(n). An HCN(1) is isomorphic to a Q2;
in other words it is a ring. So obviously, removing
one node is enough to decycle it and it is an optimal
solution. Hence, we consider the case n ≥ 2. We first
give in Section 3.1 an optimal solution for the case
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Table 1: A decycling set of minimum size in an
HCN(2).

Cluster 00 01 11 10
Node (00, 01) (01, 10) (11, 01) (10, 01)

(00, 10)

n = 2. Then, we describe in Section 3.2 the main
HCN decycling algorithm of this paper.

3.1 An optimal solution for the case n = 2

In order to illustrate our objective and method,
we present in this section an optimal solution to the
decycling problem in an HCN(2). We recall that
an HCN(2) is shown in Figure 1. This first, simple
explanation will help the reader understand the main
idea of the algorithm of Section 3.2. We proceed in
three steps.

Step 1. We first remove all the nodes of odd
nodeID. See Figure 2b. Obviously, this operation
removes all cycles from an HCN(2). In other words,
we obtain a subgraph of an HCN(2) that is acyclic. In
total, 22·2/2 = 8 nodes have been removed in this step.

Step 2. Many nodes have been removed in Step
1, too many. So let us try to revive some of these
removed nodes, aiming at finding an acyclic subgraph
of an HCN(2) that contains the most nodes as
possible. First, we attempt to revive some nodes inside
clusters of odd clusterIDs. We recall that naturally,
when a node is revived so are all its incident edges
as of the original HCN. See Figure 2c. We were able
to revive 2 nodes in this step, (01, 01) and (10, 10).
Note that (01, 01) and (10, 01), (01, 10) and (10, 01),
and (01, 10) and (10, 10) are other possibilities.

Step 3. Finally, we attempt to revive some nodes
inside clusters of even clusterIDs, still aiming at
finding an acyclic subgraph of an HCN(2) of the
highest order as possible. See Figure 2d. We were
able to revive 1 node in this step, (11, 10). Note that
(11, 01), (00, 01) and (00, 10) are other possibilities.

Hence, we have removed a total of 8 − 2 − 1 = 5
nodes inside an HCN(2) (see Table 1). In other words,
we have found a decycling set S for an HCN(2) with
|S| = 5.

Theorem 3: The proposed solution for the case n =
2 is optimal.

(a) (b)

(c) (d)
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01 11
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00
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01
11

00

11 11

00

00 10
10

01
01

11

00 10

01 11

10

Fig. 2: Three steps leading to an optimal solution for
the decycling problem in an HCN(2).

Proof: The subgraph of Figure 2d is obviously
acyclic. As detailed in Section 2, an HCN(2) has 16
nodes, 24 edges and a degree of 3. So, from Theorem
1, the size of a decycling set for an HCN(2) is at least
d(24 − 16 + 1)/(3 − 1)e = 5. Therefore, the solution
presented in this section is optimal as we have obtained
a decycling set of size 5.

3.2 An algorithm for the general case n ≥ 3

We give in this section a decycling algorithm for
the case n ≥ 3. Note that this algorithm generates the
optimal solution of the case n = 2 as presented in
Section 3.1. For the sake of notations clarity, let G
be the HCN(n) considered. We distinguish three main
steps, separated in different subsections.

3.2.1 Removal of nodes with an odd nodeID
Put in S all the nodes of odd nodeIDs. In other

words, all the nodes of odd nodeIDs are removed from
G. Since each cluster of an HCN(n) is isomorphic to a
Qn, the graph G\S contains no internal edge. Thus, the
graph G\S contains only external edges (type 1 and 2),
not all of them though (some were incident with a node
of S). Now, as each node of an HCN is incident with
one single external edge, the remaining external edges
are all mutually disconnected, that is the maximum

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 419



degree of the graph G \ S is 1. Therefore the graph
G \ S is acyclic. Also, one should note that in G \ S,
clusters of odd clusterIDs have degree 0. Effectively,
in clusters of odd clusterIDs, as remaining nodes have
even nodeIDs, these nodes are exclusively incident with
external edges of type 1. So, the corresponding adjacent
nodes in G are in clusters of even clusterIDs and have
odd nodeIDs, which means that they are in S and that
all nodes of clusters of odd clusterIDs have degree 0.
Thus, in G\S, clusters of odd clusterIDs have degree 0.
So, we say that clusters of odd clusterIDs are isolated,
whereas clusters of even clusterIDs are non-isolated.
Non-isolated clusters have a maximum degree of 1 and
a minimum degree of 0. Precisely, in G\S, in the case
n even, the node (u, u) of a non-isolated cluster Qn(u)
is connected to the node (ū, ū) with an external edge
of type 2 as u even and of even number of bits. Each
of all the other nodes of a non-isolated cluster Qn(u),
say a node (u, v), is connected to the node (v, u) with
an external edge of type 1 as u and v even. In the case
n odd, the node (u, u) of a non-isolated cluster Qn(u)
has degree 0 as u even and of odd number of bits. Each
of all the other nodes of a non-isolated cluster Qn(u),
say a node (u, v), is connected to the node (v, u) with
an external edge of type 1 as u and v even. So, G \ S
contains external edges of type 2 only in the case n
even.

Such decycling set S is a somehow trivial solution
to the decycling problem in an HCN. So, from now on,
we aim at reducing the size of S. We shall thus remove
some nodes from S; in other words, as mentioned in
Section 2, we shall revive some nodes of S, naturally
altogether with their incident edges as of the original
HCN.

3.2.2 Revival of nodes in clusters of odd clusterIDs

Inside each isolated cluster, revive nodes according
to Theorem 2. As a cluster of an HCN(n) is isomor-
phic to a Qn, at least 2n−1/n nodes can be revived
in such cluster while retaining that cluster acyclic. We
obtain a new set S′ with |S′| < |S|. These revived
nodes are connected either to a revived node of another
isolated cluster, or, to a node of a non-isolated cluster.
Effectively, each of all revived nodes, say (u, v), has
an odd nodeID. So, if its clusterID (which is odd) is
distinct from its nodeID, the revived node is incident
to an external edge of type 1 and connected to a node
of an isolated cluster of odd nodeID, that is, a revived

node. As there is only one external edge of type 1
between any two clusters, and because there is no
path connecting two revived nodes inside a cluster by
Theorem 2, this situation keeps G \ S′ acyclic. Now
assume u = v. If n is odd, (u, v) is connected to the
node (ū, ū) of even nodeID of a non-isolated cluster
with an external edge of type 2. As there is no internal
edge inside a non-isolated cluster, this situation also
keeps G \ S′ acyclic. If n is even, (u, v) is connected
to the node (ū, ū) of odd nodeID of an isolated cluster
with an external edge of type 2 providing that the node
(ū, ū) has been revived. If (ū, ū) has not been revived,
the revival of (u, v) induces no external edge revival,
so this situation keeps G\S′ acyclic. If (ū, ū) has been
revived, (u, v) is connected to (ū, ū) with an external
edge of type 2. We enunciate the following lemma.

Lemma 1: For n even, let S be the set of all nodes of
odd nodeIDs, and let R be the set of revived nodes. In
(G \ S)∪R, for (u, v), (u,w) ∈ R with H(v, w) = n,
there is no path connecting (u, v) and (u,w) inside
Qn(u).

Proof: Consider the cluster Qn(u). Nodes of
Qn(u) are abbreviated to their nodeIDs only. Suppose
there exists such a path, say v, a, b, . . . , w. Since in
a hypercube any two nodes at distance 2 are located
on a same 4-cycle, there exists in Qn(u) a node c ∈
N(v) \ {a} with v, a, b, c, v a 4-cycle. This contradicts
Theorem 2 which revives nodes while keeping a cluster
acyclic.

We recall that between any two clusters of G, there
is one external edge of type 1 and one of type 2. We are
in the case both nodes (u, v = u) and (ū, ū) have been
revived; they are linked by an external edge of type 2.
So, even if the external edge of type 1 (u, ū)→ (ū, u)
between Qn(u) and Qn(ū) has also been revived, by
Lemma 1 there is no path linking (u, v) to (u, ū) in
Qn(u), and there is no path linking (ū, ū) to (ū, u) in
Qn(ū). Hence, this situation also keeps G \S′ acyclic.

3.2.3 Revival of nodes in clusters of even clusterIDs

We recall that in an HCN(n), each of all clusters
is isomorphic to a Qn. So, we can assume without loss
of generality that all the isolated clusters of G\S′ have
the same nodes revived by Theorem 2. In other words,
for any two distinct isolated clusters Qn(u), Qn(v), the
set of the nodeIDs of the nodes revived in Qn(u) is
equal to the set of the nodeIDs of the nodes revived in
Qn(v).
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So, in the case n even, as revived nodes have odd
nodeIDs and are in clusters of odd clusterIDs, revived
edges connect only nodes of (distinct) isolated clusters.
In the case n odd, revived edges similarly connect
nodes of (distinct) isolated clusters, but additionally, at
most one node in each isolated cluster is connected to a
node in a non-isolated cluster with an external edge of
type 2. Conversely, at most one node of a non-isolated
cluster is connected to a node in an isolated cluster;
if such case arises, it revives the unique external edge
of type 2 between these two clusters. Precisely, in an
isolated cluster Qn(u), if (u, u) is revived, then it is
connected with an external edge of type 2 to the node
(ū, ū) which is in a non-isolated cluster as both n and
u odd.

Proceed as follows. Initially all non-isolated clusters
are unmarked. For each of all non-isolated clusters that
are unmarked, say Qn(u), revive one node, say (u, v).
Mark all (non-isolated) clusters linked to a neighbour
node of v in Qn(u). We thus obtain a new set S′′

with |S′′| < |S′|. Assume n is even. At the end
of Step 2 there is no external edge between a non-
isolated cluster and an isolated cluster. So, by reviving
one node inside a non-isolated cluster, a non-isolated
cluster is connected to at most one isolated cluster.
Now, by definition of the cluster marking process there
are no two non-isolated clusters linked by two nodes of
degree 2 (i.e. there is no external edge (u, v)→ (v, u)
with d((u, v)) = d((v, u)) = 2), and then G \ S′′
is acyclic. Assume n is odd. A non-isolated cluster
Qn(u) can be connected to an isolated cluster with
two distinct external edges incident to (u, u) and (u, v)
where H(u, v) = n. As n ≥ 3, the revived node in
Qn(u) cannot be adjacent to both (u, u) and (u, v).
So, in the case there are two external edges between
a non-isolated cluster Qn(u) and an isolated cluster,
at least one of {(u, u), (u, v)} is of degree 1 where
H(u, v) = n. Thus, we are guaranteed that at least one
of the two external edges between such two clusters is
not in a cycle. Hence, we can assume without loss
of generality that we are back in the case n even,
where there is at most one external edge between a
non-isolated cluster and an isolated cluster.

Finally, let us count how many nodes have been
revived, and deduce how many nodes have been re-
moved, that is |S′′|, an upper bound on the decycling
number of an HCN(n).

Inside each of the 2n−1 isolated clusters, at least

2n−1/n nodes are revived by Theorem 2. Inside a non-
isolated cluster, at most one node is revived. Also, one
such revived node in a non-isolated cluster induces at
most n marked (non-isolated) clusters. So, in total, at
least b2(n−1)/nc nodes are revived as for non-isolated
clusters. Obviously, this discussion holds for both cases
n even and n odd.

Hence, in total, at least

2n−1 · 2n−1

n
+

⌊
2n−1

n

⌋
(= β)

nodes are revived. Adding all the nodes of even
nodeIDs, we have at least 22n−1 + β nodes inside the
acyclic graph G\S′′. Therefore, |S′′| ≤ 22n−1−β, that
is, a decycling set of size at most 22n−1− (22n−2/n+
b2n−1/nc) has been found by our algorithm.

From this discussion we can state the following
theorem.

Theorem 4: In an HCN(n), we can find a decycling
set of size at most 22n−1 − (22n−2/n+ b2n−1/nc).

3.3 Complexity analysis
As a pre-processing, all clusters are initially set to

an unmarked state. This requires O(22n) as all clusters
have to be iterated. The first operation consists of
removing all nodes of odd nodeIDs; it requires O(22n)
as there are 22n−1 such nodes. Then, let O(kn) be the
time complexity of an algorithm producing a decycling
set in a Qn as of Theorem 2. We can assume from
Theorem 2 that in a Qn such a decycling set can be
found in Ω(2n) time. Thus, we have O(kn) ≥ O(2n).
So, reviving nodes inside each of all isolated clusters
aiming at finding a decycling set as of Theorem 2 takes
in total O(2n · kn) as there are 2n−1 such clusters.
Lastly, non-isolated clusters are iterated, and only
unmarked ones have one of their nodes revived. This
requires O(2n−1) time as there are 2n−1 such clusters,
and since checking whether a cluster is marked or
not can be done in constant time. Hence, in total, our
algorithm can find a decycling set in an HCN(n) as of
Theorem 4 in O(2n · kn) time, where 22n is the order
of an HCN(n).

4. Conclusions
Eliminating cycles in an interconnection network

is a critical problem of parallel processing; it has
important applications such as lock-free concurrent
access to shared resources. Finding a decycling set
of minimum size is an NP-complete problem. We
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have described in this paper an efficient algorithm
finding a decycling set in a hierarchical cubic network
HCN(n). The decycling set produced contains at most
22n−1 − (22n−2/n+ b2n−1/nc) nodes.

Future works include refining this algorithm to pro-
duce a decycling set of smaller size, or showing that
our algorithm produces a decycling set of minimum
size.
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Abstract 

Free space optic (FSO) is line-of-sight technology that 

uses beams of light to provide optical bandwidth connections 

that can transmit images, videos, voice, and data. Due to the 

increasing popularity of FSO network and its advantages over 

traditional optic fiber cable network and radio frequency 

wireless network, the technology of FSO has become more 

prevalent. However, one of the major limitations of FSO is 

line of sight maintenance. To ensure uninterrupted data flow, 

auto-aligning transmitter and receiver modules are necessary.  

In this paper, we propose a three dimensional (3D) FSO 

network model and define types of diagonal links that can be 

inserted to reconfigure the network. We propose several 

heuristics to handle link reconfigurations to improve 

efficiency and reliability of such networks after link failures. 

Finally, we present analytical and simulation results to 

evaluate the proposed heuristics on the overall performance in 

terms of average node distance and network diameter. 

Keywords: 3D Mesh Network, Routing, Reconfigurable 

Network, Free Space Optics, Wireless Network. 

1. Introduction 

The telecommunications world is evolving dramatically 

toward challenging scenarios where the fast and efficient 

transportation of information is becoming a key element in 

today’s society. The size and complexity of 

telecommunications networks and the speed of information 

exchange have increased at an unprecedented rate over the last 

decades. Living in this new era of information superhighway 

era, people are using a number of devices with advanced 

multimedia applications to obtain and exchange information. 

The current trends in multimedia communications include 

voice, video, data, and images. These trends are creating a 

demand for flexible networks with extremely high capacities 

that can accommodate the expected vast growth in the 

network traffic volume [18]. 

Over the last few decades, optical fiber with its enormous 

potential has established the ability to satisfy the demand for 

these networks. Telecommunications companies have been 

increasing the reach of their fiber optic networks to their 

customers. Optical fiber is highly reliable and it has unlimited 

growth potential. Single mode fiber offers a transmission 

medium with Tbps bandwidth, which has enough capacity to 

deliver a channel of 100 Mbps to hundreds of thousands of 

users. However, even with all these potentials, optical fiber 

has been costly in its installations. Laying in-ground cable 

would require dealing with government bodies, digging 

trenches, lots of manpower, and time. Due to these reasons 

alone, a new optical communication technology has emerged. 

A fiber optic communication link uses light sources and 

detectors to send and receive information through fiber optic 

cable. Similarly, Free Space Optics (FSO) uses light sources 

and detectors to send and receive information, but through the 

atmosphere instead of a cable. The motivation for FSO is to 

eliminate the cost, time, and effort of installing fiber optic 

cable, yet retain the benefit of high data rates, up to 1 Gbps 

and beyond. Furthermore, FSO technology does not require 

any RF spectrum licensing making it easier from a political/ 

bureaucratic perspective to install. It also can be removed and 

installed elsewhere, thus, allowing recycling of equipment. 

FSO technology may become prominent in next generation 

broadband networks. Multi-gigabit potential data rates, 

unlicensed spectrum, excellent security and quick and 

inexpensive setup are among its most attractive features [22]. 

2. Free Space Optic (FSO) 

FSO is a line-of-sight technology that uses beams of light 

to provide optical bandwidth connections that can transmit 

images, videos, voice, and data. Commercially available 

systems offer capacities in the range of 100 Mbps to 2.5 Gbps, 

and demonstration systems report data rates as high as 160 

Gbps. Free space optic systems can function over distances of 

several kilometers. As long as there is a clear line of sight 

between the source and the destination, and enough 

transmitter power, FSO communication is possible. Over the 

last few decades, this new technology has been studied 

extensively [6, 11, 13, 15-17, 19, 20, 24] 

Ranging from hospitals, banks and telecommunications 

companies to municipal and military installations, Free-Space 

optics systems are filling a variety of wireless data 

communication needs. For private corporate networks, 

wireless optics systems provide a very high bandwidth link 

between sites without the recurring costs of leased lines. For 

high bandwidth applications such as video conferencing, Free-

Space optics provides new alternatives to installing fiber optic 

cable between sites where it is very expensive or impossible to 
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lay. For temporary network connectivity needs, such as at 

exhibitions, conventions, sporting events, or disaster recovery, 

high bandwidth links can be easily and quickly provided using 

portable FSO systems. In addition, wireless optics systems are 

also used as high-speed wireless backup for fiber optic cable 

and as "Last Mile" solutions, connecting customer sites to 

fiber backbones [1, 18]. 

Despite these strengths, FSO also has some weaknesses. 

Free Space Optic is essentially a line-of-sight (LOS) 

technology using air as its medium.  Because of this reason 

alone, before employing FSO, we have to consider potential 

disturbances that could happen such as rain, fog, physical 

obstructions, scintillation, beam wander, and building’s 

movement/seismic activities [6, 19, 24]. 

In summary, the applications of FSO technology seems 

most suited to is clear weather short distance link 

establishment, such as last-mile connections to broadband 

network backbones and backbone links between buildings in 

metropolitan area network (MAN) or campus area network 

(CAN) environment. There is also significant potential for use 

of this technology in temporary networks, where the 

advantages of being able to establish area network quickly or 

being able to relocate network in a relatively short time frame 

outweigh the network unreliability issues. 

3. The 3D FSO Network Model 

3.1. Assumptions 

We design our model based on the well-studied mesh 

network topology model [4, 5, 10]. For the purpose of our 

study, we are going to present a new model of the FSO 

network. We assume that our network model would only be 

comprised of the FSO devices. Therefore, our network model 

would be homogenous n x n x n mesh network topology.  

Our FSO network would have these characteristics: 

 The network would be an n x n x n mesh 3D network 

 Each node would have connectivity of 6. 

 Maximum degree of connectivity of each node is six 

(6), including the boundary nodes. 

 
Figure 3.1 Each Node has 6 connectivity 

 Since our network model is a n x n x n 3D mesh network, 

we have to modify or apply different strategies in 

reconfiguring the network in case of link failures. The link 

reconfiguration strategy of a n x n mesh network have been 

studied by Lee and Young in 2004 [16, 17]. To study our n x n 

x n 3D network model, we are going to break down our 

network model into three planes xy, yz, and xz plane 

3.2. Types of Links/Connections 

Since we are introducing diagonal links to reconfigure the 

network, we are going to define different types of diagonal 

links that we can use. For our network model, we are going to 

define three types of connections or links. 

3.2.1. Type I Link 

Type I link is the regular link between two transceivers or 

nodes. Figure 3.2 shows all possible Type I links for the black 

node. Type I links connect all the transceivers in our FSO 

network before any reconfigurations. A node can connect with 

another node 1 hop movement away on one of its axes through 

Type 1 link. 

 
Figure 3.2 Type I link 

In summary, a node with coordinates (x, y, z) can connect up 

to 6 nodes by using Type I link, as shown below: 

(x, y, z) --- (x + 1, y, z) (x, y + 1, z) (x, y, z +1) 

 (x – 1, y, z) (x, y – 1, z) (x, y, z – 1) 

3.2.2. Type II Link 

Type II link, is a resulting diagonal link formed by two 

regular length links or edges. Figure 3.3 illustrates a connected 

free space optic network with some Type II diagonal links 

showed as dashed lines. Type II link can also be described as a 

link that connects a node with another node one hop 

movement away on two of its axes. 

 
Figure 3.3 Type II link, a diagonal link 

In summary, a node with coordinates (x, y, z) can connect up 

to 12 nodes by using Type II link, as shown below: 

(x, y, z) --- (x + 1, y + 1, z) (x + 1, y, z + 1) 

 (x, y + 1, z +1) (x – 1, y - 1, z) 

 (x, y – 1, z - 1) (x - 1, y, z – 1) 

 (x + 1, y – 1, z) (x – 1, y + 1, z) 

 (x + 1, y, z – 1) (x – 1, y, z + 1) 

 (x, y – 1, z + 1) (x, y + 1, z - 1) 
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3.2.3. Type III Link 

The second type of diagonal link, Type III link, is a resulting 

diagonal link formed with a Type I link and a Type II diagonal 

link. Shown in Figure 3.4, the Type III diagonal link is the 

dashed line between the gray nodes and the black node in the 

center of the network. Type II link connects two nodes 

diagonally on the same plane. On the other hand, the Type III 

link connects two nodes that are located on different planes 

diagonally. Type III link connects a node with another node 1 

hop movement away on all of its three axes. 

 
Figure 3.4 Type III link 

In summary, a node with coordinates (x, y, z) can connect up 

to 8 nodes by using Type III link, as shown below: 

(x, y, z) --- (x + 1, y + 1, z + 1) (x + 1, y + 1, z - 1) 

 (x - 1, y + 1, z +1) (x – 1, y + 1, z - 1) 

 (x + 1, y – 1, z + 1) (x + 1, y - 1, z – 1) 

 (x - 1, y – 1, z + 1) (x – 1, y - 1, z - 1) 

3.3. Possible Connections for Each Node 

Each node has a maximum degree of connectivity of 6 

connections. However, each of the transceiver can also rotate 

to make a diagonal link connection to another transceiver 

provided both transceivers themselves still have not used up 

all their available 6 connections. Figure 3.5 illustrates possible 

connections. The black-colored node has 6 solid line links 

which illustrates the maximum degree of connectivity of the 

transceiver. The dashed line links illustrates the possible 

diagonal link connections that can be made by a transceiver. 

 
Figure 3.5 Possible Connections for each node 

In a fully connected n x n x n 3D network, such as in 

Figure 3.6, all available connections are used. Depending on 

the locations, not all of the nodes have the maximum degree of 

connectivity of 6. The black node at the center of the network 

has the maximum 6 connections, while the gray node on the 

left can only connect to a maximum of 5 other nodes. The 

gray node on the right, which located at the corner edge of the 

network, has a maximum of only 3 connections. 

 
Figure 3.6 Fully connected n x n x n network 

Boundary Nodes 

Boundary nodes are the nodes that are located at the corners of 

the 3D mesh network, along the edge between corners, and on 

the faces of the 3D mesh network. Boundary nodes share one 

property that they all start with less than the maximum degree 

of connection before reconfiguration. 

Initial connection 3:  

These are the corners nodes. Total number of such nodes is 8, 

since there are 8 corners in our 3D mesh network. 

Initial connection 4:  

These are nodes that are located along the edge between the 

corners. There are total of 12 such edges. Each edge has two 

corner nodes. Therefore, total number of such node is (n-2)12. 

Initial connection 5: 

These are the nodes that are located at the faces of the 3D 

mesh network, excluding edge. There are six faces in total, so 

the total number of such nodes is (n-2)
2
6. 

4. Reconfiguration Algorithms 

In this paper, we extend the work of Lee and Young 

research in 2004 [16, 17]. They introduced the possibility of 

reconfiguring FSO network after links failures, focused on a 2 

dimensional n x n mesh network. Our research focuses on a 

new network model, the n x n x n mesh 3D network. Inspired 

by various shortest path algorithms and reconfigurable 

network models [2-5, 7-9, 12, 14, 21, 23], we come up with 

several reconfiguration heuristics for our 3D mesh network. 

Our reconfiguration algorithm scans the pair of nodes 

whose link is failed or broken for its neighboring diagonal 

nodes. Each node or transceiver has a maximum connectivity 

of 6. If any of the neighboring diagonal transceiver has not 

used all of its connections, we connect a diagonal link from 

the transceiver to the diagonal transceiver. If any of the target 

transceivers has already maxed out all its connections, then a 

new link will not be formed. 

begin  

check the neighboring diagonal nodes of each node  

 if the neighboring diagonal nodes’ connectivity < 6 then 

  establish a diagonal link for each node 

 end if 

end 
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4.1. Reconfiguration Heuristics 

Based on the strategies discussed in the previous sections, 

we propose several reconfiguration heuristics. The following 

are the properties of our heuristics: 

Pattern: 

 0: No links reconfiguration  

 1: Links reconfiguration by connecting only one node 

 2: Links reconfiguration by connecting two nodes 

Descriptions of the heuristics: 

 H0: No reconnection after link failures 

 H1: Try to reconnect by connecting only one node 

with a Type II link  

 H2: Try to reconnect by connecting each node with a 

Type II link. 

 H3: Try to reconnect by connecting only one node 

with a Type III link. 

 H4: Try to reconnect by connecting each node with a 

Type III link. 

 H5: Try to reconnect by connecting only one node 

with a Type II or Type III link. 

 H6: Try to reconnect by connecting each node with a 

Type II or Type III link. 

 H7: Try to reconnect by connecting one node with a 

Type II link, and the other node with a Type III link. 

We use H0, which does not reconfigure after link failure, 

as a control model to be compared with the other heuristics, 

which reconfigure after link failures. H0 will almost certainly 

provide the worst results among all the proposed heuristics, 

since it does not reconfigure the network after link failures. 

For H0, we can predict that the network will have isolated 

nodes or network sections the fastest. As for our heuristics, H1 

to H7, we expect that they will yield better performance in 

terms of average node distance and network diameter. We 

classify our heuristics into two separate groups: 

 Links reconfiguration using 1 node 

 Links reconfiguration using 2 nodes 

4.2. Links Reconfiguration Using 1 Node 

Since a link is a connection between two nodes, a broken 

link will always involve two nodes. Our heuristics under this 

group try to reconnect by connecting only one of the nodes 

involved to an available diagonal neighboring node. The idea 

is to replace one broken link with one new diagonal link. Our 

heuristics that belong to this group are H1, H3, and H5. 

Pseudo codes for the heuristics: 
procedure  

begin  

check the neighboring diagonal nodes of the first node of the pair of 

nodes 

 if its neighboring diagonal nodes have free transceivers then 

  establish a diagonal link 

 else if check the second node that shares the link for its diagonal 

nodes then 

  if its neighboring diagonal nodes have free transceivers then 

   establish a diagonal link 

  end if 

 end if 

end 

4.3. Links Reconfiguration Using 2 Nodes 

Our heuristics under this group try to reconnect by 

connecting each of the two nodes involved to its own available 

diagonal neighboring node, maximize reconnection by using 

the two nodes involved. Our heuristics belonged to this group 

are H2, H4, H6 and H7. Heuristics H2, H4, and H6 reconnect the 

two nodes by using same types of diagonal links. However, 

heuristic H7 uses different types of diagonal links for each 

node, i.e. Type II for one node and Type III link for the other. 

Pseudo codes for the heuristics: 
procedure  

begin  

check the neighboring diagonal nodes of each node  

 if the neighboring nodes have free transceivers then 

  establish a diagonal link for each node 

 end if 

end 

5. Simulation 

5.1. Simulation Setup 

Operating System: MS Windows 7 Professional 

Computer Model: Dell Latitude E6400 Notebook 

Processor: Intel Core 2 Duo 2.4GHz 

Development Tool: MS Visual Studio 2010 

Programming: C Sharp 

Network Parameters:  Average node distance, Network diameter 

Each node maintains a routing table for the purpose of 

computing the statistical results. Initially, the 3D mesh is 

created with all regular vertical and horizontal links, or with 

Type I links. Then, links are randomly chosen and broken. 

Different heuristics are then used to handle the link failures. 

Then, both average node distance and network diameter are 

calculated from the routing tables and are recorded.  

Number of link failures 

In this simulation, a sequence of link failures is generated. 

Then the same sequence is applied to the original mesh 

network and each of the heuristics is used to handle the same 

sequence of link failures. The reason behind this is to compare 

the heuristics under the exact same situation.  

The following are the settings for our simulation: 

 Size of 3D mesh network: 17 x 17 x 17 3D mesh 

 Number of nodes: 4913 

 Initial number of links: 13872 

 Statistical interval: 500 links failures 

 Sequence length: 13872 failures 
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Our study focus on permanent link failures. Failed link will 

not recover. Also, new links added to network through 

reconfiguration will not be subjected to failures. In the end, 

the network will be only connected through reconfigured 

links. The number of links throughout the simulation is 

consistently decreasing and never increasing. 

5.2. Simulation Results 

Some data in the following results are omitted due to 

disconnected nodes. Once there is a disconnected node in the 

network, the average node distance and network diameter 

become infinity. Data for experiments is show in tables and 

corresponding graphs are plotted. 

5.2.1. Average Node Distance Vs. Number of Link Failures 

Table 5.1 Average Node Distance vs. Link Failures 
Failure

s 

H0 H1 H2 H3 H4 H5 H6 H7 

0 24.004

9 

24.004

9 

24.004

9 

24.004

9 

24.004

9 

24.004

9 

24.004

9 

24.004

9 
500 24.005

3 

19.682

8 

19.114

8 

20.403

9 

20.910

4 

19.685

3 

19.200

9 

18.726

0 
1000 24.007

3 

18.099

6 

17.899

6 

19.584

3 

19.262

6 

18.410

0 

17.935

1 

17.249

4 
1500 24.159

2 

18.150

7 

17.586

7 

18.255

7 

18.587

1 

17.555

0 

17.173

54 

16.694

4 
2000 24.166

5 

17.630

5 

17.199

9 

17.552

1 

18.109

5 

16.862

4 

16.916

5 

16.311

7 
2500 24.202

8 

17.186

3 

16.965

4 

17.109

5 

18.020

0 

16.472

5 

16.659

4 

15.958

9 
3000 ∞ 16.842

2 

16.758

3 

16.211

3 

17.465

4 

16.170

2 

15.952

8 

15.752

4 
3500 ∞ 16.400

4 

16.661

2 

16.048

0 

∞ 15.919

4 

15.742

9 

15.175

9 
4000 ∞ 16.108

1 

16.367

3 

∞ ∞ 15.729

4 

∞ 14.965

2 
4500 ∞ 15.957

0 

∞ ∞ ∞ 15.508

6 

∞ 14.874

2 
5000 ∞ 15.664

1 

∞ ∞ ∞ 15.481

9 

∞ 14.562

7 
5500 ∞ 15.502

2 

∞ ∞ ∞ ∞ ∞ 14.445

0 
6000 ∞ 15.459

9 

16.112

6 

∞ ∞ ∞ ∞ 14.243

1 
6500 ∞ 15.308

0 

15.914

5 

∞ ∞ ∞ ∞ 14.129

17 
7000 ∞ 15.274

8 

15.846

5 

∞ ∞ ∞ ∞ 14.003

5 
7500 ∞ 14.999

8 

15.722

3 

∞ ∞ ∞ ∞ 13.734

5 
8000 ∞ 14.989

0 

15.677

5 

∞ ∞ ∞ ∞ 13.592

8 
8500 ∞ 14.899

4 

15.739

6 

∞ ∞ ∞ ∞ 13.548

5 
9000 ∞ 14.816

6 

15.721

3 

∞ ∞ ∞ ∞ 13.473

9 
9500 ∞ 14.720

9 

15.693

0 

∞ ∞ ∞ ∞ 13.373

6 
10000 ∞ 14.643

3 

15.576

8 

∞ ∞ ∞ ∞ 13.355

0 
10500 ∞ 14.677

1 

15.575 ∞ ∞ ∞ ∞ 13.317

4 
11000 ∞ 14.628

7 

15.473

7 

∞ ∞ ∞ ∞ 13.277

3 
11500 ∞ 14.619

7 

15.459

1 

∞ ∞ ∞ ∞ 13.191

8 
12000 ∞ 14.560

9 

15.479

8 

∞ ∞ ∞ ∞ 13.176

1 
12500 ∞ 14.546

8 

15.457

2 

∞ ∞ ∞ ∞ 13.154

3 
13000 ∞ 14.381

7 

15.484

5 

∞ ∞ ∞ ∞ 13.120

9 
13500 ∞ 14.381

7 

15.272

6 

∞ ∞ ∞ ∞ 13.042

8 
13872 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13.011

1 
We simulated each heuristic and computed the average 

node distance of the network. The result is tabulated in Table 

5.1 and Figure 5.1. As expected, H0 became disconnected 

soon after, and without reconfiguration, the average node 

distance increased as number of link failures increased. The 

network became disconnected after about 3000 link failures. 

We predicted that reconfiguration heuristics would yield 

smaller average node distance, and the simulations proved that 

to be true. However, some of the heuristics did not perform 

well at all. For instance, although H3 decreased the network’s 

average node distance, the network also became disconnected 

quite early. Heuristic H4, however, became disconnected after 

about 3000 link failures, the same time as H0. While the 

average node distance for H0 was increasing before the 

network became disconnected; the average node distance for 

H3 was actually decreasing to about 70% of the initial average. 

H1 and H2 performed similarly, although H2’s average node 

distance is smaller than H1’s. Heuristics H1 and H2 eventually 

became disconnected when all the Type I links were broken. 

In other words, when the network totally collapsed, even with 

reconfigurations of heuristics H1 and H2, the network was not 

be able to transmit anything at all. 

Heuristic H2 was interesting because the network became 

disconnected at about 4500 links failures, then became 

connected again at about 6000 links failures. This was due to 

more reconnections as more broken links were introduced into 

the network. Heuristic H7 was a hybrid heuristic which 

combined of H1 and H3, and we expected better result than 

those two heuristics. The simulation proved that to be true as 

H7 was the only heuristic that kept the whole network 

connected the whole time and yielded the smallest average 

node distance, about 54% smaller. 

 
Figure 5.1 Average Node Distance vs. Link Failures Graph 

5.2.2. Network Diameter Vs. Number of Link Failures 

Table 5.2 Network Diameter vs. Links Failures 
# 

Failures 

H0 H1 H2 H3 H4 H5 H6 H7 

0 48 48 48 48 48 48 48 48 

500 48 38 36 40 40 38 37 35 

1000 48 34 34 35 34 35 34 33 

1500 48 34 33 32 32 31 31 31 

2000 48 32 33 29 31 30 31 30 

2500 48 32 31 28 31 29 31 29 

3000 ∞ 31 31 28 30 28 29 28 

3500 ∞ 30 31 26 ∞ 28 29 27 

4000 ∞ 30 30 ∞ ∞ 27 ∞ 27 

4500 ∞ 29 ∞ ∞ ∞ 27 ∞ 27 

5000 ∞ 28 ∞ ∞ ∞ 27 ∞ 26 

5500 ∞ 27 ∞ ∞ ∞ ∞ ∞ 25 

6000 ∞ 27 28 ∞ ∞ ∞ ∞ 24 
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6500 ∞ 27 28 ∞ ∞ ∞ ∞ 24 

7000 ∞ 27 28 ∞ ∞ ∞ ∞ 24 

7500 ∞ 27 27 ∞ ∞ ∞ ∞ 23 

8000 ∞ 27 27 ∞ ∞ ∞ ∞ 22 

8500 ∞ 26 27 ∞ ∞ ∞ ∞ 22 

9000 ∞ 26 27 ∞ ∞ ∞ ∞ 22 

9500 ∞ 26 27 ∞ ∞ ∞ ∞ 22 

10000 ∞ 26 27 ∞ ∞ ∞ ∞ 22 

10500 ∞ 26 27 ∞ ∞ ∞ ∞ 22 

11000 ∞ 26 27 ∞ ∞ ∞ ∞ 22 

11500 ∞ 26 27 ∞ ∞ ∞ ∞ 22 

12000 ∞ 25 27 ∞ ∞ ∞ ∞ 21 

12500 ∞ 25 27 ∞ ∞ ∞ ∞ 21 

13000 ∞ 25 26 ∞ ∞ ∞ ∞ 21 

13500 ∞ 25 26 ∞ ∞ ∞ ∞ 21 

13872 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

In terms of network diameter, the results are similar to the 

results from the average node distance simulation, as we can 

observe from the lines in the graphs from Figure 5.1 and 5.2. 

We simulated each heuristic, and computed the diameter of 

the network in Table 5.2. Then, we plotted the results in 

Figure 5.2. Without reconfiguration, H0, had the maximum 

network diameter until the network became disconnected with 

the network diameter staying at the same maximum size. 

The rest of the heuristics behaved as expected where the 

network diameter became smaller. Again, heuristic H7 

provided best performance. At the end, it had the smallest 

network diameter, at about 60% smaller than the initial 

network diameter. 

 
Figure 5.2 Network Diameter vs. Links Failures Graph 

5.3. Summary of Results 

One main conclusion can be drawn from the above result 

is that by inserting diagonal links to replace broken links 

decreases the average node distance and the network diameter. 

However, the types of diagonal link used does matter. As we 

can see from the graphs, heuristics using Type II links only, 

i.e. H1 and H2, outperformed the other heuristics, except H7 

which uses both links at the same time. The following are 

some factors that contribute to the performance of each 

heuristics: 

 Types of link used 

 Degree of connectivity of each node 

Type of Link Used 

As mentioned before, Type II link has the possibility to 

connect up to 12 nodes in total. A node will not connect to 12 

nodes by using Type II link since each node can only make 6 

connections in total. However, having these possible 

connections certainly gives Type II link more flexibility. On 

the other hand, Type III link can only connect up to 8 nodes in 

maximum. It has less flexibility than Type II link.  

 
Figure 5.3 Links needed to maintain connection 

Our reconfiguration heuristics insert diagonal links 

replacing broken links to keep the nodes connected. It is 

obvious that they still require Type I links in addition to the 

diagonal links to maintain connection. In this regard, Type II 

link also has the advantage because it only requires one Type I 

link to maintain connection. Figure 5.3 shows a section of a 

3D FSO network. When the link between B and C is broken, 

heuristic H1 is going insert Type II link between C and E. We 

only require 1 connection between E and B to maintain the 

connection between B and C. However, if we use heuristic H3, 

a Type III link is established between C and F. Now, to 

maintain the connection between B and C, we have to use at 

least 2 Type I links, such as F- 

A and A-B. As more Type I links are broken, heuristics using 

Type III link will be more susceptible to isolated networks or 

network disconnection. Our simulation results showed that 

heuristics H3 and H4 performed poorly. Both heuristics 

managed to decrease the average node distance and network 

diameter, but the network became disconnected very early. 

Degree of Connectivity of Each Node 

Due to broken links and reconfigurations, each node’s 

degree of connectivity and the performance could change, 

especially when reconnections cannot be established because 

the diagonal nodes already have 6 connections. Heuristic H2 is 

a good example for this. H2 reconnects a broken link by 

connecting 2 Type II links. We believed this happened 

because it could not reconnect with the diagonal nodes due to 

maximum degree of connectivity. It performed as expected 

until 4000 broken links when the network became 

disconnected. As more broken links were introduced, more 

nodes opened up their slots for reconnections, and H2 was able 

to reconnect the network again after 2000 more broken links. 
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6. Conclusion 

Our research introduces the possibility of reconfiguring a 

3D FSO mesh network after link failures. Due to the 

increasing popularity of FSO network and its advantage over 

traditional optic fiber cable network and radio frequency 

wireless network, FSO has become more prevalent. We study 

the failure handling mechanism in order to improve reliability 

and efficiency of such networks. We propose several 

heuristics to handle link reconfigurations to improve 

efficiency and reliability of such networks after link failures. 

We studied and computed the impact of reconfiguration 

on the overall network performance in terms of average node 

distance and network diameter. Theoretically, reconfigurations 

by reconnecting two nodes with diagonal links offer better 

performance in average node distance and network diameter 

then reconfigurations by using one node. Types of diagonal 

links also contribute to the overall network performance. Our 

simulation confirms the result and therefore, we proposed a 

hybrid reconfiguration heuristic that make use of both types of 

diagonal links. Future work could be done on developing more 

intelligent heuristics while still utilizing both types of diagonal 

links, especially Type III link. The assumption of 

reconfigurations are always successful could be removed. 

Heuristics that follow some patterns could also be considered. 

REFERENCES 

[1] J. S. Beasley, Networking, 2nd Editon. Upper Saddle River, 

NJ: Pearson Education, Inc. 2009. 

[2] Y. Ben-Asher, D. Peleg, and A. Schuster, The complexity of 

reconfiguring networks models, Information and 

Computation, 121, pp. 41-58, 1992. 

[3] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, 

The Power of Reconfiguration, Journal of Parallel and 

Distributed Computing, 13(2), pp.139-153, 1991. 

[4] V. Bokka, H. Gurla, S. Olariu, and J. L. Schwing, Constant-

Time Convexity Problems on Reconfigurable Meshes, 

Journal of Parallel and Distributed Computing, 27(1), pp. 86-

99, 1995. 

[5] K. Bondalapati and V. Prasanna, Reconfigurable Meshes: 

Theory and Practice, Reconfigurable Architectures Workshop, 

International Paralllel Processing Symposium, 76, pp.50-53, 

1997. 

[6] V. Brazda, V. Schejbal, and O. Fiser, "Rain impact on FSO 

link attenuation based on theory and measurement," Antennas 

and Propagation (EUCAP), 2012 6th European Conference 

on, pp.1239, 1243, 26-30, March 2012. 

[7] J. D´ıaz, J. Petit, and M. Serna, A random graph model for 

optical networks of sensors, IEEE Transactionson Mobile 

Computing, 2(3), pp.86-196, 2003. 

[8] E. W. Dijkstra, A note on two problems in connection with 

graphs, Numerische Mathematik, vol.1, pp.269-271, 1959. 

[9] S. E. Dreyfus, An appraisal of some shortest-path algorithms, 

Operations Research, vol.17, no.3, pp.395-412, 1969. 

[10] G. Ellinas, Routing and Restoration Architectures in Mesh 

Optical Networks. SPIE Optical Networks Magazine, vol.4, 

no.1, pp.91-106, 2003. 

[11] J. M. Kahn, R. H. Katz, and K. S. J. Pister, Next century 

challenges: Mobile networking for “smartdust”, 

Proc.ACM/IEEE International Conference on Mobile 

Computing and Networking, pp.271-278, 1999. 

[12] E. L. Lawler, A procedure for computing the K best solutions 

to discrete optimization problems and its application to the 

shortest path problem, Management Science, vol.18, no.7, 

pp.401-405, 1972. 

[13] J. Llorca, A. Desai, U. Vishkin, C. Davis, and S. Milner, 

Reconfigurable optical wireless sensor networks. Optics in 

Atmospheric Propagation and Adaptive Systems VI, 5237, 

pp.136-146, 2004. 

[14] M. H. Macgregor and W. D. Grover, Optimized k-shortest-

paths algorithm for facility restoration. Software–Practice 

and Experience, vol.24, no.9, pp.823-834, 1994. 

[15] W. Mao and J. M. Kahn, Free-space Heterchronous Imaging 

Reception of Multiple Optical Signals. IEEE Transactions on 

Communications, vol.52, pp.269-279, 2004. 

[16] T. Lee and G. Young, “Multipath Routing in Reconfigurable 

Free Space Optics Networks,” Proceedings of the 2007 

International Conference on Parallel and Distributed 

Processing Techniques and Applications, pp.817-821, June 

2007. 

[17] T. Lee and G. Young, “Routing in Reconfigurable Free Space 

Optics Network,” Proceedings of the 2004 International 

Conference on Parallel and Distributed Processing 

Techniques and Applications, pp.946-952, 2004. 

[18] A. S. Tanenbaum, Computer Networks, 4th Edition, Upper 

Saddle River, NJ: Prentice Hall, 2003. 

[19] M. Tatarko, L. Ovsenik, and J. Turan, "Availability and 

reliability of FSO links estimation from measured fog 

parameters," MIPRO, 2012 Proceedings of the 35th 

International Convention , pp.192, 195, 21-25, May 2012. 

[20] A. Vavoulas, H. G. Sandalidis, and D. Varoutas, "Weather 

effects on FSO network connectivity," Optical 

Communications and Networking, IEEE/OSA Journal of , 

vol.4, no.10, pp.734, 740, Oct. 2012. 

[21] B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. 

Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. 

Pister, Autonomous 16mm3 Solar-powered Node for 

distributed wireless sensor networks, Proc. IEEE Sensors, 

pp.1510-1515, 2002. 

[22] S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. Leveque, 

Free-space optical MIMO transmission with Q-ary PPM. 

IEEE Trans. Communication, vol.53, no.8, pp.1402-1412, 

2005 

[23] D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He, “On finding 

disjoint paths in single and dual link cost networks,” In Proc. 

IEEE Infocom, pp.53-54, 2004. 

[24] S. A. Zabidi, W. A. Khateeb, M. R. Islam, A. W. Naji, "The 

effect of weather on free space optics communication (FSO) 

under tropical weather conditions and a proposed setup for 

measurement," Computer and Communication Engineering 

(ICCCE), 2010 International Conference on , pp.1,5, 11-12, 

May 2010. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 429



GPU-based Multi-stream Analyzer on Application 
Layer for Service-oriented Router 

Kazumasa Ikeuchi, Janaka Wijekoon, Shinichi Ishida, Hiroaki Nishi 
Nishi Laboratory, Graduate School of Science and Technology, Keio University, Japan 

{ikeuchi, janaka, sin}@west.sd.keio.ac.jp, west@sd.keio.ac.jp 
 
 

Abstract—Service-oriented router (SoR) is a new router 
architecture for providing rich services to Internet users by 
utilizing useful information extracted from network traffic. In 
SoR, stream reconstruction and selection is a fundamental 
process for providing the services in the application layer. After 
real-time reconstruction of stream data, SoR used a software 
character string analyzer to extract important required 
information. One of the promised services is a router-level 
network intrusion detection system. Because a network consists 
of hundreds of thousands of data streams, achieving an intended 
throughput while analyzing these stream data is a critical 
problem. We propose an acceleration method of string matching 
based on a heterogeneous system consisting of a CPU and a 
graphics processing unit. In addition, we designed and 
implemented a task controller that improves the distribution of 
POSIX-thread-based processes so that string matching can be 
performed concurrently depending on the status of the string 
matching system. 

Keywords—Service-oriented router; string matching; GPU; 
application layer analysis 

I. INTRODUCTION 
A router forwards a packet to another router after receiving 

it from an end-host. This process is repeated until the packet 
arrives at a destination end-host. This forwarding process is 
performed on the basis of both the destination IP address 
indicated in the packet header and a router forwarding table. A 
typical router checks only the packet header for seeking the 
next hop. A security attack is mainly hidden in the packet body 
as contents of the packet. If a router can control or refuse the 
forwarding process of a malicious packet to targeted clients 
autonomously, the risk of clients being intruded over the 
Internet can be reduced. To achieve this level of network 
security services, a stream reconstruction function is crucial 
because TCP/IP divides the original data stream into multiple 
packets. That is, the router providing the services has to 
reconstruct data streams from fragmented packets. After that, 
to find the security attacks from original data streams, a high-
throughput string matching function is required. Without these 
reconstruction and string matching functions, routers cannot 
obtain the data stream or analyze information from the data 
stream. 

To realize new services including router-level security, we 
propose a service-oriented router (SoR) [1] as a new router 
architecture. The SoR reconstructs stream data to extract 
application layer information and decides the forwarding route 
of a packet according to the contents of the packet. In the SoR, 

upon arrival at the SoR, packets are stored in an in-memory 
database (DB) after pre-processing of TCP/IP stream 
reconstruction in a network processor (NP). A stream 
processing engine (SPE), as a software-based string matching 
function, extracts desired information from stream data stored 
in the in-memory DB. 

To provide a network intrusion detection system (NIDS) as 
a router-level security application, the SoR should search 
signatures of malicious packets. When the SoR detects a stream 
that is trying to attack any other clients, it suspends the 
forwarding process of the malicious stream, and it can notify 
the clients that they are the targets of an attack. After the 
notification, the SoR stores information about the attack in the 
DB. In addition to the SoR-based NIDS, the SoR can provide 
more flexible services that can be accomplished only by the 
SoR, such as a recommendation service that is based on cross-
sectional behavioral analysis and efficient content delivery 
networking that is based on requested content [2]. 

One of the problems to be overcome in contents-based 
services on the SoR is that an efficient processing method is 
needed to handle a large amount of string information, which is 
not required in typical Layer-3 routing based on the IP address 
of a packet. The SPE has to handle a number of string data 
extracted from reconstructed streams. To achieve this, a typical 
router with an ASIC-based stream processing co-processer can 
accelerate the string matching function with reduced 
processing flexibility. 

In this study, we present a software-based string analysis 
system that has both sufficient throughput for string searching 
and flexibility for providing services. To accomplish flexible 
and high-throughput processing, we used a graphics processing 
unit (GPU) as a high-performance processor that has highly 
parallelized architecture and data structures for achieving 
effective calculation power. A GPU is typically used for image 
processing such as image rendering and vertex calculation to 
create 3D images. However, recently, the opportunities to use 
the processer for general applications have increased because 
the requirements of flexible processing and low-cost 
computation are increasing. NVIDIA, a major provider of 
GPUs, also provides a flexible GPU-based program 
development environment called Compute Unified Device 
Architecture (CUDA) [3] as the development application 
programming interface (API) of general-purpose GPUs 
(GPGPUs). In the near future, a high-performance router with 
conventional PC parts such as the GPGPU will be introduced 
to the market. 
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Fig. 1. A typical unified system consists of a CPU and a GPU. 

TABLE I.  FEATURES OF GPU MEMORIES 

Memory Location Speed Cache Accessibility Capacity 

Register on die fast n/a read/write 16 
KB/block 

Shared on die fast n/a read/write 48 
KB/block 

Texture off 
fast 

(cache 
hit) 

spatial 
cache read only n/a 

Global off slow yes read/write 2,024 MB 
 

According to the advancement of commoditization of 
routers, Maxeler Technologies released a new router named 
MaxNode 10G [4], which can be attached GPUs to its main 
system to accelerate processing. Moreover, Intel is developing 
the Intel Data Plane Development Kit [5], which realizes 
effective packet processing on a commonly used single Intel 
architecture CPU. In addition, Juniper Networks is developing 
the JunosV App Engine [6], which enables customization and 
optimization of network services by virtualizing network 
applications and providing services on general devices. With 
the advancement of GPUs and commoditization of router 
architecture, the possibility is very high that highly functional 
routers will use GPU-based technology to accelerate 
application layer information analysis. 

Several studies attempted to solve the string matching 
problem on GPUs, and several new GPU-based string 
matching methods were recently proposed [11] [12]. According 
to related works and our preliminary study about GPU-based 
string matching, we proved that the GPU could achieve high-
performance string matching by tuning the algorithm of 
parallel string matching. However, real-time and high-
throughput processing for multiple-stream data of traffic has 
not been proposed but is indispensable for the Layer-7 analysis 
on the router. Our aim is to propose a multiple-stream 
processing algorithm of string matching on a GPGPU, which is 
also indispensable to the future SoR with conventional devices. 

The main contribution of this paper is to provide a software 
solution using a GPU for string matching with multiple streams 
and multiple sets of queries extracted from NIDS software. We 
designed and implemented a GPU-based string matching 
program on CUDA, and the architecture of a task controller 
that monitors the status of the stream buffer and GPU resources 
and schedules processes depending on the status. The task 
controller uses a POSIX threads (pthreads) library to issue 
tasks concurrently and an effective asynchronous process 
scheduling method. POSIX thread, usually referred to as 
pthread, is a POSIX standard for threads [13]. We tested the 
combination string matching and task control system in an 

offline experimental environment and evaluated its 
performance. 

This paper is arranged as follows. We explain features of 
the GPU and the parallel computing platform on CUDA in 
Section 2. We present related works about multiple string 
matching and adaptation of the string matching to the GPU 
architecture in Section 3 and describe the problem, goal, setup, 
design of the task controller, and implementation in Section 4. 
We evaluate our experimental results in Section 5 and finally 
conclude the paper with possible future works in Section 6. 

II. ARCHITECTURE OF GRAPHICS PROCESSING UNIT 
A GPU has more than 100 of cores and several types of 

memories that have different access speeds and cache 
mechanisms. A GPU typically performs well when processing 
highly parallelized datasets such as in image rendering. In 
addition, the software design using GPU technology becomes 
more general in parallel processing, such as in financial 
simulation and genetic analysis. This design paradigm is called 
GPGPU. NVIDIA has provided a unified development 
environment named CUDA, which is a programming language 
used to design and program parallel processing for both the 
CPU and the GPU. CUDA uses general C/C++ code and the 
NVCC compiler, which is provided by NVIDIA to compile 
CUDA code. NVCC compiles the unified code and generates 
two types of executable code: one is host code that is executed 
on the CPU and the other code is kernel, which is executed on 
the GPU. After the host transfers the compiled kernel codes to 
the GPU via a PCI Express I/O serial interface, multiple GPU 
cores run the parallel program written in the kernel. All I/O 
data required in the process have to be transferred via PCI 
Express. 

Figure 1 shows an example of a unified system that mainly 
consists of a CPU, a PCI Express bus, and a GPU. The GPU 
has more than 100 processing cores called CUDA cores, and it 
manages the CUDA cores as units of a streaming processor 
(SM), which consists of 32 CUDA cores. The CUDA 
architecture is based on the single-instruction, multiple-thread 
model, which executes a single instruction with multiple 
logical threads simultaneously. CUDA executes a parallelized 
kernel program with 3D threads and blocks that are 
hierarchically constructed in the grain of execution. A thread is 
the smallest unit of a logical processing unit. A kernel can 
employ a number of threads, and management of the threads 
strongly affects the processing performance. Although this 
processing strategy is suitable for effective parallel processing, 
warp divergence, namely fatal performance degradation, occurs 
when part of a thread in a single warp diverges by executing an 
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Fig. 2. An example behavior of DFA associated with five patterns {“he,” 
“his,” “she,” “her,” “hers”} in AC algorithm. 

“if” branch instruction. Hence, it is better to avoid warp 
divergence whenever possible. 

A GPU has several kinds of memory, and Table I 
summarizes features of those memories. Global memory, also 
called device memory, has the largest capacity, approximately 
2–6 GB among the GPU memories. However, the access speed 
to global memory is extremely slow, which consumes about 
400–600 clock cycles. Shared memory has approximately 48 
KB of capacity and is located on each block. This memory can 
be accessed only in a few clock cycles, because it is located on 
the GPU die. Texture memory shares the memory space of 
global memory, and the memory has a hardware cache 
mechanism to accelerate the accesses by using a spatial locality. 
Effective use of both the hierarchically structured threads and 
various memories is vital to high-performance processing on a 
GPU. 

III. MULTI-PATTERN STRING MATCHING ALGORITHM 
A string matching algorithm is used for searching multiple 

text patterns from other text data. String matching algorithms 
can be classified into two types: 1) string matching for a single 
pattern and 2) string matching for a pattern set consisting of 
multiple patterns simultaneously. Single-pattern string 
matching can be classified into prefix matching and suffix 
matching. One well-known prefix matching algorithm is the 
Knuth-Morris-Pratt (KMP) algorithm [7]. In the suffix 
matching algorithm, the matching process is started from the 
suffix of a pattern. The Boyer-Moore (BM) algorithm [8] is an 
effective string matching algorithm that consists of two 
processes, namely, a process to construct failure transition and 
a process of matching that is started from the suffix of a pattern. 

Finding a pattern set that consists of multiple patterns 
requires some advanced techniques. A potentially possible 
solution to effective string matching with multiple patterns is 
the Aho-Corasick (AC) algorithm [10]. We thus used the AC 
algorithm as the basis of our GPU-based string matching 
algorithm for the SoR. In the next subsection, we explain how 
it works, why the AC algorithm can potentially satisfy our 
purpose, and how it can be applied to the GPU-based string 
matching system on the SoR. 

A. Aho-Corasick algorithm 
Many studies have recently been conducted around string 

matching algorithms. Alfred V. Aho proposed the AC 
algorithm, which uses a deterministic finite automaton (DFA) 
constructed by using a pattern set to find desired patterns [10]. 
The AC algorithm searches all patterns in a single path with 
O(N) of time complexity, where N indicates the number of text 
data. 

The DFA traverses its transition state to search patterns 
over a state transition table (STT) depending on the stream of 
input text. A STT is represented as a 3D table in which rows 
are indexed by a state and columns are indexed by a possible 
input character. The AC algorithm uses the STT to define the 
behavior of the DFA by using the following branches on 
condition. The first branch is the “goto” function, which 
defines transition to the next state corresponding to the 

combination of the current state and an input character. The 
second branch is the “output” function, which determines 
whether the next state matches the state of any patterns. When 
the “output” function returns a matched state, the program 
outputs the combination of the matched pattern and the 
position in the input text where the matched pattern exists. The 
third branch is the “failure” function, which defines the state 
transition corresponding to the current state, regardless of input 
character whenever the “goto” function reports a failure of state 
transition to the automaton. Figure 2 shows an example of 
DFA associated with five patterns {“he,” “his,” “she,” “her,” 
“hers”}. The solid lines in Figure 2 indicate transition of the 
“goto” function, the dashed lines indicate transition defined as 
a failure transition on the “failure” function, and at double-
circled nodes, the “output” function has reported a match of a 
specific pattern. 

When implementing the AC algorithm to a GPU program 
written in CUDA directly, a couple of problems interfere with 
effective matching. The first problem is that the branch on 
condition leads to significant degradation of throughput. 
Because processing performance is highly dependent on the 
divergence of threads, we should manage our GPU program to 
minimize the number of “if” branches. In addition, because the 
“goto,” “failure,” and “output” functions cause performance 
degradation, these functions should be eliminated. The second 
problem is management of memory allocation and memory 
accesses. The AC algorithm requires many kinds of memory 
accesses, such as reading the character from an input stream 
and next transition from the STT and writing the matching 
result account for those memory accesses. Optimization of 
these memory accesses is required to exploit resources of the 
GPU and to improve performance. 

B. Adaptation of the Aho-Corasick algorithm for a GPU 
To address the problems of warp divergence and memory 

access described above, Lin et al. proposed the Parallel Failure-
less Aho-Corasick (PFAC) algorithm as a GPU-based multiple-
string matching algorithm [11]. In the PFAC algorithm, the 
string matching process is performed with a pre-constructed 
PFAC automaton, which traverses the STT only by the “goto” 
function. This method eliminates the warp divergence caused 
by branch instructions of failure transitions. 
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Fig. 3. An example behavior of the DFA associated with five patterns 
{“he,” “his,” “she,” “her,” “hers”} in the PFAC algorithm. 

 
Fig. 4. Implementation of process destribution and monitoring 
mechanisms. 

The PFAC automaton can be represented only by two 
branches: one is a state transition defined by the “goto” 
function, and the other is the “output” function. In this method, 
however, another problem occurs because the “failure” 
function lacks a “backtrack” function. Figure 3 shows behavior 
of the DFA associated with the five patterns in the PFAC 
algorithm. The PFAC automaton cannot detect patterns that 
appear in the middle of a matching process of a thread, and this 
is a fatal problem. To compensate for the lack of a “backtrack” 
function, every thread begins the matching process from every 
character of the text data as a starting point correspondingly. A 
searching process of each thread is terminated when the thread 
fails to match patterns. This matching method uses each 
character in every position of text data as a starting point. Thus, 
the method eliminates any misdetection of pattern that is 
caused by the lack of a “backtrack” function. 

It is important to optimize memory accesses, especially in 
the PFAC algorithm. Memory accesses in the PFAC algorithm 
are classified into three parts. The first part entails reading a 
byte of character from an input stream. The second part 
consists of reading the number of next states corresponding to 
the combination of current state and an input character, and the 
third entails writing a matching result after the matching 
process is terminated. In the PFAC method, the STT is 
allocated in texture memory, which has a cache mechanism to 
accelerate accesses by using a spatial locality. HTTP traffic 
shows strong spatial locality because the traffic data 
information is represented in structured languages, such as 
XML and HTML. Threads frequently access columns 
associated with specific characters of the STT. Furthermore, 
the frequent access to rows of the STT associated with the 
characters is also dominant. 

IV. DESIGN OF TASK CONTROLLER AND IMPLEMENTATION 

A. Design of task controller 
For a string matching function on a SoR, throughput and 

latency are the most important factors to be considered in order 
to provide a better user experience. Another requirement of the 
string matching on a SoR is fault avoidance. The faults in the 
string matching process are situations where some of the 
matching processes in the device terminate in failure. The 
faults can occur when there is not enough memory in the 
device. To improve the actual throughput of the string 
matching process, and to avoid faults, we propose a task 
controller that handles multiple-string matching tasks 
depending on the status of the host and the device. 

When designing the task controller, we found it imperative 
to consider the reasonable architecture and parameterization of 
the status of the system: CPU memory usage, cache hit ratio, 
etc. The total performance of the proposed PFAC automaton 
strongly depends on this architecture. The statuses of the 
system that possibly affect the throughput of the process are a 
construction of the PFAC automaton, data transfer between 
host and device, and kernel execution on device. Every single 
process of the PFAC method has already been optimized 
sufficiently at the algorithmic level. On the other hand, actual 
use of the PFAC method for a string matching function on a 
router requires optimization of the task handling method. 

As a first step toward improving the task handling method, 
the task controller distributes multiple-string matching 
processes to multiple pthreads in order to process the multiple 
tasks effectively. The task assigned to a pthread is executed by 
the same single pthread, and the task controller is issued the 
multiple pthreads asynchronously. The task controller 
improves the overall throughput of the string matching 
processes by processing the multiple tasks concurrently in the 
method. As a second step to improve throughput, we set a 
threshold for the amount of accumulated data in the stream 
buffer. The string matching process consists of kernel 
execution and data transfer between host and device. The 
processing throughput can be maximized when enough stream 
data are stored in the buffer. The amount of accumulated 
stream data in a single request of the string matching process 
significantly affects the throughput of the execution of the 
string matching. Therefore, the task controller issues the 
ignition request of the string matching process to a pthread 
only when the amount of data in the stream buffer exceeds the 
threshold. In this method, each pthread can exploit the 
resources of the device. 

In order to reduce the processing latency of the string 
matching process, we also set a threshold of waiting time for 
completing input stream data. If possible, the task controller 
waits until the stream buffer is filled with input stream data up 
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Fig. 5. Flowchart of process destribution and monitoring mechanisms of overall systems. 

TABLE II.  BASIC INFORMATION OF EXPERIMENTAL COMPONENTS 

Component Details 

Host 
CPU Intel Core i7-3930K CPU @ 3.2 GHz 

Memory 32 GB DDR3 @ 1,600 MHz 

Device 
GPU NVIDIA GeForce GTX 680 

Memory 2,048 MB 256-bit-GDDR5 memory 

 
to a timeout. However, in terms of delay, the task controller 
should not wait for a long time because the waiting time for the 
completion of input stream data is added to the total delay of 
packet forwarding and occasionally causes degradation in user 
experience. When the waiting time exceeds a timeout, the task 
controller requests the string matching process to a pthread, 
and the device executes the process regardless of the amount of 
accumulated data in the buffer. On the other hand, waiting time 
timeouts that are too short may also cause deterioration of 
throughput and exhaustion of both GPU resources and the PCI 
Express bandwidth. One of our purposes is to decide the 
optimal value of the threshold practically through experiments. 

On GPU-based string matching, a fault, such as lack of 
device memory at runtime, is a critical problem. Because the 
amount of available device memory is limited to several 
gigabytes, GPU-memory management is vital to improving 
fault avoidance. Thus, to maintain fault avoidance during the 
string matching process, we have to both manage and control 
usage of device memory. Accurate control of the device 
memory is necessary because it influences the number of 
kernels executing on a GPU simultaneously. To manage and 
control the usage of the device memory, the task controller 
provides current memory usage feedback to the host. When the 
task controller launches the pthread to execute a new string 
matching process, the controller checks the memory usage. The 
controller estimates the amount of memory needed to execute a 
new string matching process according to the stream buffer 
size. Moreover, the controller compares the amount of 
available memory with the amount of memory required to 
execute the new process. If the amount of available memory 

does not meet the requirement, a new pthread is not launched 
until enough memory is released by the finishing pthreads. 

The task controller operations for managing throughput, 
latency, and scalability are presented in Figure 4 as an 
architecture and in Figure 5 as a flowchart. After initializing 
stream buffers and pthreads, the controller obtains the states of 
the buffers and a timestamp. When a timeout occurs or the 
amount of the stream buffer exceeds the threshold, a condition 
flag becomes true, which indicates whether the stream data 
should be processed or not. If the task controller detects a 
stream whose condition is true, the controller checks the status 
of device memory. If all conditions are satisfied, the task 
controller calls the "pthread_create" API to create a new 
pthread to request a string matching process of accumulated 
stream data. If the conditions are not satisfied, the task 
controller waits for a timeout. Finally, the controller calls the 
“pthread_join” API to terminate a pthread. 

B. Implementation 
 Table II shows specifications of our implemented 
experimental environment. The host components have an Intel 
i7-3930K CPU and 32 GB of Double-Data-Rate 3 (DDR3) 
main memory. The device consists of an NVIDIA GeForce 
GTX 680 GPU. The host and the device are connected via a 
PCI Express 2.0 x16 interface, which has 16 GBps of 
bidirectional bandwidth. Our experimental software 
environment included a task manager program written in 
C/C++ language with a pthreads library, and an NVCC 
compiler that compiles the program. We used the CUDA 
toolkit to develop an application that provides a comprehensive 
development environment for C/C++ developers to use to build 
GPU-accelerated applications. The toolkit and compiler run on 
CentOS 6.3 on a 64-bit Linux system. In addition, we used 
Snort Rules [14] as a desired pattern set. Snort is open-source 
signature matching NIDS software. We extracted signatures 
specified by a “content” statement and used the signatures as 
malicious patterns to be searched. As input text streams for the 
experiment, we used traffic data captured from December 5 to 
12, 2011, by the gateway that connects the Nishi Laboratory to 
the Internet. 
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TABLE III.  RATIO OF STREAM SIZE IN TRAFFIC 

Data size Percentage 
>16 MB 62.1 
>8 MB 66.1 
>4 MB 72.1 
>2 MB 76.8 

 

 

 
Fig. 7. Relationships between the length of timeout of stream buffer and 
the throughput of overall processing in each pthread. 

 
Fig. 6. Comparison of throughputs of processing in the GPU kernel with 
different numbers of concurrent pthreads. 

V. EVALUATION 
We first evaluated the throughput of the string matching 

process in terms of the number of concurrent pthreads. Figure 6 
shows the throughput of each kernel on a device when the 
stream size and concurrent numbers of pthreads are varied. In 
Figure 6, the horizontal axis corresponds to the amount of 
stream buffer to be processed, and the vertical axis corresponds 
to the throughput. In this case, the controller issues up to eight 
pthreads concurrently. The processing throughput for small-
sized stream data is poor regardless of the number of 
concurrent streams. This is because the constant overhead to 
launch a kernel is relatively large. On the other hand, the string 
matching process for the stream buffer that stores more than 16 
MB of data achieved a throughput of up to 108 Gbps, and this 
throughput is 3.4 times faster than the performance achieved in 
a previously published study [11]. On the other hand, the 
processes with four and eight concurrent pthreads show poor 
performance, at 49.8 Gbps and 14.2 Gbps, respectively, in the 
best case because of the congestion in the execution engine. 
From the evaluation, we found that well-managed assignment 
of multiple processes may improve the performance of the 
kernel function of application layer analysis.  

We also evaluated the relationship between the waiting 
time for the stream buffers and the throughput of the overall 
task in a pthread (Figure 7). The horizontal axis corresponds to 
the timeout, and the vertical axis corresponds to the throughput. 
The processes in a pthread include transferring stream data to a 
device from a host, kernel execution, and transferring matching 
results to a host from a device. Each line in Figure 7 shows the 
throughput of a single process that works with different 
numbers of concurrent pthreads. The single pthread with longer 
waiting time showed better throughput, at most 8.0 Gbps under 
the condition of 12,800 ms of waiting time. In this case, 
approximately 16 MB of traffic data was accumulated in the 
stream buffer. The stream buffer with longer waiting time can 
accumulate more traffic data in the stream buffer. The 
performance of string matching depends significantly on the 
amount of stream size, as shown in Figure 7. Table III shows 
the ratio of the total amount of stream data communicated in 
streams of 2, 4, 8, and 16 MB. According to the table, streams 
communicating more than 4 MB occupy 72.1% of the amount 
of all traffic data communicated in the network. If it is assumed 
that the task controller performs the process only for streams 
that communicate more than 4 MB of data, approximately 7.21 
Gbps of throughput on average is a requirement. In this 
experiment, the throughput of the processes with 6,400 ms of 
waiting time fully meets the requirement except concurrent 
execution with eight pthreads. 

As mentioned above, fault avoidance is an important factor; 
thus, we implemented three methods memory management and 
evaluated both the number of errors and the memory usage at 
runtime. Figure 8 shows the amount of memory used by two 

pthreads executing different string matching processes 
concurrently in each management method. The timeout of the 
stream buffer is set to 400 ms because the evaluation of the 
relationship between waiting time of the stream buffer and 
throughput of the string matching process implied that a 
waiting time of over 400 ms can meet the throughput 
requirement. The three management methods are titled “no 
threshold,” “constant threshold,” and “dynamic threshold” in 
Figure 8. In the “no threshold” results, the task controller issues 
string matching processes to pthreads regardless of the status of 
the device memory. When the task controller detects that a 
stream buffer is filled with enough stream data or that a timeout 
of the stream buffer has occurred, the controller issues a new 
process to handle the string matching. The pthreads processing 
string matching is issued up to the maximum number of 
pthreads. In this experiment, the memory usage results with the 
“no threshold” method in Figure 8 indicate that 12 of 829 
processes aborted because of an out-of-memory error. 

We also tested the “constant threshold” method, in which 
the task controller can issue new processes only when there is 
enough available memory in the device. The amount of 
available memory is constant throughout the whole processes. 
We set the constant threshold of memory size to 800 MB of 
free memory. Although doing this eliminated all runtime errors, 
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Fig. 8. The memory usage at runtime with three management methods. 
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the overall execution time increased by 8.3% compared with 
that of the "no threshold" method. 

The third implementation method named “dynamic 
threshold” resulted in the best proposed fault avoidance method 
in terms of the tradeoff between fault avoidance and increased 
overall execution time. In this method, the task controller 
decides the threshold value depending on the size of the stream 
buffer waiting to be processed. Before launching a new pthread 
to process a waiting stream buffer, the task controller obtains 
the status of the device memory and then compares the amount 
of available memory on the device and the memory size 
required for the string matching process and determines 
whether to issue the process. The memory requirement is 
determined to be 5 times the amount of the stream data to be 
processed, as mentioned above. If the amount of available 
memory is less than the requirement, the task controller does 
not issue the process. After that, the controller waits 100 ms to 
accumulate enough data in memory. The frequent reference to 
the device status deteriorates the throughput of the string 
matching process because the reference places a burden on the 
device. With these techniques, we also eliminated all runtime 
errors and improved the performance reduction to only a 0.8% 
increase of overall execution time, which is less than one-tenth 
of an increase with the “constant threshold” method. 

VI. CONCLUSION 
We proposed and implemented a GPU-based application 

layer analyzer for an SoR. This study is the first proposal and 
implementation that enables the parallel and multiple-stream 
analysis that is an essential requirement to use the router. The 
analyzer accelerated a string matching function that is required 
to analyze application layer information extracted from 
reconstructed streams on the SoR. The main contribution of the 
analyzer is a task controller, which is designed to optimize the 
workload of GPU tasks for the string matching process. The 
task controller on a host system distributes the string matching 
processes to multiple pthreads optimally and concurrently by 
monitoring GPU memory usage, the amount of stream data 
stored in stream buffers, and timestamp of a stream. The task 
controller improves overall throughput and latency of the string 
matching process and fault avoidance. 

In our experiment using actual traffic data captured in Nishi 
Laboratory and NIDS rules extracted from the filtering 

database used in Snort, we found that the proposed GPU-based 
string matching achieved up to 108 Gbps of kernel-level 
throughput when processing 16 MB of stream data. We 
concluded that 4 MB is an optimal stream buffer threshold size 
to process the stream data effectively. From an evaluation of 
the waiting time of the stream buffer, we concluded that 6,400 
ms of waiting time is sufficient to achieve at least 7.41 Gbps of 
throughput required for processing data streams that 
communicate more than 4 MB of data. To realize fault 
avoidance of the analyzer, we evaluated GPU memory 
management methods in three ways. We confirmed that the 
“dynamic threshold” method shows most stable memory usage 
without causing fatal errors. In addition, the method suppressed 
the degradation of overall execution time of the string 
matching process to only 0.8%. 
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Abstract— While processing nodes are completely con-
nected only with a minimum spanning tree, over provisioning
network resource is necessary to deal with fault tolerance
and load balancing. However, in low traffic load situation
those network resources consume a substantial unproduc-
tive energy. Network components contribute an increasing
amount of energy consumption of an interconnected system.
Many energy saving mechanisms have been proposed to have
a better use of the network resources in term of energy
consumption. Dynamic Link Width mechanism judiciously
adjusts the link width as the function of traffic and thus
reduces the power consumed when the traffic load is low.
However, this mechanism incurs an additional serialization
latency when packets are carried in thinner links. In this
paper, we present a mechanism where a minimum tree with
maximum link width is maintained. This mechanism saves
energy while minimizes the serialization latency incurred.

Keywords: minimum spanning tree, energy saving, dynamic link
width, interconnection networks

1. Introduction
With the ever-increasing in link speed and consequently

its energy consumption, network performance is no longer
the only priority in interconnection network systems. Link
component contributes a substantial portion of the energy
consumed by the network, with about 58% [1]. However,
the energy burned in the link component is insensitive to
the fluctuation of the trafffic on them. Thus a better link
power management is received more attention.

Link energy consumption saving has been addressing by
many proposals with different approaches. The Dynamic
Voltage Scaling approach [1] adjusts the link frequency as
a function of traffic. This approach has a potential of save
a substantial amount of energy but it faces a complexity in
hardware design. Another approach, Dynamic Link Shut-
down mechanism takes the Dynamic Voltage Scaling to
an extreem. This mechanism turns off underutilized links
and maintains only a subset of network resources that are

The 2013 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’13)

adequate for a given traffic [2], [3], [4], [5]. This mech-
anism has to deal with the complication in the changes of
topology and deadlock avoidance. The Dynamic Link Width
approach judiciously tunes the link width according to the
bandwidth required [6], [7], [8]. With the emerging bit-serial
technology, every link consists of several physical lanes.
For example, Infiniband offers the link configuration with
up to 12 lanes (denoted as 12x), similarly links in PCI-
Express comes with varied width level up to 16x. With
this technology, the Dynamic Link Width approach comes
naturally. Our work focuses on that approach leveraging the
dynamic link width variance.

With Dynamic Link Width mechanism, in low load sit-
uation links are adjusted to be thinner and therefore they
have low bandwidth. The average packet latency suffers from
the increase in serialization latency. When performance is
the first priority for many systems this increase in latency
is sometimes not tolerable. To address this problem, we
propose a mechanism that expands the Dynamic Link Width
approach, where a Minimum Spanning Tree (MST) serves
as a minimum subset of network resources. It guarantees the
connectivity of the system and it is maintained at maximum
bandwidth. Coupling with a routing policy that gives prefer-
ence to the link belonging to the MST, in low load situation
the mechanism saves energy with less additional serialization
latency introduced by thin links. This paper also gives the
analysis about the low bound of link energy consumption
for different size of the network, when using MST.

In this paper, the Minimum Spanning Tree configuration
for the main family of network topology (Fat-tree) and the
low bound for link energy consumption when applying the
mechanism is presented in section 2. Next, we explains
the Monitoring & Decision process in section 3. Section
4 describes our proposed routing algorithm that takes into
account the fact that all links in MST are always at maximum
speed. Our experiments in section 5 show that there is
a significant improvement in latency when maintaining a
MST with full network capacity when applying the saving
mechanism. Finally, in section 6 we draw some conclusions
about our work.
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Fig. 1: MST for k-ary n-tree

2. Minimum Spanning Tree Configura-
tion

For an interconnection network system, the resource over-
provisioning provides path redundancy and facilitates load
balancing and fault tolerance. In general a minimum span-
ning tree (MST) with bidirectional links is enough to keep
the whole network connected. In low load situation this
subset of the network is enough to deliver the demanded
traffic. k-ary n-tree is one of the most popular network
topology, it offers a low hop count and it makes use of
the high radix of modern routers. We will describe the MST
configuration for this topology in more detail.

A k-ary n-tree [9] provides the connectivity for N = kn

processing nodes and S = nkn−1 intermediate routers.
The routers are arranged in n stages labeled from level
0 to n − 1, level 0 is the root level. Every router is
connected with k outputs and k inputs. Processing nodes
are identified by n digits radix k. Thus a node is addressed
by (p0, p1, ..., pn−1) where pi ∈ {0, 1, ..., k − 1}. Routers
are identified by n − 1 digits radix k combined with their
level. A router is addressed by (w0, w1, ..., wn−2, l), where
wi ∈ {0, 1, ..., k− 1} and l ∈ {0, 1, ..., n− 1}, l is the level
of the stage where the router belongs to.

Two routers (w0, w1, ..., wn−2, l) and
(w′0, w

′
1, ..., w

′
n−2, l

′) are connected if they are belong
to 2 consecutive stages l′ = l + 1 and wi = w′i with all
i 6= l. Processing nodes are only connected to the routers at
the n − 1 level, and a node (p0, p1, ..., pn−1) is connected

with a router (w0, w1, ..., wn−2, n − 1) if pi = wi with all
0 ≤ i ≤ n− 2.

A minimum spanning tree for for a k-ary n-tree is a subset
of the tree that connects all the processing nodes. It consists
of all processing nodes, a number of routers and bidirec-
tional channels between them. A router (w0, w1, ..., wn−2, l)
belongs to the MST if has one of these two properties:

1) l = n−1 ( all the routers that in the l−1 level belongs
to the tree

2) l < n− 1 and wi = 0 with ∀i ∈ {l, ..., n− 2}
An MST corresponds to the rules above for 2-ary 3-tree

is shown in Fig. 1(a), for 4-ary 3-tree is illustrated in Fig.
1(b). In those figures the MST is highlighted in bold.

The number of routers in every stage is kn−1, with n
stages makes the total number of routers |R| is nkn−1.
The total number of uni-directional links in k-ary n-tree is
Ltotal = 2k|R| = 2nkn.

The number of routers that participate in MST is:
|MSTR| = kn−1 + kn−2 + ...+ k + 1 = kn−1

k−1
The number of processing nodes |P | is: kn. Thus the total

of nodes is:
|MST | = |MSTR|+ |P | = kn+1−1

k−1
The number of unidirectional links in MST is LMST =

2(|MST | − 1) = 2k(kn−1)
k−1

Assuming that a link consumes the energy proportion-
ally with its width level and a link consists of M lanes
corresponding to M link width level. In the lowest energy
consumption situation when only links belonging to MST are
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at maximum link width level, and others are at minimum
width level (level 1). It sets the minimum bound ρmin of
energy consumed by links:

ρmin =
LMST ∗M + (Ltotal − LMST ) ∗ 1

MLtotal

=
(M − 1)k(kn − 1) + nkn(k − 1)

Mnkn(k − 1)

The low bound of energy consumption for k-ary n-tree
topology with different size and number of lanes is described
in Table 1.

Table 1: Low bound of energy consumption of k-ary n-tree

k n Processing nodes M ρmin

4 3 64 4 57.81%
8 3 512 4 53.52%

16 3 4096 4 51.66%
32 3 32768 4 50.81%
4 3 64 12 48.44%
8 3 512 12 43.19%

16 3 4096 12 40.92%
32 3 32768 12 39.87%

3. Monitoring & Decision Making
If a link belongs to MST, it is always maintained at

maximum width level and thus maximum speed. Otherwise,
if it does not belong to MST, its utilization is monitored to
prescribe whether to adjust its width according to the traffic
carried on it. At a given time t, if there is a phit being
carried by the link then the link is marked as being used at
that time. The usage history of the link is recorded for the
last H cycles as the sliding window as described in equation
1.

LU =

∑H
t=1A(t)

H
(1)

Where A(t) =
{

1 if traffic passes in cycle t
0 if no traffic passes in cycle t and H

is a sliding history window size.
Every certain period of time T the mechanism is triggered

to check whether the link is under-utilized or over-utilized.
The value of link utilization (LU) of the most recent sliding
window denoted as LU_current, while the LU of the earlier
sliding window is shown as LU_past. Then the predicted
LU is calculated as:

LU_prediction =

α ∗ LU_past+ (1− α) ∗ LU_current (2)

Where α is the weighed value for the past. The higher the
value α the more weight the mechanism put on the past. If
α = 0 the mechanism only considers the value of LUcurrent.

The predicted LU has the value ranged from 0 to 1. It
reflects how busy the link is. If the value of LU_prediction

exceeds the high utilization threshold th_high and the link
is not at its maximum width level then the mechanism
triggers the link to increase its width. On the other hand, if
LU_prediction is lower than the low utilization threshold
th_low and the link is not operating at its minimum width
then its width is adjusted to the lower level. The link is
never completely turned off to avoid the complication with
the dynamic topology changes.

4. MST-Channel-Considered-First
Routing Algorithm

With the MST configured with all channels at maximum
link speed, in low load situation it is preferred to move traffic
only on MST and leave the lower speed links idle and being
put at their minimum width. By doing so, we can avoid the
serialization latency incurred by spreading packets in low
bandwidth links. This behavior is achieved by an adaptive
routing algorithm that prioritizes high speed links when there
are more than one option to deliver a packet.

Taking an example in k-ary n-tree topology, a packet is
routed in 2 phases. The first phase is the ascending phase
when a packet go up to the Nearest Common Ancestor.
After that, the descending phase takes place where the packet
is delivered to its desired destination. The routing path in
descending phase for the packet is deterministic. However, in
the ascending phase, at every intermediate router the packet
has k productive options to choose. Even though all these
k options take the packet toward its desired destination,
the decision about which port to take is related to the
load balancing problem where packets are preferred to be
carried in a less congested paths. Similar situation for k-ary
n-cube topology, for minimum routing algorithm at every
intermediate router the packet has n productive ports towards
the destination.

In low load traffic, only a small fraction of network
resource is enough to deliver packets. Thus the congestion
and traffic load balancing are not an issue in that situation.
Our objective is to deliver packets so that they incur a
minimum serialization latency while maximizing the number
of links being put in low speed mode for energy saving
purpose.

We propose a routing policy that takes into account
this information about the high speed of MST-channel to
give preference for those channels. With a set of several
compatible output ports, there are 2 cases:

1) There is not a MST-channel in the compatible output
set. In this case normal routing algorithm is applied to
select output port.

2) There is a MST-channel in the output port set. The
routing algorithm takes the outport coupled with this
channel as the selected output port, unless there is a
strong evidence not to do so (using a normal routing
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algorithm instead). The routing algorithm does not
take that outport if one of these conditions holds:
• Other channels are also at maximum speed
• The input buffer at the far end of

the channel is higher than a threshold
buffer_occupancy_threshold. It is a signal
indicating that this channel is over-utilized and
packets should take another port.

Because the topology remains unchanged, there is no spe-
cial care needed for deadlock avoidance issue. The routing
decision is summarized in Algorithm 1.

Algorithm 1 MST-Channel-Considered-First Routing Al-
gorithm

Getting the set of compatible ports
if There is not a MST-channel is in that set then
best_outport = Normal_Routing_Alg()

else
if Other links are at maximum speed or buffer occu-
pancy exceeds the threshold then
best_outport = Normal_Routing_Alg()

else
best_outport = the port of the MST-channel

end if
end if
Exporting the best_outport

5. Experimental Results
Experiments were conducted using the modified version

of booksim framework [10]. The interconnection network
consists of 64 processing nodes, arranged in 4-ary 3-tree
networks. The router architecture is configured with virtual
channel flow control, there are 16 virtual channels, each has
16 flits in the input buffer length. Packets have the same size
with 4 flits.

For synthetic traffic patterns, 2 patterns were generated
are transpose and uniform. The th_low and th_high
value were configured with 0.2 and 0.6 respectively. Every
channels consists of 12 lanes. The weighed value for the past
α is 0.1. The energy consumption of the link is assumed to
be proportional to the number of active lanes. The relative
link energy consumption is the percentage of the power
consumed by the link component when the energy saving
mechanism is applied versus the default system (with no
energy saving mechanism).

To see the effects of the mechanism, simulations were
carried out with different level of traffic load. There is a clear
trend in how much energy the link component consumes as
shown in Fig. 2. When the traffic load is low, the relative
link energy consumption has the value around 52.5%, which
is very close to the theoretical value of 48.44% which was
pointed in Table 1. With the load increases, the mechanism

triggers more links to increase their width to increase the
link bandwidth. As the consequence, the relative link energy
consumption increases steadily with the traffic load. And
the mechanism gains no energy saving with the normalized
traffic load higher than 0.6.

The energy saving comes with the expense of latency
increase. For both traffic patterns, when the relative energy
consumption is equal to the value of the default system (no
energy saving achieved) the latency in our mechanism with
the routing algorithm described in 4 is less than or equal
to the latency of the default system with Adaptive Routing
Nearest Common Ancestor [11]. With the normalized load
less than 0.6 there is a typical tradeoff with a slight increase
in average packet latency for energy saving, as can be seen
from Fig. 3.

Other experiments were conducted with traffic load im-
ported from a trace file. The traffic is traced from the ap-
plication Fluid Animate Particle Simulation using Smoothed
Particle Hydrodynamics [12] using the Netrace framework
[13] with the network configured as described above.
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Fig. 2: Relative Link Energy Consumption

To verify the effectiveness of the mechanism in reducing
average serialization latency, 3 set of experiments were set
up. The first case is no energy saving mechanism is applied,
the second is the saving mechanism is applied but no MST
is taken into account with the Adaptive Routing Nearest
Common Ancestor routing algorithm [11]. And the third is
when the mechanism considers the MST with our proposed
routing algorithm described in 4.

The average packet latency and the relative link energy
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Table 2: MST For Energy Saving Analysis

No saving applied Applied without MST Applied with MST
Average Packet Latency 37.81 cycles 59.26 cycles 40.19 cycles
Percentage Latency Increase 0% 56.73% 6.29%
Relative Link Energy Consumption 100% 39.52% 48.55%
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Fig. 3: Latency behavior comparison

consumption are described in Table 2. As we can see the
average packet latency of the default system is 37.81 cycles.
When applying the Dynamic Link Width mechanism without
considering the MST we break the theoretical bound of
relative link energy consumption described in Table 1, but
with the expense of 56.73% increase in the average latency.
With the MST maintaining at maximum speed the latency
increase is much lower with only 6.29%, it comes with
48.55% energy compared with the default system.

6. Conclusions
We have proposed and analyzed the Minimum Spanning

Tree for energy saving in interconnection networks. With
this subset of the network resources kept in maximum speed,
the additional serialization latency when applying the saving
mechanism is greatly reduced. Our future work concerns
about reducing more energy consumed by putting idle links
in deep sleeping state.
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Abstract - Large and complex system-on-chip devices are 

becoming common in the semiconductor industry nowadays. 

To communicate, these processing elements need to have a 

network-on-chip (NoC) that is scalable enough to support a 

large number of elements. Many NoC topologies have been 

examined in the literature, including 3D NoC architectures. In 

particular, the 3D memory-centric NoC topology utilizes the 

memory-shared NoC topology and the 3D technology. The 

crossbar is the central communication component in most 3D 

NoC architectures. This paper proposes efficient architectures 

and topologies for the 3D crossbar. Different cross-point 

implementations, which vary in their use of pass-logic and 

buffer insertion, are examined and compared. The 

architecture scalability is evaluated. An analytical model for 

the power and delay of the crossbar has been developed and 

validated. 

Keywords: 3-D IC, Crossbar fabrics, network-on-chip, 

interconnection architectures, switching circuits.  

1 Introduction 

  The recent trend to use more on-die processor cores 

rather than trying to increase the clock frequency, is driven by 

several factors. The most important factors are power 

densities in the new technologies, low return on investment in 

terms of performance for a single core, and widening the 

productivity gap for design and verification in the newer 

technologies [1] and [2].  

 The straight-forward approach to tackle these problems 

is to reuse mature single-core designs and mature IP blocks, 

and tile them onto a homogenous chip. However, in modern 

system-on-chip (SoC) designs, the complexity of this 

approach lies in efficiently designing the interconnect 

between such tiled processing elements (PEs). This 

interconnect is often referred to as a network-on-chip (NoC). 

The NoC should be physically routable in a small area with 

minimal routing congestion. It also needs to support non-

blocking low-power high-bandwidth communication between 

the PEs. 

 Many NoC topologies have been proposed to satisfy 

these NoC requirements for a single-die SoC [3]-[5]. Such 

proposals are facing scalability and power density issues on a 

single die. Recently work on three dimensional (3D) 

integration technologies, such as die stacking ‎[6], raised 

interest in 3D NoC architectures as a natural extension to the 

NoC paradigm into 3D SoCs and as a possible solution to the 

problems of existing NoC architectures [7]-[9]. 

 To best utilize SoC advantages, an efficient design of 

the communication interconnect is required. The crossbar is 

one of the main bottlenecks in communicating between the 

different PEs in a SoC. Many conventional 2D crossbar 

architectures have been proposed [10]-[14]. Such crossbar 

fabrics can be classified into two main categories; un-buffered 

and internally buffered crossbars. Although un-buffered 

crossbar fabric switches do not require internal buffers, they 

require a complex scheduler to solve input and output ports 

contention [15]. Hybrid approaches which trade off 

performance and cost have also been proposed [16]. 

 The design of the 3D crossbar has been investigated in 

[17]. Several architectures have been proposed for both 

CMOS, and for optical and beyond CMOS 3D crossbar 

architectures [18]-[20].  This paper investigates architectures 

for the 3D crossbar optimized for power and delay. It also 

examines several crosspoint circuit implementations. An 

analytical model of the system is presented and used to 

evaluate its performance and analyze the power-delay trends 

of different topologies and circuit implementations. 

 This paper is organized as follows. Section 2 briefly 

introduces the relevant background for NOC and the 3D 

memory-centric NoC architecture. Section 3 presents the 

proposed 3D crossbar architecture, as well as the various 

cross-point implementations. The delay and power analytical 

models are presented in Section 4. Section 5 presents the 

performance evaluation results. The conclusion is given in 

Section 6. 

2 Background 

2.1 Networks-on-chip (NoC) 

 Interconnects between PEs in many-cores chips have 

become one of the bottlenecks in chip design. The NoC 

concept has been developed to deliver data between PEs.  
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 Several NoC topologies have been proposed to achieve 

the optimum communication architecture in terms of area, 

power, delay, scalability, and routing schemes [3]-[5]. The 

most common topologies are the mesh, torus, ring, and binary 

tree.  Comparisons between some of these topologies have 

been reported in [4], [21] and [22].  

 The memory-centric NoC topology overcomes many of 

the issues of the conventional topologies, such as NoC 

scalability and high transactional applications [22] and [23]. 

2.2 3D Memory-Centric NoC 

 The memory-centric NoC (McNoC) topology contains 

memory modules, a crossbar and an arbiter. The McNoC is 

structured such that the centralized memory modules are 

connected to the PEs through a global switching crossbar. 

The PEs exchange data by writing to, and reading from, 

memory locations. The arbiter controls this communication 

theme by granting the source PE access to write to a specific 

memory location, and informing the destination PE to read 

from that memory location. 

 The McNoC concept was described in [22], [23], and 

[29]. A detailed performance comparison between the 2D 

McNoC and the traditional 2D mesh NoC is given in [23]. 

The comparison indicates that the McNoC architecture can 

tolerate high transactional implementations better than the 

traditional mesh topology. 

 Using the advantages of the 3D die-stacking technology 

[24]-[27], the expansion of the conventional mesh NoC 

topology into a 3D stacked mesh NoC topology has been 

proposed in [7], [9], and [28].  A novel 3D McNoC 

architecture is proposed in [23]. The new architecture 

overcomes the shortcomings of previous conventional 3D 

NoC topologies by combining the advantages of the 3D 

technology and the McNoC architecture, as shown in [23]. 

 The topology of this 3D McNoC is shown in Fig. 1. It 

consists of two planes; a logic plane and a network plane. The 

logic plane contains the PEs, while the network plane 

contains the shared memory modules that act as the central 

hub of the network. Each plane may be distributed on more 

than one die. A central crossbar is used as a port multiplexer 

to connect the memory module ports to a larger number of PE 

ports. 

3 3D Crossbar Architecture 

3.1 Previous Work 

 Conventional 2D crossbars have been widely studied in 

the literature [10]-[14]. The crossbar fabrics can be classified 

into two main categories; un-buffered and internally buffered 

crossbars. Un-buffered crossbar fabric switches have the 

advantage of using no internal buffers. However, they require 

a complex scheduler to solve input and output ports 

contention [15]. Approaches that compromise between the 

performance and cost of the buffered crossbar have been 

proposed, e.g., [16]. This work focuses on the unbuffered 

crossbar design. However, the same concepts can be used for 

internally buffered crossbars. 

 Different architectures have been proposed for 3D 

crossbars, including CMOS crossbars [17], and optical and 

beyond CMOS crossbars [18]-[20]. Lewis [17] proposed 

modifying the 2D crossbar through column-, or row-, splitting 

and multiplexing to obtain a 3D crossbar. Fig. 2(a) illustrates 

the column-split multiplexed 3D crossbar. 

Some issues of the multiplexed stacked crossbar have been 

outlined in [17]. The first issue is the scalability: as the 

number of stacked dies increases, the number of TSVs needed 

from each layer increases, which will increase the total area 

of the crossbar. Increasing the number of TSVs also increases 

the capacitance, which increases the power and delay across 

the crossbar. 

 Moreover, this design will lead to non-identical dies, 

since the number of the TSVs passing through a die from the 

top die to the bottom die differs from die to die. In other 

words, the top die will connect with only the TSVs needed by 

this die, while the second die will pass the TSVs of the 

previous die and introduce new TSVs, and so on, as 

illustrated in Fig. 2(a). 

3.2 The Proposed Compact 3D Crossbar 

 The proposed optimized 3D crossbar architecture stacks 

the TSVs of the different dies, as illustrated in Fig. 2(b). 

Arbitration is accomplished using local arbiters at each die. 

One of the arbiters will be the master arbiter, which will 

arbitrate between requests from the different dies to determine 

the output of the whole crossbar.  

 The main advantage of the proposed stacked TSVs is the 

compact design, which will reduce both power and delay. The 

design scales well with increasing number of dies, since the 

number of TSVs per die will not depend on the number of the 

 

Fig. 1. 3D Memory-Centric NoC topology [23]. 
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dies, i.e., each die will not pass TSVs from the previous dies. 

Moreover, this design guarantees identical die structure, 

which is particularly useful for many cores applications 

where all dies contain the same PEs. 

 Since this is a 3D structure, there is no need to get the 

output from the edge of the crossbar. Moreover, to decrease 

the length of the average and the critical signal paths, the 

TSVs can be placed inside the crossbar. Therefore, the output 

will be obtained from the middle of the crossbar, as shown in 

Fig. 3(a). Using this topology, power consumption is reduced 

by reducing the average signal path length from the input port 

to the output TSV. This topology will also reduce the critical 

signal path length from the input port to the output TSV, 

which in turn will decrease the critical path delay. 

 Since the diameter and pitch of TSVs are relatively large 

compared to the crossbar size [26], a strip of TSVs will be 

much longer than the crossbar which will highly increase the 

spacing between the crosspoints. To overcome this problem, 

TSVs are placed in a zigzag topology to reduce the total 

length of the TSV strip. Fig. 3 illustrates both linear and 

zigzag internal TSVs crossbar topologies. The zigzagged 

TSVs topology can be achieved using two or more zigzagged 

layers. Fig. 3(b) illustrates two zigzagged layers. Increasing 

number of zigzagged layers will better optimize the delay, 

power, and size of the crossbar.  

To summarize, this optimized 3D crossbar architecture 

achieves:  

1. A compact design that is scalable with number of 

stacked dies. 

2. Identical dies. 

3. A shorter average path length from input to TSV, 

i.e., less power. 

4. A shorter critical-path length from input to TSV, i.e., 

less critical-path delay. 

3.3 Crosspoint Implementation  

 There are several options for implementing  the 

crosspoint switches using pass-transistors to connect and 

disconnect crossing wires, and buffer insertion to reduce the 

path delay [12]-[14], [17], and [30]. Pass-transistor logic 

suffers from the voltage drop (Vout_max=VDD-VTn) [30]. 

Therefore, in the proposed design, transmission gates (TGs) 

are used instead control the crosspoints in the crossbar.  

 In this work, four different combinations of TGs and 

buffer insertion in both signal direct-path (horizontal/vertical) 

and turn-path (highlighted) are proposed and compared, as 

shown in figures 4 & 5. Power and delay trade-offs are 

examined in all four cases. 

4 Analytical Model 

4.1 Analytical Model Concept 

 Analytical models are used to early estimate the 

performance of a system in the design process, e.g., [31]-[42]. 

In our system, the crossbar consists of three components; the 

driving buffers, the TGs, and the wire interconnecting the 

crosspoints, as illustrated in Fig. 6(a). The proposed analytical 

model employs several design input factors and technology 

parameters to estimate both power and delay. The objective of 

the model is to determine an RC chain equivalent to the 

crossbar components.  

 The simplest way to model a TG is a lumped resistor and 

capacitor. A more accurate model, proposed by Eisele [35], 

 

(a)                                          (b) 
 

Fig. 3. (a) Linear, and (b) Two-layers zigzagged, internal TSVs 3D 
crossbar topologies. 

 

(a)                                          (b) 

Fig. 5. (a) Case 3, and (b) Case 4 crosspoint implementations. 

 

(a)                                          (b) 
 

Fig. 2. (a) The multiplexed crossbar [17], and (b) The proposed stacked 
TSVs 3D crossbar architecture. 

 

(a)                                          (b) 

Fig. 4. (a) Case 1, and (b) Case 2 crosspoint implementations. 
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models‎the‎TG‎as‎a‎π-RC network, Fig. 6(b). The resistor (RTG) 

is the equivalent average on-resistor of the PMOS parallel to 

the NMOS across different input voltages (from 0V to VDD). 

The two capacitances, CDT and CST, are the parasitic 

capacitance at the drain and source nodes. These parameters 

can be obtained either from the technology files, or by using 

characterization simulations on SPICE.  

 The wiring interconnect is modeled as distributed RC-

sections. Rabaey [30] showed that Elmore delay for a very 

large number of identical RC-sections equals (RC/2), where R 

and C are the total lumped resistance and capacitance, 

respectively.  

4.2 Crossbar Delay Model 

 Using the concepts presented above, the model used to 

estimate the worst-case delay is developed as follows. The 

total critical-path delay of the 3D crossbar can be decomposed 

into two components: the delay due to the planar crossbar (one 

die), and the delay due to the vertical TSVs. First, the delay of 

a single planar crossbar is estimated for the four crosspoint 

implementations. Then, the delay due to the TSVs will be 

considered. According to Elmore delay [32], for a general RC 

chain,‎the‎50%‎propagation‎delay‎at‎node‎‘i’‎is‎given‎by: 

t      
 = ∑ C 

 
   R     (1) 

 By examining the equivalent RC tree of a signal path 

between two buffers for Case 1 crosspoint implementation, 

Fig. 4(a), the TG resistance (~5KΩ)‎ is much larger than the 

wire resistance (~17.9Ω). So the effect of wiring resistance can 

thus be neglected. Therefore, the critical path delay can be 

expressed as in equation (2). 

 The architecture of Case 2 implementation, Fig. 4(b), is 

similar to that of Case 1, except for the removal of the direct-

path TGs. From a modeling point of view, this is equivalent to 

the exclusion of the resistance and the capacitance of the TGs. 

So the estimated delay between two buffers in one crossbar 

plane is expressed as in equation (3).    

t      = (C  + 2C  + C  
)R  ∗

 (   )

 
+ O(C  +

C )R  + R [O(C  + 2 ∗ C  ) + OC  
+ C ] + (C  + 2 ∗

C  + C  
)R  ∗

    (      )

 
+ I   (C  + C )R  +

R [I   (C  + 2 ∗ C  ) + I   C + C ]      (2) 

t      = R ∗ [OC + (O +  )C  + C  + C ] +

   (OC )(OR ) + OR [C  + (O +  )C  + C ] +
R  (   +   )                     (3) 

 Where Iprt is the number of input ports per layer (die), O 

is the total number of output ports, RTG, CDT, and CST are the 

TG parameters, RB and CB are the driving buffer output 

resistance and input capacitance, respectively, and RWH, CWH, 

RWV, and CWV are the horizontal and vertical wire 

interconnect parasitics. These parasitics are either extracted 

from the technology files, or determined using 

characterization SPICE simulations. TSV parameters are 

extracted similar to the model used in [31]. 

 Case 3 implementation, Fig. 5(a), differs from the 

previous two cases in the removal of the intermediate buffer 

(on the turn-path), while the direct-path TGs are preserved, 

similar to Case 1. So the model of Case 3 can be expressed by 

equation (4). Case 4, Fig. 5(b), combines both of the concepts 

of Case 2 and Case 3, i.e., both the intermediate buffer and 

the direct-path TGs are removed. The delay can be estimated 

using equation (5). 

t       = (C  + 2C  + C  
)R  ∗

 (   )

 
+ (C  + 2C  +

C  
) [(O −  )R  +

    (      )

 
R  ] + (C  + C )(O +

I   )R  + R [(O + I   )(C  + 2C  + (O −  )C  
+

I   C  
+ C )]    (4) 

t       = R (OC  
+ 2C  + 2C  + I   C  

+ C ) +

   [R  
O(OC  

+ I   C  
) + (I   R  

)(I   C  
)] + O ∗

R  
(C  + C  + C ) + R  (C  + 2C  + C + I   C  

) +

I   R  
C          (5) 

 Equations (1) through (5) were derived for the outside 

TSV crossbar topology, shown in Fig. 2(b). For the inside 

TSV topology, shown in Fig. 3(a), the number of input ports 

will decrease, i.e., Iprt will be replaced by Iprt/2. For the 

zigzagged internal TSV topology, the spacing between the 

crosspoints will decrease as the number of the zigzagged 

layers, ZL, is increased. Therefore, the values of the 

horizontal wire resistance and capacitance will be 

RWH*0.707/(ZL-1) and CWH*0.707/(ZL-1), respectively. 

 

(a)   

 

(b)  

Fig. 6. (a) Interconnection between two driving buffers, and (b) 
Transmission gate modeling as π-RC network. 

 

TABLE 1 
The percentage error  in delay between the SPICE 

simulation and the analytical model  

 Crossbar Size (IxO) 

6x6 6x8 6x10 6x12 

Case 1 -2.768% -13.06% -9.383% -5.226% 

Case 2 6.731% 3.0673% 0.1458% -1.451% 

Case 3 7.1063% -9.653% 7.926% 1.103% 

Case 4 4.9914% 2.2017% -0.448% -1.479% 
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4.3 Delay Model Validation 

 To validate the proposed models, SPICE simulations 

were performed for TSMC 65nm technology, for crossbars of 

different sizes. The percentage error is estimated using 

equation (6).  

      =
                   

        
∗      (6) 

 Table 1 shows error values between the model delay and 

SPICE delay.  The error shown is comparable to the figures 

reported in literature [36]-[38]. The main contributor to this 

error is the use of first order Elmore delay, which gives 10-

20% error against SPICE simulations [42]. Higher order 

models, such as those proposed in [39] can be more accurate 

but come at the expense of increasing the model complexity. 

4.4 Crossbar Power Model 

 The analytical power modeling concept used in the 

proposed model is similar to that used in [33]-[38]. In the 

proposed model, leakage power is neglected, compared to the 

dynamic power. Power validation is performed to estimate the 

error due to this assumption. Generally, the average power of 

the crossbar per port is given by:  

      =      
  C  .    (7) 

 where‎α‎is‎the‎switching‎activity‎factor‎of‎the‎input‎data,‎

f is the input frequency, VDD is the supply voltage, W is the 

port width (in bits), and Ct is the total capacitance seen on the 

signal path. The estimated total average power of the crossbar 

is computed as the product of the estimated power per port and 

the total number of input ports. The actual difference between 

the four implementation cases is the different total capacitance 

seen on the signal path, Ct. 

4.5 Power Model Validation 

 Table 2 shows the power model error for different 

crossbar sizes using the four crosspoint implementation cases. 

The maximum error is about 11.5%. The error between the 

power model and SPICE simulations is mainly due to 

neglecting the leakage and short-circuit power. This error is 

comparable to the figures reported in the literature. For 

example, Wassal and Hasan report an error of 8.4% [29], and 

Kahng et al., report 6.5-11% error in their power models [34].  

5 Performance Results 

 This section presents performance results for the 

different crossbar topologies and the different crosspoint 

implementations. The estimated delay and power depend on 

the different design parameters.‎ In‎ our‎ study,‎ the‎ TSV’s‎

diameter, pitch, and length are chosen from the ITRS roadmap 

[26],‎and‎the‎interconnect‎model‎is‎taken‎from‎TSMC’s‎65nm‎

technology for specific sizing and wire length and width. 

5.1 Adding More Ports 

 To examine the effect of increasing the number of ports, 

the number of the output ports (for a certain input port number, 

i.e. I=6, and a certain width for each port, i.e. W=30) is swept. 

In a McNoC architecture, the number of the output ports (O) 

affects the number of shared memory modules, while the 

numbers of the input ports (I) affects the number of input PEs 

with port width (W) [23].  

 

TABLE 2 
POWER ERROR% BETWEEN SIMULATION AND THE 

ANALYTICAL MODEL  

 Crossbar Size (IxO) 

6x6 6x8 6x10 6x12 

Case 1 10.7775% 10.0057% 7.5298% 11.5747% 

Case 2 2.5986% 2.4575% 2.1451% 2.7664% 

Case 3 10.5267% 8.7172% 3.4590% 11.3382% 

Case 4 6.82% 6.4635% 5.8213% 6.4078% 

 

Fig. 7. Critical path delay variation versus the number of output ports 
for different crossbar topologies. 

 

Fig. 8. Average power dissipation versus the number of output ports 
for different crossbar topologies. 

446 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



 Fig. 7 plots the critical path delay versus the number of 

output ports for the four crosspoint implementations. Each 

crosspoint case is demonstrated in two topologies, the outside 

TSVs and the inside (2-layer zigzagged) TSVs. Fig. 7 indicates 

that Case 3 exhibits the largest delay, followed by Case 1. This 

is because in both cases, the direct-path TGs have large 

resistances which increase the delay significantly.  

 Moreover, the outside TSVs topology has higher delay 

than that of the internal zigzagged TSVs. The reduction in 

delay between the outside TSVs and the internal zigzagged 

TSVs is about 29% using cases 1 and 3, and 29.7% using cases 

2 and 4, for the 6x12 crossbar (W=30). 

 Fig. 8 plots the average power per port consumed by the 

crossbar versus the number of output ports. The figure 

indicates that Case 2 consumes the largest average power, 

followed by Case 4. Cases 2 and 4 consume more power than 

cases 1 and 3 because the capacitance of the long wiring is 

higher than that of the direct-path TGs. Case 2 consumes more 

power than Case 4 due to the additional direct-path TGs and 

buffer. Cases 1 and 3 exhibit very similar power consumption 

values, since the capacitance of the additional buffer in Case 1 

is negligible, compared to the total path capacitance.   

 Fig. 8 also indicates that the power consumed by the 

outside TSVs topology is higher than that of the inside zig-

zagged TSVs topology. The power reduction between the 

outside TSVs and the internal zigzagged TSVs is about 29.2% 

using cases 2 and 4, and 27.7% using cases 1 and 3, for the 

6x12 crossbar (W=30). 

6 Conclusion 

 This paper discusses a novel 3D memory-centric NoC 

architecture which combines the shared memory concept with 

the 3D integration technology to address the issues of the 

previous conventional 3D NoC architectures. The main focus 

was the design of the 3D switching crossbar, which is the main 

center of communication between the processing elements and 

the memory modules. The paper proposed optimized 

topologies (internal and zigzagged TSVs) which reduce both 

the power and delay of the crossbar significantly. However 

choosing a certain topology should be also associated with the 

whole system floor-planning. Four different crosspoint 

implementations were analyzed and recommended for either 

delay or power optimized designs. 
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Abstract— The increase in computational power of pro-
cessing units and the complexity of scientific applications
which use high performance computing require more effi-
cient Input/Output (I/O) systems. To use the I/O subsystems
efficiently it is necessary to know its performance capacity
to determine if it fulfills applications I/O requirements.
Evaluating the performance capacity of the I/O subsystem
is difficult due to the diversity of architectures and the
complexity of its software stack.

Furthermore, parallel scientific applications have different
behavior depending on their access patterns. Then, it is
necessary to have some method to evaluate the I/O subsystem
capacity taking into account the applications access patterns
that can be used in different I/O subsystems.

We propose a methodology to characterize the parallel
I/O of scientific applications, including the I/O subsystem at
library and devices levels. We represent the message-passing
applications through an I/O model. The model allows us
to evaluate the I/O subsystem taking into account the I/O
phases of the application.

Keywords: Parallel I/O System, Access Pattern, I/O Configura-
tion, I/O Modeling, I/O phases

1. Introduction
Due to the historical “gap“ between the computing and

Input/Output (I/O) performance, the I/O system is, in many
cases, the bottleneck in parallel systems. Increasing com-
putational power of processing units and the complexity of
scientific applications that use high performance computing
require more efficient Input/Output systems. In order to hide
the "gap" and to efficiently use the I/O, it is necessary to
identify the I/O factors with the biggest effect on perfor-
mance. The I/O factors depend on the I/O architecture and
I/O software stack, however the application performance will
depend on its access pattern.

Computer clusters are built to provide parallel computing
to several applications. These applications have different
I/O requirements and the same I/O system is not always
appropriate for all applications. Programmers can modify
their programs to efficiently manage I/O operations, but they
need to know the I/O system, especially the I/O software
stack.

Users need information to answer questions like: Is the
I/O subsystem a problem for the access patterns of the
application? How much I/O subsystem capacity is being used
by the application? How the application access patterns are
done in a target subsystem?

We use an I/O model of the scientific applications to
support the evaluation of I/O performance of computer
clusters. We have implemented a tracing tool (PAS2P library
extension [1]) for extracting "I/O patterns" in message-
passing applications, and based on these patterns, we have
defined the concept of "I/O phase" of parallel scientific
applications. These I/O phases are the key elements to define
an I/O behavior model of the parallel scientific applications.
This model allows us to evaluate an I/O subsystem taking
into account the parallel application.

In a previous paper [2], we have proposed a methodology
for performance evaluation of the I/O system which was
focused in I/O path. In the present paper, we extend our
methodology focused in the I/O characterization of the
application. We have refined the stages of characterization
and analysis of the I/O subsystem. We explain the process
to performance evaluate of the I/O subsystem focused in the
I/O model.

We have applied our methodology in three computer
clusters where we have used parallel filesystem OrangeFS,
Lustre and network filesystem NFS. We have evaluated the
performance on three I/O systems taking into account the
I/O model of the application. The methodology is applied to
MadBench2 [3] and Flash-IO [4]. The characteristics of the
I/O subsystem are evaluated, as well as their usage by the
different I/O phases of the I/O model.

The rest of this article is organized as follows: in Section
II we review the related work, Section III introduces our
proposed methodology. In Section IV we review the exper-
imental validation. Finally, we present our conclusions and
future work.

2. Related Work
There are several papers [5] [6] [7] [8] that present the

characterization of I/O of parallel applications in specific
computers clusters or supercomputers. Due to the diversity
of I/O architectures and the complexity of stack software,
each researcher try to evaluate the I/O components with the
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biggest impact in their subsystems. Usually the evaluation
is done for I/O benchmarking and the results are used to
evaluate the performance of an specific I/O system.

Other important point in the evaluation of I/O subsystem
is the tracing tool to identify the I/O access pattern.

Byna et. al. [9] presented a classification of I/O patterns
for parallel applications, I/O signatures at local process level
and an applying of signatures to prefetching technicals. We
use their proposed to identify access patterns. However, we
have identified the global access pattern because we need the
I/O for the parallel application. From local access patterns
and by similarity, we have defined the global access pattern,
then global access patterns are divided in the I/O phases.

H. Shan and J. Shalf [10] have used IOR to mimic the
I/O pattern of parallel scientific applications. Also, they used
this mimic to predict the performance for the application. We
have used IOR to represent the I/O model of the application.
The I/O model is represented by an I/O phases sequence and
IOR is applied to each I/O phases. In this way, we only focus
in time where the application does I/O operations.

Carns [11] presented the Darshan tracing tool for the
I/O workloads characterization of the petascale. Darshan is
designed to capture an accurate picture of the application
I/O behavior, including properties such as patterns of access
within files, with minimum overhead. It is a tools available
to download and it is free.

Most of these researches are aimed at supercomputers,
while our strategy is focused on computer clusters. However,
the main difference is that our methodology is focused to
evaluate the performance capacity of I/O subsystem from
an I/O model. We use the model to describe the I/O
requirements of the application and to compare qualitatively
the I/O subsystems. We have expressed the access patterns
of the application in an I/O model and this can be used on
different I/O subsystems.

3. Proposed Methodology
The proposed methodology is composed of three stages:

Characterization, I/O Analysis and Evaluation. Next, we
explain each stage.

3.1 Characterization
The characterization is applied to the I/O subsystem and

parallel scientific application. This stage has two objectives:
i) Extracting the I/O model of the application; and ii) Iden-
tifying and obtaining of performance basic characteristics
of the different configurations in the I/O subsystem. These
activities are independent.

3.1.1 Scientific Application
The I/O model of an application is represented by three

major characteristics: i) meta-data, ii) the temporal global
I/O pattern; and iii) the spatial global I/O pattern.

Fig. 1: I/O model example for 4 processes with request
size 2MB, 40 I/O phases of a writing operation and weight
40MB, 1 phase of 40 reading operations with weight
1600MB

We characterize the application off-line and once at I/O
library level because this allows us to obtain a model
of the application’s I/O independent from the execution
environment, i.e. the computer cluster.

The I/O model of application is expressed by I/O phases,
where an I/O phase is a repetitive sequence of same pattern
on a file for a number of processes of the parallel application.
The process to extract the I/O model is described in [12].

In order to consider the order of occurrence of the events
of message-passing parallel applications we use the concept
of tick. A tick is defined as a logical unit time, and it is
incremented by each communication event and I/O event. An
I/O event is a segment of application where the I/O operation
is called. The I/O event is composed of an ID file, mpi-io
operation, offset, displacement, size of etype, size of filetype,
name of file, number of event, size of request, logical time,
duration, count of datatype, and size of datatype.

The algorithm to identify the I/O patterns is based on
type of operation, request size, displacement, and distance.
Where, distance is the number of tick between two I/O
operations and the displacement is the difference between
the offset of two consecutive I/O operations. The similarity
of pattern is determined by the relation between the pattern
and the new value. If the relation is > 0.8 and < 1.2 then
we consider the new value how a new occurrence of the
pattern analyzed. This criteria is used to the displacement
and the distance. The new value must be equal to the type
of operation and the request size of the pattern analyzed to
be considered a new occurrence.

The weight of a phase depends on the number of pro-
cesses, request size and repetitions of each access pattern
that is part of a phase. The weight is expressed in Megabytes
and it is used to determine transferred data in each I/O phase.
The I/O model depends on I/O phases and weight, allowing
us to know “when“ and “how“ the I/O subsystem will be
used.

Figure 1 shows an example of I/O model, where the global
access pattern is shown through its spatial local pattern,
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spatial global pattern, temporal local pattern, and temporal
global pattern. Also, we show the global access pattern
in three dimensional space, where for each operation the
file Offset indicates the position where the process "p" is
accessing in the tick "t".

3.1.2 I/O System
The I/O subsystem characterization has as objective to

development of adequate yardsticks for measuring and com-
paring such configurations in a appropriate manner taking
into account the application access patterns. To do this, we
apply the following steps:

i) Identifying I/O configurations: In this step, we identify
the I/O subsystem configurations. An I/O configuration de-
pends on number and type of filesystem (local, distributed
and parallel), number and type of network (dedicated use
and shared with the computing), number of I/O devices, I/O
devices organization (RAID level, JBOD), and number and
placement of I/O node.

ii) Setting input parameters for the Benchmarks: IOR
[13] is applied at I/O library level and Global Filesystem
level. IOzone [14] is applied at I/O devices level on local
filesystem. Parameters values are selected according to the
characteristics of the configurations identified. We consider
that minimum size of file to test must be = 2 ∗RAMsize,
where the RAM size is of the node where the benchmark
will be executed. This is necessary to guarantee the access
to disk. The access mode to a file can be sequential, strided,
and random. The access type can be shared or unique, where
shared is one file for all processes and unique is one file per
process. Also, it is necessary to select the type of operations
(write, read) and the request size (KBytes, MBytes, Gbytes)
of the operations.

We have executed the benchmarks in each I/O subsystem
with different I/O patterns and we have generated a data base
by I/O subsystem configuration with performance measures
(bandwidth, latency, iops).

3.2 Input/Output Analysis
To compare the I/O pattern of the application with bench-

marks, we define the similar data structure for the access
pattern of each I/O phase.

We analyze the I/O phases of the application and its
weight to select the candidate I/O system. We search the
I/O patterns of phases on performance databases. Then, we
calculate the I/O time for the I/O phases and we select the
I/O systems with less I/O time.

When there is not a characterization of I/O subsystem
for similar patterns to the most significant phases of I/O
model we use the I/O model to mimic the I/O model of
the application. The I/O model is used to set up the input
parameters of the benchmark IOR [13]. We only execute
the benchmark for the phases with higher weight of the I/O
model.

The following setting of input parameters are applied on
IOR for each I/O phase:

• Strided Access: s = Iter; b = RS(IdPh); t = RS(IdPh);
NP = np(IdPh); −F if there is 1 file per process; −c if
there is collective I/O.

• Sequential Access: s = 1; b = weight(IdPh); t =
RS(IdPh); NP = np(IdPh); −F if there is 1 file per process;
−c if there is collective I/O.

Then IOR is run in the subsystem target. I/O time
and transfer rate obtained from IOR running are named
Timeio(CH) and BW(CH). The estimated I/O time is cal-
culated by expression (1).

T imeio =

n∑
i=1

T imeio(phase[i]) (1)

Where the Timeio(phase[i]) is I/O time for each I/O
phase that is calculated by expression (2).

T imeio(phase[i]) =
weight(phase[i])

BW(CH)(phase[i])
(2)

BW(CH)(phase[i]) is the characterized transfer rate at
I/O library level for a similar access pattern.

3.3 Evaluation
We evaluate the utilization of I/O subsystem by the rela-

tion between the bandwidth characterized BW(PK) at I/O
devices level and measured BW(MD) when the application
is executed, expressed in equation 3.

SystemUsage(phase[i]) =
BW(MD)(phase[i])

BWPK(IOP (phase[i]))

∗ 100 (3)

The I/O model is used to determine what system can
provide the best I/O performance for the I/O phase with more
impact in the I/O of the application. To evaluate the estima-
tion’s accuracy of the I/O time estimated we evaluate the
relative error produced by the I/O time estimation. Relative
error is calculated by expression (4); where Timeio(MD)

and BW(MD) are the I/O time and transfer rate obtained
from running of application.

errorrel = 100 ∗ ( errorabs
T imeio(MD)(phase[i])

) (4)

Where absolute error is calculated by the expression (5).

errorabs = |T imeio(CH)(phase[i])− T imeio(MD)(phase[i])|
(5)

4. Experimentation
We present the experiments in two part: 1) We extract

the I/O model of MadBench2 [3] and we used it to evaluate
the utilization of the two I/O subsystems. This approach is
adequate when there is an exhaustive characterization of the
I/O subsystem. 2) We extract the I/O model of Flash-IO
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Table 1: Description of the I/O subsystems of systems A and
B

I/O Element System A System B
I/O library mpich2 OpenMPI
Communication
Network

1 Gbps Ethernet 1 Gbps Ethernet

Storage Network 1 Gbps Ethernet 1 Gbps Ethernet
Filesystem
Global

OrangeFS NFS Ver 3

I/O nodes 10 32 DAS and 1 NAS
Metadata Server 1 1
Filesystem Local Linux ext3 Linux ext4
Level
Redundancy

- RAID 5

Number of I/O
Devices

11 disks 5 disks

Capacity of I/O
Devices

500 GB 1.8 TB

Mounting Point /mnt/orengafs /home

benchmark [4] and we used it to tune parameters of IOR
benchmark in order to evaluate the I/O performance for the
I/O model. This approach is adequate when there is not an
exhaustive characterization of the I/O subsystem. Table 1
shows the I/O subsystems of the System A and B.

System A is composed of 14 computing nodes:
• 4 cores of AMD Phenom™ II (8MB cache) or Athlon™

II (2MB cache), 4 DIMM slots for up to 16GB DDR3
System B is composed of 32 IBM x3550 Nodes:

• 2 x Dual-Core Intel(R) Xeon(R) CPU 5160 @ 3.00GHz
4MB L2 (2x2), 12 GB Fully Buffered DIMM 667 MHz

4.1 I/O subsystem Characterization
Figure 2 shows performance measured with IOR at I/O

library level for the I/O system of A and B.
The I/O subsystem A (Figure 2(a)) shows a increasing

I/O performance with the increment of request sizes for the
writing operations and reading operations. For the request
sizes upper to 16 MB we can observe a performance drop
for reading operations. For the writing operations we can
observe a drop in performance for the request sizes upper to
64MB. The I/O subsystem B (Figure 2(b)) shows a regular
behavior for the reading operations regardless of the file
size and request sizes. However, for the writing operations
the request size is the I/O factor with the highest impact in
performance. We can observe greater transfer rates for bigger
request sizes (> 256MB), we also can observe a drop in
performance for request size of 32 MB.

Peak values for the I/O subsystems are: Write=1120
MB/sec, Read=1260MB/sec for the system A and Write=165
MB/sec, Read=180MB/sec for the system B. These values
allows us to limit the performance waited, because usually
these are not possible to achieve due to the overhead of I/O
software stack. However, the peak value allows us to know:
How much performance capacity can provide I/O hardware?,

(a) I/O library on OrangeFS of the System A

(b) I/O library on NFS of the System B

Fig. 2: Performance characterized at I/O library on global
filesystem

and How much I/O subsystem capacity are applications
really using?

We can observe that the I/O subsystem performance
of the system A is higher to I/O subsystem performance
of the system B. Also, when we have evaluated the I/O
performance for the I/O subsystem B we have observed that
this I/O system is not adequate to I/O intensive applications
with small request size. Also, we have observed in I/O
characterization of the system A that is not adequate to ap-
plication with request size upper to 1GB. The I/O subsystem
A has been configured to applications that will use parallel
HDF5 and parallel NetCDF on MPI-IO through a parallel
filesystem. However, the I/O subsystem B is configured to
parallel applications that can use MPI-IO without support of
a parallel filesystem.

4.2 I/O subsystem utilization
To evaluate the system usage we analyze the I/O phases

to MADBench2 in the I/O subsystems of system A and
B. MADbench2 is a tool for testing the overall integrated
performance of the I/O, communication and calculation
subsystems of massively parallel architectures under the
stress of a real scientific application. MADbench2 is based
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Fig. 3: I/O model of MADBench2 for 36 processes, 40KPIX,
and file type SHARED

Table 2: I/O phases description of MADBench2 for np = 36
processes with request size rs = 352 in MB

Phase #Oper. rep weight
1 (np ∗ rep) write 8 102GB
2 (np ∗ rep) read 2 25GB
3 (np ∗ rep) write 6 75GB

(np ∗ rep) read 6 75GB
4 (np ∗ rep) write 2 25GB
5 (np ∗ rep) read 8 102GB

on the MADspec code, which calculates the maximum
likelihood angular power spectrum of the Cosmic Microwave
Background radiation from a noisy pixelated map of the sky
and its pixel-pixel noise correlation matrix.

MADbench2 can be run on IO mode, in which all calcu-
lations/communications are replaced with busy-work.

MADbench2 reports the mean, minimum and max-
imum time spent by each function during calcula-
tion/communication, busy-work, reading and writing in each
function. Running MADbench2 requires a n2 number of
processors.

We have obtained the I/O model of MADBench2 for 36
processes. Figure 3 shows I/O model of MADBench2 for 36
processes, 40KPIX, and file type SHARED.

Table 2 shows the five phases identified.
By tracing MADBench2 with our tool we have obtained

its metadata: Individual file pointers, Non-collective I/O
operations, Blocking I/O operations; sequential access mode,
Shared access type; and a file shared by all processes.

The I/O subsystem utilization is analyzed for 36 processes
in the I/O subsystems of the systems A and B.

Table 4 shows the utilization of the I/O subsystem B.
We also show the amount of data transferred in each
I/O phase (weight), the number and type of I/O oper-
ation (W=write, R=read, W-R=write-read), BW(MD) and
BW(PK) in MB/second.

Table 3 shows the utilization of the I/O subsystem A

Table 3: I/O system utilization, BW(PK) and BW(MD) in
MB/second for MADBench2 with 36 processes, file size 102
GB, RS=352MB and a shared file on System A

Phase #Oper. weight BW(PK) BW(MD) System
Usage(%)

1 288 W 102GB 1120 802 72
2 72 R 25GB 1260 254 20
3 432 W+R 150GB 1190 363 31
4 72 W 25GB 1120 636 57
5 288 R 102GB 1260 296 24

Table 4: I/O system utilization, BW(PK) and BW(MD) in
MB/second for MADBench2 with 36 processes, file size 102
GB, RS=352MB and a shared file on System B

Phase #Oper. weight BW(PK) BW(MD) System
Usage (%)

1 288 W 102GB 204 76 37
2 72 R 25GB 300 44 15
3 432 W+R 150GB 252 41 16
4 72 W 25GB 204 60 30
5 288 R 102GB 300 41 14

for the MADBench2 to 40KPIX and 36 processes. We can
observe that the I/O phases 1 and 4 (with writing operations)
have utilized greater performance capacity than phases 2, 3
and 5 (phases with reading operations or composed). The
third phase has used at about 31% of the performance ca-
pacity, a percentage similar to phases with reading operations
that have used at about 20%.

Table 4 shows the utilization of the I/O subsystem for the
MADBench2 to 40KPIX and 36 processes. We can observe
that the I/O phases 1 and 4 (with writing operations) have
utilized higher I/O performance capacity than phases 2, 3 and
5 (phases with reading operations or composed). The third
phase has used at about 16% of the performance capacity,
a percentage similar to phases with reading operations that
have used at about 15%.

We can observe that the first phase has more impact in
the I/O subsystem because need used more capacity of the
I/O subsystem. The other phases with more impact are the
fourth and the fifth. The second and the third phase have
low impact in the I/O subsystem because the I/O operations
are not consecutive, in fact, the I/O operations are done at
interval of time sufficient to finish the I/O operations before
that data are used.

4.3 FLASH-IO Benchmark
The aim of this experimentation is to extract the I/O

model and select I/O phases with more weight to evaluate
in other I/O subsystem. We have extracted the I/O model
in I/O subsystem A and we have applied the I/O model in
Finisterrae [15].

Finisterrae is composed of 143 computing nodes:
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• 142 HP Integrity rx7640 nodes with 16 Itanium Mont-
vale cores and 128 GB of memory each.

• 1 HP Integrity Superdome node with 128 Itanium
Montvale cores and 1,024 GB of memory.

The I/O subsystem of Finisterrae used in this experiment is
composed by: mpich2 and HDF5, 1 interconnection network
Infinibad 20 Gbps, 1 storage Network Infinibad 20 Gbps,
Filesystem Global Lustre (HP SFS), 18 OSS, 2 Metadata
Server with 72 cabins SFS20, Filesystem Local Linux ext3,
Level Redundancy RAID 6, 866 disks with a capacity of I/O
Devices 866*250GB and a mounting point $HOMESFS.

FLASH-IO Benchmark simulates the I/O employed by
FLASH for the purposes of benchmarking the code. FLASH
is a block-structured adaptive mesh hydrodynamics code.
The computational domain is divided into blocks which are
distributed across the processors. Typically a block contains
8 zones in each coordinate direction (x,y,z) and a perimeter
of guard-cells (presently 4 zones deep) to hold information
from the neighbors. The code will produce a checkpoint file
(containing all variables in 8-byte precision) and two plot
files (4 variables, 4-byte precision, one containing corner
data, the other containing cell-centered data). The checkpoint
and plot file routines are identical to those used in the
FLASH Code.

4.3.1 Extracting the I/O model

We have obtained the following meta-data of FLASH-IO
in the parallel HDF5 version with our tool:

• Explicit offset, Blocking I/O operations, Collective op-
erations and Non-collective.

• Strided access mode, Shared access type for three files.
• MPI-IO routine MPI_Set_view with etype of with

different etype and filetype for collective and non-
collective operations.

FLASH-IO performs only I/O operations and there are no
communication events. I/O operations of parallel HDF5 are
converted into MPI primitives. Table 5 shows the description
of the I/O phases. Where IdPh. is the Identifier of the Phase,
Oper. is the Type of operation, RS is the Size of request,
Iter. is the number of iterations, Dist. is the Distance, OI is
the initial offset, Disp. is the Displacement, and 1ºTick is
the first tick (1ºTick) of the phase. Distance is the number
of events of communication or events of I/O between two
phases. The first tick represents the tic’s number from the
first pattern of one phase. Displacement defines the location
where a view begins, this is the file displacement.

We can observe five phases for the first file. In
this case the are several MPI_File_set_view to achieve
strided access. There are two types of writing operations:
MPI_File_write_at and MPI_File_write_at_all. We show the
phases for the collective operations because they represent
the 90% of I/O. The I/O model of flash is shown in Figure
4.

Fig. 4: I/O model of FLASH-IO for 64 processes

Table 5: I/O model of FLASH-IO Write_at_all

IdPh. RS Iter. Dist. OI Disp. 1ºTick
1º F.

1 320 2 3 6288 20732 9
2 4800 1 3 47752 310980 15
3 1920 2 3 358732 124392 18
4 3840 1 3 609564 439012 24
5 2621440 24 3 1048576 169869312 27

2º F.
1 320 2 3 6288 20732 109
2 4800 1 3 47752 310980 115
3 960 2 3 358732 62196 118
4 1920 1 3 485172 301260 124
5 1310720 4 3 786432 84934656 127

3º F.
1 320 2 3 6288 20732 149
2 4800 1 3 47752 310980 155
3 960 2 3 358732 62196 158
4 1920 1 3 485172 301260 164
5 1572160 4 3 786432 101974016 167

The I/O model shows three file used during the run of
the application. Files are enumerated taking into account
the order in which they were opened. Table 5 shows the
description of phases for the first file (1º F.), second file (2º
F.), and the third file (3º F.). We can observe small request
size for the phases 1 to 4 for the three files and 2MB for
first file and 1MB for the second and third file in the fifth
phase.

4.3.2 Applying the I/O model
We use the I/O model of FLASH-IO to set the parameters

of IOR. We select phase 5 to mimic with IOR because it is
the most weighted phase. The parameters are set as follows
and we run IOR in the same order:

• File 1: -np 64 -a MPIIO -c -s 24 -b 2621440 -t 2621440
• File 2: -np 64 -a MPIIO -c -s 4 -b 1310720 -t 1310720
• File 3: -np 64 -a MPIIO -c -s 4 -b 1572160 -t 1572160
We have evaluated the I/O time of IOR and I/O time of

flash in the cluster Finisterrae. Table 6 shows the I/O time
obtained with IOR Timeio(CH), I/O time for FLASH-IO
Timeio(MD), and relative error errorrel. We observe higher
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Table 6: Error of I/O time estimation on Finisterrae for 64
and 128 processes for phase 5 of FLASH-IO

Phase T imeio(CH) T imeio(MD) errorrel

64p
File 1 47.73 51.02 6%
File 2 3.07 4.62 33%
File 3 3.80 4.83 21%
128p
File 1 98.88 102.25 3%
File 2 8.74 8.44 3%
File 3 10.02 11.14 10%

errors for 64 processes in the File 2 and File 3, this is due
to the size of Files ( 400MB). However, we can observe that
the error is decreased in 128 processes for the File 1. This
is the file with the highest size.

Flash increases its I/O requirements when the number of
processes is increased. For example, the weight of the fifth
phase of the File 1 is 2621440∗24∗512 to 512 processes and
2621440 ∗ 24 ∗ 256 to 256 processes. We have analyzed the
I/O model for 256 and 512 processes and we have observed
that the I/O phases have the same request size, therefore, the
I/O requirements are increased in function of the number of
processes for each I/O phases. For this application the I/O
system have more impact when the number of processes is
increased.

5. Conclusions
We have applied a methodology to characterize the paral-

lel I/O of scientific applications. We have represented the
message-passing applications through an I/O model. The
model allows us to evaluate the I/O subsystems taking into
account the I/O phases of the application. We have used an
exhaustive performance characterization of I/O subsystem
for different access patterns with the benchmark IOR at I/O
library level and IOzone at I/O devices level.

Furthermore, we have used the I/O model to set the
IOR benchmark input parameters for the access patterns
of each I/O phase of Flash-IO. This approach is adequate
when the I/O subsystem does not allows us an exhaustive
I/O performance characterization. We have evaluated this
approach to FLASH-IO. We have used the I/O model to
estimate the I/O time. Relative errors have shown that
the I/O time estimation is more accurate when the I/O is
representative of the application.

The I/O model can be used to evaluate the performance
of the application without executing it. This is very useful
particularly for the real applications that usually need several
libraries in order to be executed.

Currently, we are extending the I/O phases identification
to different applications in order to show others I/O behav-
iors. Also, we are analyzing the relationship between the I/O
model and number of I/O and stripe size. We plan to provide
an useful configuration method to users and administrators.

We expect that by using our tool they will be able to
configure the number of I/O node and the stripe size, by
considering only the most relevant phases of one application.
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Abstract— This document focuses on DiffServ Quality of
Service approach and in particular on marking data flows
in IP networks. One of the congestion causes in these
networks is the burst size of IP packets. Marking these
packets is to give them priority depending on their criticality
so that routers and switches can process them according to
their importance. Traffic shaping and congestion control are
very important mainly when VBR (Variable Bit Rate) and
CBR (Constant Bit Rate) are present in the network. Many
methods were proposed to solve this hardness. The target
of these methods is to maximise the quantity of transmitted
data flows when maintained the required QoS and to reduce
congestion in the network. We have studied the impact of
traffic shaping on CBR and VBR flows in a DiffServ network.
Simulations were done on NS-2 using CBR and VBR traffic
shaped by token buckets and marked by different kind of
markers such as simple, two rate and Time Sliding Window
Three Color Marker. Application of these markers with and
without the presence of the shaper leads to different results.

Keywords: DiffServ, Marking, QoS, PHB, Shaping

1. Introduction
To support the quality of service (QoS) [1] on IP based

networks, the Internet Engineering Task Force (IETF) has
proposed the Differentiated Services (DiffServ) [2]. DiffServ
provides simple and predefined per-hop behavior (PHB)
level service differentiation. The IETF has defined one class
for Expedited Forwarding (EF) PHB and four classes for
Assured Forwarding (AF) PHB [3] [4]. AF PHB allows an
Internet service provider (ISP) to provide different levels
of forwarding assurances according to the user profile. The
major benefit of the DiffServ (DS) approach is its practicality
and scalability, due to aggregation of different packet streams
(data flows) with the same required service. The main
consequence of this concept is that traffic signalling can
be almost completely cut off if the communication end-
points are in the same DiffServ Domain, otherwise it has
to be performed only at the inter-domain links. This can
be achieved because in this approach Quality of Service
provision is guaranteed aggregating different data flows with
the same quality requirements, thus achieving scalability
especially in the core network, where it is difficult to

maintain separate information because of the large amount
of different data flows.

1.1 Related Works
Several studies have been conducted on data flows so

that interconnection equipments can differentiate IP packets
according to their priorities. In [5] the authors introduce a
new packets marking algorithm which will be used in the
AF (Assured Forwording) of the DiffServ model. This new
algorithm was proposed to overcome the problem of equity
occurred in other marking algorithms. In [6] a new algorithm
of MPEG4 flows marking was proposed, the authors were in-
terested to QoS interactions between MPEG4 video applica-
tions and DiffServ IP networks. These interactions result by
associating an elementary MPEG flow (Video, audio, indica-
tion, ODs) to a PHB of DiffServ, AF/EF. The objectif of this
study focuses on two idea, the first one, the establishment
of an encapsulation protocol for MPEG4 packets through
RTP/IP (Real Time Protocol/Internet Protocol). The second
one, the proposition of marking mechanism for DiffServ
routers (DVMA algorithm). Other flows markers had been
studied, in [7] the researchers prposed the AFM (Aggregate
Fairness Marker) which is an intermediate marker associated
to the uf-TCM (User Flow Three Color Marker) in order to
overcome the problem of fairness experienced by IP packets
during the congestion control and offering a differentiation
service throughout the communication chain when it comes
to cross several diffserv areas.

1.2 DiffServ Network Organization
The DiffServ architecture distinguishes the border from

the inside of un administration domain. This architecture
is composed of a number of functional elements imple-
mented in network nodes, including a small set of per-hop
forwarding behaviors, packet classification functions, and
traffic conditioning functions including metering, marking,
shaping, and policing. This architecture achieves scalability
by implementing complex classification and conditioning
functions only at network boundary nodes, and by applying
per-hop behaviors to aggregates of traffic which have been
appropriately marked using the DS field in the ipv4 or ipv6
headers 1. Per-hop behaviors are defined to permit a rea-

1the ipv4 header TOS octet or the ipv6 traffic Class octet when interpreted
in conformance with the definition given in [8]. The bits of the DSCP field
encode the DS codepoint, while the remaining bits are currently unused.
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sonably granular means of allocating buffer and bandwidth
resources at each node among competing traffic streams. Per-
application flow or per-customer forwarding state need not
be maintained within the core of the network.

1.3 Standardized Per-Hop-Behavior
1.3.1 The Expedited Forwording PHB

Network nodes that implement the differentiated services
enhancements to IP use a codepoint in the IP header to
select a per-hop behavior (PHB) as the specific forwarding
treatment for that packet [8]. We describe here brievely
a particular PHB called expedited forwarding (EF) PHB
which can be used to build a low loss, low latency,
low jitter, assured bandwidth, end-to-end service through
DiffServ domains. Loss, latency and jitter are all due to
the queues traffic experiences while transiting the network.
Therefore providing low loss, latency and jitter for some
traffic aggregate means ensuring that the aggregate sees
no (or very small) queues. Queues arise when (short-term)
traffic arrival rate exceeds departure rate at some node.
Thus a service that ensures no queues for some aggregate
is equivalent to bounding rates such that, at every transit
node, the aggregate’s maximum arrival rate is less than that
aggregate’s minimum departure rate. The EF PHB is defined
as a forwarding treatment for a particular diffserv aggregate
where the departure rate of the aggregate’s packets from any
diffserv node must equal or exceed a configurable rate [3].
The EF traffic should receive this rate independent of the
intensity of any other traffic attempting to transit the node.
It should average at least the configured rate when measured
over any time interval equal to or longer than the time it takes
to send an output link MTU sized packet at the configured
rate. (Behavior at time scales shorter than a packet time
at the configured rate is deliberately not specified.) The
configured minimum rate must be settable by a network
administrator (using whatever mechanism the node supports
for non-volatile configuration).

1.3.2 The Assured Forwording PHB
The AF PHB group provides delivery of IP packets in four

independently forwarded AF classes. Within each AF class,
an IP packet can be assigned one of three different levels
of drop precedence. A DiffServ node does not reorder IP
packets of the same microflow if they belong to the same AF
class. In a DS node, the level of forwarding assurance of an
IP packet thus depends on how much forwarding resources
has been allocated to the AF class that the packet belongs to,
and what is the current load of the AF class, and, in case of
congestion within the class, what is the drop precedence of
the packet [4]. For example, if traffic conditioning actions
at the ingress of the provider DS domain make sure that
an AF class in the DS nodes is only moderately loaded by
packets with the lowest drop precedence value and is not
overloaded by packets with the two lowest drop precedence
values, then the AF class can offer a high level of forwarding
assurance for packets that are within the subscribed profile

(i.e., marked with the lowest drop precedence value) and
offer up to two lower levels of forwarding assurance for the
excess traffic. The table below summarizes the recommended
AF codepoint values.

Table1: AF Codepoint Values.

PHBs AFij class 1 class 2 class 3 class 4
Low Drop Prec 001010 010010 011010 100010

Medium Drop Prec 001100 010100 011100 100100
High Drop Prec 001110 010110 011110 100110

1.4 QoS Parameters
The quality of service (QoS) refers to several related

aspects of telephony and computer networks that allow the
transport of traffic with special requirements. In particular,
much technology has been developed to allow computer
networks to become as useful as telephone networks for
audio conversations, as well as supporting new applications
with even stricter service demands. It is a concept based
on the statement that not all applications need the same
performance from the system/network over which they run.
Thus, applications may indicate their specific requirements
to the network, including cost, before they actually start
transmitting data.

1.4.1 Major Parameters Defining QoS
• Throughput: the total amount of work completed dur-

ing a specific time interval.
• Delay: the elapsed time from when a request is first

submitted to when the desired result is produced.
• Jitter: the delays that occur during playback of a

stream.
• Reliability: how errors are handled during transmission

and processing of continuous media.

1.5 Marking and Coloring IP Packets
IP packets coloration is a way to mark them modifing

the DSCP field of the IP header. In a DS domain, marking
process take place near the flow classification mechanism
or after the transition in the supervision module of an
edge router of a DS domain. Packets can be colored into
green, yellow, or red. In case of multimedia application,
attention will be focused on the AF classes. Three packets
coloration algorithms had been studied by the IETF (Internet
Engineering Task Force):
1- Single Rate Three Color Marker (srTCM).
2- Two Rate Three Color Marker (trTCM).
3- Time Sliding Window Three Color Marker (TSWTCM).

1.5.1 Single Rate Three Color Marker
The Single Rate Three Color Marker (srTCM) meters an

IP packet stream and marks its packets either green, yellow,
or red. Marking is based on a Committed Information Rate
(CIR) and two associated burst sizes, a Committed Burst
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Size (CBS) and an Excess Burst Size (EBS). A packet is
marked green if it doesn’t exceed the CBS, yellow if it
does exceed the CBS, but not the EBS, and red otherwise.
The srTCM is useful, for example, for ingress policing of a
service, where only the length, not the peak rate, of the burst
determines service eligibility. The Meter meters each packet
and passes the packet and the metering result to the Marker
[9]. The Meter operates in one of two modes. In the Color-
Blind mode, the Meter assumes that the packet stream is
uncolored. In the Color-Aware mode the Meter assumes that
some preceding entity has precolored the incoming packet
stream so that each packet is either green, yellow, or red. The
Marker (re)colors an IP packet according to the results of the
Meter. The color is coded in the DS field [8] of the packet
in a PHB specific manner (see section 4 for an example).

1.5.2 Two Rate Three Color Marker
The Two Rate Three Color Marker (trTCM) meters an IP

packet stream and marks its packets either green, yellow,
or red. A packet is marked red if it exceeds the Peak
Information Rate (PIR) [10], otherwise it is marked either
yellow or green depending on whether it exceeds or doesn’t
exceed the Committed Information Rate (CIR). The trTCM
is useful, for example, for ingress policing of a service,
where a peak rate needs to be enforced separately from a
committed rate. The Meter meters each packet and passes
the packet and the metering result to the Marker. The Meter
operates in one of two modes. In the Color-Blind mode, the
Meter assumes that the packet stream is uncolored. In the
Color-Aware mode the Meter assumes that some preceding
entity has precolored the incoming packet stream so that
each packet is either green, yellow, or red. The Marker
(re)colors an IP packet according to the results of the Meter.
The color is coded in the DS field of the packet in a PHB
specific manner.

1.5.3 Time Sliding Window Three Color Marker
The Time Sliding Window Three Colour Marker

(TSWTCM) is designed to mark packets of an IP traffic
stream with colour of red, yellow or green. The marking is
performed based on the measured throughput of the traffic
stream as compared against the Committed Target Rate
(CTR) and the Peak Target Rate (PTR). The TSWTCM is
designed to mark packets contributing to sending rate below
or equal to the CTR with green colour. Packets contributing
to the portion of the rate between the CTR and PTR are
marked yellow. Packets causing the rate to exceed PTR are
marked with red colour. The TSWTCM has been primarily
designed for traffic streams that will be forwarded based on
the AF PHB in core routers [11].The TSWTCM consists
of two independent components: a rate estimator, and a
marker to associate a colour (drop precedence) with each
packet. If the marker is used with the AF PHB, each colour
would correspond to a level of drop precedence. The marker

uses an estimated rate module to probabilistically associate
packets with one of the three colours. Using a probabilistic
function in the marker is beneficial to TCP flows as it
reduces the likelihood of dropping multiple packets within
a TCP window. The marker also works correctly with UDP
traffic, i.e., it associates the appropriate portion of the UDP
packets with yellow or red colour marking if such flows
transmit at a sustained level above the contracted rate. The
colour of the packet is translated into a DS field packet
marking. The colours red, yellow and green translate into
DS codepoints representing drop precedence 2, 1 and 0
of a single AF class respectively. Based on feedback from
four different implementations, the TSWTCM is simple and
straightforward to implement. It can be implemented in
either software or hardware depending on the nature of the
forwarding engine.

2. Main Results

In what follows, we present contribution of markers on
VBR (Variable Bit Rate) and CBR (Constant Bit Rate) flows.
We hold out the study of the three main markers (srTCM,
trTCM and TSWTCM) with a flow shaping. The target of
this study is to assign a green marking to priority flows (real-
time flows), so to do this, we have done our study on VBR
and CBR flows, with and without the presence of the shaper.

2.1 Experimentation Environnement

The test platform is a virtual machine in which the
operating system is LINUX Ubuntu with NS2(Network
Simulator2) installed in. The topologies used in our simu-
lations are composed of sources and destinations connected
across to a DiffServ network consisting of three routers (one
CORE router and two EDGE routers), simulation parameters
(flows configuration, simulation time, markers type...etc) are
described thereafter.

Table 2: Simulation Parameters.

Parametres Values
DiffServ Architecture Six Nodes

Markers srTCM
trTCM

TSW3CM
Flows FTP

VBR
CBR

Packets Size 200 octets
250 octets

Transport TCP
UDP

Simulation Time 150s
Shaper Token Bucket
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Table 3: Flows Parameters.

Flows Rate Values
VBR 900 Kbit/s

VBR burst_time 150 ms
VBR idle_time 20 ms

CBR 900 Kbit/s
TCP 1 Mbit/s

Table 4: TCM rates and sizes.

TCM Parameters Values
CIR 600000 bit/s
CBS 2000 octets
EBS 3000 octets
PIR 800000 bit/s
CBS 2000 octets
PBS 4000 octets

In the first script, the topology is composed of one source
and two destinations separated through a DiffServ network
as shown in the following figure. The source S1 generate
two identical VBR flows towards two destinations D1 and
D2. First, the two streams are subjected to a single rate TCM
marker at the input of the network. We mesure for the two
streams their instantaneous flowrate received by destinations
D1 and D2, their packets loss rate, their average delay and
jitter. we also measure the number of packets marked in
green, yellow and red. Next, we take the same parameters of
the simulation above but this time a flow shaping is applied
on the flow generated from S1 towards D1 then we mesure
the instantaneous flowrate received by the two destinations
D1 and D2, their packets loss rate, their average delay and
jitter. we also measure the number of packets marked in
green, yellow and red. We repeate the two previous tests
with double rate and time sliding window TCM.

Fig. 1: Simulation Topology with VBR flows

2.2 Simulation Results
2.2.1 VBR flow

After running the simulation on the topology described
above, we obtain different results of QoS parameters de-
pending on the use or not of traffic shaping. The following
table contains the QoS parameters results without the use of
stream shaping with different markers (Single Rate Three
Color Marker, Two Rate Three Color Marker and Time
Sliding Three Color Marker).

Table 5: Simulation Results for VBR flows without shaping.

Marker VBR1 VBR2

srTCM

Sent Packets 291132 Sent Packets 288207
Packets Loss 7200 Packets Loss 6966
Delay(ms) 19.355 Delay(ms) 19.378
Jitter(ms) 540 ∗ 10−3 Jitter(ms) 554 ∗ 10−3

trTCM

Sent Packets 289769 Sent Packets 293080
Packets Loss 5656 Packets Loss 5999
Delay(ms) 27.556 Delay(ms) 27.451
Jitter(ms) 38 ∗ 10−3 Jitter(ms) 40 ∗ 10−3

TSWTCM

Sent Packets 289664 Sent Packets 290839
Packets Loss 5642 Packets Loss 5630
Delay(ms) 29.384 Delay(ms) 29.342
Jitter(ms) 45 ∗ 10−3 Jitter(ms) 46 ∗ 10−3

Fig. 2: Received flowrate by destinations D1 and D2 without
traffic shaping

The following table contains the QoS parameters results
with the use of stream shaping:

Table 6: Simulation Results for VBR flows with shaping.

Marker VBR1 VBR2

srTCM

Sent Packets 298388 Sent Packets 281218
Packets Loss 4 Packets Loss 12951
Delay(ms) 22.641 Delay(ms) 21.971
Jitter(ms) 21 ∗ 10−3 Jitter(ms) 65 ∗ 10−3

trTCM

Sent Packets 297148 Sent Packets 287873
Packets Loss 12 Packets Loss 11880
Delay(ms) 33.658 Delay(ms) 32.562
Jitter(ms) 6 ∗ 10−6 Jitter(ms) 63 ∗ 10−6

TSWTCM

Sent Packets 295907 Sent Packets 285314
Packets Loss 85 Packets Loss 10555
Delay(ms) 35.355 Delay(ms) 34.278
Jitter(ms) 16 ∗ 10−3 Jitter(ms) 76 ∗ 10−3

Fig. 3: Received flowrate by destinations D1 and D2 after
traffic shaping

Now, we are going to see the imapact of markers change-
ment on CBR flows. To do so, we modified the network
topology adding an other source S2 to have two flows gen-
erators. The first one will generate CBR stream towards D1
while the seconde one will generate a TCP stream towards
D2 which would obstruct the CBR stream on which we apply
QoS when changing the DSCP code of the IP header with
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Fig. 4: Number of generated green, yellow and red packets
with and without traffic shaping

Fig. 5: Number of generated green, yellow and red packets
with and without traffic shaping

different markers. First, we don’t apply flow shaping and
we mesure for the two streams their instantaneous flowrate
received by destinations D1 and D2, their packets loss rate,
their average delay and jitter. we also measure the number
of packets marked in green, yellow and red. Next, we apply
a stream shaping on the CBR flow whiwh passes between
S1 and D1 then we take the same measures as above. We
repeate the two previous tests with double rate and time
sliding window TCM.

Fig. 6: Number of generated green, yellow and red packets
with and without traffic shaping

Fig. 7: Simulation Topology with CBR and TCP flows

2.2.2 CBR and TCP flows
The following table contains the QoS parameters results

without the use of stream shaping with different markers:
Table 7: Simulation Results for CBR flows without shaping.

Marker CBR FTP

srTCM

Sent Packets 309934 Sent Packets 318555
Packets Loss 11493 Packets Loss 1153
Delay(ms) 19.248 Delay(ms) 12.434
Jitter(ms) 72 ∗ 10−3 Jitter(ms) 2.4

trTCM

Sent Packets 309960 Sent Packets 325621
Loss Packet 11471 Loss Packet 647
Delay(ms) 27.6 Delay(ms) 16.458
Jitter(ms) 76∗10−3 Jitter(ms) 2.7

TSWTCM

Sent Packets 308599 Sent Packets 325951
Loss Packet 12831 Loss Packet 573
Delay(ms) 30.88 Delay(ms) 18.418
Jitter(ms) 96−3 Jitter(ms) 2.7

Fig. 8: Received flowrate by destinations D1 and D2 without
traffic shaping

The following table contains the QoS parameters results
with the use of stream shaping:

Table 8: Simulation Results for CBR flows with shaping.

Marker VBR1 VBR2

srTCM

Sent Packets 320905 Sent Packets 262605
Packets Loss 527 Packets Loss 247
Delay(ms) 42.995 Delay(ms) 24.312
Jitter(ms) 2 ∗ 10−3 Jitter(ms) 3.34

trTCM

Sent Packets 320915 Sent Packets 262590
Packets Loss 517 Packets Loss 274
Delay(ms) 42.964 Delay(ms) 24.292
Jitter(ms) 3 ∗ 10−3 Jitter(ms) 3.35

TSWTCM

Sent Packets 320005 Sent Packets 267625
Packets Loss 1427 Packets Loss 179
Delay(ms) 57.253 Delay(ms) 31.534
Jitter(ms) 7 ∗ 10−3 Jitter(ms) 3.3

Fig. 9: Received flowrate by destinations D1 and D2 after
traffic shaping

2.3 Results Discussion
2.3.1 VBR Flows

When Analysing obtained results when changing the
marker with and without traffic shaping, we note that when-
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Fig. 10: Number of generated green, yellow and red packets
with and without traffic shaping

Fig. 11: Number of generated green, yellow and red packets
with and without traffic shaping

ever we apply a traffic shaping, the number of green packets
increases in a remarkable way regardless of the marker type.
The percentage of this increase differs from a marker to
another as show in the table bellow.

Table 9: Improvement Percentage of Green Packets.

Marker Improvement Percentage
srTCM 18,90%
trTCM 19,21%

TSW3CM 15,87%

We note that green packets generated by the EDGE
router increases when changing the marker even without
the use of traffic shaping. The marker which generates
more packets is the TSWTCM followed by the srTCM,
but when we apply a traffic shaping we note the marker
which generates more packets is the trTCM followed by the
srTCM. So if we have a network in which a traffic shaping
is used, we choose the trTCM in order to promote VBR
flows but if the network is devoided of traffic shaping, we
use the TSWTCM.

Fig. 12: Number of generated green, yellow and red packets
with and without traffic shaping

Packets Loss
For the Packets Loss , and when we don’t use a traffic
shaping, the marker having the lowest loss rate is the
TSWTCM. The use of traffic shaping greatly reduces the
packets loss rate for all markers (more than 95%). During
simulations, the marker which reduces packets loss rate
more then the others is the TSWTCM (96.01%) versus
95.33% for trTCM and 95.15% for srTCM.

End to End Delay
It is quite clear that adding another element in the network
will increase the end to end delay, except that it differs
from a marker to an other. When we don’t use a traffic
shaping, the marker with which we obtain the best end
to end delay is the srTCM since its simplicity of design.
When we apply the traffic shaping, the end to end delay
increases (up to 30%). The marker which have the lowest
end to end delay is the srTCM.

Jitter
Jitter is the measure of the variability over time of the packet
latency across a network. When we don’t apply a traffic
shaping, marker having the best jitter is the trTCM. When
using traffic shaping, jitter is greatly reduced for all markers,
especially with trTCM.

2.3.2 CBR and TCP Flows
As seen previously with VBR flows, we note that when-

ever we use a traffic shaping, number of green packets
greatly increases regardless the marker kind. Increase per-
centage differs from a marker to another. The following table
summarizes this increase.

Table 10: Improvement Percentage of Green Packets.

Marker Improvement Percentage
srTCM 27,45%
trTCM 27,32%

TSW3CM 23,32%

Packets Loss
The Transmission Control Protocol (TCP) is one of the two
original core protocols of the Internet protocol suite (IP),
it provides reliable, ordered, error-checked delivery of a
stream of octets between programs running on computers
connected to the network. But for CBR flows, they are sent
on UDP which doesn’t ensure error-checked delivery and
packets loss control. Analysing previous results, we note
that packets loss rate for CBR flows is greater compared to
TCP flows when we don’t apply a traffic shaping, but once,
it’s applied, packets loss rate of CBR flow reduces greatly.

End to End Delay
As seen previously with VBR flows, adding another element
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in the network will increase the end to end delay. The
marker with which we obtain the best end to end delay
is the srTCM since its simplicity of design either with or
without using traffic shaping.

Jitter
When we don’t apply a traffic shaping, the marker with
which we obtain the best jitter is the trTCM. When using
traffic shaping, jitter is greatly reduced for all markers
especially for srTCM.

3. Conclusion
We have studied the impact of traffic shaping before

marking data flows in DiffServ network, we have done our
studies on a DiffServ network composed of three nodes but
we can generalize it on another one composed of many nodes
but still based on CORE and EDGE routers. The use of
markers in DiffServ networks is primordial to implement
QoS, the heterogeneity of data flows leads to use different
types of markers. We have seen the effect of traffic shaping
and marking on VBR and CBR flows in a DiffServ network,
traffic shaping allows to increase green packets and QoS
parameters (packets loss and jitter). The choice of marker
when implementing DiffServ QoS is very important to
optimize the results.
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Abstract— The increase of link speeds in the interconnec-
tion networks is evident both inside and outside of a data-
center. Thus it contributes an increasing portion of the
power budget of the interconnection system. Link power
management has been receiving more attention and many
mechanisms were proposed. The emerging bit-serial link
technology allows the links to work with different numbers
of lanes & speeds. When the traffic load is slight, links are
put in low-speed mode and consume less energy. However,
links working in the low speed mode result in the increase
in serialization latency. We propose a routing algorithm that
takes into account the history usage of the links to focus
network traffic in a small subset of high-speed links. It keeps
high-speed links busier and leaves low-speed links with more
idle time. Thus the mechanism saves energy and reduces the
incurred serialization latency.

Keywords: energy saving, history-aware, routing algorithm, in-
terconnection networks

1. Introduction
Network components consume 10-20% of the total power

of an interconnected system [1]. The energy consumption
and heat dissipation problem for interconnection systems
make the need for a more efficient networking become
more evident. Network links contribute a major portion
of the energy required for the network, around 58% [2].
However the link utilization in the interconnection system
is low. We have conducted simulations with 64 processing
nodes arranged in fat tree topology [3]. The traffic patterns
are imported from two benchmarks modeling Black-Scholes
partial differential equation and Fluid Animate Particle Sim-
ulation using Smoothed Particle Hydrodynamics [4]. For
both applications the average link utilization is lower than
5%. The energy consumption for links is almost insensitive
to the fluctuation of the traffic intensity, thus they burn
the same amount of energy while working very little. The
average link utilization will be less in the future with the
ever-increasing link speed [5]. Besides, for a particular traffic
pattern, the link utilization is not spatially uniform. There

The 2013 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’13)

are some links that are almost idle and others that are much
busier. Less energy consumption for those almost idle links
is a desired behavior. Many studies have been focusing on a
better link power management. Researchers have proposed
many mechanisms for the better use of links with different
approaches.

The first approach is dynamically turning a number of
links on and off as the function of traffic [6], [7], [8],
[9], [10]. In this approach, a link activation request can
be sent from a sending node by inherent system events
to reduce the link re-activation time overhead [11]. When
applying this approach the path diversity is greatly reduced
and the deadlock avoidance becomes an issue. Another
approach is the Dynamic Voltage Scaling (DVS) mechanism
to dynamically adjust link frequency and voltage with the
history-based policy of the link utilization [2]. This approach
has the potential to save a significant amount of energy in the
link components even though it introduces more complexity
in the hardware design. Another approach for the link power
management control is to judiciously adjust the width of the
link [5], [12], [13]. With the use of bit-serial link technology,
where every link consists of multiple lanes, the link width
control mechanism works naturally. Links in PCI-Express
are available in up to 16-lane configuration (denoted as x16).
Similarly, Infiniband has made available the multi-lane links
with x4 and x12. Our work focuses on the last approach.

To date, the dynamic link width mechanism is ap-
plied with a history-oblivious routing algorithm. Traffic is
spreaded through many links to prevent and alleviate conges-
tion situation. However, in light traffic load scenarios, some
fraction of the traffic is routed through low-speed links while
other high-speed links still do not work at full capacity. Thus
the mechanism incurs an additional serialization latency. To
solve this issue, we propose a history-aware adaptive routing
algorithm that prioritizes the route of traffic on a small subset
of links and focuses the traffic on that subset. This subset
of links has a high value of link utilization and thus will be
kept at high speed, consequently the serialization latency is
reduced. Moreover, as a side effect the routing algorithm at
the same time leaves more links idle and thus gives them
more opportunity to be adjusted to the low-speed mode and
save more energy.

This paper makes a contribution in proposing a history-
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aware adaptive routing algorithm. It makes the comparison
about the latency behavior and the energy consumption
between history-aware and history-oblivious routing algo-
rithms. It also conducts experiments, analyzes results for
both synthetic traffic and traffic imported from trace files.

The paper is organized as follows: In section 2, the basics
of the dynamic link speed mechanism based on dynamic link
width is presented. It involves the Monitoring & Decision
Making phase. Section 3 describes the history-aware adap-
tive routing algorithm. Section 4 illustrates and explains the
experimental results. Finally, we draw conclusions in section
5.

2. Dynamic Link Speed Mechanism Ba-
sics

The dynamic speed behavior of a link is achieved by
varying its width according to the fluctuation of traffic on
it. The main process of the mechanism is Monitoring &
Decision Making, where the link activities are monitored to
decide whether to change the link width.

The monitoring and decision making process involves
detecting when to change the link speed. Link Utilization
(LU) is monitored at the port basis. The mathematical
definition of LU is presented in the equation 1.

LU =

∑H
t=1 A(t)

H
(1)

Where A(t) =
{

1 if traffic passes in cycle t
0 if no traffic passes in cycle t

and H

is a sliding history window size.

The value of LU is less than 1, and it directly reflects how
frequent a link was used. The larger the value of LU , the
busier the link is. When the value of LU drops below the
threshold value th_low and the link is not at its minimum
width, the mechanism triggers the link to reduce its width
one level. To simplify the routing algorithm, avoid deadlock
avoidance issue and reduce the re-activation time overhead,
a link is never turned off and it never has the width of 0. In
contrast, when LU exceeds the threshold th_high and the
link is not at its maximum width, the mechanism increases
the link width one level.

Another criterion for the mechanism is the input buffer
occupancy of the next router. This information is available
for the mechanism based on the credit-based flow control of
the router. If the input buffer occupancy at the far end of the
link is higher than the threshold th_buffer_occupancy, it
is the signal indicating that the network is congested at the
far end of the link. The movement of packets in that situation
is restricted by the availability of the buffer space, not the
link bandwidth. Thus the mechanism can reduce the link
width more aggressively without sacrificing the serialization
latency.

Algorithm 1 Changing Link Speed Decision

Monitoring the next input buffer occupancy
if buffer_occupancy > th_buffer_occupancy then
th_low= th_low for congestion
th_high=th_high for congestion

else
th_low=th_low for non− congestion
th_high=th_high for non− congestion

end if
Monitoring the LU value of the link
if (LU of the link < th_low) and (The link is not at
minimum width) then

Decreasing The Link Width
end if
if (LU of the link > th_high) and (The link is not at
maximum width) then

Increasing The Link Width
end if

The decision making process is made every period of
time T . The pseudo code for this mechanism is described in
Algorithm 1.

The values of the thresholds are configurable and they are
configured depending on the objective of the network. The
higher the values of th_low and th_high the more agressive
the mechanism triggers links to reduce their width to save
more energy. The difference between th_low and th_high
also should be carefully selected to avoid the link flip flop
when traffic fluctuates often.

3. History-Aware Adaptive Routing Al-
gorithm

With the typical path redundancy of network configura-
tions (to facilitate the load balancing and fault tolerance),
at every intermediate router, there might be several output
ports a packet can take to make the progress towards its
destination. For example, for k-ary n-cube network topology,
every router has n productive ports for packets to come
closer their destination.

For a network applied the Dynamic Link Width mecha-
nism, any given router connects with its set of links that are
at different speeds. Any port pi couples with a link with the
link width value of Wi, the input buffer occupancy at the
far end of the link has the value of Buffer_Occupancy(pi)
as illustrated in Fig. 1. In this figure, the link couples with
port p1 is at a high link width level and thus has a higher
bandwidth compared with the links coupled with the other
ports p2,...,pk. It is preferred that packets move on the link
connected with port p1 to have less serialization latency.

However, if the routing policy is oblivious about the
history usage of the links and spreads packets through many
links then all the links have a low average utilization values
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Fig. 1: Multi-port with different link speeds

and thus being put at a low speed. Consequently the average
packet latency increases due to the serialization latency by
moving in thin links. In the low load situation, a better
routing policy that focuses traffic in a subset of high speed
links while leaves other links idle is a desired behaviours.

At every router, with a set of compatible output ports, the
history-aware routing policy gives the decision about which
output to take with the preference for the most-recently-used
port, unless there are a strong evidence not to do so but using
a normal adaptive routing instead. A normal adaptive routing
algorithm will be used if one of the following conditions
hold:

• All the links of the router are at maximum speed. This
is the situation when high traffic load is present in
the network and the routing policy should balance the
traffic by spreading packets to many links.

• The input buffer occupancy at the far end of the link
coupled with the most-recently-used port is higher than
the threshold value of buffer_threshold. This is the
signal that the link is over-utilized and the continuity
of traffic injection to them can lead to congestion.

The proposed routing algorithm takes advantage of high
bandwidth links in the case of low traffic load. In high traffic
load situation when all links are in high utilization and thus
in high-speed status, normal adaptive routing algorithm takes
place. The routing decision is summarized in Algorithm 2.

Algorithm 2 History-Aware Adaptive Routing Algorithm

Getting the set of compatible output ports
Choosing the most recently used port as the outport
if All links are at maximum special or The buffer occu-
pancy higher than buffer_threshold then
outport=Normal_Routing_Algorithm()

end if
Exporting the outport

Since the topology of the network does not change, no
special care for deadlock avoidance techniques is required.
When taking into account the link history usage, it results
in having some maximum-speed links carry a large fraction
of the traffic load, while others links are mostly idle and put
in low-speed mode. It is preferred to have a small fraction
of links to work at full capacity and deliver the majority of

traffic. With packets moving in a subset of high-speed links
according to the proposed routing algorithm, the serialization
latency is reduced. Besides, when the majority of traffic
moves in the small fraction of high-speed links, the other
fraction of links is almost idle and being put in a low-speed
status, the energy consumption is further reduced.

4. Experimental Results
In this section, we evaluate the History-Aware Adaptive

Routing Algorithm versus a History-Oblivious Routing Al-
gorithm, both of them are applied in the interconnection
networks with the dynamic link width mechanism to save
energy.

The framework for the simulation is the modified version
of booksim [14]. The interconnection network is configured
with 64 processing nodes, arranged in the 4-ary 3-stage fat
tree topology with virtual channel flow control. There is 16
virtual channel for each link, the virtual channel buffer size
is 16 flits, a packet consists of 4 flits. To minimize the impact
of the mechanism to the average packet latency, only links
between routers are considered to adjust the width. Thus the
communication between a processing node and its immediate
connected router is performed with maximum speed.

Traffic patterns directly impact to the efficiency of the
energy saving mechanism and the history-aware routing
algorithms. We have conducted the experiments with both
synthetic traffic and traffic imported from trace files.

The synthetic traffic patterns generated are the
bit complement and uniform patterns. The th_low,
th_high in non-congested situation are 0.2 and 0.6, in
congested situation are 0.35 and 0.75 accordingly. The
th_buffer_occupancy to detect congestion for the next
immediate input buffer is 0.5. The number of lanes for every
link is 12. Energy consumption for the link is assumed to
be proportional to the number of active lanes. The relative
link energy consumption in the results is the percentage of
energy consumed for the link component of the network
when they work with and without dynamic link width
mechanism.

To see the impact of the history-aware adaptive routing
algorithm in action, simulations were conducted with two
different routing algorithms. We have used Nearest Common
Ancestor (NCA)[15] and History-Aware Nearest Common
Ancestor (HA-NCA) as specified in section 3.

As we can see from Fig. 2 for both traffic patterns, when
applying the dynamic link width mechanism the relative link
energy consumption is proportional to the traffic load. With
low traffic load a large fraction of links is put in low-speed
mode and consume less energy. In contrast, in the high traffic
situation almost all the links are at maximum width and
speed, then the energy consumption is equal to the energy
consumption when no saving mechanism is applied. The
history-aware adaptive routing algorithm gains more energy
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Fig. 2: Relative Link Energy Consumption

saving because it makes a better use of a small fraction of
links carrying the traffic and leave the others links idle.

Fig. 3 shows the latency behavior when applying the two
routing algorithms. Even though the history-aware adaptive
routing algorithm gains more energy saving, the latency
behaviors for both of them are similar. Thus the proposed
routing algorithm saves more energy without sacrificing the
average packet latency.

As aforementioned, when applying dynamic link width
mechanism the network incurs an additional serialization
latency. Fig. 4 depicts the relationship between the latency
behavior of the network with and without applying the sav-
ing mechanism. In both situations the history-aware routing
algorithm was deployed. As we can see there is only a slight
increase in average packet latency as opposed to a larger
percentage of energy consuming reduction in Fig. 2.

To compare the impact of two routing algorithms with
traffic imported from trace files. The traffic for the appli-
cation Fluid Animate Particle Simulation using Smoothed
Particle Hydrodynamics [4] was imported into the network
with the same aforementioned network configuration using
the Netrace framework [16]. Two routing algorithms are
again put into comparison.

Without the energy saving mechanism the average packet
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Fig. 3: Latency behavior comparison

latency is 37.81 cycles. The latency behaviors and the the
relative link energy consumption when applying the dynamic
link width mechanism with different routing algorithms is
described in Table 1.

For this particular traffic pattern the relative link energy
consumption is around 39.55% compared with the energy
consumed by the links of the default system (without ap-
plying the mechanism). There is a typical trade-off where
the energy consumption reduction comes with an increase
in average packet latency. The energy saving gained by the
dynamic link width mechanism is almost the same when
applying History-Aware (HA-NCA) or History-Oblivious
(NCA) Routing Algorithms. However with HA-NCA the
increase in latency is lower than the NCA (29.60% as
opposed to 56.75%).

5. Conclusions
We have proposed a history-aware adaptive routing al-

gorithm to take the link history usage into account when
making the routing decision. Our algorithm focuses traffic
on a subset of high-speed links and put more links into
the low-speed mode in the low load situation. The result is
more energy saving is achieved with less additional average
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Table 1: History Oblivious & Aware Routing Algorithm Comparison

No saving mechanism applied Applied with NCA Applied with HA-NCA
Average Packet Latency 37.81 cycles 59.26 cycles 48.99 cycles
Percentage Latency Increase 0% 56.75% 29.60%
Relative Link Energy Consumption 100% 39.52% 39.58%
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Fig. 4: Latency behavior with/ without mechanism

packet latency. Our future work includes further applying
this adaptive routing algorithm to the dynamic link width
mechanism for energy saving.
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Abstract— Mobile devices are ubiquitous in everyday life
and are becoming valuable devices for today’s Soldiers
as part of a larger battlefield network. Due to the open
nature of the development platform, Android was recently
selected to be a supported operating system within this
evolving and maturing technology delivery paradigm. The
Army’s networks must operate in often hostile environments
and are mobile and ad hoc in nature; thus often rendering
communication links tenuous at best. Common, however, on
handheld device are low-power network capabilities such
as WiFi and Bluetooth. This work analyzes the use of
Bluetooth as a low-power network protocol for coupling
handhelds operating in a deployed setting. By aggregating
the capabilities of distributed handhelds through Bluetooth,
task and data parallelism can be achieved, thus providing
potentially faster solutions and reduced battery drain. This
paper discusses the performance of a preliminary scalable
boss-worker paradigm known as “BlueHoc” in the context
of a simplified test case with proposed extensions that will
provide greater capabilities to Soldiers operating at the
tactical edge.

Keywords: Mobile ad hoc networks, Bluetooth, distributed com-
puting, Android

1. Introduction
Computer networks are common in modern society and

span a wide range of wired (DSL, Ethernet) and wireless
(3G, 4G, WiFi) services. Military missions, particularly
those of the Army, do not have the luxury of a fixed
infrastructure with high capacity and low latency. Working
in hostile environments is common, and mobile ad hoc
networks (MANETs) will form the backbone of the deployed
forces. These networks can be hierarchical and complex with
widely varying data rates at all levels.

Typically the last hop to an edge node, such as a handheld
device, is the most costly of all. Cloud-based services in
well-covered network areas have extended capabilities to
streaming data rather than just guaranteed access to data.
Rapid processing of requests coming from handhelds, such
as that offered by Apple’s Siri service, is handled by of-
floading from handhelds to high capacity servers. Planning is
underway in Army MANET delivery to provide the required
bandwidth to the deployed network, but processing and data
delivery at deployed edge nodes will remain a critical need.

Of interest then is how to exploit capabilities inherent in
these devices should access to existing networks fail. Within
each device is preloaded applications and data. When paired
with other devices in close proximity, what new capabilities
can be afforded by the higher capacity if these devices
are coupled and aggregated? Synchronizing the computing
power in a way that limits overall battery drain is very
important to missions conducted on the battlefield.

This project discusses BlueHoc, a system that enables
distributed computation across mobile devices communicat-
ing wirelessly via Bluetooth. Mobile devices have become
highly utilized in recent years; due to the high demand,
advances in mobile technology occur every day. Mobile
devices are perhaps the most pervasive computing devices
available today. In the final quarter of 2010, smarthphone
sales surpassed global PC sales for the first time [1]. Mobile
cellular subscriptions worldwide are estimated to be around
6 billion as of 2011 [2]. The vast number of available mobile
devices presents computational resources that can be utilized
to solve a diversity of parallelizable computations. Mobile
device resources can be combined and leveraged to create
a distributed infrastructure that is able to perform parallel
computing for both mobile Soldiers and stationary operators
in a Tactical Operations Center (TOC).

By aggregating computing power, important questions,
such as “what computing capacity can I achieve from
many Army connected devices?” and “what new capabilities
can they bring to the Army operational domain?”, can
be answered. These questions are nontrivial and extremely
valuable for the Army as it is not always feasible to
build a single node High Performance Computing (HPC)
system in the field or ensure its connectivity at all times.
Furthermore, traditional cloud-based services will not always
be available at the tactical edge where Soldiers operate.
High throughput networks will not be available to off-load
computing requests, and methods to overcome this limitation
are only beginning to be explored [3]. This project attempts
to bring HPC closer to the Soldiers and make it possible to
build a HPC system from resources that are available and
underutilized.

In the following, Section 2 summarizes related work in
distributed computing using Bluetooth. Section 3 describes
the operational and testing environments that were selected
for this architecture and implementation. Preliminary results
of the performance of the system are given in Section
4. Finally, conclusions and possible future extensions are

468 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



briefly discussed in Section 5.

2. Related Work
The use of mobile phones to form small clusters of

shared resources has not been well researched. Proposed
architectures, built on the Bluetooth standard, would enable
small mobile computers such as those found in robotics to
communicate. The DynaMP architecture achieves scalability
to larger networks through the formation of scatternets;
larger networks formed by dedicating one node per subnet
to communicate with another link node in another subnet
[4]. The BlueHoc design roughly mirrors the architecture
described in DynaMP and attempts to test the design in an
actual hardware and software system. Issues with the com-
munication protocols suggested in DynaMP are identified
and differing methods are employed in BlueHoc to perform
actual communication between nodes.

Gartrell et al. describe another architecture for Bluetooth
device communication known as BlueHydra [5]. BlueHydra
proposes methods for remote method invocation and uses
the Marge framework for remote device discovery. The
architecture is evaluated in terms of the Java Wireless Toolkit
emulation framework and hence does not use an actual
hardware and software device pairing. BlueHoc leverages
built-in Bluetooth chat clients to implement the network and
handle device communication under an Android operating
system. This allows for testing of performance on physical
ARM-based processors that would be commonly found in
handhelds. Rather than evaluate the system in emulation,
data rate tests of the Bluetooth network were performed
using PandaBoard platforms.

3. Operational and Testing Environment
Bluetooth technology provides for dynamically linked

mobile devices that can exploit the potential of wireless net-
works used in parallel computing. Bluetooth provides a low
power transmission mechanism that is commonly embedded
in most mobile devices nowadays. The widespread nature of
Bluetooth makes it an ideal technology for building ad hoc
networks to create a multiprocessor distributed infrastructure
from mobile devices. Bluetooth offers a great means of wire-
less communication for mobile devices: it offers low power
consumption, low cost, robustness, and ad hoc networking
protocol capabilities [6]. Bluetooth v4.0 was the most recent
version of the standard as this research was being conducted
and it significantly reduces energy consumption over prior
versions [7].

The target platform for this project is Android. Android
is an open source project and is the most popular mobile
platform in the market; 68.1% of mobile devices shipped
during the second quarter of 2012 use Android as their
operating system [8]. The prevalent and sophisticated nature
of Android allows for the creation of countless applications
with endless possibilities. Additionally, the Army is moving
towards utilizing Android as their main operating system for
mobile devices [9].

3.1 Android Parallel Computing Support
In the world of HPC, message passing (and the Mes-

sage Passing Interface [MPI]) is a widely used and tested
paradigm for parallelism. Following the Single Program-
Multiple Data (SPMD) paradigm, it can be useful for both
task and data parallelism. It has also been shown to be
effective in distributed memory systems [10]. MPI is a
library of routines for portable message passing programs in
parallel systems and thus the project’s initial investigation
evaluated MPI support for Android. Due to the fact that
Android deviates from the Linux kernel, Android does not
fully support common Linux applications and libraries. Con-
sequently, MPI was not successfully ported to Android. As
a result, an alternate approach to MPI was developed using
the radio frequency communication (RFCOMM) protocol
embedded in Bluetooth and fully supported by Android.

The difficulty of porting Linux applications to Android
lies in the two significant differences between the operating
systems. First, the Android operating system does not utilize
the standard Linux kernel. For example, Google chose to
branch off from the GNU kernel to create their own kernel
which gave them the flexibility to make changes that they felt
were necessary to increase efficiency on a low power device.
The Android kernel replaces the GNU libc with Bionic, a
lightweight libc library developed by Google to target low
power devices. The first of many differences between the
two libraries is that Bionic does not support the full C/C++
standard. It does not handle, throw, or pass C++ exceptions.
Since Android’s primary programming language is Java,
Google made the decision that all exceptions would be
handled at the Java run-time level. Additionally, Bionic does
not have the C++ Standard Template Library (STL). While
missing a few C++ libraries may not inhibit the porting
of many Linux libraries, additional differences between
Android and Linux certainly increases the difficulty.

The second difference between the Linux and Android
operating system is the degree to which they have imple-
mented additional libraries. When Google has a need for
certain functionality in the Android operating system that
another Linux library already provides, they choose, like
most programmers, to utilize the tried and tested Linux
library. That being said, Google forks their own version,
just like their kernel, and may only choose to support a
couple of functions in that library while leaving the others
undefined or unimplemented. In particular, the libpthread
library utilized by the Dalvik JVM has been stripped of a
few functions required by many of the libraries. Most of
the pthread library and functionality are still there, but it is
missing functions like pthread_cancel(); Google decided not
to support pthread_cancel() because doing this would involve
making the C library significantly larger for very little benefit
[11]. While many may argue that pthread_cancel() may be
required in certain scenarios and cannot or should not be
replaced by other pthread calls, ultimately, Google has the
choice of whether or not certain functionality is included
in its forked libraries. As such, the developer usually has to
build all required dependencies themselves should they wish
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to port a Linux library to Android.

3.2 Bluetooth Technology Networks
The context of field operations assumes a zero network

infrastructure where dependence shifts to ad hoc networks.
An example MANET at the tactical edge could be a
collection of wireless mobile devices that can configure
to form a network without any preexisting infrastructure.
MANETs are robust, dynamic networks that can be rapidly
deployed and reconfigured, making them ideal for military
applications. Since they are extremely important parameters,
the Bluetooth standard is adopted to address the challenges
related to power consumption and battery life. Bluetooth
operates within the 2.4 GHz ISM band and hops over 79
channels (2 through 80) at a rate of 1600 hops per second
using the Time Division Duplex (TDD) scheme [12].

The BlueHoc system architecture is boss-worker, where
the boss can connect with a maximum of seven workers in a
piconet. A piconet is an ad hoc network connecting wireless
devices using the Bluetooth protocol. Because piconets have
a 3-bit address space notation, the maximum number of
devices is limited to 23 = 8, or eight devices composed of
one boss and seven workers. To expand the physical size
of the piconet network, two or more piconets can share
a common Bluetooth device acting as a bridge between
piconets to form a larger network known as scatternet. A
scatternet is formed in an ad hoc fashion when two or
more independent piconets overlap where a member of one
piconet, either a boss or a worker, elects to participate in a
scatternet. In a scatternet, a Bluetooth device can participate
as a worker in several piconets, but can only be a boss in
one piconet [13]. Figure 1 depicts an example configuration
of a scatternet consisting of three piconets.

Fig. 1: A scatternet configuration composed of three pi-
conets.

The current architecture of BlueHoc is static, meaning
that the workers are required to join the network and remain
connected throughout the work interval. For this preliminary
implementation, the boss waits for the workers to connect to
the network. After all the workers have completed the join
process, the boss is able to issue job requests. Job requests
are distributed among the workers as tasks by the boss and
the computed results are sent back by the workers to the

boss for the final result calculation. More elaborate protocols
for scatter-gather-broadcast could also be substituted into
this basic communication configuration. Figure 2 illustrates
the data flow of job requests and computed results of the
BlueHoc system architecture.

Fig. 2: BlueHoc architecture data exchange.

3.3 Network Performance
Latency and throughput tests are executed within an

Android application developed for the project. BlueHoc is
built upon an existing Bluetooth chat client provided as an
example for Bluetooth connectivity by the Android SDK.
The application delivers a very basic user interface (UI) that
provides the user with a text entry box and button to send
streams of text between boss and worker devices. There
is an option menu that allows for device connection and
enabling device discovery as well as a browser to select
from files to send. Device names are added and removed
from a “connected devices” list as each device enters/exits
the network. A series of performance tests were conducted to
determine the overall speed of transmission throughput and
latency of the network. The tests were performed between
two PandaBoards in close proximity running BlueHoc.

The ping utility (l2ping for Bluetooth devices) was not
functional for the Ice Cream Sandwich Android OS build
for PandaBoard. Therefore, the latency tests were conducted
programmatically. The latency was determined by transmit-
ting a small stream of data (44 bytes) and recording the
round trip time (RTT). The clock times were taken from
a single device to avoid synchronization between device
clocks. The latency was found to be about 37.8 ms taken
from an average of 500 recorded RTTs. As seen in Figure 3
the latency tends to stay between the 30 ms to 50 ms range.
Values were recorded periodically throughout a 30 minute
time window.

Next, the throughput tests were conducted for this Blue-
tooth network setup. An increasing range of file sizes was
transferred via data stream buffers over open Bluetooth
sockets between two PandaBoards. The process was repeated
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Fig. 3: PandaBoard Bluetooth latency test results.

for multiple iterations to develop an average transfer time.
The ratio of file sizes to transmission time was recorded
and plotted. As seen in Figure 4, the throughput is very
low for less-than-one kilobyte of data. This speed steadily
increases until the file size exceeds five kilobytes at which
point transfer rate levels off at around 0.9 mbps. Considering
the bandwidth of the Bluetooth module on the PandaBoard
ES is rated at 2.1 mbps, the results suggest an achieved
throughput of roughly half the theoretical data rate. Per-
formance reduction can be justified by the application and
network overhead (e.g. broadcast traffic, packet collisions,
routing protocols, OS jitter).

Fig. 4: PandaBoard Bluetooth throughput test results.

4. Application and Performance
The Monte Carlo method for π estimation served as

a experimental application for distributed computing with
Android devices. Leveraging Bluetooth wireless technol-
ogy to establish a low power ad hoc network, multiple
mobile systems can collaborate in performing a collective
computation. The method used to estimate π followed the
implementation of the popular random darts method [14].
This method allows for an approximation of π to be cal-
culated by throwing darts randomly at a hypothetical dart
board. Imagine a unit circle circumscribed by a square. By
randomly throwing darts, hits inside the circle and square
will be proportional to the respective area of each part, which

can be written as

ndc

nds
=

ac

as
=

πr2

4r2
, (1)

where ndc is the number of darts in the circle, nds is the
number of darts in the square, ac is the area of the circle,
as is the area of the square, and r is the radius of the circle.

After substituting the number of darts in the square with
the total number of throws, solving for π leads to the
following equation:

π = 4× ndc

nt
, (2)

where nt is the number of dart throws. For this Monte Carlo
method, the value of π becomes more precise as the iteration
count increases.

A simple block scheduling algorithm handled the work-
load distribution across the multiple devices. The total num-
ber of iterations is evenly divided by the number of available
devices for computation. For the cases where the number
of devices fails to evenly divide the number of iterations,
the ceiling value of the division is issued to workers. Each
device is then initialized to compute their assigned number
of iterations for the problem. At this beginning stage of
Android distributed computing evaluation, the scheduling
technique ignores differences in performance characteristics
of a heterogeneous network of mobile devices. For example,
given twenty million iterations and five worker devices, each
device would compute four million iterations individually. In
the current implementation, the designated boss node does
not perform any dart throws, but gathers the results from
the connected nodes and performs the final calculation from
collected data.

Table 1: Specifications of Android devices.
Android Device Processor Android OS version
PandaBoard ES Cortex-A9 1.2 GHz Ice Cream Sandwich
Nexus 7 Tegra 3 1.3 GHz Jelly Bean
Samsung Galaxy SII Cortex-A9 1.2 GHz Ice Cream Sandwich
Asus Transformer Tegra 3 1.2 GHz Jelly Bean
Motorola Xoom Tegra 2 1 GHZ Honeycomb

The π application was analyzed on five different Android
platforms. Details regarding hardware specification and oper-
ating system setup are organized in Table 1. Non-distributed,
base performance measurements of a single device for differ-
ent Android devices are summarized in Figure 5. Regarding
the unexpected result of the Samsung Galaxy SII, running
background user applications adversely affected its execution
time (being an actively utilized smartphone). Consequently,
compared to the other Android devices under examination,
the Galaxy SII had a multitude of user applications installed
and loaded, taking a noticeable toll on the algorithm’s
performance.

The experimental test setup analyzed both homogeneous
and heterogeneous Bluetooth device networks. For this
exercise with block scheduling, the results obtained for
uniform device networks outperformed the mixed Android

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 471



Fig. 5: Single device execution times for various Android
platforms.

device network since the workload distribution was opti-
mal. Recorded execution times for PandaBoard networks
are presented in Table 2. To test a non-uniform Android
devices network, a heterogeneous network was formed by
using PandaBoard, Nexus 7, Samsung Galaxy, and Asus
Transformer. This simulates a scenario where Soldiers have
different types of mobile devices with different characteris-
tics at their disposal. Table 3 provides the execution times
for a Bluetooth network setup composed of different Android
devices as the number of iterations is increased to 108. A
graphical representation of the performance measurements
achieved is presented in Figure 6.

For the π estimation algorithm, parallel computing via
work distribution across multiple Android devices unequiv-
ocally reduces overall time to solution. As expected, a net-
work with a homogeneous makeup of devices shows superior
scalability as the overall time to result is bounded by the
slowest device (and hence inefficiencies for processors that
are spinning idle). Regardless of iterations or network type,
leveraging four Android devices for this computationally
intensive task decreased execution time to less than one
third of its original time in the worst case. The execution
time reduction exhibits the potential advantage of distributed
computing with Bluetooth networked Android devices.

Table 2: Execution times for homogeneous networks con-
sisting of PandaBoards.

PandaBoards (sec)
Iterations (millions) 1 2 3 4

10 8.11 4.15 3.09 2.12
25 20.21 10.16 7.39 5.20
50 40.08 20.14 15.18 10.33
75 65.00 30.52 22.59 15.47

100 84.34 41.74 33.00 20.83

5. Conclusion and Future Work
The capacity and capabilities of handheld devices continue

to improve with processing power and the creativity of
application developers. One of the biggest advances of these
devices is how they allow for geospatial awareness; the
user’s location can bring a wealth of information and be
an important filter to the vast number of queries these
devices process daily. By subscribing to the larger cloud,
these handhelds also become important sensors in the field.

Table 3: Execution times for heterogeneous networks con-
sisting of a mixture of Android devices.

PandaBoard
PandaBoard Nexus 7

PandaBoard Nexus 7 Asus Trans
Iterations PandaBoard Nexus 7 Asus Trans Galaxy SII
(millions) (sec) (sec) (sec) (sec)

10 8.11 4.75 3.19 2.49
25 20.21 11.16 7.49 6.22
50 40.08 22.14 17.28 12.06
75 65.00 33.52 24.39 18.30

100 84.34 43.74 34.05 24.09

Fig. 6: Mixed Android devices networks execution times.

From reporting weather, restaurant reviews, or traffic speeds,
important and often temporal data can be broadcast to a
wider user community.

However, making data and processing available when the
network connectivity of the cloud is not guaranteed is only
beginning to be investigated. By pooling the resources of
deployed mobile devices, one can envision scenarios where
data can be preloaded and distributed amongst devices where
the internal storage of one device would be insufficient.
Additionally, these devices can be brokered and shared,
thus providing either a faster time to solution, or a shared
workload to conserve battery life, or some combination of
the two. All of this can be accomplished using common
communication protocols, such as Bluetooth on the Android-
based devices described in this paper. This framework pro-
vides an important capability for a small group of friendly
forces geospatially co-located, and has been evidenced in the
small test study described in this paper.

As with other past research being conducted on mobile
networks using Bluetooth, BlueHoc is at its infancy. Fur-
ther advances are being planned, such as improvements in
scheduling to allow for device drop-out and drop-in along
with better load balancing. Discovery protocols will need to
incorporate host processor types and expected performance,
possibly coupled with scheduling approaches such as guided
self scheduling, to achieve optimal workload distribution.
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Abstract - Network on Chip (NoC) has emerged as a 

promising interconnection paradigm for complex on-chip 

communications. As fabrication cost is high, model based 

design of NoC and early exploration to make proper design 

decisions are important challenges in NoCs. To tackle these 

challenges, we use formal methods and utilize their 

expressivity and flexibility to model different behaviors of a 

NoC and their abstraction to support early analysis of the 

design. We propose a formal approach for selection of the 

best routing algorithm in a NoC, according to its performance 

requirements. We present a model for two-dimensional mesh 

NoC using actor based modeling language Rebeca. Both 

functional and timing behaviors are modeled. The model is 

then used to compare three routing algorithms XY, Odd-Even 

and DyAD with respect to the maximum end-to-end packet 

latency in different scenarios. 

Keywords: Network on Chip (NoC), model checking, 

Rebeca, routing algorithm 

 

1 Introduction 

  Asynchronous paradigm has become conspicuous in 

Network on Chip (NoC) design to overcome problems of 

clock skew and clock tree distribution of fully synchronous 

design. Thereby Globally Asynchronous Locally Synchronous 

(GALS) NoC has gained attention in design of such systems 

[1]. Functional verification is a major challenge in these 

systems to avoid increase in design errors; but a functionally 

verified GALS NoC may not meet all its desired performance. 

Thus, performance prediction in the various stages of the 

design is another necessity that should be performed to help 

the designer make proper design decisions according to the 

parameters of the system and also performance requirements. 

One important design decision for systems where end-to-end 

latency is a concern is to select a routing algorithm that results 

in the least end-to-end latency.  

 As fabrication cost is high, it is desirable to perform 

analysis on NoC design before having the first prototype and 

even in the early stages of design process. For model-based 

analysis we need to capture  the crucial details in the model. 

However, to the best of our knowledge existing models of 

GALS NoC do not present the required details for modeling 

adaptive, dynamic and deterministic routings. 

 One important point in asynchronous systems is that 

lack of a reference clock leads in an interleaved execution of 

processes. Therefore, in GALS NoCs, a sent packet might be 

delayed by different number of disrupting packets and may 

have various end-to-end latencies. Thus, for analysis of such 

systems it is essential to consider all possible behaviors of the 

system and generate the whole state space. However, existing 

work based on simulation techniques cannot be applied for 

exhaustive verification. Also, ensuring correctness to a certain 

degree using simulation is highly time-consuming.  

 In this paper, we use model checking for performance 

prediction on two-dimensional mesh GALS NoC. Model 

checking is a promising approach that can be used for both 

performance evaluation and correctness checking and allow 

us to perform exhaustive search in the state space [2]. 

Important advantages of using model checking for 

performance prediction, in the case of this work are: 

• Expressiveness: by using a suitable modeling language 

we can simply model both functional and timing 

behavior of GALS NoC, and also consider asynchronous 

paradigm and nondeterministic behavior of the system. 

• Abstraction: for higher efficiency and for verifying 

more complicated properties  we can model only the 

necessary details with respect to the property and 

abstract away the irrelevant parts. Abstraction enables us 

to perform analysis in the various stages of the design 

flow. 

• Exhaustive verification: given the model of the system 

and the targeted properties, model checker explores the 

whole state space to check for property satisfaction 

rather than a set of traces. 

• Finding the violating execution path: Model checker 

can return the execution path in which the property is 

violated (in contrast to mathematical and analytical 

approaches), and thus can help the designer for 

improving the design. 
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 We used Timed Rebeca (Reactive Objects Language) 

[3, 4, 5] as the modeling language. Timed Rebeca is an actor-

based modeling language capable of modeling functionalities 

and timing behaviors of asynchronous systems. In an actor 

model there are numbers of actors which are communicating 

via message passing. Consistency between the computational 

model of Rebeca and GALS NoC, enables us to model a 

GALS NoC naturally and simply. Each router in a GALS NoC 

is modeled as an actor and the communication between 

routers are modeled as message passing between actors.    

 To estimate the maximum end-to-end packet latency, 

the delay for read/write from/to a buffer, and delays of links 

and routing are considered in the model. Four-phase 

handshake communication protocol is also modeled for 

communication through channels. To model different kinds of 

routing algorithms, especially adaptive and dynamic 

algorithms, we capture buffer statuses (number of elements in 

the buffers). Subsequently, the model is used for comparison 

of some routing algorithms, namely XY, Odd-Even and 

DyAD. Results of comparison can be further used by 

designers to take proper decision about routing algorithms in 

the early phases of design. 

 The remainder of the paper is organized as follows. In 

Section 2 related work is introduced, Section 3 contains 

preliminaries. Section 4 presents GALS NoC model in 

Rebeca. Three routing algorithms are introduced and modeled 

in Section 5. Results are shown in Section 6, and finally 

conclusion and future work are presented.  

2 Related work 

  There exist many simulation based works on analysis of 

different aspects of NoCs. Various arbitration and routing 

algorithms, router switches, and traffic patterns have been 

modeled using simulators. Nirgam [6] and gem5 [7] are two 

simulators for analyzing NoCs. In [8] a simulation based 

method for deadlock detection in a multiprocessor system 

with many running processes is proposed. As discussed 

before, simulation based methods are non-exhaustive and 

cannot be applied for early exploration because they do not 

have the adequate level of abstraction. 

   Formal and mathematical approaches are able to perform 

exhaustive verification at the expense of losing some 

precision. There are some works based on mathematical 

approaches; such as [9], which uses deductive method to 

prove that a routing algorithm is deadlock free. Although 

mathematical techniques are powerful, they cannot show how 

a violation occurred in the system. Formal methods are able to 

address this challenge.  

  There exist formal tools used for functional verification 

and performance prediction of the same model 

simultaneously. Formal techniques have been widely used for 

analysis of different aspects of multiprocessor systems that are 

in close relation with NoCs. A Petri net model is presented in 

[10] for performance modeling of asynchronous circuits. In 

[11] and [12] multiprocessor systems have been modeled by 

Timed Automata considering bus based methodology as 

interconnect network. In none of the above works GALS NoC 

was analyzed; GALS NoC has many special timing details and 

complex modules.  

   In [13] a NoC is modeled in Extended Timed 

Automata, and its router is verified against some functional 

properties. Authors in [14] applied Interactive Markov Chain 

(IMC) and Interactive Probabilistic Chain (IPC) to model a 

buffer used in NoC design. However, details of hardware 

timing and link model are not mentioned. In [15] an analytical 

method based on Markov chain stochastic processes is 

proposed for computation of mean latency of the end-to-end 

communications via a 2-dimensional mesh NoC. Using 

probabilities reduces the state space at the expense of losing 

the buffer analysis. 

   In this paper, we use formal methods to model different 

kinds of routing algorithms. The comparison is performed 

with respect to the maximum end-to-end packet latencies. In 

contrast to existing works based on formal methods, our 

model considers hardware details like link and buffer (read 

and write) delays and buffer statuses and thus can model 

adaptive and dynamic routing algorithms. Also, the model 

could be easily extended to contain more details in various 

stages of design flow and can help the designer to make better 

architectural choices. 

3 Preliminaries 

 Here, Timed Rebeca is introduced as the modeling 

language used for our analysis. 

3.1 Timed Rebeca 

 Timed Rebeca is an extension to Rebeca, capable of 

modeling functional and timing behaviors of distributed 

reactive systems. 

 Rebeca is an actor based modeling language [16]  with a 

Java-like syntax. Actors can be considered as a reference 

model for concurrent computation. A Rebeca model consists 

of reactive classes and a main part that contains instantiation 

of reactive objects (rebecs) from reactive classes. Rebecs have 

encapsulated states and their own execution thread. Each 

rebec contains a set of state variables, methods and a set of 

known rebecs with which it can communicate. Communication 

is asynchronously established through message passing. 

Message passing is fair and implemented by method calls; 

calling a method of a rebec results in sending a message to the 

actor that invokes corresponding message server. Each rebec 

has a buffer, called a queue, for arriving messages. In each 

step a rebec is executed by removing a message from the top 

of its queue and executing its corresponding message server. 
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  To model timing behaviors of a system, three constructs 

are provided as follows: 

• delay (t): causes a delay of t time units. 

• after (t): this construct is paired with an invocation of a 

message server (method call), and causes a message to be 

sent with a delay of t units of time. 

• deadline (t): this construct is paired with a method call, and 

the corresponding  message will be deleted from the queue 

after t time units.  

Abstract syntax of Timed Rebeca is illustrated in Fig. 1. 

4 GALS NoC model 

 If the model is too abstract, results may become 

imprecise; on the other hand very low level of abstraction may 

intensively increase complexity and leads analysis to state 

explosion. Using the proper abstraction level is the key for 

model based analysis of NoC. To this end one should define 

the constituent of the model with respect to the properties that 

the model is verified against.  

 In this paper we target maximum end-to-end packet 

latency for comparison of different routing algorithms. 

Network topology, router buffers, routing algorithm, 

communication policy, storage strategy and channels are 

modeled. Timing behaviors like link delay and the delay for 

writing and reading to/from buffers are also considered in the 

model.  

   Using an actor based modeling language we can 

efficiently map the constituents of GALS NoC, to actor 

model. Different elements of a GALS NoC can be modeled as 

follows, 

• Router: each router can be modeled as an actor which 

communicates with other routers through message passing.  

Delay for scheduling or routing algorithms can be modeled 

by "after" construct. As each router has four ports we made 

this decision such that the delay of routing in one port does 

not affect the latency of other packets in other ports. 

•     Routing algorithm: we can define some message servers 

to model routing algorithms. An actor in Rebeca model is 

able to recognize who has invoked its message server, thus 

the router can understand from which port a packet entered 

and then decide to which router the packet should be sent.  

•    Buffer: router buffers can be seen as an array of elements 

(packets). We can use Rebec queues to model buffers, and 

then keep track of the number of packets in the buffer by 

 

Fig. 1: Syntax for Timed Rebeca 

 

 

Fig. 2: Pseudo code for GALS NoC model 
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defining a state variable as a counter for the number of 

elements in the buffer. Doing so, we always have the 

number of packets in the buffer, thus being able to model 

adaptive and dynamic routings. Delay of writing and 

reading to/from buffers can be modeled by "after" 

constructs. 

•    Packet: we model a packet only with its identifier and its 

destination. 

•    Channel (link): channels can be simply modeled by 

message passing. Delay of passing through a channel can 

be modeled using "after" construct.  

•    Communication protocol: by defining appropriate 

message servers, we can model communication protocols 

of a GALS NoC. 

 Fig. 2 shows a pseudo code for our model for GALS 

NoC 4×4 in Rebeca. The code is not limited to 4×4 NoCs and 

can be used for larger ones provided that we take into 

consideration the problem of state space explosion.  The code 

is available in [17]. According to the pseudo code the model 

consists of one reactive class Router, and sixteen instantiated 

rebecs namely r00, r01, r02 to r33. 

   Packets are generated in initial message server of 

routers. Each packet only contains its destination address and 

no data are modeled, because only analysis of communication 

part of a NoC is of interest. Packets transfer through channels, 

using four-phase handshake communication protocol. We 

modeled channel functionalities by means of message passing 

capability of Rebeca. Four-phase handshake protocol is 

modeled using three message servers reqSend, giveAck and 

getAck. A router calls its reqSend message server to send a 

request to its neighbors; reqSend requires as parameter, a 

direction that determines in which input buffer the packet is 

stored and a destination address that shows the destination of 

the packet. Routing algorithm selects which neighbor router 

the packet should be sent to, and then giveAck message server 

of the selected neighbor router is called. giveAck first checks 

if the corresponding input buffer have enough capacity to 

store the packet, if it does, the packet will be stored and an 

acknowledgement is sent to the sender by calling its getAck 

message server. Then, it will be either consumed or sent to 

other neighboring routers using reqSend message server. 

While the buffer is full the packet will not be stored and 

should wait until the buffer has an empty place. 

 In two reqSend and giveAck message servers the length 

of the buffer can change. when a packet is inserted or deleted 

from the buffer. Writing and reading delays are also 

considered for buffers. 

5 Model for routing algorithm 

 Routing algorithms can be classified into deterministic 

and adaptive routings. In a deterministic routing there can 

only be one path between a source and a destination, whereas 

in adaptive routing more than one possible path may exist and 

the algorithm considers dynamic network condition to decide 

in which direction a packet should be transferred.  

 In the following sub-sections we present a formal model 

for XY and Odd-Even routing algorithms as instances for 

deterministic and adaptive routings respectively. Dynamic 

Adaptive Deterministic (DyAD) is also modeled. 

5.1 XY routing 

 In this algorithm, first packets move along X direction to 

get to the column of the destination, and then along Y 

direction to reach their destination. 

 To model this algorithm, a router (X,Y) compares its X 

location to that of the packet destination, if it is 

greater/smaller, it calls the giveAck method of west/east 

neighbor. The same approach is done for the Y coordinate. 

5.2 Odd-Even routing 

  Odd-Even routing is an adaptive routing algorithm 

based on Odd-Even turn model [18]. Odd-Even turn model 

restricts the turns in the packet path to ensure about the 

deadlock freedom. According to Odd-Even turn model 

north-to-west and south-to-west turns are prohibited in 

routers located in an odd column and east-to-south and 

east-to-north turns are prohibited in routers located in an 

even column.  

  Among possible directions where an Odd-Even router 

can send packet, the direction in which the downstream 

router has less empty slots in its corresponding input buffer 

is selected.  

 In this algorithm each router keeps track of the 

number of packets in input buffer of each of its neighbors. 

In our model whenever the size of an input buffer of a 

router changes, it informs its corresponding upstream 

neighbor by sending a message. 

5.3 DYAD routing 

  DyAD routing dynamically uses a deterministic or an 

adaptive routing exploiting both of them in different network 

congestion conditions.  

  Each router monitors the occupation ratio of its input 

buffers (except for the local buffer). Whenever one of the 

buffers reaches a predefined congestion threshold a mode flag 

is set to inform the corresponding neighboring router about 

the congestion. On the other hand, each router continuously 
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checks mode flag of its neighbors to decide whether to work 

with deterministic or adaptive routing. According to [19] if at 

least one of the neighboring routers were congested the router 

would decide to work with adaptive routing; otherwise it 

would work with deterministic routing. 

 To model a DyAD router we add a mode flag to our 

model. The mode flag becomes true if the size of the 

corresponding input buffer reaches the congestion threshold. 

6 Results 

  We use Afra [20] tool for model checking of XY, Odd-

Even and DyAD Rebeca models, and compare them with 

respect to the maximum latency of the target packet. The NoC 

size in these comparisons is 4×4. All input buffers are of size 

3 packets and %33 congestion threshold. 

  To compare the three algorithms we introduce six 

different scenarios describing different network conditions. In 

all scenarios the target packet is packet (1). We call the path 

of a packet to its destination R-path, when it is routed by the 

routing algorithm R. The scenarios are as follows: 

 Scenario 1. Router R10 generates two packets
1
 as soon as it 

receives packet (1). The two packets may cause disruption for 

packet (1) (Fig. 3. a). 

Scenario 2. Each of the routers R10 and R30 sends two 

packets to R30 and R33. This may cause disruption to any 

packet transferring from their paths (Fig. 3. b). 

Scenario 3. Three routers R10, R20 and R21 send packets in 

XY-path of packet (1) in a way that they disrupt packet(1) 

(Fig. 3. c). 

Scenario 4. R10 sends two packets to each of the routers R30 

and R21 as soon as it receives the packet (1); hence, they will 

cause disruption to packet (1) in all directions (Fig. 4. a). 

Scenario 5. R10 sends two packets to R30 causing DyAD and 

Odd-Even to rout packets in south direction of R10 to avoid 

being delayed. On the other hand, R11 sends two packets to 

each of its south and east neighboring routers that would 

cause delay for packet(1) if DyAD or Odd-Even was 

used(Fig. 4. b). 

                                                           
1
 We mean two packets are sent with negligible delay between 

their generation time. 

 

Fig. 3: Scenarios 1, 2 and 3. 

 

 

Fig. 4: Scenarios 4, 5 and 6. 
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Scenario 6. As illustrated in Fig. 4. c routers R10, R11, R21 

and R31 send some packets to their neighbors making delay 

for packet (1) while it passes through them. 

  These scenarios can be divided into two categories. In the 

first three ones most of the network traffic is directed in XY-

path of packet (1). As illustrated in Fig.5 in these scenarios, 

DyAD and Odd-Even avoid congestion by monitoring their 

neighbors and thus have less end to end packet latency. Also, 

DyAD has better results than Odd-Even because it exploits 

the low latency of deterministic routings in low traffics. The 

second three scenarios show distributed traffic in which 

disrupting packets exist in all possible directions, by which 

the target packet can get to its destination. These scenarios 

investigate the impact of low latency of deterministic routings 

which is the result of their simplicity in contrast to adaptive 

ones. As shown in Fig. 6, XY works as the best in these cases; 

as stated in [19] because XY has a global and long term 

knowledge about the traffic, it exhibits better results than the 

others. 

 

Fig. 5: Results for comparison of XY, DyAD and Odd-Even under 1-3 

scenarios. 

 

7 Conclusion and future work 

  This paper used formal methods that are able to perform 

exhaustive verification to performance prediction on GALS 

NoC in the early phase of design flow. To this end, a formal 

model for GALS NoC was presented using high level 

modeling language Rebeca. The model was then used for 

comparison between three routing algorithms, namely XY 

(deterministic), Odd-Even (adaptive) and DyAD (dynamically 

adaptive and deterministic) with respect to the maximum end-

to-end packet latency. Results of comparison are presented 

under two different traffic patterns and show that under 

distributed traffic a deterministic routing could better work. 

However, in a directed traffic -that is of more interest in real 

applications- adaptive routing algorithms are better. The 

routing performance results obtained through Rebeca model 

checking confirm the same previously published results in 

simulations. 

 Results of such comparisons can help designers to make 

early decision about the parameters of the system based on the 

performance parameters. To have more realistic model and 

more precise analysis, our model can be extended by inserting 

more details of the system along with progress in the design 

flow, which we leave as future work. 
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Abstract— SkePU is a C++ template library with a simple
and unified interface for expressing data parallel computa-
tions in terms of generic components, called skeletons, on
multi-GPU systems using CUDA and OpenCL. The smart
containers in SkePU, such as Matrix and Vector, perform
data management with a lazy memory copying mechanism
that reduces redundant data communication. SkePU pro-
vides programmability, portability and even performance
portability, but up to now application written using SkePU
could only run on a single multi-GPU node. We present
the extension of SkePU for GPU clusters without the need
to modify the SkePU application source code. With our
prototype implementation, we performed two experiments.
The first experiment demonstrates the scalability with regular
algorithms for N-body simulation and electric field calcula-
tion over multiple GPU nodes. The results for the second
experiment show the benefit of lazy memory copying in terms
of speedup gained for one level of Strassen’s algorithm and
another synthetic matrix sum application.

Keywords: Structured parallel programming, Skeleton Program-
ming, GPU Cluster, SkePU, Scalability, Scientific Applications

1. Introduction
Many supercomputers in the Top500 list contain Graphics

Processing Units (GPUs) for accelerating data parallel com-
putations in large-scale parallel applications. For example,
Titan, a Cray XK7 system installed at Oak Ridge, contains
560,640 processors, plus 261,632 NVIDIA K20x accelerator
cores [1].

These recent developments in multi- and many-core based,
multi-GPU systems and GPU clusters and increasing de-
mands for performance in scientific computing have pushed
the change in programming paradigms. In order to exploit
the processing power of the aforementioned architectures,
legacy serial codes for scientific applications have to be
rewritten using parallel programming paradigms. For in-
stance, many scientific applications with computationally
intensive data parallel computations have been ported to
CUDA and OpenCL for performance reasons. However,
CUDA and OpenCL are at relatively low level of abstrac-
tion, requiring the explicit offloading of the computationally
intensive tasks by transfering their operand data to/from
the accelerators, invoking kernels etc. GPU performance

tuning requires that programmers are experts in the specific
languages and architectural features. Several other program-
ming models such as distributed memory and bulk syn-
chronous parallelism exist that require the knowledge of task
and data partitioning, orchestration, communication and syn-
chronization from the application programmer. Furthermore,
debugging, maintaining and porting a parallel application to
other (and future) architectures requires code modification,
leading scientific application programmers to focus more on
development details instead of domain specific issues.

We have taken initiative towards a structured approach
for writing massively parallel applications with multiple
backends. The aim is to develop a rich skeleton library
for heterogeneous multi-node architectures with a number
of accelerators like GPUs for writing structured and non-
trivial large-scale massively parallel applications. Writing
large-scale parallel applications in different domains may
require different kinds of distributed sparse or regular data
structures, like graphs, trees, vectors, matrices, meshes etc
[2] and high level computation and communication patterns
or algorithmic skeletons. In this prototype, we provide the
regular data structures with smartness of data management
(we refer to such data structures as smart containers).
Similarly we provide simple high-level algorithmic skeletons
for expressing relatively regular algorithms in terms of the
provided skeletons. In on-going work, we are extending the
design and implementation of SkePU so that it can be used
for (certain kinds of) irregular applications as well.

Those applications may also require several optimizations
at different points, like the communication of data at differ-
ent levels of granularity, data caching, prefetching and data
locality etc. So the library has to be equipped with certain
flexibilities for making better (online or offline) choices, like
the data partitioning granularity, communication and compu-
tation patterns and other important parameters. Initially, for
that purpose, we have implemented several real scientific
applications with the provided simple algorithmic skeletons.

In earlier work [3] we started with the structured parallel
programming approach using skeletons as a solution for the
portability, programmability and even performance portabil-
ity problems in GPU-based systems. Skeleton programming
frameworks provide generic constructs, so-called skeletons,
that are based on higher order functions parameterizable
in problem-specific sequential code, that express frequently

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 483



occurring patterns of control and data dependence, and for
which efficient (also parallel and platform specific) expert-
provided implementations may exist [4], [5], [6]. The ap-
plication programmer expresses the scientific computation
in terms of the given skeletons. The programming interface
remains sequential, all parallelism, data transfer, synchro-
nization and other platform specific details are encapsulated
in the skeleton implementations. A number of skeleton
programming systems have been developed in the last 20
years, in particular in the form of libraries such as Muesli [7],
a C++ skeleton library for clusters, SkelCL [8], a skeleton
library for GPU systems, BlockLib [9], a C skeleton library
for IBM Cell/B.E., and the C++ based SkePU [3] for multi-
GPU systems. Most of these skeleton libraries are specific to
a particular backend like BlockLib is for the IBM Cell/B.E.
and work for simple kernels.

Muesli [7] was initially designed for MPI/OpenMP clus-
ters and has recently evolved to CUDA and GPU computing.
On the contrary, SkePU was initially designed for single-
node GPU-based system (OpenMP/CUDA/OpenCL) and is
evolving towards MPI based clusters. This difference in
approach results in several key programming differences.
SkePU supports OpenCL which makes it much more appli-
cable to other GPU and accelerator (FPGA etc.) platforms
not supporting CUDA. Although Muesli supports task paral-
lel skeletons for MPI/OpenMP, only a data parallel skeleton
(Map) for CUDA with few communication variations is
supported which limits program portability. SkePU supports
a wide range of data parallel skeletons (Map, Reduce,
MapOverlap, MapArray, Scan etc.) uniformly across all
backends. There exists no equivalents of the MapArray,
MapOverlap skeletons in Muesli which allow to implement
applications ranging from N-body simulation to Conjugate
Gradient solver.

In this work, we extend SkePU for providing scalability
across multiple nodes of GPU clusters, such that the same
SkePU application can now run on several nodes for the
provided simple and regular skeletons. Each node, being a
complete multi-GPU system, runs one instance of SkePU
and the given computation is partitioned among the nodes.
By a simple compiler switch, the application programmer
can run the code on a GPU cluster e.g. for running the
application for larger problem sizes that may not fit in one or
two GPUs’ device memory space. We perform experiments
for four scientific applications and one synthetic matrix sum
application by expressing their computation intensive parts
in terms of SkePU skeletons. We explain one application
in details. Initially, we see that simple algorithms like the
brute force implementation of N-body simulation and the
calculation of electric field on a 3D grid scale across mul-
tiple nodes. We also show that extending the lazy memory
copying mechanism across multiple nodes gives benefit in
terms of speedup.

The rest of this paper is outlined in the following way. In

Section 2, we provide some background knowledge about
the SkePU skeleton library. Section 3 presents the extension
of SkePU, in our current prototype for all its dataparallel
skeletons and the vector container. Section 4 explains one
of the four scientific applications rewritten in SkePU and
how the extended version of SkePU works for it with respect
to data communication, synchronizations and other details.
Section 5 gives the experimental results and discussion.
Finally, Section 6 concludes the paper.

2. The SkePU Library
SkePU is a C++ template library that provides a simple

and unified interface for specifying data- and task-parallel
computations with the help of skeletons on GPUs using
CUDA and OpenCL [3]. The interface is also general enough
to support other architectures, and SkePU implements both
a sequential CPU and a parallel OpenMP backend. SkePU
provides six data parallel skeletons including Map, Ma-
pArray, MapOverlap, Scan, Reduce and MapReduce and one
Generate skeleton for data initialization. These skeletons can
operate on vector and matrix containers, which encapsulate
the skeleton operand data and keep track of copies and thus
allow to optimize memory transfers.

An example code written in SkePU using the MapOverlap
skeleton is shown in Figure 1. The SkePU library provides
a way to generate user functions using macros. The user
function over is written using the OVERLAP_FUNC macro,
where over is the name of the user function, float is the
return type, 3 is passed as the overlap size parameter, a is
a reference to an element in the used container. The last
parameter is the actual user code that is translated into the
selected backend. Notice that the semantics of the MapOver-
lap skeleton requires that here only 3 elements (before and
after) the element pointed by a can be accessed in the user
function over in the example SkePU code (Figure 1). The
computation in the user function is expressed in terms of
these seven values. During execution, the SkePU container
transfers the required data according to the same semantics.

During compilation, the macro is converted into actual
code based on the compilation flags set for backend se-
lection. The set of SkePU user function variants generated
from a macro based specification are placed in a struct over
with member functions for CUDA and CPU, and strings for
OpenCL. An instance of the struct over is passed to create
an instance of the MapOverlap skeleton named conv in the
main function in Figure 1. A vector v0 is initialized with
40 elements and the user function over is applied on every
element of v0 using the skeleton MapOverlap. The code in
the main function looks pretty sequential, but it is executed
in parallel according to the selected backend.

The SkePU containers (Vector and Matrix) are imple-
mented using the STL vector. These containers are smart and
perform the necessary data transfers using a lazy memory
copying mechanism. This means that the data is transferred
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OVERLAP_FUNC(over, float, 3, a,
       return a[-3]*0.8f + a[-2]*0.4f + a[-1]*0.2f +
       a[0]*0.1f + a[1]*0.2f + a[2]*0.4f + a[3]*0.8f;
)
int main()
{
       skepu::Init(NULL,NULL);
       skepu::MapOverlap<over> conv(new over);
       skepu::Vector<float> v0(40, (float)10);
       skepu::Vector<float> r;
       skepu::cout << "v0: " << v0 << "\n";
       conv(v0, r, skepu::CONSTANT, (float)0);
       skepu::cout << "r: " << r << "\n";
       skepu::Finalize();
       return 0;
}

Fig. 1: SkePU code for a 1D convolution using the MapOver-
lap skeleton

SkePU Application

SkePU MPI Layer
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Fig. 2: SkePU instances with MPI layer

only when it is needed for performing computation or
saving output data. If the input data is used for some other
computation (kernel), it is not copied again. Furthermore, the
data for intermediate results remains available for further
computation (on GPU memory, with the CUDA/OpenCL
backend) and transferred back to the host memory once
it is required. The SkePU skeleton library is an on-going
work with addition of more containers like sparse matrices
for implementing irregular computations and dynamically
changing data distributions. Furthermore, auto-tuning for
selecting the execution plan has been addressed in [10]. In
the current version of SkePU, the code is run on a single
multi-GPU node and in the rest of the paper, we present the
extension of SkePU for multiple nodes.

3. Extending SkePU by a MPI Layer
In this work we consider the extension of SkePU for the

vector container only. On a single multi-GPU system (i.e.,
one cluster node), the skeletons can execute on one or more
GPUs and upload their data to the device memory according
to the selected number of GPUs or cores. The data access
patterns for the vector container for different skeletons are
shown in the upper portion of Figure 3. For example, in case
of the Map skeleton, the user function f2 is applied on the
ith element of the input vector(s) and the result is stored
in the corresponding ith index of the output vector. In the
MapOverlap skeleton, the neighbouring overlap elements
are also used in the calculation of ith output element.

f1
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f3

f4 g1

f5

f6

MapOverlap

Map

Reduce

MapReduce

Scan

MapArray

overlap = 1

Patterns of data access on a single node

Partitioning of data for 3 nodes

Map

MapOverlap

MapArray

Fig. 3: Data access patterns for single node and data parti-
tioning for 3 nodes.

The MPI Layer: In order to run skeletons on several
nodes, each SkePU instance on a node runs the same
code but the data is internally partitioned according to
the semantics of the selected skeleton. For the necessary
communication we add an MPI layer connecting the SkePU
instances running on the nodes. The block diagram for the
SkePU extension is given in Figure 2. The grey colored
box shows the root node that runs the MPI process with
rank 0. For broadcasting, scattering and gathering data over
several nodes, we use the collective MPI calls, MPI_BCast,
MPI_Scatterv and MPI_Gatherv respectively. There can be
any number of nodes (and SkePU instances) over the MPI
layer that is actually determined by the number of MPI
processes selected while executing the parallel application.
The MPI layer remains transparent to the user but the same
SkePU code for the application will internally use the MPI
layer to partition the data and computations.

Data Partitioning over Multiple GPU Nodes: The data
partitioning is performed when a skeleton on the vector
inputs is called. For example, in case of a Map skeleton
and 3 nodes, a vector of length 8 is partitioned into 3 parts
as shown in the lower portion of Figure 3. The output vector
is also initialized on each node with the same lengths (as the
lengths of the partitions of input vector). Then each instance
of SkePU on each node computes the smaller computation
with the same semantics of the Map skeleton. Notice that
the MapArray skeleton has two vector inputs, when the ith

element of the output vector is calculated (with the user
function f5, in Figure 3) by using the ith element of the
second input vector and all the elements of first input vector.
So, while partitioning, the second vector is partitioned in a
similar way as in the Map skeleton case, but the first vector
is broadcasted to each node. In this way, the MapArray
computation is subdivided into smaller computations (that
are performed according to MapArray semantics) on the
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partitioned data. Similarly, in MapOverlap, the partitioning
of the vector is similar as in the Map skeleton but overlap
elements are attached in the beginning and the end of each
partition as shown in Figure 3.

Data Partitioning Granularity: The partitioning is per-
formed at the granularity level of the vector container and
not at finer granularity. So, even for an update of a single
element of a vector the whole partition will be communicated
(if required). The number of partitions is the same as the
number of MPI processes. For more complex containers and
finer granularities of data communication, the container will
also handle coherency (being addressed in on-going work).

Convolution Example for Multiple Nodes: In the exam-
ple of Figure 1, we considered a 1D convolution computation
using the MapOverlap skeleton. The SkePU code for the
MapOverlap instance (conv), when executed on the GPU
cluster, runs on all the nodes. The root process (MPI process
with rank 0) initializes the vector v0 with data and all the
other processes (running on other nodes) keep the vector
empty. When every process calls the conv skeleton, the root
process partitions v0 in p parts where p is the number of
MPI processes (or nodes used), and scatters the parts to p
MPI processes. In each part, additional d elements, on both
sides, are appended where d is the overlap size (here d =
3), which is a (statically known) parameter of the skeleton.
Every MPI process (running one instance of SkePU) fills its
v0 vector with the part it receives and performs the over
kernel on the respective part (on CPU or GPU, according to
the preselection made by the programmer). The results are
gathered on the root process when they are required.

Lazy Memory Copying on Multiple Nodes: The lazy
memory copying mechanism of the vector container is also
extended for the cluster implementation of SkePU. In case
the SkePU application is executed on a single node with
CUDA or OpenCL backend, the input vector containers
are uploaded on the device from the host memory and the
references of those vectors are maintained in a hash table.
Maintaining the hash table adds an extra overhead in the lazy
memory copying mechanism but access to the hash table is
an expected O(1) operation. If any of these input vectors is
required again for another skeleton call, the reference of that
vector already resides in the hash table so the vector is not
uploaded again.

When the data in the vector is changed on the GPU and
then accessed on the CPU the reference is removed from
the hash table and the updated vector is downloaded. The
lazy memory copying involves only the data uploading and
downloading to/from the device memory. Whereas, in case
of multiple nodes, data communication over the network
is also involved besides the data uploading/downloading
on device. As mentioned earlier the computation carried
out for a skeleton on multiple nodes is actually done by
the same skeleton calls on the different partitions of the
operand data (vector) so the hash tables are also maintained

on all the nodes including the root node. The root process
performs the check whether the data is already distributed
or not. It performs this check by finding the reference of the
(partitioned) vector in the hash table. Then it either scatters
the vector or does nothing depending upon absence or
availability of the partitioned vector’s reference in the hash
table. On all the other nodes, similar checks are performed
and the vector data is either gathered or nothing is done
depending upon the absence or availability of vector data on
the nodes’ GPU devices.

In case of a backend not requiring a GPU device, there
is no data uploading or downloading but the lazy memory
copying is still useful in saving redundant communications
over the network. This intelligent mechanism of data man-
agement is effective in terms of saving the redundant data
transfers over the PCIe bus or the communication network. It
can also happen that the capacity of the memory is less than
the total required memory for all the operand vector elements
used (in a large application) so lazy memory copying will
cause an out of memory error. We have not considered this
constraint in the current extension of SkePU. On the other
hand, executing the application on several nodes may resolve
this problem because the accumulated storage capacity of
multiple GPUs will be larger than for a single GPU device
memory and the data will be partitioned (requiring less
memory on each GPU device). We will see in the results
that the benefit of lazy memory copying depends upon the
nature of the computations and data dependencies.

Implicit Barriers: As we are using the blocking collective
calls of MPI, like MPI_BCast etc, there will be an implicit
barrier in each collective call. There is no overlapping of
data communications and computations. The semantics of
SkePU as suggested by the sequential programming interface
requires barrier synchronization where multiple nodes exe-
cute the code in an SPMD fashion. Certain applications may
require barriers for correct computations so these implicit
barriers are helpful. We will discuss possible benefits of
these implicit barriers in the discussion of the N-body
problem in Section 4.

Utilization of CPU Cores: The SkePU code follows the
serial execution semantics between calls and for computation
intensive data parallel kernels, it uses the selected backend
for parallel execution. So at least one core is used for
data uploading, downloading (on one node) and for data
distribution (in case of multiple nodes). On each node, only
one MPI process executes (irrespective of the number of
CPU cores or GPUs) and based on backend selection, like
the OpenCL, CUDA or OpenMP, the GPU and CPU cores
are used (on each node).

The programmer needs not modify the code for running on
the cluster, and in case the code is executed on the cluster,
the distribution and synthesis of data is hidden from the
programmer. The programmability of SkePU code is not
affected, but scalability is achieved. We will discuss the
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scalability in the Section 5. For all the other skeletons, the
partitioning of the data is performed in the similar way.

4. N-body Simulation
The N-body simulation is a well known problem for

understanding the interaction of N bodies (e.g. electric
particles or galactic bodies). The time complexity of the
naive serial algorithm is O(KN2) where N is the number
of particles and K is the number of timesteps of the whole
simulation.

The simple algorithm for N-body simulation in SkePU
is shown in Figure 4. The application starts the se-
rial execution and initializes the skeleton instances
nbody_init and nbody_simul-ate_step using the user func-
tions init_kernel and move_kernel respectively. Then two
vectors of size N are created. The skeleton instance
nbody_init is used to initialize the particles’ initial posi-
tions, velocities, accelerations and masses. The particles are
positioned in a 3D space with some initial velocities and
accelerations. ARRAY_FUNC and GENERATE_FUNC are
macros like OVERLAP_FUNC as explained in Section 2.
After initialization of all the particles, the actual simulation
starts in a for-loop using the nbody_simulate_step skeleton
instance of MapArray. After every time step, the user func-
tion move_kernel is called using the nbody_simulate_step
skeleton instance. The SkePU vector all_particles contains
the positions, velocities and accelerations of all particles in
the previous time step, and ith_particle points to the ith

particle in all_particles. The move_kernel updates the ith

particle as shown in Figure 4. The nature of the application
is such that the output data is updated on the host (or root
node in case of multiple nodes) so that the next skeleton call
is made on the current state of the system. The skeletons
are called time_steps times, with the first argument as the
updated vector.

Execution using Multiple Nodes: In case the application
is executed on a cluster (with multiple nodes), the first
vector is internally broadcasted and the second vector is
distributed/scattered to every MPI process in each iteration.
In this way, the large problem is divided into smaller problem
of the same nature. But due to the large computations the
partitioning still gives benefit even there is communication
overhead.

Synchronizations and Barriers: In each iteration, the
skeleton call nbody_simulate_step is made two times. This
is because the first argument requires the current state of the
system of particles. The implicit barriers make it possible
that the current state of the system is used after it is com-
puted completely. This synchronization is inherently present
in the nature of the computation of the N-body problem
but using the current implementation (Cluster-SkePU) this
synchronization is also enforced for any other application
and overlapping of computation and communication cannot
be exploited (we are addressing this in on-going work).

GENERATE_FUNC(                 , Particle, index, seed,
    Particle p;
    // initialize location, velocity etc
    return p;
)
ARRAY_FUNC(                     , Particle, all_particles, ith_particle,
    // calculate the force exerted on ith_particle from
    // all the other particles given in all_particles
    // update acceleration, velocity and position of ith_particle
    return ith_particle;
)
int main()
{
    skepu::Generate<                 > nbody_init(new                 );
    skepu::MapArray<                     > nbody_simulate_step(new                      );
    skepu::Vector<Particle> particles(n);
    skepu::Vector<Particle> latest(n);
    nbody_init(n, particles);
    nbody_init(n, latest);
    for(t=0;t<time_steps/2; t=t+1)
    {
        nbody_simulate_step(particles, latest, latest);
        // Update vectors on the host
        nbody_simulate_step(latest, particles, particles);
        // Update vectors on the host
    }
}

init_kernel

init_kernelinit_kernel

move_kernel

move_kernel move_kernel

Fig. 4: SkePU code for N-body Simulation

Ratio of Computations and Communications: In this
application, the parallel computations performed by the
threads (either CUDA, OpenMP) are O(N2) in each update
of the system of particles whereas the amount of data
communicated is O(N).

Effect of Lazy Memory Copying: The nature of com-
putation of N-body simulation does not exploit the benefit
of lazy memory copying.

The code for N-body simulation is simply written as serial
code in C++ in terms of skeletons but executes on several
SkePU backends including the GPU cluster backend.

All the other selected scientific applications are expressed
in SkePU in a similar way in terms of MapArray, Generate
and Map skeletons by following their semantics. The code
looks serial but, following the semantics of the given skele-
tons, the expressed code can be executed on all backends
implemented in SkePU.

5. Experimental Results
We have implemented several scientific applications (ex-

pressing their data parallel computations in terms of SkePU
skeletons) including, N-body simulation, electric field cal-
culation, smoothed particles hydrodynamics, one-level of
Strassen’s recursive matrix multiplication algorithm, and a
synthetic matrix sum application. We performed experiments
on two machines M1 and M2 and used OpenMP/MPI and
CUDA/MPI backends respectively. Machine M1 has 805
nodes (for checking the scalability, we use up to 16 nodes
only as more than 16 nodes were not accessible to us),
each with two 2.33 GHz Xeon quad core chips and at
least 16 GiB RAM, running under CentOS5. The nodes
are interconnected by Infiniband. Machine M2 has 6 nodes
each with 2 Intel Xeon E5620 CPUs, 3 NVIDIA Tesla
M2090 GPUs with NVIDIA CUDA Toolkit V.4.0, and nodes
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are interconnected by Infiniband. We could use up to 3
accessible nodes with single GPU (with CUDA only) on
each node for experiments.

Scalability over Multiple Nodes: In the first experiment,
the results show the scalability for the first three scientific ap-
plications with CUDA/MPI and/or OpenMP/MPI backends
as shown in Figure 5. The horizontal axis in Figure 5 shows
the number of particles for N-body simulation, smoothed
hydrodynamics and electric field applications. The vertical
axis shows the speedup for the three applications. The graphs
mentioned with 1C/2C show the speedup for 2 CUDA nodes
against a single CUDA node on M2 for each application
in Figure 5. We also found that the CUDA/MPI backend
with three nodes on M2 gives at most 4X performance
than the OpenMP/MPI backend with 16 nodes on M1 for
two scientific applications (shown by 16P/3C in Figure 5)
besides the performance portability across different par-
allel architectures without code modification. These three
scientific applications are computation intensive such that
each node gets considerably large computations to perform
for the given amount of communicated data among the
nodes. For example, (considering the CUDA/MPI backend),
in case of N-body simulation, O(N) parallel tasks (each
containing O(N) operations) are performed by P nodes
and data communication per iteration of N-body simulation
will be O(N). In this case, distributing the computation
will have more benefit than the communication overhead.
Note also that these computations are quite regular and use
brute force algorithms, whereas better O(N logN) work
algorithms exist that we considered in on-going extension
work of SkePU.

For the SkePU implementation of other scientific appli-
cations with O(N) parallel tasks each of asymptotically
less than O(N) work (e.g. O(logN) operations), we ex-
perienced increased communication cost outweighing the
benefit of distributing the computation among several GPU
nodes. This is because of the regular patterns of (block-
ing) communication (at the granularity level of containers)
hidden in the simple skeletons in which the data parallel
computations of the applications are expressed. Here we
experience that finer granularity levels of communications
are required for optimizing the communication as in [11]
and [12]. The authors in [11] and [12] demonstrate the
scalability of scientific applications like fluid dynamics,
Strassen’s algorithm and conjugate gradient method using
CUDA and MPI over multiple nodes by using non-blocking
(optimized) communication among the nodes. Hence, more
complex skeletons and smart containers are required to
express non-trivial and irregular scientific applications with
varying granularity of data partitioning, prefetching and data
caching. As we noted above certain computation intensive
scientific applications can still get benefits from scaling over
multiple nodes with ease of writing the parallel code (we
demonstrated three).

Lazy Memory Copying over Multiple Nodes: In the
second experiment, we implemented a one-level recursive
variant of Strassen’s algorithm for matrix muliplication
and another synthetic matrix sum application that simply
adds 12 N × N matrices. The results are shown in Fig-
ure 6. In the one-level Strassen’s algorithm, two matrices
A and B with dimensions N × N are partitioned into
submatrices A11, A12, A21, A22 and B11, B12, B21, B22

respectively. These submatrices are used (more than once,
but communicated only once with lazy memory copying)
in the computations of intermediate product submatrices
P1, ..., P7. Similarly, the intermediate product submatrices
P1, ..., P7 stay distributed (not communicated) and the final
result’s submatrices C11, C12, C21, C22 are computed (see
Figure 7). We see that lazy memory copying reduces the
communication and gives speedup against the application
that does not use lazy memory copying. Similarly, in our
synthetic matrix sum application, the intermediate result
matrix R is not communicated until the last addition is done
(see Figure 7). Here, we see even more benefit than with
Strassen’s algorithm. This is because most of this synthetic
matrix sum application benefits from lazy memory copying.

We further observe that the benefit of lazy memory
copying decreases for the two applications when multiple
nodes are used (as shown in Figure 6). For example, we see
that the speedup decreases for both the applications when
two nodes are used. Whereas, when 3 nodes are used, the
benefit decreases even more in the synthetic matrix sum
application but increases in case of Strassen’s algorithm.
This is because of the following reasons. In case of a single
node, more data is transferred to the device memory using
the PCIe bus (without partitioning of data). Whereas, in
case of 2 nodes, first the data is partitioned in to 2 parts
(scattered over the network) and then smaller partitions are
transferred to device memories (on each node) in parallel.
This decreases the overall transfer time on PCIe bus. So
if we save these data transfers, we save less data transfer
time (on 2 nodes) and hence speedup decreases as compared
to a single node. A further increase in the number of
nodes (and partitions) decreases the benefit even more in
the case of the synthetic matrix sum application because the
data is scattered over the network and even more smaller
(three) partitions are transferred on three device memories
in parallel. But in Strassen’s algorithm we are using the
MapArray skeleton (in several skeleton calls with broadcasts
of several matrices) that increases the communication over
the network with increasing number of nodes. So saving
the communication with lazy memory copying gives more
benefit. Although we get a benefit by lazy memory copying
on multiple nodes, the nature of the application affects
the speedup. The benefit achieved using the lazy memory
copying also suggests to explore more smartness in future
work on regular and irregular distributed containers.
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Fig. 5: Speedup of three scientific applications. xC: x nodes are used each with 512 CUDA threads. xP: x nodes are used
each with 8 OpenMP threads.

Synthetic

Fig. 6: Speedup gained by using lazy memory copying for
one level Strassen’s algorithm and a synthetic matrix sum
application

P1 = (A11+A22)*(B11+B22)
P2 = (A21+A22)*B11

P3 = A11*(B12-B22)
P4 = A22*(B21-B11)
P5 = (A11+A12)*B22

P6 = (A21 - A11)*(B11+B12)
P7 = (A12 - A22)*(B21+B22)

C11 = P1 + P4 - P5 + P7

C21 = P2 + P4

C12 = P3 + P5

C22 = P1 + P3 - P2 + P6

Strassen's Algorithm

R = A1 + A2

R = R + A3

R = R + A4

R = R + A5

R = R + A6

...
R = R + A12

(Recursive step) Synthetic Matrix Sum App.

Fig. 7: Possibilities of lazy memory copying in one-level
Strassen’s algorithm and synthetic matrix sum application

6. Conclusions and Future Work
We have provided the principles and a first prototype for

the extension of SkePU for GPU clusters and implemented
four scientific and one synthetic matrix sum application. To
the best of our knowledge, this is the first skeleton library
implementation for GPU clusters that is also evaluated on
a GPU cluster (note that the recent framework by Ernsting
et al. [7] is evaluated with multiple MPI processes running
either on a single GPU node or on a non-GPU cluster). We
performed two experiments where the results show scala-
bility, portability and programmability. SkePU code looks
serial (easy to maintain and debug) and can be compiled
and executed using a number of backends without code
modification. We found that certain computation intensive
applications (expressed in SkePU skeletons) can scale over
multiple nodes even with the current extension of SkePU.
The smartness of the containers can give speedup (depending
upon the nature of computations). Future work will address
improvements in the containers and skeletons in order to
make Cluster-SkePU more useful in different domains of

scientific computing.
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Abstract - DEF-G is a declarative language and framework 

for the efficient generation of OpenCL GPU applications.  

Using our proof-of-concept DEF-G implementation, run-

time and lines-of-code comparisons are provided for three 

well-known algorithms (Sobel image filtering, breadth-first 

search and all-pairs shortest path), each evaluated on three 

different platforms.  The DEF-G declarative language and 

corresponding OpenCL kernels generated complete OpenCL 

applications in C/C++. Initial lines-of-code comparison 

demonstrates that the DEF-G applications require 

significantly less coding than hand-written CPU-side 

OpenCL applications. The run-time results demonstrate very 

similar performance characteristics compared to the hand-

written applications.  We also provide useful observations, 

which we found to be noteworthy for practitioners, 

concerning the effectiveness of certain OpenCL API options. 

 

Keywords: OpenCL, graph algorithms, declarative 

language 

 
 

 

1 Introduction 
 Producing high performance computing (HPC) 

software for use on graphical processing units (GPUs) is 

often a difficult and daunting task.  This type of software 

tends to require the use of specialized, parallel algorithms 

and requires the use of low-level application programming 

interfaces (APIs), in the context of a thorough understanding 

of the GPU architecture.  The Declarative Framework for 

GPUs (DEF-G) provides a domain-specific computer 

language (DSL) to assist the software developer.  It mitigates 

the need for a deep understanding of the full CPU-side API 

used with technologies such as OpenCL, while allowing the 

user to focus on the algorithms being used and on the most 

efficient usage of the overall GPU architecture. 

Our research in processing large, sparse graphs on 

GPUs has, out of necessity, led to the direct development of 

DEF-G.  As these large graphs tend to lack locality of 

reference, the parallel algorithms needed to process them 

efficiently tend to be complex.  Sample problem domains 

range from graph problems such as the Breadth-First Search 

(BFS), Single-Source Shortest Path (SSSP), and All-Points 

Shortest Path (APSP) to iterative matrix inversion, parallel 

prefix computation, and parallel sorting.  Using DEF-G 

permits us to focus on the algorithms, which were coded 

mainly in the GPU kernels, and to spend less time focusing 

on the CPU-side code.  In this proof-of-concept 

implementation of DEF-G, we have implemented and 

measured, in terms of lines-of-code and run-time 

performance, three well-known algorithms: Sobel image 

filtering for edge detection [1] and from the graph theory: 

BFS and APSP [2].    

Common GPU environments in use today, such as 

OpenCL [3] and NVIDIA’s proprietary CUDA [4], tend to 

provide low-level, very specialized APIs. Their usage 

requires an understanding of complex, CPU-side APIs [5].  

DEF-G provides several higher-level design patterns that 

abstract the CPU-side coding to a declarative level.  Much 

as the now-ubiquitous relational databases accept database 

requests as declarative SQL statements and quickly return 

the requested data, DEF-G uses design patterns and 

declarative statements to produce high performance CPU-

side code, which performs the desired computations.  This 

implementation of DEF-G supports OpenCL; we expect 

future versions to support both OpenCL and CUDA. Once 

the developer has produced the kernel code to be executed 

on the GPU, DEF-G simplifies the task of executing the 

kernel code.  Complex CPU-side operations outside the 

context of the DEF-G design patterns can be utilized by 

DEF-G as callable functions.   

The current DEF-G implementation consists of a parser 

written in Java, using ANTLR 3 [6], and our code generator, 

which is written in C++.   The parser handles syntax 

checking and results in an abstract syntax tree, expressed as 

an XML document.  This abstract syntax tree is then 

processed by our code generator, which uses the TinyXML2 

library [7] to accept the syntax tree.  For example, the twelve 

lines of DEF-G code shown in Figure 1 result in 

approximately 200 lines of C/C++ code, a snippet of which 

is shown in Figure 2.  The OpenCL kernel executed by this 

code is shown in Figure 3.  Note that this generated OpenCL 

code is intended to execute on any supported OpenCL 

device, including the CPU. 

OpenCL is an open and cross-platform standard for 

developing high performance applications on parallel 

hardware.  This standard is supported by major vendors 

including NVIDIA, AMD, and Intel.  There are two major 

components defined by the standard: the OpenCL C 

programming language used on the parallel device and the 

CPU-side APIs for C/C++ that provide access to the 

device’s OpenCL kernels.  The CPU manages the execution 

of the kernels on the OpenCL parallel device. 
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01. declare application  sobel 
02.   declare integer Xdim (0) 
03.   declare integer Ydim (0)  
04.   declare integer BUF_SIZE (0) 
05.   declare gpu gpuone ( any ) 
06.   declare kernel  sobel_filter SobelFilter_Kernels  ( [[ 2D,Xdim,Ydim ]] ) 
07.   declare integer buffer image1 ( $BUF_SIZE ) 
08.           integer buffer image2 ( $BUF_SIZE ) 
09.   call init_input (image1(in) $Xdim (out) $Ydim (out) $BUF_SIZE(out))  
10.   execute run1 sobel_filter ( image1(in) image2(out) )  
11.   call disp_output (image2(in) $Xdim (in) $Ydim (in) ) 
12. end 
Figure 1:  Sample DEF-G Code 

 

// *** buffers in 
cl_mem buffer_image1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (BUF_SIZE * 
sizeof(int)),(void *) image1, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 0, sizeof(cl_mem), (void *)&buffer_image1); 
if (status != CL_SUCCESS) { handle error } 
cl_mem buffer_image2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (BUF_SIZE * sizeof(int)),(void *) NULL, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2); 
if (status != CL_SUCCESS) { handle error } 
// *** execution 
size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ; 
status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size, NULL, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 
// *** result buffers 
status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0, BUF_SIZE * sizeof(int), image2, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 
Figure 2:  Snippet of Generated OpenCL Code 

 
__kernel void sobel_filter(__global uchar4* inputImage, __global uchar4* outputImage) { 
              uint x = get_global_id(0);  uint y = get_global_id(1); 
              uint width = get_global_size(0);  uint height = get_global_size(1);  
              float4 Gx = (float4)(0);  float4 Gy = Gx; 
              int c = x + y * width; 
              /* Read each texel component and calculate ..*/ 
              if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1) 
              { 
                            float4 i00 = convert_float4(inputImage[c - 1 - width]); 
                            // similar lines omitted 
                            float4 i22 = convert_float4(inputImage[c + 1 + width]); 
                            Gx =   i00 + (float4)(2) * i10 + i20 - i02  - (float4)(2) * i12 - i22; 
                            Gy =   i00 - i20  + (float4)(2)*i01 - (float4)(2)*i21 + i02  -  i22; 
                            /* taking root of sums of squares of Gx and Gy */ 
                            outputImage[c] = convert_uchar4(hypot(Gx, Gy)/(float4)(2)); 
              } 
} 

Figure 3:  Snippet of Sobel OpenCL Kernel Code (from AMD APP SDK 2.8) [18] 
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The OpenCL C/C++ CPU-side code is required to obtain 

the kernel source code and call appropriate OpenCL APIs to 

compile the kernel code.  In addition, the OpenCL CPU-side 

code is required to acquire and manage the low-level buffers 

accessed by the device kernel.  These two requirements tend 

to make the CPU-side code verbose and often complex; 

additional complexity is added by the OpenCL requirement to 

support many different types of parallel platforms and 

devices, examples being CPUs, GPUs, and even specialized 

FPGA [8] and DSP [9] hardware.  This requirement adds 

numerous specialized API parameters to the OpenCL API.  It 

can be argued that the OpenCL API is unnecessarily complex, 

not easily learned, and somewhat hard to use and debug.  

DEF-G takes over much of the burden of writing the OpenCL 

CPU-side code, permitting the developer more focus on the 

device kernels and parallel algorithms proper. 

We approached our work as follows: using three existing 

OpenCL applications and using the existing OpenCL kernels 

without any changes, we replaced the existing CPU-side code 

with the DEF-G generated code.  The DEF-G source modules 

needed on average about 90% fewer lines of code.  We then 

compared the computational performance of the three 

applications over three different OpenCL platforms.  

Performance variations between the DEF-G results and the 

reference results were identified and analyzed.  

The next sections describe related work, followed by the 

three existing OpenCL applications that were used as 

reference/benchmark applications and converted to DEF-G.  

We then present our experimental results in terms of lines of 

code and run times, and make some observations for GPU 

practitioners. A summary of ongoing and future work is 

presented in the last section.   

 

2 Related Work 
Numerous attempts have been made to construct 

languages, compilers, and tools to make the production of 

high performance parallel solutions easier.  In 2005, Shen et 

al. [10] talked about the “holy grail” of parallelization, which 

is the automated parallelization of serial programs, being out 

of reach.  However, progress is being made. One approach 

towards the efficient production of GPU-based parallel 

solutions is the use of domain-specific  languages (DSL).  

DEF-G is a DSL, a language and associated tools that 

facilitate the production of OpenCL applications.   Martin 

Fowler defines a DSL as a “computer programming language 

of limited expressiveness focused on a particular domain,” 

and suggests that DSLs can be broken into two categories: 

internal DSLs and external DSLs [11].  DSLs of both 

varieties have been produced for GPU-based HPC. 

Internal DSLs for GPU-based HPC include extensions to 

Python such as: PyGPU [12], PyCUDA [13], and PyOpenCL 

[14]. These DSLs tend to consist of Python wrappers placed 

around a particular GPU API.  There are also C/C++ 

extensions such as Bacon [15]. Aside from DEF-G, other 

GPU external DSLs include the SPL digital signal processing 

language [16] and the MATLAB Parallel Computing Toolbox 

(which supports CUDA and permits passing some MATLAB 

functions to the GPU and permits GPU kernel execution 

[17]).   Both MATLAB and DEF-G require that the GPU 

kernel be provided.    

The BFS and APSP implementations we chose for our 

DEF-G testing were existing implementations, easily obtained 

from software development kits (SDKs) and benchmarks [18-

19].  There exists many other published algorithms and 

implementations that may provide better overall run-time 

performances.  We anticipate implementing a subset of these 

in DEF-G.  For example, Merrill, et al. suggest a much faster 

BFS solution which uses prefix sum to help distribute the 

work among GPU threads without locking [20].  We intend to 

apply the prefix sum lock-avoidance approach to graph-

oriented algorithms, which were not addressed in this study.  

For APSP, Katz and Kider provide a method for using tiling 

with the Floyd-Warshall APSP algorithm to minimize GPU 

global memory access times [21]. 

 

3 DEF-G Framework Language 
The DEF-G declarative language consists of a number 

of declare, execute and call statements, and some optional 

statements such as sequence/times and loop/while. An 

example DEF-G source file is shown in Figure 1.  The declare 

statement is used to name the DEF-G application, define and 

name the GPU kernels to be executed, define any required 

scalar variables such as a graph’s node count, and define the 

buffers to be given to the GPU. Lines 1 to 8, in the DEF-G 

sample, show declare statements.  The syntax on line 6 

enclosed in “[[“and”]]” brackets is our method for setting the 

global grid size.  The call statement is used to invoke C/C++ 

functions, e.g., to obtain the input data; the sample has call 

statements on lines 9 and 11. The execute statement on line 

10 is used to execute the kernel.  The flow of control is a 

design pattern built into DEF-G.   

The optional statements are used to provide support for 

more complex design patterns where the kernels may have to 

be executed a variable number of times. Figure 4 contains a 

DEF-G example which executes the kernel once for each 

graph node.  Figure 4, line 9, shows the sequence statement 

application.  DEF-G contains statements to process scalar 

values returned by kernels. This capability was used in the 

DEF-G BFS solution to conditionally stop the parallel device 

processing.  DEF-G generates OpenCL 1.1 code.  

 

4 Discussion of Results 
To test the viability of DEF-G, we selected three existing 

OpenCL solutions based on well-known algorithms: Sobel 

image filtering and Floyd-Warshall APSP, both from the 

AMD APP SDK [16], and breadth-first search from the 

OpenDwarfs benchmark [17].  We will refer to these solutions 

as SOBEL, FW, and BFS, respectively. SOBEL was chosen 

because it represents the class of simpler GPU problems, 

where a single kernel is called once and because it has 

significant RAM locality of reference.  
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01. declare application  floydwarshall 
02.   declare integer NODE_CNT (0) 
03.   declare integer BUF_SIZE (0) 
04.   declare gpu gpuone ( any ) 
05.   declare kernel  floydWarshallPass FloydWarshall_Kernels  ( [[ 2D,NODE_CNT ]] ) 
06.   declare integer buffer buffer1 ( $BUF_SIZE ) 
07.                 integer buffer buffer2 ( $BUF_SIZE ) 
08.   call init_input (buffer1(in) buffer2(in) $NODE_CNT(out) $BUF_SIZE(out))  
09.   sequence $NODE_CNT times 
10.     execute run1 floydWarshallPass ( buffer1(inout) buffer2(out) $NODE_CNT(in) $CNT(in) ) 
11.   call disp_output (buffer1(in) buffer2(in) $NODE_CNT(in)) 
12. end 
Figure 4:  Sample DEF-G Code Showing a Sequence 

 

In future implementations of DEF-G, we expect to support 

several concurrent GPU devices in a declarative manner 

and SOBEL provides a good test case for this added 

support. 

FW and BFS were selected because they represent two 

different classes of graph-oriented GPU problems, with BFS 

being the more complex.  The FW algorithm requires the same 

operation to be repeated for each graph node; in this 

implementation, the FW kernel is called once for each node.  

This call-for-each-node behavior must be managed from the 

CPU-side.  The OpenDwarfs BFS implementation is based on 

the work by Harish [22] and uses a version of Dijkstra’s 

algorithm [2].  The actual OpenDwarfs code is a port of the 

BFS CUDA code from the Rodinia benchmark [23].  This 

BFS implementation requires that a pair of kernels be repeated 

until success is indicated by the second kernel.  This repetition 

is managed by the CPU-side code. 

All three of these were converted to DEF-G, keeping the 

unmodified OpenCL kernels.  The conversions to DEF-G 

produce exactly the same results as the corresponding 

reference version.  Before discussing the performance results, 

we summarize the hardware and software used. The tests were 

run on three different configurations, which we call CPU, 

GPU-GT 430, and GPU-Tesla T20, which are listed in order 

of increasing power, as shown in Table 1.   

In terms of module line count results, the three DEF-G 

versions were much smaller than their reference counterparts.  

Table 2 shows the line counts for SOBEL, BFS, and FW. 

Shown are the number of lines of DEF-G declarative code, the 

number of lines of generated code, and the estimated number 

of non-comment lines in the reference version. This data is 

shown graphically in Plot 1.  On average, the DEF-G code is 

7.7 percent of the generated code, and 4.4 percent of the 

reference code.  It should be noted that the reference code 

tended to include additional functionality; therefore, the 

comparison with the generated code is likely to be more 

indicative of the DEF-G’s effectiveness. 

The run-time performance comparison turned out to be 

very interesting.  The raw run times, in milliseconds, are 

presented in Table 3.  Plot 2 shows this data presented in 3D 

form. The results shown are the average of ten runs done for 

each case.  Where we encountered unexpected results, we 

often reran the tests with manual code changes to isolate the 

underlying technical causes.  We made these code changes to 

both the DEF-G and reference OpenCL code.  However, the 

numbers shown here are only the original times, i.e., those 

prior to any manual code modifications. 

SOBEL is the simplest application and the run-time 

performance results between DEF-G and the reference cases 

are comparable.  The SOBEL results are shown on the graph 

in purple.  The DEF-G performance was slightly faster on the 

CPU and GPU-GT 430 runs, and was slightly slower on the 

GPU-Tesla T20.  This similarity of results is not surprising as 

the CPU-side support needed for SOBEL is not complex.  
The run-time results of the FW tests, which are shown in 

green, were a surprise to us.  We saw no obvious explanation 

for why DEF-G should be consistently faster.   We reviewed 

the OpenCL code for both DEF-G and the AMD SDK-

supplied reference case, and did not find any significant 

differences in buffer usage or the OpenCL API functions used.  

We did notice that the reference case was using asynchronous 

events when not required and we temporarily disabled them 

and reran the reference case.   The FW reference case run

  

Table 1:  Test Configurations 

Name Configuration Data 

CPU Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM, using AMD OpenCL SDK 2.8 (no GPU) 

GPU-GT 
430 

Windows 7, Intel Pentium 4 Processor, 3.2 GHz, 1.5 GB RAM, using NVIDIA OpenCL SDK 4.2,  NVIDIA 
GT 430 GPU with 2 Compute Units, 1400 MHz and 1024M RAM 

GPU-Tesla 
T20 

Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron 2427 Processor, 2.2 GHz, 24 GB RAM, 
using NVIDIA OpenCL SDK 4.0,  NVIDIA Tesla T20 with 14 Compute Units, 1147 MHz and 2687M RAM 

 
Table 2: Lines of Code  
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times dropped three-fold from an average 51.2 ms to 17 ms.   

This difference was later traced to what we identified as an 

error in the OpenCL event handling. We feel the DEF-G Tesla 

time of 11.3 ms and the reference case time of 17 ms are 

reasonably close and this test tends to show that, for this 

implementation of the Floyd-Warshall algorithm, both 

implementations’ run times were comparable. 

The BFS run-time comparisons used two different 

graphs.  The first graph has 4,096 nodes, shown in blue on the 

graph, and the second has 65,536 nodes, shown in red.   It is 

clear that the reference case runs significantly faster than 

DEF-G.  For example, on the Tesla, the reference case ran in 

an average of 11.3 ms and DEF-G in an average of 59.4 ms.  

As we had done with the FW tests, we analyzed the 

performance difference.  We found that DEF-G was moving 

buffers to the OpenCL device when not required.  After 

manually adjusting the code to eliminate the movement of 

these buffers in the generated OpenCL code, the 59.4 ms run 

time dropped to an average of 28.6 ms.  This performance can 

be improved even more by enhancing the DEF-G language to 

distinguish between buffers that are moved on each kernel 

execution and those that are initialized only once, and by the 

addition of buffer-use optimization to the DEF-G OpenCL 

code generator.  The current code generator contains very 

little optimization functionality, but we are optimistic DEF-G 

can come close to the reference-case performance with these, 

and perhaps additional, enhancements. 

We cannot leave the BFS performance topic without 

noting that the OpenCL CPU configuration’s performance was 

better than either of the GPU performances, except for the 

Tesla 65,536 node case.  We postulate that this is explained by 

the BFS implementation being used.  This graph algorithm 

implementation is based on the work by Harish [22], which 

does not compensate for the lack of memory caching on many 

GPUs.  The CPU version most likely fared so well due to the 

multiple levels of memory caching provided by the Intel I3; it 

is also likely that the 65,536 node case did not fit entirely in 

the Intel I3’s cache.   

In summary, these four comparison tests have shown 

that, at least in these three cases, the declarative approach used 

in DEF-G can be used to produce OpenCL applications with 

fewer lines of code and comparable performance levels.

 
Plot 1: Size Comparison of Module Sizes 
 

 
Plot 2: Performance Comparison of Run Times 

 DEF-G DEF-G  

 Declarative Generated Reference 

BFS 33 291 364 

FW 12 238 478 

SOBEL 12 208 442 
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Table 3: Run-time Performance, in milliseconds 

 

5 Observations for Practitioners 
Although our performance tests were limited to three 

platforms and four tests cases, we have two important 

observations for OpenCL HPC developers. 

Observation One: The OpenCL “implicit model” worked 

well.   The OpenCL clEnqueueNDRangeKernel() API call is 

used to execute kernels and its sixth parameter describes the 

number of work items that make up a work group.  This can be 

hard to calculate and optimize.  There is an option to set this 

parameter to NULL and allow OpenCL to set this internally.  

This is referred to as the “implicit model,” by Munshi, et al. 

[24].  The proof-of-concept version of DEF-G uses this 

implicit model; much to our surprise the implicit model 

performance was equal in many cases to the tuned setting.  We 

suggest that practitioners may want to try using the implicit 

mode as part of their performance testing to help verify that 

their explicitly-set values are superior. 

Observation Two: The clCreateBuffer() 

CL_MEM_COPY_HOST_PTR option gave inconsistent 

performance. This option permits the clCreateBuffer() call to 

provide the address of the host buffer and avoid later calls to 

clEnqueueReadBuffer()/clEngueueWriteBuffer().  Use of 

this option appeared to introduce performance issues in a 

limited number of our tests; we encountered cases where using 

this option and avoiding the associated 

clEnqueueReadBuffer()/clEngueueWriteBuffer() calls did 

add significantly to the run time.  We suspect the performance 

of this option could vary by GPU vendor and device; we 

suggest trying both approaches with your specific OpenCL 

device. 

 

6 Ongoing and Future Work 
This proof-of-concept DEF-G implementation has 

shown that our declarative approach is able to produce results 

with less code written and still maintain similar run-time 

performance, at least for this family of test cases.  The 

addition of buffer optimization to DEF-G would greatly 

benefit its buffer management performance and, hence, the 

overall run times.  DEF-G also needs the addition of high-

performance data loaders and result displays, as well as 

simple debugging aids such as logging and formatted buffer 

dumps.  We anticipate expanding the DEF-G toolkit to 

support the use of multiple GPUs, to have optional automatic 

tuning of various GPU parameters, and to have callable 

modules generated by DEF-G.  Once we have automatic 

tuning capabilities, we will consider producing a code 

generator for NVIDIA’s CUDA.  We also expect to 

implement the generation of human-readable OpenCL C/C++ 

code that is a starting point for customized GPU applications 

and to implement other higher-performance approaches to 

BFS and APSP. 

DEF-G was developed as a result of a specific need; that 

need being the rapid and efficient production of CPU-side 

code for use in GPU-based parallel algorithms research.  Our 

DEF-G results look very promising.  DEF-G provides a tool 

to achieve the quick performance analysis of new OpenCL 

kernels and algorithms.  Given this success, we anticipate 

enhancing DEF-G and making this tool publicly available.  

The DEF-G toolkit should be a useful asset in future GPU 

high-performance algorithms research. 
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Abstract— In terms of computing hardware, heterogeneous
processor types have now become an integral part in a
number of modern devices. In particular, graphics pro-
cessing units (GPUs) are complementing central processing
units from portable smartphones to large scale supercomput-
ers. By having a mixture of resources available, optimally
mapping algorithms to computing architectures improves
performance and saves power. With the advances in raw
theoretical floating-point processing power of massively par-
allel graphics processors, mobile high-performance GPU-
populated workstations are now a feasible option for ad-
vancing compute-intensive tactical computations on-board.
This compact form of computing system is evaluated and
leveraged for enhancing a tactical operation scenario con-
sisting of determining a ballistic threat field in a three-
dimensional urban environment. The core algorithm per-
forms ray-plane intersection tests on a triangular mesh input
data using kernels developed in the OpenCL framework to
exploit the parallel processing elements of AMD and NVIDIA
products. To deliver an intuitive interface to the end user,
serving as a layer of abstraction to GPU computing, the
interactive world viewer named World Wind was employed
for the static optimization ballistic threat demonstration.
The World Wind package provides a display and interaction
functionality for the workstation with multiple consumer-
grade graphics cards installed. Opportunities of hybrid
core deployable systems as tactical computing assets are
investigated in respect to performance and programming
development.

Keywords: Parallel computing, GPGPU, tactical computing, high
performance computing

1. Introduction
The U.S. Army Research Laboratory (ARL) Computa-

tional Sciences Division (CSD) hosts one of the Defense
Supercomputing Resource Centers within the DoD High
Performance Computing Modernization Program, and in this
role maintains several high performance systems to support
Army and DoD research, development, testing, and evalu-
ation in numerous scientific disciplines. One of the unclas-
sified systems, Pershing, equipped with Intel 8-core Sandy
Bridge processors, has a theoretical peak performance of
420 trillion floating-point operations per second (TFLOPS),
which places this system in 62nd place on the TOP500
ranking [1]. In addition to supporting Soldiers through the
supercomputing facility, advanced tactical computing re-
search being done in CSD attempts to push supercomputing

out into the field and closer to dismounted Soldiers. Due
to bandwidth restrictions and proximity of supercomputing
centers, supporting the lower levels of the Army hierarchy
in a battlefield via a U.S. located computational facility is
not feasible. Securing bandwidth to a supercomputing center
might be the correct solution for theater-wide operations
under high command, but this computational resource con-
nectivity for squad units would require a different approach.
Addressing this issue, the tactical computing concept is
to provide as much high performance computing (HPC)
capacity to under-served small Soldier teams.

Apart from the commercial space, unique challenges exist
within operating environments for the Army. First, a depend-
able network infrastructure cannot be assumed in a battlefield
scenario. Network connectivity is going to be characterized
by frequent disconnections and oversubscribed bandwidth
(or a complete lack thereof). Second, data explosion related
to collected sensor data approaches intractability. With the
expanding flow of data, time to decision and extracting ac-
tionable intelligence require higher processing power. Third,
the lack of a common standard across fielded systems
thwarts the ability to share data and work in cooperation.
Mitigating these issues will aid toward enhancing situational
awareness and building a common operational picture.

The popularity of heterogeneous computing architectures,
such as coupling central processing units (CPUs) with graph-
ics processing units (GPUs), is spreading from personal com-
puters and laptops to mobile devices and HPC facilities. The
use of graphics accelerators can be observed in ARM-based
PowerVR incorporated processors in smartphones and in
AMD or NVIDIA video card augmented supercomputers [2]
[3] [4] [5]. Similarly, the hybrid computing concept is being
leveraged by select Intel Sandy Bridge processors, iPhone’s
A5 processors, and AMD’s Fusion processors. Undoubtedly,
the collaborative technology of CPU and GPU is being
utilized in many different fields. This multitude of market-
driven forces, along with traditional purposes such as driving
displays and gaming, continues to push the demand for video
processing forward. Note that, unlike specialized and custom
designed processors, a popular consumer demand exists for
GPU products. Furthermore, pervasive characteristic of GPU
products typically leads to continual advances in hardware
and software that increase performance as a function of
time. Hence, the risk of technology fading away over time
is mitigated for the GPU technology. The low cost entry
point of GPU general-purpose computing is another resulting
aspect of mass marketed GPUs. For example, the recently
announced “Ouya” gaming system will retail for ≈$100 and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 497



also contain a dedicated NVIDIA Tegra 3 chip [6].
In addition to being ubiquitous, GPUs pack a large number

of math function processing units since the parallel nature
of graphics applications calls for a massively multithreaded
architecture. For instance, a single GPU chip from AMD’s
Radeon HD 7970 contains 2,048 stream processors leading
to a peak performance of 3.7 TFLOPS for single-precision
operation [7]. As indicated by the theoretical performance,
discrete graphics cards have become quite powerful in recent
years, ideal for applications with high levels of data paral-
lelism. For this project, the main objective was to leverage
a GPU’s floating-point capabilities for advancing military
applications (that is, using graphics hardware for the purpose
of number crunching rather than rendering images on a
screen).

2. Mobile High Performance Computing
One of the visions behind this research was to investigate

new compute capabilities for Soldiers that would be possible
if they have ready access to supercomputing power. The
tricky part is striking a balance between portability and
performance. Imposing a limitation of physical dimension of
a system to a size of a workstation, the project attempted to
pack as much processing power as possible in this small form
factor. Designed to support massive amounts of parallelism,
graphics cards were the preferred hardware of choice to ramp
up the raw floating-point compute capability in a workstation
footprint system.

At the high-end of the spectrum, dual GPU consumer
cards from AMD rated at 1.2 TFLOPS in double-precision
are available. Just a few years ago, stacking four of these
cards would equate to a theoretical peak performance of
4.8 TFLOPS and would place the system in the TOP500 list
[8]. This system would need only a single outlet for power
and no specialized room or space requirement for dedicated
colling infrastracture. In other words, a five-year-old super-
computer can be constructed using off-the-shelf consumer
products within a workstation form factor. Moreover, the
cost associated with GPU general-purpose computing falls
in the dollar range to where it can be personally financed.
Thus, redundant placement of these resources is possible
to alleviate frequently disconnected users in the field as
described in [9]. Instead of a single point of failure, mobile
high-performance computing systems can be distributed in
a network.

The HPC workstation “box” represents a portable com-
putational power in the field that allows for the possibility
of on-board processing of complex computations. With
enhanced computing resources, time-sensitive information
can be extracted in near real-time, the fidelity of certain
calculations can be improved, and greater amounts of data
can be processed. For the mobile HPC study, three differ-
ent hardware configurations of GPU-equipped workstations
were procured for evaluations. All machines contain dual
Intel Xeon X5675 CPUs and 24 GB of memory as a base
configuration. The first machine has four AMD Radeon HD
6770 cards, the second machine has four NVIDIA GeForce

GTX 580 boards, and the last machine has one NVIDIA
GeForce GTX 590 model installed. Figure 1 illustrates the
workstation from SuperMicro populated with four NVIDIA
GPUs.

Fig. 1: Four NVIDIA GPUs installed in a workstation.

Unfortunately, improving performance costs power. The
typical thermal design power (TDP) for high-end graphics
cards is around 250 W for single GPU cards and 375 W for
dual-GPU chip cards. TDP is a value calculated by the man-
ufacturer that describes an average maximum power under
normal and realistic use of hardware. It does not, however,
indicate an absolute maximum, where TDP is typically 20 to
30 percent less than the maximum. With four single graphics
chip boards, a 1.4 kW power supply handles the power
requirement of the quad GPU workstation. To identify power
source availability in a mobile setting, a literature search was
performed on vehicle power system options and found that
heavy-duty inverters can output 2 kW [10], and advanced
custom-engineered power solutions can produce up to 30 kW
at higher engine speeds for military vehicles integrated with
a 45 kW generator [11]. The on-board vehicle power supply
requirement manual by the U.S. Marine Corps specifies
minimum output of 1.8 kW for inverters and 10 kW for the
on-the-move High Mobility Multi-purpose Wheeled Vehicle
(HMMWV)-based systems [12]. Therefore, a cursory look
at these vehicle power specifications insinuates that the
electrical power requirement of a multi-GPU workstation in
a mobile platform is within attainable scope.

3. Ballistic Threat Surveillance Opti-
mization Algorithm

The core computation in the ballistic threat surveillance
optimization algorithm is the calculation of line-of-sight
ballistic hit probability in an urban environment. Figure 2
displays the three-dimensional visualization of the input
triangle mesh representing building structures and terrain
information. As a variant of the ray-tracing algorithm, the
first-hit ray-casting algorithm was designed and implemented
to compute ballistic threat. To accelerate the calculations of
ray-plane intersection, the quad-tree spatial decomposition
was adopted to minimize the total number of triangle tests.
In computing ray-plane intersections, a series of rays are cast
out from an ememy’s position (red forces) and propagated
until the first intersection with a polygon is detected. In
addition to computing the line-of-sight, a ballistic hit proba-
bility formula is applied to the calculation to model ballistic
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characteristics as a function of distance. Figure 3 illustrates
an output result for the ground plane line-of-sight ballistic
threat calculation, watermarked in red, for a single hostile
position on the building’s roof.

Fig. 2: Three-dimensional model representing an urban town,
color coded by height.

Fig. 3: Single enemy soldier line-of-sight ballistic hit prob-
ability shaded in red.

The total floating-point operations of the ray-triangle inter-
section were calculated for the implementation to illustrate
the computational intensity of the ballistic threat algorithm.
The implemented ballistic application’s input scenario has
480,000 rays (800 by 600) and 65,000 triangles as the input
setup. Assuming roughly 91 floating-point operations for
a ray-triangle calculation, a naive floating-point operation
requirement equates to 2.8 trillion floating-point operations
for a single enemy soldier’s position. As the floating-point
operation requirement reveals, the ray casting algorithm is
a computationally expensive task exhibiting a challenge for
achieving near real-time execution.

The algorithm supports a number of flexible scenarios by
using an extensible XML format as scenario inputs that en-
ables arbitrary multiplicity in entities and computations. The
construction of scenarios for execution would be specified
by the XML file. The technical objective was to support ar-
bitrary numbers of simulation elements. The basic elements
of a scenario are captured by the object types categorized as
map, view, entity, and evaluator. As the name implies, the
map field would contain terrain input information, which
could be LIDAR or 3D polygon representation. The type
view can represent the rendering engine, camera perspec-
tive, or window size. The type entity can specify enemy
dismounted soldiers, observers, vehicles, or sensors. Once
the functionality part of the ballistic threat field calculation
was successfully implemented, the application was extended
and augmented to solve for surveillance situations calling for
a mathematical optimization.

The objective of the static optimization was to position
reconnaissance Soldiers (friendly forces or “blue” forces)
such that the ballistic threat is minimized while maximizing
the line-of-sight observation to a point of interest. The
goal is to determine the optimum locations of one or more
Soldiers while minimizing their risk of being observed by the
enemy (red forces). A Markov Chain Monte Carlo sampling
technique was employed to obtain the optimal locations
in a high-dimensional space generated by multiple entities.
Markov Chain Monte Carlo provides a means to generate a
sequence of random samples that explores the space of high
probability [13].

The surveillance optimization application was interfaced
with the World Wind software allowing for users to in-
teractively place hostile soldiers and watch points interac-
tively. World Wind is Java-based and an open-source, cross
platform virtual globe software developed by NASA. World
Wind’s graphical user interface is shown in Figure 4. From
the end user’s perspective, World Wind Java provides an
intuitive functionality and access to the compute intensive,
OpenCL derived STDCL code. STDCL is a simplified
interface to OpenCL [14] that reduces the verbosity of
OpenCL setup process [15] [16] [17]. STDCL library eases
the OpenCL programming burden and improves source code
readability without adversely affecting performance.

Fig. 4: A screenshot of World Wind Java interface.

Figure 5 is the ballistic threat surveillance demonstration
output for the case of two dismounted enemy soldiers and
two watch points. The Monte Carlo optimization method
computes the two optimal locations for the friend Soldiers
(blue dots). For this example, watch points were placed on
the entry points of the buildings and hostile guards were
separately located; one on the building’s roof and one in
the open field. Using World Wind as the user interface, red
and green dots were placed within the three-dimensional
urban terrain map. Figure 6 shows extending the previous
scenario by adding additional hostile forces and points of
interest resulting in a total of four enemy forces and four
observation points. The server-client model acts as a glue
for the interface between the World Wind and the STDCL
ballistic threat surveillance algorithm.
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Fig. 5: Ballistic threat surveillance optimization demonstra-
tion. Red dots represents hostile forces, green dots denote
watch points, and blue dots are optimal locations for surveil-
lance.

Fig. 6: Output view for the scenario with four enemy forces
(red) and four points of interest (green).

4. Timing Results
Since the ballistic threat surveillance application was

constructed in OpenCL, it was quickly ported across Intel,
NVIDIA, and AMD processors for benchmarking. In addi-
tion to portability, the OpenCL approach generates an effi-
cient parallelized execution model for targeting architectures.
The OpenCL development begins with a parallel paradigm
perspective and targets higher throughput. Thereby address-
ing parallel computing from the very start. The application
was tested on two different workstations; a standard worksta-
tion, equipped with 3 GHz Xeon dual-core 5160 processor
and a Tesla C2050 graphics card, and a developmental work-
station footprint high-performance system configured with
dual 3.06 GHz Xeon hexa-core X5675 and four Radeon HD
6970 cards. Performance measurements were collected for
CPUs and for GPU-augmented configurations. The execution
runtime measurements for the four enemy soldiers and four
watch points case are summarized in Figure 7.

The x86 implementation of OpenCL optimizes for execu-
tion on all available logical cores and enables SSE operations
for mainstream CPUs. On a dual-core Intel processor, the
execution time exceeded six minutes, which fails in creating
a quick and responsive interactive user experience. Even dual

Fig. 7: Runtime measurements of four enemy soldiers and
four watch points scenario showing the advantage of parallel
computing.

hexa-core from Intel, equivalent to 24 logical cores, requires
over half a minute to complete the ballistic threat surveil-
lance optimization calculation. A single Tesla graphics card
still requires over fifteen seconds to complete the four and
four scenario computation. It is with four concurrent discrete
GPU operation that the wait time falls within a reasonable
window for an interactive experience for an operator. The
timing results across different processor types convey how
the architecture’s throughput parallelism is greatly leveraged
to accelerate the algorithm.

Running multiple GPUs in parallel presented unforeseen
challenges during the development stage. Linux support for
single node concurrent multiple GPU execution failed to
work correctly depending on the version of the graphics
drivers. The workload was divided and distributed across
separate graphics cards, but the actual execution on each
GPU was serialized, failing to achieve concurrent execution
in all GPUs. Rolling back to the previous generation of driver
fixed the multi-GPU issue. However, odd system behaviors
were observed when reverting back to a previous graphics
driver version, requiring a fresh installation. These types
of behaviors highlight the relative immaturity of the GPU
developmental tool chains compared to a stable and mature
x86 environment.

5. Conclusion
Driven by the commercial market demand, theoretical

computational power has become affordable to the general
public. In terms of peak performance, previous generations
of supercomputing capability are attainable in a smaller form
factor with lower power. This project intended to evaluate
the transfer of computational capacity into a workstation
footprint to assist in tactical computing. However, optimally
leveraging the underlying compute resources rests on soft-
ware development. Regardless of processor type, embracing
parallelism is the key for achieving higher performance.
Even the mainstream processors from Intel and AMD require
parallel programming to take advantage of their multiple
cores. The allure of OpenCL is the code portability across
different architectures. Once an algorithm is developed in
OpenCL framework, it can run on AMD graphics cards,

500 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



NVIDIA boards, and Intel processors. The OpenCL ap-
proach, although low-level, allows developers to circumvent
being restricted to a particular vendor or architecture.

This research explored a deployable HPC system in a
workstation footprint. With the goal of supporting a realistic
tactical application, the ballistic threat surveillance optimiza-
tion algorithm was developed and implemented for assess-
ment. The amount of parallelism and the computational
requirement of line-of-sight hit probability calculations make
the algorithm a good candidate for justifying tactical HPC.
The combination of mobile HPC and an intuitive software
interface delivers enhanced capability out in the field for
information and processing superiority. This demonstration
manifests the feasibility of solving what was once considered
computationally expensive tasks requiring a conventional
HPC facility in a workstation dimension.

6. Future Work
Moving forward, plans include testing the application in

a different set of detailed three-dimensional polygon repre-
sentations of urban environments and assessing the effects
and limitations of map input sizes. Work is currently under-
way for implementing an extension to support ray-tracing
by taking reflections and refractions into account. Here,
secondary rays further increase the computational intensity
calling for innovative hardware and software solutions to
achieve interactive tactical computing.

Another natural continuation of this project is to add
realism by supporting dynamic entities where red forces
are not stationary but able to move around the map. As a
single entity multiplies into many points in space to represent
this dynamic scenario, the processing requirement of the
application is anticipated to increase dramatically.
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Abstract - Using graphics processing units (GPUs) in high-
performance parallel  computing  continues to  become  more  
prevalent,  often  as part  of  a heterogeneous system.  CUDA  
and  OpenCL  are  APIs  and  enables  programmers  to  
developer  GPGPU applications  and softwares to  massively  
parallel processors. In October 2, 2012, NIST announced the  
winner  of  its  five-year  competition  to  select  a  new  
cryptographic hash algorithm, one of the fundamental  tools  
of  modern  information  security.  This  work  is  proposed  to  
explore the winner algorithm of the SHA-3 competition, the  
Keccak,  and  subsequently  implement  the  propose  
heterogeneous platform architecture on OpenCL with intuit  
to  obtain  performance  data.  Finally,  will  be  compared  
OpenCL  implementation  of  keccak  with  CPU  and  GPU  
execution.

Keywords: GPGPU;   OpenCL;   Heterogeneous  Systems; 
SHA-3 Keccak; 

1 Introduction
 I
n  recent  years,  more  and  more  multi-core/many-core 
processors  are  superseding  sequential  ones.  I
ncreasing 
parallelism,  rather  than  increasing  clock rate,  has  become 
the  primary  engine  of processor  performance  growth,  and 
this trends likely to continue [1]. Particularly, today’s GPUs 
(Graphic Processing Units),  greatly outperforming CPUs in 
arithmetic  throughput  and  memory  bandwidth,  can  use 
hundreds  of  parallel  processor  cores  to  execute  tens  of 
thousands  of  parallel  threads  [2].   Researchers  and 
developers  are  becoming  increasingly  interested  in 
harnessing  this  power  for  general  purpose  computing,  an  
effort  known  collectively  as  GPGPU  (General-Purpose 
computing on the GPU)[3], to rapidly solve large problems 
with substantial inherent parallelism. 

CUDA  (Compute  Unified  Device  Architecture)  and 
OpenCL (Open Computing Language) are API
s and enables 
programmers  to  developer  GPGPU  applications  and 
softwares to massively  parallel processors. 

One of the methods to ensure information integrity is 
the use of hash functions, which generates a stream of bytes 
(hash)  which  must  be unique.  But  most  functions  can  no 
longer  prevent  malicious  attacks  and  ensure  that  the 
information have just a hash. I
n order to solve this problem, 
the National  I
nstitute of Standards and Technology (NI
ST) 
convened the scientific community through a competition to 
create a new hash function standard, called SHA-3. 

NI
ST  received  significant  feedback  from  the 
cryptographic community. Based on the public feedback and 
internal  reviews  of  the  second-round  candidates,  NI
ST 
selected five SHA-3 finalists - BLAKE, Grøstl, JH, Keccak, 
and Skein to advance to the final round of the competition on 
December  9,  2010,  which  ended  the  second  round  of the 
competition[6].

I
n October 2, 2012, NI
ST announced the winner of the 
SHA-3 competition and the winner was Keccak and now will 
become official NI
ST’s SHA-3 hash algorithm.

I
n  this  context,  this  work  aims  to  study the  winner 
SHA-3  algorithm,  The  keccak  and  then  propose  an 
implementation for heterogeneous systems using OpenCL to 
obtain performance data and comparison with CPU and GPU 
execution.

2 CUDA vs OpenCL
CUDA and OpenCL are fast, and on GPU devices they 

are much faster than  the CPU for data-parallel  codes, with  
10X  speedups  commonly  seen  on  data-parallel  problems. 
Both  CUDA and  OpenCL  can fully utilize  the  hardware. 
They  are  both  entirely  sufficient  to  extract  all  the 
performance available in whatever hardware device

Both  CUDA  and  OpenCL  can fully  utilize  the 
hardware. They are both entirely sufficient to extract all the 
performance  available  in  whatever  hardware  device.  Both 
OpenCL and  CUDA provide  a  general-purpose  model  for 
data parallelism as well as low-level access to hardware, but 
only  OpenCL  provides  an  open,  industry-standard 
framework. As such, it has garnered support from nearly all  
processor  manufacturers  including  AMD,  I
ntel,  and 
NVI
DI
A,  as  well  as  others  that  serve  the  mobile  and 
embedded  computing  markets.  As  a  result,  applications 
developed in  OpenCL are now portable across a  variety of 
GPUs and CPUs.

Spafford's  ran  ORNL's  Scalable  Heterogeneous 
Computing  Benchmark  Suite  (SHOC)  that  has  been 
optimized  for  both  CUDA  and  OpenCL,  and  found  that  
OpenCL can match CUDA performance on most of the basic 
math kernels[15].

GPU software maker AccelerEyes has seen CUDA and 
OpenCL  performance  equalize.  The  company,  which 
recently released OpenCL-powered beta versions of their two 
flagship software products, ArrayFire and Jacket, has found 
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that for most kernel codes, the two technologies now exhibit  
similar performance[15].

The Future Technology Group at  Oak Ridge National 
Lab (ORNL), has  been benchmarking  the two technologies 
for  some  time  and  is  now  convinced  that  OpenCL 
performance is now on par  with that  of CUDA. The figure 
2.1  shows  the  results  of  the  benchmarking.

Figure 2.1: Benchmarking of performance CUDA and 
OpenCL [15]

Due to the high portability across a variety of GPUs and 
CPUs,  the  high  performance  power  and  your  growing  of 
OpenCL. This paper present an proposed implementation of 
keccak's  algorithm  for  a  heterogeneous  systems  using 
OpenCL.

3 OpenCL
OpenCL  is  an  industry  standard  cross-platform  and 

parallel-computing  for  programming  heterogeneous 
applications  that  can  be formed collection  of CPUs, GPUs 
and  other  computing  devices  organized  into  a  single 
platform.  I
t's  more  than  a  language,  OpenCL  is  an  
framework  for  parallel  programming  and  includes  a 
language,  API
,  libraries  an  runtime  system  to  support  
software development [4]. 

Single programs written on OpenCL can run on a wide 
range of systems, from cell phones,  to laptops,  to nodes in  
massive  super-computers.  No  other  parallel  programming 
standard has such a wide reach [5]. 

The  core idea  behind  OpenCL can  be describe using 
follow  hierarchy  models.  Platform  model(3.1),  execution 
model(3.2),  memory  model(3.3)  and  programming 
model(3.4).

3.1 Platform Model

The platform model consists of a host that are connected 
to one or more OpenCL devices (CPUs, GPUs, PDAs), The 
OpenCL devices are divided into one ore more compute units 
(CUs) which are further divided into one or more processing 
elements  (PEs).  The  computations  that  are  executed  on 
OpenCL devices occur within the processing elements [4].

The figure 3.1 illustrate  the OpenCL platform model that  
was described.

Figure 3.1: OpenCL Platform Model [5].

3.2 Platform Model

Execution of an OpenCL program occurs in two parts:  
kernels that are parallel parts or functions executed on one or 
more  OpenCL  devices  and  a  host  program  serial  parts  
executed on the host. The host program defines the context 
and parameters for kernels and manages their execution [4].

The core of the OpenCL execution is defined by how 
kernels  are  executed.  When  the  host  program  submits  a 
kernel  for  execution  an  index  space  are  defined  called 
NDRange, where these index can be one dimensional (1D), 
tow dimensional (2D) or three dimensional (3D). Each point 
in  these index  space are  called work-item and  each  work-
item are an  instance of the kernel  and each work-item has 
index  (global I
D) to compute memory addresses and make 
control decisions. 

Work-items are organized into work-groups. The work-
groups provide a more coarse-grained decomposition of the 
index space. Work-groups are assigned a unique work-group 
I
D with the same dimensionality as the index space used for 
the work-items. Work-items are assigned a unique local I
D 
within  a  work-group  so  that  a  single  work-item  can  be 
uniquely identified by its global I
D or by a combination of its 
local  I
D  and  work-group  I
D.  The  work-items  in  a  given 
work-group execute concurrently on the processing elements 
of a single compute unit [4].

The figure 3.2 are an example of how the global I
Ds, 
local  I
Ds,  and  work-groups  indices  are  related  for  a  two-
dimensional NDRange. Other parameters of the index space 
are defined in the figure. The shaded block has a global I
D of 
(gx, g y) = (6, 5) and a work-group plus local I
D of (wx, w y) 
= (1, 1) and (lx, ly) =(2, 1).
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Figure 3.2: OpenCL Execution Model [5].

3.3 Memory Model

Work-items executing a kernel have access a five distinct  
memory regions [5].

• Host memory: This memory region is visible only 
to  the  host.  As  with  most  details  concerning  the 
host,  OpenCL defines  only how the  host  memory 
interacts with OpenCL objects and constructs.

• Global  Memory:  This  memory  region  permits 
read/write  access  to  all  work-items  in  all  work-
groups. Work-items can  read from or write to any 
element  of a  memory object.  Reads  and  writes  to 
global  memory  may be  cached  depending  on  the 
capabilities of the device. 

• Constant memory:  This  memory region  of global 
memory remains constant during the execution of a 
kernel.  The  host  allocates  and  initializes  memory 
objects  placed  into  constant  memory.  Work-items 
have read-only access to these objects.

• Local  memory: This  memory region  is local  to a 
work-group.  This  memory  region  can  be  used  to 
allocate variables that are shared by all work-items 
in  that  work-group.  I
t  may  be  implemented  as 
dedicated regions of memory on the OpenCL device. 
Alternatively,  the  local  memory  region  may  be 
mapped onto sections of the global memory.

• Private memory: This region of memory is private 
to  a  work-item.  Variables  defined  in  one  work-
item’s private memory are not visible to other work-
items.

The figure 3.3 shows a summary of the memory model in 
OpenCL and how the different memory regions interact with 
the platform model.

Figure 3.3: OpenCL Memory Model [5].

3.4 Programming Model

OpenCL includes an language based on C99 to write the 
kernel  code, and  the  host  program  can  be written  in  some 
other  languages  such  as:  C/C++,  Java  and  Python.  The 
OpenCL programming model supports data parallel and task 
parallel programming models, as well as supporting hybrids 
of these tow models. 

4 Keccak Algorithm
The  design  philosophy  of  Keccak  is  the  hermetic 

sponge  strategy  [7].  I
t  uses  the  sponge  construction  for 
having provable security against all generic attacks. I
t calls a 
permutation that  should not have structural  properties with 
the exception of a compact description[8]. 

Keccak is a family of hash functions that is based on the 
sponge construction, and hence is a sponge function family. 
I
n  Keccak, the underlying function is a permutation chosen 
in a set of seven Keccak-f permutations, denoted Keccak-f[b], 
where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width of 
the  permutation.  The  width  of the  permutation  is  also the 
width of the state in the sponge construction[9].

The state is organized as an array of 5×5 lanes, each of 
length  w  ∈ {1,  2,  4,  8,  16,  32,  64}  (b=25w).  When 
implemented on a 64-bit processor, a lane of Keccak-f[1600] 
can  be represented  as  a  64-bit  CPU word.  For  obtain  the 
Keccak[r,c] sponge function, with parameters capacity c and 
bitrate r, if we apply the sponge construction to Keccak-f[r+c] 
and by applying a specific padding to the message input.

All the operations on the indices are done modulo 5. A 
denotes  the  complete  permutation  state  array,  and  A[x,y] 
denotes a particular lane in that state. B[x,y], C[x],D[x] are 
intermediate variables. The constants  r[x,y] are the rotation 
offsets, while RC[i] are the round constants. rot(W,r) is the 
usual bitwise cyclic shift operation, moving bit at position I
 

504 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



into position i+r  (modulo the lane size). The constants r[x,  
y] are the cyclic shift offsets and are specified in the table I
.

TABLE I
 - CONSTANTS R[X,Y] – KECCAK ALGORI
THM

The  constants  RC[i]  (see  Table  I
I
)  are  the  round 
constants.  The  following  table  specifies  their  values  in 
hexadecimal notation for lane size 64. For smaller sizes they 
must be truncated.

TABLE I
I
 - CONSTANTS RC[I
]- – KECCAK ALGORI
THM

The keccak first  start  with the description of Keccak-f in 
the pseudo-code below. The number of rounds nr depends on 
the permutation width, and is given by nr = 12+2l, where 2l 
= w. This gives 24 rounds for Keccak-f[1600].

Round[b](A,RC) {

θ step

C[x] = A[x,0] xor A[x,1] xor A[x,2] 

       xor A[x,3] xor A[x,4],   

D[x] = C[x-1] xor rot(C[x+1],1),          

A[x,y] = A[x,y] xor D[x],                 

ρ and π steps

B[y,2*x+3*y] = rot(A[x,y], r[x,y]),       

χ step

  A[x,y] = B[x,y] xor ((not B[x+1,y])     
and B[x+2,y]), 

ι step

A[0,0] = A[0,0] xor RC

return A

}

The four steps (Θ,ρπ,χ,ι)  of hash  function keccak have 
data  dependency of first  level,  ie,  the current  step depends 
only of the outcome of the previous step. This feature allows 
exploring  techniques  of  parallelism  in  heterogeneous 
systems.  I
n  this  context,  this  paper  presents  a  proposed 
architecture  that  exploits  the  parallelism  using  OpenCL.

5 Keccak Implementations

Pierre-Louis  Cayrel[11] present  an  implementation  of  the 
Keccak  hash  function  family  on  graphics  cards,  using 
NVI
DI
A’s CUDA framework. That implementation allows to 
choose one function out of the hash function family and hash 
arbitrary documents. I
n  addition he presents the first ready-
to-use implementation of the tree mode of Keccak which is 
even more suitable for parallelization.

Guillaume  Sevestre[12]  presents  a  Graphics  Processing 
Unit implementation of Keccak cryptographic hash function, 
in a  parallel tree hash mode to exploit the parallel compute 
capacity of the graphics cards using CUDA.

I
n  your  work  Xu  Guo[10]  describe  a  consistent  and 
systematic approach to move a SHA-3 hardware benchmark 
process  from  FPGA prototyping  to  ASI
C  implementation, 
and we present our latest results for ASI
C evaluation of the 
14 second round SHA-3 candidates. 

Perreira [13] present an keccak's implementation on FPGA 
using pipeline architecture  with intuit to obtain performance 
data.

TABLE I
I
I
. KECCAK'S I
MPLEMENTATI
ONS

Authors Title Implementation
 [11] GPU I
mplementation of the 

Keccak Hash Function 
Family

NVI
DI
A GTX 295 GPU

 [12] I
mplementation of Keccak 
hash function in Tree mode 
on Nvidia GPU

Core i5-750 2.6 Ghz Nvidia 
GTS 250

[13] Pipeline architecture Virtex 5

[10]
Fair and Comprehensive 
Performance Evaluation of 
14 Second Round SHA-3 
ASI
C implementation 

FPGA implementation

ASI
C implementation

6 Keccak on OpenCL
I
n  this  section  the  approach  to  the  parallelization  of 

Keccak will be presented. We made two implementations to 
try to reduce the  time needed to the  hash  computation  by 
simultaneously execution  the  keccak's  algorithm.  The  first 
implementation, the host program was written in python and 
to execute the kernel we utilized a unique work-group with 
the same size of NDRange specified where all work-items in 
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the NDRange space computate the keccak's algorithm.  The 
second  implementation  we written  the  host  program  in  C 
language to make some tests with  AMD CodeXL, and  the 
NDRange space was divided in  work-groups of 256 work-
items, than we compare if has any difference between  C and 
python's implementation.     

The  original  Keccak  structure  have  been  almost 
completely maintained  in  this  solution,  even  thought  some 
adjustments have been made to maximize the performance on 
GPU.

The  OpenCL  architecture  supports  thousands  of  work-
items in hardware. The host program of our implementation 
was written in python and kernel  function on OpenCL. We 
utilize different sizes of NDRange and use all work-items  in  
the NDRange to execute the four steps (Θ,ρπ,χ,ι)  of keccak 
algorithm. To execute the tests we started with 25 work-items 
executed se same round of keccak and ended with 1 bilion of 
work-items executing the algorithm.  The tests on GPU was 
made in an AMD/ATI
 Radeon HD 6400M series that has 160 
Stream Processing Units, and the CPU's tests was made in a 
I
ntel Core I
5. To calculate the time of the execution's kernel 
we  got  the  time  before  the  submission  of  the  kernel  to 
execution (T1) and the time after to kernel's  execution (T2) 
and the result of time is the difference of T2 and T1 (T2 – 
T1).  

The  figure  6.1 shows an  OpenCL kernel  pseudo-code to 
demonstrate  the  execution  of  the  first  test  with  25  work-
items.  Each  work-item  will  instantiate  the  kernel  function 
and execute completely the code.

Figure 6.1: OpenCL keccak's kernel

Lines one and two shows the definition and parameters of 
the kernel that will be executed per all work-items. The first  
parameter is the input state (matrix A 5x5 ), and the second 
parameter is the out of state after keccak-f permutation. The 
variable id defined in line four receive the global_I
D of each 
work-item.

Line 6 to 8 indicates the core execution of keccak but just 
will  be executed per  work-items that  have id  less than  25.  
Finally line 10 represents the attribution of the variable out 
that will receive the result of keccak permutation and will be 
transfered to the host program.   

Table  I
V  shows  the  python's  implementation  with  the 
numbers of work-items and the time that all work-items led 
to  execute  the  algorithm.  The  results  was  compared  with 
GPU and CPU execution.

TABLE I
V. KECCAK'S I
MPLEMENTATI
ON I
N PYTHON + OPENCL

No.  Work-
items

Time in seconds

CPU I
ntel core I
5 GPU AMD Radeon HD 
6400M

25 0.0001890659332 0.0013608932495
50 0.0002439022064 0.0007479190826
100 0.0002799034118 0.0017559528350
500 0.0008549690259 0.0007867813110
1000 0.0019378662110 0.0018019676208
50000 0.0698390007019 0.0070748329163
100000 0.130648136139 0.0138649940491
500000 0.6393702030 0.06292104721
1000000 1.29261088371 0.123764038086
50000000 62.931710 6.18758797
100000000 125.824690104 12.0365948677
500000000 628.15016818 60.4733588
1000000000 1258.75649595 119.857429981

The results  of this  first  implementation  shows that  GPU 
execution  is  approximately  10  times  faster  than  CPU 
execution.

AMD CodeXL is a comprehensive tool suite that  enables 
developers to harness the benefits of AMD CPUs, GPUs and 
APUs. I
t  includes powerful GPU debugging,  comprehensive 
GPU and CPU profiling,  and static OpenCL kernel  analysis 
capabilities,  enhancing  accessibility for software developers 
to enter the era of heterogeneous computing. AMD CodeXL 
is  available  both  as  a  Visual  Studio  extension  and  a 
standalone  user  interface  application  for  Windows  and 
Linux[14].

To make some tests with CodeXL we have to written the 
host program to C language and we make some changes in  
the kernel to collect more informations of the execution. 

Figure 6.2 shows details of the kernel execution, and some 
additional  information  such  as,  duration  of  kernel's 
execution,  global size and  local  size,  kernel  occupancy and 
others. the results were collected with AMD CodeXL.
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Figure 6.2: Results colected with CodeXL.

 The  C  implementation  shows  the  same  results  of  the 
python's  implementation,  the  GPU  execution  is 
approximately 10 times faster than CPU execution. The table 
V shows some results of C implementation.

TABLE V. KECCAK'S I
MPLEMENTATI
ON I
N C + OPENCL

No. work-items
Time in seconds

CPU I
ntel 
core I
5

GPU AMD Radeon HD 
6400M

2560 0.00544497 0.00247133

256000 0.343549 0.0292091

256000000 295.781 29.3051

7 Conclusions
This article presented an overview on the use of GPU to 

accelerate processing  algorithms dedicated as keccak.  Were 
presented  CUDA  and  OpenCL  platforms  and  a  study 
showing that OpenCL is improving with each generation.

I
n  the  sequence  was  described  the  main  module  of 
architecture OpenCL and structure of the keccak algorithm. 
Keccak  implementations  on  different  technologies  were 
presented.  This  algorithm  is  in  evidence,  as  was  recently 
selected as the new standard SHA-3 hash functions.

The  objective of this  work  was  not  to  develop  the  best 
implementation of keccak in GPU, but the use of OpenCL as 
an alternative for high performance applications.

For  this,  two  implementations  were  coded.  The  first 
implementation, the host program was written in python and 
the  second  in  C  language  to  make  some tests  with  AMD 
CodeXL: a comprehensive tool suite that enables developers 
to harness the benefits of AMD CPUs, GPUs and APUs.

The  results  shows a  speedup  of approximately 10  times 
between the CPU and GPU implementation. This gain can be 

further  enhanced with other techniques of parallelism, such 
as pipeline and distribution of items running on tree model.  
However  the  aim  was  achieved  showing  that  a  basic 
implementation can achieve good level of performance. 
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Abstract - This paper presents a fast GPU implementation 

of a genetic algorithm for synthesizing bimodal predictor 

FSMs of a given size. Bimodal predictors, i.e., predictors 

that make binary yes/no predictions, are ubiquitous in mi-

croprocessors. Many of these predictors are based on fi-

nite-state machines (FSMs). However, there are countless 

possible FSMs and even heuristic searches for finding good 

FSMs can be slow when billions of predictions need to be 

assessed. We designed such a search heuristic that maps 

well onto GPU hardware. It is based on a multi-start genet-

ic algorithm. On our six traces, the resulting FSMs are 1% 

to 29% more accurate than saturating up/down counters. 

On a Kepler-based GTX 680, the CUDA implementation 

evaluates 18 to 73 billion predictions per second, which is 

14 to 18 times faster than a multicore version running on a 

hex-core Xeon X5690 with hyper-threading. 

Keywords: GPGPU, genetic algorithm, automated design, 

finite-state machines, bimodal predictors 

1. Introduction 

Modern processors contain large numbers of finite-state 

machines (FSMs), many of which are used as bimodal pre-

dictors. Such FSMs can be found in branch predictors [13, 

15, 19], memory-disambiguation hardware [20], cache way 

predictors [2], confidence estimators [9], and selectors in 

hybrid predictors [14]. Their purpose is to improve perfor-

mance and/or reduce power consumption [17]. We use 

FSMs to compress program execution traces in real time 

[16]. In nearly all of these applications, the FSM has to 

repeatedly make a 1-bit prediction, i.e., a bimodal predic-

tion, and is then updated with the true 1-bit outcome. E.g., 

for every branch instruction, an FSM might predict whether 

it will be taken or not. After the branch has executed, the 

FSM is updated with the true direction the branch took. The 

goal is to make as many correct predictions as possible. 

However, there are countless choices of FSMs and it is 

generally unknown which FSM is the best for a given task. 

An n-bit FSM holds n bits of internal state, which serves as 

its ‘memory’. The 1-bit prediction is a function of the cur-

rent state, such as choosing one of the n bits. During an 

update, the FSM transitions from the current state to a new 

state based on the input (true outcome) bit. Conceptually, a 

bimodal n-bit FSM implements a transition table like the 

one shown in Figure 1, where the n bits of current state are 

concatenated with the input bit to form an address (index) 

to select a row in the table, which holds the next n-bit state. 

As the boxed-in letters in Figure 1 illustrate, the transition 

table consists of n × 2
n+1

 independent bits, yielding 2 ^ (n × 

2
n+1

) possible n-bit FSMs. Whereas not all bit assignments 

result in meaningful FSMs (e.g., there are redundancies and 

not every FSM can reach all states), the number of possibil-

ities grows super-exponentially with n. There are 16 possi-

ble 1-bit FSMs but 65,536 possible 2-bit and 281.5 trillion 

possible 3-bit bimodal FSMs. Hence, using an exhaustive 

search to determine the best n-bit FSM is not computation-

ally tractable on current workstations for n > 2. 

     

Figure 1. State transition table of an n-bit bimodal FSM 

A saturating up/down counter is a specific bimodal FSM 

that works as follows. Its n-bit state is interpreted as an n-

bit value. When updated, the value is incremented if the 

input bit is 1 and decremented otherwise. However, the 

value is never incremented above 2
n
-1 and never decre-

mented below 0, i.e., it saturates at the minimum and max-

imum. The prediction is the most significant bit (MSB). 

The saturating up/down counter is so called because it 

counts the number of 0 and 1 outcomes that were encoun-

tered in the recent past. If there were many zeros, the count 

is low and the MSB a ‘0’. Conversely, if there were many 

ones, the count is high and the MSB a ‘1’. Hence, this FSM 

essentially makes a majority prediction over the recently 

seen events. The saturating up/down counter works well in 

practice, which is why it is widely used. However, it has 

known weaknesses. For example, it performs poorly on 

sequences of alternating zeroes and ones. Also, it tends to 

make the same prediction after a ‘1 1 0 1’ sequence as it 

does after a ‘1 0 1 1’ sequence. 

Whereas there is generally only one piece of logic that im-
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plements the FSM in hardware, the n-bit state itself is often 

replicated, resulting in an array of states, to improve the 

prediction accuracy by retaining separate state for different 

instructions, cache lines, etc. Some of the lower bits of the 

program counter (PC) of the executing instruction are typi-

cally used to select an entry in the state array. 

Since performing an exhaustive search for finding the best 

FSM is computationally intractable for all but the smallest 

problem sizes, heuristic approaches for finding near-

optimal solutions need to be used. Examples include simu-

lated annealing [1], genetic algorithms [8], ant colony op-

timization [3], and multi-start search algorithms [5]. We 

use a combination of a genetic and a multi-start algorithm 

because it maps particularly well to current GPUs. 

Our algorithm generates multiple sets of random transition 

tables (i.e., FSMs) and then attempts to improve each set 

independently using a genetic algorithm (GA) until a local-

ly optimal solution is reached. In each GA step, the FSMs 

of the current ‘population’ are evaluated to determine how 

many correct predictions they make on a given input. (The 

input is a trace of 1-bit events and their corresponding PC 

values to index the state array.) Then, the next generation 

of FSMs is created using mutation and crossover opera-

tions. A quarter of the new population is generated by mu-

tating random bits of the best-performing FSM from the 

previous generation, that is, each bit in the state-transition 

table is randomly flipped with 25% probability. The re-

maining three quarters of the new population is generated 

by combining the best FSM with a randomly selected FSM 

from the previous generation (we chose these values be-

cause they result in a simple implementation and good per-

formance). Each of these crossovers uses a different ran-

dom bit mask to select which bits should be taken from the 

best FSM. Each bit has a 75% chance of coming from the 

better ‘parent’ FSMs. The best FSM is copied over into the 

new generation to ensure that the performance never drops. 

This paper makes the following contributions. 

 It presents the first GPUGA for optimizing predictor FSMs. 

 It describes how to efficiently map this algorithm to GPUs 

and compares its performance to multicore CPU code. 

 It provides results for Fermi- and Kepler-based GPUs. 

 It analyzes, visualizes, and discusses the best FSMs. 

 The CUDA source code is publicly available at 

http://cs.txstate.edu/~burtscher/research/FSM_GA/. 

The rest of this paper is organized as follows. Section 2 

explains the CUDA implementation in detail. Section 3 

summarizes related work. Section 4 presents the evaluation 

methodology. Section 5 evaluates the parameter space and 

discusses the performance results. Section 6 concludes the 

paper with a summary. 

2. CUDA implementation 

The combination of a multi-start search with a genetic algo-

rithm for determining well-performing FSMs was chosen 

because it is particularly well suited for GPU acceleration. 

It avoids potential performance hurdles such as uncoa-

lesced memory accesses, thread divergence, and inter-block 

dependencies. Moreover, it naturally maps to the GPU’s 

block and thread hierarchy and takes advantage of the 

block scheduler for load balancing. 

Each population of FSMs is evaluated in its own block. 

This makes the blocks independent except for a single ato-

micMax operation to determine the globally best FSM. 

Each GA-based search terminates when the performance of 

the best FSM has not improved over the previous genera-

tion. This means that some blocks have to evaluate more 

generations than other blocks do, resulting in load imbal-

ance. However, the GPU’s block scheduler automatically 

launches another block as soon as one block has finished 

executing, thus keeping all SMs busy until the scheduler 

runs out of new blocks towards the end. 

For all but very short inputs, the innermost loop that eva-

luates the prediction accuracy is the most time consuming 

code section. It iterates over the trace entries, contains no 

control transfers in its body and is therefore thread diver-

gence-free, reads the trace data in a fully coalesced manner 

from global memory and also performs fully coalesced 

reads and writes of the state arrays in local memory. The 

code exclusively uses integer data and operations. 

Users can parameterize the implementation along four di-

mensions: (1) the population count, which determines the 

number of blocks, (2) the population size, which deter-

mines the number of threads per block, (3) the number of 

entries per state array, and (4) the size of the FSM. For clar-

ity, we only focus on 3-bit FSMs in this paper. 

Given the above assignments and current GPU specifica-

tions, the population count has to be between 1 and 65,535 

on Fermi and between 1 and 2
31

-1 on Kepler, the popula-

tion size needs to be between 1 and 1024, and the number 

of entries in the state arrays has to be a power of two (for 

efficiency) between 1 and 32,768 due to local-memory size 

limitations. All FSM state arrays are initialized to zero. The 

LSB of the FSM’s state is used for making predictions. 

To maximally exploit the GPU hardware, it is advisable to 

select a population count that is substantially larger than the 

number of blocks the SMs can execute concurrently (to 

fully load the GPU and to allow the scheduler to balance 

the load). The population size should be a multiple of 32 (to 

fill warps entirely) and at least 192 on Fermi (because it 

can run up to 8 blocks per SM) and 128 on Kepler (because 

it can run up to 16 blocks per SM) to reach 1536 and 2048 

threads per SM, respectively. Larger population counts and 

sizes result in longer runtimes but potentially also better 

results. The number of entries in the state arrays is likely 

problem dependent, but shorter arrays result in better data-

cache performance and therefore better overall throughput. 

The input trace consists of a sequence of 2-byte values, one 

value per event, where the least significant bit is the true 

outcome and the remaining 15 bits represent the bottom 15 

bits of the PC (that are not always zero). The only con-

straint is that the trace has to fit into the GPU’s main mem-
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ory. For example, a GPU with 2 GB of DRAM can process 

traces with up to one billion events. 

Even though the GA is orders of magnitude faster for large 

FSMs than an exhaustive search, it still needs to evaluate 
 

state transitions. Assuming a trace with one million events, 

128 populations, a population size of 512, and an average 

of 5 generations, this amounts to 328 billion state transi-

tions to be evaluated. At 30 billion state transitions per 

second on a fast GPU, this takes about 11 seconds to ex-

ecute. The same parameters but with a one-billion-event 

trace result in a runtime of 3 hours, highlighting the impor-

tance of accelerating even genetic algorithms. Note that 

many and/or long traces are necessary to improve the gene-

rality of the FSM. Large population sizes and large popula-

tion counts in particular are needed to improve the predic-

tion accuracy by allowing the GA to diversify, i.e., not get 

stuck in a local maximum. 

The code uses random numbers to initialize the transition 

tables of the first generation of FSM, to determine the mask 

values for the crossover operations, and to select bits to flip 

for the mutation operations. We use the XORWOW pseu-

do-random number generator from the cuRAND library 

that is included with CUDA 5.0. 

For comparison purposes, we also wrote a multicore CPU 

version of our code. It is largely the same as the CUDA 

implementation. In particular, the most time-consuming 

loop that iterates over the trace entries is identical. The 

CPU code parallelizes the loops that iterate over the FSMs 

of a population using OpenMP parallel for directives with 

a dynamic schedule. Since the code uses the rand_r func-

tion from the standard C library to generate the random 

numbers, the results between the C and the CUDA imple-

mentations are not directly comparable, which is why we 

only compare the throughputs. 

3. Related work 

Fogel et al. first developed evolutionary programming [6] 

and considered using it to evolve FSMs for time-series pre-

dictions [7]. Similar to their approach, we evolve FSMs 

using mutations and crossovers of state transition tables to 

find better machines. Holland furthered the application of 

evolutionary techniques by creating Genetic Algorithms 

(GAs), i.e., a framework of genetic operations on popula-

tions of individuals [10]. 

Since the introduction of CUDA, many genetic algorithms 

have been accelerated using GPUs, in particular the fitness 

evaluation, which generally represents the overwhelming 

majority of the computation (also indicated by our results) 

[12]. However, to the best of our knowledge, there is no 

prior work on GPU acceleration of a genetic algorithm for 

determining good FSMs. The following three projects are 

the most similar to our work in that their goal is also to 

automatically generate well-performing FSMs. 

Emer and Gloy introduced an algebraic-style notation to 

express state identification and feedback processes [4]. In 

their genetic programming search, they represent individu-

als by a tree that consists of predictor, function, and termin-

al nodes. The predictors contain dedicated memory (used in 

dynamic predictions), size and index information as well as 

conditions for updating the state of the predictor (feedback 

process). Functions are internal relation operations such as 

XOR or SATUR (saturating add). Terminals handle the 

input and updates for each prediction problem. These nodes 

can be modified in the genetic programming process to 

evolve more sophisticated predictors. E.g., by performing a 

crossover they might combine one predictor’s function with 

another predictor (with some constraints) or modify the size 

of memory allotted for that predictor. The result of the ge-

netic programming search is the most successful predictors 

with the smallest misprediction ratio (fitness measure) as 

well as their configurations. Note that Emer and Gloy em-

ploy genetic programming to search for (arbitrarily com-

plex) candidate predictors whereas we explore candidate 

transition tables of fixed-size bimodal FSMs. 

Sherwood and Calder introduced an approach that automat-

ically builds FSM predictors designed to find efficient n
th

-

order Markov model FSMs for small design areas by ana-

lyzing profile information [18]. They do not use a genetic 

algorithm. Rather, they express sets of compact strings in 

form of regular expressions. By mapping these regular ex-

pressions to FSMs, the FSMs can identify the input strings 

of their corresponding language. A key difference between 

their work and ours is the use of an n
th

-order Markov model 

compared to our genetic search. This results in the cost of 

having to maintain a Markov table for the history of proba-

bilities. Moreover, much of their work is not directed to-

wards performance, which is one of our key objectives. 

Jackson and one of us proposed a pure hardware implemen-

tation of a genetically evolving set of bimodal FSMs for 

confidence estimation that does not require intervention 

from the user or profiling [11]. Confining the method to 

hardware allows for dynamic adaptation but restricts the 

population count and size to very small values compared to 

the software solution presented here. 

4. Experimental methodology 

4.1 Systems and compilers 

We evaluate the CUDA code on two GPUs, a Fermi-based 

GeForce GTX 480 and a Kepler-based GeForce GTX 680. 

The GTX 480 has 15 SMs with 480 CUDA cores in total, 

1.5 GB of global memory, is clocked at 1.4 GHz, and sup-

ports compute capability 2.0. The GTX 680 has 8 SMXs 

with 1536 CUDA cores in total, 2 GB of global memory, is 

clocked at 1.05 GHz, and supports compute capability 3.0. 

The compiler is nvcc version 5.0. The CUDA source code 

is the same for both GPUs, but the compiler flags are ‘-O3 

-arch=sm_20’ for the Fermi and ‘-O3 -arch=sm_30’ for the 

Kepler. The code uses 48 kB of L1 data cache and 16 kB of 

shared memory per SM. 

The CPU code is written in C, parallelized with OpenMP, 
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and run on two hex-core Xeon X5690 CPUs with hyper-

threading, i.e., 24 threads in total. The two processors are 

clocked at 3.47 GHz, have a 12 MB L3 cache each, and 

share 24 GB of main memory. Each CPU core has dual 32 

kB L1 caches and a 256 kB L2 cache. We use gcc version 

4.4.6 with the ‘-O3 -msse4.2 -fopenmp’ switches. The op-

erating system is 64-bit CentOS version 6.3. 

To maximize the performance, we hardcode the user se-

lectable parameters, i.e., the population count, the popula-

tion size, the number of elements in the state arrays, and the 

FSM size in both the C and CUDA codes. This requires a 

recompilation after every parameter change but results in 

faster program execution. Since each of our experiments 

takes several minutes or longer to run, the approximately 

one second of compilation time is easily amortized. 

4.2 Measurements 

All timing and throughput measurements are performed by 

instrumenting the source code, i.e., by adding code to count 

the number of generations and to read a timer before and 

after the measured code section. We measure the wall time 

of the CUDA kernel or the C function that evaluates the 

FSMs and performs the genetic algorithms – which, on our 

traces, represents essentially all of the total runtime. Each 

experiment is conducted once because tests showed the 

runtimes to be quite stable between multiple runs with 

identical parameters. 

4.3 Trace datasets 

We use six datasets for our evaluation. They were extracted 

from two SPEC programs running on a 64-bit RISC ma-

chine. One program is gcc compiling a 638-line C program 

that implements the Barnes-Hut n-body simulation algo-

rithm. The other program is mcf, a combinatorial optimiza-

tion code running the provided train input. We extracted 

three traces from the user and library code of both pro-

grams (i.e., we did not capture the operating system code, 

which is negligible in SPEC programs). The first trace 

records, for all executed branch instructions, whether they 

were taken or not. The second trace records, for all ex-

ecuted load instructions, whether their effective addresses 

are stride prefetchable. The third trace records, for all ex-

ecuted load and store instructions that hit in a 2-way asso-

ciative data cache, whether the first or the second set holds 

the accessed data. 

Table 1. Trace information 

 

Table 1 summarizes pertinent information about each data-

set. The ‘ones’ column indicates the percentage of the trace 

entries with a true outcome of ‘1’, that is, how biased the 

entries are. The unique PCs reflect how many of the 32,768 

possible PC values occur in the trace. This determines the 

maximum number of state-array entries that will be used. 

However, some PCs occur rarely whereas others are very 

frequent. To account for this variability, we also computed 

the entropy of the PCs: H(PC). Raising 2 to the power of 

this entropy yields a ‘weighted’ number of PCs and there-

fore state-array entries, i.e., a measure of the working-set 

size below which significant aliasing is likely to occur. 

5. Results 

Unless otherwise stated, the default parameters for our ge-

netic algorithm are a population count of 128, a population 

size of 512, and 1024 entries in the state arrays. These pop-

ulation counts and sizes result in good 3-bit FSMs and in 

high throughputs on the GPUs, as they map well to the giv-

en architectures. We picked 1024-entry state arrays because 

that is a reasonable size for hardware tables. 

5.1 FSM quality 

We first evaluate the quality of the best 3-bit bimodal 

FSMs that the genetic algorithm finds by comparing them 

to the 3-bit saturating up/down counter as well as to the 

optimal bimodal 1-bit and 2-bit FSMs, which were deter-

mined with an exhaustive search. Figure 2 plots the mi-

sprediction ratio in percent against the state-array size for 

the four types of FSMs. The left panels refer to gcc and the 

right panels to mcf. The top pair of panels shows the results 

for the branch outcome traces, the middle pair for the stride 

prefetchability traces, and the bottom pair for the cache 

way traces. Note that the y-axes are different for each panel 

and are not zero based to improve readability. 

The optimal 1-bit FSM performs relatively poorly, espe-

cially on the two branch outcome traces, because it retains 

the least amount of state. Nevertheless, it occasionally out-

performs the 3-bit saturating up/down counter on the non-

branch traces, particularly with large state arrays. On mcf’s 

cache way trace, the optimal 1-bit FSM is consistently and 

significantly better than the 3-bit counter, which is the 

worst FSM on that trace. This highlights that saturating 

counters are not always good choices, particularly when 

predicting non-branch events. 

On both branch traces, the optimal 2-bit FSM is, in fact, the 

2-bit saturating up/down counter (with large state arrays). 

Interestingly the 3-bit saturating up/down counter always 

outperforms the 2-bit counter on gcc, but on mcf the 3-bit 

counter is sometimes worse than the 2-bit counter. The 

optimal 2-bit FSM always outperforms the optimal 1-bit 

FSM because the 2-bit FSMs are a superset of all possible 

1-bit FSMs. The optimal 2-bit FSM often beats the 3-bit 

counter except on the gcc branch trace. Yet, the optimal 2-

bit FSM never outperforms the best 3-bit FSM produced by 

the GA, indicating that the genetic algorithm works well. 

In fact, on our traces, the GA always yields the best FSM 

for all state-array sizes tested. These FSMs perform 1% to 

90% better than the optimal 1-bit FSM, 1% to 29% better 

than the optimal 2-bit FSM, and 1% to 41% better than the 

Program Trace type Length [entries] Length [MB] Ones [%] Unique PCs 2H(PC)

gcc branch outcome 60,666,667 115.7 27.0 14,881 2754.7

gcc prefetchability 97,155,132 185.3 48.6 22,631 4476.8

gcc way selection 144,637,560 275.9 50.4 26,420 4900.5

mcf branch outcome 29,474,825 56.2 45.1 943 89.8

mcf prefetchability 38,047,003 72.6 40.0 1,698 142.3

mcf way selection 61,234,883 116.8 51.7 2,562 119.3
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3-bit saturating counter. Importantly, on all six traces, the 

best 3-bit FSM often outperforms (by up to 26%) the op-

timal 2-bit FSM with twice the state-array entries, making 

the 3-bit FSM the more state-efficient solution. Similarly, 

the best 3-bit FSM often outperforms (by up to 52%) the 

optimal 1-bit FSM with four times as many state-array en-

tries, again making the 3-bit FSM more size efficient. 

Interestingly, on five of the six traces, the best FSMs some-

times perform worse with larger state arrays. This generally 

happens at the low end, where the aliasing in the state array 

is high. Apparently, increased aliasing does not always hurt 

the prediction accuracy. In fact, the mcf cache-way trace is 

best predicted by all four FSM types when they are only 

given one entry in the state array. Clearly, there is a sub-

stantial amount of correlation between the selected cache 

way in this trace, which, overall, is the most difficult-to-

predict of our six traces. 

Notwithstanding the constructive aliasing in very small 

state arrays with 16 or fewer entries, we find that the entro-

py-based minimal number of needed entries (cf. the last 

column in Table 1) accurately indicate the state-array size 

above which the performance improvement flattens out in 

all six panels of Figure 2. 

 

Figure 2. Percent misses (y-axes) for different state-array sizes (x-axes) of four bimodal FSMs on the six traces 
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5.2 Throughput comparison 

This subsection compares the throughput (in billion state 

transitions evaluated per second) of the CUDA code run-

ning on two different GPUs and the OpenMP code running 

on a system with dual hex-core X5690 CPUs and hyper-

threading. For clarity, we only show results for the stride 

prefetchability trace from mcf. 

 

Figure 3. Throughput as a function of the number of state-

array entries 

Figure 3 shows the throughput for different state-array siz-

es. On all three processors, a single state yields the highest 

throughput because the compilers scalarize the 1-entry ar-

rays. The Kepler evaluates 73.6 billion state transitions per 

second (Gtr/s) in this configuration, the Fermi reaches 35.5 

billion, and the two CPUs together peak at 6.9 billion. All 

larger state-array sizes result in lower but relatively stable 

throughputs. The Kepler’s throughput drops to under 40 

Gtr/s for larger array sizes. The Fermi’s throughput hovers 

around 23 Gtr/s. The CPUs’ throughput is very stable at 5.3 

Gtr/s. Thus, the Kepler outperforms the Fermi by about a 

factor of 1.5 to 2 and the CPUs by a factor of 7 to 9 or, in a 

chip-to-chip comparison, one CPU by a factor of 14 to 18. 

 

Figure 4. Throughput as a function of the population size 

Figure 4 compares the throughputs for different population 

sizes. Beyond a population size of 32, the CPUs’ through-

put is almost constant, but the GPUs need a population size 

of at least 512 to reach their full potential. Since the popu-

lation size equals the number of threads in a block, it ap-

pears that a block size under 512 threads results in ineffi-

cient utilization of the GPU hardware. 

 

Figure 5. Throughput as a function of the population count 

Figure 5 shows the throughputs for different population 

counts. Because the OpenMP code is parallelized over the 

FSMs within a population, there is no difference in its 

throughput when varying the number of populations. How-

ever, the CUDA code uses a hierarchical parallelization 

approach to match the GPU hardware. At least 128 popula-

tions (i.e., thread blocks) are necessary to saturate the 

GPUs. Their performance keeps increasing beyond 128 

blocks because larger numbers of blocks result in relatively 

less load imbalance towards the end when the scheduler 

runs out of blocks to allocate to the SMs. Note that the 

Fermi has 15 SMs, which means that a population count of 

8 leaves almost half of the SMs with no work. Because 

SMs can run multiple blocks simultaneously, the Fermi 

needs at least 45 blocks with 512 threads each to fully load 

its SMs and the Kepler needs at least 32 blocks. However, 

at these numbers of blocks, no load balancing is possible as 

all blocks immediately start running. This is why the 

throughput only starts to flatten out at about 128 blocks. 

In summary, the number of entries in the state arrays does 

not affect the throughput much, but the population count 

and size do. On both of our GPUs, the population size 

should be at least 512 and the population count 128 to fully 

exploit the hardware. At these sizes, the Kepler GPU is 

roughly nine times faster than our two high-end CPUs. 

5.3 Parameter-space exploration 

Figure 6 illustrates how the throughput on the Kepler and 

the misprediction ratio of the best 3-bit bimodal FSM de-

pend on the population size, the population count, and the 

number of entries in the state arrays for the six traces. 

Increasing the population size or count greatly improves the 

throughput but only minimally reduces the misprediction 

ratio. This is expected as genetic algorithms generally al-

ready produce a good solution on a single population. The 

purpose of the multiple populations (i.e., the random res-

tarts) is to provide variability to escape local maxima. For 

instance, going from 8 to 1024 populations improves the 

best FSM by 1.3% to 3.8%, and going from a population 

size of 32 to a population size of 1024 improves the best 

FSM by 1.7% to 3.7%. 
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Since the average number of generations is consistently 

between 4 and 6.5 in almost all of our experiments (not 

shown) and the runtime is proportional to the population 

size and count, the runtime can be drastically reduced by 

lowering the population count or the population size while 

only hurting the performance of the best FSM a little. 

The throughput drops above 32 entries in the state arrays 

for the mcf branch outcome trace and especially for the 

three gcc traces. This is the result of the L1 data cache not 

being large enough to hold the active state-array elements. 

Mcf only has a few frequently executed load and store in-

structions, which is why its prefetchability and cache-way 

traces do not suffer from a similar drop in throughput. 

5.4 Best FSMs 

Due to space limitations, we refer the reader to our technic-

al report at http://cs.txstate.edu/~mb92/papers/pdpta13.pdf 

for a visualization and discussion of three of the FSMs that 

our genetic algorithm generated. This technical report high-

lights and explains some of the key differences between the 

three FSMs and the saturating up/down counter. 

 

Figure 6. Throughput and misprediction ratio on the six traces as a function of different parameters
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6. Summary and conclusions 

This paper describes a multi-start genetic algorithm for the 

synthesis of well-performing bimodal FSMs for designing 

hardware predictors. The implementation of this algorithm 

is GPU friendly in that it avoids potential performance bot-

tlenecks and exploits the GPU’s capabilities well. 

It takes about a dozen cycles per GPU core to evaluate a 

state transition, i.e., to make a prediction, check its correct-

ness, and update the FSM’s state based on the true out-

come. On a GTX 680, our code assesses up to 73 billion 

state transitions per second. On our six traces with tens to 

hundreds of millions of entries, it takes just seconds to gen-

erate FSMs that outperform the saturating up/down counter, 

a widely-used FSM, in many cases by a large margin. 

Compared to OpenMP code running on a high-end hex-

core Xeon X5690 with hyper-threading, the GPU code is 

14 to 18 times faster. 

We conclude that GPU acceleration is very useful in this 

domain and that our implementation exploits the GPU 

hardware well. Moreover, studying the resulting FSMs can 

provide insight into the structure of the traces, i.e., the na-

ture of the events being predicted, that explains why satu-

rating up/down counters sometimes do not perform well. 

7. Acknowledgments 

This work was supported by NSF grants 1141022 and 

1217231 and as well as donations from Nvidia Corporation. 

8. References 

[1] Aarts, E. and Korst, J. 1988. Simulated annealing and 

boltzmann machines. New York, NY; John Wiley and 

Sons. 

[2] Bellas, N. et al. 1999. Using dynamic cache manage-

ment techniques to reduce energy in a high-

performance processor. Low Power Electronics and 

Design, 1999. Proceedings. 1999 International Sym-

posium on (1999), 64–69. 

[3] Dorigo, M. et al. 1996. Ant system: optimization by a 

colony of cooperating agents. Systems, Man, and Cy-

bernetics, Part B: Cybernetics, IEEE Transactions on. 

26, 1 (1996), 29–41. 

[4] Emer, J. and Gloy, N. 1997. A language for describing 

predictors and its application to automatic synthesis. 

24th Annual International Symposium on Computer 

Architecture (1997), 304–314. 

[5] Feo, T.A. and Resende, M.G.C. 1995. Greedy rando-

mized adaptive search procedures. Journal of global 

optimization. 6, 2 (1995), 109–133. 

[6] Fogel, L. et al. 1966. Artificial Intelligence through 

Simulated Evolution. John Wiley. 

[7] Fogel, L.J. et al. 1995. Approach to Self-Adaptation 

on Finite State Machines. Evolutionary Programming 

IV: Proceedings of the Fourth Annual Conference on 

Evolutionary Programming (1995), 355. 

[8] Goldberg, D.E. 1989. Genetic algorithms in search, 

optimization, and machine learning. Addison Wesley. 

(1989). 

[9] Grunwald, D. et al. 1998. Confidence estimation for 

speculation control. 25th Annual International Sympo-

sium on Computer Architecture (1998), 122–131. 

[10] Holland, J.H. 1975. Adaptation in natural and artificial 

systems, University of Michigan press. Ann Arbor, MI. 

1, 97 (1975), 5. 

[11] Jackson, S.J. and Burtscher, M. 2006. Self-optimizing 

Finite State Machines for Confidence Estimators. 

Workshop on Introspective Architecture. (2006). 

[12] Langdon, W.B. 2011. Graphics processing units and 

genetic programming: An overview. Soft Computing-A 

Fusion of Foundations, Methodologies and Applica-

tions. 15, 8 (2011), 1657–1669. 

[13] Lee, C.C. et al. 1997. The bi-mode branch predictor. 

Microarchitecture, 1997. Proceedings., Thirtieth An-

nual IEEE/ACM International Symposium on (1997), 

4–13. 

[14] Loh, G.H. and Henry, D.S. 2002. Predicting condi-

tional branches with fusion-based hybrid predictors. 

Parallel Architectures and Compilation Techniques, 

2002. Proceedings. 2002 International Conference on 

(2002), 165–176. 

[15] McFarling, S. 1993. Combining branch predictors. 

Technical Report TN-36, Digital Western Research 

Laboratory. 

[16] Milenkovic, A. et al. 2011. Caches and predictors for 

real-time, unobtrusive, and cost-effective program 

tracing in embedded systems. Computers, IEEE 

Transactions on. 60, 7 (2011), 992–1005. 

[17] Peress, Y. et al. Re-Defining the Tournament Predictor 

for Embedded Systems. Workshop on Optimizations 

for DSP and Embedded Systems (2010), 53–61. 

[18] Sherwood, T. and Calder, B. 2001. Automated design 

of finite state machine predictors for customized pro-

cessors. Computer Architecture, 2001. Proceedings. 

28th Annual International Symposium on (2001), 86–

97. 

[19] Yeh, T.-Y. and Patt, Y.N. 1993. A comparison of dy-

namic branch predictors that use two levels of branch 

history. Proceedings of the 20th annual international 

symposium on computer architecture (1993), 257–266. 

[20] Yoaz, A. et al. 1999. Speculation techniques for im-

proving load related instruction scheduling. Computer 

Architecture, 1999. Proceedings of the 26th Interna-

tional Symposium on (1999), 42–53. 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 515



A Fast Implementation of Parallel Discrete-Event Simulation
on GPGPU

Janche Sang1, Che-Rung Lee2, Vernon Rego3, and Chung-Ta King2

1Dept. of Computer and Info. Science, Cleveland State University, OH 44115, USA
2Dept. of Computer Science, National Tsing Hua University, HsinChu, Taiwan, ROC

3Dept. of Computer Science, Purdue University, West Lafayette, IN 47907, USA

Abstract— Modern General Purpose Graphics Processing
Units(GPGPUs) offer much more computational power than
recent CPUs by providing a vast number of simple, data
parallel, multithreaded cores. In this study, we focus on
the use of a GPGPU to perform parallel discrete-event
simulation. Our approach is to use a modified service time
distribution function to allow more independent events to be
processed in parallel. The implementation issues and alter-
native strategies will be discussed in detail. We use Thrust,
an open-source parallel algorithms library which resembles
the C++ Standard Template Library (STL), to build our tool.
The experimental results show that our implementation can
be more than 60 times faster than the sequential simulation.
Furthermore, the speedup curve scales well which indicates
that our implementation is suitable for large-scale discrete-
event simulation models.

Keywords: Parallel Simulation, Discrete-Event Simulation,
GPGPU, CUDA, Thrust Library

1. Introduction
Discrete Event Simulation (DES) is a widely-used tech-

nique that allows an analyst to study the dynamic behavior
of a complex system. DES exploits a computer to model a
system stochastically at discrete points in simulated time. A
simulation program operates on a model’s state variables
during each of a sequence of time-ordered events and
schedules future events during such processing. However,
simulation is usually computationally intensive and time-
consuming. Typical simulation applications often execute for
hours or even days. Therefore, exploiting the availability
and the power of multiprocessors to speed up the simulation
execution is of considerable interest.

Parallel discrete event simulation (PDES) attempts to
speed up a simulation’s execution by partitioning the sim-
ulation model into components, each of which has its own
event set and is executed by aLogical Process(LP) on a
different processor. To guarantee the distributed events will
be executed in an appropriate order, two main types of syn-
chronization mechanisms among LPs have been proposed:
conservative and optimistic [1]. Conservative mechanisms do
not allow an LP to process an event until it is certain that
causality violation will not occur. This means that an LP

will not receive an event with a smaller timestamp than its
current clock from another LP. However, An LP may wait
for events that never arrive. Therefore, LPs may send null
messages to other LPs to avoid deadlocks [2]. Optimistic
mechanisms ignore inter-process synchronization issues, but
make compensations by performing rollbacks to a check-
pointed consistent state when a causality error occurs [3].
This requires periodic state-saving of the simulator.

With the advance of graphics hardware technology, pro-
gramming and executing general applications on GPGPUs
is more feasible. Nowadays, a single GPGPU with hundreds
or even thousands of processing cores has great potential
for improving the performance of various computational
intensive applications. In this paper, we focus on the use
of a GPGPU to perform parallel discrete-event simulation.
Note that the architecture of GPGPU can be classified as
Single Instruction, Multiple Data(SIMD). To allow more
events to be processed in parallel based on SIMD, our
approach is to use a modified service time distribution
function which guarantees that the events clustered to be
executed simultaneously are independent of each other and
hence causality errors will not occur. In other words, our
method can be treated as a conservative approach from
certain viewpoint.

Our implementation is done with the Thrust [4] on
the NVIDIA Compute Unified Device Architecture(CUDA)
platform. Thrust is a CUDA library of parallel algorithms
with a user-friendly interface resembling the C++ Stan-
dard Template Library (STL). It hides the details of low-
level CUDA function calls and provides highly-optimized
implementation of standard algorithms, such as searching,
sorting, reduction, compaction, etc., which greatly enhances
developer productivity. Therefore, GPGPU-based applica-
tions implemented with Thrust are readable, concise, and
efficient.

The organization of this paper is as follows. Section
2 describes related work. In Section 3, an old algorithm
which we borrow some ideas from is investigated. Section
4 presents our implementation strategies. In Section 5, the
experiments and the results for performance evaluation are
presented. We give a short conclusion in Section 6.
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2. Related Work
In the area of practical parallel simulation, two apparently

orthogonal streams of effort have developed over the past
decades. Thereplication-based effort entails natural paral-
lelism and is able to utilize massive data-parallel compu-
tational power. TheEcliPSe toolkit described in [5], [6]
has proven to be a very successful system for replication-
based simulations. Thedistribution-based effort emphasizes
functional decomposition of a model across processors. Ex-
amples of systems supporting distributed simulation include
ModSim[7], Sim++[8], ParaSi[9], and ParaSol[10]. An
inherent difference between the two approaches is that repli-
cation exploits statistical sampling to speed up the generation
of multiple (typically, but not necessarily independent) sam-
ple paths, while distribution exploits model partitioning to
speed up the generation of a single sample path.

Because of its massively data parallel computing power,
GPGPU has been used by more and more researchers
for simulating large-scale models over the past few years.
For example, a discrete-event simulation of heat diffusion
performed on GPGPU can be found in [11]. The algorithm
selects the minimum among all update times and uses it as a
timestep to perform a synchronous update of state across all
elements in the grid. Another work reported in [12] focuses
on a high-fidelity network modeling and uses the GPU as a
co-processor to distribute computation-intensive workloads.
Our approach is similar to the work in [13] and [14] which
develop an event clustering and execution scheme based on
the concept of approximation time. In these two papers,
the former illustrates practical implementation strategies,
while the latter presents an analysis of the approximation
error in their algorithm. Our algorithm borrows some ideas
from their algorithm for updating service facilities. The old
algorithm will be studied in detail in the next section.

3. The Old Algorithm
The work in [13] and [14] introduced a time-

synchronous/event algorithm using a time interval instead
of a precise time. Figure 1 shows the pseudo code of
the hybrid algorithm. To achieve more parallel processing,
their algorithm clusters events within a time interval. That
is, the simulation time is divided into many fixed-sized
time slots which is similar to the time-based simulation, a
methodology usually used for continuous physics/dynamics
simulation [15]. However, unlike the pure time-based simu-
lation which advances the time slot by slot, the old algorithm
directly moves the clock to the slot which contains the event
with the minimum timestamp in the future event set. This
could reduce the execution time if a slot doesn’t have any
events to be processed. Therefore, as shown in Figure 1,
all of the events whose timestamps are less than or equal
to the time slot boundary (i.e. the smallest multiple of time
interval greater than or equal to the minimum timestamp) can
be extracted from the future event set and then be executed.

while ( current_time < simulation_time )
min_timestamp = find_min(future_event_set);
current_step = the smallest multiple of time

interval greater than or
equal to min_timestamp;

parallel for each event e in future_event_set
if (the timestamp of e <= current_step)

extract e from future_event_set;
process e and generate new events

into future_event_set;
end if

end for
current_time = current_step;

end while

Fig. 1: The pseudo code of the old algorithm

X

Y Z

0,0 0,1

Fig. 2: Torus Queuing Network

However, the old algorithm cannot be directly used in the
precise-time PDES. Note that the PDES should handle the
events in a causal consistent way exactly as the sequential
DES does. Let’s use the simulation of a torus queueing
network as an example. As shown in Figure 2, a torus
consists of service facilities arranged in a two dimensional
mesh. Each facility has four outgoing and four incoming
channels. When a token arrives at a service facility, it gets
the service for some random amount of time if the server is
idle. Otherwise, the token has to wait in the server’s waiting
queue. After being served, the token moves to one of the four
neighbors. For simplicity, we assume that the probabilities
of a token leaving a facility on any given outgoing channel
are equal (i.e. 0.25).

Assume that there are three tokens X, Y, and Z in the torus
network (see Figure 2). The token X and the token Y enter
the service facility[0,0] at time 0.6 and 0.7, respectively.
The token Z will arrive at the facility[0,1] at time 0.9. Also
assume that the service time for the token X being served at
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Fig. 3: Causality Error

the facility[0,0] is 0.2. Using the old algorithm with the time
intervald = 0.5, all of these three events can be processed in
parallel at the time 1.0 (i.e. the smallest multiple ofd which
is greater than 0.6). The scenario is depicted in Figure 3(a).
Note that an event E in Figure 3 represents a combined
departure/arrival event.

Since both X and Y enter the facility[0,0], the old algo-
rithm uses the original timestamps to keep the causal order.
That is, the token X will get the service immediately, while
the token Y will stay in the waiting queue. However, if
we use the original timestamp for the token X to calculate
its departure/arrival time, the token X should enter the
facility[0,1] at time 0.8. As shown in Figure 3(b), a causality
error occurs because the token Z, with the arrival time at
0.9, has been served in the facility[0,1] already. Therefore,
the old algorithm cannot process the events exactly as the
causal order in the sequential DES. We also conducted an
experiment to verify this. We recorded the last arrival time
for each service facility. If the timestamp of a new arrival is
smaller than the last arrival time, a causality error is detected.
Figure 4 shows that the larger the interval, the more causality
errors occurred in the simulation.

4. The Improved Implementation
Our algorithm for PDES is based on the precise time, not

the approximation time as in [13], [14]. The first issue we
need to deal with is the potential causality error as discussed
in the previous section. To solve the problem, we let the
service time for each token contain the constant time interval
d and subtract the constantd from the mean service time in
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Fig. 4: Causality Errors with varying the number of facilities

the invocation of the service time distribution function. More
precisely, if the service time is exponentially distributed,
we change the expression of calling exponential distribution
function from

expon(M)
to

expon(M-d) + d
where M is the mean service time. Note that in the modified
formula, the mean service time is still M, but the service
time for any token is always greater thand. Therefore, the
aforementioned causality error will not occur. For example,
the timestamp of the new departure/arrival event for the
token X in Figure 3 will be at least0.6 + d = 1.1 which is
after the token Z enters the facility[0,1].

Another advantage of using the modified formula for the
service time is that the full time interval can be used to
cluster events for parallel processing. Our algorithm extracts
any event which has the timestamp less than or equal to

minimum_timestamp + d
and hence will include more events than the old algorithm.
The more parallel events be executed, the faster program
runs. For example, assume thatd = 0.5 and the minimum
timestamp in the future event set is 1.42, the events with
the timestamp between 1.42 and 1.50 can be processed
concurrently in the old algorithm. The effective range size
is only 0.08. Using our algorithm, the range is between
1.42 and 1.92. In general, giving the same intervald, the
average effective range size of the old algorithm is half of
the range size in our algorithm. However, our method still
has its disadvantage. The biased distribution function will
yield a small difference as compared with the result of using
the original distribution function. The empirical evaluation
of the difference will be reported in the next section.

Figure 5 shows our implementation on the host using
the Thrust library. As mentioned before, Thrust is a CUDA
library of parallel algorithms with an interface resembling
the C++ Standard Template Library (STL). One of the
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thrust::device_ptr<FACTYPE> all_fac = thrust::device_malloc<FACTYPE>(N*N);
FACTYPE *facp = thrust::raw_pointer_cast(all_fac);

thrust::device_ptr<TOKENTYPE> all_tkn = thrust::device_malloc<TOKENTYPE>(1);
TOKENTYPE *tknp = thrust::raw_pointer_cast(all_tkn);

thrust::device_ptr<float> events = thrust::device_malloc<float>(N*N);
float *ep = thrust::raw_pointer_cast(events);

thrust::device_ptr<int> chzn = thrust::device_malloc<int>(N*N);
int *cp = thrust::raw_pointer_cast(chzn);

thrust::device_ptr<bool> rdndnt = thrust::device_malloc<bool>(N*N);
bool *rp = thrust::raw_pointer_cast(rdndnt);

...

while (clock < SIMTIME ) {
thrust::device_ptr<float> mptr = thrust::min_element(events, events + N*N);

clock = *mptr + d;

thrust::device_ptr<int> chzn_last =thrust::copy_if(key,key+N*N,events,chzn,leq(clock));

int chzn_num = chzn_last - chzn;

int gridSize = (chozen_num+blocksize-1)/blocksize;

process_departure<<<gridSize,blocksize>>> (facp,tknp,ep,cp,chzn_num);

chk_redundant<<<gridSize,blocksize>>> (facp,tknp,ep,cp,rp,chzn_num);

process_arrival<<<gridSize,blocksize>>> (facp,tknp,ep,cp,rp,chzn_num);
}

Fig. 5: The improved implementation using the Thrust library

reasons we use Thrust is that it abstracts away the details
of low-level CUDA function calls, such as cudaMalloc,
cudaMemcpy, kernel launch, etc. For example, it provides
the device pointer which allows programmers access the
device memory without calling cudaMemcpy explicitly. The
*mptr in Figure 5 is such a case. For interoperability with
C, the device pointer can be converted into a raw pointer and
then the users can use it as a parameter to launch a CUDA
C kernel.

Another reason we use the Thrust library is that it provides
the min_element and thecopy_if functions. So we
don’t need to write our own and hence the programming
effort can be saved greatly. Furthermore, both functions
have been tuned and optimized particularly for the NVIDIA
GPGPU architecture. For example, the code used in the old
algorithm to find the minimum element based on the parallel
reduction method is out-of-date and inefficient. Figure 6
shows the general ideas of how the parallel reduction steps
are performed in the old algorithm and in the Thrust library,
respectively. The former uses the interleaved addressing

approach, in which the distance between the two elements
to be compared in the array is doubled for each reduction
step. The latter adopts the sequential addressing approach,
in which the distance is reduced half in every step. In theory,
there is no difference between these two methods because
both needO(log n) steps to find the minimum value among
n elements. In practice, the latter is bank conflict free and
takes advantage of the CUDA memory coalescing within a
warp to improve performance [16].

Another important thing is how to extract the aggregated
events from the future event set. It is straightforward that the
comparison of each event’s timestamp with the interval’s
upper bound can be done in parallel on each thread. The
issue here is the management of the chozen events to run
after the comparison. The way how this is implemented
is not discussed in [13]. The simplest approach is to let
the thread discontinue to run if the selection criteria is not
met, while the thread which gets TRUE in the comparison
will continue to execute the event, i.e., handling the depar-
ture/arrival, updating the facility, generating new events, etc.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 519



 7  7

16 12 22 9 10  7 41 32

12 9  7 32

 9  7

 x x x  x

 x x x x  x  x

 x x x  x x  x  x

16 12 22 9 10  7 41 32

10 7  22 9

10 7

 x x  x  x

x x  x x x  x

 xxx xxxx

(a) (b)

Fig. 6: Parallel Reduction Steps using (a) Interleaved Addressing (b) Sequential Addressing

However, based on our experience, only a small portion of
events will be selected in a large-scale simulation. Hence,
this approach will cause many threads idle and only two or
three threads in a warp can run.

The better approach is to use two phases of processing. In
the first phase, the parallel events are collected into an array
which stores the identifiers of the selected events. Therefore,
the number of the chozen events can be known and then we
can run that many of threads to execute the events in the
second phase. For collecting the chozen events into an array,
each thread needs to figure out the correct position to be
stored in the array. There are two implementation methods
for this. One method is that we can use an index counter
which will be incremented by one for each newly selected
event. Since the index counter is shared by many threads,
the addition has to be an atomic operation. This can be
done by using the CUDAatomicAdd() function. Another
method, which is used in the Thrustcopy_if function,
adopts the list ranking algorithm with the parallel prefix
sum operation[17] to obtain the position of each selected
event. Currently, we use the latter because of its availability.
However, the choice of which method depends on how many
items satisfy the condition. Basically, if the number of items
that satisfy the condition is small, usingatomicAdd()
could be better. The empirical comparison of these two
methods is worth further investigation.

Figure 7 shows the pseudo code of event execution in
the second phase of processing. When a token leaves a
facility, the first token, if any, in the waiting will get its
service and a departure event will be scheduled for it.
For the leaving token, an uniform random variable will be
generated to determine its destination and its token identifier
and timestamp will be put into the next service facility’s
corresponding incoming port. Note that it is possible there
are more than one token arrived at the same facility. This
will cause more than one thread handling of the same facility

and mess up the computation. To solve the problem, we
use the pre-defined port order, east→ south→ west→
north, to determine which thread has to process the arrivals
at the facility. As shown in the Figure 5 and Figure 7,
the decision making is a separated kernel launch of the
function chk_redundant(). For processing the arrivals
at a facility, we append all of the incoming tokens to the
waiting queue if the service facility is busy. Otherwise, the
newly arrived token with the smallest timestamp can start
the service, while the rest of incoming tokens will be put in
the waiting queue based on their timestamp order.

Note that the processing of the departures, the checking
of the redundant threads, and the processing of the arrivals
should be launched from the kernel respectively. This is
because we have to wait until all of the threads finishes
one kernel launch and then start running the next kernel
function. Otherwise, the incoming port data will not be
consistent due to the clean up at the end of the function
process_arrival(). Furthermore, the CUDA function
__syncthreads() cannot be used here as a barrier
because it can only synchronize the threads within a warp,
not all of the threads.

5. Experimental Results
In this section, we compare our PDES implementation on

the GPGPU with a sequential heap-based DES on the CPU.
The experimental platform, supported by Ohio Supercom-
puting Center, has one HP ProLiant SL390s G7 Node with
two Intel Xeon x5650 CPUs (2.67GHz, 48GB memory).
The OS is 64-bit Linux, kernel version 2.6.32. The GPGPU
used in the experiments is a NVIDIA Tesla M2070, which
contains 14 multiprocessors (448 CUDA cores in total)
and 6GB GDDR5 memory. A warp, the scheduling unit in
CUDA, has 32 threads and these 32 threads perform SIMD
computation on a multiprocessor. The device programs use
CUDA compiler driver 5.0. The parallel algorithm runs on
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__global__ void process_departure( parameters )
{

calculate the statistics;
If the facility’s waiting queue is empty

set the state of the facility to be idle;
else

remove the front token from the waiting
queue and put it in service.;

schedule a departure event for the token;
determine destination for the leaving token;

}

__global__ void chk_redundant( parameters)
{

check the four incoming ports of the facility;
if there are more than one arrival, use the

predefined port order to determine which
arrival’s corresponding thread can run.

}

__global__ void process_arrival( parameters )
{

if the thread is marked as redundant
return;

sort the incoming tokens by their timestamps;
if the state of the facility is idle

let the first incoming token get the service
and schedule a departure event for it;

put the rest of incoming tokens into the
waiting Q;

else
append the incoming tokens to the waiting Q;

clean up the data in the four incoming ports.
}

Fig. 7: Pseudo code for event processing

the host and the device, while the sequential algorithm runs
on the host.

The torus queueing network model mentioned in the
earlier section was used for the simulation. In the first
experiment, we measured the simulation execution times
by varying the number of facilities and the interval sizes.
The mean service time (i.e. the parameter M in calling
the functionexpon()) of the service facility is set to 10.
Figure 8 shows the performance improvement in the GPGPU
experiments compared to sequential simulation on the CPU.
The speedups grow when the number of facilities increases.
In particular, our PDES implementation outperforms the
sequential DES by 60x speedup for 1024x1024 facilities
with d = 2.0. The curve also scales well which implies
that the speedup could be increased further for simulating a
larger scale torus network. It can also be seen in Figure 8
that the larger the interval valued, the larger the speedup
obtained. This is because a larger interval allows more
parallel events to run. To verify this, we also measured the
average number of parallel events for different number of
facilities and different interval sizes. The result can be found
in Figure 9.

In another experiments, we evaluated the difference in
simulation summary statistics due to the use of the modified
service time distribution function. Figure 10 shows the dif-
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ference in the facility server utilization for varied intervals.
The simulation with smaller time interval behaves closer to
running the simulation with the original service distribution
function. As the intervald increases, the utilization also
increases because the service time is at least large asd.
Figure 11 shows similar effect on the system waiting time,
which is the average time of a token staying in a service
facility, including the service time and the waiting time
in the queue. Unlike utilization, the system waiting time
drops as interval increases. For the purpose of comparison,
we also used two mean service times: 10 and 20. For the
same intervald, the larger mean service time has smaller
difference in utilization and system waiting time because
the intervald occupies a smaller portion in the service time.

6. Conclusion and Future Work
We presented a fast implementation of PDES on GPGPU

by using the productivity-oriented Thrust library. Our
scheme exploits a modified service distribution function to
allow clustered events to be processed in parallel, while
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preserving timestamp ordering and causal relationships of
events. Thrust, which provides a collection of optimized
data parallel primitives such as reduce, stream compaction,
prefix sums, etc., makes our implementation more efficient.
The experimental results are encouraging. We were able
to achieve 60x speedup using our implementation at the
expense of accuracy in the results. The speedup curve scales
well which indicates that our implementation utilizes the
massively data parallel processing power of GPGPU and is
suitable for large-scale simulation models.

In the future, we plan to investigate various optimization
techniques, such as using shared memory and/or register
file, to improve the program performance. Moreover, the
performance comparison of Thrust’scopy_if() and the
implementation usingatomicAdd() in our simulation tool
is worth of further studies.
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A GPU-based Multiresolution Pipeline for Compressed Volume
Rendering
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Abstract— The recent improvements in data-acquisition
methods have resulted in the emergence of increasingly
larger volumetric datasets. The design of GPU volume
rendering solutions must have into account this trend while
dealing with the limited available memory in a graphics
card. In this work, we present a pipeline for volume ren-
dering that stores a compressed version of the dataset in the
GPU memory. During visualization, the volume is divided in
bricks, which are decompressed and rendered with a specific
level of resolution depending on their distance to the camera.
As the main tasks of our pipeline are executed entirely on
the GPU, we minimize the communication between the CPU
and the graphics hardware. We obtain competitive results
with other GPU implementations of compressed volume
rendering, with a refresh rate between 30 and 60 FPS for
volumes of size in the range between 2563 and 5123.

Keywords: compressed volume rendering, multiresolution, wave-
let transform, GPU, CUDA

1. Introduction
The evolution from graphics-specific accelerators to pro-

grammable vector processors has made of GPUs a standard
platform for rendering volumetric datasets. However, recent
years have witnessed significant improvements in the data-
acquisition methods, and, as a result, the size of datasets
has increased. This poses a challenge given the limited
memory resources available in current graphics hardware,
and although each new GPU generation expands its memory
capacity, the current trend shows that this problem will con-
tinue to exist in the future [1]. In this context, compression
stands as an effective solution for processing increasingly
larger datasets in the GPU.

A wide variety of approaches have been developed to
build a compact representation of the data. In volume
rendering, these solutions are usually assimetric, i.e., the
original dataset is decomposed in an offline process which
is executed only once, while the decompression and vi-
sualization processes are executed in real time. Common
methods for data decomposition may involve applying a
wavelet transform [2], [3], a vector quantization [4], [5],
[6], or a multiscale tensor approximation [7]. For a more
comprehensive survey on compressed GPU-based volume
rendering, we refer the reader to [8].

In this work, we have used a wavelet transform to
compress the volume into a compact hierarchical form.
Although there is a wide collection of wavelet transforms,
we have selected the Haar wavelet, as it is computationally
simple and very effective for fast reconstruction. Most of
the coefficients of this transform are computed as sample-to-
sample differences of the original volume data. This means
that these coefficients will be of a small magnitude, or even
zero, and therefore can be neglected without any significant
loss of information. Our encoding scheme, a generalization
of [2], benefits from this characteristic to obtain a more
compact format of the compressed volume.

In the context of volume rendering, bricking is a common
divide-and-conquer approach that consists in subdividing the
volume in several blocks (or bricks) so a single brick fits into
the memory of the GPU. Bricks are loaded and rendered one
at a time. In our implementation, we use a single OpenGL
3D texture buffer to store the contents of a brick of data, and
this buffer is reused every time a new brick is processed. The
final visualization is achieved through texture mapping (also
known as texture slicing) [9], which, along with ray casting,
is one of the most popular methods to render volume data.
In this rendering technique, the 3D texture is mapped onto a
proxy geometry composed of planar polygons that constitute
camera-oriented translucent slices, i.e., the volumetric object
is cut into slices that are rendered always parallel to the
image plane [10], [11].

Several techniques of compressed volume rendering that
can be found in the literature rely on storing the compressed
volume data in a memory space different from the GPU (as
the CPU main memory or a hard disk) [12], [13]. These out-
of-core techniques require to transfer decompressed portions
of the volume to the GPU memory before they can be
rendered. Their performance is limited, at least, by the
transfer rate of the PCI bus (e.g., 8 GB/s for PCIe 2.0).

In this paper, we present a solution that stores the volume
in the GPU memory in its compressed form. We couple
decompression and rendering by dividing the volume in
bricks which are processed one at a time, benefiting from
the higher transfer rate of the GPU memory bus (192.4 GB/s
in an NVIDIA GTX 580). Additionally, as our encoding
scheme uses a wavelet transform, it supports decompressing
bricks at different levels of resolution. The final rendering
is executed using the texture mapping technique. We have
obtained high speedups for the CUDA implementation of
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the steps of the algorithm. The complete pipeline performs
at an interactive and stable frame rate independent of the
viewport size, while keeping a good compression ratio with
a high visualization quality.

The rest of this paper is organized as follows. Section 2
describes the GPU architecture. Section 3 examines the
design of our GPU-based pipeline for compressed volume
rendering. Section 4 analyzes the experimental results, and
compares our implementation with other similar works. Fi-
nally, section 5 concludes discussing our main contributions
and future work.

2. GPU architecture
GPUs are nowadays programmable architectures consist-

ing of several many-core processors capable of running hun-
dreds of thousands of threads concurrently. In this section we
present a brief overview on the Fermi GPU architecture [14],
which we have used to test our implementation of a GPU
volume-rendering pipeline.

NVIDIA’s CUDA architecture [15] provides a high com-
putational power by combining a huge number of cores (or
streaming processors, SPs), distributed in a set of streaming
multiprocessors (SMs), with a very high memory bandwidth.
As an example of this architecture, the GeForce GTX 580
has 16 SMs with 32 SPs each, resulting in 512 cores.

The programming model encourages a fine-grained level
of parallelism within the single program multiple data
(SPMD) paradigm [16]. Hence, a CUDA program (or kernel)
is run by a grid of threads, which are grouped in thread
blocks. Programmers can configure the size and distribution
of the grid to their convenience and according to the require-
ments of the tasks to compute.

The architecture features several memory spaces. The
global memory and texture memory spaces are accessible by
the GPU, and also by the CPU through the PCI bus. Other
memory spaces are located inside the chip, and provide a
much lower latency: a read-only constant memory, a shared
memory (which is private for each SM), a texture cache and,
finally, a two-level cache that is used to speed up accesses
to the global memory.

Coordination between threads within a kernel is achieved
through synchronization barriers. However, as thread blocks
run independently from all others, their scope is limited to
the threads within the thread block.

3. GPU-based rendering pipeline
Our solution involves two different stages: preprocessing

and visualization. The preprocessing is executed on the CPU
to generate the compressed volume from the original dataset.
The visualization stage runs on the GPU, and shows on
the screen a reconstruction of the volume with different
resolution levels depending on the distance to the camera.

Figure 1 shows the different data structures used in this
implementation. The original volume data is divided into

Volume data
Brick data

2x2x2 blocks

Block data
16x16x16 
elements

Cell data
4x4x4 

elements

Chunk data
2x2x2 

elements

Fig. 1: Data structures used in this work.
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volume data

Transformed
volume data

Quantization
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Encoding

Compressed
volume data

Block of
163 elements

Wavelet 
coefficients

Fig. 2: Preprocessing pipeline for the compression of the
original volume data.

blocks of 16×16×16 elements. These blocks are grouped in
bricks. The figure shows an example where a brick contains
2 × 2 × 2 blocks. Elements in blocks are grouped in cells,
each cell containing 4 × 4 × 4 elements. Finally, a chunk
contains a group of 2× 2× 2 elements.

Our compression algorithm splits the volume data in
blocks and cells. Moreover, the wavelet transform that is
applied to blocks processes data in a chunk basis. During the
visualization stage, the volume is considered to be divided
in bricks, which are processed individually.

The different steps of the preprocessing and visualization
stages will be described in the next subsections.

3.1 Preprocessing
The preprocessing stage takes place whenever the user se-

lects a volumetric dataset to be compressed. Figure 2 shows
the different steps performed during this stage, and the data
generated at each step. First, a wavelet transform is applied
to the volumetric data. Then, a quantization step scales down
the coefficients obtained in the wavelet transform, nullifying
those with a close-to-zero value. Finally, the encoding step
generates the compressed volume data, which is later stored
in the hard disk. All these steps are executed on the CPU.

3.1.1 Wavelet transform
This step applies a wavelet-transform operator to blocks

of 16 × 16 × 16 elements using a Haar filter. Our CPU
implementation is similar to other solutions that can be found
in the literature [2]. The transform is recursively applied to
each block, generating bands of coefficients.

Figure 3 shows how the wavelet transform generates the
coefficients for a 16×16×16 block, which are then grouped
in eight bands. These bands are labeled from LLL to HHH.
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Fig. 3: The result of applying a 4-level wavelet transform to
a 16× 16× 16 block of data.

The LLL band contains the average coefficients, and the
detail coefficients are stored in the remaining bands. The
transform is recursively applied to the LLL band, generating
new levels of subbands until we get four levels of transform.
These levels are the basis of our multiresolution pipeline.

To avoid any data loss during this step the wavelet
coefficients are not normalized. This means that the magni-
tude of the coefficients (specially the low-frequency ones)
grows each time the transform is applied. However, this
approach guarantees that the only source of data loss is in
the quantization step.

3.1.2 Quantization
Quantization is a lossy compression technique that reduces

the range of the values of the compressed dataset [17]. In our
implementation we have chosen a scalar quantization solu-
tion with fixed-rate coding that removes the least significant
bits of the coefficients obtained from the previous wavelet
transform. This quantization reduces the magnitude of the
coefficients, and nullifies those with a close-to-zero value.

3.1.3 Encoding
This step converts the resulting volumetric data from

the wavelet-transform and quantization steps into its final
compressed form.

Figure 4 shows the main data structures used in this step
and their relations with the decompressed volume. The cell-
tag–table array stores a cell-tag table for each block in the
volume. A cell-tag table contains two-byte tags labeling each
cell in a block. The most significant byte stores the width
in bytes of the coefficients in the cell (or zero for a null
cell), and the less significant byte stores the index of the
significance map for the cell. The significance-map array
contains a bitmap for each non-null cell in the volume. This
bitmap is used to flag coefficients in the cells as zero or non-
zero. Finally, four arrays store all the non-zero coefficients
from the transformed volume data. Each coefficient is stored
in an array depending on its width in bytes. This encoding
supports coefficients of up to four bytes.

Our encoding solution increases the flexibility of the
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Fig. 5: Visualization pipeline for decompressing and render-
ing the volume data.

implementation presented in [2], that was limited to 4×4×4-
cell blocks. Two-byte cell tags enable using bigger blocks, so
more resolution levels could be supported, as the maximum
number or recursive wavelet transforms that can be applied
is restricted by the size of the block.

3.2 Visualization
The visualization stage is responsible of reconstructing

the compressed volume on the GPU and rendering it on the
screen. Figure 5 shows the different steps that take place in
this stage. The volume is processed in a brickwise fashion.
First, a brick is selected from the compressed volume and
reconstructed at a specific level of resolution. This recon-
struction involves the steps of decoding and inverse trans-
form, which have been implemented in CUDA kernels, and
hence, run on the GPU. The restored brick data are stored in
an OpenGL Pixel Buffer Object (PBO), and then copied into
a texture buffer to be mapped onto a proxy geometry. These
operations, including the final rasterization, are implemented
using the OpenGL API. The process continues with another
brick until the complete volume has been rendered.
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3.2.1 Bricking

The visualization process is performed in a brickwise
fashion. In each frame, the CPU decides in which order
bricks should be reconstructed according to the position of
the camera. A back-to-front order is maintained to guarantee
a correct composition of the bricks.

For each brick, depending on its distance to the camera,
the CPU chooses a resolution level. Bricks that are close to
the camera are rendered at the highest level. Bricks that are
far from the camera do not contribute to the final result as
much as the closer ones, so in order to speed up the whole
process, they are rendered at a lower level of resolution.

As stated earlier, two CUDA kernels execute the steps
of decoding and inverse transform required to decompress
the brick data. The decompressed data are stored in a PBO,
which can be accessed by the CUDA and OpenGL functions.
To complete the visualization, an OpenGL call copies the
brick data from the PBO into a texture buffer. Then, the
CPU orders the construction of the proxy geometry using
several OpenGL calls. This proxy geometry contains the
slices where the brick texture is mapped onto.

Depending on the resolution level, the texture might not
completely fill the available space in the texture buffer. That
is, the highest resolution level uses the complete texture
space, but low-resolution textures require only a small por-
tion of that space. This means that the texture coordinates
assigned to each vertex of the proxy geometry must be
adjusted to the real texture size according to the resolution
level chosen for the current brick.

3.2.2 Decoding

The process of decoding is performed in a kernel on
the GPU. This kernel reads the compressed data of the
brick from the compressed volume stored in the GPU
global memory and writes the decoded data in a previously
allocated buffer (to be later processed by the inverse wavelet
transform). Each data block in the brick is assigned to a
thread block, where each thread processes a cell (whose size
is 4× 4× 4 in our implementation).

The decoding process is as follows. Each thread starts by
determining if its cell is non-null or not, as indicated by the
cell tag associated to the cell. If the cell is non-null, the data
reconstruction begins. The thread loops through the elements
of the cell, and tries to load them from the arrays of non-zero
coefficients in the compressed volume (see Figure 4). If the
cell’s significance map identifies a coefficient as non-zero,
its value is stored as is in the preallocated buffer in global
memory, otherwise a zero is written.

To increase the spatial locality of memory accesses, the
decoded data are contiguously stored in global memory in a
blockwise fashion. Figure 6 illustrates this process for a brick
composed of two data blocks. The top of the figure shows
how data from different blocks are interleaved when they are

1 2 1 2 1 2

1 21 21 2

Fig. 6: Blockwise storage of brick data considering two
blocks (1 and 2).
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stored in global memory attending solely to their absolute
position in the brick. Instead, our algorithm arranges the data
of each block together, as it is shown in the bottom of the
figure, to increase the spatial locality, and, as a result, to
improve the performance of the memory accesses.

3.2.3 Inverse wavelet transform
Once the decoding kernel has restored the coefficients

of the transformed brick in global memory, another kernel
performs an inverse wavelet transform on the GPU to restore
the brick contents. Each data block in the brick is assigned
to a thread block depending on its identifier, and each thread
processes a chunk of 2× 2× 2 voxels.

The inverse transform is also a recursive process, and it is
applied until the desired level of resolution is achieved (in
the lowest level of resolution, no processing is needed). The
resulting coefficients of processing a level of resolution are
stored in shared memory, where this data will be available
to compute the next level of resolution. When the desired
level is reached, these coefficients are copied from shared
memory into the OpenGL PBO. In the case of processing the
highest level of resolution, the coefficients are directly stored
in the PBO, bypassing the shared memory and consequently
reducing its impact on the memory load.

When storing data in the PBO, the positions where data
are placed are determined by the identifiers of the thread
block and the current resolution level. For low resolution
levels, the data generated by each thread block are grouped
in order to avoid chunks of data scattered in the PBO.
Figure 7 shows how a 32× 32× 32 restored brick is stored
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Table 1: Datasets used in this work
Name Size Bytes/voxel File size

BrainWeb 256× 256× 181 2 23 MB
ModelHead 512× 512× 348 2 174 MB
RealHead 160× 512× 512 2 80 MB

Table 2: Compression quality for different levels of quanti-
zation

# bits Compressed Compression MSE PSNR
volume size ratio

BrainWeb
0 25.52 MB 1 : 0.89 0.00 ∞
1 25.10 MB 1 : 0.90 0.45 99.77
2 18.92 MB 1 : 1.20 0.72 97.75
3 16.81 MB 1 : 1.35 2.28 92.76
4 14.85 MB 1 : 1.52 8.84 86.86
5 13.25 MB 1 : 1.71 35.34 80.85
6 11.41 MB 1 : 1.98 137.92 74.93
7 8.63 MB 1 : 2.62 509.06 69.26
8 5.57 MB 1 : 4.06 1614.11 64.25
9 2.89 MB 1 : 7.83 3488.04 60.90

10 1.81 MB 1 : 12.50 6628.75 58.12
11 1.15 MB 1 : 19.67 12135.79 55.49

ModelHead
0 111.82 MB 1 : 1.56 0.00 ∞
1 89.08 MB 1 : 1.95 0.45 99.79
2 64.35 MB 1 : 2.70 0.63 98.31
3 45.87 MB 1 : 3.79 1.34 95.05
4 33.02 MB 1 : 5.27 3.25 91.21
5 23.95 MB 1 : 7.27 8.58 87.00
6 17.74 MB 1 : 9.81 23.81 82.56
7 13.09 MB 1 : 13.29 66.71 78.09
8 9.57 MB 1 : 18.18 187.64 73.60
9 7.08 MB 1 : 24.58 504.59 69.30

10 5.29 MB 1 : 32.89 1320.25 65.12
11 3.82 MB 1 : 45.55 3117.75 61.39

in the PBO for different levels of resolution.

4. Results
We performed our tests on an NVIDIA GeForce GTX 580

with 512 processor cores grouped into 16 SMs of 32 SPs
each, at a clock rate of 1.544 GHz, and with 1.5 GB of global
memory. Each SM has 64 kB of RAM with a configurable
partitioning of shared memory and L1 cache (16 kB of
shared memory and 48 kB of L1 cache, or vice versa).
Additionally, a unified L2 cache of 768 kB is available for
all SMs [15]. This GPU was mounted in a machine with an
Intel Core 2 Quad Q9450 with four cores at 2.66 GHz and
6 GB of RAM. We compiled our code using the NVIDIA
nvcc compiler provided within the CUDA 4.0 toolkit and
gcc version 4.4.3 under Linux.

Table 1 details the different datasets used in this work.
The BrainWeb dataset was obtained at the BrainWeb Sim-
ulated Brain Database [18]. ModelHead corresponds with
a volumetric CT of a synthetic model of the human head,

whereas RealHead is volumetric dataset of a real human
head obtained with an MRI technique. Figure 8 shows
renderings from the three datasets using our solution.

4.1 Quality analysis
We have measured the quality of our decoding implemen-

tation with the BrainWeb and ModelHead datasets. These
two datasets can be considered as representative instances
of volumes obtained from organic tissues and synthetic
materials, respectively.

Quality is measured in terms of compression ratio, mean
squared error (MSE) and peak signal-to-noise ratio (PSNR).
Table 2 shows the values obtained for the two aforemen-
tioned datasets with different levels of quantization. At each
quantization level we remove a specific number of least
significant bits from the coefficients of the wavelet transform
(see Section 3.1.2), as indicated in the table.

Generally, a value of PSNR above 60 is considered good,
so we have chosen a quantization level of 8 bits in our
tests to measure performance of the complete GPU volume-
rendering pipeline (see below). We noticed that changing
the number of bits removed during quantization did not
significantly affect the performance.

4.2 Performance analysis
In order to evaluate the performance we focus on the

GPU implementation of the different steps of our rendering
pipeline. First, we measured the speedup of the decoding
and inverse-transform kernels compared to the CPU imple-
mentations. Second, we executed the complete pipeline on
the GPU and took measures of execution time for each step
and of FPS for the whole pipeline.

Regarding the speedup measurements, we focus on the
implementations of the decoding and the inverse-transform
steps on the GPU. Table 3 shows the results we have
obtained for different volumes that were constructed from
the RealHead dataset. For both algorithms, the value of
speedup increases with the volume size, as the computational
capabilities of the GPU are better exploited when the dataset
to process is larger [16].

We also evaluate the performance of the whole rendering
process on GPU showing the results for each step. Table 4
shows the performance for each dataset using different brick
sizes. Once again, our solution offers a better performance
with large brick sizes (except for BrainWeb, where using
a brick size much larger than the dataset results in poor
results). Generally, incrementing the brick size increases the
time required to process a brick, but reduces the number of
bricks, resulting in a lower time to complete a frame.

4.3 Comparison with other works
To the best of our knowledge, this is the first GPU

implementation of a decompression scheme based on [2].
The authors reported their solution required, at best, nearly
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Fig. 8: Volume rendering of the datasets. From left to right: BrainWeb, ModelHead, and RealHead.

Table 3: Execution times in seconds and speedups respect to the CPU implementation of the decoding and inverse-transform
kernels for different volume sizes

64× 64× 64 128× 128× 128 256× 256× 256 512× 512× 512

Decoding GPU 0.000076 0.000296 0.002153 0.013647
CPU 0.003173 0.024237 0.207878 1.626087
Speedup 41.6x 81.9x 96.5x 119.2x

Inv. transf. GPU 0.000033 0.000204 0.001459 0.011550
CPU 0.009205 0.069018 0.557935 4.434827
Speedup 280.3x 338.9x 382.5x 384.0x

Table 4: Execution times in seconds and FPS for the steps of the GPU rendering pipeline using different datasets
Dataset Brick size # bricks Decode Inv. Transf. Copy Render Total Total FPS

(CUDA) (CUDA) (OpenGL) (OpenGL) per brick per frame

BrainWeb 64× 64× 64 48 0.000081 0.000027 0.000016 0.000726 0.000850 0.041 15
128× 128× 128 8 0.000226 0.000191 0.000023 0.001188 0.001628 0.013 30
256× 256× 256 1 0.001571 0.001534 0.000038 0.002282 0.005425 0.005 60
512× 512× 512 1 0.003169 0.012279 0.000070 0.002337 0.017855 0.018 30

ModelHead 64× 64× 64 384 0.000075 0.000027 0.000016 0.000529 0.000647 0.248 2
128× 128× 128 48 0.000215 0.000192 0.000023 0.000940 0.001369 0.066 10
256× 256× 256 8 0.001206 0.001524 0.000037 0.001559 0.004326 0.035 20
512× 512× 512 1 0.007975 0.012277 0.000068 0.002965 0.023286 0.023 28

RealHead 64× 64× 64 192 0.000077 0.000027 0.000016 0.000382 0.000502 0.096 5
128× 128× 128 32 0.000196 0.000192 0.000023 0.000699 0.001110 0.036 15
256× 256× 256 4 0.001205 0.001526 0.000038 0.001546 0.004315 0.017 30
512× 512× 512 1 0.005388 0.012280 0.000069 0.002314 0.020052 0.020 30

10 seconds to reconstruct a volume of 512 × 512 × 512
elements on CPU. This includes both the decoding step
and the inverse transform step. For a brick of the same
size, Table 4 shows a performance between 15 and 20
milliseconds for both steps on the GPU.

Our inverse wavelet transform compares favorably with
other GPU implementations in the literature. In a recent
work [19], the performance of a 3D fast wavelet transform
was measured on a GPU processing 64 frames of a video at
different resolutions, requiring 6.8 ms for a 512×512 video,
and 13.4 ms for a 1024× 1024 video. This implementation
performed a one-level transform using a Daubechies D4

wavelet [20]. To compare these results, we have measured
the performance of our inverse-transform kernel for a single
level instead of four. Processing a brick of size 256×256×
256, which is exactly the same size as the former video,

requires 1 ms in our solution. A 512 × 512 × 512 brick,
which is twice the size of the latter video, requires 7 ms.

The performance of the GPU decompression and ren-
dering pipeline is also competitive with similar solutions
in the literature. A scheme based on the Karhunen-Loève
transform [21] is presented in [1]. Compression is performed
on CPU using a vector quantization approach that preserves
the coefficients from blocks containing the most relevant
edges. Visualization is achieved in a two-pass render, the
first one devoted to decompress several slices of data, and
the second one to the actual rendering. A 512× 512× 512
is rendered at a rate between 6 and 11 FPS, depending on
the size of the viewport. For a volume with a similar size
(ModelHead), our solution achieves 28 FPS without the size
of the viewport affecting significantly.

Finally, a solution based on the S3 texture compression
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algorithm (also known as DXT) [22] was introduced in [23]
for time-varying 3D datasets. The reconstruction of the
compressed volume data is embedded into a programmable
shader, and up to three frames are compressed into the RGB
channels of a texture. The authors show results for a volume
of size 400 × 600 × 400 visualized at 35 FPS. Although
this performance is slightly higher than our solution’s, our
compression scheme provides better results in terms of
quality, with a greater PSNR for a similar compression ratio.

5. Conclusions and future work
In this work we have presented a GPU solution for de-

compressing and visualizing volumetric compressed datasets
using a bricking approach with multiresolution rendering.

The GPU stores a compressed hierarchical version of
the original volume. Our pipeline processes the compressed
volume in a brickwise fashion. For each brick a level
of resolution is selected depending on its distance to the
camera, and the brick data are decompressed up to that level.
The decompression involves decoding and computing the
inverse wavelet transform of the data. We have implemented
both steps as CUDA kernels, so they are executed within the
GPU. Unlike other out-of-core techniques, communication
between CPU and GPU is minimal, avoiding the bottleneck
that the PCI bus between both is. As we apply four levels
of wavelet, our approach supports up to four different levels
of resolution (five including the original one).

The visualization is carried out using the texture mapping
technique. The decompressed brick data is copied into an
OpenGL texture buffer and mapped onto a proxy geometry
composed of several parallel polygonal slices. The GPU
rasterizes the geometry by blending the slices to produce
the final image.

We have tested our solution with three datasets. We have
obtained competitive results compared to other recent GPU
implementations of compressed volume rendering, with a
refresh rate between 30 and 60 FPS, a PSNR value greater
than 60, and a compression ratio between 1:4 and 1:18 for
volume sizes in the range between 2563 and 5123.

As future work, we plan to extend our solution to larger
datasets, including datasets that do not fit inside the GPU
memory. For these cases, empty-space–skipping techniques
are essential to identify bricks in the volume that do not add
essential information to the final rendering in order to keep
an interactive refresh rate.
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Abstract— The Dynamic Data-Flow model of execution
has many inherit properties, such as tolerance to latencies
and distributed concurrency, which make it suitable for
distributed execution. Data-Driven Multithreading (DDM)
is a hybrid Data-flow/Control-flow model that implements
the Data-Flow principles at the Thread level on sequential
processors. In this paper we demonstrated that the Data-
Driven Multithreading Virtual Machine (DDM-VM), can
achieve high performance in Distributed Nodes (multi-core
systems). A shared Global Address Space is supported across
all the Nodes in the system to facilitate data movement. We
have evaluated our work on both Homogeneous and Het-
erogeneous systems. The performance evaluation shows that
the distributed execution achieves 80-84% of the maximum
possible speedup using off-the-shelf networking.

Keywords: multi-core, data-driven multithreading, heteroge-
neous, homogeneous, distributed

1. Introduction
Data-Driven Multithreading (DDM) has demonstrated that

Data-Flow concurrency can be implemented in commer-
cial control-flow processors in an efficient manner [16].
The Data-Driven Multithreading Virtual Machine (DDM-
vm) is a parallel software platform that supports Data-
Flow concurrency on conventional control-flow multi-core
systems. The DDM model combines the latency tolerance
and distributed concurrency of the dynamic data-flow model
of execution with the efficient execution of the control-
flow model. The DDM-vm targets both homogeneous and
heterogeneous multi-core architectures.

In this work we advance the state-of-the-art by support-
ing DDM execution across Distributed multi-core systems.
Previous implementation either supported distributed DDM
execution across single-processor Nodes [16] or DDM ex-
ecution within a multi-core Node [21]. The results of this
work further demonstrates that data-flow concurrency can
be utilized to tolerate synchronization and network latency
efficiently.

First, we present the DDM-vm that is executing on
symmetric multi-core architectures. Then we highlight the
extensions and modifications of the DDM-vm design to sup-
port distributed DDM execution across multiple computers.

This work was supported in part by the EU FP7 TERAFLUX (249013)
project

Concluding, with the evaluation of single- and distributed-
Node DDM-vm using a suite of benchmark applications and
multiple, different clusters.

The evaluation of the single-Node DDM-vm shows that
it achieves an overall average speedup of 9.6 out of 11.
The evaluation of the distributed execution shows that it
achieves an average of 80% to 84% of the maximum possible
speedup when utilizing various number of cores per Node.
The results are stable across different cluster configurations.
These results demonstrate the efficiency and scalability of
the DDM-vm.

The rest of the paper is organized as follows: An overview
of Data-driven Multithreading is presented in Section 2.
Section 3 describes the DDM-vm. Section 4 presents the
support for distributed DDM-vm execution. The evaluation
is presented in Section 4. The related work is presented in
Section 5 and Section 6 concludes this paper.

2. Data-Driven Multithreading
DDM [16] is a multithreaded model that applies dynamic

Data-flow principles for the communication among threads
and exploits highly efficient control-flow execution within a
thread. Programming constructs such as loops and functions
are mapped into DDM threads (D-Threads).

DDM decouples the synchronization part of a pro-
gram from the execution part and allows them to execute
asynchronously, thus shortening the critical path. At the
core of the DDM model is the Thread Scheduling Unit
(TSU) [11] which schedules threads at run-time based on
data-availability. DDM utilizes data-driven caching policies,
called Cacheflow, to implement deterministic data prefetch-
ing which can substantially improve the locality of sequential
processing [15].

DDM has shown that it can exploit efficiently Data-flow
concurrency on commercially available multi-core systems
[1], [2]. DDM does not need traditional memory coherence
because it enforces the single-assignment semantics for data
exchange among threads.

In DDM all D-Threads that are ready for execution
are held in the Firing queue of each core. Thus, DDM
prefetching [15] is deterministic and can be very near to
optimal. The ability of DDM to deterministically prefetch
data allows high performance without the need for complex
and expensive modules such as Out of Order Execution
(OOE). Thus, DDM inspired processors had the potential
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to have simple and low power designs and at the same time
achieve high performance.

DDM programs are partitioned at compile time into a
number of threads. Each thread is associated with its meta-
data: Instruction Frame pointer (IFP), Data-Frame Pointers
(DFP), Consumer threads and the Ready Count (RC) which
is the number of producer threads.

DDM supports dynamic Data-flow concurrency based on
the U-Interpreter [3] principles. It uses the tagging system
of the U-Interpreter to distinguish between different instan-
tiations of a static code template. It maps the tag of the U-
Interpreter into a unique integer, called the context in DDM.
Consequently it maps the entire unravelled Data-flow graph
into the virtual space of the machine.

3. The Data-Driven Multithreading Vir-
tual Machine

The Data-Driven Multithreading Virtual Machine (DDM-
vm) software model is composed of the:

• Thread Scheduling Unit (TSU), that is implemented as
a software module executing on one of the cores

• Network Interface Unit (NIU) is implemented as a
software module that is executing on the same core as
the TSU

• Runtime support system that (with the help of the
TSU) handles the tasks of thread scheduling, execution
instantiation and data management implicitly on the rest
of the cores

The DDM-vm can be used both on heterogeneous multi-
cores with software-managed memory (the Cell B.E. Proces-
sor [12]), and on symmetric multi-cores. DDM-vm support
for symmetric multi-cores is described in the following
sections. A detailed description and performance results of
the DDM-vm on the Cell B.E. Processor can be found in [1].

The synchronization graph contains the meta-data of the
threads which mainly convey the consumer/producer depen-
dency relationships of each thread. The virtual machine uses
the meta-data to schedule threads based on data-availability;
a thread is scheduled for execution when all its producers
finish execution. The scheduling of threads is interleaved
with their execution, thus shortening the critical path of the
application. In the case of architectures with a software-
managed memory hierarchy the DDM-vm prefetches the
thread data from the main memory to the cache of the
processor before starting its execution.

The overall architecture of DDM-vm is depicted in Fig-
ure 2. The support of Data-Driven execution on control-flow
processors communication is achieved by changing the state
of the TSU structures allocated in main memory.

Next, we describe the structures and operations of the TSU
and the TSU-Processor interface for symmetric multi-cores.

3.1 The Thread Scheduling Unit (TSU)
a) The TSU Memory Structures: are allocated in main
memory. Some of the structures are common for all the
cores: Synchronization Memory (SM) and and Graph Mem-
ory (GM) and the rest: (1) Acknowledge Queue (AQ), (2)
Waiting queue and (3) Firing Queue (FQ)are local in each
core. The common TSU structures are:

The Graph Memory (GM): holds the synchronization
template of each thread:

• Thread identifier (ThreadId),
• Instruction Frame Pointer (IFP),
• Consumers List number of Data Frame Pointers,
• Ready Count (RC): number of producer threads
• Data Frame Pointers (DFPs) which are retrieved at

runtime by calling a helper-function.
• Thread attributes: (i) Scheduling policy , (ii) Type

of Synchronization Memory (More information can be
found in [1]), and the (iii) Arity of the specifying the
loop nesting level.

• Consumer List (CL): contains two fields, Cons1 and
Cons2, which can hold the thread identifier for one
or two consumers. If the thread has more than two
consumers, a CL entry is created that holds the list
of consumer threads. In that case, the GM entry is
modified so that Cons1 is set to zero and Cons2 is set
to point to the entry in the CL.

The Synchronization Memory (SM): holds the Ready
Count (RC) values for each invocation of a DDM thread.
The SM entries are uniquely indexed using the context of
the invocations. The RC value in the GM entry is used to
initialize the RC entries in the Synchronization Memory. As
the performance of the SM is critical to the overall system
performance, we have utilized three different implementa-
tions of the SM. Details of the implementations and their
performance is presented in [1].

b) The per-core TSU structures: are also allocated in main
memory:

The Acknowledgement Queue (AQ): holds requests to
decrement the RC of one or more invocations of consumer
threads. The AQ requests are enqueued when a producer
thread finishes execution. The request include the consumer
identifier, context and the decrement value by which the
consumer(s) RC is decremented. A sample of this request
can be seen on figure 1 as the command Dec.

The Waiting Queue (WQ): holds the information of
threads which with RC=0 and are waiting for prefetching
to be completed.

The Firing Queue (FQ): holds the information of threads
that are ready to execute. This includes the IFP, context and
the DFP list. The latter is needed for supporting distributed
DDM execution, in which part of the thread data could
be allocated dynamically by the TSU (described in the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 531



Core (Worker)

Network Interface Unit

Forward Table

Dec(Tid,Cntx,Value)
Data(Local, Remote)
Dec( 1 , 3  , 1   )
Data(0xCA , 0xEF  )

Forwarding data
and RC decrement

request to other node

Acknowledgement
Queue

Dec(Tid, Cntx, Value)
Dec(3  , 5   , 1    )
...
Dec(2  , 2   , 3    )

Firing Queue

(Tid, Cntx, DFP list)
(1  , 1   , 0xCA    )
...
(2  , 3   , 0xCB    )

Acknowledgement
Queue

Dec(Tid, Cntx, Value)
Dec(3  , 5   , 1    )
...
Dec(2  , 2   , 3    )

Waiting
Queue

(Tid, Cntx)
(1  , 1   )
....
(2  , 3   )

Data prefetching
operations complete

or not needed

Execution
Consumer is 
on the same

node

Consumer is 
on different

node

Thread Synchronization Unit (TSU)

Graph Memory*

Template Parameters : <IFP> <Cons1> <Cons2> <RC> <DFP List> 
           Thread 1 :  0xAA    0     CL[0]   2      0xCA
           Thread 2 :  0xAB    0     CL[1]   3      0xCB
           Thread 3 :  0xAC    1       0     1      0xCC
           .......

Thread 1:T1,T2,T3
Thread 2:T1,T3,T4,T5
...

Consumer  List
Thread has more

than two consumers

Context  Values : 0 1 2 3 4 ..
RC for Thread 1 : 1 0 2 2 1 ..
RC for Thread 2 : 1 1 3 0 3 ..
....

Synchronization Memory

*Globally accessible

Decrement RC of

specific instantiation

of thread

Thread instance RC

reached 0

Dec
re

m
en

t R
C 

of

sp
ec

ifi
c 

in
st

an
tia

tio
n

of
 th

re
ad

Fig. 1: TSU organization and transitions

Common TSU Structures

SM CL

TSU Memory Structures

RC?=0

...

Core 0

Core N-1

Core 1

DDM Program
DDM Thread i :

Computation

DDM Thread i+1 :

...
Rest of Main Memory

Program Data

...

Runtime calls

...

DDM-VMs Core Runtime Code
DDM-VMs Runtime

Thread
Synchronization
Unit (TSU)

Computation

Runtime calls

Runtime calls

Runtime calls

Main Memory

GM

Core N-1 Structures

FQ WQ

AQ

Core 1 Structures

FQ WQ

AQ

...

C
ac
h
e
H
ie
ra
rc
h
y

Next Thread Info

Thread Finished

C
ac
h
e
H
ie
ra
rc
h
y

Fig. 2: The architecture of the DDM-vm

following section).
Figure 2 depicts the structures of the TSU.

3.2 Thread Execution and the TSU-Processor
interface

The DDM thread execution takes place on the cores and
consists of two types of operations or phases: computation
and synchronization. The synchronization operations are
performed by the runtime, which communicates with the
TSU via the TSU-Processor interface. The purpose of the
communication is to:

1) Inform the TSU to decrement the RC of the consumers
of the thread that has just completed execution by
inserting requests in the AQ

2) Providing the execution cores with the information of

the next ready thread to execute. This is achieved by
accessing the meta-data of ready threads in the FQ.

The two tasks are implemented by accessing the related
TSU structures in main memory directly: The AQ in the first
task and the FQ in the second task.

The TSU operations:
1) The TSU running on one of the cores processes the

AQ requests to decrement the RC of consumer threads.
2) If any RC reaches zero, the corresponding thread

invocation is scheduled for execution on a core that
is selected by a scheduling policy. This is done by in-
serting the thread information into the Waiting Queue
(WQ) were it waits from Data prefetching.

3) Finally the metadata of the threads are then moved
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from the WQ into the Fire Queue (FQ) indicating they
are ready for execution.

Figure 2 depicts the various operations performed by the
TSU and the runtime.

4. Distributed DDM-vm Execution
Tolerating the Network and Synchronization latencies

is the key for the efficiency of Distributed systems. The
Data-Flow model provides tolerance to such latencies; an
operation starts only after all it s data has been produced.
Furthermore, Data-flow concurrency enforces the minimal
ordering of objects as dictated by the true data-dependencies.
Constructs like critical session and barriers do not exists
in Data-Flow systems. Cache coherence is also a major
challenge of the distributed systems. This is also not needed
in Data-Flow inspired systems such as DDM.

The main difference between single-Node and
distributed/multi-Node DDM execution is the introduction
of remote memory accesses resulting from producer and
consumer threads running on different Nodes. To this
end, we employ data forwarding [19], [13], to the Node
where the consumer is scheduled to run. We facilitate
this by supporting a shared Global Address Space (GAS)
across all the Nodes. A Network Interface Unit (NIU)
has been implemented in the TSU to handle the low-level
communication operations.

In terms of the distribution of threads across the cores of
the system Nodes, this work explores a static scheme, in
which the mapping is determined at compile time and does
not change during the execution. This simplifies the schedul-
ing and data management tasks and, in the presence of an
accurate knowledge of the threads execution loads, can lead
to a very efficient and balanced parallel execution. It is im-
portant to note that a static distribution only specifies where
the thread will be scheduled once its ready, however, when
the thread is ready is decided based on data-availability.
The benefit of this approach extends to programmability.
Distributed DDM-vm programs are fundamentally the same
as single-Node ones. Aside from the distribution of program
data in the GAS across the Nodes at startup and gathering
the results after the program execution.

Next, we highlight the additions and modifications to the
TSU structures & operations that are required for supporting
distributed execution.

4.1 Modifications to the Thread Scheduling
Unit

The DDM-vm runtime adopts a distributed organization
consisting of multiple TSU units (one per Node1) commu-
nicating across the network to coordinate the overall DDM
execution. As shown in Figure 3.

1Node: multi-core processor

4.1.1 The TSU structures
In the Graph Memory (GM) of each Node, we only load

the metadata of the threads that are expected to execute on
that Node. The rest of the TSU structures remain unchanged.
Two new structures to support distributed execution have
been added:

1) The Distributed Acknowledgement Queue (AQ)
This queue holds the decrement RC requests coming
from the TSUs on the remote Nodes.

2) Forward Table (FT) This table holds the address
and size of the data that will be forwarded to remote
Nodes.

4.1.2 The TSU operations
When the TSU is notified that a thread finished execution,

it determines by the scheduling policy (ThreadId,context)
weather it will on the producer Node or at a remote Node.
If the core is on the same Node, an entry is inserted in the
AQ of the local Node TSU. However, if the core belongs
to a remote Node, a message containing the invocation
(ThreadId,context) is sent to that Node. When the message
is received, a request to decrement the RC of that invocation
is enqueued in the distributed AQ on that Node. In addition
to the request message, the data produced by the thread is
also forwarded to the remote Node.

The TSU on each Node continuously checks the local
AQ(s) and the distributed AQ in order to decrement the RC
of threads invocations.

Once the RC of a specific thread invocation reaches zero,
its metadata is moved into the Waiting Queue (WQ). The rest
of the activities proceed as described in 3.1. The additional
steps required for managing the forwarding of produced
data to consumers running on remote Nodes,are described
in Section 4.3.

4.2 The Network Interface Unit (NIU)
The NIU, is responsible for the handling the inter-Node

communication. NIU was used in a previous DDM imple-
mentation [16] to support communication among distributed
single-processor Nodes, however it was implemented as a
hardware module. In this work the NIU is implemented as
a software module that relies on the underlying network
hardware interface. Initially, we have consider using MPI
[9] for handling the low-level network connectivity in the
NIU. However, our evaluation has shown that the expected
overheads of invoking an external library were very high.
This combined and our need for customized communication,
we decided to develop our own optimized connectivity layer
using non-blocking TCP sockets.

The NIU is responsible for managing the network ini-
tialization, establishing connections with the other Nodes
in the system and providing communication services to
the TSUs during the execution. The NIU also supports
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distributing/gathering data across the global address space
in the system at start-up and post-execution of the DDM-
vm program.

In the initialization stage the NIU on each Node estab-
lishes connections with all the other Nodes. For each Node
two non-blocking sockets are allocated, one for sending
(outgoing socket) and one for receiving (incoming socket).
Once the connections are established through the sockets, the
NIUs exchange information related on the number of cores
utilized for DDM execution on each Node. This information
is maintained in a table, which used later by the TSU to
determine on which Node each core is located.

The NIU abstracts the underlying network and provides
the TSU with a simple communication interface. The TSU
uses this interface to exchange:

• Synchronization commands or messages: the most
important one is the request to decrement the RC of a
specific consumer invocation.

• Data forwarding: when a thread produces data that is
needed by a consumer on a remote Node, the TSU
passes the data to the NIU to forward it to the remote
Node.

The NIU tolerates the latencies of network communication
by overlapping its work and data transfers with threads
execution and the rest of the TSU work. The NIU module
is naturally split into two main independent sub-units:

• The send sub-unit: responsible for sending commands
and forwarding data to remote Nodes. Both commands
and data are first encapsulated in a simple message with
a header describing the content, before they are sent to
the remote Node. The sending operation returns when

the messages have been stored in the O.S. network layer
buffers.

• The receive sub-unit: responsible for receiving and
processing the messages sent from remote Nodes. It
continuously polls the incoming network connections in
a round-robin fashion. The received messages are pro-
cessed according to their type. In the case of decrement
RC request commands, the metadata of the message is
inserted as an entry in the distributed AQ.

On symmetric multi-cores the receive sub-unit is launched
in an auxiliary thread (that is pinned to the same core running
the TSU), taking advantage of the fact that the processor is
an SMT supporting two hardware threads [12]. Furthermore,
we further distribute the work of the send sub-unit across the
cores. This is possible because the services of the send sub-
unit are invoked by the DDM-vm runtime threads on the
cores. Thus, removing the tasks of the send sub-unit from
the critical path of the TSU.

4.3 Distributed Shared Memory
The DDM-vm supports a Distributed Shared Memory

(DSM) [20] abstraction in which part or all of the main
memory address space on each Node is mapped to the
Global Address Space (GAS) of the DSM. The GAS is a
collection of ordered pairs (Node_id, local_address) that is
shared among all Nodes. The first component refers to the
Node identifier and the second refers to a conventional main
memory address on that Node. Figure 3 illustrates the GAS
across the system Nodes.

Coherence-management operations typically associated
with DSM systems [20] are not required between the Nodes,
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because produced data is forwarded to consumers running
on remote Nodes. Coherence operations are only required
within each Node’s memory hierarchy and so it is managed
by the hardware on symmetric multi-cores.

The mapping of the program data into the GAS depends
on the assignment of the program threads. The data of each
specific invocations of a thread is mapped to the part of the
GAS belonging to the Node where this invocations is sched-
uled to run. The movement of data between producers and
consumers running on different Nodes during the execution
is managed automatically by the DDM-vm without the Need
for programmer intervention of the.

A number of runtime calls facilitate the allocation and
release of the data in the GAS. The calls also abstracts
the distribution and gathering of data among the Nodes.
These calls invoke the services of the NIU to move the data
between the main memories of the Nodes.

Data forwarding: DDM-vm employs Data Forwarding
[19], [13] for tolerating data communication latency across
the Nodes. When a producer thread executes Data forward
command the produced data is send immediately to the
remote Node where the consumer thread is scheduled to
execute. This increases the chances of tolerating the com-
munication latency and eliminates the need for remote read
operations. Thus, resulting in reducing the total communi-
cation cost since remote read operations are usually more
costly that remote write operations [14].This also eliminates
coherence management operations as previously mentioned.

The forwarding of data completes before decrementing the
RC of the consumer thread. Consequently, when a thread RC
reaches zero, its data is guaranteed to reside in the main
memory of remote Node.

The DDM-vm supports threads that produce data con-
sumed by multiple remote consumers running on different
Nodes. In this case a list of output addresses is provided
(instead of only one) and the DDM-vm forwards the data to
all the locations in the list by creating an FT entry for each
remote address.

5. Evaluation
In this section we present the evaluation of the

single-Node execution on symmetric multi-cores and the
distributed/multi-Node execution both for symmetric multi-
cores and the Cell processor. The evaluation of the single-
Node execution on the Cell processor is presented in [1].

5.1 Experimental Setup
For the evaluation of the distributed execution we used

three clusters each connected using an off-the-shelf Gigabit
Ethernet switch. Technical information are listed in Table 1.

The characteristics of the benchmark suite are shown in
Tables 2 and 3. The applications used for evaluating the

two implementations are the same, However, some of their
characteristics differ, such as the granularity (the average
dynamic execution time of the application threads) due to
the vectorization of the computational kernels in the case of
the Cell and the fact that the code is compiled with different
compilers. Moreover, the symmetric multi-core system has
more main memory compared to that on the PS3, which
enables us to use larger input sizes.

5.2 The symmetric multi-core single-Node eval-
uation

We executed the benchmarks for the large input size and
the 64x64 granularity. Figure 4 depicts the speedup results.
The baseline for the speedup is the best sequential (non-
DDM) execution among all the granularities. Note that the
maximum possible speedup is 11, since we reserve one core
out of the 12 cores for the execution of the TSU.
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Fig. 4: Symmetric multi-core single-Node speedup

The results demonstrate that overall, the system scales
well over the range of the benchmarks and achieves - when
utilizing all the cores - an average speedup of 9.6 out of 11,
which indicates the efficiency and scalability of the system.

5.3 Distributed symmetric multi-core execution
The benchmarks we executed contains applications with

little communication during the execution (Conv2D, IDCT
and MatMult, Trapez), and ones with heavy inter-Node
communication (LU and Cholesky). For all the benchmarks
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Table 1: Experimental setup
Configuration Nodes Processors per Node Memory per Node O.S. Network

Homogeneous System 1 2 2 x Six-Core AMD Opteron(tm) Processor 2427 32 GB Ubuntu Linux 2.6.31 Giga-bit Ethernet
Homogeneous System 2 4 Four-Core AMD Phenom(tm) II X4 B95 Processor 4 GB Ubuntu Linux 2.6.31 Giga-bit Ethernet
Heterogenous Sony PS3 4 One+Six-Core Cell Broadband Engine 256MB Fedora Linux 2.6.23-r1 Giga-bit Ethernet

Table 2: The benchmarks suite characteristics - DDM-vm on Cell
Benchmark Description Average Granularity of Benchmark Threads Problem Size

Granularity Execution Time Large XLarge XXLarge
MatMult Blocked Matrix Multiplication 64x64 block 22.1µs 2048x2048 3072x3072 -
Cholesky Blocked Cholesky Factorization (vectorized) 64x64 block 22µs 2048x2048 3072x3072 -

Cholesky-S Blocked Cholesky Factorization (scalar) 64x64 block 8.2ms 2048x2048 3072x3072 -
LU Blocked LU Decomposition 64x64 block 1.82ms 2048x2048 3072x3072 -

Conv2D 9x9 convolution filter 64x64 block 48.11µs 2048x2048 3072x3072 4096x4096
96x96 block 107µs

IDCT Inverse Discrete Cosine Transform 64x64 block 98.8µs 2048x2048 3072x3072 4096x4096
Trapez Trapezoidal rule for integration variable variable 675K steps 5400K steps 10800K steps

Table 3: The benchmarks suite characteristics - DDM-vm AMD processor
Benchmark Description Average Granularity of Benchmark Threads Problem Size

Granularity Execution Time XLarge XXLarge
System-2 System-1

MatMult Blocked Matrix Multiplication 64x64 387 µs 528 µs 4096x4096 8192x8192
128x128 3333 µs 4540 µs

MatMult Blocked Matrix Multiplication - Coarge-grained 64x64 7250 µs 8436 µs 4096x4096 8192x8192
128x128 28500 µs 36350 µs

Cholesky Blocked Cholesky Factorization 64x64 134 µs 182 µs 4096x4096 8192x8192
128x128 916 µs 1240 µs

LU Blocked LU Decomposition 64x64 380 µs 520 µs 4096x4096 8192x8192
128x128 2918 µs 3975 µs

Conv2D 9x9 convolution filter 64x64 626 µs 855 µs 4096x4096 8192x8192
128x128 2500 µs 3416 µs

IDCT Inverse Discrete Cosine Transform 64x64 12 µs 17 µs 8192x8192 16384x18384
128x128 49 µs 68 µs

Trapez Trapezoidal Rule of Integration variable variable variable 675M steps 1350M steps

working on matrices we have used blocks of 128x128. In
our experiments we utilized 1, 4, 8 and 11 cores per Node
for System-1 cluster, which resulted in 2, 8, 16 and 22 total
cores in the system, respectively. One core per Node is used
as the TSU. For the System-2 cluster we utilized 1, 2 and
3 cores per Node, which resulted in 4, 8 and 12 total cores,
respectively (remember that we always reserve one core for
the TSU execution and thus the maximum number of utilized
cores is 11 on the 12-core machine and 3 on the 4-core
machine). We have used two input sizes per benchmark.
Figure 5 illustrates the speedup results for both clusters.

The results show that for the largest input size the system
achieves an average of 80% and 84% of the maximum
possible speedup for the System-1 and System-2 clusters,
respectively, which is a very good result. Analysing the
results further, it is clear that as the input size increases
the system scales better. The average speed-up utilizing all
the cores is 13.1 out of 22 for the smaller input size and 16
out of 22 for the larger input size for the System-1 cluster.
The average speedup on the System-2 cluster is 8.9 out of
12 for the smaller input size and 9.5 out of 12 for the larger
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Fig. 5: Distributed symmetric multi-core execution (System-
1 left, System-2 right) - Speedup

input size. This is expected as larger problem sizes allow for
amortizing the overheads of the parallelization. The results
are summarized in Table 4.

Input sizes and granularities (compared to single-Node
execution) need to scale as the distributed system scales.
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Table 4: Distributed symmetric multi-core execution results - Summary
System-1 Cluster System-2 Cluster

Smaller Input Size Larger Input Size Smaller Input Size Larger Input Size
Average Speedup Percentage 74% 80% 79% 84%
Average Speedup (utilizing all cores) 13.1/22 16/22 8.9/12 9.5/12

The Cholesky benchmark yields the least performance as its
threads exchange data heavily across the Nodes and so it
is affected to a great extent by the large latency of the the
network. The LU benchmark similarly has a heavy inter-
Node data exchange, however, because its threads have a
larger granularity compared to Cholesky’s (for the same
block size), the TSU has a better chance of overlapping the
network latencies, thus yielding better performance.

5.4 Distributed execution on the Cell processor
For the evaluation of distributed on the Cell processor

execution we used a cluster of four PS3 Nodes. We used the
same benchmarks as in 5.3. For all the benchmarks working
on matrices we have used blocks of 64x64 except for the
Conv2D benchmark in which we used 96x96 blocks. For the
Cholesky benchmark we used scalar computational kernels
instead of the vectorized ones as the latter proved too fine-
grained for the application to scale. We denote the version
using the scalar kernels as Cholesky-S. In our experiments
we have utilized 1, 2, 4 and 6 SPEs per Node, which resulted
in 4, 8, 16 and 24 total SPEs in the system, respectively.
Moreover, we have used two input sizes per benchmark.
Figure 6 illustrates the speedup results.
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Fig. 6: Distributed execution on the Cell processor -
Speedup (left), GFLOPs performance results for MatMult
and Conv2D (right)

The results show that for the largest input size the system
achieves an average of 80% of the maximum possible
speedup for all the benchmarks, which is a very good result.
Similar to the results in 5.3, the system scales better as

the input size increases as this allows for amortizing the
overheads of the parallelization. The average speedup (on
all the benchmarks) utilizing all the SPEs is 13.4 out of 24
for the smaller input size and 16.54 out of 24 for the larger
input size.

As noted in 5.3, compared to single-Node execution,
larger input sizes (on all the benchmarks) and larger granu-
larities (on Conv2D and Trapez) are needed for the system
to scale due to the additional latencies introduced by the
network data and synchronization messages transfer.

Figure 6 reports the GFLOPs performance results for
the two computationally intensive benchmarks MatMult and
Conv2D.

The results illustrate that utilizing all the SPEs on the four
Nodes the system delivers an impressive 0.44 TFLOPs for
the MatMult benchmark and 178 GFLOPs for the Conv2D
benchmark, which demonstrates the efficiency of the dis-
tributed execution on the Cell.

6. Related Work
Star Superscalar (StarSs) [4], [17], [18] is a parallel pro-

gramming platform that targets symmetric multiprocessors
and multi-cores, the Cell processor and GPUs. It schedules
annotated tasks at run-time based on data-dependencies.
StarSs focuses on the ease of programmability and portabil-
ity and utilizes a source-to-source compiler and a number of
runtime libraries. Unlike the approach adopted by our work,
where we build the dependency graph statically if possible,
StarSs always builds its task dependency graph at run-
time which incurs extra overheads. Performance comparison
between the DDM-vm and the Cell implementation of the
StarSs platform can be found in [2].

Open Multi-Processing (OpenMP) [5] is a widely-utilized
parallel programming API that supports shared-memory
programming. OpenMP traditionally targets loop-based par-
allelism, but the standard was recently extended with the
concept of tasks to accommodate irregular applications.

OmpSs [6] is a variant of OpenMP that incorporates
ideas from StarSs to support asynchronous task parallelism
on clusters of heterogeneous architectures. It emphasizes
programming productivity and uses a compiler/runtime ap-
proach to move data across a disjoint address space. The
programmer annotates the sequential code with compiler di-
rectives that are translated into calls to a runtime system that
manages the parallelism extraction and data coherence and
movement. The information provided by the programmer is
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used by the runtime to distribute the work across the cluster
while optimizes communications using affinity scheduling
and caching of data.

The Message Passing Interface (MPI) [9] has been tradi-
tionally the de facto for programming clusters and distributed
systems. MPI allows achieving high-performance but sacri-
fices the ease of programmability. As the programmer has to
handle all the low-level tasks of parallelism (partitioning of
data and computations, movement of data during program
execution, coherence, etc.). This is in contrast with our
approach which automates most of these tasks.

A number of programming models have emerged, which
try to facilitate the programmability of distributed systems
by providing a global address space view of the aggregated
memories of all the Nodes in the system. Such a view
facilitates porting sequential applications and reduces the
complexity of distributed programs. Examples of such mod-
els include UPC [10], Chapel [7] and X10 [8]. Although
such systems ease the burden of the programmer, achieving
good performance still requires a non-trivial effort from the
programmer especially that the distribution of data and the
coherency are still handled by the programmer. Moreover,
such systems require the support of special compilers and
libraries.

7. Conclusion and Future Work
In this paper we have demonstrated that Data-flow concur-

rency can be efficiently implemented on distributed multi-
core systems. We have implemented DDM in heterogeneous
and homogeneous systems utilizing off-the-shelf networking
(Gigabit Ethernet). The evaluation analysis have shown that
the achieved results are consistent across multiple different
platforms and configurations. This further confirms that the
hybrid Data-Flow models, such as DDM, are very promising
alternative to the sequential model for distributed systems.

We believe that the DDM model can inspire the evolution
of the micro-architecture of the next generation multi-core
systems with the addition of a hardware TSU on-chip and
the use of a data-driven hierarchy of scratch-pad memories
that can replace the traditional multi-level cache hierarchy.
Such memory hierarchies will be deterministic and smaller
in size than current cache hierarchies. We have built and
evaluated a software implementation of such a system for the
Cell processor. We are currently developing an FPGA-based
distributed multi-core system in which we are introducing
these micro-architectural changes.
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Abstract— Molecular dynamics (MD) was widely used in
chemistry and bio molecules. Numerous attempts have been
made to accelerate MD simulations. CUDA enabled NVIDIA
Graphics processing units (GPUs) use as a general purpose
parallel computer chips as CPU. But it is not easy to port a
program to GPU. We present a highly extensible framework
for molecular dynamics simulation. And we discuss how
to accelerate the process of port to GPU. We introduce
how to find the performance battle and how to port the
time costly procedure to GPU. We discuss about how to
decrease the memory usage in GPU and how to improve the
maintenance of molecular dynamics simulation. At last, we
present the performance of linear and parallel simulation
with different number of molecules. Source codes can be
found at https://github.com/orlandoacevedo/MCGPU.

Keywords: Molecular dynamics; Maintainability; Reproducible

1. Introduction
Graphics processing units(GPU) originated as specialized

hardware to accelerate graphical operations. GPUs typically
handle computation for graphics, such as 3D rendering
and ray tracing. General-purpose computing on graphics
processing units (GPGPU) is to perform computation in
applications traditionally handled by the central processing
unit (CPU). OpenCL is currently the dominant open general-
purpose GPU computing language. The dominant propri-
etary framework is Nvidia’s CUDA.

The CUDA architecture is built around a scalable array of
multi-threaded Streaming Multiprocessors (SMs). It gener-
ates multiple threads on multiple processors. It uses Single
Instruction Multiple Thread (SIMT) architecture. In contrast
with SIMD vector machines, SIMT enables programmers
to write thread-level parallel codes for independent, scalar
threads, as well as data-parallel codes for coordinated
threads.[1]

Molecular dynamic(MD) is widely used in chemistry and
biomolecules. It is a compute intensive application. This kind
of application can be accelerated by GPUs. There are several
different algorithms used in MD. Several previous studies
have implemented special algorithms on GPUs. Stone et
al. introduce GPU-accelerated applications of electrostatics,
molecular dynamics, and quantum chemistry[2]. ACEMD

is a commercially licensed biomolecular dynamics software
package; it is designed for execution on a single workstation
with multiple GPUs. It appears to be most effective for
system sizes of 10K to 100K atoms[3]. Folding@home is an
early project developed on GPUs for molecular dynamics.
They worked with ATI since 2005, and they have ported
and optimized with CUDA for NVIDIA hardware. These
kernels are also deployed in OPENMM software library. [4].
NAMD is a parallel molecular dynamics code designed for
high-performance simulation of large biomolecular systems.
It scales to hundreds of processors on high-end parallel
platforms[5]. HOOMD is a freely available software de-
signed for GPU execution [6]. It speeds up of over a factor
of 30 compared to LAMMPS[7]. Elsen et al., implemented a
simple implicit solvent model (distance dependent dielectric)
[8]. Stone et al. have examined a GPU implementation
for molecular modeling[9]. Anderson et al. have imple-
mented several algorithms, including integrators, neighbor
lists, Lennard-Jones, and bond forces[10].

The BOSS program is a general purpose molecular model-
ing system that performs molecular mechanics (MM) calcu-
lations, Metropolis Monte Carlo (MC) statistical mechanics
simulations. The MC simulations can be carried out for pure
liquids, solutions, clusters, or gas-phase systems; typical
applications include computing properties of a pure liquid,
free energies of solvation, effects of solvation on relative
energies of conformers, changes in free energies of solvation
along reaction paths, and structures and relative free energies
of binding for host-guest complexes.1.

2. Challenges of Porting to GPU
GPUs offer high performance parallel computing capac-

ities. There are several difficulties in applying GPU on big
scale MD simulations.[11]. Some of the challenges are still
present after four years.

2.1 Integration with Original System
There are many MD simulation systems running on

CPU. MD simulation systems are compute-intensive sys-
tems. GPUs have a huge advantage for these kinds of
systems. Many simulation systems have migrated to run

1http://zarbi.chem.yale.edu/software.html#boss

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 539



on GPU. There are several methods to migrate current
systems on GPUs (e.g, plugin, rewrite). Porting a current
system allows a legacy code to take advantage of acceler-
ators without rewriting the entire thing. In some cases, the
effect of GPU performance improvements will be decreased
by too many data transmission between CPU and GPUs.
AMBER 11 begins to use NVIDIA GPU to massively ac-
celerate PMEMD for both explicit solvent PME and implicit
solvent GB simulations2. NAMD is a parallel molecular
dynamics code designed for high-performance simulation
of large biomolecular systems based on Charm++ parallel
objects[12]. GROMACS uses OpenMM acceleration library
and plugins to run simulations on GPU[13]. LAMMPS use
Geryon library to support GPU. It also allows portability
to AMD accelerators, CPUs, and any future chips with
OPENCL support[2].

2.2 Scale
Algorithms used for MD are traditionally evaluated based

on how they scale with the number of atoms being simulated.
GPUs have enough compute units to handle small or medium
sized proteins.

One problem is how to increase the number of atoms
that a GPU can simulate. It needs lots of memory to
store atom states before computing. In order to compute
in GPU, it needs another copy of data. These halve the
maximum computable number of atoms in theory. In a big
simulation process, the target can be divided into smaller
areas and simulate by serial. But status of all atoms should
be generated and stored at the beginning. Virtual memory
can help avoid the shortage of memory; it stores big arrays
in disk instead of physical memory. But it delays the transfer
between memories to CPU.

Another problem is how to make several GPUs work
together in one simulation process. GPU could not commu-
nicate with other GPUs directly before 2010. For example,
If GPU in node A(GPU-A) need to communicate with GPU
in node B(GPU-B). GPU-A needed to pass the data to a
CPU in the same node(CPU-A). The CPU-A send the data
to a CPU in another node(CPU-B). Then the CPU-B would
transfer the data to GPU-B in node B. Most popular method
divides the computing to several tasks run on different CPU.
Communication between GPU and CPU should be kept to a
minimum. NVIDIA provide GPUDirect; it adds support for
peer-to-peer communication between GPUs through Infini-
Band cards. Using GPUDirect, 3rd party network adapters,
solid-state drives (SSDs), and other devices can directly
read and write CUDA host and device memory, eliminating
unnecessary system memory copies and CPU overhead.

MGPU is a C++ programming library targeted at single-
node multi-GPU systems[14]. Such systems combine dispro-
portionate floating point performance with high data locality

2http://ambermd.org/gpus/

Fig. 1: Input/Output of MC Simulator

and are thus well suited to implement real-time algorithms.
They have a speed-up of about 1.7 using 2 GPUs and reach
a final speed-up of 2.1 with 4 GPUs.

3. Design
The simulator is used to find a stable state of molecules

in solvation box. The core theory of the simulation about
solvation is that the energy will keep decreasing until a
stable state during the movement of molecules. The process
is shown below:

1) Initialization of simulator: This step places a given
number of molecules in a box. The position and angle
of molecules are generated at random.

2) Calculate energy of all molecules: This step calculates
the energy of all molecules.

3) Random movement of molecule: This step chooses one
molecule at random. Then it moves and rotates the
selected molecule.

4) Calculate new energy after movement: This step cal-
culates the energy of new state.

5) Judgment of movement: If the new energy is less than
the old energy, then the movement is acceptable, use
the new state to continue. If the new energy is larger
than old energy, then it has a little possibility to accept
it.

6) If the simulation step is less than given step number,
go to step 2.

The first step is to find which part is most time costly.
GNU gprof is a profiler tool on Linux. It can find where the
program spent its time and called times of each functions.
It inserts code at the beginning and end of each function to
collect timing information. After the program is complied
with special option (-pg), the program will generate infor-
mation needed for gprof. Simply run the program as usual;
it will generate the performance data and write it into a file
called ’gmon.out’. gprof can interpret the data and output
a table listing the function name, call times and time used.
From these, we can find that the calculation of energy is a
compute intensive task.

3.1 Object Oriented
With compiler nvcc provided by NVIDIA, we can compile

source codes including the host code and device code. For
the host code, nvcc supports full features of object oriented
designs. But for the source code that runs on device, nvcc
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supports features of data aggregation class and derived class.
It does not support run time type information (RTTI) and the
C++ standard library. Seiller et al. present an object oriented
framework for GPGPU-based image processing[15]. They
created an interface for classes used in GPU and imple-
mented different classes on CUDA and GLSL. MinGPU
proposed a general purpose computation library based on
object oriented framework[16]. But they do not support
object oriented.

To compare simulation results and performance improve-
ment, we implement serial and parallel methods to simulate
the random movement of molecules. These two methods
share most source codes runs on CPU, and the parallel
simulation runs on GPU to calculate the energy of molecules.
We want to apply the object oriented design during de-
velopment. We implement GPU acceleration in C++ and
CUDA. We have more experience in C++ than CUDA. So we
implement a C++ version simulator without parallel. Then
we add CUDA code to implement parallel compute on GPU.
To make it easy to maintain and develop, we wanted to

1) minimize the amount of coding required
2) simplify the methods to port different algorithm to

parallel
3) use same input files and get same results with two

versions.
As shown in Figure 2, we use class BoxState to store all

states of atoms including atom position, angles, and bonds.
Class Calculator computes the free energy of a given state.
Class generator moves molecules in the box and decides
if the movement is acceptable. Simulator initiate the state
of BoxState and calls Generator repeatedly by the given
steps. All of these classes work together to simulate molecule
solution in the box on CPU. We reuse class BoxState and
Generator in the GPU version. Class used in GPU cannot
be derived from class used in CPU. So class GPUBoxState
is not the subclass of BoxState; it depends on BoxState.
The class allocates memory in GPU and stores states in
it. It creates a BoxState object to save states in CPU and
synchronizes the data to GPU. The class GPUBoxState is
just a wrapper of BoxState; all states of atoms are saved
in BoxState. Many functions are reused just like the linear
method, such as save/load atom state from disks and move
molecules.

3.2 Memory model
There are 6.02*1023 molecules in 1 mol of water. The

maximum system size that can be treated with the GPU
is limited by the memory size. The CUDA programming
model assumes that both the host and the device maintain
their own separate memory spaces in DRAM. In particular,
Langevin temperature regulation and the use of larger cotoffs
for the effective Born radii calculations increase the memory
requirements. By using AMBER, Tesla C2070 with 6.0 GB
GPU memory can treat 54,000 atoms[17].

Fig. 2: Class structure of the Simulator

Name Description size
molecule state of molecule, pointers to atoms and other struc-

ture
72

atoms position and type of atoms in molecules 56
bonds bond between 2 atoms 24
angles angle of 2 adjacent atoms 24
dihedrals the angle created by two planes 24
hops atom pairs and their node distance(hops) away from

each other
12

Table 1: Data Structure size

In our simulation, we need store molecule state, including
atoms, bonds, angles, dihedral, and hops. We list the size of
each structure in Table 1. As for a water molecule, it needs
5 atoms (2 are dummy), 4 bonds, 3 angels, 2 dihedrals, and
2 hops. The memory usage can be calculated by Formula 1.

Memmolecule =
∑

(sizeitems ∗ numitems) + sizemolecule

= 5 ∗ 56 + 4 ∗ 24 + 3 ∗ 24 + 2 ∗ 24 + 2 ∗ 12
+ 72

= 592

Memsimulator =Memmolecule × nummolecules

(1)
To simulate 10,000 molecules (50,000 atoms), it needs

5,920,000 bytes. In our simulation, the atom is the most im-
portant element during computing. It stored the 3-dimension
position, sigma and epsilon used in LJ calculations. The an-
gles and hops between atoms may change in the real world,
but in a simplified model, we can assume the molecules
move as a whole, which means bond, angle, dihedral, and
hop are equal within all molecules of the same kind. By
merging all of these items into one block and having all
molecules point to it, we can get a simplified memory usage
formula 2. To simulate 10,000 molecules (50,000 atoms),
it needs 3,520,000 bytes, about 3.36GB. It decreases 40%
of the memory usage. This optimization does not affect the
compute efficiency. Because the relative position of atoms
in one molecule is same, we can also save position informa-
tion in the molecule instead of atoms. To simulate 10,000
molecules (50,000 atoms), it needs 2,560,000 bytes, about
2.44GB. This optimization has bad influence on compute
speed, because it needs to calculate the position of each
atom before use them.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 541



(a) Memory model of molecules

(b) Optimized Memory model

Fig. 3: Memory Model for Simulation

Memmolecule =
∑

(sizeatom ∗ numatom) + sizemolecule

= 5 ∗ 56 + 72 = 352

Memsimulator =Memmolecule × nummolecules + sizeitems

(2)
The CPU and GPU memories are in different address

spaces. This means data must be synchronized between dif-
ferent address spaces. CUDA provides APIs to copy memory
between CPU and GPU, but it is a big performance penalty
for these synchronizations. Applications should strive to
minimize data transfer between the host and the device.
To avoid performance penalty, we identified the changed
data during the computation in GPU, and synchronized the
changed part. In each procedure of the energy computation,
only one atom changed, so what we need is to copy single
atom information to GPU, and copy energy results back
to CPU memory. Because of the overhead associated with
each transfer, many small transmissions are combined into
a single large transfer.

In the inner calculating of MD, it uses a molecule i and
loops over all molecules j to calculate the minimum image
separations. If molecules are separated by distances greater
than the potential cutoff, the program skips to the end of
the loop. One method is to create a neighbor list for each
atom. The list is quite large, and it consists of dimensions

Fig. 4: Neighbor searching in Rubik’s Cube structure

roughly 4πr 3ρN/6. Meanwhile it spends lots of time on
computing the distance of each pair. We use a cube structure
to store the neighbor relations between different atoms. We
divided the box into small cubes according to the cutoff size.
We can judge which cube hte atoms are in simply by their
positions. As shown in Figure 4, if an atom in the central
cube(red), we only need to check the atoms in the adjacent
ones(yellow) and catercorner ones(blue and green). Assume
the molecules distribute equably in the box, the number of
atoms in each cube is roughly equal. We can use a list to
store the atoms in each cube and map the 3-D cube into a
linear data structure. The cube structure can be set up and
used rapidly. The search operation allows the programmer
to find neighboring atoms within 26 other cubes. The GPU
is not used to speed up the search for an individual atom,
but instead it is used to run multiple searches in parallel.

3.3 Improvement of Maintainability
The MD simulation tries to find the most probable dis-

tribution of molecules. This means an outcome will occur
in a proportion of the time it occurs over the long run
- this is the relative frequency with which that outcome
occurs. Successful simulation using the same model will get
similar results after long run. But it is difficult to verify the
modification of the algorithm by a long run. It takes too
much time to run a whole simulation. On the other hand,
it’s difficult to say which result is better especially since the
difference is so small.

We try to find a way to make the simulation process re-
peatable. There are two steps using random process. During
the initialization of the simulation environment, we use ran-
dom numbers to place the molecules well-distributed among
the volent box. Then we use random numbers to choose
which molecule should move and how it will move (position
and rotation). We must generate the same random sequence
to get the same simulation result. For the initialization of
molecule position, we can write the state of each molecule
into a state file which is used to initialize the state of other
simulation. This makes all the simulations begin with same
states. A random seed is a long integer used to initialize a
pseudo random number generator. Random seeds are often
generated from the state of the computer system (such as the
time). If we initialize a pseudo random number generator
by a constant seed, the random generator will generate
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Fig. 5: Illustrate of Checkpoints

the same random sequence. For the random number used
in movement, we can use the same random seed used in
the previous simulation. And in linear version and parallel
version simulators, we use the same generator class to make
sure it uses the random sequence in the same method. We
output random seeds on screen and the log file. If we want
to repeat the simulation process, then we write the state file
and random seed in the configuration file, which will get the
exact same result as the previous simulation.

4. Performance
We use dense memory cluster (DMC) in Alabama super-

computer center[18]. The DMC has 1800 CPU cores and 10
terabytes of distributed memory. The DMC has sixteen GPU
(Graphic Processing Unit) chips. These are a combination of
two Tesla S1070 units (external GPUs connected in pairs to
four DMC nodes) and four DMC nodes configured with a
pair of Tesla M2070 cards each. These multi-core GPU chips
are similar to those in video cards, but there are installed as
math coprocessors. This can give significant performance
advantages for software that has been adapted to use these
processors. Thus the processing capacity of the DMC cluster
is: single precision GPU capacity is 18.6 TFLOPS and
double precision GPU capacity is 4.8TFLOPS. The job that
runs on GPU can use a max of 120GB memory in large
serial mode.

4.1 Memory usage
We moved all memory allocation and free memory into

BoxState class and GPUBoxState to manage all memory
used in GPU. Before the modification, the memory increases
with atom number and simulation steps. After the modifica-
tion, the memory only depends on the number of atoms as
shown in Figure 6.

4.2 Development productivity
Unfortunately, it is hard to find a metric to measure

the Eventual Efficiency of the design. One metric is how
many codes one developer can produce per hour. But for
this project, most source codes can be reused. Function

(a) constant molecule numbers

(b) constant steps

Fig. 6: Memory usage under different conditions

oriented designs may create more source codes than object-
oriented. It saves succeeding developer work hours because
the solution is easy to comprehend and reuse. With the
improvement of maintainability, the correctness of extension
and modification can be verified in a few minutes with
previous input and output files. It saved many times in the
test.

4.3 Performance Improvement
After modifying the search method for neighbor, the

time complexity of search algorithm was optimized from
exponential growth to linear growth. It is 90% faster after
modification as shown in Figure 7.

5. Conclusion
In the paper, we present a framework to accelerate the

developing process of porting MC simulation to graphical
processing units. The implementation runs on single NVIDA
GPU using CUDA program model. In this contribution,
we described how to distinguish which part is time-costly.
And we discussed how to port these codes to GPU with
less program work. We also improved the memory model
to make it capable of simulating large systems. Another
contribution is that we found a way to make the simulation
process repeatable. This modification makes it easy to verify
future extension and enhancement.
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(a) constant molecule numbers

(b) constant steps

Fig. 7: Performance improvement under different conditions

Limited by the memory size, it can only simulate 54,000
atoms in one GPU. By using MPI, it can simulate large
systems by running on different GPUs. There are some limits
in our simulation; we did not change the related distance and
angle of atoms in one molecule.
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Adding semi-coordinated checkpoints to RADIC in Multicore
clusters
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Abstract— Fault tolerance strategies should be adapted
to current High Performance Computing with a growing
number of processors.

RADIC is a fault tolerance architecture based on pes-
simistic protocol based on receiver that follows a distributed
behavior for protection and recovery. This protocol is effec-
tive in recovery, however, it introduces more overhead than
others in protection.

In multicore clusters, the latency added to protect mes-
sages between processes executing on a node, is increased
due to the differences between intra-node network bandwidth
and the inter-node one. When Coordinated checkpointing
is used to save the state of the processes in a node,
the overhead is reduced in not logging the those internal
communications.

A semi-coordinate checkpoint protocol is proposed in this
paper. It combines the received-based pessimistic protocol
with coordinated checkpoint. An overhead description is
exposed to find out which message passing parallel appli-
cations are benefited using this alternative protocol. Exper-
imental results using SPMD and MW compare the behavior
of both protocols.

Keywords: Fault-tolerance; High-Availability; RADIC; message
passing; socket

1. Introduction
High Performance Computing systems are evolving by

adding multicores to their nodes. As a consequence, the
probability of having node failures increases and fault tol-
erance solutions are used to assure the parallel application
ends successfully in spite of such failures. However, the
demand of more performance and availability drives to
adapt fault tolerance strategies to multicore and manycores
architectures.

Fault tolerance rollbackrecovery protocols were explained
and classified by Elnozahy [1]. One of the most used
approaches is the coordinated checkpointing, although it is
not advisable to scale to a large number of processes because
it usually has a high coordination cost and whole processes
would have to rollback in case of failure.

RADIC [2] [3], a fault tolerance architecture for parallel
applications, was designed to be distributed to not interfere
with the scalability of the application being protected. As

a general rule, a centralized component might add more
than a proportional overhead when the number of processors
increases reducing then the speedup and the scalability.

The receiver-based pessimistic rollback-recovery protocol
combined with uncoordinated checkpoint was adopted by
RADIC because it accomplishes the distributed requirement
during protection as well as in recovery phases. This design
was made for cases that use one process by node [2].

The guaranty of successfully ending an execution in spite
of failures has a performance cost or overhead. This cost
has two parts. On the one hand, the overhead added during
protection, also known as failure-free operations, and on the
other hand, the overhead of the tasks of recovery phase.

The analysis of the cost of recovery done in [4] concludes
that receiver-based pessimistic protocol presents the lowest
overheads in recovery time, however, it is expensive in
failure-free operation.

The overhead added by receiver-based pessimistic pro-
tocols in protection is caused by the time of logging each
received message in stable storage. Consequently, the latency
of send is theoretically duplicated since at least two hops are
needed, one, to arrive to the receiver and the second to reach
the stable storage located on a different node.

Moreover, when the sender and the receiver are hosted on
the same multicore node, the latency added to protect the
message is dramatically increased due to the differences be-
tween intra-node network bandwidth and the inter-node one.
As a consequence, the performance drawback of received-
based pessimistic message logging is even more noticeable
in multicore systems.

Processes executing on the same node, which we named
group, are related by failure probability [5]. Using coordi-
nated checkpointing among the members of the group would
save the cost of logging the received messages interchanged
among them. Nevertheless, a coordination is required to
avoid in-transit for obtaining a consistent recovering line
free of orphan messages.

This paper presents a semi-coordinated protocol which
minimizes the overhead added by the receiver-based pes-
simistic protocol during protection but keeping the dis-
tributed behavior. It consists in using coordinated check-
points among the members of the groups combined with
receiver-based pessimistic message log for communications
done between processes hosted by different nodes. The
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content of this paper is organized as follows. In Section II
we mention the related works. Section III describes the fully
uncoordinated rollback recovery protocol currently used in
RADIC designed at socket level [3] [6].

The Section IV explains how the semi-coordination proto-
col is added to RADIC obtaining a new model for protection
and for recovery. The experimental evaluation is presented
in Section V, and lastly, we state the conclusions and the
future work in Section VI.

2. Related Works
The combination of using coordinated checkpointing to-

gether with message logging has been already used in
previous researches. A correlated set coordination among
processes executing on the same multicore node combined
with pessimistic message logging is presented in [5]. In
this work a coordinating among processes in a node is
done and also it is combined with a pessimist message log
but based on sender. A different coordination protocol and
the validation and experiments were done using Open-MPI
while we are using RADIC at socket level [3] [6].

The research work [7] proposes a hybrid protocol com-
bining coordinated with uncoordinated checkpoint. As it
is targeted to grid environment, the criteria used to group
processes is based on the network and the communication
pattern to determine the kind of checkpoint that would be
done. To obtain a global consistent state for the group,
Communication Induced checkpoint (CIC) combinated with
a pessimistic message logging. Using CIC for coordination
might be not scalable for highly coupled processes since the
number of forced checkpoints grows uncontrollably.

Group-based coordinated checkpoint is stated in [8]. In
this case, not message-log is used thus, a complete coordi-
nation is needed for recovery. It is applied to MVAPICH2.

A combination of coordinated checkpoint with message
log is proposed in [9], as a way to scale the most extended
strategy of coordination of the whole processes. However,
the criteria for grouping the processes is based on the
communication behavior. A trace is done to give support
on the creation of groups. Our approach uses the location of
the processes to coordinate them as a unique set of processes
but the user can also configure a different frequency of
checkpoint for each process. In that case, the groups are
formed with processes on the same node and with the same
of frequency of checkpoint. Using this configuration, the
user would give a more accurate checkpoint interval for each
group according to the communication pattern of the parallel
application.

3. Fully Uncoordinated RADIC Model
This section explains the receiver-based pessimistic mes-

sage log followed by RADIC. We begin with a brief of the
architecture and how it works at socket level. Then, the

protocol is described by separating the procedure done in
protection from the followed in recovery. On both cases we
focus on describing the overheads of each step.

3.1 RADIC-based Message Passing Fault Tol-
erance System

RADIC has a distributed behavior in protection, detection
and recovery phases. It uses uncoordinated checkpointing
and receiver-based pessimist message log. Critical data like
checkpoints and received messages of each parallel process
are stored on a different node from the one in which it is
running. This selection assures the execution completion if
a minimum of three nodes are left operational after n non-
simultaneous faults. RADIC applied at socket layer would
let fault tolerance parallel applications using different kind
of message-passing libraries, which usually use the standard
Socket API [10] for interconnection of the processes. There
are two components also depicted in Figure 1:

• Observer (Oi): this entity is responsible for monitoring
the application’s communications and masks possible
errors generated by communication failures. In RADIC
at socket level, the observer intercepts send and recv
functions to follow the message log protocol. The
state is saved periodically by checkpointing. Critical
data for recovering formed by received messages and
checkpoints are sent to the protector Ti-1. There is an
observer Oi attached to each parallel process Pi.

• Protector: (Ti) There is one on each node protecting
the processes running on node Ni+1. It stores the
critical data sent by the observers. In case of failure,
the protector restarts the failed process using the last
checkpoint. Protector detects node failures by sending
heartbeats to its neighbors and by the detection of
sockets errors.

Fig. 1: RADIC diagram shows each observer Oi sends the
critical data to its protector Ti-1. Each protector Ti sends
heartbeat signal to Ti-1

The observers use five types of sockets to keep the control
and reliability of their communications which are depicted
in Figure 1. First, the virtual socket is the id known
by the process to communicate with a remote peer, are
the solid black arrows that connects P6 and P7 with its
observer. Second, the real socket represented by a solid
yellow line is the one that is actually connected with the
peer, since the original connection could be broken after
a checkpoint or a failure. Third, the control-ft socket,

546 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



depicted using a blue dotted line, it is an internal socket
opened by two observers involved in a communication to
interchange control information during re-connections and
message logging. Then, dashed lines are RADIC-sockets
used between Oi with Ti-1 and lastly, dotted black lines are
used by each protector Ti to answer Oi the state of Ti-1 in
case of failure.

3.2 Receiver-based pessimistic Protocol in Pro-
tection Phase

A receiver-based pessimistic rollback recovery protocol
let recover the state of each process until the point of
failure. It adds more overhead than others like optimistic or
causal approaches during the protection tasks but simplifies
the recovery procedure because the effects of a failure are
confined only to the restarting processes [4] [1]. Usually, it is
used with uncoordinated checkpoint to decrease the rollback
time in case of failure.

Receiver-based pessimistic rollback recovery protocol as-
sumes that all nondeterministic events are identified and their
corresponding determinants are logged to stable storage.
Receiving a packet is considered a nondeterministic event
to log. Thus, this is solved interposing recv socket function
and sending the received message to the protector afterwards.
But pessimistic logging protocols are designed under the as-
sumption that a failure can occur after any nondeterministic
event in the computation. This assumption is “pessimistic”
since in reality, failures are rare [1] and stipulates that if an
event has not been logged on stable storage, then no process
can depend on it. Because of that, a sender of a message
waits until the complete sent message is saved in stable
storage to validate it before continuing the operation. Once
a received message is completely saved on stable storage,
an acknowledgment is sent to the sender.

The Figure 2 shows how a message is treated since it
is generated from the sender process. Each step adds an
overhead which is named prefixing it with Ts- or with Tr-
depending on if they are related to the send or with recv
respectively.

1) The send(X) operation is interposed by the sender
observer Os, which sends a numerated ack requirement
to the Or using the control-ft socket. X is the length
of the message. The overhead is named Ts-ack-req.
The time used for sending the message Ts-msg it is
not considered overhead because it corresponds with
operation time performed by the process.

2) A recv(X1) operation is interposed by the receiver
observer Or. X1 is the length of the expected message.
According to the standard of recv socket function,
when X1 is greater than the X actually available, a
maximum of X would be delivered. Therefore, we
consider that the length X1 is less or equal than the
X sent. Or receives the acknowledgement requirement
on a Tr-ack-req time.

3) Or receives the X bytes from the real-socket. The
time used to receive the message Tr-msg is not an
overhead due to it corresponds to the read operation
performed by the process. The message is sent to the
protector to save it in a Tr-save-msg(X) time.

4) Or sends the acknowledgment to the Os using the
control-ft socket. Tr-send-ack is added. On the other
peer, Os receives the acknowledgment and the send(X)
finishes. Ts-wait-ack is the overhead of this wait.

5) Lastly, only if X1 is less than X, a set of recv(Xi) is
performed until X is completely read. In such cases,
Or copies the next bytes from the X bytes received
previously. The time is considered in Tr-msg(Xi).

Fig. 2: Receiver-based Pessimistic Protocol in Protection
Phase: Virtual/Real sockets: Solid lines - Control-Ft sockets:
dotted lines - RADIC sockets: dashed lines

3.3 Receiver-based Pessimistic Protocol in Re-
covery

When one of the nodes fails down, the failure is detected
by the protector which restarts the processes that were
running in failed node using the last checkpoint. BLCR
[11] library is used to do uncoordinated checkpointing and
restarting each parallel process.

The recovery procedure is carried out by the observer by
rolling forward the previous execution from the checkpoint
until the point of failure. The saved messages are using in
each re-execution of recv functions since those messages
are not going to send them again. By the other hand,
the send operations are skipped because they were done
before the failure. However, as each send has associated a
numerated acknowledgment requirement, the observers are
able to detect and to skip a duplicated message if it is
re-sent. This functionality is useful because this protocol
considers that the recovery procedure finishes when the last
message in stable storage is processed by a recv, but if the
failure happened after a send, it would be re-sent as it is not
considered part of the recovery.

The Figure 3 depicts the recovery procedure and the
overheads prefixed with Trcv- related to one of the virtual
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sockets named i. The same procedure is repeated for socket
used by the parallel process.

1) Immediately after restarting from checkpoint, the state
of recovering is detected by obtaining it from BLCR
library. Then, a connection with the local protector is
established to query how many messages are pending
to re-process for the virtual socket i. The value of
Qmsg(sv[i]) is returned. The overhead of this step is
measured with Trcv-qmsg.

2) Every send(X)(j) operation is interposed and skipped
to avoid re-send messages, j is an integer greater or
equal to 0 representing the amount of sends function
being rolling forward in this virtual socket i. X is
the length of the message. The time is measured with
Trcv-send(X)(j).

3) Every recv(Y)(k) operation is interposed and asking for
it to the local protector. The messages are delivered in
FIFO order for each virtual socket i. The recovery
procedure for the virtual socket i re-executes k recv
operation being k a value from 0 to Qmsg(sv[i]). The
overhead of each of them is Trcv-recv(Y)(k). Y is the
length of the message.

4) After re-executing Qmsg(sv[i]) recv functions, the
virtual socket i is reconnected by establishing a real-
socket with the remote peer. In this point, the recovery
procedure for this virtual socket is finished. The
overhead is Trcv-re-conn.

Fig. 3: Receiver-based Pessimistic Protocol in Recovery
Phase

4. Semi-Coordinated RADIC Model
Semi-coordinated checkpointing allows to RADIC to pro-

vide an alternative rollback recovery protocol to reduce
overheads in multicore clusters.

The performance drawback of received-based pessimist
rollback recovery protocol becomes even worst during
failure-free operations for communication between mem-
bers of a group. The latency added to log the message

is dramatically increased due to the differences in intra-
node network bandwidth and inter-node one. However, a
coordination among the members of the group, introduces
an overhead. Several algorithms have been proposed to
coordinate checkpoint like the Chandy-Lamport algorithm
[12] or the blocking coordinated [13]. The communications
have to be silenced before checkpointing to avoid in-transit
messages.

When multicore clusters are used to execute parallel
application, the processes running on the same node are
related in case of a failure since they must be restarted
and re-executed until the same point in time. As they are
being located on the same node, they are likely to having
or needing an intensive or fasting communication among
them. Therefore, a coordination checkpoint protocol is useful
because it avoids logging messages for communications
between members of the group.

RADIC protectors known which processes are executing
in its node and the observers also can identified if the
peer process is located or not at the same node. This
section explains the whole strategy used for coordinating
checkpoints among the members of groups combined with
receiver-based pessimistic protocols for communications
done between processes hosted by different nodes. First, the
changes in current RADIC model are stated. Second, the
coordination protocol used among the processes running on
the same node before checkpointing is exposed. Lastly, the
semi-coordinated checkpoint protocol is described both in
protection and in recovery.

4.1 RADIC Model changes
The proper component to carry out the coordination task

among the members of groups for not adding additional
tasks to observers is RADIC local protector. Actually, a
connection between each observer with its local protector
is established but until now it was just used just in case of
a failure. Now, it is used also for perform the coordination.
The Figure 4 represents a parallel application running on N
nodes of a Multicore cluster. Each node i has a group of
MNi members.

Fig. 4: Coordinated Groups in Multicore Cluster

Each group is coordinated by its local protector Tx to si-
lence internal communication. The received-based pessimist
protocol is kept for communications between members of
different groups. By default, RADIC would consider that
processes running on a node have the same checkpoint
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interval but, since this is a configuration value for each
process, when different intervals are configured, the groups
are formed with the processes on the same node and with
the same interval. In such cases, received-based pessimist
protocol is used for communication between processes in
the same node but with different checkpoint interval. This
configuration would be useful for cases with processes that
having different communication pattern are running on the
same node but the optimal checkpoint interval is too much
different. Moreover, as an extreme case, this functionality
let turn again to a fully uncoordinated checkpointing by
configuring different checkpoint interval for each parallel
process. In order to facilitate the explanation, it is considered
that each group in a node has the same checkpoint interval.

In addition, when a node fails, and no spare node is
available, RADIC recovery model establishes that the failed
processes are recovered in the previous node where critical-
data was saved. In such cases, the Protector Tx-1 has to be
able to recognize automatically at least two groups, the first
that is still running on node x-1, and the second one being
recovered. Although after node failure the groups are in the
same node, RADIC keeps the groups uncoordinated until
the end of execution to let move them if an spare node is
available later.

4.2 Coordinated Checkpointing Protocol
The protocol for coordinating the processes is shown in

Figure 5. Two entities are involved in this procedure. The
first is the protector Tn running in one of N nodes depicted in
Figure 4. In this node n, there are 1 to Mn parallel processes
to coordinate. The second entity is observer Onm attached
to each of member of the group. When Tn detects it is time
for checkpointing, sends a message to each. After receiving
that message, the observer stops the communication activity
in the beginning of the next send or recv function. In this
state, the coordination requirement of no in-transit messages
between processes of the group is accomplished because all
send operations are completely finished and acknowledged.
Each observer replies to its local protector Tn that it is ready
for the checkpoint. Once all the members are ready, the
Tn calls to BLCR for checkpointing each process. BLCR
executes the callback function provided by each Onm and
the checkpoint is performed. After finishing, checkpoint files
are sent to Tn-1 by Tn.

4.3 Semi-Coordinated Protocol in Protection
RADIC at socket level keeps an identification of the

remote process for each virtual socket. This information is
interchanged when the control-ft socket is established. The
identification is formed by node-id, process-id and virtual-
socket. Group-id is now incorporated to support this new
model. Using this data, the observer is able to know if the
remote peer belongs to its group or not. The group-id is
assigned in the beginning by the local protector Tx when the

Fig. 5: Coordinated Checkpointing Protocol

first communication is established between them. By default,
the value is 0.

The Figure 6 represents the procedure used by the ob-
servers when sender and receiver belong to the same group.
It is different from the explained in 2 in that the saving of the
received message in stable storage is skipped. Consequently,
both sender and receiver overheads are reduced in the time
needed to log messages, due to Or returns the acknowledge
immediately after reading the message.

Fig. 6: Protection protocol for Intra-Group Communications

Instead, when the two peers belong to different groups,
the observers still follow the protocol displayed in Figure 2.

Although the overheads are reduced by avoiding logging
messages done among groups, the execution time would not
be reduced when:

• The amount of data interchanged by each group is not
considerable.

• The application is computation bounded and most of
the time the processes are executing and not waiting
for communications results. As the communication is
overlapped with the computations, less communication
overhead does not mean less execution time.

• The overhead added by coordination protocol is more
considerable than the saving time on eliminating the
group message logging.
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4.4 Semi-Coordinated Protocol in Recovery
Semi-Coordinated checkpoint protocol changes the recov-

ery explained previously in 3.3 because in case of a node
failure, a group is rolling forward simultaneously.

The recovery protocol depicted in Figure 3 is still applied
for virtual socket between processes which do not belong
to the same group. On the contrary, virtual sockets with
members of the same group should be reconnected in the
beginning of the recovery process. The sends and receives
between members of the group are re-executed again, be-
cause the remote peer is also in recovering and no log
messages were done.

There are no considerable overhead differences in recov-
ery. The sends and receive operations for group communi-
cations now are performed instead of skipping and looking
for in storage respectively.

5. Experimental Results
We test the fault tolerance system to compare the fully

uncoordinated RADIC model with semi-coordinated one.
The experiments were executed on a cluster formed by 4

nodes Intel® Core™ i5-650 Processor 6GB RAM, Network
Gigabit Ethernet. The OS used is Ubuntu 10.04 Kernel
2.6.32-33-server.

We use heat-transfer SPMD application and a sum of
matrices Master/Worker based on TCP sockets, which follow
different communication patterns. This allows us to observe
how the different approaches behave in both cases.

There are three types of execution. First, without FT,
label No FT. Second, in failure-free to test protection phase
label Failure-Free and lastly, a failure is inject in the node
N3 seconds after the first checkpoint, named Recovery. As
there is no spare node available, the failed processes are
recovered in the node N2. The executions in Failure Free
and Recovery were done either using the fully uncoordinated
protocol and using the semi-coordinated one.

Checkpoints were done only on processes executing in
N3. As each checkpoint closes and then reconnects the
communications, using checkpoints in other processes would
disturb current experiments by adding additional overheads
not related to log messages protocols and coordination.

The diagram used for comparing both protocols are the
throughput by seconds. This metric let observe how the
overheads introduced by fault tolerance impacts in the work
effectively done by each of the processes.

The Figure 7 compares the different executions No FT,
failure-free and recovery of SPMD P5 process located on
node N3. When fully uncoordinated is used the throughput
falls down more than in semi-coordinated protocol. This
advantage makes the process to only need 2.37% more
time than the execution without FT. Instead, when fully
uncoordinated adds 9.48% in execution time. Recovery using
semi-coordinated shows a better performance as well, adding
27.49% against to 52.13% of uncoordinated case.

(a) Uncoordinated Protocol

(b) Semi-Coordinated Checkpoint Protocol

Fig. 7: SPMD Process P5 executions

In MW application, a sum of a 1000x1000 float matrix
is done. The master sends 11k to each worker to sum and
11 bytes are returned to master. Executions of a worker
hosted by failed node N3 are graphed in Figure 8. shows
that using uncoordinated protocol is slightly better than
semi-coordinated one, adding 4.49% and 33.23% in failure-
free and recovery respectively to executions without FT.
It can be seen that the overhead added by coordination
increases the execution time in semi-coordinated protocol
while no overhead is saving in messages log because only
node N1 executing master and two workers have group
communication.

(a) Uncoordinated Protocol

(b) Semi-Coordinated Checkpoint Protocol

Fig. 8: MW Worker Executions

To evaluate how the comparing results are related to the
package size in use, executions using different workloads
are done. Table 9 shows SPMD execution time in failure-free
and recovery. The heat transfer application in this experiment
is configured to make more intensive communications. It
is observed that uncoordinated protocol is better for small
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packet size. Usually, in those cases, the communication is
overlapped with computation and the overhead of logging
does not increase the execution times. Moreover, the coor-
dination of checkpointing of each group impacts on it. In
the same way, MW executions follow the same behavior.
The results are displayed in table 10. As the package size
increase, the semi-coordinated protocol is a better option for
both communication patterns tested.

(a) Uncoordinated Protocol

(b) Semi-Coordinated Checkpoint Protocol

Fig. 9: SPMD using different package size

(a) Uncoordinated Protocol

(b) Semi-Coordinated Checkpoint Protocol

Fig. 10: MW using different package size

6. Conclusions and Future Work
A semi-coordinating checkpoint protocol is added to

RADIC model as an alternative fault tolerance algorithm
to be used with parallel applications running on a multicore
clusters. The experiments show that this protocol allows to
decrease the overhead of fault tolerance. Applications using
intensive or larger group communications are the target since
they are likely to obtain a better execution time by avoiding
the logging of their intra-node messages.

This implementation is an early stage and has several
instrumentations for taking times. We plan to do several
optimizations and extending this work to standard MPI.
We are working on a set of experiments to do a deeper

comparative analysis between semi-coordinated and uncoor-
dinated checkpointing protocol using a varied packet sizes
and communication patterns.
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Abstract - Multi-core based high performance computing 
systems are available with a reasonable price. Parallel 
programming paradigm needs to be adjusted to an individual 
system. Parallel computing systems were compared in this 
paper. Electroencephalography signals were collected in order 
to measure performance of parallel computing for CPU and 
GPU based systems. A CPU based system showed better 
performance for smaller data set, while a GPU system showed 
better performance for larger data set. GTX580 processor, 
which has 512 CUDA cores, showed consistent speedup as 
input data was increased continuously. However, CPU has a 
limited speedup due to the lack of parallelism. For the FIR 
filter computation, GPU showed a good scalability, while a 
CPU system did not. The performance of GPU was better than 
CPU system slightly. 

Keywords: CPU; GPU; multi-core; High Performance 
Computing; parallel FIR filter; 

 

1 Introduction 
  Recently the high performance computing systems are 
taking a direction to multi-core based microprocessor since 
the power demands of increased clock speeds cannot be 
managed efficiently. Owing to the advanced VLSI and CPU 
design technology, multi-core systems are becoming popular 
satisfying customers’ needs. Some scientists expect the core 
counts per chip would rise as the number of transistor 
increase according to Moore’s law [1]. It is experienced that 
high performance computing (HPC) system is easy to build 
up by using basic building block of multi-core chips sharing 
memory in a single node. Clustering those basic computing 
blocks with a high speed network would be a convenient way 
to construct more powerful computing systems.  

 Programming models for parallel systems require 
different approaches. Traditionally it was common to develop 
parallel programming models for heterogeneous systems 
equipped with hybrid memory systems. Parallel library 
developers take advantage of the shared memory within a 
single node, but tried to optimize the inter-connected 
communications. Thus, a user may get good performance for 
his parallel applications using a single standardized 

programming model. A programming model for shared 
memory system is easy to control, but must overcome 
increased memory bandwidth for a large scale problem. Jin et 
al. [1] proposed a hybrid method to program multi-core based 
HPC systems combining standardized programming models. 
They also extended the OpenMP model with new data 
locality extensions to better match the more complex memory 
system. 

 GPU (Graphics Processing Units) system is a typical 
many-core system. In the beginning they were used for 
graphics processing only.  Since NVIDIA released CUDA, 
the GPU becomes GPGPU (general-purpose computing on 
graphics processing units) and more applications became 
much accessible on it. Although programming on GPU 
requires optimization to utilize the maximum potential of the 
CPU, its performance was proved to be worth to pay the cost 
for optimization. For example, 2D Discrete Cosine Transform 
(DCT) problem for a 256x256 grey image took 10 seconds on 
a CPU, but just 48 milliseconds on a CPU using an optimized 
implementation [2]. 

 There are other criteria besides performance to evaluate 
parallel programming models, such as scalability and the cost 
to performance ratio. The scale of some problems is not big to 
require an expensive supercomputer, although parallel 
programming approach would help users. Thus, it is 
important to investigate performance characteristics 
considering the cost to performance ratio. The low priced 
parallel computing system may be beneficial to a small scale 
parallel computing. 

 In this study we compare the performance of four 
different systems, a common desktop PC with a quad-core, a 
medium level work station, a low and a high priced GPU 
system. They are all easy to purchase depending on a user’s 
various circumstance. A target problem was selected from a 
bioinformatics area called analysis of electroencephalography 
(EEG) signals. The same problem was implemented for each 
system for performance measurement. Each implementation 
did not require any special skill or serious programming time. 
That is, the cost for implementation would be considered as 
similar level. 
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2 Background 
2.1 Electroencephalography signal 
 A target problem adopted in this study is to select 
correct bandwidth from electroencephalography (EEG). It is 
required to understand the concept of EEG.  EEG is the 
recording of electrical activity along the scalp. Electrical 
recordings from the surface of the brain or even from the 
outer surface of the head demonstrate that there are 
continuous electrical activities in the brain. Both the intensity 
and the patterns of this electrical activity depend on the level 
of excitation of different parts of the brain resulting from 
sleep, wakefulness, or brain diseases such as epilepsy or even 
psychoses. The undulations in the recorded electrical 
potentials are known as brain waves, and the entire record is 
called an EEG [3]. Intensity of EEG recording range from 0 
to 200 microvolt on the surface of the scalp, and their 
frequency ranges from once every few seconds to 50 or more 
per second.  The characteristics of the waves are dependent 
on the degree of activity in respective parts of the cerebral 
cortex. The waves change markedly between the states of 
emotions. Much of the time, the brain waves are irregular, 
and no specific pattern can be discerned in the EEG. 

 There are mainly five types of Brain waves: Delta waves 
(0.5-4 Hz) which are considered to be related to the deep 
sleep [4] in the adults or premature babies. It is usually found 
in the frontal region of brain in adults and posterior region in 
children. A common Theta wave (4-8 Hz) which occurs in 
children and adults when they are in emotional stress or they 
have deep midline disorders. It is found in parietal and 
occipital region. Another type of theta waves is named frontal 
midline theta. The theta waves exist during the various tasks 
which need the correlation of the increased mental effort and 
sustained concentration [5]. Alpha wave (8-13 Hz), which 
occurs in quiet resting state but not sleep, is found in the 
occipital region. Alpha waves can reflect the relaxation level 
a person is having. They are also believed to be responsible 
for the movement related brain activity. Another role of 
Alpha rhythms is to handle a perceptual processing, memory 
tasks, and emotions [4].  Beta wave (13-30 Hz) occurs in 
active and busy concentration or anxious thinking state. It is 
found in the frontal and parietal region and is related to the 
concentration level of people [6]. An increase in a beta power 
may reflect the increase of the arousal level of an emotional 
state [5]. Gamma wave (30-100 Hz) which occurs in certain 
cognitive or motor functions. It is often used for diagnosis of 
the certain brain illness [4]. 

2.2 Finite Impulse Response filter  
 A finite impulse response (FIR) is a digital filter whose 
impulse response is of finite duration in signal processing. 
This is in contrast to infinite impulse filters, which may have 
internal feedback and may continue to respond indefinitely. 
The output y of a linear time invariant system is determined 
by convolving its input signal x with its impulse response h. 
Figure 1 displays a discrete-time FIR filter of order M. For a 

discrete-time FIR filter, the output is a weighted sum of the 
current and a finite number of previous values of the input 
marked as h in Figure 1.  

 
Fig 1.  Diagram of discrete-time FIR filter design 

 The operation of FIR filter is described by Equation (1), 
which defines the output sequence Y(z) in terms of its input 
sequence X(z). 

 y[z] = ∑ [ − ]  (1) 

 One property of the FIR filter is not to require feedback. 
That is, any rounding errors are not compounded by summed 
iterations. The same relative error occurs in each calculation. 
Another property is that the filter is inherently stable. This is 
due to the fact that all the poles are located at the origin and 
thus are located within the unit circle. Generally speaking, it 
is easy to design to be linear phase by making the coefficient 
sequence symmetric. Selection of coefficients is a key step in 
designing of filters.  Most of the time filter specifications 
refer to the frequency response of the filter.  

 Applying the FIR filter to EEG signals, desired 
bandwidth of brain waves may be selected. First of all, FIR 
filter can eliminate unwanted artifact signals from the raw 
EEG signals. Figure 2 shows the original EEG signals for 
each channel. Each channel is affected by electrical noises or 
eye blinking noise. Since the magnitude of EEG signal is very 
low compared to those artifact signals, those unwanted signal 
must be removed. 

 
Fig 2. Example of original raw EEG signals 

 Figure 3 shows the result signals after applying FIR 
filter to eliminate electrical noise. The part of artifact signals 
were cleanly removed by selecting band of 4~50Hz. The 
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electrical noise is distributed around 60Hz, the FIR filter was 
able to remove noise components. 

 
Fig 3. Result signals of Fig. 2 after applying FIR filter of 
4~50HZ 

2.3 CUDA 
 Since NVIDIA introduced CUDA, a general purpose 
parallel computing and programming model became available 
to developers as an ideal tool to solve many complex 
computational problems in a more efficient way than a 
traditional model on a CPU.  CUDA comes with a 
programming environment that developers can use C 
programming language as a native to a GPU system. The 
proposed programming model exploits the maximum power 
of multi-core CPU or GPU system by deploying parallel 
technique. The challenge of multi-core system is to develop 
application software that transparently scales its parallelism to 
leverage the increasing number of processor cores. The 
CUDA programming model is designed to overcome this 
problem. 

 In CUDA programming tasks are handled by kernel 
function call. A kernel function is the function being executed 
in GPU and consists with blocks and grids. The 
computational grid consists of a grid of thread blocks. Each 
thread executes the kernel. Figure 4 shows the relationship 
between CPU and GPU. 

 The parallel kernel in Figure 4 can be executed on CPU 
either synchronously or asynchronously. Thus, GPUs are 
multi-thread computational engines based on stream 
computing. They can execute hundreds of threads 
simultaneously. That is, a CUDA process, which constructs 
the multiple of eight streams multiprocessor, executes kernel 
functions. A single stream multiprocessor consists of 32 or 48 
CUDA processors in the Fermi architecture. A single stream 
multiprocessor can execute 1,536 threads at maximum 
concurrently [7]. The construction of threads in a unit block is 
critical to the performance of CUDA programming. It is 
important to make sure the optimal construction for the best 
performance. 

  
Fig 4. Relationship between CUDA and CPU 

 
 
3 Experiment 
 Data processing time of EEG data is obviously 
proportional to the number of channels and experimental 
duration. The size of data is 17Mbytes (for double precision) 
approximately for one hour collection from a single channel. 
In this experiment the international standard 10-20 system 
was used to measure EEG signals using19 channels. The 
international 10-10 system has 71 electrodes to cover a whole 
brain. Assuming one hour of experiment duration, data size 
would be 260Mbytes and 973Mbyes approximately for 10-20 
and 10-10 system, respectively. In this paper data collection 
time was controlled so that 24.7Mbytes, 49.4Mbytes, 
98.8Mbytes, and 197.6Mbytes of data were collected. 

 The FIR filter function has been implemented for both 
CPU and GPU system.  Two main systems were used for this 
experiment.  The first system is a desktop PC equipped with 
Intel Core i5-2500 3.30GHz, which has a quad-core. This 
system also has NVIDIA GeForce GTX550 Ti 1GiB installed. 
This system runs on Window7 Enterprise 64-bit. The other 
system is a middle class server, which has a Dual Intel Xeon 
X5650 2.67GHz. The system has total 12 physical CPUs or 
24 logical CPUs permitting the Hyper Threading technology. 
This system also has a NVIDIA GeForce GTX 580 3GiB 
installed. The system runs on CentOS 6.3 64-bit. Both system 
installed Version 5.0 of CUDA driver. 

 Different parallel approaches were applied for a CPU 
system based on multicores and GPU system based on many 
cores. Total number of electrodes were distributed to each 
core similarly (or equally) for a CPU system. In this case a 
single core processed all data distributed to the core by 
deploying FIR filter. In the case of a GPU system data 
collected by a single channel is processed on to a single 
kernel function. That is, a single thread handled a single input 
data stream. For example, a single core of a quad-core CPU 
system will process data collected from 5 channels, while a 
single thread processes a single channel data by calling a 
kernel function 20-times. 
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 Firstly, the coefficient b from Equation 1 was 
implemented based on EEGLab [9] implementation. Then, 
FIR filter was parallelized separately for both of CPU system 
and GPU system. A loop unrolling technique has been used 
for optimization for both CPU and CUDA. OpenMP 2.0 was 
used for CPU parallel implementation, which required 
minimal code changes for a shared memory system. A SSE 
(Streaming SIMD Extensions) 2.0 operations were also used 
for CPU parallelism. The pseudo code of FIR filter for a CPU 
system is depicted in Figure 5. The usage of directive was 
prohibited in order to minimize variable spaces, which 
increases due to the directives under loop unrolling. At line 
07 from Figure 5 (0:6) means that seven variables from zero 
to six were used. (0:2:120 represents that variable 0 to 12 
were used for only even numbered variables.  Since the data 
was double type, two SSE instructions were processed at lines 
between 07 and 12 from Figure 5. 

 The FIR filter was translated to CUDA version of C 
language. . In the CUDA, add and multiply operators called in 
a FIR filter were translated into a single MAD (multiply / add) 
operator. Figure 6 shows a pseudo code of FIR filter for 
CUDA. The function fir_filter was executed on a CPU system 
and a kernel function was executed on a GPU system. The 
bandwidth of data communication between GPU and GPU 
was efficiently reduced by using OpenMP. The line 07 was 
optimized by substitution of MAD instructions after CUDA 
compilation options. 

 The source codes were compiled with Visual Studio 
2010 SP1 with an O3 option for code optimization. For 
CentOS system, GCC 4.6.3 was used for compilation. A 
binary code was created with the same level of optimization –
O3. The CUDA compiler nvcc was used for both systems 
with the same compiler option level. 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

#pragma omp parallel for 
for( size_t i = 0; i < eeg_data.size(); ++i ) { 
 size_t j = 0; 
 size_t size = (Y.size()/14)*14; 
 for( ; j < size; j+=14 ) { 
for( size_t k = 0; k < b.size(); ++k ) { 
__m128d sb = _mm_set_pd(b[k], b[k]); 
__m128d sY(0:6) = _mm_load_pd(&Y[j+(0:2:12)]); 
__m128d sX(0:6) = _mm_load_pd(&X[j+(0:2:12)+k]); 
sX(0:6) = _mm_mul_pd(sb, sX(0:6)); 
sY(0:6) = _mm_add_pd(sY(0:6), sX(0:6)); 

   _mm_store_pd(&Y[j+(0:2:12)], sY(0:6)); 
} 
} 
 for( ; j < Y.size(); ++j ) { 
  for( size_t k = 0; k < b.size(); ++k ) { 
   Y[j] += b[k]*X[j+k]; 
  } 
 } 
} 

Fig 5. Pseudocode of FIR filter for CPU parallelism 
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__global__ void kernel(b, X, Y) { 
int gid = blockDim.x*blockIdx.x + threadIdx.x; 
if( gid < Y_size ) { 
double sum = 0.0; 
#pragma unroll 8 
for( size_t i = 0; i < b_size; ++i ) { 
sum = b[i]*X[gid+i]+sum; 
} 
Y[gid] = sum; 
} 
} 
function fir_filter(b, X, Y) { 
#pragma omp parallel for 
for( size_t i = 0; i < eeg_data.size(); ++i ) { 
memcpy host to device; 
kernel<<<blocks, threads>>>(b, X[i], Y[i]); 
 memcpy device to host; 
} 
} 

Fig 6. Pseudocode of FIR filter for CUDA 

 

4 Result And Discussion 
 The FIR filter function has been successfully 
implemented and compiled as described in Section III. In 
order to measure correct execution times, four different 
executable files were created for a desktop PC, a server, and 
two GPU programs for both systems. Table I and II 
summarized execution times for both systems. 

Table 1. Performance measurement of CPU and GPU for FIR 
filter for a desktop (unit: milli-second) 

Data length 
x Multiples 

CPU(Intel i5-2500) GPU 

Thread 1 Thread 4 Thread 8 GTX 550 Ti 

161,890x1 1,405 379 533 351 

161,890x2 2,189 617 753 531 

161,890x4 4,021 1,133 1264 976 

161,890x8 7,429 2,175 2262 1,517 

 

Table 2. Performance Measure of CPU and GPU In FIR filter 
for a server (unit: milli-second) 

Data length x 
Multiples 

CPU(Dual Xeon X5650) GPU 

Thread 1 Thread 4 Thread 8 Thread12 Thread24 GTX 580 

161,890x1 1,632 423 280 208 270 339 

161,890x2 2,747 713 470 357 429 393 

161,890x4 5,058 1301 851 625 759 522 

161,890x8 9,431 2446 1601 1,197 1,422 820 

 
 The desktop PC supported up to four cores. Table I 
shows the execution time decreased as the number of cores 
increased linearly. The GTX 550 Ti supports 192 CUDA 
cores. According to Table I the execution on the GPU system 
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is slightly better than quad-core system. Table II summarized 
the result from a server processor, which provides 24 HT 
cores including 12 physical cores. The execution time of a 
server processor showed decreased linearly as the number of 
threads increased until 12-thread. However, the execution 
time of 24-thread is longer than the 12-thread due to the 
limited ALU functionality. The HT technique allows two 
logical cores for a single physical core; however, those two 
logical cores must share a single ALU. This restriction 
becomes speedup bottle neck for computing intensive 
problems. Since a FIR filter is belongs to a computing 
intensive problem, it experienced slow-down for more logical 
cores. GPU system installed on a server was GTX 580, which 
has 512 CUDA cores. Its performance was slightly better than 
the GPU installed on a desktop PC. It also shows slightly 
better than six-core case, but 60% slower than 12-core for 
small problem cases (161,890x1x20 and 161,890x2x20). This 
delay was caused by the same reason as shown in a desktop 
PC. However, as the problem size gets larger, GPU upbeats 
the server system. 

 Figure 7 displays the speedups of each system based on 
the Xeon X5650 single-thread, which showed the slowest 
processing time. In the case of CPU parallel implementation, 
a speedup reached up to 8-fold. However, both systems did 
not demonstrate that their performances would be better than 
the 8-fold. A GPU system on a server showed about 11-fold 
faster speedup. As the size of problem is increased, the 
speedup is also increased because more computing available 
threads are available. The speedups of GTX are higher 
compared to CPU for larger problem domains. The reason for 
this better performance is caused by wider memory 
bandwidth in a GPU processor. In the case of GTX 580, the 
speedup is worse than CPU due to the increased 
communication overhead. 
 

 
Fig 7. Speedups for GPU and CPU based on Xeon CPU 

 
 
 
 
 

5 Conclusions 
 In this paper the performances of FIR filter execution 
were compared on various machines. The input data were 
collected through EEG system, of which sample rate was 
500Hz. The EEG signals were assumed to be collected for 
5min, 10min, 20min and 40 minutes. CPU showed better 
performance for smaller data set, which were collected for 5 
min and 10 min, while GPU showed better performance for 
larger data set, which were collected for 20 min and 40 min. 
GTX580 processor, which has 512 CUDA cores, shows 
consistent speedup as input data is increased continuously. 
However, CPU has a limited speedup due to lack of 
parallelism. For the FIR filter computation, GPU showed a 
good scalability, while CPU did not. The performance of 
GPU was better than CPU, however, the difference was not 
significant due to small problem size of a FIR filter. 
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Abstract - This paper studies a numerical modeling approach 
to memory behavior by using bandwidth performance of a 
single compute-node on a Scyld Beowulf cluster. The 
CacheBench benchmark is used to obtain memory bandwidth 
values as it is implemented in simulated single and multi-
process execution on the Scyld cluster.  The polynomial curve-
fitting linear regression is the modeling approach to represent 
the memory behavior using MATLAB polyfit() function.  The 
models show bandwidth performance for each process for 
single-instance and distinct bandwidth models for multi-
instance and special cases of CacheBench.  Model accuracy 
at large problem sizes in all scenarios depict actual values 
from CacheBench programs; however, improvement on 
modeling approach in using polyfit() function is necessary to 
better represent lower problem sizes for all scenarios. 

Keywords: cluster, performance, memory, modeling 

 

1 Introduction 
   The Beowulf cluster is a parallel computer system 
conforming to the Beowulf architecture, which consists of a 
collection of commodity off-the-shelf (COTS) computers 
(referred to as “nodes”), connected via a private network 
running an open-source operating system [1]. A Beowulf 
cluster consists of a front-end machine that communicates 
with the outside world, and manages and distributes jobs to 
identical compute-nodes. The compute-nodes are connected to 
the front-end via a private network that normally uses a 
commonly available communication protocol such as Ethernet 
and/or InfiniBand for communication. Together, the compute-
nodes and associated private network form a homogenous 
environment that make-up the structure of the cluster. The 
compute-nodes are servers that are always listening for 
incoming requests and provide the necessary processing 
computational power to the assigned tasks coming from the 
front-end machine [2]. 
 

Scyld is a Penguin Computing Scyld ClusterWare6 cluster 
system that consists of a front-end machine, twenty compute-
nodes and one storage node. Throughout Scyld, the processing 
architecture is constant in all compute-nodes that consist of 
two Intel eight-core Sandy Bridge Xeon processors as shown 
in Figure 1. Both processors communicate with each other 
through the two QuickPath Interconnect (QPI) channels, and 
each processor has four Double Data-Rate 3 (DDR3) channels 
in where each channel handles up to three Dual-In Memory 
Model (DIMM) memory cards. The focus is to analyze the 

memory behavior within a compute-node in this type of 
cluster environment in order to forecast memory performance 
for different single and multi-process jobs and memory sizes.  

 
The CacheBench benchmark was utilized to measure the 

memory performance found on Scyld’s compute-nodes. 
CacheBench is a benchmark designed to evaluate the 
performance of the memory hierarchy of computer system and 
establish peak computation rate given optimal cache reuse and 
to verify the effectiveness of high level of compiler 
optimization on tuned and unturned codes [3].  CacheBench 
was launched on all compute-nodes and spawned the desired 
job size instances to the processing cores.  It consists of eight 
different benchmarks in where each computes the total 
amount of data accessed in bytes over its time of completion 
to obtain bandwidth value.  This bandwidth metric is use to 
numerically model the memory behavior for each of the 
compute-nodes. 

 
 

 
 
Figure 1. Intel Xeon Sandy Bridge Configuration at each 

compute-node [4] 
 
 

The approach to model memory behavior is to simulate 
identical job scenarios on the Scyld cluster.  Most of the jobs 
submitted consist of data-intensive, high memory load 
through MPI (Message Passing Interface) programs.  The 
considered scenarios using CacheBench are: 1) single-
instance of benchmark program with different load sizes, 2) 
multiple-instances with same load sizes, and 3) special case in 
where the first two scenarios are present at the same time.  It 
is hypothesized that by using the CacheBench benchmark 
through the many combinational scenarios, memory behavior 
representation can be obtain to better understand and forecast 
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memory performance at the single-node level by using 
polynomial curve-fitting linear regression as the numerical 
model approach for the bandwidth values representation using 
linear MATLAB function polyfit(). 
 
2 Hardware Overview 
  The Scyld cluster system consists of a front-end machine, 
twenty dedicated compute-nodes and one storage-node. 
Where all compute-nodes consist of homogenous architecture 
parts which include two Intel eight-core Sandy Bridge 
processors with hyper-threading capabilities. In effect, the 
cluster can have up to six hundred and forty processing 
workers on a single application not including the front-end 
machine. The homogenous configuration yields the 
opportunity to study and model the Scyld memory behavior to 
further understand and predict its memory performance. 
 

The two Sandy Bridge processors is the architecture 
implemented on each compute-node with a total of thirty-two 
hyper-threaded processing cores. Each core has its own Level-
1 (L1) and Level-2 (L2) cache memory. The shared Level-3 
(L3) cache has a total of 20MB and divided in eight ways to 
allocate to each processing core. At the compute-node level, 
each unit had a total of 64GB of DDR3 RAM between the two 
processors.  This represents the memory hierarchy in which 
the bandwidth values will be obtained from the different 
programs of the CacheBench benchmark. 
 

Each of the two processors is labeled with a physical 
identification number as shown in Figure 2.  Each processing 
core uses a dedicated channel to access its own partition of the 
L3 cache which is also interconnected to the two modular ring 
channels as seen in Figure 2. When modeling the performance 
of memory bandwidth within a compute-node, it is 
considering the data path between RAM memory and 
individual cache hierarchy in each processing core; as well as, 
the interface between processor and memory RAM is the 
Integrated Memory Controller (IMC) module. 

 
The IMC is one of the uncore devices which handles data 

transfer between each processing core and memory RAM for 
each processor.  Figure 3 shows the module that constructs the 
IMC and its interfaces with the Home Agent (HA) module, 
Physical Box (PBOX) module and other uncore internal 
devices in the processor.  The IMC device uses four dedicated 
channels to receive/transmit data to RAM through the PBOX 
module.  Each channel is connected to one of the dedicated 
memory counters (MC-0 to MC-3) within the IMC to capture 
memory events at each channel.   
 

The PBOX layer is a physical interconnect module that 
interfaces the DIMM channels outside the processor to the 
IMC’s memory counters.  The HA contains the processor 
target address configuration and monitoring registers for the 
memory controller.  Regardless of the memory technology, 
the HA receives memory reads and write request from the 
modular rings.  It checks the memory transaction type, detects 

and resolves the coherent conflict, and finally schedules a 
corresponding transaction to the memory controller.  It is also 
responsible for returning the response and completion of all 
requests [6]. 
 

 
 

Figure 2. Ring architecture in the Intel Xeon processor 
E5-2600 product family [5] 

 

 
 
Figure 3. The internal Memory Controller module and its 

interfaces 
 

The memory controller and HA devices communicate 
through a shared CPU bus that is shared between all uncore 
devices as seen in Figure 3.  Other uncore devices in the 
processor include the QPI and Peripheral Component 
Interconnect Express (PCIe) device from Figure 2.  As 
mentioned before, the QPI channels are the communication 
between the two processors on each node, and the PCIe is 
where the Infiniband communication is established between 
the front-end machine and each of the compute-nodes.  It is 
important in how the uncore devices interact since two of the 
devices are part of the data path between RAM and processing 
core, as well as, benefits to explain in how the architecture 
effects the memory behavior. As the programs of the 
CacheBench are executed, the data will travel between the 
hierarchy of caches and DIMMs from each IMC channels.  
The bandwidth values will indicate not only the performance 
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of cache-level paths and DIMMs, but it will include in how 
the uncore devices will react to the different scenarios used to 
model the memory behavior. 
 
3 Hardware Modeling 

  To find the numerical models that could help explain 
the memory behavior, we looked at previous research that had 
been done in modeling hardware.  Fedorova et al. [7] provided 
a useful approach that partially explained how to obtain some 
of the modeling functions and numerical linear approaches 
that were used to determine compute-node related functions.  
This approach was then implemented on [8] to model 
processor performance for scheduling modifications. 
 

The general approach of [7] is based on the number of 
Instructions per Cycle (IPC) defined in the equation (1).  The 
model consists of a function of three variables when executing 
threads in the virtual processors: The number of concurrent 
threads, N, the Miss Rate at L2 cache while executing N 
concurrent threads, L2_MR(N), and the number of perfect 
Cycles per Instruction (CPI) that hit L2 cache, with no misses, 
from N of concurrent threads,   perf_cache_CPI(N). 

IPC = 𝑓(N, L2_𝑀𝑅(𝑁) , 𝑝𝑒𝑟𝑓_𝑐𝑎𝑐ℎ𝑒_𝐶𝑃𝐼(𝑁) )       (1) 

The IPC function determines the number of instruction per 
cycle which describes the performance of the hardware for 
each task executing in a single virtual processor.  Since the 
model only describes a single thread executing in a virtual 
processor, it does not accurately model a multi-core compute-
node executing many processes. For this situation, [7] 
describes a multithreaded modeling approach that considers 
“probability of virtual processors being busy or stalled and a 
linear regression model obtained through benchmark runs”.  
The multithreaded model is described as: 

 IPC = ∑ 𝑃(N) ∗ 𝑅_𝐼𝑃𝐶(N)V
N=0                       (2) 

, where P(N) is the probability of a processor is in state N.  A 
linear regression function is then applied that is a function of 
N-number of concurrent threads and the perfect-L2-cache IPC 
achieved by V threads. The linear regression function is 
represented as:  

𝑅_𝐼𝑃𝐶(N) = 𝑓(N, perf_cache_IPC(N) )              (3) 

The model evaluation consists of determining the highest 
degree of concurrency in IPC units.  This approach is used to 
model Scyld’s memory behavior in a compute-node by the 
bandwidth performance values from CacheBench programs.  
Knowledge of the bandwidth model can help understand and 
forecast the compute-node’s availability of memory 
bandwidth in respect to the job size and the number of 
processes running in parallel.  

 

3.1 Modeling Scyld’s Memory Behavior 
 

To begin modeling memory behavior from Scyld compute-
nodes, the CacheBench benchmark was used in order to 
determine bandwidth values.  As mentioned before, 
CacheBench consists of eight benchmark programs: Cache 
Read, Cache Write, Cache Read-Modify-Write, Hand-tuned 
Read, Hand-tuned Write, Hand-tuned Read-Modify-Write 
(RMW), memcpy() and memset() from C library [3].  Each of 
the programs are used in different scenarios that simulate job 
program execution to the Scyld cluster: 1) single-instance of 
CacheBench with different load sizes, 2) multiple-instances 
with same load sizes, and 3) special cases of combinations of 
scenarios one and two.  For all instances of CacheBench, the 
benchmark was executed on all the compute-nodes of the 
cluster to run all eight programs.  The parameters of each 
instance in all case scenarios are: 
 

• DOUBLE as the data type for all test runs. 
• Five seconds per iteration 
• Once the number of times each test is run. 
• Log base 2 of the maximum problem size tested in 

bytes: CB_Memsize = between 31 and 36 
• The number of test sizes measured between powers 

of two. CB_Resolution = 2 

3.1.1 Single-Instance Memory Behavior 
 

The single-instance case consists of only one process 
running at each compute-node executing all eight programs of 
the benchmark and obtaining bandwidth values from each 
program run.  Each compute-node was tested with different 
maximum problem sizes from 231 (M=31) to the maximum 
amount of RAM at each node 236 (M=36).  As bandwidth 
values were obtained, each test run showed identical values to 
the different problem sizes throughout all the nodes.  Since the 
architecture of the nodes is homogeneous and each process 
owns all the resources, it can then be assumed that the 
bandwidth values from each of the program runs are closely 
identical throughout all the nodes.  Therefore, the values were 
averaged for each program run from all of the nodes from 
problem sizes M=31 to M=36.  Then for each problem size, 
the average approach to each program run is: 

 
𝑓avgα = 1

𝑗
∑ 𝑓𝛼𝑖
𝑗
𝑖=0                                 (4) 

 
, in where j is the total number of compute-nodes, i is the node 
number, and each program as α :{ Cache Read, Cache Write, 
Cache RMW, Hand-tuned Read, Hand-tuned Write, Hand-
tuned RMW, memset(), memcpy()}.   
 
 Figure 4 shows the average values obtained from all the 
nodes for memcpy() and memset() for problem size M = 31.  
For the memcpy() program, the high bandwidth peak 
represents the high availability bandwidth within the cache 
levels as data is being fetch in order to be copied back to 
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memory.  As the program size increases to maximum setting, 
both programs show a bandwidth convergence as the problem 
size reaches 100Mbytes.  Data size at this point becomes too 
large that occupies all of the caching and bottleneck increases 
through the IMC channels and modular rings. 
 

 
Figure 4. Single-Instance average values for memcpy() and 

memset() at problem size M=31 
 
 To represent a numerical model from the results from 
Figure 4, the polynomial curve-fitting regression is used for 
each of the programs from CacheBench.  In using the linear 
MATLAB function polyfit() generates a desired nth-order 
polynomial that can fit X-Y (Problem Size-Bandwidth) 
parameters.  It was found the polynomial models best fit of 
orders between 15 and 17.  Then from the coefficients 
obtained from the polyfit() function, each of the programs can 
be represented as: 
 

𝑓𝛼 = 𝑘1𝑥𝑛 + 𝑘2𝑥𝑛−1 + ⋯+ 𝑘𝑛+1𝑥0                 (5) 
 

, in where n is the nth-order parameter between 15 and 17, k is 
the coefficients obtained from polyfit(), and as α describe for 
(4). 
 

3.1.2 Multiple-Instances Memory Behavior 
 

The multiple-instances case consists of launching two or 
more processes running at each compute-node.  Each of the 
processes executing on the node is configured to the same 
problem size and executing its own CacheBench instance.  
For each of the problem size value, the number of process is 
increased by one after each run until reaching full utilization 
of RAM.  Since more instances of the benchmark are 
launched, it can be assumed that the bandwidth values and 
models will be lower from the single-instance cases.  This 

type of scenarios to multiple-instances simulates multi-
process programs that are designed to run on cluster systems 
using MPI.     

 
 Figure 5 shows the values obtained from using four 
instances of the Cache Write program for problem size M=34 
of each process.  For all of the processes, it can be seen that 
the bandwidth performance is identical from small to medium 
problem sizes.  However, the processes break into two 
different bandwidth groups when the problem size increases 
from 8MB.  This type of behavior is seen throughout all other 
multiple-instance cases where roughly half of the processes 
are split into two bandwidth groups. 
 

 
 
Figure 5. Four-Process values for Cache Write program at 

problem size M=34 
 
 To obtain a numerical model from the results from Figure 5, 
the polynomial curve-fitting regression will follow the trend 
of the process in splitting into two groups.  The approach is to 
obtain a model from the higher-valued bandwidth process and 
a lower-valued bandwidth process.  The rest of the processes 
will be placed to either at the high-end or lower-end 
bandwidth group since any process can either yield high-end 
or low-end bandwidth values.  Therefore, the trend of the two 
groups is: 
 

𝑓𝛼𝑖 = �ℎ1𝑥
𝑛 + ℎ2𝑥𝑛−1 + ⋯+ ℎ𝑛+1𝑥0        ;𝑃(𝑖) ≥ 0.5

𝑙1𝑥𝑛 + 𝑙2𝑥𝑛−1 + ⋯+ 𝑙𝑛+1𝑥0  ; 1 − 𝑃(𝑖) ≥ 0.5
   (6) 

 
, in where n is the nth-order parameter between 15 and 17, h is 
the coefficients for higher-valued bandwidth, l is the 
coefficients for lower-valued bandwidth, the P(i) is the 
probability of the process on higher bandwidth, and αi 
represents each individual process at each program in α.  The 
P(i) probably refers to the same probability described (2).  In 
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this case, the P(i) refers to the probability a process-i is in 
state of high-end bandwidth (probHB), and probability of low-
end bandwidth (probLB).  Then from [6], it is derived that: 
 

𝑃(𝑖) = � 𝑖𝑥 �(𝑝𝑟𝑜𝑏𝐿𝐵)𝑥(𝑝𝑟𝑜𝑏𝐻𝐵)𝑖−𝑥                 (7) 
 

3.1.3 Special Cases: Multi-Instance, Multi-problem Size 
 

In the special cases, it was designed to launch multiple 
processes grouped with same problem sizes to other multiple 
processes grouped with different problem sizes of other 
groups.  The total number of problem sizes of all process had 
to equal the maximum RAM size of the node.  Each of the 
processes executing on the node is configured to the same 
problem size in its group and executing its own CacheBench 
instance.  In all of the special cases, the one requirement was 
that the entire test runs added to maximum RAM size at each 
node.  Since the entire RAM is utilized in all of the scenarios 
of special cases, swapping occurred during execution of all of 
the programs.     

 
 Figure 6 shows the values obtained from using eight 
instances of the Hand-tuned Read program for problem size 
M=31 of each process while running another eight-process 
group at problem size at M=32 and a single-process at 
problem size M=33.  The data shows in how variant each of 
the process becomes when increasing problem size for each 
process.  However, the processes continue to break into many 
grouping as the problem size increases.  This type of behavior 
is seen throughout all other multiple-instance-multi-problem-
size cases where some processes show zero bandwidth 
because of swapping state in the node. 
 

 
 

Figure 6. Eight-Process values for Hand-tuned Read 
program at problem size M=31, concurrently running 

eight-process at M=32 and single process at M=33 

 To obtain a numerical model from the results from Figure 6, 
the polynomial curve-fitting regression cannot follow the 
trend of the process in splitting into individual tail-ends.  The 
approach is to obtain a model from the upper and lower 
boundaries.  The rest of the processes exist between the 
boundaries where the model is the area between the two.  
Therefore, the upper-bound is defined as: 
 

𝑓𝑢𝑝𝑝𝑒𝑟 = 𝑢1𝑥𝑛 + 𝑢2𝑥𝑛−1 + ⋯+ 𝑢𝑛+1𝑥0                (8) 
 

, where ui are the coefficients of the upper-boundary 
polynomial and n is the nth-order parameter between 15 and 
17. The lower-bound as: 
 

𝑓𝑙𝑜𝑤𝑒𝑟 = 𝑤1𝑥𝑛 + 𝑤2𝑥𝑛−1 + ⋯+ 𝑤𝑛+1𝑥0              (9) 
 
, where wi are the coefficients of the lower-boundary 
polynomial and n is the nth-order parameter between 15 and 
17 then the medium-model between the two is: 
 

𝑓𝑚𝑒𝑑𝑖𝑢𝑚 =  ∑ (𝑢𝑖−1−𝑤𝑖−1
2

𝑛
𝑖=1 + 𝑤𝑖−1)𝑥𝑖               (10) 

 
4 Results 

For the single-instance case, an example of one of the 
results is showed in Figure 7 from programs Cache 
Read/Write/RMW at problem size M=31.  The resultant 
models using (5) for the results of the three programs in 
Figure 7 are showed on Figure 8.  The model for the Cache 
Read is highly precise since the bandwidth stayed constant 
throughout all problem sizes.  However, the models for Cache 
Write & RMW lose precision for the low to medium problem 
sizes until both converge to the same convergences that are in 
Figure 7.  

 

 
Figure 7. Single-Instance average values for Cache 

Read/Write/RMW at problem size M=31 
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For the multiple-instance case, an example of one of the 
results is showed in Figure 9 from programs Cache Write at 
problem size M=31.  The resultant models using (6) for the 
results of the processes in Figure 9 and including its single-
instance model are showed on Figure 10.  The model for the 
Cache Write is divided to its high-end and low-end 
polynomials.  Each of the processes both exists on the high or 
low-ends of bandwidth values of the program and converges 
to the same point as in Figure 9.  However, the models 
continue to lose precision for the low to medium problem 
sizes.   

 
Figure 8. Model of single-instance average values for 

Cache Read/Write/RMW at problem size M=31 
 

 
Figure 9. Eleven-Process values for Cache Write program 

at problem size M=34 
 

The resultant model using (10) for the results of the 
processes in Figure 6 are showed on Figure 10 for Eight-
Process values for Hand-tuned Read program at problem size 

M=31, while concurrently running eight-process at M=32 and 
single process at M=33.  The model in (10) is showed as the 
polynomial between the upper and lower-boundaries found on 
Figure 6.  The area model can be a representation for all of the 
process between the two boundaries, especially when the 
number of processes increases between the boundaries.  
However, the model trend to converge to the lower-boundary 
model as the problem size increases. The reason for this 
behavior can be due to bottlenecks on the architecture and as 
the number of processes increases, the rate of bandwidth per 
process lowers as problem sizes increases.   
 

 
Figure 10. Model of Eleven-Process values for Cache Write 

program at problem size M=34 
 

 
 
Figure 11. Model of Eight-Process values for Hand-tuned 

Read program at problem size M=31, concurrently 
running eight-process at M=32 and single process at M=33 
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compute-node in order to model memory behavior on the 
Scyld cluster.  Each of the CacheBench programs were 
configured to execute to maximum problem sizes from 231 to 
compute-node’s total RAM 236.  Three scenarios were 
introduced to simulated MPI execution programs: 1) single-
instance of benchmark to all nodes, 2) multi-instances of 
benchmark with equal problem size, and 3) special cases of 
instances of the benchmark from the first two cases.   
 

The numerical model approach to the bandwidth values 
obtained from the benchmark was  the polynomial curve-
fitting linear regression method.  The MATLAB linear 
function polyfit() was utilized to model the data obtained from 
each of the program runs at different problems sizes on all 
cases.  The nth-orders between 15 to 17 of the polyfit() 
function gave the best fitting polynomials of the memory 
behavior. 

 
For the single-instance case, all of the values of each node 

were averaged for each of the programs that represent the 
single process model defined in (5).  For the multiple-instance 
case, the processes of equal problem size showed separation 
of two bandwidth groups as seen in (6).  The models for such 
case were defined into the high and low-end given the 
probability of each process being on either bandwidth state.  
For the special cases, the processes do not follow a discrete 
trend but use bandwidth rates between upper and lower 
boundaries of processes defined in (8) and (9) respectively.  
The area between the processes is used as the model in (10) to 
describe the memory behavior of the group of processes at 
different problem sizes on the same node. 

 
The results show that for the models presented for all cases 

do show great accuracy for large problem sizes.  The models 
also display the different behaviors of each of the processes 
when dealing with multi-instances of the CacheBench at a 
single node.  However, the models can be improved in order 
to increase precision for the lower problem size values by 
developing a better polynomial curve-fitting algorithm from 
the MATLAB’s function polyfit(). 
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Abstract— With current advances in high performance com-
puting, particularly the applications of GPUs, it is easy to
see the need for a model for GPU algorithm development.
We developed a model which offers a multi-grained approach
intended to accommodate nearly any GPU.

Radiation therapy is one of the most effective forms of
cancer treatment available. In order to minimize the risk to
the patient, physicians design treatment plans that expose the
tumor to the prescribed levels of radiation while minimizing
the exposure to the surrounding tissues. Our system allows
users to quickly and easily visualize and compare treatment
plans in order to identify the best one, with the most
critical aspect of the simulation being implemented on the
GPU using our parallel algorithm design model. In this
paper, we show how the application of our model results in
significant increases in algorithm performance, particularly
in radiation therapy treatment simulation.

Keywords: GPU algorithm design, parallel processing, radiation
therapy, cancer treatment

1. Introduction
The rapid advancement of the Graphics Processing Unit,

or GPU, over the last few years has opened up a new
world of possibilities for high-speed computation, ranging
from biomedical to computer vision applications. Recent
examples include [1], [2], and [3]. However, the GPU
architecture is unlike that of any other, and designing al-
gorithms to fully harness the capabilities of a GPU is not
an easy task, especially when one considers the advantages
and disadvantages of the various resources that a GPU has
available to it.

Radiation therapy is a technique commonly used to erad-
icate malignant cancerous tumors. The therapy works by
applying a controlled dosage of radiation to the tumor tissue
in an attempt to damage the cancerous cells. Healthy tissue
can also be damaged by the radiation, which raises the
importance of optimizing the treatment in such a way that
the tumor receives as much radiation as possible while the

*Kirtzic’s research was supported by NSF award 0742477
**Daescu’s research has been supported by NSF award CNS-1035460

surrounding tissues receive as little as possible. We have
developed a visualization system which provides treatment
planners several different viewpoints to aid in choosing the
best radiation treatment plan. The primary component of our
system is an intensity mapping algorithm which utilizes a
simple yet novel mapping scheme combined with a color-
based representation of accumulated dosages to simulate the
total amount of radiation delivered to a given target and
the surrounding tissue. The result is an accurate, multi-view,
navigable 3D representation of a given treatment plan that
is beneficial for both practical clinical situations as well as
educational environments.

The initial version of our system suffered from lag issues
and was not capable of displaying multiple treatments with
their accumulated dosages in real-time. Therefore, we uti-
lized this as an opportunity to apply our Parallel GPU Model
(PGM) to this system, more specifically to the mapping
algorithm, as a validation of our model. The results were
that our PGM version of the intensity mapping algorithm
was able to not only perform in real-time, but also at a
higher frame-rate, regardless of the granularity the various
treatments were displayed at.

In this paper we present this application of our parallel
algorithm design model for the GPU architecture, which
demonstrates its effectiveness when applied to highly paral-
lelizable tasks such as radiation treatment computation and
simulation. In Section 2 we discuss the GPU architecture
and the PGM; in Section 3 we present a brief overview
of radiation therapy; in Section 4 we discuss the methods
and materials used in the development of our simulation; in
Section 5 we show the application of our PGM to the simu-
lation itself, particularly to the intensity mapping algorithm;
in Section 6 we discuss the results of the application of our
model as compared to other implementations; and finally in
Section 7 we conclude and remark on future work.

1.1 Contribution
We believe that our main contribution with this paper is to

demonstrate the potential advantages of utilizing the high-
performance computing power of the GPU. In this case we
have chosen to apply our Parallel GPU Model to the task of
simulating radiation therapy treatments for cancer patients.
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With the application of our PGM, we are able to develop
a version of our simulation which allows highly detailed
simulations of treatments as they are delivered in real-time.
We hope that this example of the benefit of utilizing GPUs
will not only demonstrate the validity of our model, but will
also encourage other researchers to take advantage of all that
the GPU architectures has to offer.

1.2 Related Work
Borfield and Webb [4] have done work in the field of

dosage calculation algorithms, as did Otto [5] and Vas-
silev [6]. Hamza-Lup et al [7] discuss the need for 3D
treatment plan representation systems which allow both the
clinician and the patient the ability to visually understand
the advantages as well as the disadvantages of a given
treatment plan. They present a system which allows the
modeling of a plan in a 3D environment given a variety
of input parameters. While producing fairly accurate results,
their system does suffer from certain limitations, including
the fact that it is web-based which makes its performance
unpredictable due to bandwidth changes, as well as the lack
of ability to view multiple treatments side by side, and
the lack of a visual representation of accumulated dosage
over a multi-beam treatment. While these methods have
contributed considerably to the field of radiation therapy,
they are limited when addressing the real-time, fine-grained
needs of advancing current clinical treatment capabilities.

While there were several influences in the development
of our Parallel GPU Model, the most noteworthy was the
work of Leslie Valiant and his BSP model. The BSP, or
bulk-synchronous parallel model, was proposed to overcome
the limitations of the PRAM model [9], while maintaining
its simplicity. In the BSP model, a BSP computer con-
sists of a set of n processor/memory pairs (nodes) that
are interconnected by a communication network. The BPS
model is Multiple Instruction Multiple Data (MIMD) in
nature, and uses the concept of a superstep, which is
comprised of a computation step, a communication step,
and a synchronization step. The BSP model is also variable
grained, loosely synchronous, has non-zero overhead, and
uses message passing or shared variables for communication.

The program executes as a strict sequence of supersteps.
In each superstep, a process executes the computation oper-
ations in at most w cycles, a communication operation that
takes gh cycles, and a barrier synchronization that takes l
cycles. Note that in the communication overhead gh, g is
the proportional coefficient for realizing a h relation. The
value of g is platform-dependent, but independent of the
communication pattern. In other words, gh is the time that
it takes to execute the most time-consuming h relation.

Within a superstep, each computation operation uses only
data in its local memory. This data is put into the local
memory, either at the program start-up time or by the
communication operations of previous supersteps. Therefore,

Fig. 1: NVIDIA GeForce 8800 architecture

the communication operations of a process are independent
of other processes.

The BSP model is more realistic than the PRAM model
because it accounts for all overheads except for the paral-
lelism overhead for process management. The time for a
superstep is estimated by the sum

w + gh+ l (1)

This model is highly regarded and has formed the basis for
other parallel models, such as the parallel phase model [9].
However, its generality is its shortcoming when one attempts
to apply it to more specific architectures, such as that of
the GPU. Valiant recently extended his model to include
multi-core CPUs [10]. While this model is much more akin
to the architectural nature of the GPU, it still does not
take into consideration the complexities of the typical GPU
architecture. Thus we developed a parallel algorithm design
model for the GPU architecture which addresses these issues,
which we first presented here [11].

2. The GPU architecture and the Parallel
GPU Model

In this paper we will often refer to the machine containing
the GPU as the “host" and the GPU itself as the “device”.
The NVIDIA GeForce 8800 series is an example of a typ-
ical GPGPU (General Purpose GPU) device, which utilizes
NVIDIA’s CUDA (Compute Unified Device Architecture
GPU design. The GeForce 8800 contains 16 multiprocessors,
each containing 8 semi-independent cores for a total of 128
processing units (see Figure 1). Each of the 128 processors
can run as many as 96 threads concurrently, for a maximum
of 12,288 threads executing in parallel.

The computing model is SIMD (Single Instruction Multi-
ple Data), and the memory model is NUMA (Non-Uniform
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Memory Access) with a semi-shared address space. This
stands in contrast to a modern CPU, which is typically either
SISD (Single Instruction Single Data) or MIMD, in the case
of a multi-processor or multi-core machine. Additionally,
from the perspective of the programmer, all memory is
explicitly shared (in multi-threading environments) or explic-
itly separate (in multi-processing environments) on a desktop
machine.

3. Radiation Therapy
In this paper we consider two main radiation therapy

types: Intensity Modulated Radiation Therapy (IMRT), and
Volumetric Modulated Arc Therapy (VMAT). In the IMRT
method, beams of radiation calculated to be of a certain
shape and intensity are administered to a particular target,
which is typically a cancerous tumor [12]. The dosages are
delivered in a discrete step-wise succession, a “step and
shoot” method, with the typical treatment averaging around
6 - 9 beam dosages [13].

The VMAT method is similar to the IMRT method,
however VMAT is a smoother, more contiguous method of
delivery [14]. VMAT allows for the same dosage amounts
as IMRT, but provides dosages in a pre-calculated arc of
delivery. This results in the dosages being delivered in a
continuous manner over a shorter span of time. Further
discussion of the details of these methods can be found
in [15], [16], and [17].

In both of these methods, a multi-leaf collimator or MLC
is used to shape the beam of radiation. The “leaves” of the
collimator can be moved back and forth to block parts of
the source beam. Effective treatment plans adjust the leaf
positions in such a way that they shield as much healthy
tissue as possible from radiation exposure while the source
beam is active.

4. Methods and Materials
We have developed a system which allows the visualiza-

tion of a given treatment plan from a variety of viewpoints,
allowing the physician to compare different treatment plans
and determine which is the best suited to a given patient.
Our system has the potential to simulate multi-beam IMRT
treatments as well as VMAT treatments. The intended users
of our software are medical students and physicians, with
the aim of providing training in developing higher quality
treatment plans as well as educating patients about the
benefits and risks of individual plans.

The simulation work-flow is as follows: the user is pre-
sented with an interface which allows the user to load, edit,
add, or remove a patient’s treatment record from a treatment
database. This database contains all of the necessary patient
treatment information and could be made available online,
allowing anyone with the proper permissions to access
patients’ treatment records.

Once a particular patient’s treatment file is identified, our
system can simulate potential treatments, allowing the physi-
cian to select the best of all possible treatments available.
This is primarily accomplished by simulating an intensity
map that maps levels of radiation absorbed by a section of
tissue to its physical location. Our system can provide real-
time simulations of a given treatment plan and present it
in a variety of granularities. The interface allows the user to
visualize a treatment from a variety of viewpoints, including
a MLC view, a beam’s-eye view of the target tumor, and a
general 3rd-person view of the intensity map. In addition,
the interface allows the user to switch between multiple
views within the individual quadrants while the simulation
is running. Perhaps the most useful feature of our system is
the ability to have all four quadrants display four different
treatment plans as intensity maps as they are running in real-
time, allowing the user to compare the plans in high detail.

4.1 Mapping Algorithm
The input of our mapping algorithm consists of CT scans

of the target at various time steps. We also require a data
file representing the list of all MLC leaf movements (in mm)
between times ti and ti + 1 for all ti of a specific treatment
plan X. We denote this file as the input array. We assume
that the MLC leaves begin in a closed position at t0.

The region represented by the CT scan is discretized into
a grid of cells (Figure 2(a)). We equate each column on
the grid to a millimeter of leaf movement and each row
to a pair of opposing leaves in the MLC. The number of
rows and columns represents the granularity of the system,
as increasing the number of either rows or columns will
increase the detail of the resulting intensity map with respect
to the region in the CT scan image. Often these values
are restricted by the physical characteristics of the MLC
to be used, as different collimators may have different
numbers and sizes of leaves, as well as different leaf motion
parameters. In the examples below, we assume each leaf is
1 mm in width and moves 1 mm per unit of time to simplify
the grid representation. In practice, the width of the leaves
will be higher due to current manufacturing limitations.

Each cell in the grid is associated with a bar that represents
the total amount of radiation that has accumulated in the area
of the cell. The input array is parsed for every time step t
of the simulation, and the position of each leaf in the MLC
is updated by the appropriate amount. As each leaf moves
it either exposes or covers cells on the grid, affecting the
amount of radiation the cells receive and thus the growth
rate of the associated bars.

Every cell that is exposed receives one unit of radiation
intensity for every time step that the cell is exposed, in-
creasing the corresponding bar height by one as well as
changing the bar color based on the total amount of radiation
received. An example of this process is shown in Figure 3,
with numbers representing different intensity levels on the
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Fig. 2: (a) The intensity map bar grid overlaid on the CT
scan of the target at t0. (b) The leaves positioned around
the target tumor to shield the surrounding tissue from the
radiation beam

grid cells. After the simulation has completed, the resulting
bar heights represent the total amount of dosage received
by each cell grid. Different colors provide an extra means
of visually processing the total dosage received at a cell.
Blue indicates little or no radiation, red and orange indi-
cates moderate amounts and bright yellow/white indicates
a high amount. The example shown assumes a constant
rate of radiation absorption, but in practice the dosage is
not constant due to the differences in density and radiation
absorption properties of different tissue types. We currently
use density as the only factor affecting radiation absorption
rates. The implementation identifies tissue density by the
average lightness value of the grayscale colors in the CT
scan image slice corresponding to a given grid cell. Brighter
colors are assumed to be more dense and more resilient to
radiation absorption, while darker colors are less dense and
absorb radiation quickly.

From a time-space complexity perspective, given m num-
ber of time steps, n number of leaves, and d number of
millimeters each leaf moves per time step, the run-time can
be expressed as O(mnd) for a serial implementation of the
algorithm.

Fig. 3: A depiction of how the intensity values for each
exposed bar increase from time ti to time ti+1.

4.2 Simulation Design Considerations
The basic flow of the system is the following: it first

obtains from the list of leaf positions which bar sections are
exposed to the beam, and which are not. Next it computes
the dosage values received at each cell, and adjusts the
height and color of the associated bar accordingly. The final
radiation dosage values can be concatenated to a string and
saved in a database, to be retrieved for later comparison
or use. As discussed above, each kind of tissue absorbs
radiation at a different rate, and so regions of the same tissue
will have similar intensity values.

The colors and heights of the bars at the conclusion of the
beam represent the total amount of radiation delivered to the
corresponding area on the target or surrounding tissue. The
user is able to toggle whether the bar heights are shown. With
the heights disabled, the bars are simply squares of different
colors overlaid onto the CT scan image and represent a
heat map corresponding to the radiation delivered at each
grid cell. The bars can also be made translucent, allowing
the CT scan below to be seen and permitting the user to
spatially visualize which tissue sections are receiving the
most radiation.

We implemented our algorithm on the following hardware:
we used a Dell desktop with a 2.99GH Intel Core 2 Duo
with 3GB of RAM. We also used an NVIDIA 9800 GTX+
graphics card with 512 MB of memory and 128 streaming
multiprocessors for the graphics duties. The fact that we
implemented and ran our algorithm using commodity or
“off the shelf" hardware indicates that our algorithm may
be employed by practically anyone in a related field.

5. Application of the Parallel GPU
Model

While the simulation that we have presented above can
provide much in the way of designing and implementing
highly effective radiation therapy treatments, the initial im-
plementation of this system in a serial, CPU-based manner
had its limitations. Particularly, the most critical part of
our system (the intensity mapping algorithm visualization),
suffered considerable lag when we attempted to apply it to
higher detailed images. Specifically, we wanted the ability
to view a given treatment in real-time, at various levels
of detail, all the way to the millimeter level. Our experi-
mentation proved that this was not possible with a serial
implementation of our algorithm, given the hardware we had
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Fig. 4: This is the main interface of our visualization system
as implemented strictly on the CPU in serial. Note that
the various quadrants display differing views of a given
treatment. Clockwise from the top-left: the first quadrant
displays the position MLC leaves at time ti; the second
quadrant provides a view of the position of the gantry about
the patient at ti; the third quadrant displays accumulation of
radiation dosages as a height map (before implementation on
the GPU); and finally the fourth quadrant displays dosage
accumulation as a heat map from a beam’s eye view.

available. Consequently, this algorithm seemed to be a prime
candidate for the application of our PGM.

We began applying our PGM to this problem by first
developing the serial, CPU, brute-force version of our al-
gorithm. This is the version that we had been using initially,
which resulted in the performance lag identified earlier.
Following the recommendations of the model, we then
implemented an optimized version of this algorithm using
OpenMP.

Again following the PGM model, we implemented a näive
version of the intensity mapping algorithm by simply porting
the algorithm to the GPU architecture, meaning we sent all
of the data to the GPU and let the GPU kernels operate
on the data, allowing the GPU thread scheduler to handle
data distribution and thread allocation and management. We
then went a step further in the model and considered data
dependencies and preprocessing. This led to the optimized
version of our algorithm, which includes preprocessing steps
in which we import all of the necessary data from the
database and convert it into simple arrays and image files
before sending it to the GPU for computation and rendering.
We have also off-loaded other preprocessing calculations to
the CPU, including initial dosage calculations for each bar
per each beam step, and total overall growth for each bar
per each beam step. These results are temporarily stored in
the host’s RAM until this data is transferred to the device
for real-time calculation and rendering.

Following with another aspect of our model, we consid-
ered the various types of GPU memory that we had access to,
and distributed our data accordingly. It is not difficult to see
that certain data elements of our system are read only (i.e.
the treatment planning input, including the MLC movements
and the CT scans), which according to the PGM should be
loaded into the GPU’s texture memory.

Finally, in following with the final step of the PGM, we
fine-tuned our GPU-accelerated intensity mapping algorithm
by adjusting it to suit the physical nature of our particular
GPU. Knowing that our GPU (NVIDIA’s 9800 GTX+) had
128 cores, with 512 MB global memory and 16K shared
local memory for each SM, we broke down all computations
so that they were allocated in groups of 32, aligning with
the GPU’s preferred warp format. However, considering that
there were more available cores than there were calculations
to be performed, even the use of memory coalescing and
warp-filling does not result in a truly optimal use of the
GPU structure, as a GPU operates the most efficiently when
all of its threads are occupied.

6. Results and Discussion
By initializing the radiation levels at each cell to zero and

applying our mapping algorithm and the leaf motions from
the input array, we can generate the quad-view simulation of
a given treatment plan as shown in Figure 4. This allows the
user to select any quad and examine it in great detail. Each
bar in the intensity map accumulates the dosage delivered
over each beam in the treatment plan giving the physician
or student a clear indication of how much radiation has been
delivered to a given area of a target or the surrounding tissue.

This allows medical professionals to plan treatments of
higher quality that minimize the exposure of healthy tissue
to radiation while maximizing the dosage delivered to the
target. Medical students studying radiology can use our
system to simulate and visualize hypothetical treatment
plans. Students receive feedback by comparing the resulting
intensity maps of plans of their own design by observing the
total amount of radiation delivered to the tumor versus the
amount delivered to healthy tissues. This feedback assists in
fostering an intuitive sense of what goes into planning an
optimal treatment and therefore has the potential to improve
the quality of the future real world treatment plans designed
by the student. Moreover, the student or teacher may design
example plans or exercises that highlight specific treatment
complications and special situations. This has the effect of
revealing to the student the best techniques for optimizing
the plan under specific constraints.

As mentioned previously, patient education is another
potential application. Doctors and radiologists can use our
simulation to visually demonstrate the treatment process and
explain exactly what the patient should expect. Treatment
plans can be compared and contrasted for the patient using
the multi-view interface mode, and the potential risks and
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benefits of each can be explained and visualized in greater
detail. This has the potential to increase patient understand-
ing of and comfort with the therapy procedure.

In Table 1 we list the overall averaged run times and
memory copy times for the different versions of our intensity
mapping algorithm that were employed, including the näive
CPU version, the optimal CPU version, the näive GPU
version, and the optimal GPU version over 100 trials.

Table 1: Run time and data copy time for the Intensity
Mapping algorithm, as represented for a näive CPU imple-
mentation, an optimized CPU implementation, a näive GPU
implementation, and an optimized GPU implementation. All
times are in milliseconds.

Run Time Copy Time

Näive CPU Intensity Mapping 192173.96 N/A
Optimized CPU Intensity Mapping 82186.34 N/A
Näive GPU Intensity Mapping 2007.12 197.78
Optimized GPU Intensity Mapping 199.94 2.04

As the table shows, optimizing the serial version of our
algorithm using OpenMP did not show a significant increase
in performance (approximately 2x speedup). This is due to
the fact that we were using a dual core CPU, so considering
the data transfer required between the two cores along with
the synchronization step, the performance increase was fairly
minimal (see Table 1).

When we simply ported our algorithm to the GPU archi-
tecture, our näive implementation resulted in a significant
speedup (greater than an order of magnitude).

Regarding the optimized GPU version of the algorithm,
we were able to reduce the overall runtime of the algorithm
significantly by off-loading all of the necessarily serial work
onto the CPU and only employing the GPU to do the parallel
computation, specifically that of computing the values of
each bar, as well as the overall accumulated values for each
bar, at each cycle. This allows for optimal access speed as
well as making this data available for the largest number of
threads possible, resulting in a speedup of approximately an
order of magnitude over the näive GPU implementation.

Regarding the visual performance of the Intensity Map
(the calculations described above combined with the render-
ing), all implementations of the algorithm except the original
näive CPU implementation allow the mapping to run in real-
time. The GPU versions, however, allow the visualization to
run in “hyper" real-time, at a variety of speeds, which should
insure that the overall simulation can run in real-time or
better regardless of the tasks it is performing, as shown in
in Figure 5.

As shown above, we were able to provide a significant
speedup in performance of our Intensity Mapping algorithm
utilizing the high performance computing power of the GPU.
Furthermore, we did so by applying our PGM to the problem

Fig. 5: The 3D rendering which shows the GPU implemen-
tation of how the radiation dosage will be delivered to the
various areas of the target at time tn, along with the total
accumulated dosage (represented by the “heat scale" color
gradation), according to this particular treatment plan.

of optimizing our Intensity Mapping algorithm, resulting in
a significant speedup (a couple of orders of magnitude) over
the original serial implementation.

7. Conclusion and Future Work
As presented in the previous sections, our visualization

system offers a fast and inexpensive option for simulating ra-
diation treatment plans in a real-time, multi-grained manner.
This allows physicians and students the ability to quickly
and easily compare multiple treatment plans to determine
the optimal plan with considerable accuracy. We have then
augmented this ability by applying our Parallel GPU Model
to parallelize the computation being done on the intensity
mapping aspect of our simulation, making it possible to
now display a given treatment at a very fine-grained level
of detail, in a fully navigable environment and in real-time,
making it possible to view and compare multiple treatments
as they would actually be delivered.

Based upon the the success of this application of our
PGM, our future work with this system involves applying
our model to the other aspects of the simulation to see
which may also benefit from parallelization on the GPU.
We will also be mindful to apply the same to any additional
functionalities which we may include in future versions of
our software.

In addition, the current version of our simulation handles
single beam IMRT treatments. Future implementations will
be able to handle multi-beam treatments as well as the
continuous motion of the MLC during VMAT treatments.
Another addition planned is to implement a module that
automatically computes a radiation treatment plan. Although
this treatment plan may not be optimal it can be made as
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close to optimal as possible with computational methods.
Such a module would allow users to easily obtain a baseline
treatment plan to which they can compare the treatment
plans they develop themselves, providing an extra mode of
feedback and evaluation.
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Abstract— The complexity of current and emerging high
performance architectures provides users with options about
how best to use the available resources, but makes predicting
performance challenging. In this work a benchmark-driven
performance modelling approach is outlined that is appro-
priate for modern multicore architectures. The approach is
demonstrated by constructing a model of a simple shallow
water code on a Cray XE6 system, from application-specific
benchmarks that illustrate precisely how architectural char-
acteristics impact performance. The model is found to recre-
ate observed scaling behaviour up to 16K cores, and used
to predict optimal rank-core affinity strategies, exemplifying
the type of problem such a model can be used for.

Keywords: Performance modelling, shallow water model, Cray
XE6, multicore

1. Introduction
Climate modelling is one of the grand challenge problems

of current times. To gain a greater understanding of the
climate system, scientists are adding complexity to their
models through increased resolution, modelling of additional
physical processes, and increasing numbers of ensemble
experiments to quantify uncertainty, all requiring vast com-
putational resources [1]. Thus climate modelling is one of
the application areas making use of the top high performance
systems across the globe, and to make best use of these
expensive resources means adapting to the new architectures
that are emerging.

Current supercomputing trends are for multicore pro-
cessors and the use of co-processor accelerators, both of
which have lead to increased levels of heterogeneity within
high performance systems. Apart from the different types
of processor that might coexist, for example CPUs and
GPUs, modern multicore architectures often have several
hierarchies inherent within the system. For the processor
this may include cache-sharing, non-uniform memory access
times and floating point unit sharing as with the AMD
Bulldozer [2], and for the network this may be due to
full connectivity between groups of nodes and then point
to point connections between the groups, as in the IBM
Power 7 Host Fabric Interface (HFI). This means that the

user has many choices about how best to use the system in
order to maximise floating point throughput and minimise
data transfer costs. For example, it has been found that
under-populating nodes, altering the domain decomposition
or changing the rank-core affinity can all alter performance
[3], [4], [5].

Currently, finding the best way to run an application on
a given architecture, especially for highly complex scientific
code such as the UK Met Office climate model, is often
a lengthy process of trial and error [4]. Recent work has
been done with automated optimisation techniques, such
as simulated annealing, to guide the search for optimal
performance tuning parameter values [6].

In this paper, we introduce a benchmark-driven predictive
modelling approach that allows the rapid evaluation of
different deployment choices, without the execution of costly
full-model runs. The model is based on commonly used ana-
lytical modelling techniques, but driven solely by data from a
series of application-specific benchmarks designed to capture
the effects of various resource sharing scenarios. The use of
benchmark data over analytical models of the architecture
leads to a shorter model development cycle. Since both the
application and architecture are complex, building accurate
performance models may be time-consuming, and in many
cases, unnecessary. Often it is sufficient to know that one
choice performs better than another. The method is outlined
in Section 3.

The approach is demonstrated on a complex modern
architecture, the Cray XE6, that exhibits many of the hetero-
geneous features mentioned. A simple shallow water code is
chosen as it displays one of the main patterns of behaviour
seen in atmosphere and ocean models: the calculation of
regular grids of data using a finite difference scheme requir-
ing periodic boundary exchanges. The code uses an MPI
parallelisation and straightforward rectangular 2-dimensional
domain decomposition. The simplicity of the application
means that effort can be focused on understanding the
complexity of the architecture. The methodology could,
however, be extended to explore application issues, such as
parallelisation strategies and communication patterns.

The resulting model is described in Section 4 and used to
predict run times for a series of scaling experiments. These
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predictions are then evaluated against measured results to
quantify the model accuracy. The usefulness of the model is
tested by exploring rank-core affinity strategies in Section 5.
It is known that assigning approximately square domains to
each rank minimises costly off-node communications [7],
and this is reproduced by the model and confirmed by
measured results.

2. Performance modelling
A performance model combines information about an ap-

plication and underlying architecture to make an estimation
of the expected wallclock run time. The application part
of the model describes the amount and type of work that
needs to be performed, at any granularity from subroutines
to low-level operations, and the machine part supplies the
times to complete each portion of work, which may be from
benchmark measurements or a mathematical representation
of features of the hardware. Typically for a scientific ap-
plication, the work to be performed can be split into two
broad categories: i) computations, the bulk of which will be
loops of floating point calculations, and ii) communications,
the MPI operations that transfer data between ranks. This
requires machine models of the processor and network
respectively.

There are many different means of building performance
models [8]. Logically the process begins with the creation of
the application model, which can be done automatically by a
tool, or written by hand with expert knowledge and analysis
of the code, each of which are discussed in the following
sections.

2.1 Automated methods
Application models can be generated automatically by

profiling tools which log the operations a program performs
as it executes. The resulting trace file can then be replayed
by a machine simulator which has the ability to emulate a
different architecture to the one on which the application was
originally run. An example of this is the PMaC prediction
framework described by Snavely et al [9] and Carrington,
Snavely and Walter [10]. The process cannot however predict
changes to the number of processors or other application
inputs. A similar but more flexible method (the WARPP
toolkit) is described by Hammond et al [11].

Although automated tools require minimal human effort
and limited knowledge of the code, fundamentally the code
must exist and be executable. Often it is treated as a black
box, therefore such methods are limited in their ability to ex-
plore deployment choices, as this involves parameterisation
in terms of application inputs such as problem size.

2.2 Analytical methods
Analytical application models are generally constructed

by hand, based on an abstract view of the program code.

Typically for scientific applications, the processor and net-
work are modelled with a mixture of analytical and empirical
techniques. Performance models have been developed in this
way for many applications including, in the climate science
domain, the POP ocean code (Kerbyson and Jones [12]),
HYCOM ocean code (Barker and Kerbyson [13]) and WRF
weather prediction code (Kerbyson et al [14]). A systematic
description is given by Hoefler et al [15]. First, the applica-
tion input parameters, code kernels, communication patterns,
and any overlap with computations are identified. These are
used to compose the analytical application model. Next,
empirical steps are taken to provide run times for the model.
For computations, an expression of the sequential time for
each of the kernels is derived by measuring the code for
different problem sizes. Communication times are expressed
as a LogGP model of point-to-point messages [16], with the
parameters derived from benchmark experiments [17].

One of the main criticisms of detailed analytical applica-
tion models is the human effort required to build them. Ulti-
mately, the purpose of the modelling procedure should be to
improve performance by aiding understanding, highlighting
areas for optimisation, informing the tuning process and so
forth. For these purposes a fully accurate model may not
be required, and so automatic tool-based methods or simple
coarse analytical models may be preferred. An example of
this is the work of Dennis, Jessup and Waite [18] who use a
prototyping tool (SLAMM) to compare the memory usage of
several algorithmic implementations within POP. Although
far more simplistic than the Kerbyson and Jones model [12],
theirs is sufficient to substantially optimise the code.

3. Benchmark-driven modelling
approach

Here we propose an updated analytical and empirical
modelling approach that is suited to a complex and hetero-
geneous architecture such as the Cray XE6. There are three
main differences to the methodology described by Hoefler
et al [15].

Firstly, for modern architectures simple models of data
transfers can become highly complicated. The number of
parameters involved can quickly rise with the different
communication protocols in use (large and small messages),
links along which data can travel (on-node and off-node) and
contention due to multiple cores per node accessing the same
network interface. This can be seen in the work of Mudalige,
Vernon and Jarvis [19] for a Cray XT4 system which is
somewhat more simplistic than the Cary XE6 considered
here. Since collecting benchmark data is a necessary part
of the creation of these models, we propose skipping the
modelling phase and simply interpolating from the data.

Secondly, part of the time spent in MPI transfers includes
accessing the data from it’s location in cache or memory.
Although packing the data into a buffer may be done as
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a separate stage, Fortran 90 compilers are able to do this
automatically, even with non-contiguous subsections of data.
For data stored as a 2-dimensional array, retrieving sub-
sections in one of the directions will lead to non-contiguous
accesses. In this benchmarking approach, both contiguous
and non-contiguous accesses are included in the transfer
time, without having to be explicitly modelled.

Thirdly, it is insufficient to provide only the sequential
computation time, as the model needs to account for the
effects of resource-sharing such as multiple cores accessing
the same cache. Therefore here, multiple benchmarks are run
to account for each of these cases.

As in Hoefler et al [15] the first steps of this approach
are to express the application analytically in terms of code
kernels and communication patterns. The empirical steps,
however, involve an additional stage which is to identify
the resource sharing scenarios to be measured. Compute
benchmarks are based on an instrumented version of the
application. The communications benchmarks are bespoke
versions of standard tools. Data from the benchmarks are
then organised in a database which is accessed by a deploy-
ment model. This translates a given runtime scenario into
a performance prediction interpolating from the measured
results as necessary. Assuming applications follow the shared
memory program multiple data (SPMD) paradigm, all cores
execute the same code but over different data domains. Here
it is also assumed that all cores are synchronised, thus only
the maximum time per core is needed.

4. Performance model of a shallow water
code

Using the benchmark-driven approach described, a model
is constructed for a version of the NCAR shallow water
code [20], [21] on the HECToR supercomputer, a Cray
XE6 system based at the University of Edinburgh [22].
The following sections describe the shallow code (Section
4.1) and HECToR system (Section 4.2), after which the
performance model is outlined (Section 4.3) and evaluated
(Section 4.4).

4.1 The NCAR shallow water code
The NCAR shallow water code (herein ’shallow’) uses a

second-order finite-difference solver to evaluate the shallow
water equations. Calculations are performed over a rect-
angular domain of sizeM by N with periodic boundary
conditions in both directions to replicate the behaviour on
a sphere whilst avoiding the use of poles. The version of
shallow used here is a Fortran 90 implementation with a 2-d
parallel domain decomposition. Local domains are sizedm

by n with arrays dimensioned asm + 1 by n + 1 to allow
for a single halo row and column. There are 13 local array
fields and at each timestep the code performs 10 array update
loops, 3 array copies, and 7 exchanges of halo data.

Halo exchanges update the values at boundary cells from
the domains held by neighbouring ranks, and in this version
these are implemented withMPI_Sendrecv operations. As
shallow uses double-precision real numbers, the total data
volume sent and received each halo update will be(m +
n + 2) × 8 bytes. This data volume only depends on the
local data size and will not vary with the global data size
or total number of ranks. Thus, under ideal conditions the
wallclock communication time should remain constant for
the same local array size (weak scaling). In reality however,
the physical mapping of ranks to cores will affect the run
time and, as the total size of the communicator increases,
interference and load imbalance may increase.

As well as the transfer time between cores, additional time
will be spent on overheads associated with initialising the
exchange and loading the data from its location in cache or
memory. Since the data is stored in 2-dimensional arrays,
halos sent in theM -direction will require loadingn + 1
cachelines as the data in this dimension will be held non-
contiguously in memory. Conversely, the halos in theN -
direction will require only(m+1)/8 cachelines as this data
will be contiguous.

4.2 HECToR
HECToR is the national UK supercomputing facility based

at the University of Edinburgh and funded by the UK
research councils. It is currently in Phase 3 of its lifespan
which is a Cray XE6 system, consisting of 2816 compute
nodes for a total of 90,112 cores.

Each compute node on HECToR comprises two sixteen-
core AMD Opteron Interlagos chips, part of the Bulldozer
family. The Interlagos chips are made up of two 8-core dies,
each directly connected to their own 8 GB memory and
consisting of four ’compute modules’. A module contains
two integer cores that share a single floating point execution
unit and 2 MB of L2 cache. Additionally, integer cores have
their own 16 KB L1 data cache and all cores on the die
share 6 MB of L3 cache with an extra 2 MB given over to
maintaining cache coherency. Caches in the AMD Opteron
series are exclusive with lower levels acting as victim caches
for the higher levels. Cores operate at a frequency of 2.3 GHz
and are capable of processing 8 double precision floating
point operations per cycle. The nature of the shared floating
point unit means that codes can obtain double the cache and
memory space per task by running with only one of the
integer cores and still have access to the full floating point
capability. Diagrams representing the hardware can be found
on the HECToR website [23].

All four dies on a node are connected to each other via
HyperTransport (HT) links forming a non-uniform memory
access (NUMA) node meaning that all dies can access the
total 32 GB of memory. The links between dies vary, with
24-bits between dies on the same chip, 16 bits between
opposite dies, and 8-bits between diagonally opposite dies.
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In addition, each node has a single link to a Gemini Network
Interface Controller (NIC) that connects nodes into a 3-
dimensional torus [24].

4.3 Performance model
From the information in Sections 4.1 and 4.2, a perfor-

mance model of shallow can be constructed. The application
model consists of a series of identical timesteps, each
comprising i) some volume of floating point compute work
dependent on the local array size, and ii) several halo-
exchanges with a single row and column transferred per
rank. Array copies are not considered, as they only account
for around 10% of the runtime. If needed they could be
benchmarked in a similar way to the compute loops. The
next step is to design and run the benchmark experiments
to generate data with which to populate the model. The
computation and communication models are described in the
following sections.

Computation model

To benchmark the computations, an instrumented version
of shallow is run over a set of 23 problem sizes ranging from
L1 resident to memory resident. Timers are inserted around
each block of compute loops with an MPI barrier before
the timer call so that all cores are synchronised. This means
that times are consistent from run to run with full resource
sharing. In real application runs however, it is unlikely
that cores would be synchronised, leading to less resource-
sharing (increasing performance), but also more waiting time
in the halo exchanges (decreasing performance).

The benchmark is run over a variety of cases that illustrate
each resource-sharing scenario. These are: i) core pair mode,
where only one of the integer cores in each module is in
use, with no floating-point unit or L2 cache sharing, and ii)
compact mode, where both integer cores are used, causing
floating point and L2 cache sharing. Both cases are measured
on a single die, with one to four modules to account for L3
cache sharing as well. In reality, the achieved performance
may be reduced slightly by communication overheads, al-
though this may be offset by increased performance due to
the lack of interruption by timer and barrier calls.

Each experiment is repeated a total of 5 times to provide
a mean flop rate, with the number of flops taken from the
source code. The benchmark results are shown in Figure
1, with features of the architecture clearly identifiable. The
per-core performance drops when both integer cores are in
use, from a peak of 3.3 GF to 2.6 GF. This does, however,
increase the per-module performance to 5.2 GF, showing
the benefits of two feeds to the floating point pipelines.
Performance differs little with the number of modules when
the problem size fits in each module’s L2 cache, with only
a slight degradation when all modules are in use. As the
problem size increases further, the performance decreases
for each additional module due to contention for L3 cache,

memory bandwidth and the translation lookaside buffer
(TLB).
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Fig. 1: Computational performance per core as measured
by benchmark experiments. The local data size is based on
storing 13 array fields.

Communication model

A bespoke benchmark code is used to measure the halo-
exchanges. It is based on the Intel MPI Benchmarks (IMB)
[25], but with greater control over the pairs of cores to
transfer between, contiguous and non-contiguous memory
access and location of data in cache or memory.

The benchmark takes as input a series of message lengths
spaced roughly exponentially, with extra values around the
boundaries between different MPI message protocols (for
small and large messages). To ensure messages are accessed
from the correct cache level, the benchmark takes two other
inputs: the size of the cache to operate from (’the operating
cache’), and the total size of all caches that are closer to the
core (’the higher cache’). Message buffers are taken from an
array of size roughly equal to the size of the operating cache.
This is initially loaded into the processor, then pushed into
the operating cache by loading a dummy array which is the
same size as the higher cache. Several message transfers are
performed and a mean value taken to reduce timer overhead
and effects of timer granularity. To ensure that each message
is actually taken from the operating cache, a different slice
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of the buffer is extracted each time, similar to the approach
taken by the IMB. In this way both contiguous messages and
non-contiguous messages are measured. It should be noted
that these memory assumptions do not account for copies of
data made by subroutines or held in MPI buffers, therefore
data may be located further from the processor. The same
assumptions are made for the application code, although the
benchmark does not replicate all behaviour. Furthermore, as
the benchmark performs multiple consecutive communica-
tions, any overheads associated with initialising MPI buffers
will be lost, whereas in the application these costs may be
more significant.

Experiments are performed over all types of connection
along which data may be transferred. On the XE6, these
can be categorised as between i) cores on the same module
(shared L2 cache), ii) cores on the same die (shared L3
cache), iii) dies on a node (HT links), or iv) nodes in
the torus (Gemini interconnect). To minimise complexity,
means are taken over the different bandwidths between
dies on a node and different numbers of hops between
two nodes on the torus. This can be justified since, unless
a very large communication volume is taking place, little
difference is observed in the achieved bandwidths between
dies. Furthermore, on the XE6 it is not known in advance
which group of nodes the scheduler will select, thus the
number of hops cannot be predicted. In most cases the
scheduler selected nodes on the same or neighbouring NICs,
yet frequently the nodes were as many as 13 hops away.

Along with the message lengths, cache usage, contiguous
and non-contiguous accesses and connections to measure, it
is also necessary to quantify the contention due to differ-
ent numbers of cores communicating along the same link
concurrently. Experiments are therefore run with 1 to 8
cores per die for transfers within and between dies, and
from 1 to 32 cores for transfers between nodes. Selected
results for off-node transfers and off-die transfers are shown
in Figure 2, showing the per-transfer slow down when
all cores communicate along the same link simultaneously.
Non-contiguous transfers achieve approximately a factor of
8 lower bandwidth than contiguous transfers (as expected),
and off-die transfers generally achieve a higher bandwidth
than off-node transfers, except where only a single core per
node is used.

4.4 Evaluation
The performance model of shallow combines the data

from the computation and communication benchmarks to
make a prediction about the total application runtime. The
model was evaluated by comparing predictions to measured
times for several examples. Three global problem sizes were
used initially:256× 256, 512× 512 and1024× 1024. Each
of these was run with 4, 8, 16 and 32 cores per node on
1 to 16 nodes, up to a total of 512 cores. It should be
noted that, up to 32 cores per node, only one integer core
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Fig. 2: Bandwidths as observed by halo-exchange bench-
marks. Off-node values are means over 10 runs with pairs
of nodes selected by the scheduler. Off-die values are means
of two runs over each pair of dies within a node.

per module is used to make best use of the floating point
units. These examples test how well the model captures the
interactions within a node. It is also useful to look at larger
problem sizes that scale out to thousands of cores. A second
set of examples therefore takes two larger problem sizes,
2048× 2048 and4096× 4096, and scales these out to 512
nodes with 16 or 32 cores per node, up to a total of 16,384
cores.

Model predictions and measured run times are shown
in Figure 3. Shallow runs were performed 5 times, with
the mean and two standard deviations either side shown,
which assumes a normal distribution of run times. The
modelled run times can be seen to accurately reproduce
the measured behaviour. Model errors are defined as the
difference between the predictions and mean run times for
each set of problem sizes and number of cores per node.
The median percentage errors, the form often quoted in the
literature, range from 0.8% to 25%. Up to 20% is generally
considered reasonable.

5. Rank-core mapping strategies
The usefulness of the model is further tested by pre-

dicting performance under various MPI rank to physical
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Fig. 3: Shallow model predictions of run time (dashed lines) versus measured times for a series of 5 runs, with the mean
(solid lines) and two standard deviations on either side of the mean (dotted lines).

core mapping strategies. On HECToR, the default “SMP-
style” mapping means that consecutive ranks fill nodes
one at a time. For shallow, this corresponds to rows (or
portions of a row) of the subdomain being mapped to each
node. Intuitively, for nearest-neighbour communications it
is better to assign rectangular subdomains to each node
in order to minimise the off-node data transfer volume.
Such a “custom” mapping can be generated automatically
on HECToR with thegrid_order tool. An alternative
mapping strategy, "round-robin", assigns subsequent ranks to
each different node in turn. For a small number of ranks this
leads to columns of the subdomain being assigned to each
node, however for large numbers of ranks each neighbour
will reside on a different node, maximising the off-node
transfer volume. These three options should produce distinct
performance behaviour, and this hypothesis was tested using
the predictive model and measured runs.

To test the hypothesis, the larger problem sizes from the
evaluation runs were used (2048× 2048 and 4096 × 4096
up to 512 nodes). As the computational work per rank
remains the same, only the communication model is used.
Shallow runs were repeated 5 times as before to quantify the
variability in run time. Figure 4 shows the model predictions
and the mean measured run time and two standard deviations
either side. The model successfully predicts the order of
performance in all cases, although the run times themselves
are reproduced with varying degrees of accuracy. The custom
mapping shows least variability and the best prediction. This
is likely to be since it has the smalled volume of off-node
transfers which are affected by network traffic. For a real
climate model application the communication dependencies

are more complex than just nearest neighbour and so a
more sophisticated model would be required to evaluate the
optimal mapping.

6. Conclusion
In this paper we have presented a benchmark-driven

performance modelling approach, based on existing work
but designed specifically to quickly evaluate application
performance on complex architectures. Communication and
computation work are both expressed as functions of bench-
marked results rather than detailed analytical models, yet
predict performance well enough to replicate scaling be-
haviour and identify the best of three different rank-core
affinity strategies. The assumptions inherent to the model are
discussed, along with potential sources of error which will
be analysed further in upcoming work. In addition, similar
models of shallow will be constructed for the IBM Power 7
and BlueGene/Q systems which display substantially differ-
ent performance behaviour.

A similar approach to that defined here could also be
applied to more complex kernels of climate science ap-
plications, to aid directly in performance optimisation. In
such cases, the compute kernels may be larger, reducing
inaccuracies due to timer overheads, and the communication
may extend to other patterns beyond halo-exchanges.
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Abstract
Graphical Processing Units(GPUs) are usually programmed to
provide data-parallel acceleration to a host processor. Modern
GPUs typically have an internal multi-processor (MP) struc-
ture that can be exploited in an unusual way to offer semi-
independent task parallelism providing the MPs can operate
within their own localised memory and apply data-parallelism
to their own problem subset. We describe a combined simu-
lation and statistical analysis application using component la-
belling and benchmark it on a range of modern GPU and CPU
devices with various numbers of cores. As well as demonstrat-
ing a high degree of job parallelism and throughput we find a
typical GPU MP outperforms a conventional CPU core.

Keywords: GPU; task parallelism; data parallelism; hybrid
parallelism; multi-processor.

1 Introduction
A great deal of the present research and developmental effort
going into processor development is in increasing the num-
ber of cores that can be used concurrently on a single proces-
sor chip package. At the time of writing there are two com-
plementary approaches being adopted. The first is addition
of high capability central processing unit (CPU) cores, where
each core presents computational capabilities to the applica-
tions programmer that individually appear very much the same
as a traditional single core CPU. This approach is very much
linked to the processor product development approach taken
by Intel and AMD and at the time of writing is typified by de-
vices with 4, 6, 8 core with recent devices announced fielding
16 and 32 such cores. The other approach is that typified by
the GPU devices fielded by companies like NVidia. To a large
extent the recent success of GPUs for general purpose (non
graphical) programming has been due to the data parallelism
possibilities offered by the large and rapidly growing number
of simpler compute cores available. Recent GPUs have fielded
512 and 1536 such cores.

In this paper we explore the idea that one can also program

GPUs in a manner closer to that of the traditional CPU core
by focusing on the streaming multi-processors (MPs) and the
resources available to them. A modern GPU has a broadly
similar number of MPs as the number of compute cores on a
modern CPU. In this respect it appears that vendors like Intel
and NVidia are approaching the same problem but from differ-
ent directions. This has interesting implications for future and
hybrid devices.

We are interested in how one can use GPU MPs using a job
parallelism approach. In separate work we have explored how
jobs can be placed on completely separate GPU accelerators
run by the same CPU host program, but in this present paper
we explore independent jobs running on the MPs of a single
GPU. There are a number of appropriate simulation models for
which this is a powerful paradigm for enhancing throughput.

We present performance analysis based on an example such
as simulating the 2D Game of Life (GoL) cellular automa-
ton (CA) model [5, 7], but we also incorporate a sophisticated
model analysis algorithm using cluster component labelling
and histogramming [11].

Component labelling [6, 22] is a long standing problem of
interest on parallel computers with a range of parallel ap-
proaches reported in the literature [19]. We have reported prior
work of our own in achieving fast component labelling on a
single GPU [8] where memory was not at a premium. In this
present paper we include a report of our new work in achieving
component labelling performed within the memory resources
of a single MP.

Using bit-wise programming instructions and data structures
we are able to cram a combined simulation model and its sta-
tistical component analysis software into the memory of indi-
vidual MPs. The hosting CPU is thus able to manage indepen-
dent jobs across all the MPs of its accelerating GPU device,
and furthermore this can be extended if more than one GPU
device is available.

The problem of managing job parallelism on modern multi-
core devices is not a new one and much has been shown to
depend of the efficiency and ease of programming using mul-
tiple threads of control [2, 3, 9, 10, 17]. These technologies are
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typically needed to manage parallelism within a multi-cored
CPU, with a language and environment such as NVidia’s Com-
pute Unified Device Architecture (CUDA) [13,14] being used
to program the GPU accelerator code. A coarser grain paral-
lelism is also available across different host nodes altogether
using hybrids of message passing and GPU accelerator tech-
niques [23].

Our article is structured as follows: In Section 2 we sum-
marise the simulation model and component analysis ideas
that are central to this paper and which we aim to run inde-
pendently upon the individual MPs of one or more GPUs. In
Section 3 we review the various relevant technical characteris-
tic GPU models which allow us to device various compact and
bit-packing programming implementations which we describe
in Section 4. We present a selection of performance results
achieved with different GPU models in Section 5 and discuss
the implications for this job parallelism paradigm in Section 6.
We offer some concluding ideas and areas for further work in
Section 7.

2 Model and Analysis Background
In this paper we focus on bit-wise models where there is a
well-defined time-stepping procedure to update the bit-field
based on a some localised calculation. A bit-field in d-
dimensions can be analysed into its individual component
clusters, which can be categorised by size and histogrammed
appropriately. This is a particularly interesting analysis to in-
corporate into our performance testing since component la-
belling is no longer a localised calculation but must propagate
information – about which site is connected to which cluster
component – across the whole of the memory structure used
for the bit-field. Although this approach applied to a wide
class of complex systems simulation models, cellular automa-
ton models are particular useful as concise benchmarks to dis-
cuss n this paper.

Cellular Automata (CA) models [1, 18] have long played an
important role in exploring and understanding of the fun-
damentals of complex systems [21]. One classic CAs that
provide a basis for much other work is Conway’s Game of
Life(GoL) [5]. There is a space of similarly formulated au-
tomaton rules [15] in the same family as GoL [12] but the
Conway precise specification turns out to be particularly spe-
cial in the rule set space of the family, having highly complex
behaviour.

Much work has been done on studying the coherent structures
that occur in GoL and its variants [4]. It is possible to implant
specific patterns such as gliders, glider guns and so forth to ob-
tain specific sequences of GoL automata configurations. How-
ever, in this present paper we investigate GoL automata sys-
tems that have been randomly initialised with an initial frac-
tion of live cells. Providing we simulate a large enough sample
of large enough automata systems, many different individual
patterns can occur by chance, will interact and the system will
eventually arrive a static or dynamical equilibrium.

The Game of Live is implemented using the Moore neighbour-
hood on a d = 2 dimensional array of cells, where the number
of (Moore) Neighbouring sites NM = 8, for d = 2. We de-
fine the (square) lattice Length as L and hence the number of
sites N , typically N = Ld. We define the number of live sites
NL, and so the metric fraction fl = NL/N and similarly the
number of dead sites ND, and fraction fD = ND/N .

Algorithm 1 Synchronous automaton update algorithm.
for all i, j in (L,L) do

gather Moore Neighbour-hoodMi,j

apply rule b[i][j]← {s[i][j],Mi,j}
end for
for all i, j in (L,L) do

copy b[i][j]→ s[i][j]
end for

In prior work [7] we have explored various simple metrics that
can be applied to the GoL bit-field, but in this paper we focus
on the size distribution of components of live cells as a func-
tion of time after random initialisation. Our long term interest
is in building up histograms of this size distribution averaged
over many independent configurations so we can track the time
dependent behaviour to explore theoretical predictions such as
Becker Doring [16].

We do not discuss the computational science and statistical
mechanics aspects further in this present paper, but focus
on the GPU and performance aspects using this applications
model as a representative benchmark. The key aspects of the
model as we employ it here are that although we only need a
bit-field of N = L2 elements for the simulation, we need an
integer field to hold the working site labels when we perform
the component analysis. This gives rise to various memory and
size tradeoffs as described in Section 4 and the tradeoff space
is different for different combinations of MPs and non-shared
memory in the different GPU models described below.

3 GPU Architectural Background

Figure 1: Overview of the GPU Architecture showing the role
of the Streaming Multi-Processors (MPs). This scalable model
easily allows additional MPs to be added to the GPU.

Graphical Processing Units have proved themselves as pow-
erful and effective for large scale computational simulations.
Acceptance of the GPU is shown by the number of GPU accel-
erated machines in the June 2012 TOP500 list [20]. Of the top
100 machines from this list, 15% are GPU accelerated, given
the relatively recent rise of GPU computing this is a significant
percentage.

GPUs can achieve a high computational throughput by provid-
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Figure 2: Streaming Multi-Processor Architecture showing
three generations - Tesla (GT200), Fermi (GF110) and Kepler
(GK104). It can be seen that although the number of cores on
each MP has grown significantly in each generation

ing a large number of simple cores and small cache structures.
This approach contrasts with modern CPU design which in-
stead contains a small number of powerful cores that are kept
busy by large cache hierarchies. GPUs also control thread
management and scheduling in hardware which allows them
to manage a large number of threads running at a time. Vari-
ous thread scheduling techniques can be used to hide memory
latencies and allow GPUs to perform efficiently when execut-
ing a large number of threads.

NVIDIA GPUs each contain a number of Streaming Multipro-
cessors (MPs), each of which contains a number of cores as
well as registers and shared memory. The main memory area
of a GPU is global memory which can be accessed by both the
MPs of the GPU and also by the host through the PCIe bus.
The Fermi and Kepler architecture GPUs also have an area of
L2 cache that is shared between all of the MPs on the device
The general GPU architecture can be seen in Figure 1. The
main difference between the generations of GPU is the config-
uration of the MPs themselves.

Tesla generation (G80, GT200) MPs each contained 8 cores,
either 32KB or 64KB of registers and 16KB of shared mem-
ory. The Fermi architecture (GF110) improved on this with
32 cores per MP with 128KB of registers and 48KB of shared
memory. It also introduced an L1/L2 cache which automat-
ically cached read/write transactions to global memory (the
main device memory). The recently release Kepler architec-
ture (GK104) GPUs contain SMX units (next generation MPs)
with 192 cores, 256KB of registers and 48KB of shared mem-
ory. A illustration of the different MP configurations is shown
in Figure 2.

At this point in most GPU articles, a detailed description of
global memory accesses and the various caches for access-
ing global memory (constant, texture, L1/L2) would be de-

scribed. However, this research takes a different approach to
GPU-based computation. Instead of achieving high computa-
tional throughput by creating a large number of threads and
processing a large data set like most GPU simulations, we in-
stead investigate how GPU MPs can be used to process small
data sets.

Traditionally GPUs struggle with small data sets because it
limits the number of threads that can be active at once and the
memory transactions to global memory cannot be hidden ef-
fectively. In this article we investigate how simulations with
small data sets can be computed entirely on a single MP. This
means the data set must fit into shared memory and the sim-
ulation computed entirely by a single block of threads. This
obviously places strict restrictions on the maximum size of the
system and presents a set of challenges not normally faced by
GPU developers. The advantage of this approach is that the
only slow global memory transactions are the writes to out-
put the results of the simulation. All other memory transac-
tions are through either the very fast registers or relatively fast
shared memory.

Device Multi CUDA Global Mem GPU
Model Procs Cores per GPU Clock
(NVidia) (MBytes) (GHz)
GTX 260+ 24 216 896 1.40
GTX 580 16 512 1,536 1.59
GTX 590 2x16 2x512 1,536 1.22
GTX 680 8 1536 2,048 0.71
M2075 14 448 5,375 1.15

Table 1: Configurations and relevant properties of the GPU
devices.

In Table 1 we list the relevant memory and core configurations
and clock speeds of the various GPUs we used. The GTX
“Gamer” devices were hosted with Intel CPUs in conventional
desktop computers and the M2075 was hosted in a blade unit
with Xeon CPU host.

CPU CPU Cache CPU
Model Cores Clock
(Intel) (MBytes) (GHz)
Q8200 Core2 4 4 2.33
X5675 Xeon 6 12 3.06
2600K Core-i7 4 8 3.40

Table 2: CPU relevant Properties.

Table 2 lists the relevant core numbers, cache sizes and clock
speeds of the conventional CPU devices we experimented
with.

4 Implementation Method
There are a number of important aspects to implementing
the simulation and component labelling code on GPUs. In
this section we discuss storage issues; the update algorithm;
CUDA aspects; and the component labelling algorithm.
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Figure 3: Bit-packing used to store a cell’s spin and label in
the same 16-bit unsigned short int. This cell is ’alive’ and has
the label 25.

4.1 Storage Requirements
The storage requirements for the Game of Life are relatively
small, each cell has only two possible state - alive or dead.
Thus a single bit per cell is sufficient to represent the system.
For the different threads in the kernel to be able to access this
system, it must be stored in shared memory - 16KB on a Tesla
or 48KB on a Fermi/Kepler GPU. To make full use of this
shared memory area to store for the state of the system, the
state of the cells must be packed into an unsigned char, un-
signed int or a similar data type. This means the maximum
system size that can be stored in shared memory is ≈ 3602 on
a Tesla and ≈ 6202 on a Fermi/Kepler GPU.

However, for this application there are additional storage re-
quirement. Not only does the storage for the Game of Life
need to fit into shared memory but also the space required for
the component labeling. In order to support the number of la-
bels required, an unsigned short int is used for each label. This
data type gives a maximum of 216 or 65536 labels. This limits
the maximum system size to ≈ 1502 which gives a maximum
of 22, 500 cells. In turn this means only 15 of the 16 bits in
the short integer are required for the label. The extra bit can
be used to store the spin for the Game of Life system. This is
shown in Figure 3.

This allows both the labels and the Game of Life system to be
stored in a lattice of unsigned short ints and give a maximum
size of ≈ 1502 for a Fermi/Kepler device or ≈ 902 for a Tesla
device.

4.2 Update Method
Unfortunately this maximum storage size only takes the mem-
ory to store a single system into account. As the Game of
Life uses a synchronous update method, two system states
are usually used to compute the model. One is used to store
the current state and to calculate the next state of each cell,
this new state is written to the second system. However, this
method immediately doubles the memory required to store a
Game of Life system. For most implementations this would
not cause a major problem, however in this case there is a very
limited amount of memory available and another method must
be used.

In this method only one full system is stored and two buffers
are used to store rows of previous states. The system is up-
dated one row at a time and writes the new value of each row
directly updates the system. However, before each new row
is written to memory the old value is copied to a buffer. The
values from this buffer can then be used to calculate the update
for the next row. Because this simulation uses periodic bound-

Figure 4: Update of a Game of Life system using buffers. The
highlighted green rows are the rows currently being using in
the update. This example shows how a blinker can be correctly
updated by using the buffer to store the previous row.

aries, another buffer is also required to store the original value
of the first row as it is required for the calculation of the final
row. This update method is illustrated in Figure 4.

4.3 CUDA implementation
Normally CUDA kernels create one thread for each cell, but
unfortunately in this case it would also overrun the available
registers. The easiest way to implement this update method
in CUDA is to create one row of threads, each of which is re-
sponsible for update one column of cells. Before the update of
the system begins, the first row and last rows are copied into
the buffers. The buffer containing the first row will remain un-
touched until the last stage of the update while the other buffer
will be continually updated. Each thread then reads three val-
ues from the buffer (representing the previous row) and the
other six values from the system. Using these values it will cal-
culate the new value of the cell. Once the new value has been
calculated it will write the old value to the buffer and the new
value to memory. All the threads must synchronize after each
row has been updated to ensure that the buffer contains the
correct values. This implementation is given in Algorithm 2.

However, this implementation will limit the number of threads
to a maximum of L. This will limit the maximum performance
of the implementation as the MPs use thread scheduling to
hide memory latency. A better approach is to create a block
of threads that process the field several rows at a time. In this
implementation only the first row of the block will read from
the buffer and only the last row will write to it. This allows a
greater number of threads to run at once and makes better use
of the MPs. The optimal number of rows updated by the block
will depend on the total size of the system.

4.4 Connected Component Labelling
The other stage of the kernel is to label the connected compo-
nents of the system. The same method of iterating through the
cells used by the simulation can be used by the labeling phase.
The labeling method used by this implementation is based on
previous implementations and is outlined in algorithm 3.

This algorithm is used by both the GPU and CPU implemen-
tations albeit with some minor implementation modifications.
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Algorithm 2 CUDA implementation of the buffer update
method.

declare shared s[L][L]
declare shared b0[L]
declare shared b1[L]
declare xm1=(threadIdx.x == 0) ? L-1 : threadIdx.x-1
declare xp1=(threadIdx.x == L-1) ? 0 : threadIdx.x+1
for t = 0 to te do

copy s[0][threadIdx.x] to b1[threadIdx.x]
copy s[L-1][threadIdx.x] to b0[threadIdx.x]
for y = 0 to L do

declare sum = 0
sum += b0[xm1] + b0[threadIdx.x] + b1[xp1]
sum += s[y][xm1] + s[y][xp1]
if y == L-1 then

sum += b0[xm1] + b0[threadIdx.x] + b0[xp1]
else

sum += s[y+1][xm1] + s[y+1][threadIdx.x] + s[y+1][xp1]
end if
syncthreads
copy s[y][threadIdx.x] to b0[threadIdx.x]
if sum == 3 then

s[y][threadIdx.x] = 1
else if sum < 2 or sum > 3 then

s[y]threadIdx.x] = 0
end if

end for
end for

Algorithm 3 Component labelling algorithm outline.
declare change = true
for y = 0 to L do

label[y][threadIdx.x] = y*L + threadIdx.x
end for
while changed == true do

changed = false
for y = 0 to L do

ln = find lowest connected label in neighbours
if ln < label[y][threadIdx.x] then

label[y][threadIdx.x] = ln
changed = true

end if
end for
for y = 0 to L do

declare l0 = label[y][threadIdx.x]
while l0 != label[l0/L][l0 % L] do

l0 = labe[l0];
end while
label[y][threadIdx.x] = l0

end for
end while

Because the GPU implementation still has a degree of par-
allelism to it some synchronizations are required in order to
ensure that the connected components are correctly labelled.

4.5 CPU Threading Implementation
In order to make a fair comparison and assessment of our ap-
proach on GPUs we also implemented the simulation and com-
ponent labelling using a threading system across the (conven-
tional) high capability cores of various CPU models. Intel’s
Threading Building Blocks [9] has been used to implement
this multi-threading for the CPU implementations. Effectively
the Game of Life simulations are distributed as jobs to the
available cores on the CPU. This allows each simulation to
remain as local as possible to the core and make best use of
the available cache while still making use of the CPU cores.

Figure 5: Comparison of CPU cores and GPU MPs computing
a single Game of Life simulation with Connected Component
Labelling.

Figure 6: ln-ln scale comparison of CPU cores and GPU MPs
computing a single Game of Life simulation with Connected
Component Labelling, with least-squares fitted slopes between
1.8 and 2.1.

5 Performance Results
The performance of the GPUs described in Table 1 and CPUs
from Table 2 have been compared for two different situations
- computing a single Game of Life simulation and comput-
ing 100 simulations. The error-bars shown in the plots were
obtained from standard deviations obtained by averaging time
measurements over multiple runs with independently seeded
initial conditions for the model.

The first comparison allows the performance of a single CPU
core to be compared with a single MP of a GPU. This compar-
ison is shown in Figure 5 both of which show the time taken
by a single core of the CPUs and and single MP of the GPUs
to compute a step of a Game of Life simulation with connected
component labelling across various system sizes. This is also
shown in log-log scale in Figure 6

The second compares the CPUs and GPUs as an entire pro-
cessing architecture. It is expected that the GPUs will be able
to provide higher performance when computing many simula-
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Figure 7: Comparison of CPUs and GPUs computing one hun-
dred Game of Life simulations with Connected Component
Labelling.

Figure 8: Comparison of CPUs computing one hundred Game
of Life simulations with Connected Component Labelling.

tions as they generally contain many MPs compared to CPUs
which generally contain 2-6 cores. This can be seen in Fig-
ure 7 which shows the time taken by all the available cores of
the CPUs and all available MPs of the GPUs to compute a step
of a Game of Life and label the connected components. Re-
sults are shown across a range of system sizes L = 32...128.

6 Discussion
The software architectural model we adopt is essentially a
CPU master program that controls as many slave programs
as practically possible given the available CPU cores, GPU
devices and MPS available on the GPUs. Our outer loop
therefore tries to schedule Mj slave jobs across Nmp multi-
processors or NT threads across ND devices on each of NN
individual nodes. There is therefore a significant choice in
which level of parallelism to exploit to maximum the number
of jobs that can be executed at once. In this paper we limit our
investigation to a single GPU device, driven by a single host-
ing node, but there is obviously scope for deploying multiple
nodes with multiple devices.

Figure 8 shows the mean timing result for the model system
size L = 128 ranked in ascending time and shows how the
various single CPU cores and single GPU MPs compared. The
solid points plotted are the absolute times and show a steady
increase in time from the fastest device we tested (the Kepler
architecture GTX 680 GPU MP) up to the slowest (the Core2
CPU). As one might expect faster clock speeds in the CPU
devices lead to a improved times. There is approximately a
ratio of 3.5 between the times for slowest and fastest. Aver-
aged over a larger number of jobs that can be scheduled across
many CPU cores or many GPU MPs, improves this ratio even
further to a factor of approximately 8.

If we attempt to normalise the times by clock speed, we see a
marked separation of the data in Figure 8 into two very definite
clusters - one for the GPU MP and one for the CPU core. This
is plotted as the open data points, which again, we have ranked
in order to highlight the changes. Obviously this approach
only gives a very broad brush comparison between individual
GPU MP and CPU core but within the two categories it does
highlight some interesting effects.

One might expect the improved Kepler architecture GPU (680)
with it greater number of cores to outperform the Tesla archi-
tecture devices (2075, 590 and 580 models). The M2075 has
error-checked memory (which is why it needs a slower clock
speed than the other Fermi devices - 580 and 590) and the
M2075 generally outperforms the GTX devices on floating
point calculations. Our benchmark application however pri-
marily uses bit-wise, integer and memory manipulations, but
the M2050 is still the best Fermi GPU architecture when clock
speed is factored out.

Analysing the slopes from Figure 6 also shows some inter-
esting results. Plotting the log of the time versus the log
of the problem size L normally indicates the computational
complexity exponent ν from the slope and the relationship
t ≈ O(Lν). We obtain values for the exponent ν from inverse
error-weighted least-squares fitting to the whole curves.

The slope of the CPU performance plots are all similar at
≈ 2.1. This is expected as the complexity of computing the
Game of Life should increase with ≈ L2 but the connected
component labeling should be slightly greater than L2. How-
ever, the Fermi architecture GPUs all show a similar slope of
≈ 1.8 − 1.9. This suggests that the computational power of
the MPs is still being under utilized and that the GPU would
be able to provide more efficient computation if a larger sys-
tem size could be fit into shared memory. This is even more
pronounced in the Kepler GPU which had a slope of ≈ 1.4.

While the GPU architectures provide very efficient computa-
tion they are still severely limited by the available memory and
especially by the available cache. Unfortunately this problem
appears to be amplified in the latest GPU architecture which
has increase the number of cores per MP from 32 to 192 with
no increase in shared memory.
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7 Conclusion
We have described our use of streaming multi-processors of
various NVidia GPU device models to implement independent
job parallelism for accelerating complex systems simulations.
We have showed that even quite sophisticated applications can
be fit into the memory of an MP and that both the simulation
itself as well as a more elaborate component analysis calcu-
lation can use this approach. We have also implemented the
same application algorithm for individual single CPU cores
scheduling across the multiple cores in Intel CPUs.

We have discussed the tradeoff space offered by the particular
memory and MP mix available on current GPUs. We antici-
pate this space offering even more memory per MP on future
devices and therefore this paradigm is likely to become viable
for other application problems and algorithms. This approach
is in contrast to the high successful data-parallel approach of-
ten used by applications programmers on GPU accelerators.
We observe the broadly similar numbers of conventional CPU
cores available from 2012 Intel chip offers and the number of
MPs available on NVidia GPUs available in 2012. We postu-
late some convergence and continued growth of these numbers
as hardware and production capabilities improve.

We observe that generally the present trend is still towards
multi-core CPUs being somewhat easier to program than are
GPUs using CUDA even when we have to use multi-threading
code and a library like Intel TBB. However with appropriate
parallel programming and bit-packing we obtained higher per-
formance using the GPU MPs than from the CPU cores.

In this paper, we have focused on the MP parallelism with a
single GPU. However, combining all sources of parallelism:
from multiple host nodes in a cluster; where each node is itself
a multi-cored CPU being accelerated by multiple GPUs; and
where each GPU has multiple MPs; and each MP is capable of
data-parallelism across its cores and threads, offers great po-
tential for job thoughput speedup in the applications context
we have described. Not all applications nor applications pro-
grammers will be able to or have the time and inclination to ex-
ploit all these levels of parallelism however. There is therefore
scope for code generation and compiler directives and other
tools to help achieve this. We expect to be able to deploy this
approach for many of the complex systems applications of in-
terest to us, extending the work to higher dimensional model
systems and other forms of statistical measurements including
time correlation analyses.

We expect vendors will continue to announce higher numbers
of CPU cores and MPs in the course of the next few years
and that the arena of programming language and associated
software environment will be of growing importance for the
continued exploitation of hybrid combinations of multi-core
CPU and multi-processor GPUs by applications programmers.
Finally, this work emphasises the current need to fit key data
structures of applications into local uncontended fast memory
wherever possible. GPU memory architecture appears to allow
more opportunity for this with this application category.
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Abstract – Mobile Ad Hoc Networks (MANET) is a useful 

means instead of network infrastructure when disaster 

happens. In this situation, information distribution without 

addresses of nodes is able to be realized by the existing Simple 

Flooding (SF). But SF causes redundant message 

transmission, performance degradation and waist of finite 

battery resources. Making network lifetime without external 

energy source as long as possible is one of the main goals in 

case of any disasters or emergency situations. We propose a 

new broadcasting method that allows reducing power 

consumption by decreasing a number of redundant re-

broadcastings, "Effective Flooding based on Neighbor 

information Exchange-Revised (EFNEX-R)".  Through 

computer simulation, we showed the effectiveness of our 

method compared with existing Simple Flooding. 

Keywords: Mobile Ad hoc Network, flooding, Disaster 

 

1 Introduction 

The Mobile Ad Hoc Networks (MANET) [1] is considered to 

be a useful communication means alternative to the 

infrastructure that might be out of service in case of big 

disaster such as earthquake and tsunami. MANET has been 

studied from the various perspectives. Among them, we have 

focused on the layer 3 message forwarding functionalities. 

Major study issues in MANET layer 3 are mainly on the 

routing protocols. The objective of the routing is transfer of 

information from a specific source to another specific 

destination or destinations, based on unicasting or 

multicasting technologies, respectively.  

Supposing the situation just after disaster happens, 

communication infrastructure becomes out of order and 

MANET is to be organized urgently. In this situation, address 

assigned to each MANET node is often private so that a 

global address must be newly assigned. Since DNS server 

seems not available, the assignment is not easy (time 

consuming). Each node in the MANET has little knowledge 

about other members' addresses, names, or positions. That 

means MANET is not useful just like broken infrastructure in 

a context of poin-to-(multi)point communication requiring IP 

addresses. Then, how should we do? Instead of unicasting, 

collection of information existing over the network such as 

about asylus, your friends, home, and family, and at the same 

time, distribution of those information over the network are 

needed. Fortunately, this kind of communication does not 

necessarily require specific addresses but just broadcast 

address.  

Communication without specific addresses can be executed 

by "Flodding" by use of repetition of "Broadcasting" over 

MANET[2] [3]. Flooding, however, requires every node in 

the MANET re-broadcast the message that results in 

redundant packet generation. MANET must suffer from 

heavy load caused by flooding. Since every MANET node is 

driven by finite battery, redundancy of traffic will accerelate 

the consumption of battery energy and shorten the network 

life time. In the initial stage of MANET, broadcast-based 

flooding is only applicable message transfer mechanism but 

the the redundancy must be resolved. 

There have been several studies that achieve high "packet 

reachability (the ratio of nodes successfully receiving the 

packet to all the nodes)"  and reduce redundant packets[4-11]. 

We have also proposed a new method named Load-aware 

Dynamic Counter-based Flooding (LDCF) [12-14] that can 

reduce re-broadcasting without any message exchange among 

neighbor nodes. However, these existing methods require 

some complex processing and judge re-broadcasting based on 

state transition using internal variables. 

To realize more simplified but efficient braodcasdting, we 

have proposed a procedure named EFNEX that can reduce the 

number of transmitting nodes and make only small number of 

nodes execute the procedure [15-16]. This paper proposes a 

revised EFNEX and shows the efficiency of the revision by 

use of network simulation. 

Chapter 2 shows existing procedures, Chapter 3 explainns the 

EFNEX and its revision, Chapter 4 evaluates our proposal by 

network simulation, and CHapter 5 concludes our discussion. 

2 Existing studies 

2.1 Simple Flooding 

Simple Flooding [3] is the simplest way of transferring 

information over the network. A node that receives a message 

broadcasted by the information generating node will do as 

follows: 
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(1) if the message is received at the first time, the node must 

re-broadcast it, or 

(2) if the message has been already received by the node, the 

node discards it. 

Simple Flooding can tranfer messages effectively in case 

nodes are distributed sparsely (low node density). But in case 

node density is high, nodes must suffer from multiple 

reception of the same message and result in inefficiency of 

message transfer. And packet loss and buffer overflow will 

also be likely to happen. Such situation causes execcive  

battery consumption. Hence, number of redundant 

rebroadcasting must be reduced. 

2.2 Counter-based scheme 

Counter based scheme [5-7] determines whether a packet is to 

be rebroadcasted or not based on the number of receipts of the 

same packet. Upon the receipt of the first packet, the counter 

is reset. During the random time period after the first receipt, 

at every time when the node receives the same packet (with 

same ID of the first one), counter value is added by "1". If the 

counter value reaches the threshold during the time period 

mentioned above, the rebroadcast is cancelled.  It means that 

many packets exist around the node and that the necessity of 

rebroadcast is low. Otherwise (the counter value does not 

reach the threshold after the time period), the node 

rebroadcasts the packet.  

The problem of this scheme is that the threshold is fixed and 

how to determine the optimum value is not clear. It is because 

the threshold value must be affected by the traffic condition 

around the node. And this scheme must make every node 

manage the status of each packet with the same packet ID so 

that the process must be complicated. 

2.3 Load-aware Dynamic Counter-based 

Flooding (LDCF)  

LDCF solves the problem of counter-based scheme shown in 

2.2 by enabling dynamic adaptation of threshold value 

sependent on the load [12-14]. It estimates load of the node 

by observing the length of Layer 2 transmission buffer. If the 

load is estimated being high, the counter threshold value is set 

small. On the contrary, if low, it is set big. We have already 

shown LDCF can much improve the packet penetration rate 

and reduce redundant packets compared with Simple 

Flooding and Counter-based scheme. 

This scheme is very much superior to the existing schemes in 

the context of improvement in inefficiency of flooding. It, 

however, requires management of every packet status and 

variables to be managed such as dynamic threshold values is  

added to existing other methods. This fact may cause 

complexity of the system. 

 

2.4 Effective Flooding based on Neighbor 

Information Exchange (EFNEX)  

As stated in the previous sections, existing flooding schemes 

have several problems to be solved from the perspectives of 

redundancy, penetration rate, battery consumption, and 

complexity in state management. Hence the requirements for 

the new scheme are: 

(R1) Reducing redundant packets and suppressing battery 

consumption 

(R2) Simplification of node processing 

Simple Flooding cannot satisfy the requirement (R1). 

Counter-based scheme and LDCF cannot satisfy the 

requirement (R2).  

To meet the requirements, we proposed "Effective Flooding 

based on Neighbor Information Exchange (EFNEX)" [15-16]. 

In EFNEX, the broadcaster selects the next broadcasting node 

with the maximum number of neighbors by collecting 

neighbor node information within a radio area. EFNEX 

satisfies (R1) by eliminating the number of rebroadcasting 

nodes and (R2) by simple adding and sustraction instead of 

complex status management.  

Simulation study shows EFNEX can reduce the number of 

packets received to 1/4 of the Simple Flooding scheme. But 

the packet penetration rate is 65% which not sufficiently high. 

So, the revision of EFNEX is required to realize higher 

penetration rate. 

3 Proposed scheme (EFNEX-R)  

In order to improve the packet penetration rate of EFNEX, we 

propose "Effective Flooding based on Neighbor Information 

Exchange-Revised (EFNEX-R)".  

This procedure has two phases: Initializing and Transfer ones. 

Initializing phase is one before the user message 

communication and Transfer phase is one during user 

message communication is executed. The procedure is shown 

below. 

3.1 Initializing phase  

This phase of EFNEX-R has the same procedure as EFNEX.  

We assume that  

- only one node initiates the procedure and the others do not; 

- Within a time duration, all the hello exchanges terminate;  

- No collision occurs (all the messages can reach one hop 

destination without loss); and 

- No node has any mobility. 

The detailed procedure of Initializing phase is as follows; 
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(i1) Each node broadcasts a hello message with its name 

within a radio range. See Fig.1 

(i2) Each node that receives a hello message from a neighbor 

node records the name of the neighbor node. 

(i3) After some time duration, each node counts the number 

of names collected from all the hello messages and makes 

own neighbor list (NL). NL includes NL creator node name, 

list of neighbor names and the number of the neighbors. 

(i4) Each NL is broadcasted. 

(i5) Each NL is revised upon receipt of NLs broadcasted in 

procedure (i4). See Fig.2. 

 

Fig. 1 Hello message exchange 

 

Fig.2 NL collection 

3.2 Transfer phase 

(t1) The message originator is the first broadcaster. Before a 

packet is broadcasted by a broadcaster, the node compares all 

the neighbors’ NLs and selects a specific node as a next 

broadcaster that has the biggest number of neighbors who are 

not in the broadcaster's own neighbor list. If there are multiple 

neighbors who have same number of neighbors who are not 

in the broadcaster's own neighbor list, one of them is selected 

randomly by the broadcaster as a next broad caster. 

(t2) The broadcaster broadcasts a data packet, which contains 

data, a packet ID, a name of next broadcaster selected in (t1), 

and its own NL. 

(t3) The selected next broadcaster merges the NL sent by 

prior broadcaster and its own NL. Nodes not selected as a 

next broadcaster receives the packet if it is the first time 

reception and otherwise the packet is discarded.  

(t4) Procedures (t1) through (t3) are repeated until the next 

broadcaster cannot be selected. 

The existing EFNEX does not consider the name of neighbors 

but just counts the number only. This is the difference 

between EFNEX and EFNEX-R. 

 

4 Evaluation 

4.1 Simulation conditions  

Proposed procedure, EFNEX-R, is evaluated by comparing 

with existing Simple Flooding and EFNEX by use of network 

simulator, OPNET [17].  

Table 1 shows the simulation conditions. 

 

This phase of EFNEX-R has the same procedure as EFNEX.  

We assume that  

-This procedure is initiated by a node; 

- A message is transferred in a packet; 

- The message is video-type for One-seg broadcasting; 

- No mobility is considered; 

- Information is assumed as several minute motion picture; 

and 

- The number of generated packets is less than 10 thousand. 

 

4.2 Evaluation items  

Next two items are evaluated. 

 

 

Table 1. Simulation Condition. 

number of nodes 50 

Network area 1,000m*600m 

Radio area (radius) 200m 

Packet size 512B 

Frame rate 15frames/s 

Mobility none 
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(1) Total number of packets transmitted and received (NT) 

A packet is generated by the originator and it is penetrated in 

the network. It means that the packet is received by nodes 

within a radio area and re-broadcasted by those nodes in 

Simple Flooding case and by a selected node in EFNEX and 

EFNEX-R cases, and the procedure is repeated.  

Here, Nsi is the number of packets sent by the node I, Nri is 

that received by node i. 

Then, 

   ∑       

 

 

In EFNEX and EFNEX-R, NT includes both initializing and 

transfer phases. 

(2) Packet penetration rate (P) 

First, for a packet whose ID is "i", the ratio of the number of 

nodes who receive the packet "i"  to the total number of nodes 

in the network is calculated. Then, the ratio is averaged for all 

the generated packets, which is the penetration rate. 

  
∑

  
 

 
   

 
 

where 

M: total number of packets generated 

N: total number of nodes 

i: packet ID (i=1,2,…..,M) 

ri: number of node receiving the packet "i". 

dithe neighbors’ NLs and selects a specific node as a next 

broadcaster that has the biggest number of neighbors who are 

4.3 Evaluation results 

Fig.3 and Fig.4 shows the simulation results . 

(1) Total number of packets transmitted and received (NT) 

Fig.3 shows that EFNEX and EFNEX-R can reduce total 

number of packets sent and received drastically compared 

with Simple Flooding. The effect is 1/4 of Simple Flooding. 

EFNEX-R and EFNEX has no big difference but from the 

average value EFNEX-R can reduce about 7% of packets to 

EFNEX. 

 

 

(2) Packet penetration rate (P) 

FIg.4 shows that packet penetration rate of Simple Flooding is 

about 90% and ones of EFNEX and EFNEX-R are 65% and 

70%, respectively. Here, EFNEX-R improves P by about 5% 

compared with EFNEX. 

 

 

Fig.3 Total number of packets sent and received 

 

Fig.2 Packet penetration rate 
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5  Conclusion 

This paper proposes EFNEX-R that aims at improvement of 

packet penetration rate of EFNEX. It evaluates the proposed 

procedure by use of network simulation.  

As a result, proposed EFNEX-R realizes very small total 

number of sent and received packets (1/4) compared with 

Simple Flooding and also 7% less number than that of 

EFNEX. 

EFNEX-R also improves packet penetration rate compared 

with EFNEX by 5%. 

Further study is necessary for improvement of the procedure 

to achieve higher penetration rate and quantitative evaluation 

of processing load. 
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Abstract – Large-scale disasters often disable existing 

communication infrastructures. At the times of the disasters, 

one can assume reporting of damage conditions or evacuation 

instructions by real-time streaming of video and audio from 

designated nodes throughout the network. To achieve this, we 

have proposed Load and Battery Charge oriented Flooding 

(LBF). In this study, the video streaming performance for the 

method is evaluated through network simulations. The 

simulation result concludes that the method can prolong the 

running time for nodes without degradations of delivery 

quality. 

Keywords: Broadcast, Streaming, Ad hoc communication  

 

1 Introduction 

 Large-scale disasters often disable existing 

communications infrastructures or render stable power supply 

to communications terminals or base stations difficult. At the 

time of a disaster, one can assume reporting of damage 

conditions or evacuation instructions by real-time streaming 

of video and audio from designated nodes throughout the 

network.  

 Ad hoc networks are being studied as being resilient in a 

disaster situation [1]. Most previous research on ad hoc 

networks has dealt with client-server streaming by unicast or 

multicast. In particular, many studies dealt with video 

streaming. However, communications using the current 

unicast routing protocols are not suitable for delivery 

throughout a network composed of many nodes. In addition, 

IP addresses must be assigned appropriately to all nodes prior 

to communications, which is not necessarily possible at the 

time of a disaster. 

 One may consider flooding to broadcast information 

without using routing protocols. However, when existing 

simple flooding algorithms are used to deliver packets 

generated at a high rate, as in the case of video and audio 

streaming, redundant rebroadcasts frequently occur, thus 

causing data frame collisions and buffer overflows, which 

strongly degrades communication quality. Therefore, 

improvement of packet reachability must be considered. There 

have also been attempts to modify simple flooding so as to 

reduce redundant rebroadcasts [2-5]. 

 It is also difficult to assure a steady power supply to 

communication terminals and base stations at the time of a 

disaster. In case of ad hoc networks, control by base stations 

is not used, but communication terminals are powered by 

batteries with limited life. Thus, when delivering packets 

generated at a high rate, as in the case of video and audio 

streaming, batteries are discharged quickly, which may lead to 

node failures because of battery depletion and to deterioration 

of the communication performance of the entire network. 

Therefore, depletion of node batteries must be limited and 

power consumption must be reduced as much as possible by 

elimination of redundant communications. In addition, node 

failures caused by low battery levels must be prevented. 

 From the above we may conclude that in broadcast 

streaming of video and audio, packet reachability must be 

improved, and deterioration must be suppressed. In addition 

one should consider efficient use of remaining battery charge 

by lower power consumption at network nodes, and 

prevention of failures caused by battery depletion. However, 

we are not aware of any existing research aimed at meeting all 

these requirements. 

 To tackle with the above mentioned issues, we have 

proposed a broadcast streaming method named Load and 

Battery charge oriented Flooding (LBF) [6], which is a part 

of our research the Infrastructure-less Broadcast-based 

Information Delivery Architecture, as shown in Fig.1.  This 

paper evaluates the video performance of the proposed 

method through network simulations, and compares it to 

existing methods. Below we overview existing methods and 

their problems in Section 2. Then we present the proposed 

method in Section 3 and demonstrate its efficiency through 

network simulations in Section 4. We give a summary of the 

study in Section 5.  

2 Existing methods and their problems 

 As mentioned in Section 1, simple flooding is used as a 

scheme for broadcast information dissemination. In this 

scheme, on receiving a packet, a node rebroadcasts the packet 
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if it was never received before (non-identical packets). 

Packets that were received earlier (identical packets) are 

rejected. Every packet contains the ID of the generating node 

and the packet sequence number; the combination of these 

parameters provides unique identification. In this scheme, any 

non-identical packet is rebroadcast, which causes redundant 

rebroadcasts. Thus, a number of methods have been proposed 

to reduce redundant rebroadcasts [3-5]. Typical examples are 

described below.  

2.1 Assumed network environment and requirements 

 The counter-based scheme is a well-known modification 

of simple flooding for broadcast information delivery not 

dependent on GPS (Global Positioning System) or other 

particular devices. In this method, performance or non-

performance of rebroadcasting is determined by how many 

times an identical packet has been received. The basic 

procedure is explained below. 

1. On receiving a packet, a node sets its counter at 1 if the 

packet is non-identical. Identical packets are rejected. 

2. The counter value is incremented by 1 if an identical 

packet has been received during an arbitrary period of 

time (decision_time). 

3. If the counter reaches a threshold value (c_threshold) after 

expiration of decision_time, rebroadcasting is canceled. 

 In this scheme, the setting of c_threshold affects 

performance [4]. If c_threshold is small (e.g., 2) in a network 

with low node density (sparse network), rebroadcasting is 

strongly suppressed but packet reachability declines. On the 

other hand, the setting of c_threshold has no major effect on 

packet reachability in networks with high node density (dense 

networks). c_threshold should be set at 3 to 4; with settings of 

6 or more, redundant rebroadcasts cannot be reduced and the 

network behaves in the same way as with simple flooding [5]. 

 An adaptive counter-based scheme has been proposed to 

set c_threshold dynamically [5]. Specifically, every node 

sends Hello messages periodically, and nodes receiving these 

messages can recognize the number of neighboring nodes. 

Based on this information, rebroadcasting is performed or not 

performed. 

 In the two schemes described above, redundant 

rebroadcasts of identical packets are eliminated, thus 

preventing collisions and improving packet reachability. 

However, the node load is not taken into account. As a result, 

avoidance of collisions and buffer overflows cannot be 

guaranteed when packets are generated at a high rate, as in the 

case of video and audio. In addition, the remaining battery 

charge is ignored. Hence there is a high probability that 

rebroadcasting will not be suppressed at nodes with depleted 

batteries, and that such nodes will shut down. 

2.2 Assumed network environment and requirements 

 Some methods taking account of the node battery level 

have been proposed [7], [8]. Koide et al. [7] proposed a 

flooding scheme implemented on a routing protocol; in 

particular, the delay time is set according to the remaining 

battery charge, and duplicate packets received within this time 

are rejected. In addition, in a method proposed by Kasamatsu 

et al. [8], the delay time is set according to the node distance 

acquired by GPS and the remaining battery charge, and 

duplicate packets received within this time are rejected. As a 

result, nodes with low battery level are less likely to be chosen 

for rebroadcasting. 

 The former method [7] is intended for transmission of 

routing protocol messages, and delivery of packets generated 

at a high rate such as video or audio is not assumed and not 

evaluated. The latter method [8] assumes that nodes are GPS-

enabled so that information on the nodes’ position and 

distance is available. However, considering response to 

disasters, accurate information is not necessarily available via 

GPS. Thus, these two methods are obviously unsuitable under 

the circumstances described in Section 1. 

3 Proposed method 

3.1 Assumed network environment and requirements 

 In this study we assume unidirectional live streaming. In 

addition, we assume that a network is composed of portable 

communication terminals not provided with GPS or other 

special instruments, and that communications can be 

implemented by an IEEE 802.11 wireless LAN. Best-effort 

communication without QoS (Quality of Service) control is 

provided. 

 Below we consider a method to meet the following 

requirements (i) to (iii) in the presence of the circumstances 

described in Section 1. 

Fig.1 Infrastructure-less Broadcast-based information 

delivery Architecture 

 

Information sharing

（text contents, images）
Streaming application

（video, voice）

Broadcast Streaming System
Broadcast-Based 

Information Sharing System

Broadcast communication

（IEEE802.11 WLAN）

Application

IP, Routing

Unicast communication

（IEEE802.11 WLAN）

TCP

Conventional

Ad hoc network
Proposed architecture
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(i) In case of delivery of packets generated at a high rate 

such as video or audio, deterioration of communication 

quality caused by collisions and other troubles is limited 

and power consumption is reduced by suppression of 

superfluous packet transmission. 

(ii) Node failures caused by battery depletion are prevented 

by active suppression of rebroadcasts at nodes with low 

battery level 

(iii) Hello messages or other additional packets intended for 

examination of network conditions are not used so as to 

reduce the network load and to make efficient use of the 

remaining battery charge. 

3.2 Operation of proposed method  

 We have proposed load and battery charge oriented 

flooding (LBF) as a method of meeting requirements (i)–(iii). 

As regards (i), the conventional counter-based scheme 

eliminating redundancy of identical packets by means of a 

counter is supplemented consideration of node load. 

Specifically, when there are packets in the MAC transmission 

queue, the node load is considered heavy and rebroadcasting 

is canceled. As regards (ii), each node checks its battery level 

periodically and sets the counter threshold (c_threshold) 

accordingly. Specifically, c_threshold is set small at nodes 

with a low battery level to suppress rebroadcasting. As 

regards (iii), communications can be performed without using 

Hello messages. 

 Below we explain the proposed method in detail. A 

pseudo-language description is given in Fig. 2. First, the 

maximum counter threshold (max_c_threshold) and range of 

definition of the random value function (Random()) are 

assumed to be preset by the user. The procedure shown in Fig. 

2(a) is applied to every node at a certain interval 

(get_interval). If there are packets in the MAC transmission 

queue, packets are not rebroadcast when received (that is, the 

procedure in Fig. 2(b) is not executed). On the other hand, if 

there are no packets in the MAC transmission queue, the 

remaining battery charge is examined and is substituted into 

the variable remain_battery. Then c_threshold is determined 

as follows: 

c_threshold = ceil (max_c_threshold *(remain_battery / max_battery)) (1) 

 

 Here ceil (real x) returns the real-valued variable x 

rounded up to the nearest integer. As indicated by Eq. (1), 

c_threshold is set smaller for nodes with lower remaining 

battery charge, thus suppressing rebroadcasting. This aims at 

preferential suppression of rebroadcasting at nodes with low 

battery level. 

 Then the procedure in Fig. 2(b) is performed when a 

message is received from a generating node (initiator node). 

Specifically, the following operations are executed. 

1. If a node receives a non-identical packet, the counter is set 

to 1. Identical packets are rejected. 

2. The wait time until decision whether to rebroadcast 

(decision_time) is chosen as follows: 

Variables and parameters 

 
○Variable: Integer queue 

 // The num. of packets at the MAC transmission queue. 

○Variable: Real remain_battery 

 // The remaining battery level at the node. 

○Variable: Real max_battery 

 // The maximum battery level at the node. 

○Variable: Integer c_threshold 

 // The threshold value of the counter. 

○Variable: Integer max_c_threshold 

 // The maximum value of c_threshold 

○Variable: Integer counter 

 // The number of times that the same packet has been received. 

○Parameter: Integer get_interval 

 // The time interval for getting the num. of packets at the MAC 

transmission queue and the remaining battery level. 

○Procedure: getQueue() 

 // The function to get the num. of packets at the MAC transmission queue. 

○Procedure: getBattery() 

 // The function to get the remaining battery level. 
 

 

(a) The method of getting data on the remaining battery level 

Executed at certain intervals (get_interval) 

 
queue  getQueue() 

if (queue > 0) 

 then (b) is not executed (all re-broadcast is canceled) 

 else  remain_battery  getBattery() 

 c_threshold 

 ceil(max_c_threshold*(remain_battery /max_battery)). 

end if  

End.  
 

 
(b) The receiving and rebroadcast procedure 
 
Receiving a packet. 

if (The same packet as one that the node has already received) 

then END. 

else counter  1. 

 decision_time  Random() * 2(max_c_threshold - c_threshold) . 

 while (decision_time) 

    if (Receiving the same packet again)  

  then counter++. 

  end if  

 end while 

 if (counter >= c_threshold) 

 then Rebroadcast is cancelled. 

 else Rebroadcast the packet. 

 end if 

end if 

End. 
 

Fig.2 The operation of a node for LBF 
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decision_time=Random() * 2
(max_c_threshold - c_threshold)

  (2) 

As can be seen from Eq. (2), the lower the remaining battery 

charge, the longer the wait time is set. Like Eq. (1), this 

produces preferential suppression of rebroadcasting at nodes 

with low battery level. 

3. If the same packet is received again during decision_time, 

then the counter is incremented by 1. 

4. After the expiration of decision_time, rebroadcast is 

canceled if the counter value exceeds c_threshold. 

Otherwise, the packet is rebroadcast. 

4 Evaluation by simulations 

 Our previous researches have shown the performance of 

the proposed method [6][9]. They reported that the proposed 

method can prolong the node running time in the video and 

the voice streaming without degradation of the packet level 

delivery performance. The objectives of the evaluation in this 

section is to evaluate the video frame level delivery 

performance in the video streams, node running time, and to 

consider the application of Multiple Description Coding 

(MDC). In the evaluation, we compare the node running time 

and delivery quality for the proposed method LBF and the 

conventional scheme by using the OPNET network simulator 

[9].  

4.1 Simulation assumptions 

 The simulation conditions are described below. We 

assume a network with 100 nodes, a IEEE802.11b node MAC 

layer, and a data rate of 2 Mbps. The transmitted power is 

0.005 W, and the received power threshold is -85 dBm. The 

initial positions of the nodes are assumed to be random. All 

nodes move at a speed of [0.00, 4.00] according to the 

random waypoint model. This model is based on the human 

walking and running speed. Two simulation areas are defined: 

1000m×600m (space A) and 2000m×1200m (space B). Dense 

and sparse networks are considered in each case. The number 

of initiator nodes was 2. 

 A node’s remaining battery charge is modeled as follows. 

The maximum battery capacity (max_battery) is 500 W-s. 

At the initial stage of simulation, the remaining battery charge 

is set to 500 W-s (100%) for initiator nodes and to [100, 400] 

W*s (20%-80%) for other nodes. With reference to the study 

of Feeney et al. [10], the transmitting power tp [μW*s] and 

receiving power rp [μW*s] per packet are assumed as follows: 

tp = 2. 000 * frame length [byte] + 270  (3) 

rp = 0. 500 * frame length [byte] + 60  (4) 

In this evaluation we assume that the energy consumption at 

every node is described by the above equations. However, 

power consumption during non-communication periods is 

ignored. A node shuts down when its remaining battery charge 

drops to 0. 

 The values obtained by Random () are set to [0, 33] ms 

at every node with reference to the packet generation rate. We 

consider nodes receiving messages from initiator nodes to 

compare conventional simple flooding (SF), the fixed 

c_threshold scheme (corresponds to counter-based scheme), 

and the proposed LBF scheme. As shown in Table 1, three 

thresholds C4–C2 are set for fixed c_threshold scheme; and 

three values max_c_threshold LB4–LB2 are set for the 

proposed scheme LBF. These settings govern rebroadcasting. 

The threshold settings were selected with reference to the 

previous study [5] suggesting that the values should be from 3 

to 4. The battery level check interval (get_interval) is set to 1 

s. 

4.2 Application of MDC 

 The evaluation also examines the cases of the proposed 

method LBF using MDC. The details of MDC are explained 

in [13]. MDC in the existing studies aim to improve the 

packet reachability using multiple path transmission. On the 

other hand, the main purpose of MDC application in this 

study is to reduce number of transmitted and received packets 

Table 1 Parameters for each delivery method 

 c_threshold max_c_threshold 

SF - - 

C4 4 (fixed) - 

C3 3 (fixed) - 

C2 2 (fixed) - 

LB4 Determined by Eq.(1) 4 

LB3 Determined by Eq.(1) 3 

LB2 Determined by Eq.(1) 2 

LB4 w. MDC Determined by Eq.(1) 4 

LB3 w. MDC Determined by Eq.(1) 3 

LB2 w. MDC Determined by Eq.(1) 2 

 
 

(a) Delivery without MDC

1 2 3 4 5 6 7 8

I1 P2 P3 P4 P5 P6 P7 P8

I1 P3 P5 P7

I2 P4 P6 P8

Description 1

encode

Delivery area

Initiator 1

Initiator 2

Initiator 1

transmits Desc. 1

Initiator 2

transmits Desc. 2

Raw video

9 10 11 12

P9 P10 I11 P12

P9

P10

P11

P12

Delivery area

Encoded video

1 2 3 4 5 6 7 8

encode

Raw video

9 10 11 12

(b) Delivery with MDC

Description 2

 
 

Fig.3 Delivery without/with MDC 
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in the network, as shown in Fig.3 (b). In the simulation, the 

delivery parameters for MDC applied cases were described as 

LB4-LB2 w. MDC in Table 2. 

4.3 Video configurations 

 Suppose that there are 2 initiator nodes, and the initiator 

nodes are streaming video using the H.264 codec [11]. 1000 

frames of QCIF (Quarter Common Intermediate Format) 

highway [12] are encoded using jml4.2 [11]. We assume a 

frame rate of 30 fps (that is, a packet generation rate of 33 ms). 

The frames are composed of I frames and P frames, and the 

GoP (Group of Pictures) is set to 10. These 1000 frames are 

generated repeatedly. The frame size distribution was shown 

in Fig. 4. 

4.4 Evaluation of node running time 

 Evaluation is performed by the time at 5% of nodes stop in 

the network; the average was found for 10 simulation runs at 

every value of the random seed. The larger this value, the 

better. 

 The simulation result in Space A and Space B shows in 

Fig.5 (i) and (ii), respectively. In the both spaces A and B, the 

proposed method cases show the longer time than the existing 

method cases. This means that the proposed method can 

reduce the energy consumption at the node and prolong the 

node running time. In addition, in the proposed method with 

MDC cases show the longer time than the case without MDC 

cases. This means that MDC application can prolong the node 

running time.  

4.5  Evaluation of delivery performance 

 Evaluation is performed by the percentage of playable 

packets at the time when (b) the initial period of the video 

streaming and the time when (c) 5% of nodes stopped in C2; 

the average is found for all running nodes in the network and 

10 simulation runs at every value of the random seed. The 

higher this value, the better. The playable packets here mean 

the packets that not only successfully reached the application 

layer at the node but were also decodable into video. Since C2 

case showed the longest time at 5% of node stop among the 

existing method cases in the Section 4.4, only this case is 

compared with the proposed method cases in this evaluation.  

 The simulation result in Space A and Space B shows in 

Fig.6 (i) and (ii), respectively. In Space A, both at the time (b) 

and (c) , % of viewable frames for the proposed method cases, 

LB4-LB2 and LB4-LB2 w. MDC, were higher than that for 

C2 case. In Space B, at the time (b), the proposed methods 

cases, LB4, LB3, and LB4 w. MDC showed the similar results 

to the C2 case. Among the proposed method cases, the % for 

with MDC cases showed the lower % than that for without 

MDC cases. This means that MDC may not contribute to 

maintain the delivery performance in the sparsely distributed 

network. 

5  Conclusions 

 This paper has considered the infrastructure-less broadcast 

streaming methods which can achieve to maintain delivery 

quality and long node running time. For this purpose, we have 

already proposed Load and Battery Charge Oriented Flooding 

(LBF). In this paper, the performance of the proposed 

methods has been evaluated through the network simulations. 

 The time at 5% of node stop in the network was evaluated 

in Section 4.4. The evaluation result showed that the proposed 

method LBF can reduce the energy at the node and prolong 

the node running time. In addition, in the proposed method 

cases, the cases with MDC show the longer time than the case 

without MDC cases. The results concluded that MDC 

application can prolong the node running time. 
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 The percentage of playable packets at the time when 5% 

of nodes stopped for C2 case was evaluated in Section 4.5. 

The evaluation result showed that the proposed method cases 

showed the better delivery quality than C2 case both at the 

time when the initial period of the video streaming. In the 

sparsely distributed network, the some cases of the proposed 

method (LB4, LB3, and LB4 w. MDC) shows the similar 

results to C2 case. On the other hand, in the sparsely 

distributed network, the other cases of the proposed methods 

showed the worse delivery performance than C2 case. 

 Considering both node running time and delivery quality, 

the better parameter choices of the proposed method were 

LB4, LB3, and LB4 w. MDC. From the above results, we can 

conclude that the proposed method can prolong the network 

running time without degradation of delivery quality with the 

above parameters. The future issue is to improve the delivery 

performance for the proposed method in the sparsely 

distributed network. 
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Abstract – In a disaster situation, since existing 

communication infrastructure will be unavailable, it is 

difficult to share information such as text, image, and audio 

data with neighboring mobile communication devices. To 

enable information sharing without using existing 

communication infrastructure in communication 

infrastructure unavailable areas, we propose a novel method 

Broadcast-Based Information Sharing System (BBISS) in this 

paper. In addition, the paper shows the preliminary 

performance evaluation of the proposed method. 

Keywords: information sharing, broadcast, ad hoc 

communication 

 

1 Introduction 

 Owing to the growth in the number of smart phones and 

tablet PCs, our lives depend on the information stronger than 

before. On the other hand, large-scale disasters often happen 

and disable existing telephone networks and mobile networks 

for many hours. Such disasters cause not only physical 

destruction of communication infrastructures but also serious 

traffic congestions. Since many people wish to access the 

existing network, the traffic congestions become more and 

more serious. Once the situation happens, our mobile 

communication devices do not work as usual. Although 

communication techniques in the infrastructure unavailable 

situations has been required and studied for a long time, no 

major techniques exist today. 

 An example of assumed applications in the infrastructure 

unavailable situations is shown in Fig.1. In the infrastructure 

unavailable area, people with wireless communication devices 

collect disaster information and broadcast evacuation 

instructions. In addition, cars and emergency vehicles with the 

wireless communication devices will disseminate information 

which is collected at the infrastructure available area to the 

unavailable area. The application will enable to collaborate 

with the Internet, social media, and mass media. Therefore, it 

will contribute to the information collection and dissemination 

by polices, fire-fighting, and local governments. 

 This paper is concerned with the realization of the above 

application. In fact, existing ad hoc network architecture [1], 

cannot be applied in the infrastructure unavailable situations 

because IP addresses and servers are not available. To realize 

the application, we propose a novel method, Broadcast-Based 

Information Sharing System (BBISS), a part of our research 

Infrastructure-less Broadcast Information Delivery 

Architecture. In this paper, the preliminary performance 

evaluation of the proposed method is demonstrated through 

network simulation to show the effectiveness of the method. 

 Below Section 2 introduces related works of the ad hoc 

network which has been expected to apply as a networking 

technique in the infrastructure unavailable situations. Section 

3 describes a detailed methodology of the proposed method 

BBISS. Section 4 shows the preliminary performance 

evaluation of the proposed method through the network 

simulation. Lastly, Section 5 concludes this paper. 

 

2 Existing studies and their problems 

 The existing ad hoc network architecture has been 

studied as the networking technique in the infrastructure 

unavailable situations, and many routing protocols have been 

proposed. In general, available IP addresses must be assigned 

at nodes in the network to communicate using routing 

protocols. However, the IP addresses cannot be available in 

the infrastructure unavailable situations owing to the large-

scale disaster. Moreover, some servers must be required to 

collect and disseminate the information to adopt the existing 

client-server applications. Considering the above problems, 

the existing ad hoc network architecture cannot be applied to 

the applications discussed in the Section 1. 

 Related studies of the ad hoc network architecture are 

introduced below. Epidemic routing has been proposed in [2]. 

In this method, a contents holder copies the contents to its 

neighboring nodes. Although the methods have been proposed 

to deliver the information to the destination node, method 

cannot be applied to disseminate the information to whole the 

area. 
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 The Simple Flooding (SF) has been implemented in ad 

hoc network routing protocols to deliver routing messages in 

the broadcasting manner [3]. Although, Simple Flooding is 

one solution to disseminate the information to the whole 

network, it has problems below. In this method, when a node 

receives a packet, the packet is re-broadcast if the packet was 

never received before (non-identical packet). Therefore, many 

nodes re-broadcast the packet in the network, and data frame 

collisions are occur, the packet reachability is degraded. 

Probabilistic scheme and Counter-based scheme has been 

proposed as the methods without HELLO packet exchanges 

and dedicated devices such as GPS (Global Positioning 

System) [4][5]. Since the above methods do not assume to 

deliver the information consisting of multiple packets such as 

data files, they do not consider the communication reliability. 

In other words, the packet reachability is not assured in the 

methods.  

 Considering the above, the proposed method in this 

paper, BBISS, is in the area where has not been studied yet. 

 

3 Proposed method 

3.1 Assumed environment 

 This paper assumes the following environment. The 

large-scale disaster happens, and public telephone networks 

and mobile networks are unavailable. Although users in the 

disaster area have mobile phones and tablet PCs, the devices 

cannot be assigned available IP addresses and cannot obtain 

gateway information. At the time, the devices support the 

broadcast communication by the IEEE802.11 wireless LAN 

on ad hoc mode. Therefore, this paper studies the information 

sharing system by the broadcast communication. The 

information sharing system assumes to deliver text data 

(several kBytes – hundreds kBytes) and image data (hundreds 

kBytes). Developments of dedicated applications and 

implementations to the devices are our future issues to be 

tackled. 

3.2 Requirements and solutions 

 The requirements of the proposed method are as follows. 

(Requirement #1) The IP addresses and the routing protocols 

are not needed: 

  Since IP addresses and gateway information are not 

available, and it is difficult to develop servers to configure 

that information. Therefore, the proposed method uses only 

broadcast transmission without routing protocol. 

(Requirement #2) TCP and unicast transmission are not used 

to assure the reliability: 

 To deliver the information consisting of the multiple 

packets, the packet reachability must be assured. In general, in 

the Internet and LAN (Local Area Network), the 

communication reliability is assured by TCP. However, in the 

ad hoc communication environment, the communication using 

TCP cause many retransmission requests and its reply, then 

many packets are lost due to collisions. 

  To assure the information reachability (i.e. 

reliability), the proposed method does not use the 

transmission using TCP and does not require retransmission 

request and its reply by the unicast transmission, but assures 

the reachability using only the broadcast transmission.  

(Requirement #3) The energy consumption of node should be 

reduced. 

 Since the users’ communication devices are usually 

battery driven, it is quite difficult to assure the stable power 

supply for many hours. Therefore, the power consumption at 

the nodes should be reduced as much as possible. 
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 To reduce the power consumption, the proposed method 

reduces redundant relay transmission in the proposed method.  

3.3 Design of the proposed method 

3.3.1 Packet format 

 Three types of packet formats: Normal packet, 

Retransmission packet, Retransmission request packet are 

defined in this method as shown in Fig.3. The roles of the 

each field are explained below: 

a. Packet type: The packet type (Normal pakcet, 

Retransmission packet, Retransmission request packet) 

is recognized by this field. 

b. Initiator node ID: The ID of the information initiator is 

recognized by this field. 

c. Information ID: The field shows the ID of the 

information. 

d. Packet Total: The number of packets that consists of the 

information is recognized by the field. 

e. Packet sequence number: The sequence number of the 

packet in the information is recognized by the field 

f. Data: Divided data is contained in the field. The size of 

the field is determined by the parameter payload_size. 

In addition, Retransmission request packets contain the 

following.  

g. Unreached packet sequence numbers: If the node 

receives information but it has any unreached packets, 
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the all sequence numbers of unreached packets are 

described, and transmitted to the neighboring node. 

3.3.2 Operation of the proposed method 

This subsection explains the operation of the proposed 

method. The proposed method consists of 4 parts: 1. 

Initiation part, 2. Receiving part, 3. Relay part, and 4. 

Retransmission part, as shown in Fig.4. The detailed 

procedure in the each part is explained below. 

 

1. Initiation part: shown in Fig.5(1) 

1.1. The initiator node divides an information into several 

“data” accoding to payload_size, put each data into each 

packet and broadcasts all the packets with send_interval. 

The each packet contains initiator ID and Information ID. 

1.2. After the transmission, the initiator waits during 

retrans_wait_time. During the wait time, if the initiator 

receives the Retransmission request packet(s) from 

neighboring nodes, the node retransmits lost packets 

designated in the Retransmission request packet(s)by 

broadcast after the wait time 

2. Receiving part: shown in Fig.5(2a) 

2.1. Neighboring nodes receive the packets. 

2.2. If the nodes receive the the packets of the information 

during req_wait_time, they proceed to the 3. Relay part. 

2.3. Otherwise, they proceed to the Retransmission process. 

(The num. of the retransmission request trials must be less 

than req_threshold) 

3. Relay part: shown in Fig.5(2b) 

3.1. The nodes wait during  relay_wait_time. 

3.2. During this wait time, the nodes count the num. of the 

relaying nodes. 

3.3. After the wait time, If the num. of relaying nodes is less 

than relay_threshold, the information is rebroadcast. 

Otherwise, the relay transmission is canceled 

3.4. After the relaying, retransmission requests are accepted 

with the same manner in 1.Initiation part 

4. Retransmission part: shown in Fig.5(3) 

4.1. The node transmits the Retransmission request packet(s). 

4.2. Then, the sender broadcasts the lost packets. The receiving 

node receives the packets with the same manner in 

2.Receiving part. 

4.3. If the node receives all packets, proceeds the 3.Relay part. 

 

4 Preliminary evaluation 

 To show the effectiveness of the proposed method, the 

preliminary evaluation is demonstrated through the network 

simulator OPNET[6] in this paper. The evaluation compare 

the number of transmitted packets and received packets for 

the existing method SF with the proposed method BBISS. 

Then we confirm that the proposed method can contribute to 

the reduction of the transmitted and received packets. The 

simulation condition is really simple: the number of initiator 

nodes is 1, and the number of initiated packets at the initiator 

node is 1. In the condition, since the generated packet was 

delivered in whole network in a short time, the node mobility 

is negligible. 

 We assume a network with 100 nodes (this includes 1 

initiator node), a IEEE802.11b node MAC layer, and a data 

rate of 11 Mbps. The transmitted power is 0.005 W, and the 

received power threshold is -85 dBm. The initial positions of 

the nodes are assumed to be random. Two simulation areas 
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are defined: 1000m×600m (space A) and 2000m×1200m 

(space B). Dense and sparse networks are considered in each 

case. The initial positions of the nodes are assumed to be 

random. The average is found for 10 simulation runs at every 

initial node positions. We consider nodes receiving packet 

from initiator nodes to compare SF and BBISS. Three values 

of relay_threshold, 4, 3, 2 are set for the proposed method. 

The waiting time for information retransmission in both 

methods is 1s to simplify the evaluation. 

 The simulation result is described as follows. Figure 8 

and Fig.9 show the number of transmitted packets and 

received packets, respectively. The result showed that BBISS 

reduces 72%-94% of the transmitted packets and 76%-94% of 

the received packets. 

 

5 Conclusions 

 This paper proposed a novel infrastructure-less 

broadcast information delivery system, BBISS, to share the 

information such as text contents and image contents. Then 

the number of transmitted and received packets for the 

proposed method was compared with that for the SF through 

the network simulation. The simulation result can conclude 

that the propose method can contribute to the reduction of 

transmitted packets and received packets. The reduction will 

contribute the congestion avoidance. 

 In future, we plan to evaluate the delivery performance 

through the network simulation. In addition, we plan to 

develop applications and implement it in existing PCs, cell 

phones, and Tablet PCs. 
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Abstract— In order to enhance the sustainability of com-
munication especially in times of disaster, both low-power
consumption and the tolerance for traffic increased due
to the emergency communication should be realized ur-
gently. Already our previous study has presented ULP-DDNS
(Ultra-Low-Power Data-Driven Networking System) extend-
ing the lifetime of battery-operated devices to form an ad-hoc
network which can provide a communication environment in
the area where fixed and wired networks are disabled due to
the disaster. In this paper, a networking platform architecture
with a runtime overload-avoidance mechanism to dynami-
cally maintain the processing load within the design target
is revealed to provide the ULP-DDNS with the tolerance
for the increased traffic. The runtime overload-avoidance
mechanism exploits the unique positive correlation between
the processing load and consumption current in the data-
driven processors realized by self-timed pipeline, and it
enhances the throughput for reducing the processing load
by runtime voltage scaling when the current increases.

Keywords: data-driven processor, protocol handling, real-time
multiprocessing, self-timed pipeline

1. Introduction
To enhance the sustainability of communication is one of

the urgent issues in emergent situations especially in times of
disaster. We have already proposed ULP-DDNS (Ultra-Low-
Power Data-Driven Networking System) [1] to achieve ultra-
low-power consumption indispensable to extend the lifetime
of the battery-operated mobile devices to form an ad-hoc
network which can provide a communication environment in
the area where fixed and wired networks are disabled due to
the disaster. To ensure the connectivity over the ULP-DDNS,
it is indispensable to provide tolerance for traffic increased
due to emergency communication for safety confirmation,
information gathering, and so forth. Concretely, protocol
processing should be guaranteed on every platform (network
node) even when traffic increases.

However, the platform may become inoperative when
incoming traffic increases. This is because the increased

traffic may increase the number of packets concurrently
processed in the platform beyond the design target, i.e.,
the pipeline occupancy which is the ratio of the number
of valid data to the number of pipeline stages may exceed
the design target. To make the platforms free from such
overload situation, both observability and controllability on
the pipeline occupancy are indispensable. Unfortunately,
the pipeline occupancy of currently mainstream processors
cannot be observed accurately because the number of valid
data may change at runtime depending on the unpredictable
branches or/and interrupts.

In contrast, data-driven processors realized by self-timed
pipeline can provide direct observability on their pipeline
occupancy because the localized data transfer of the self-
timed pipeline drives only pipeline stages with valid data
and thus the consumption current of the self-timed pipeline
is in proportion to the runtime pipeline occupancy, i.e.
the pipeline occupancy can be externally observed by the
amount of the consumption current. Moreover, the through-
put of the self-timed pipeline can be controlled in real-time
by changing the supplied voltage based on a DVS (Dynamic
Voltage Scaling) technique [2]. Consequently, the pipeline
occupancy can be kept within the design target by increasing
the pipeline throughput by the DVS when the consumption
current is increased due to the increased traffic.

In this paper, an overload-free data-driven networking
platform architecture is proposed based on the direct observ-
ability and controllability on the pipeline occupancy of the
self-timed pipeline. The changing of the throughput based
on the DVS technique takes time because of both the signal
propagation in the control circuit and the parasitic capaci-
tance on the circuit, and thus the fluctuation of the pipeline
occupancy should be temporally smoothed and reduced in
order to keep the pipeline occupancy within the design target
until the throughput becomes a target value. The key idea
of the proposed architecture is to temporally smooth and
lower the pipeline occupancy at runtime by changing the
parallelism of target protocol handling based on the real-
time multiprocessing capability of the data-driven processor
realized by the self-timed pipeline. The feasibility of the
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Fig. 1: Self-timed (clockless) pipeline.

proposed architecture is discussed based on the measurement
of the latest version of the data-driven processors realized
by self-timed pipeline [3].

2. ULP-DDNS platform
To realize the overload-free networking platform, both the

observability and controllability on the pipeline occupancy
are indispensable. Fortunately, they can be provided in the
data-driven networking platform of the ULP-DDNS.

In this section, how these indispensable features are pro-
vided is explained, and a basic technique to exploit this
unique feature for achieving an overload-free networking
platform is discussed.

2.1 Ultra-low-power data-driven networking
processor

The platform of the proposed ULP-DDNS is realized
by both an ad-hoc networking scheme for reducing the
redundant traffic and a data-driven processor for handling
communication protocols with low-power.

The proposed ad-hoc networking scheme realizes an ad-
hoc network over mobile devices in the area where existing
fixed- and wired-network infrastructure becomes inoperative
due to fault or disaster, and it reduces the redundant traffic
caused by existing simple flooding (broadcasting) to deliver
urgent information all over the ad-hoc network [4]. As a
result of our evaluation, it is revealed that the proposed
ad-hoc networking scheme reduces the traffic to 1/10 [1].
This reduction of the traffic directly decreases the number
of sending and receiving packets in every node (platform) in
the ad-hoc network, and thus it contributes to the lowering
power consumption of every platform.

In addition to the ad-hoc networking scheme, a data-
driven networking processor is proposed to lower the power
consumption required to handle the protocol for both sending
and receiving each packet. The proposed data-driven net-
working processor, named ULP-DDCMP (Ultra-Low-Power
Data-Driven Chip MultiProcessor), is realized by using an

optimized circular pipeline which makes it possible to bypass
the pipeline stages for firing control to detect the arrival of
a pair of operands when unary operations are executed [3].
Each processor core of the ULP-DDCMP is named ULP-
CUE (Ultra-Low-Power CUE) as a successor of the CUE
series data-driven processors [3].

The ultra-low-power consumption as a result of the syn-
ergistic effect between the traffic reduction by the ad-hoc
networking scheme and the low-power protocol handling by
the ULP-DDCMP is demonstrated by using simulators and a
prototype VLSI chip of the ULP-DDCMP, and it is revealed
that the ULP-DDNS can reduce power consumption to a
several-hundredth in comparison with an existing network
system [1].

2.2 Real-time observability and controllability
One of the main contributors to the ultra-low-power

consumption is the localized data transfer of the self-
timed pipeline (STP) which is used to realize the ULP-
DDCMP. The localized data transfer also provides both a
strong positive correlation between the pipeline occupancy
and consumption current and the real-time adaptability for
dynamic voltage scaling.

In the STP, only pipeline stages with valid data are driven
exclusively as a consequence of the localized data transfer
called handshake. Figure 1 shows the basic structure of the
STP in which each stage consists of a data-latch (DL),
functional logic (FL) and transfer control unit (C). The
STP is a kind of asynchronous bundled data pipelines, and
it employs four-phased handshake [5]. Based on the four-
phased handshake, the valid data in the STP are transferred
between adjacent stages, as follows.

• Reset: After the assertion of the reset signal, the C
negates both its send signal representing transfer request
and ack signal representing acknowledge.

• The C asserts its ack signal after its send signal is
asserted.

• After the assertion of the ack signal, the preceding C
negates its send signal.

• After the negation of the send signal, the C asserts
both its gate open signal (cp) and its send signal and
it negates concurrently its ack signal, only if the ack
signal is negated. As a result, the data is latched in the
stage to which the C belongs.

• The succeeding C repeats the above steps similarly to
the C.

This handshake not only concentrates dynamic consump-
tion current into the pipeline stages with valid data but
also eliminates global clocks. Generally, clock-synchronized
circuit requires PLL (Phase-Locked Loop) circuit to change
the clock-frequency according to the supplied voltage, and it
takes several tens ofµ seconds to change the clock-frequency
by the PLL. That is, the supplied voltage should be kept at
constant within several tens ofµ seconds.
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Fig. 2: Direct observability on pipeline occupancy.

In contrast, no PLL is required in the STP, and the delay
times of the DL, FL and C are changed at equal rate
according to the supplied voltage. Therefore, the supplied
voltage of the STP can be scaled at runtime while the rate
of change of the voltage is moderate enough to guarantee the
transistor switching, i.e., the throughput of the ULP-DDCMP
can be changed while target protocols are handled.

In the ULP-DDCMP, both the occupancy and throughput
increase when the number of packets processed concurrently
increases. Figure 2 shows the characteristics which are mea-
sured by using the existing ULP-DDCMP chip. As shown
in this figure 2(a), the throughput is kept at a maximum
value regardless of the pipeline occupancy while the pipeline
occupancy exceeds the design target value, therefore, the
ULP-DDCMP may become inoperative due to the overflow
of the STP if the input traffic continues to exceed the design
target. That is, the pipeline occupancy should be kept within
the design target to realize the overload-free networking
platform.

As shown in the figure 2(b), the pipeline occupancy
correlate with the consumption current of the STP, i.e., the
statically unpredictable pipeline occupancy can be observed
at runtime based on the consumption current.

Consequently, the overload situation can be avoided by
increasing the pipeline throughput to keep the pipeline
occupancy within the design target value when the pipeline
occupancy increases.

3. Runtime overload-avoidance mecha-
nism

Based on the direct observability and controllability, the
throughput of the protocol handling in the DDCMP can
be changed when input traffic increases. To realize this

runtime load control for overload-avoidance, the platform
architecture is discussed in this section.

3.1 Networking platform architecture
As already described, the observation of the pipeline

occupancy by the consumption current and the control of the
effective throughput by the DVS can be realized at runtime.
Unfortunately, some delay time is introduced until the ef-
fective throughput becomes a target value after the pipeline
occupancy changes because of the signal propagation de-
lay through control circuits and their parasitic capacitance.
Therefore, the fluctuation of the pipeline occupancy should
be temporally moderate to provide enough time for changing
the effective throughput.

To make the pipeline occupancy fluctuation temporally
smooth without any runtime overhead, the data-driven pro-
grams of target protocols are modified to reduce the variety
of the numbers of operations executed concurrently.

As illustrated in figure 3, the programs are defined by
data-flow graph (DFG) in the data-driven processors. The
DFG consists of nodes and arcs, and each node describes
an operation while each arc represents the data-dependency
between two successive operations. The data-dependencies
between operations represent naturally the ILP (Instruction
Level Parallelism) inherent in the programs, and thus de-
scribing target program by using DFG results in extracting
the ILP in the target programs.

In the data-driven processors, each operand is executed in-
dependently from the other operands and the execution time
of each operand is also independent from that of the other
operands as a result of the real-time multiprocessing [6].
Based on this feature, the number of operations executed
concurrently can be changed by postponing the execution
timing of the operations on non-critical paths, as shown in
figure 3. This program modification can temporally smooth
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Fig. 3: Temporally-smoothing the number of operations
executed concurrently.

the number of operations executed concurrently without any
overhead on the execution time of the operations on the
critical path of target programs.

Figure 4 shows the basic architecture to realize an
overload-free networking platform based on the techniques
discussed. To enhance the throughput of the protocol han-
dling when the input traffic increases, a runtime overload
avoidance mechanism is introduced to increase the supplied
voltage according to the increased consumption current. This
runtime overload avoidance mechanism can be implemented
by using runtime voltage scaling technique [2] for the self-
timed pipeline.

This kind of load control in the platform should not
increase the traffic in the ad hoc network because the
increasing traffic leads to the network congestion. From
this standpoint, the throughput of the protocol handling for
receiving packets should be kept at constant to guarantee
the receiving packets because the retransmission due to the
denial of packet reception increases the traffic in the ad
hoc network. Therefore, the receiving protocol handling at
link layer is out of the throughput control as shown in the
figure 4. On the other hand, the throughput of the protocol

handling for sending packets is enhanced by increasing the
supplied voltage in order to reduce the pipeline occupancy
for the increased traffic. Based on this basic architecture,
the pipeline occupancy derived from the protocol handling
up to network layer can be reduced for the increased traffic.
However, the pipeline occupancy depends on not only the
protocol handling up to the network layer but also the inter-
nal processing including the upper layer protocol handling
and the application processing.

3.2 Runtime parallelism transformation
As for the internal processing, the enhancement of the

throughput may not necessarily result in the reduction of the
pipeline occupancy because some of the internal processing
may be resident. For example, a GUI (Graphical User
Interface) manager continues to run while the display device
is lit.

To reduce the pipeline occupancy derived from such
internal processing, the number of data (tokens in the
data-driven processors) flowing through the STP should be
reduced. However, tokens derived from different programs
are concurrently processed at the different stages of the STP
without any distinction on the types of processing, and thus
it is difficult to selectively remove the flowing tokens of a
particular processing type.

Fortunately, the processing time constraint of the upper
layer protocol handling and the application processing is
often lazy in comparison with that of the link level protocol
handling. For instance, the response time of the MAC (Media
Access Control) protocol handling is strictly and tightly
determined on theµ second time scale depending on the
specification of the physical layer hardware while the several
seconds delay time of a mailer application can be accepted
or ignored. By utilizing such slack time of some internal pro-
cessing, the pipeline occupancy can be temporally smoothed
and reduced in the data-driven processors.

By utilizing the real-time multiprocessing feature, the
number of operations executed simultaneously can be re-
duced as already shown in the figure 3. As for the internal
processing with the slack time, the number of the con-
currently executing operations can be more reduced at the
expense of the increase in the processing time. In an extreme
case, it can be 1 as shown in figure 5 while the increased
time is acceptable. Consequently, the pipeline occupancy
derived from the internal processing with the slack time can
be reduced by transforming the parallelism of the programs.

To realize such transformation of the parallelism, any
overhead on the processing time of the running programs
should be avoided in order to satisfy the processing time
constraints required. In this paper, a runtime parallelism
transformation with no overhead on the processing time
is introduced by exploiting the real-time multiprocessing
capability of the data-driven processor realized by the STP.
The runtime parallelism transformation is realized by switch-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 607



��������	



	�	����


��������	


�	����


�
��������������


��
����	
�������

���

������	�


���

����



������
��	���	���
���
��
��	���
�
	����	������	������	�����	���	

������	���	
�����

��������	��	������� �����������

��

	�� !��
	����


	��	����	���
��
����

������	���
���	����

�
�����
�������"��
	�����#

����������
��	���
�����	��

Fig. 4: Networking platform with runtime overload-avoidance mechanism.
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Fig. 5: Runtime parallelism transformation by switching
DFG.

ing the program at runtime, i.e. an internal processing
program with high throughput (parallelism) is switched to
its alternative version with low parallelism when the pipeline
occupancy increases.

It is difficult to switch the running program to the alter-
native version because the tokens of the running program
are spread over the STP. Therefore, the switching should be

realized at the beginning of the execution of the program
or the iteration. This switching should be coordinated with
the change of the pipeline occupancy, and thus a switch
operation is introduced to realize the branch on the pipeline
occupancy. As shown in the figure 5, the switch operation
changes the data-flow at runtime according to the direction
externally input from the runtime overload-avoidance mech-
anism.

In the runtime overload-avoidance mechanism, the di-
rection of the switch operation is determined according
to the input consumption current representing the pipeline
occupancy. As a result of the control by the runtime
overload-avoidance mechanism, the pipeline occupancy can
be reduced by both enhancing the throughput of the protocol
handling for sending packets and decreasing the number
of operations executed concurrently when the input traffic
increases.

3.3 Preliminary evaluation
The proposed architecture completely depends on not only

the already proposed runtime DVS technique [2] but also
both the parallelism transformation of the target protocol
handling program and the real-time processing capability
of the data-driven processors realized by the STP. As a
preliminary evaluation of the feasibility of the proposed
architecture, both the parallelism transformation and the real-
time multiprocessing are verified by using the ULP-DDCMP
chip which is the latest data-driven processor realized by the
STP.

As a concrete protocol, UDP/IP is focused on because
its connection-less packet transfer results in low-power con-
sumption indispensable in ad-hoc networking, i.e., it is one
of the protocols expected to be used in ad hoc networking.

As shown in figure 6(a), the ULP-DDCMP chip houses
four ULP-CUE’s interconnected by a multi-stage token
router realized by the STP. In the design of this chip, the
circular STP realizing each ULP-CUE is divided finely in
order to eliminate the pipeline bottleneck. As a result of this
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Fig. 6: ULP-DDCMP chip and its evaluation board.

pipeline division, the number of stages of each ULP-CUE
is 13. The chip is fabricated by 65nm CMOS 7-metal-layer
process technology. The ULP-DDCMP is implemented on
an evaluation board which mounts two FPGA’s; one FPGA
is used to realize the runtime DVS with PID (Proportional
Integral Derivative) control to stabilize the supplied voltage
at a target value and the other FPGA realizes logging of the
performance and power consumption. The evaluation board
is shown in the figure 6(b).

The ULP-DDCMP provides an instruction set enough to
describe the UDP/IP handling program. Actually, the data-
driven program of the UDP/IP handling is described by using
the instruction set. The described UDP/IP handling program
realizes the checksum calculation and the generation of the
UDP/IP header, and the packets containing pseudo header
and payload are input to the program and the program
outputs IP datagrams. The number of the operations executed
simultaneously in the originally described program varies
from 1 to 5, and thus the maximum pipeline occupancy
becomes approximately 38% (= 5/13). This means that one
UDP/IP handling can be executed in one ULP-CUE within
the design target because the design target of each ULP-CUE
is 40% as shown in the figure 2.

To verify the temporally-smoothing of the number of
concurrently executed operations, an alternative version of
the UDP/IP handling is derived from the original version
by using the introduced scheme as shown in the figure 5.
In the derived alternative version, the number of operations
executed concurrently is reduced to almost 1. That is, it is
verified that the parallelism can be changed by modifying
the program.

By using the alternative version, the real-time processing
capability is verified. The processing time required to pro-
cess one packet is measured by using the logging function
on the evaluation board while the number of input packet
is increased, i.e. the multiplicity is increased. Figure 7

shows the measured result. In the sequential processing,
the processing time per one packet is in proportion to the
multiplicity. In contrast, the real-time processing capability
of the ULP-DDCMP can keep the processing time per packet
at approximately constant regardless of the multiplicity, as
shown in the result. In addition, the processing time per
one packet is measured for the different input timing of
the packets, and the same results are obtained. That is, the
processing time of a program is independent from that of
the other programs.

It is true that the processing time per packet experiences
approximately a 10% increase when the multiplicity is 4
in comparison with the other results. The cause of this
increase is the elastic capability of the STP. The STP can
maintain its maximum throughput even when the pipeline
occupancy exceeds the design target, as shown in the fig-
ure 2. The number of the operations executed concurrently
in the alternative version is not exactly 1 and it temporarily
becomes 2, therefore, the pipeline occupancy exceeds the
design target temporarily when the multiplicity is 4. In other
words, the STP provides a tolerance for temporal overload
naturally. If the increased processing time is not acceptable,
the processing time can be kept at constant by limiting the
multiplicity to be within 3 or by pipelining the STP more
deeply.

4. Conclusion
In this paper, a data-driven networking platform archi-

tecture with a runtime overload-avoidance mechanism is
revealed in order to realize an overload-free networking
platform indispensable to realize sustainable networking
environment. Based on the direct observability and controlla-
bility on the pipeline occupancy which is the processing load
of the platform, the overload-avoidance mechanism makes it
possible to dynamically keep the pipeline occupancy within
the design target. Concretely, the pipeline occupancy is
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Fig. 7: Processing time for one packet.

observed by the consumption current, and it is reduced
by increasing the pipeline throughput with the runtime
DVS when the input traffic increases. Moreover, a runtime
parallelism transformation is proposed to make the control
delay time inherent in the DVS circuit ignorable. As a
preliminary evaluation, the feasibility of the newly proposed
runtime parallelism transformation is verified through the
measurement of the latest version of data-driven processors.

Now we are developing a simulator [7] realizing the com-
prehensive evaluation on the ad hoc network environment
realized by the proposed architecture, and the evaluation
result will be reported soon.
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Abstract— This paper describes implementation of plat-
form simulator which is essential to realize ultra-low-
power data-driven networking system (ULP-DDNS) supply-
ing congestion-free network. For keeping networking system
available, it is crucial issue to avoid congestion when traffic
increases not only in an emergency but also in an ordinary
time. The authors propose information sharing scheme and
overload avoiding scheme on ultra-low-power data-driven
networking scheme for congestion-free. This paper firstly in-
troduces their schemes. It is necessary to verify effect of their
schemes to various traffic pattern. This paper then explains
the objective of our platform simulator as a verification
tool of congestion-free ULP-DDNS. Furthermore, this paper
reports how to implement platform simulator for congestion-
free ULP-DDNS. Finally, this paper shows current status of
this study and discusses data-driven platform for congestion-
free ULP-DDNS.

Keywords: congestion-free, low-power, networking, data-driven,

simulator

1. Introduction

In Japan, earthquakes whose magnitude are more than 7
have been occurred many times in this century. Therefore,
buildings and communication infrastructure are designed
to resist earthquakes. However, wired telecommunication
which had been main communication infrastructure at that
time was interrupted by Han‐Shin Awaji Earthquake dis-
aster and Mid Niigata Prefecture Earthquake. And mobile
communication which had been then main communication
infrastructure as well as wired telecommunication was also
suspended by the Great East Japan Earthquake. These in-
terruption were great obstacles for rapid evacuation, relief
activities and inquiries.

When traffic increases in emergency, telecommunication
carrier usually restricts the number of call and suspends
some services to avoid congestion. The restriction as a
scheme to avoid congestion then causes interruption of com-
munication infrastructure because it doesn’t consider that
communication environment is kept available. It is necessary
to realize robust communication environment whose services
are available in an emergency. Although there are some study
about congestion-free network [1],[2], it is essential to study
robust communication environment from several point of
view such as congestion, power consumption and networking
architecture.

Furthermore, It is important to keep communication en-
vironment available not only in emergency but also in
an ordinary time because data traffic increases rapidly by
smartphones. Infrastructureless communication environment
can be then supposed to avoid interruptions of services. And
power consumption is also crucial issue to keep communi-
cation environment available for a long time as possible in
emergency [3]-[5].

The authors have been studying an implementation
of ultra-low-power data-driven networking system (ULP-
DDNS) [6]. ULP-DDNS project has been aiming at develop-
ment of data-driven networking system which can achieve
ultra-low-power consumption. And we have evaluated that
ULP-DDNS can achieve about 1/200 power consumption
less than the present system.

ULP-DDNS project have applied mobile ad hoc network
[7] to ULP-DDNS. Ad hoc network is an infrastructureless
network and is a group of wireless devices that organize
themselves in a mesh topology to find routes and relay pack-
ets from the hardware platform through the network layer
to application. The authors have proposed flooding scheme
to reduce traffic for ultra-low-power. And our data-driven
chip multiprocessor has been applied to networking platform
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in order to reduce power consumption. The authors have
started research about congestion-free networking system
based on ULP-DDNS. This paper describes implementation
of platform simulator which is essential to realize ultra-low-
power data-driven networking system (ULP-DDNS) supply-
ing congestion-free network.

This paper firstly introduces information sharing scheme
which is proposed to congestion-free on mobile ad hoc
network. This paper also refers to overload avoiding scheme
on ultra-low-power data-driven chip multiprocessor (ULP-
DDCMP) in order to avoid congestion. For verifications of
these scheme, the authors have been studying to enhance
functions in platform simulator.This paper then explains the
objective of our platform simulator as a verification tool of
congestion-free ULP-DDNS. Furthermore, this paper reports
how to implement platform simulator for congestion-free
ULP-DDNS. Finally, this paper shows current status of this
study and discusses data-driven platform for congestion-free
ULP-DDNS.

2. Congestion-Free Ultra-Low-Power
Data-Driven Networking System

This section reports schemes to avoid congestion in each
layer of congestion-free ULP-DDNS. Fig. 1 shows layer of
ULP-DDNS. A node of ULP-DDNS is a platform which
is used data-driven chip multiprocessor(UDP-DDCMP) and
self-timed elastic pipeline(ULP-STP). Runtime voltage scal-
ing and power gating function are implemented on the
platform for ultra low power consumption. For realizing
congestion-free network, the authors have been studying
overload avoiding scheme as an additional function on the
platform.

Ad hoc networking Application and UDP/IP handling is
also implemented on the platform. Furthermore, load-aware
dynamic counter based flooding (LDCF) is applied as a
traffic reducing scheme on a mobile adhoc network. Then,
the authors have proposed broad-band information sharing
scheme (BBISS) as an additional traffic reducing scheme to
avoid congestion. We have been studying BBISS over layers
from link layer to application layer.

These schemes for realizing congestion-free ULP-DDNS
introduce in following subsections of this section.

2.1 Information Sharing Scheme of Ad hoc
Networking Architecture

The authors have studied mobile ad hoc network as an ap-
plicable network architecture to disaster situation. In disaster
situation, effective information discovery is firstly important.

Load-aware Dynamic 

Counter based 

Flooding (LDCF)

Data-Driven 

Implementation 

of  UDP/IP Handling

ULP-DDCMP/ ULP-STP

Runtime Runtime 

Voltage 

Scaling

Power 

Gating

Overload 

Scheme

Overload 

Avoiding 

Scheme

Broad-Band 

Information 

Sharing Scheme 

(BBISS)

: Existing Function

in ULP-DDNS

: New Scheme

for Congestion-free

Fig. 1: Layer on Congestion-free Data-Driven Networking
Platform

At a same time, effective secure communication is needed.
They should be realized under the effective data transfer on
ad hoc network. We have proposed these schemes in ultra
low power consumption and we have evaluated effects of
these schemes in reducing traffic and power consumption
[8], [9].

To keep communication environment available, broad-
band information sharing scheme (BBISS) has been pro-
posed to avoid congestion. Fig. 2 shows summary of BBISS.
When source node which is shown in Fig. 2 broadcast a data
which is composed of several packets, nodes which received
packets relay a data by rebroadcast as the occasion demands.
If a node which lost a packet which is a part of the complete
data, the other node which has a lost packet provide just
a packet to the node which lost the packet. This scheme
can reduce traffic because rebroadcast is not necessary to
complement the data.

The authors have studied load-aware dynamic counter-
based flooding (LDCF) for streaming data. LDCF can
achieve very low traffic and high reachability for streaming.
However, it isn’t very important to complement data because
streaming data can keep the value of information without a
part of data. BBISS is aiming to be applied for non-streaming
data such as text messages and static pictures. It is essential
to complement data because an incomplete message can’t
keep the value of information. It is then important to reduce
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traffic in order to share information for realizing congestion-
free network. BBISS is described in [10], and refer [11], [12]
about related works.

2.2 Overload Avoiding Scheme on Data-Driven
Networking Platform

This section refers to overload avoiding scheme on data-
driven chip multiprocessor as a part of data-driven net-
working platform. Congestion is caused by rapid increase
of traffic on the network and overload in a platform. The
authors have proposed overload avoiding scheme in order
to realize congestion-free networking system. The study of
overload avoiding scheme is based on the study of ultra-low-
power data-driven chip multiprocessor (ULP-DDCMP). The
authors have studied data-driven chip multiprocessor based
on self-timed elastic pipeline for ultra-low-power in realtime
multiprocessing.

In data-driven chip multiprocessor, both the dynamic and
static power dissipations are minimized by distributing the
processing load over multiple processing cores which is
slowed down by using runtime/dynamic voltage scaling
(DVS) technique as long as the required processing speed is
satisfied [13]. In addition, the voltage-supply to idle circuit
blocks or cores is cut by using fine-grained power gating
(PG) technique [14] as shown in Fig. 1. It is therefore
intended that ULP-DDCMP would be implemented by self-
timed power-aware elastic pipeline named ultra-low-power
self-timed pipeline (ULP-STP)[15], [16]. Because of self-
timed elastic data-transfer mechanism of the original STP, it
can work well under variable voltage without adjusting clock
frequency even if the altered voltage could transiently fluctu-
ate at individual pipeline stage. Since the pipeline throughput

can be adaptive to its processing load only by altering
supply-voltage appropriately, a power-aware pipeline scheme
can be realized naturally in terms of dynamic power saving.
For instance, proportional-integral differential (PID) control
method can be applied to such voltage control by monitoring
consumption current of a target power domain within the
chip. The STP is also suitable for gating power-supply to fine
grain circuits since its stage-by-stage data-transfer control
independently activates only pipeline stages with valid data.
We therefore proposed a stage-by-stage power gating scheme
adopted in the STP. This scheme provides natural signal
gating, i.e., it stops the unnecessary signal propagation and
transistor-switching at pipeline stage level without any global
control mechanisms resulting in both power dissipation and
processing speed degradation. Moreover, it makes it possible
to scale the voltage even when the stages are activated
because it can be realized without any global oscillator such
as phase-locked loop (PLL) circuit, which forces pipeline
flush ahead of the frequency and voltage change. In order to
analyze the low-power characteristics of the ULP-STP and
to estimate power-performance of various ULP-STP based
systems, an experimental LSI chip has been fabricated by
using 65 nm CMOS process. We have implemented ULP-
DDCMP based on evaluation of the experimental LSI.

Overload avoiding scheme is realized by enhancing power
consumption reducing scheme with DVS technique and PG
technique. Fig. 3 shows mechanism of overload avoiding
scheme. ULP-DDCMP based on ULP-STP handles receiv-
ing data inputted from physical layer on link layer. And
protocols from layer 3 to layer 7 are also handled on
ULP-DDCMP. Furthermore, ULP-DDCMP handles sending
data to physical layer on link layer. Overload avoiding
scheme then monitors electric current which is consumed by
ULP-DDCMP. Because consumption current is proportion
to processing load on the ULP-DDCMP, the increase of
load can be detected by monitoring consumption current.
If load on the ULP-DDCMP is higher than the target load,
overload avoiding scheme control load in protocol handling
among layer3-7 with runtime parallelism transformation in
order to avoid overload on the ULP-DDCMP. Runtime
parallelism transformation is realized by changing alterna-
tive program whose parallelism is lower than the original
program. Rightfully, the alternative program provide same
output of the original program. Then, ULP-DDCMP handles
sending process of link layer rapidly in high voltage because
of reducing load on ULP-DDCMP. The authors will utilize
DVS technique and PG technique as a runtime parallelism
transformation mechanism and rapid handling mechanism of
protocol handling.
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Furthermore, the authors will utilize overload tolerance of
ULP-DDCMP as additional function of overload avoiding
scheme. ULP-DDCMP is chip multiprocessor which has
4 cores. A core whose name is ULP-CUE has optimized
circular pipeline [17]. Circular pipeline of ULP-CUE has
2-way to bypass matching memory which consumes high
power. Furthermore, the matching memory has PG mecha-
nism to reduce power consumption. 2-way circular pipeline
and matching memory may be utilize as a buffer to avoid
overload. Refer [18] about the description of overload avoid-
ing scheme.

3. An Implementation of Platform Simu-
lator for Congestion-free ULP-DDNS

3.1 Platform Simulator to Evaluate Overload
Avoiding Scheme

This subsection describes an implementation of platform
simulator to evaluate overload avoiding scheme. Then, this
section also reports coordination between network simulator
which evaluate BBISS and platform simulator for compre-
hensive evaluation of congestion-free ULP-DDNS.

Platform simulator have been developed to evaluate power
consumption of platform in ULP-DDNS [19]. The authors
will add functions for evaluating overload avoiding function
to platform simulator. Fig. 4 shows image of summation
of power consumption and summation of the number of
tokens as the load on a platform. Network simulator have
already used evaluation in ad hoc networking application.
As comprehensive evaluation, we proposes using logs as a
network simulation result to input of the platform simulator.
Platform simulator can evaluate power consumption and
turn-around time of program on data-driven chip multipro-

cessor. The authors will enhance platform simulator to be
able to evaluate load on data-driven chip multiprocessor.

Platform simulator is necessary to evaluate energy and
load of platform in UDP/IP handling, process on link layer,
and so on because analog electronic circuit simulator which
is SPICE is too complicated to measure power and turn-
around time in UDP/IP handling according to network
simulation log. In execution program, logs which has input
time and data length can be used as input for the platform.
Summation power consumption, turn-around time and the
number of tokens as the load in each platform is a total
energy and load of ULP-DDNS.

Platform simulator has hierarchy among self-timed elastic
pipeline (e.g. ULP-STP), cores (e.g. ULP-CUE), and plat-
form (e.g. ULP-DDCMP) as shown in Fig. 4. Firstly, plat-
form simulator evaluates power consumption and switching
time of stages of ULP-STP. In addition, platform simulator
checks existence of a token in each stage as the load of
stage. Power in each stage and send/ack time between stages
are then derived from ULP-DDNS node, prototype of ULP-
STP and gate simulation. In overload avoiding scheme, time
in change supply voltage and target Vdd is simulated by
platform simulator. Value of supply voltage used by platform
simulator is tuned by result of gate simulation. Platform
simulator sums up energy/load of stages in each module.
Then, energy is the product of power and send/ack time.
Module is a part of circular pipeline. For example, ULP-CUE
consists of some module such as firing control (FC), function
processor (FP), instruction decode (ID), instruction fetch
(IF), merge (M), branch (B) and memory processor (MEM).
All modules of which ULP-CUE consists is connected as
a circular pipeline. Topology of a circular pipeline can
be designed on the platform simulator freely as shown
in following subsection. Platform simulator also sums up
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energy/load of all stages of a circular pipeline which is
elements of an core such as ULP-CUE. Furthermore, the
simulator sums up energy/load of all cores on an platform.
For example, ULP-DDCMP has 4 cores (ULP-CUE0, ULP-
CUE1, ULP-CUE2 and ULP-CUE3) and switches among
cores as an inter-core network(N/W). Power consumption
and load of a platform can be get from platform simulator
by these process.

3.2 Coordinating Platform Simulator and Ad
hoc Network Simulator

This subsection discusses coordinating network simulator
to evaluate BBISS and platform simulator which is added
functions to verify the effects of overload avoiding scheme.

This subsection firstly describes specification of platform
simulator and its interface. Fig. 5 shows input to platform
simulator and output from it. Platform simulator requires
schedule of token stream as an input. This schedule is gener-
ated from network simulation logs. Platform simulator also
demands UDP/IP program to evaluate power consumption
and load in UDP/IP handling. Platform simulator has a topol-
ogy of platform and a topology of core. These topologies can
be designed freely using edit function of platform simulator.

Parameters which indicate specification in each stage such
as power and switching time in order to calculate power
consumption of platform. Table 1 shows parameters prepared
for tuning in platform simulator. Voltage is initial voltage in
the simulation. Temperature is set because speed of electric
circuit can be changed by temperature. Power(active) is
wattage which is consumed when a token exist on the
stage. Power(standby) is wattage with no token in the stage.
Send/Ack time is time spent hand-shaking. PG-Send time
is time to resume from power gating. And Ack-PG time is
time to switch off of the stage. Monitoring interval is a cycle
to monitor consumption currency.∆V is voltage which can
be increased or decreased by DVS controller. Voltage(max.)
and Voltage(min.) are maximum/minimum value of voltage
in DVS. In addition, platform simulator calculates load in
core and platform. Load is the number of token in a platform
to judge whether a platform is overload state or not. Platform
simulator also imitates the behavior of protocol handling
controlled by overload avoiding scheme to evaluate the
effects of overload avoiding scheme. Platform simulator then
outputs energy and turn-around time in UDP/IP handling.
Furthermore, platform simulator also outputs load of an
platform in UDP/IP handling.
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The authors have been studying how to evaluate schemes
which are BBISS and overload avoiding scheme comprehen-
sively. Network simulator would be able to imitate traffic
pattern which is quite capable of congestion. BBISS can
be evaluated reducing effect of non-streaming traffic by the
network simulator. The authors think that traffic pattern and
the effect applying BBISS can be included in the evaluation
by platform simulator using network simulation log and
so on. However, it may be difficult to reflect the effect
of overload avoiding scheme to the evaluation by network
simulator. It is essential because the effect of overload
avoiding scheme influences the amount of traffic all over
the network. We may implement functions which are a part
of network simulator in platform simulator to solve this
problem.

4. Conclusion

This paper firstly introduced information sharing scheme
and overload avoiding scheme on ultra-low-power data-
driven networking scheme which were proposed for realizing
congestion-free ULP-DDNS.

Table 1: Parameters in Platform Simulator
Parameter Unit
Voltage V
Temperature ◦C
Power(active) µW
Power(standby) µW
Sendtime psec.
Ack time psec.
PG-Sendtime psec.
Ack-PG time psec.
Monitoring µsec.
interval
∆V V
Voltage(max.) V
Voltage(min.) V

This paper then reported the role of platform simulator
which verify effect of their schemes. Furthermore, this
paper described the implementation of platform simulator.
Platform simulator is added function to verify overload
avoiding scheme and to derive the effect of information
sharing scheme from a network simulator. This paper then
showed current status of this implementation.

The authors have been studying an implementation of
data-driven chip multiprocessor as a platform of congestion-
free ULP-DDNS. We think that realizing interface which
generate tokens from signal is essential to achieve veritable
congestion-free ULP-DDNS. As a future works, the authors
will realize data-driven chip multiprocessor as a VLSI to
demonstrate the performance in congestion-free and ultra-
low-power.
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Abstract— This paper describes a variable-grain power
gating and suspend-free voltage scaling scheme based on
the self-timed pipeline (STP) circuits. The STP operates with
its local hand-shake signal so that it does not require the
global clock distribution, i.e., centralized control. Therefore,
various power supply control for the STP can be naturally
localized in both spatial and temporal domains without
stopping its effective data transfer, e.g., program execution
in case of microprocessors. As a result, the power supply
scheme proposed in this paper can efficiently incorporate
both commonly used voltage scaling (VS) and power gating
(PG) techniques and it can further produce synergetic effects
on its total amount of power saving. This paper reports
evaluation results of the proposed scheme through actual
power measurement of our fabricated STP-based data-
driven processor.

Keywords: self-timed pipeline, power gating, voltage scaling

1. Introduction
With the advancement of modern semiconductor integra-

tion technology, higher power-performance efficiency of LSI
systems is required more and more. For example, power
efficient LSI systems contribute to help wireless ad hoc
networks more tolerant and dependable, especially in case
of emergent conditions such as natural or artificial disasters.

As for static (leakage) power consumption of LSI systems,
power gating (PG) technique is usually employed to power-
off idle part of LSI and cut off leakage current [1]. As
for dynamic (switching) power consumption, voltage scaling
(VS) technique is commonly used to lower both power
supply voltage and clock frequency to reduce switching
power of transistors [2].

However, conventional PG schemes coping with coarse
grain power domain such as processor core or whole die
has some performance overhead derived from longer wakeup
time [3], and they cannot cut off leakage power of a
finer part of LSI. In case of applying conventional VS to
clock synchronous LSI systems, there is some performance
overhead since the LSI circuit has to be suspended during
the transition time when both voltage and clock frequency
are scaled. Furthermore, combinations of voltage level and

frequency are predetermined at the design phase so that
flexibility of power supply is limited.

In order to overcome those problems, the authors have
been studying a runtime fine-grain power supply scheme
[4], [5] in a collaborative research project on ultra-low-
power LSIs. By the runtime fine-grain power supply scheme,
voltage scaling operation adaptive to processing load saves
switching power, and fine-grain power gating operation
within short idle time reduces leakage power even in run-
time. To realize both operations, we are focusing on the self-
timed pipeline (STP) circuit. The STP can operate under dif-
ferent supply voltages without changing the clock frequency
and thus throughput performance of the STP autonomously
alters depending on the scaled voltage. Furthermore, data
transfer control signals between adjacent pipeline stages can
be utilized to control the power switch for PG and the
wakeup time of the stage can be enclosed in hand-shake
time with its preceded stage. However, the performance and
power overheads will increase in the condition where the
processing load changes frequently or drastically.

This paper therefore focuses on realizing adaptive control
of power supply according to processing load. The proposed
scheme provides multiple policies to control PG and VS
operations and adjusts the tradeoff point of power supply
control depending on various conditions. The paper reports
evaluation results of the proposed scheme through actual
power measurement of our STP-based data-driven processor
fabricated by 65 nm CMOS process.

2. Runtime fine-grain power supply
In general, processing load within a parallel processor

momentarily alters depending on the parallelism of the pro-
grams and frequency of processing requests from outside of
the processor. The runtime fine-grain power supply scheme
aims to realize PG and VS adaptive to such processing load
fluctuations with as small performance overhead as possible.
To maximize performance per power, it is important to
consider balance between the size of power domain and
energy overhead as follows. Figure 1 illustrates the spectrum
of power supply control.

1) Spatially fine-grained power-domain and temporally
fine-grained control for minimizing power supply
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Fig. 1: Fine-grain power supply.
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Fig. 2: Basic structure of self-timed pipeline.

2) Suspend-free control for avoiding performance degra-
dation

3) Adaptive power supply control to processing load

The authors have already proposed a fine-grain (stage-by-
stage) PG and a suspend-free VS based on STP. In this paper,
more rich information for adaptive power supply control is
extracted from the circuit and it is utilized to change the
control policy of the target grain.

This section briefly introduces the autonomous behavior
of STP and the runtime fine-grain power supply scheme [6]
utilizing the STP behavior.

2.1 Self-Timed Pipeline
Basic STP circuit is configured as shown in Figure 2. Each

pipeline stage is composed of a data latchDLi operating
as a pipeline resister, a functional logic, and a coincidence
flip-flop Ci controlling data transfer between its neighbor
pipeline stages. A set of data transferred in the pipeline is
packed in a form of packet with a set of tags. Every packet
is transferred at stage-by-stage based on localized control
signals (send and ack signals) between adjacent pipeline
stages as follows.

1) (Beginning of packet transfer) In Ci−1 at stage (i−
1), sendi−1 signal is asserted for its succeeded stage

(i). At the same time, data latchDi−1 sends a packet
to the stage (i).

2) (Handshake)Ci opens the data latchDLi when both
sendi−1 andacki signals are asserted.

3) (Acknowledge signal)At the same time,acki−1 sig-
nal is asserted atCi to allow next packet transfer from
its preceded stage.

4) (Send signal)Ci assertssendi signal and begins to
send the packet to its succeeded stage (i + 1).

5) The above steps are iterated as long as there are
packets in the pipeline.

By virtue of this localized data transfer control among
pipeline stages, STP provides (a) power saving feature that
the switching power is consumed only when the stage trans-
fers and processes packets and (b) autonomous buffering
(elastic) capability against fluctuated packet flow in the
pipeline.

2.2 Runtime fine-grain power supply with STP
The send and ack signals of a pipeline stage represents

whether the valid data is processed in the pipeline stage or
not. By utilizing these signals for power control, the power
can be concentrated to only pipeline stages with valid data.
To realize such localized power gating, a power switch is
inserted between the power line and each pipeline stage
and it is switched off only when the corresponding pipeline
stage has no valid data. This fine-grain power gating can
deeply reduce the leakage current in comparison with the
widely-used processor-core level power gating. Figure 3
shows the circuit diagram of the self-timed pipeline with
the fine-grain power gating. To reduce the leakage current
through the power switch itself, a high-threshold NMOS
transistor is used as the power switch between the ground-
line VSS and both the DL and Logic. To control the power
switch, a control circuit called PC is introduced. The PC
observes the send and ack signals, and it closes and opens
the power switch. Generally, isolation cells are inserted
between the powered-on and powered-off circuits to stop
the propagation of the unstable signals from the powered-
off circuit to the powered-on circuit. Fortunately, a part of
the DL circuit can behave as the isolation cell in the self-
timed pipeline, and thus the isolation cells are no longer
required. Moreover, the absence of the isolation cells makes
it possible to dynamically adjust the size of a target cluster
in which the pipeline stages are powered-off at a time.

As for the dynamic voltage scaling, the self-timed pipeline
is suitable because of its clock-less principle. The data
transfer timing is determined by the C as already described,
and it can be changed by scaling the supplied voltage to
the C. The self-timed pipeline can continues to run even in
the transition period when the supplied voltage changes as
long as the difference among the potentials in the VDD lines
is within a certain value enough to guarantee the switching
of every transistor. Moreover, the whole consumption current
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Fig. 3: Runtime fine-grain power-supply control of STP.

through the self-timed pipeline is in proportion to the number
of valid data flowing in the self-timed pipeline because only
the pipeline stages with valid data are driven as a result of the
handshake. This graceful feature is preserved as long as any
interlocking or forwarding mechanisms are not introduced,
and it cannot be realized by using clock-synchronized circuit
in which power is consumed independently from the number
of valid data. By exploiting the graceful feature, the number
of valid data flowing in the self-timed pipeline can be
observed by the whole consumption current of the self-
timed pipeline. Consequently, the power consumption can
be reduced by setting the supplied voltage to a minimum
value enough to achieve the throughput (the number of
valid data flowing the self-timed pipeline) observed by the
consumption current. This is because the power consumption
generally is in proportion to the square of the supplied
voltage

On the other hand, the clock-synchronized circuit should
introduce a PLL (Phase-Locked Loop) circuit providing
several clock-frequencies according to the supplied voltage
in order to change the supplied voltage. Unfortunately, the
PLL takes several tens ofµ seconds to switch the clock-
frequency [7], and thus the supplied voltage cannot be
changed during the several tens ofµ seconds. In contrast,
the absence of the PLL in the self-timed pipeline makes it
possible to realize truly runtime voltage scaling as long as
the amount of change of the supplied voltage is moderate
enough to guarantee the switching of transistors.

As explained above, both the power gating and the dy-
namic voltage scaling can be deeply exploited to reduce the
power consumption by focusing on the unique features of
the self-timed pipeline.

2.3 Break even model

The power gating reduces the leakage current through the
powered-off circuit while the switching of the power switch
consumes power. In addition, the rush current which flows

after the power switch is opened results in the power con-
sumption. As for the dynamic voltage scaling, the switching
power can be reduced according to the required throughput,
meanwhile, the charge and discharge of the load capacity
are unavoidable to scale the supplied voltage. An equivalent
circuit by which these gains and overheads are modeled
is illustrated in figure 4. Based on the equivalent circuit,
the switching energy for the power switch,EPS , can be
defined by equation (1) in whichCPS denotes the parasitic
capacitance.

EPS = CPS × V DD2 (1)

Based on both the equivalent circuit and a paper [8], the
energy consumed by the rush current can be defined by
equation (2) in whichCV V SS , CL and∆V V SS denote the
virtual ground, the capacitance of the target circuit and the
potential of the virtual ground, respectively.

Erush = (CV V SS +
1
2
CL) × V DD × ∆V V SS (2)

The ∆V V SS increases as long as the target circuit is
powered-off, and it asymptotically reaches to the VDD. This
fact indicates that the amount of the reduced leakage current
increases along with the sleep time while the short sleep
time exposes the overhead energy. That is, the sleep time
is the break-even point to determine the gain of the power
gating. Based on the equation (1) and (2), the break-even
sleep time can be defined by an approximate expression (3)
in which Pactive and Psleep denote the energy consumed
by the isolation parts, the power consumed by the leakage
current during powered-on and the power consumed by the
leakage current during powered-off, respectively.

BET =
EPS + Erush

Pactive − Psleep
(3)

The gain of the power gating can be obtained by satisfying
the equation (3), and it can be defined by an approximate
expression (4) which calculates the difference between the
gain and loss based on the equation (3).

EPG_gain =
N∑

i=1

(Tsleep(Pactive − Psleep) − Erush − EPS)

(4)
In the equation (4), thei and Tsleep denote the number

of pipeline stages and the sleep time of the target circuit,
respectively.

As for the dynamic voltage scaling, the break-even point
can be modeled. The energy is reduced after the supplied
voltage decreases, and the charge and discharge due to
the increase and decrease of the supplied voltage results
in the power overhead. Based on these facts, a break-even
processing load (BEPL) is introduced to explain how many
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times the target circuit should be driven after a decrease
of the supplied voltage to obtain the gain. The BEPL can
be defined by an approximate expression (5) in which
CV DD, CL and α denote the capacitance of power line,
the capacitance of both the DL and Logic, the switching
probability of the transistors of both the DL and Logic,
respectively.

BEPL =
CV DD

CL × α
(5)

The gain of the dynamic voltage scaling can be obtained
by satisfying the equation (5), and it can be defined by an
approximate expression (6) which calculates the product of
the ratio of actually-measured parameters and the difference
between the gain and loss based on the equation (5).

EV S_gain = (V DD2 −V DD2
min)(CL ×α×PL−CV DD)

(6)
In the equation (6),V DDmin and PL denote the mini-

mum value of the supplied voltage and the processing load
fo the target circuit, respectively. The concrete values of the
equations can be calculated by measuring the parameters by
using the prototype VLSI chip.

3. Variable-grain power gating
In the variable-grain power gating, several pipeline stages

are clustered and powered-off at a time. The size of the
cluster is changed dynamically between 1 (stage-by-stage) to
a certain number to keep the sleep time of the cluster longer
than the BET defined by the equation (3). In this section, the
circuit implementation of the variable-grain power gating is
discussed.

The PG enable signal which is the output of the PC should
be asserted when the sleep time of the cluster is longer
than the BET. The sleep time is determined by the time
interval between the sets of data transferred in the self-
timed pipeline. To detect whether the time interval is longer

Fig. 5: Realization method for variable-grain power gating.

than the BET or not, a counter-based detection scheme is
introduced.

The counter-based detection scheme is shown in figure 5,
and it counts how many sets of data are transferred during
the BET by focusing on the processing time of the self-timed
pipeline. The processing time of the self-timed pipeline is
determined by the sum of the forwarding delays of the
successive pipeline stages. The forwarding delay of the i-
th stage is denoted by Tfi in the figure 5. In the counter-
based detection scheme, several successive pipeline stages
are selected so that the processing time of them becomes
nearly equal to the BET, and the number of the sets of data
transferred during the BET is counted by using a up/down
counter which increases when the send (transfer request)
signal to the first pipeline stage is asserted and decreases
when the send signal of the last pipeline stage is asserted. As
a result of this counting, if the count is 0 or 1, it is indicated
that the time interval between the sets of data transferred is
longer than the BET, i.e., the PG enable signal should be
asserted. On the other hand, if the count is greater than 1,
it is indicated that the BET is not met and thus the number
of the pipeline stages in a cluster should be increased.

In runtime, the BET may change according to the change
of temperature of the circuit. To reconfigure the number
of the successive pipeline stages according to the BET
dynamically, a MUX is introduced to select the appropriate
last stage. The MUX also makes it possible to select an
arbitrary successive pipeline stages over non-liner self-timed
pipelines such as a circular pipeline indispensable to realize
the data-driven processors.

4. Suspend-free voltage scaling
The suspend-free voltage scaling makes it possible to

change the throughput of the running self-timed pipeline by
scaling the supplied voltage without any suspend operation.
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In the self-timed pipeline, the delay times of the DL,
Logic and C are proportional to the supplied voltage. There-
fore, the supplied voltage of the self-timed pipeline can be
scaled at runtime without any suspension. By exploiting
this nature, the power consumption can be reduced by
keeping the supplied voltage at minimum value enough
to achieve the throughput required by a target application
even when the required throughput changes at runtime.
The required throughput can be directly known based on
the whole consumption current of the self-timed pipeline.
This is because the localized data transfer of the self-timed
pipeline drives only pipeline stages with valid data and thus
the consumption current of the self-timed pipeline is in
proportion to the number of valid data processed at a time,
that is, the throughput.

However, a temporally-sharp magnitude of the fluctuation
of the supplied voltage exposes the effects of the overshoots
and undershoots, and thus it may result in both the false
operation of circuit and the noise on the power lines.
Therefore, the rate of change of the supplied voltage should
be moderate enough to ignore the effects of the overshoots
and undershoots.

To realize such moderate scaling of the supplied voltage,
PID (Proportional Integral Derivative) control is introduced
in the circuit implementation. The suspend-free voltage
scaling circuit is illustrated in figure 6, and it consists of PID
controller, I-V mapping table and DC/DC converter. The I-V
mapping table is used to lookup the target supplied voltage
according to the consumption current, and each supplied
voltage value in the table is set to maximize the throughput-
power efficiency. Based on both the target supplied voltage
value and the currently supplied voltage, the PID controller
calculates the amount of change of the supplied voltage.
Finally, the DC/DC converter actually changes the supplied
voltage according to the calculated amount of change.

5. Power-performance estimation
In order to evaluate power performance characteristic, a

data-driven processor ULP-CUE based on the self-timed
pipeline has been implemented by using 65 nm CMOS
process. In this section, the ULP-CUE is briefly introduced
and then the basic power-performance characteristics are

Fig. 7: Layout of ULP-CUE.

evaluated by integrating actual measurement results of the
ULP-CUE chip and SPICE simulation results. Finally, total
power reduction effects of the proposed variable-grain power
gating and suspended-free voltage scaling are revealed in the
case of the ULP-CUE.

5.1 Circuit configuration of ULP-CUE

The ULP-CUE is a 32 bit dynamic data-driven processor
composed of the 13-stages ring-shaped STP.Each STP stage
is designed to perform the following elemental function.

• MB: merging function of input tokens and internally
circulated tokens.

• MM: firing control function to detect a pair of operand
tokens for its instruction execution. It is divided into
two STP stages, MM0 and MM1.

• M: merging function for tokens bypassing the MM
stages.

• PS: instruction fetching function. It is divided into two
stages, PS0 and PS1.

• FP: instruction decoding function (FP0) and execution
function, i.e., ALU. It is divided into two stages, FP1
and FP2.

• MA: data-memory access function. It is divided into
two stages, MA0 and MA1.

• B: branch function to bypass the MM stages or not.
• BB: branch function to ether output port or the circular

STP.

Those stages are placed and routed on a die shown in
figure 7. As shown in the figure, area of each stage is
different from others so that the load capacitance of each
stage is different. This means its break-even condition is
different.
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Fig. 8: Break even time of each STP stage (0.8 V, 25◦C).

5.2 Estimation of power gating
Because each STP stage of the ULP-CUE is implemented

as different circuits, the break-even time is different. For
each stage, it is difficult to measure every parameter in
equation (3). Thus, in this evaluation, PS switching energy
EPS , energy consumption caused by rush currentErush,
and leakage power Pleak are evaluated by SPICE simulation
of each stage. This is because the detailed breakdown of
each stage’s power consumption cannot be measured on the
fabricated ULP-CUE chip. Since the voltage of the VVSS
depends on sleep time, the SPICE simulation is conducted
in many times in the case of different sleep time.

Figure 8 shows the break-even time and power reduction
effect of each STP stage composing the ULP-CUE at 0.8 V,
25◦C. The triangulate plot shows the break-even time. The
MM0 stage has the shortest BET, 159 ns. This is because
its area is the largest in all stages. Furthermore, the gate
width of the PS0 can be shortened because the switching
probability of transistors composing the MM0 is not so high
compared with other stages. The PS0 has the longest BET,
998 ns. It is about 5 times longer than the shortest one.

Based on those analyses, power saving effect of the
proposed variable grain PG is roughly estimated. In this
estimation, the stages of ULP-CUE is categorized into three
classes; a small-area stage (BET = 895 ns), a middle-area
stage (BET = 602 ns), and large-area stage (BET = 275
ns), and an evaluated processor is configured by 12 STP
stages including four stages per stage class. Figure 9 shows
estimated power depending on the interval time between
flowing tokens in the pipeline at 0.8 V, 80◦C. This result
shows that the variable grain PG is more power efficient in
shorter interval time rather than the stage-by-stage PG, e.g.,
17 ns shorter in the case of interval time 85 ns.

5.3 Estimation of voltage scaling
As for the voltage scaling, total power of the ULP-CUE

processor can be measured on the fabricated chip as shown
in figure 10. This measured wave shows an example of
consumption current of the ULP-CUE in the case the supply
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Fig. 9: Evaluation of variable grain power gating.
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Fig. 10: An example measurement result of suspend-free
voltage scaling.

voltage VDD is changed from 0.8 V to 1.2 V by using the
PID controller. This consumption current includes charge
current to bothCV DD and CL. If electric current when
the voltage of VDD is raised from 0.8 V to 1.2 V is
measured without operating a program, only the electric
current concerningCV DD (overhead cost) can be observed.
Moreover, it becomes possible to calculateCL as difference
with the consumption current of figure 10. As a result, the
break-even processing load can be calculated based on the
equation (5).

As for the voltage scaling, the break-even processing load
is evaluated based on the equation (6). Figure 11 shows the
break-even processing load of the ULP-CUE based on the
measurement current of the chip when the supply voltage
is changed from 0.8 V to 1.2 V. The diamond-shape plots
indicate CL, i.e., the denominator part of the equation
(5), and the square-shape plots indicateCV DD, i.e., the
numerator part of that. From this result, the BEPL is about
113 tokens.

The measured chip is not equipped with the on-die DC/DC
convertor. If a DC/DC convertor can be implemented on a
die, the load capacitance of the power line,CV DD, can be
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reduced to one-tenth of that [9]. In this case, the break-even
processing load can be reduced to 11 tokens.

Figure 12 shows the measured transient power-
performance ratios and voltage rise times when the
supply-voltage is altered from 0.8 V to 0.9 V, 1.1 V, and 1.3
V. Even during such transient time of supply-voltage, the
ULP-CUE can work at reasonable power-performance ratio.
Therefore, total performance-power ratio could be improved
as well as better dependability against hard real-time
constraints can be obtained. On condition of 0.8 V to 0.9 V,
it was the throughput performance of 5 [M token/sec]. And
on condition of 0.8 V to 1.3 V, the maximum throughput
performance of 5.5 [M token/sec] was able to be maintained.
Be subject to frequent work load changes application, it is
shown that continuation of processing can be performed
by the minimum performance overhead. In addition, it is
important parameters for considering applicability to real
applications.

6. Conclusion
In this paper, a variable-grain power gating and suspend-

free voltage scaling mechanism based on the self-timed
elastic pipeline (STP) was proposed to realize lower-power
LSI circuits and then its effectiveness was analyzed by

defining a break-even model in terms of energy trade-off.
The low-powered STP circuit was then applied to an ultra-
low-power data-driven processor, ULP-CUE, and evaluated
through integrating SPICE simulation and actual measure-
ment results.

Since the break-even condition of the proposed scheme
may change depending on the temperature and process
variations, a kind of self-checking circuit of typical leakage
and switching power should be introduced on a die and
its monitoring result should be fed back to the power-
supply controller. Furthermore, in order to verify such on-
die mechanism in terms of power performance efficiency,
a microarchitecture simulator must be developed which can
simulate not only architectural behavior but also transient
power consumption. We are now developing such a plat-
form simulator and then we will report the comprehensive
evaluation results using this simulator in near future.
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Abstract— Future wireless ad hoc network should accom-
modate different types of mobile terminals equipped with
different wireless communication schemes. Especially when
disaster will happen, to guarantee dependable connectivity
among mobile terminals will be indispensable for delivering
emergent information by using available wireless links. In
order to realize such heterogeneous wireless communication
systems, one of the key technologies is adaptive fast Fourier
transform (FFT) engine to accept multiple wireless signal
sequences with different sampling rate and different FFT
point.

This paper discusses a basic idea of novel FFT engine
based on the self-timed (clockless) pipeline circuit to com-
pute multiple FFT’s in parallel. After that, the potential
performance of the proposed circuit is evaluated through
its FPGA implementation. Preliminary results indicate the
proposed circuit could process two 4096-point FFT’s at 276
M sample/s per each FFT.

Keywords: heterogeneous wireless communication, ad hoc net-
work, FFT, self-tiemd pipeline

1. Introduction
Diverse wireless communication devices have permeated

throughout our daily lives in modern information society.
Therefore, wireless networks supporting higher throughput
and wider coverage area are increasingly demanded. Since
the modern homogeneous wireless networks are facing se-
vere limitation of transmit power level affecting coverage
range and the amount of interference, heterogeneous wireless
networks are becoming part of the mainstream wireless com-
munication infrastructures [1], [2], [3]. Those heterogeneous
wireless communication devices can be utilized to configure
more dependable and flexible ad hoc networks, especially in
emergent conditions such as natural or artificial disasters.

Heterogeneous wireless communication devices should be
equipped with a multimode and multiband receiver module
so as to select optimum modulation, channel, and network
dynamically depending on its individual wireless communi-
cation condition. To realize such intelligent multimode de-
vices, sophisticated radio link management decision among
available wireless connections is required. Frequency do-
main equalizer (FDE) [4] with channel estimation is one of
the most important functions for the intelligently dependable
mobile terminal, because its channel estimation result can be
utilized to decide an appropriate radio link and FDE itself

improves the bit error rate (BER) to mitigate interference
within both air and RF devices.

In our prior research project, ultra-low power data-driven
networking system for ad hoc wireless network has been
investigated. The final results of the project demonstrated
that our ultra-low-power data-driven chip-multiprocessor
LSI fabricated in 65 nm CMOS process can perform at
less than a few-tenth of power of conventional embedded
microprocessors [5], [6]. Since the target protocols in the
project were over layer 3, for further investigation of low-
power wireless networking technologies, it is necessary to
study layer 2 and baseband process.

Our research project therefore aims to establish a self-
timed pipeline (STP) implementation for the dependable
wireless systems (DWS) supporting multimode and multi-
band interfaces. Since the STP circuit inherently has clock-
less passive operation mode [7], [8], it can flexibly pro-
cess any combination of signal sequences even if they
are sampled at different frequencies. In this paper, fast
Fourier transform (FFT), one of the heaviest functions in
the DWS, is focused on and its STP design is proposed.
Finally, its feasibility is discussed through a preliminary field
programmable gate array (FPGA) design of STP-based FFT
circuit.

2. Pipeline Parallelism of Multichannel
FFT

The single carrier FDE module performs on the receiver
side after the FFT calculation to combat frequency-selective
fading and phase distortion [4]. To equalize the transmitted
data in frequency domain, a pilot signal is used for esti-
mating the transfer function and the noise power in the air
channel. Therefore, after the received data are transformed
from time domain to frequency domain by FFT, they are
equalized based on estimated results and then retransformed
to time domain by IFFT.

In case of orthogonal frequency division multiplexing
(OFDM), FFT is also used for modulating data onto each
subcarrier and IFFT is for demodulating data on each subcar-
rier. Furthermore, in multiple-input multiple-output (MIMO)
antenna configuration, a multichannel FFT/IFFT processor is
necessary in a transmitter/receiver.

Therefore, we aim to implement a multichannel FFT
processor in which multiple FFT operations of variable
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sizesare simultaneously performed for multiple input signal
sequences sampled in variable frequencies.

Originally FFT is a fast version of discrete Fourier trans-
form (DFT). N point DFT is defined by the equation (1).

X(k) =

N−1∑
n=0

x(n)W kn
N

W kn
N = e−j2πkn/N , k = 0, 1, ..., N − 1

(1)

where the input sequence of N complex datax(0), x(1),
…, x(N − 1) is transformed into an N-periodic sequence of
complex data. In the Cooley-Tukey FFT algorithm, radix-
r butterfly operations are recursively applied toN input
signals, and the depth of recursion islogrN . In each
recursion, the number of butterfly operations (i.e.,r-point
FFT) isN/r and they can be calculated in parallel, because
there is no data dependency among them. An example of a
decimation-in-time FFT (N=8, r=2) is shown in Figure 1.
As seen in this dataflow diagram, four butterfly operations
can be concurrently executed in each recursion step.
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Fig. 1: Dataflow diagram of radix-2 decimation-in-time FFT
(N=8).

If the dataflow diagram of FFT shown in Figure 1 is
interpreted based on the dynamic dataflow model [7], mul-
tiple instances of the same FFT diagram can be allowed
to be executed by introducing a channel identifier, which
differentiates between them. In the same way, the dataflow
diagram of a butterfly operation can be interpreted for
multiprocessing of the butterfly if every data flowing the
diagram have a set of identifiersID, which is composed
of channel identifierch, step identifierstep, and butterfly
instance identifier within the stepbtf . In this case, it is
necessary to provide a function supplying appropriate set
of operands with those identifiers and storing intermediate
data in the memory buffer. This parallel execution scheme
in case of radix-2 butterfly is illustrated in Figure 2. In the
figure, every operand and result of butterfly are identified
by ID(ch, step, btf) and multiple sets of operands are
issued from the commutator consecutively. The commutator
manages the number of operand sets for butterfly instances,

which represents the degree of parallelismPch. At the same
time, the commutator attaches appropriate identifiers to those
issued operands.

x0

x1

X0

X1Wk

Commutator with buffer

Input sequences
with ID(ch)

Output sequences
with ID(ch)

Operands 
with 

ID(ch, step, btf)

Intermediate results 
with 

ID(ch, step, btf)

# of butterfly
instances: Pch

# of FFT 
points: Nch

Fig. 2: Parallel execution scheme of multiple butterfly in-
stances.

As long as the butterfly operation with a correct set of
identifiers is executed under dynamic dataflow model, valid
execution of multiple FFT calculations is guaranteed even if
the size of an FFTNch and the sampling frequency of its
input data sequence are different from others.

However, the connectivity in each step is different from
that in others, as seen in Figure 1 so that commutator
might be complex. Therefore, in our design, the original
FFT structure is modified to uniform FFT structure shown
in Figure 3. By adopting this FFT structure, the ID handling
function in the commutator is simply defined as shown in
Figure 4.
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Fig. 3: Uniformity in radix-2 FFT structure (N=8).

Furthermore, this uniform type of FFT structure allows
the comutator to fetchr operands from the buffer memory
in parallel. Because the memory access pattern is invariant
at all steps, the buffer memory can be composed ofr single-
port memory banks.

Figure 5 shows a dataflow graph representation of the
proposed parallel execution scheme of multichannel FFT.
Firstly, the input complex data is stored in multi-bank buffer
memory consecutively. If a set of operands for the first
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do {
btf += Pch;
if (btf >= (Nch/r)) {

step++;
btf %= (Nch/r);

}
} while ( step < logrNch);

Fig. 4: ID handling function in commutator.

butterfly is ready to be computed, an instance of FFT is
initiated andPch sets of identifiers IDs are issued at ID
handling module according to input data arrival. After that,
r operands are read from the buffer memory in parallel based
on the issued ID. Similarly, twiddle factors are read from TF
lookup table in parallel and radix-r butterfly is calculated.
The r resultant data from the butterfly are written into the
buffer memory in parallel. Then, preparation of a continuous
butterfly operation is conducted as defined in Figure 4. After
executing the last butterfly in the FFT instance, the output
data read from the buffer memory are reordered.

Store Input

Read 
buffer

Radix 4 Butterfly

TF
Lookup

Write buffer

Reorder

End?

N point Complex Data
with ID(ch)

Yes

Butterfly ID (ch, step, btf)

N point Complex Data
with  ID(ch) 

No

ID handling

Fig. 5: Dataflow diagram of the proposed scheme.

3. STP Implementation of Multichannel
FFT

The parallel execution scheme proposed in the previous
section is an abstract model and that does not deal with
temporal information such as sampling frequency. In order to
process multiple input sequences with different frequencies,

Pipeline Stage

DL2DL1 DL1Logic Logic

C1 C2 C3
Ds1

Da1

Ds2

Da2

ToDL1 ToDL2 ToDL3

send0

ack0

send1 send2 send3

ack1 ack2 ack3

DL: Data Latch
Ds: Delay Element of send Signal
Da: Delay Element of ack Signal

C: Transfer Control Circuit

Fig. 6: Self-timed pipeline.

its circuit implementation should have a passive operation
mode enabling to accept input data adaptively along with
outside conditions. Therefore the self-timed pipeline (STP)
circuit is employed for implementing multichannel FFT.

In this section, the passive and autonomous behavior of
the STP is briefly introduced and then its natural contribution
to multichannel FFT implementation is discussed.

3.1 Self-Timed Pipeline
Each pipeline stage of the STP consists of a data latch

as a pipeline register, function logic, and transfer control
unit named C-element. The basic structure of the STP is
shown in Figure 6. The data latch, function logic, and C-
element are denoted by DL, Logic, and C, respectively. The
data is packed with tag into packet form, and the packet
is transferred between the pipeline stages as a result of the
communication between the C’s in the adjacent stages. The
communication is performed stage-by-stage according to the
4-phase handshake protocol [9] by using transfer request
and acknowledge signals which are called send signal and
ack signal respectively. The stage-by-stage transfer control
changes the states of each pipeline stage independently, and
the states of the stages are defined below according to the
handshake protocol. Here, the C-element in thei-th stage is
denoted byCi.

• Reset state: The send and ack signals are negated after
the assertion of the reset signal.

• Idle state: TheCi waits until thesendi−1 is asserted.
• Busy state: Thesendi−1 is asserted at the beginning of

the transfer of the packet from the precedent (i− 1)-th
stage. After the assertion of thesendi−1, theCi asserts
its ack signal (acki−1). In response to the assertion, the
Ci−1 negates thesendi−1. After that, if and only when
both thesendi−1 andacki are negated, theCi asserts
the ToDLi to open theDLi and it assertssendi at
the same time. As a consequence, the packet is latched
in the i-th stage, and thei-th stage goes to idle state.
Otherwise, theCi waits until theacki is negated while
it keeps its send and ack signals.
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The successive stages receiving the assertion of the send
signal go to busy state and their C’s repeat the same transfer
control sequence individually. During the handshakes, the
send signals are delayed to assure the completion of the
primitive logic function and ack signals are delayed to assure
the setup-hold timing of the DL’s.

This stage-by-stage transfer control of the STP suggests
the timing of the power controls. That is, in the idle
stages, the circuit of the DL and combinational logic can be
powered-off, i.e., the supply-voltage can be cut, while that
of the C and sequential logic can be powered-down, i.e., the
supply voltage can be lowered enough to keep the circuit’s
states [10]. Moreover, in the busy stages, those circuits
should be powered-down enough to assure the switching of
the transistors, i.e., the supply-voltage can be lowered as
long as the required switching speed is achieved [11].

3.2 Multichannel FFT Implementation
In order to realize the dataflow shown in Figure 5, it is

essential to maintain stable dataflow in the STP without
any pipeline bottleneck as well as to guarantee atomic
(i.e., read-after-write) accesses of intermediate data stored in
the buffer memory during execution. Therefore, the buffer
memory accesses must be integrated at the single STP stage.
Moreover, intermediate resultant data of radix-rbutterfly are
written in different buffer addresses from that of operands
when the uniform type of FFT structure is employed. Thus,
in our design, we adopt dual buffer memory modules each of
which is used for butterfly operations in either even step or
odd step of the FFT. It requires2Nch words SRAM forNch-
point FFT. As a result, multichannel FFT engine is designed
as shown in Figure 7 to utilize the passive operation mode
of STP. This FFT engine operates as follows.

All data flowing in the pipeline has an operation code
op as well asID(ch, step, btf). The op is assigned one of
operations, i.e.,in, read, write, or out. Every stage in the
STP-based FFT engine changes its operation depending on
op of the packet.

• input phase: Nch input data from a channelch consec-
utively arrive at one of input ports of the merge stage.
At that time, each input data is composed as a packet
form including a complex number,ch identifier, index
i(=0,...,Nch-1) andop(= in). The input data reaching to
the buffer memory stage is written in a place associated
with index i of the packet.

• instantiation phase: If op of a packet arriving at the
ID handler stage isin, an FFT for the channelch may
be instantiated. Only whenr operands necessary for the
first butterfly are stored in the buffer memory, an FFT
instance for the channelch is initiated. ID(ch, 0, 0)
for the first butterfly is issued withop(= read). After
that, succeeded butterfly instances are instantiated with
ID(ch, 0, 1),..., ID(ch, 0,Pch-1) within the allowable
degree of parallelismPch.

• read phase: If op of a packet arriving at the buffer
memory stage isread, r operands for thebtf -th but-
terfly instance are read out from the buffer memory
in parallel. Their addresses can be calculated from
ID(ch, step, btf). To allow those parallel accesses, the
buffer memory is composed of dualr-way memory
banks. If thestep is even, the operands are read from
the first set ofr-way memory banks. If odd, the second
one is accessed for operand fetches. At the same time,
(r − 1) twiddle factors necessary for the butterfly are
fetched from the twiddle factor lookup table in parallel.
Since the lookup table holds twiddle factors only in the
fourth quadrant, each lookup data needs the change of
quadrant by swapping the real and imaginary number,
or changing on one(or both) sign(s) of the number(s).

• butterfly phase: If op of a packet arriving at the
butterfly stage isread, a butterfly instance is executed
usingr operands andr − 1 twiddle factors.

• prerelease ID phase: Ifop of a packet arriving at the
ID handler stage isread, this stage prepares to write
r resultant data to the buffer memory. In the uniform
type of FFT, all results of a butterfly should be stored to
one of memory banks. Therefore, word length of each
memory bank is expanded tor × (length of a complex
word). By this expansion, all results are written at the
same time. In this prerelease ID phase,r results are
packed into one word withop(= write) to prepare for
the next writing phase.

• write phase: If op of a packet arriving at the buffer
memory stage iswrite, a packed result of thebtf -
th butterfly instance is written in the buffer memory.
Its address can be calculated fromID(ch, step, btf).
If the step is even, the intermediate result of the FFT
is written in the second set ofr-way memory banks.
If odd, the first one is accessed for the result storing.
After writing the result, the ID packet is transferred to
the ID handler stage. In this stage,ID(ch, step, btf) is
updated based on the function defined in Figure 7 and
then op is changed toread. If step exceedslogrNch,
the FFT operation is finished and buffered data are
output. In this case,op is changed toout.

4. Evaluation
In order to evaluate the performance of the stream-driven

FFT processing, its STP circuit is designed and implemented
on FPGA (Stratix II, Altera Corp.). Table 1 shows the
specifications of the implemented self-timed FFT circuit on
the FPGA. This FPGA design was conducted for confirming
that parallel butterfly instances works well in pipelined
parallel processing of the single circular STP circuit. In the
preliminary result of non-optimized circuit, the processing
time of 1024-point FFT was 424 us. This means that the
acceptable sampling rate is 2.4 M sample/s. In this case,
the maximum pipeline tact in 13 pipeline stages was 20.6
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Fig. 7: STP implementation of multichannel FFT.

ns. The number of logic cell (LC) Combinationals, LC
Registers, block memory bits, and DSP slices required for
the designed FFT circuit are 1200, 2008, 40062, and 12
respectively.

Table 1: Specifications of the self-timed FFT circuit on
FPGA

# of FFT pointsNch 16 ∼ 1024

Radix r 4

Degree of parallelismPch 2

Complex data 32 bit, fixed point integer

(real, imaginary) (16bit, 16bit)

# of STP stages 13

The processing timeTFFT of the implemented STP
circuit can be approximated by the equation (1).

TFFT =

(
r − 1

r
Nch + 2

NchlogrNch

rPch
S

)
∗ Tfmax (2)

whereTfmax denotes the maximum pipeline tact in the STP,
S denotes the number of pipeline stages, andPch denotes
the number of parallel instances of butterfly. The first term
in this equation expresses the initiation delay to wait the
arrival of a set of operands for the first butterfly. The second
term expresses the parallel exectuion time of all butterfly
instances. As understood from this equation,r and Pch

should be increased andTfmax should be decreased in order
to shorten the FFT processing timeTFFT .

Based on our ASIC design experiences for the STP,Tfmax

can be reduced to about 1 ns if 65 nm CMOS process will be
used to implement the proposed FFT circuit. Through those
considerations, the performance of the proposed self-timed
FFT circuit can be estimated as shown in Figure 8. For exam-
ple, two 4096-point radix-8 FFTs will be performed at 276
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Fig. 8: Performance estimation of the self-timed FFT circuit.

M samples/s in case of 8 parallel instances, i.e., the degree
of pipeline parallelism for radix-8 butterfly operations.

5. Conclusion

In order to establish low-power and dependable wireless
networks, mobile devices should be equipped with a mul-
timode and multiband transceiver/receiver module for both
cellular networks and ad hoc networks. Such mobile termi-
nals would be useful and sustainable in case of emergent
situation as well as normal situation.

This paper focuses on a multichannel FFT engine used
for MIMO OFDM and SC-FDE and proposes a basic idea of
its self-timed pipeline implementation based on the dynamic
data-driven multiprocessing model. The preliminary results
indicated that the proposed STP implementation will be
feasible to the required performance for heterogeneous wire-
less communication environment involving mobile broad-
band wireless access (MBWA), wireless local area network
(WLAN), wireless personal area network (WPAN).
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Abstract - Depth-first search (DFS) tree searching algorithms 

are a common implementation approach for many NP-

complete optimization algorithms (traveling salesperson 

problem (TSP), 0-1 Knapsack problem, etc.).  In a GPU 

environment the host computer typically performs a breadth-

first expansion of the top of the search tree to determine 

subtrees that can be assigned to GPU threads, then these 

subtrees are transferred from the host memory to the GPU-

device global memory before the GPU threads can start their 

search.  This paper describes a parallel algorithm that allows 

the GPU threads to determine their initial subtrees. 

Keywords: Backtracking Algorithm, GPU computing  

 

1 Introduction 

  Depth-first search (DFS) tree searching algorithms are a 

common implementation approach for many NP-complete 

optimization algorithms [1].  Consider the traveling 

salesperson problem (TSP) for the graph in Figure 1, a 

salesperson starting at her hometown (say v1) and wants to 

visit every other city exactly once before return to her 

hometown (called a tour) using a minimum total cost.  For 

this toy example, the minimum tour is [v1,v3,v4,v2,v1] with a 

total cost of 21. 

 

 In a GPU environment the host computer typically 

performs a serial breadth-first expansion of the top of the 

search tree to determine subtrees that can be assigned to GPU 

threads.  Figure 2 shows the expansion for the TSP graph in 

Figure 1. These subtrees are transferred from the host memory 

to the GPU-device global memory before the GPU threads can 

start their search on the subtrees.   

        
      

2 Parallelization algorithms 

2.1 Algorithm for search-tree branching factor > 2 

 The following parallel algorithm allows t (a power of 2) 

GPU threads to determine their initial subtrees.  Thus, avoid 

host computer’s serial breadth-first expansion.  Consider a 

search tree with a branching factor of n at each level, we can 

visualize the total work of the search tree using two arrays 

Start and End as in Figure 3 (a).  To split the work into two 

halves, half of level 1’s values can be split off as in Figure 3 

(b) by thread 0. 

 
Each of the two halves can be split in parallel by two threads 

(0 and t/2) into four quarters with level 1 values in the ranges:  

1..(n/4), (n/4)+1..(n/2), (n/2)+1..(3n/2), (3n/4)+1..n.  When a 

thread’s Start value at level i equals its End value at level i, it 

splits its work by splitting its level i+1 values in half.  Four 

threads can split the four quarters of work into eighths, etc.   
 

 The CUDA pseudo-code for this binary-tree scattering of 

search-tree work among the threads is shown in Figure 4.  
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2.2  Algorithm for search-tree with branch factor = 2 

 Some NP-complete problems search for optimal subsets 

of items from a set of size n (e.g., 0-1 Knapsack problem, 

subset-sum problem, etc.).   In these cases the above binary-

tree scattering of work is not even needed.  Each of the t (a 

power of 2 = 2
k
 ) GPU thread Id’s can be thought of as a k-bit 

binary number.  Each k-bit binary number of the GPU thread 

Id represents a unique starting subtree at level k in the search 

tree.  Figure 5 illustrates a small example of t = 8 = 2
3
 with 

binary thread Ids:  000, 001, 010, 011, 100, 101, 110, 111. 

2.3 Continuation of DFS tree-search 

 After a GPU thread is assigned an initial subtree 

(regardless of the search-tree’s branching factor), its initial 

state and feasibility must be evaluated if a promising function 

is being used to prune branches of the search tree. 

 

 

3 Future work 

 The above algorithms to assign initial subtrees to GPU 

threads for the TSP and 0-1 Knapsack problems have been 

implemented.  However, threads completing their subtrees 

currently sit idle until the search completes.  Future work will 

focus on dynamically load-balancing as described in [2]. 
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// binary-tree scatter of work, threadsPerBlock must be a power of 2 

i = blockDim.x; 

while (i > 1) { 

    if (threadIdx.x % i == 0) { 

        for (level = 2; level < n; level++) { 

            if (Start[threadIdx.x][level-2] == End[threadIdx.x][level-2] || included) { 

                Start[threadIdx.x+i/2][level-2] = Start[threadIdx.x][level-2]; 

                End[threadIdx.x+i/2][level-2] = End[threadIdx.x][level-2]; 

            } else { 

                mid = (Start[threadIdx.x][level-2] + End[threadIdx.x][level-2])/2; 

                Start[threadIdx.x+i/2][level-2] = mid+1; 

                End[threadIdx.x+i/2][level-2] = End[threadIdx.x][level-2]; 

                End[threadIdx.x][level-2] = mid; 

            } // end if 

        } // end for 

    } // end if 

    syncthreads(); 

    i = i / 2; 

} // end while 

 

                             Figure 4.  CUDA pseudo-code for binary-tree scattering of  search-tree work 
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Abstract— Bio-inspired techniques like Genetic Algorithms
have a comprehensive applicability to optimization prob-
lems. Given the ease of parallelism implementation inherent
of these techniques several researches have been developed
in such area making use of parallel platforms, especially
the CUDA platform. However, the majority of these works
are focused on strategies to improve the algorithms con-
vergence without concern for the performance against their
runtime. In this context, the present research introduces a
runtime comparison of a Genetic Algorithm implementation
in CUDA and traditional CPU aiming to investigate the per-
formance difference between them. The results showed that
although the Genetic Algorithm has a native parallelism, the
CPU overcomes the GPU implemetation due to a hardware
limitation.

Keywords: Genetic Algorithms; CUDA; Performance Evaluation;
GPGPU; CPU;

1. Introduction
Genetic Algorithms (GA) has demonstrated to be a pow-

erful tool to find solutions for optimization problems [1].
Nevertheless, this technique demands a high computational
cost as a result of the evaluation of all possible solution in
each generation [2]. Aiming to attenuate such problem, par-
allel processing systems like the General Purpose Graphical
Processing Unit (GPGPU) are being utilized [2] [3] [4].

GPGPU are graphic processors used not only to image
rendering, but to any problem requiring massive data parallel
processing. To facilitate its use, the NVIDIA® corporation
provides an API that uses C/C++ languages to program in
their graphics cards, called CUDA.

Concerning the efficiency of the CUDA platform, sev-
eral works have been conducted in order to evaluate its
performance, including problems which involve the use of
GA. These problems, generally, are aimed to evaluate the
comparison with the corresponding CPU implementation.

In this context, the present work proposes a performance
comparison of Genetic Algorithms in CPU and GPU, focus-
ing on their runtime and not in their solution convergence in
order to verify the best emviroment for its implementation.

This paper is organized as follows. Related Work are
showed in Section 2 where some similar works using GA
or CUDA are described; Test configuration are presented in
Section 3, describing how the benchmark was performed;
The Section 4 presents the results obtained. Finally, the
Section 5 presents an analysis of the results and future works.

2. Related Works
Many researches involving genetic algorithms and CUDA

have been developed, in general, in the pursue of GA
implementation strategies capable of taking advantage of
the parallelism inherent to the platform. There are also
researches which aim to benchmark the performance of
CUDA in various hardware configurations and operating
systems.

Regarding the design of GA, [3] presents a island-based
GA, which the individuals are allocated in islands. The
population in each island evolves independently from each
other. This implementation proves to be effective when each
island is allocated in a CUDA core, since each CUDA core
can work isolatedly, requiring the synchronization only at
the end of the GA process.

In [2], the GA strategy is presented using stationary state
selection. This implementation defines that the two individu-
als with best fitness are selected for crossover while the two
worst individuals are replaced by their descendants. Given
the execution independence between cores, this strategy is
proved efficient because it does not need to syncronize the
population.

Concerning the performance evaluation of CUDA, [4]
develops a benchmark of the CUDA plataform used in
various hardware configurations and Microsoft Windows®

operating system versions. It was verified that, apart from the
configuration used, the GPU load is always superior when
the problem can be processed in parallel.

It is important to notice that the benchmarking process
can change dogmas of some areas, as in [5]. There the
authors compared the most used programming languages in
bioinformatics. The parameter measured was the runtime of
recurrent algorithms in the area, running on two operating
systems: Windows® and Linux. The results defeated the
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most commonly used programming language, Perl, while
Java was, surprisingly, as efficient as C and C++.

In tis context, the directions of this area of research, and
how it has been approached, motivated this study, denoting
the comparison of CUDA and CPU performances running a
GA; as shown in the next section.

3. Experiment Configuration
This research reports the performance comparison of a

GA based on neighborhood model in the CUDA and CPU
enviroment. For such, the following computer configuration
was used: GNU/Linux operating system with Intel® Core™

i5-2310 CPU @ 2.90GHz x 4 with GPU NVIDIA GeForce
8400GS with the CUDA 5.0 enabled.

The objective of the implemented GA is the optimization
of the following three benchmark functions obtained from
[6]: g01, g04 and g07. They were chosen due to their wide
number of variables and restrictions, which collaborate to the
CUDA performance, ensuring a massive parallel processing
of the data. The GA codification for each benchmark func-
tion is identical, except for the fitness calculation that are
adapted for each one.

At this point, the GA project for the CUDA platform
was coded according to the hardware limitation. In the
neighborhood model, each individual is allocated in one core
of the GPU. Given the 16 cores available in the graphic card,
the model was adapted to allocate each individual in one
thread, being the population composed of 500 individuals.
The individuals would then compete to be executed in one
of the GPU cores.

There were performed 10 iterations of the GA for each
function, both in CPU and GPU, with elitism of 25%. The
stop criteria used was the number of 100,000 generations so
they do not contaminate the test results due to the difference
between their convergence solution. It is noteworthy that the
object of this study was the runtime comparison, not the GA
performance related to its convergence.

4. Results
The results obtained from the experiment’s execution are

summarized in Table 1 for the CPU and GPU runtime. Each
column represents one of the optimization functions chosen,
and each row is the corresponding to architecture for GA
implementation.

From the results a significant difference could be noticed
between the runtimes, where the GPU are more than 60
times higher than the CPU for every function. These values
are the opposite of the results described in [4], where the
GPU outperforms the CPU regardless of the enviroment
configuration on both operational system and hardware.

Taking into consideration the project utilized to exploit
the CUDA platform parallelism, the gap between the results
indicate a hardware limitation found in the graphic card used,

Table 1: Linux CPU and GPU runtime
hhhhhhhhhhhArchitecture

Functions g01 g04 g07

CPU 31.1s 21.2s 34.7s

GPU 36min 29s 22min 9s 35min 50s

caused by the number of precessors core and mostly by the
available memomy space in them, i.e. the memory was the
limiting factor to the GA chromossome encoding.

5. Conclusions and future work
Several researches involving GAs in the CUDA platform

are currently being developed, especially on new strategies
to take complete advantage of the parallelism offered by the
platform. In this scope, this work implemented a GA based
on neighborhood model, using benchmarking functions, in
order to evaluate the performance of the CUDA platform in
relation to CPU.

The experiments indicated that there are a substantial
difference between the implemetations, possibly caused by a
hardware limitation of the CUDA hardware utilized - CUDA
platform performance is directely related to the number of
cores in the processor and the available amount of memory.
Thus, despite the inherent parallelism present in some bio-
inspired techniques, its implemetation in a multiprocessor
enviroment, such as GPU, do not guarantee an expected
improve in performance.

Considering a memory limitation observed during the ex-
periments, it is intended to verify, in future works, algorithms
that require the comunication CPU/GPU, specially in the
cache memory of the graphic processors, e.g. problems that
occurs when the encoded GA chromossome exceeds the
cache memory available in the GPU processors.
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Abstract - Recently, the deployment of body sensor networks 

in the human bodies has attracted much attention in intelligent 

healthcare. To secure the messages exchanged in body sensor 

networks, many researches develop efficient physiological-

signals-based key management schemes. However these 

existing research results have security and practicality 

problems when they are used to body sensor networks. To 

address these problems, this paper presents a research 

roadmap to improve physiological-signals-based key 

management schemes.  

Keywords: key management scheme; physiological signals; 

sensor network security; body sensor networks 

 

1 Introduction 

Although network security has been extensively investigated 

[1][2][3][4][5][6][7], security of body sensor network has yet 

attracted more attention. Body sensor networks (BSNs) are 

composed of a number of biosensors that can be deployed 

on/into the human bodies to collect and deliver physiological 

signals in real time, which will have great application values 

in intelligent healthcare. Because physiological signals 

collected by BSNs contain privacy information, they must be 

protected as biometrics [8][9][10][11][12][13]. 

The first step for building security mechanisms is designing 

efficient key management schemes. Due to stringent resources 

in biosensors, traditional key management schemes for 

wireless sensor networks [14][15][16]] are not suitable for 

BSNs. Recently, researchers find some physiological signals 

such as ECG and SpO2 having good randomness and can be 

gathered from different parts of the human body. These 

signals can be good candidates for negotiating shared keys in 

BSNs. Thus, many researches try to make use of these 

physiological signals to design low-resource-cost key 

management schemes.  Fuzzy commitment based schemes 

assume that physiological signals collected from the human 

body are kept secret from the adversary [16]. In [18], it is 

reported that Ultra Wide Band (UWB) technology can 

remotely capture some physiological signals and break these 

security meachnisms. 

2 A research roadmap for physiological 

signals based key management  

 In order to improve the security and practicality of 
physiological-based key management schemes, we plan to 
design a new key management scheme using fuzzy extractor 
technology [19]. The research roadmap is described below. 

2.1 Designing a new key negotiation scheme  

We first investigate the formal definition of key 
negotiation based on fuzzy extractor. The definition will 
include two parts: One is feasibility definition that requires 
that two parts could negotiate a shared key if the difference of 
physiological signals collected by two parts is in the tolerance 
of a pointed error-correcting code. Another one is security 
definition where we will design two attack games: adaptive 
chosen physiological signals attack games and the adaptive 
chosen commitments attack game. The former requires that 
any adversary cannot find the relationship between the 
physiological signals and corresponding commitment even if it 
can launch UWB attack; the latter requires that any adversary 
cannot find the relationship between the public commitment 
and the shared key. 

And then, according to the formal definition of key 
negotiation, we plan to use predistributed keys and random 
functions to optimize key negotiation in two aspects: one is to 
resist UWB attack; another one is to remove the dependence 
of high-entropy physiological signals. 

2.2 Designing an efficient physiological signals 

encryption scheme 

 Reference [17] proposed a linear interpolation encryption 
for physiological. Yet it did not describe how to produce the 
interpolation factors. 

To solve the problem, we plan to design a method to use 
the shared key  to produce interpolation factors. However, the 
interpolation encryption only includes add and multiplication 
operation which makes the ciphertext weak. To solve the 
problem, we plan to use linear equations to secure plaintext. 
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2.3 Design a series lightweight protocols  

 In the research, we mainly consider the security design 

and lightweight design of key negotiation protocols. In the 

former design, we will take the following measures: (1) 

adopting the right security mechanisms to provide secure 

services, for instance, we will use the keyed pseudo-functions 

to provide integrity service; (2) explicitly presenting original 

part and destination part in the protocol messages; (3) 

avoiding different messages having the same construction. In 

the latter design, we will reduce the steps of protocol as far as 

possible, and merger more messages in one transmission, 

which helps to use one integrity verification code to protect 

more messages. 

3 Conclusions 

 Physiological-signals-based key negotiation schemes have 
higher efficiency than traditional key negotiation schemes, and 
are suitable for BSNs.  In the paper, we give a research 
roadmap to improve their security and practicality.  
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Abstract— Since, the advent of remote sensing technology it has 

become an attractive option to capture the information about land 

cover classes at a global scale in less time in form of digital images. 

Image classification is one of the important image analysis methods. 

The accuracy of image classification is to map the real world 

scenario is restricted by the presence of mixed pixels. To some 

extent fuzzy based classification methods such as Fuzzy-c-

Means(FCM), can handle the problem of mixed pixels. FCM gives 

the membership value of the pixel to various classes. In the 

comparative analysis, the accuracy of this approach is found to be 

less than that of Possibilistic c-Means (PCM).The membership 

value generated by PCM is interpreted as the degree of 

belongingness instead of degree of sharing.  The PCM approach 

exploits the information present only in spectral domain, whereas, 

it has been observed that including the information from spatial 

domain increases the accuracy of the classifier. This spatial domain 

information or spatial contextual information can be integrated 

with PCM to provide more accurate results. In this paper, PCM 

and spatial contextual information based soft classification method 

has been developed. Also, two different MRF prior models have 

been used. It has been observed that using Discontinuity Adaptive 

prior models preserve the edges and also, increase the overall 

accuracy of the classifier. It has been found with the experiments 

performed, that not all soft accuracy assessment techniques are 

suitable in case of PCM classifier such as PCM-MRF, as it doesn’t 

follow the hyperline constraint. For generating the reference data 

set, a finer resolution image was used. It has also been discussed 

with results, that same classifier is more appropriate to use for 

generating the reference data set. 

 

Keywords—Possibilistic -c-Means, Markov Random Fields, DA 

models, edge preservation. 

I. INTRODUCTION 

The determination of optimum number of parameters and their values 
for each hybrid classifier is critical and have to be investigated (Aziz, 
2004). The main motivation behind Possibilistic c-Means (PCM) relates 
to the relaxaction of the constraint on membership value of Fuzzy c-
Mean (FCM) and gives absolute membership value.The objective 
function, which satisfies this requirement, may be formulated as 
mentioned in Eq. (1); 
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In case of PCM, this membership value represents the ―degree of 
belongingness or compatibility or typicality‖, contrary to that 

represented by FCM, where it is, ―degree of sharing. Markov Random 
Field (MRF) use smoothness priors to include spatial contextual 

information and to avoid over smoothening, Regularizes and 
Discontinuity Adaptive (DA) Models have been introduced. 
(Li, 1995), gave DA models to be used as prior models in MRF, which 
are said to take into account the discontinuities and avoid over 
smoothening. In (Li, 1995),it was shown that solution to DA models 
can be obtained by using gradient descent method, but its direct use 
may cause getting trapped into local minima. Further details are also, 

provided in (Li, 2009). 

II. CLASSIFIERS AND ACCURACY ASSESSMENT APPROACHES 

A. Possibilistic c- Mean with Contextual Algorithm 

The basic objective function of PCM is given in Eq. (1), includes the 
information about the distance of the feature vector  from the cluster 
mean in the feature space but it does not include information on spatial 
context. The spatial context here includes the influence of the 
neighbouring pixel on the target pixel in the image space. 

The MAP-MRF (Maximum A Posterior Solution-Markov Random 
Field) framework works by maximizing the posterior probability which 
is related to prior and conditional energy. Eq.(2) states the PCM 

objective function formulated using smoothness prior. From now 
onwards the objective function in Eq.(2)  will be referred as NC-S.  

2
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,1 1 1 1 1 1
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where U(u / )
ij

d = Posterior energy of image µ, given image d. 

λ=Weight for spectral and contextual information (smoothness 
strength). 

u
ij

= Membership value of pixel  of class. 

n = Number of pixels. 
m = weighting exponent. 

2( ) ( ) ( )T

ij j i i j id x A x  

β= weight for neighbors. 

ni= Neighborhood window around pixel . 

B. Soft accuracy assessment methods 

For the uncertainty visualization and evaluation of the classification 
results, the entropy criterion is proposed (Dehghan.,2006. This measure 
expresses by the following Eq.(3) 

2

1

( ) ( ) log ( ( )) (3)
m

i i

i

Entropy x w x w x  

III. STUDY AREA AND DATA USED 

The study area for the present research work belongs to Sitarganj Tehsil, 
Udham Singh Nagar District, Uttarkhand, India. It is located in the 
southern part of the state. In terms of Geographic lat/long, the area 
extends from 28°52‘29‖N to 28°54‘20‖N and 79°34‘25‖E to 
79°36‘34‖E. The images for this research work have been taken from 
three different sensors namely AWiFS, LISS-III and LISS-IV belonging 
to satellite IRS-P6.  
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IV. METHODOLOGY 

All three datasets (AWiFS, LISS-III, and LISS-IV) were geometrically 
corrected with RMSE less than 1/3 of a pixel and resampled using 
nearest neighbor resample method at 60 meter,20 meter, and 5 meter 
spatial resolution respectively. The flow chart of the methodology 
adopted is shown in Fig. 1 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 

 

 

 

 

FIG.1 METHODOLOGYADOPTED 

V. RESULTS AND DISCUSSIONS 

 Due to the remoteness of the area field visit is not always possible and 
realistic. So it is necessary to adobe an effective way to generate soft 
reference data from available fine resolution dataset( Kumar and Ghosh , 

2007). In this study LISS-IV data was used to generate soft reference 
data.  

A. Accuracy assessment via Entropy of PCM with Contextual 
Classifier 

 The uncertainty estimation of the classification results is important and 
necessary to evaluate the classifier performance. This study addresses 
the evaluation of entropy, based on PCM with Contextual classifier 
which estimates uncertainty in classification results. The uncertainty 
criteria have been estimated from computed entropy based on actual 

output of classifier. For setting the optimized value of weighting 
exponent ‗m‘, smoothness controller ‗β‘, and Weight for spectral and 
contextual information (smoothness strength) ‗λ‘, a number of 
experiments have been conducted individually for this classifier by 
varying ‗m‘ from 1.0 to 4.0, while values of smoothness controller ‗β‘ 
is varying from 1 to 10 and contextual information (smoothness 

strength) ‗λ‘ is varying from 0 to 1.  It has been observed from the 
result that for homogenous classes like Agricultural crop land, 
Agriculture non crop land, Agriculture moist land without crop, and 
Water Body for PCM with Contextual classifier the optimized value of 
‗m‘ is 2.6. Similarly for heterogeneous classes like Sal forest and 

Eucalyptus plantation, the optimized value of ‗m‘ is also 2.7 for PCM 
with Contextual classifier. It has also been observed that for fixed 
weighting exponent (m), β=3.0, and λ=0.7.These findings suggest that 
using these optimized values of for PCM with Contextual classifier on 
homogenous and heterogeneous land cover classes the range of the 
computed entropy varies between the range of [0,3]. This in turn states 
that the information uncertainty is not exceeding more than 3%. In this 
research entropy has been used to measure the accuracy in terms of 
uncertainty without using any kind of ground reference data. This 

classification accuracy is directly measured by entropy. Measuring the 
spatial statistics of a satellite image using an entropy, of six land cover 
classes can be measured using Eq. (3) i.e. 6*(-1/6*log21/6)=2.585(Stein 
and Gorte., 2002). The fraction images are shown Fig 2 

 
Fig .2 Fraction Images Generated with PCM with Contextual 

VI. CONCLUSION 

In this research work it has been tried to generate fraction outputs from 
PCM with Contextual classifier. These outputs have been generated 
from AWIFS, LISS-III and LISS-IV images of IRS-P6 data. Assessment 
of entropy and identification of membership values is being done with 
the help of fraction images. The objective of this research on spatial data 
to is to investigate, how uncertainties arise, and propagated in the spatial 
data. It has been shown in result that the entropy value, with minimum 
uncertainty in it, for the optimized values of these parameters. The 
entropy and membership verifications are taken as an indirect measure to 
check the accuracy of classified image. From this work it can be 
concluded that fuzzy based hybrid approach using PCM with Contextual 
generates classified output with minimum uncertainty. 
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Abstract - Oblivious Transfer protocol (OTP) is a primitive 

and also a paramount important tool in modern cryptography. 

An adaptive version of OTP named 
1OTN

k
 is useful when a 

large database should be queried in an adaptive version. Due 

to its importance, the task of constructing efficient and secure 

1OTN

k
 has attracted a lot interests. This paper presents a 

research roadmap to construct a practical adaptive fully-

simulatable
1OTN

k
based on Chaum’s blind signature.  

Keywords: Adaptive oblivious transfer; blind signature; one-

more-RSA-inversion problem; full-simulation 

 

1 Introduction 

  Data privacy and access control have attracted a wide 

spectrum of research activities from many aspects 

[1][2][3][4][5][6][7][8][9][10][11]. OTPs (oblivious transfer 

protocols) are one of the most basic and widely used 

primitives in cryptography. It can be used as stand-alone 

protocols, e.g., for trading digital information, or as a building 

block for more complex protocols, e.g., for privacy-preserving 

auctions. It is  a fundamental theory on multi-party 

computation and also plays an important role to a variety of 

practical problems such as keyword search in cloud 

computing, oblivious search database, treasure hunting, 

location-based services and etc.. Due to its general 

importance, OTP has attracted a lot of interests  since  it was 

introduced by Rabin [12]. 

 

1.1 Security notions of oblivious transfer 

protocol 

 There are three security notions for OTP presented in the 

previous literatures as the semi-honest or honest-but-curious 

model, the notion of half-simulatable model and fully-

simulatable model. The notion of fully-simulatable model was 

introduced and formalized by Camenisch, Neven and Shelat 

[13]. In this model, the security property employs the 

real/ideal world paradigm for both the receiver and the sender. 

The efficient OTPs that achieve fully-simulatable security 

level are of great interests. 

 

1.2 Adaptive Version of 
N

k
OT

1
 

         An adaptive version of 
1OTN

k
in this paper contains two 

phases, initialization and transfer. The sender and the receiver 

run the initialization phase during which they first agree on a 

hash function ( )H  and a block cipher Enc =(E, D), then the 

sender who owns the N private messages encrypts the 

messages by using Enc and puts the cipher-texts on a public 

network. During the transfer phase, the receiver will send k 

queries to the sender. The i-th query is determined by the 

sender’s responses to the previous i-1 queries. So the k queries 

are not pre-determined. In this sense, the protocol is adaptive. 

 

2. Fully-Simulatable Adaptive Oblivious 

Transfer Protocol 

2.1  Initialization phase 

 The protocol operates over Zn

 , where n is a RSA 

modulo. Sender S knows both the public and the private keys 

of a RSA signature scheme namely (n, e, d). Sender S and 

receiver R agree on a hash function H(·). Let Enc =(E, D) be a 

secure block cipher and open to both S and R, and we suppose 

that decryption keys of Enc is identical to its encryption keys. 

S makes use of Enc to encrypt his/her private messages and 

puts the corresponding cipher-texts on a public network. R 

can get these cipher-texts freely. 

Input S inputs his/her messages 1, , Nm mL and computes 

   
1 1 , ,

nk k NE m E mL , where 1 2, , , Nk k k are the corresponding 

keys. From R’s view, these cipher-texts are random elements 

in Zn

 , we denote them as 1 2, , , NU U UL respectively. R inputs 

his/her choices 1, , ,k  where  1, , 1,2, ,k NL L  . 

Output R gets 
1
, ,

k
m mL 

indicating that R gets the 

information at his/her choices 
1, , kL  .  

2.2 Transfer phase 

 Procedure 1 For 1, 2, , ,j k L R picks
j

U in 

accordance with his/her choice
j and computes  .

j
H U

In 

order to blind  
j

H U ，R picks a random number R

j nb Z  and 
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computes   .
j

e

jSP U b
 Then R sends it to S. On 

receiving   ,
j

e

jSP U b
S randomly picks his/her own blinding 

factor
j R nr Z  , signs and blinds 

     j j

d d
e

j j j j jY SP U b r SP U b r   . Meanwhile, S calculates a 

set of hash values    
1,2, , .

,
d

i i j
i N

K H SP U r i


 , which are used 

to encrypt
ik by the following equations ,i i iC K k   

1,2, ,i N L .Then S sends jY together with
iC ( 1,2, , )i N L to R. 

Procedure 2 Upon receiving jY , R removes his/her 

blinding factor by calculating 1

j jY b =  
j

d

jSP U r
.Then R 

calculates   ,
j j

d

j jK H SP U r     
 

to decrypt 
j j j

k C K    .In the 

end, R outputs  
j jj

km D U
  , 1, 2, ,j k L . 

Remark 1 : S should update the encryption key
ik  periodically 

to enhance the security of the scheme. The blinding factors of 

both S and R must be chosen from a large enough domain, 

such that the probability that the same blinding factors is used 

more than once is negligible. 

Remark 2 :  The only computation that S must perform on-

line  is the calculation of jY . The rest of computations can be 

done off-line, as soon as S chooses his/her blinding factor.  

Remark 3 : There are two remarkable differences of our 

protocol comparing to the protocol of [14]. First, 

  ( 1,2, , )
ii k iU E m i N  is the cipher-text and it looks like 

random in Zn

 because  Enc is a secure block cipher.
iU can be 

pre-calculated by the sender. Second, the sender uses
iK to 

encrypt the encrypted key
ik of Enc and sends it to the receiver. 

It reduces the communication complexity and bandwidth in 

the transfer phase. It also reduces the on-line computations.  

3 Conclusions 

In this paper we have proposed a roadmap of fully- 

simulatable adaptive security 1OTN

k . Our scheme modifies the 

secure model in full-simulation instead of semi-simulation in 

[14] and it has an adaptive property.  
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Abstract – The increasing demand for high speed and low 
power memory systems has led to the introduction of Ternary 
Content Addressable Memories to cache architectures, 
because of their ability to store the don’t care value in 
addition to 1’s and 0’s. However, existing simulator platforms 
have been built to support SRAM and DRAM based memory 
models. In this paper, we present a platform that enables the 
simulation of these emerging cache architectures used in 
memory systems. We also describe the handling of cache 
replacement because of their vital role in cache performance. 
For experimentation and evaluation of the new simulator 
platform, we ran simulations on SPEC 2006 benchmarks and 
compared results against an equally configured conventional 
cache to confirm no loss in cache performance. 

Keywords – aggregation; cache; replacement; hit ratio; 
simplescalar; tag; ternary content addressable memory (TCAM). 
 

I. INTRODUCTION 

 Processors have become increasingly complex and 
require large memory systems for improved performance. 
Using larger caches in memory systems promise increased 
access hit rates, which in turn improves processor 
performance. The cost of this improved performance is 
usually increased power consumption. Current memory 
systems are usually implemented with SRAMs, DRAMs 
and/or CAMs [1,2] which are only capable of storing 1’s 
and 0’s. But these incur significant area and power 
overhead as memory sizes increase.  

Studies have been conducted with the aim of 
reducing the tag area of an on-chip cache, Hong Wang et 
al. [3] took a closer look at the locality property of memory 
references and after extensive simulation experiments, 
observed that address tags of cached data are usually 
clustered/identical at a given time frame during program 
execution. This causes many tags to be identical during a 
period of time, effectively making the working set of 
unique tags much smaller than the working set of data 
references. This suggests that tag area can be significantly 
reduced without compromising cache performance. 
Therefore, an architecture that allows multiple similar 
entries to be grouped into a single one makes it possible to 
significantly reduce hardware and power overhead with 
some performance tradeoff. One approach used to achieve 
this is the use of ternary Content Addressable Memories 

(TCAMs) which are capable of storing Don’t Care (*) 
value, in addition to 1's and 0's. For example, suppose two 
cache tag entries differ only in their least significant bit - 
LSB, these two entries could be combined into a single 
entry as shown in Fig. 1. This can be extended to more 
entries; for example, four entries which differ only in the 
two LSBs (e.g. 00, 01, 10, and 11) can be aggregated into 
two entries (0* and 1*), if a single TCAM is used per tag 
entry, or aggregated to a single entry (**) if two TCAM 
cells are used to implement the two LSBs of the entries. 
This process of combining multiple entries to a single one 
by using TCAMs is referred to as aggregation [4] 
throughout this paper. 

 

Figure 1: 1-Bit TCAM Aggregation of Cache Tag 

The major contribution of this work is the 
implementation of a simulator platform that allows for the 
seamless simulation of different SRAM-TCAM based 
cache configurations.  

II. TCAM BASED SIMULATOR 

        Our TCAM simulation platform leverages existing 
simplescalar code to mimic the TCAM behavior. We 
specifically modified the simoutorder.c code to accept a 
new configuration variable known as the degree of 
aggregation, to control the number of TCAM cells used per 
entry. For example, an architecture that targets tag 
compression/aggregation may choose to use one TCAM 
cell per tag entry which implies only two entries can be 
compressed to a single one. Alternatively, two TCAM cells 
could be used per tag entry, allowing storage of four entries 
in a single tag. In what follows, we describe the process of 
aggregation, followed by the replacement process in our 
simulator platform. 
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A. Aggregation 

      Aggregation is achieved in our simulator, by allowing 
normal conventional cache lookup/allocation to take place, 
then using the TCAM configuration variable passed into 
simoutorder.c, we generate a mask value which is the same 
bit-width as the cache entry using a few TCAM cells. All 
bits of the mask are set to 1’s except the TCAM cell bit 
locations which are all set to 0’s. For example, an 8-bit 
entry with 1-bit aggregation in the LSB will use 1 TCAM 
per entry and a mask of 11111110. This ensures all similar 
entries differing in LSB yield the same result after masking. 
This masking process achieves the desired aggregation by 
yielding the same number of logical entries expected in the 
hardware implementation. When aggregation is desired 
across cache ways in associative caches, we modify the 
cache configuration in the cache.c file according to (1) to 
give a new associativity which is a function of the degree 
of aggregation. Where Αω is the new configured 
associativity, µ is the conventional associativity desired and 
α is the degree of aggregation. For example, a 4-way cache 
with 2-bit aggregation will be set up as a 16-Way set 
associative cache. The masking process then reduces it to 
four logical ways since the 2 LSBs of the mask are zeros, 
effectively aggregating 4 entries into a single one. 

                                        Αω  = µ∗2α                                 (1) 

B. Replacement 

     Cache replacement policies play a significant role in 
dictating its overall performance. The most common 
caching algorithms include Round-robin (or FIFO - First In 
First Out) [6], Last In First Out (LIFO), Least Recently 
Used (LRU) [7], PLRU (Pseudo LRU) [8],  Most Recently 
Used (MRU), Least Frequently Used (LFU) and Most 
Frequently Used (MFU) [9] indicating there is no single 
optimal cache replacement policy.  Of the several 
replacement policies available, LRU is often regarded as 
the most efficient one [10] while PLRU is considered the 
best for ease of hardware implementation [13]. For the 
purpose of simulating these policies in SRAM-TCAM 
based architectures, the multiple entries aggregated 
together are evicted as a group using the same mask 
previously described. This masked eviction occurs after any 
existing policy selects a single entry to be evicted. We also 
added logic for improved performance by retaining some of 
the aggregated entries that are aggregatable with a new one 
on a replacement. This was implemented as an additional 
configurable option in the modified simulator.  

Finally we ran simulations on SPEC2006 
benchmarks to verify our simulator gives comparable 
results for SRAM-TCAM (hybrid) caches when compared 
with an equivalently configured conventional cache. Fig. 6 
shows that most of the benchmarks gave similar 
performance in both the hybrid and equivalent conventional 
cache. The NAMD benchmark shows a slight degradation 
possibly due to aggregate replacements by a single entry. 

III.  CONCLUSION 

     The use of TCAM cells in cache architectures allows the 
use of fewer cells to store the same data as a conventional 
cache. The aggregation of multiple entries also necessitates 
the eviction of multiple entries which may not necessarily 
give the same performance results as an equivalently 
configured conventional cache with no TCAMs. The 
simulation platform presented in this paper, allows the 
seamless simulation of these SRAM-TCAM based cache 
architectures, which enables cache designers to make 
informed architectural decisions early in the design phase. 

 
          Fig. 2: Cache Hit Rate for Conventional and Hybrid Caches 
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Abstract- In this paper, the comparision of perfect difference
network and hypercube shows the performance and robustness of
the two architectures. The topological properties of the two
architectures are presented in the form of lemmas. We have made
attempts to study the circuits to show the robustness of these
architectures. In these architectures, the diameter remains same
during normal course and during link failure.

The comparison between these two architectures and their
diameters can be shown on their adjacency matrices as well. In
the lemmas, we have shown that the degree of a node of these
architectures can be changed while changing in the architectural
design.

Keywords - Perfect Difference Set (PDS), Perfect Difference
Network (PDN), Hypercube, Circuits, Adjacency Matrix.

I. INTRODUCTION

This paper presents study of link utilization of the Perfect
Difference Network (PDN) architecture. When data is
distributed in an interconnected network it passes through
certain nodes and takes certain paths. The PDN architecture is
presented in the form of circuits to study the utilization of
nodes, its properties and performance. To prove all these
properties and characteristics the lemmas are presented. It is
shown that the diameter of this architecture remains the same
during removing one node and during the link failure; the
degree of a node may be changed while a change is brought in
the architecture design

A. Perfect Difference Set

J) Formulation of Perfect Difference Set: As we know from
remainder theorem that

Numerator=Remainder+ Denominator * Quotient.

The Perfect Difference Set (PDS) can be formulated
from remainder theorem as [I] an integer (numerator) is equal
to the addition of remainder and denominator where quotient is
one. Now integer is a member of set of (I, 2, ...,02 + 0), where
o is a prime or power of prime and the remainder is the
difference Sj - Sj,

where i :/:j, O:S i,j:S o.
So we can write that

or

2) Definition of Perfect Difference Set: A set {sO, s 1, ,
so} of 0 + 1 integers having the property that their 02 + 0
differences, 0 ::; i :/:j :s 0, are congruent modulo 02 + 0 + 1, to
the integers 1, 2, , 02 + 0 in some order is a perfect
difference set of order O. Perfect Difference sets [13] are
sometimes called simple difference sets, given that they
correspond to the special I) = I case of difference sets for
which each of the possible differences is formed in exactly 0
ways, where 0 is a prime or power of prime and

n = 02 + 0 + I and (S, - Sj) = (02 + 0) mod n

3) Evaluation of PDS: The Perfect Difference Set of each node
of the PDN can be evaluated by the remainder theorem i.e.,

N=R+D * Q,

Where N = Numerator, R = Remainder, D
and Q = Quotient

The above equation can be written as

Integer = (S, - Sj) + (02 + 0 + 1) * 1

Where integer is a member of the set (l, 2, , 02 + 0) and
S, - Sj is numerator or the difference set.

Denominator

So we can write as -

(S, - Sj) = (Integer) mod (02 + 0 + 1) (1)
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(0- 0)

I~·ll

Fig. 1: PDN with n = 7, () = 2 and PDS = {O, 1,3}

Example 1 : Let Sj - Sj = 1 - 0, 0 = 2, n = 02 + 0 + 1 = 7 and
integer = I as shown in the Fig. 1.1

Therefore, eq( I) can be written as:

(1 - 0) = 1 mod 7

=> 1= (1- 0) + 7

1 = 1 + 7

1 = 8

=>

=>
But 8 mod 7 = I

Hence (1 - 0) is the Perfect Difference Set for node 1.

Example 2 : Let S, - Sj = 3 - 1, 0 = 2, n = 02 + b + 1 = 7 and
integer = 2 as shown in the Fig. 1.1

Therefore, eq( 1) can be written as:

(3 - 1) = 2 mod 7

=> 2 = (3 - 1) + 7

=> 2=2+7

=> 2=9

But 9 mod 7 =2

Hence (3 - 1) is the Perfect Difference Set for node 2.

Example 3 : Let S, - Sj = 3 - 0, b = 2, n = 02 + 0 + 1 = 7 and
integer = 3 as shown in the Fig. 1.1

Therefore, eq(l) can be written as:

(3 - 0) = 3 mod 7

=> 3 = (3 - 0) + 7

=> 3=3+7

=> 3 = 10

But 10 mod 7 = 3

Hence (3 - 0) is the Perfect Difference Set for node 3.

Example 4 : Let S, - Sj = 0 - 3, 0 = 2, n = 02 + 0 + 1 = 7 and
integer = 4 as shown in the Fig. 1.1

Therefore, eq( 1) can be written as:

(0-3)=4mod 7

=> 4 = (0 - 3) + 7

=> 4 = -3 + 7

=> 4=4

Hence (0 - 3) is the Perfect Difference Set for node 4.

Example 5 : Let S, - Sj = 1 - 3, 0 = 2, n = 02 + 0 + 1 = 7 and
integer = 5 as shown in the Fig. 1.1

Therefore, eq(l) can be written as:

(1- 3) = 5 mod 7

=> 5 = (1- 3) + 7

=> 5 = -2 + 7

=> 5=5

Hence (l - 3) is the Perfect Difference Set for node 5.

Example 6: Let Sj - Sj = 0 - 1, 0 = 2, n = 02 + 0 + 1 = 7 and
integer = 6 as shown in the Fig. 1.1

Therefore, eq(1) can be written as:

(0 - 1) = 6 mod 7

=> 6 = (0 - I) + 7

=> 6 = -1 + 7

=> 6=6

Hence (0 - 1) is the Perfect Difference Set for node 6.

Example 7 : Let S, - Sj = 0 - 0, 0 = 2, n = 02 + 0 + 1 = 7 and
integer = 0 as shown in the Fig. 1.1

Therefore, eq(1) can be written as:

(0 - 0) = 0 mod 7

=> 0=0

Hence (0 - 0) is the Perfect Difference Set for node O.

This way we can find out any PDS appropriate to which
node number in the Perfect Difference Network architecture.

4)Perfect Difference Network: Perfect Difference Network
[1][8][9][11] is the network architecture, in which the diameter
is always 2, i.e., every node ith needs to visit only two links to
communicate with other nodes i ± 1 & i ± Sj (mod n), for 2 S j
S O. In a Perfect Difference Network, the total number of
nodes is 02 + 0 + 1, i.e., if b = 2 then the total number of nodes
in PDN is 7 and if 0 = 3, then number of nodes in PDN is 13.
Also the degree of every node in a PDN is 20 i.e., if 0 = 2 then
degree of every node in a PDN is 4 and similarly for other
prime or power of prime numbers.

The design of Perfect difference network is done in such a
way where each node is connected via directed links to every
other node. The links in PDN architecture are bidirectional in
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nature and the connectivity leads to a chordal ring of degree 28
i.e., 0 in-degree and 0 out-degree and diameter D = 2 [3][9].

n

7

1>
~ , 'j

~i

~?

::.
j~n

ill. 1 ~,

Fig. 2: PDS of order Ii in normal form

5) Topological properties of PDN: Some of the topological
properties ofPDN [2][5][6] are as under:

• Average inter-node distance: - Each node has distance of 0
to itself, 1 to its 20 neighbors and 2 to the other 02

- 0
nodes. Hence, D = [20 + 2(02

- o)]/n = 202/n. Ifwe did not
count the distance of a node to itself, the average inter-
node distance would become 202/(n - 1) = 20 1(0 + 1).
Hence the average inter-node distance of PDN of order 0
is D = 252/n.

• The upper bound of the PDN is min(2Sall, nModd- SOdd+
Seven),where Moddis the number of odd elements in the
PDS, Sevenand SOddrepresent the sum of all PDS elements
that are even and odd respectively, and Sall is the sum of
all s, values for the PDS. For an element s, of a specific
PDS of order define s, as s, if s, < nl2 and as n - s, > nl2.

• The total number of links going between odd and even
nodes is:

I (n - s) + I Sj = nModd- SOdd+ Seven

• Oddskips and Evenskips

• The lower bound on the bisection width of PDN is
«0+ l)(n+ 1) 14) [7].

• The calculation of bisection width for an arbitrary graph is
an NP-Complete problem.

6) Hypercube: Hypercube are loosely coupled parallel
processors based on binary n. The hypercube network n-cube
parallel processor consists of 2n identical processors. In
hypercube architecture the degree and diameter of the graph is
same i.e. 3, because of this equality they achieve a good
balance between the communication speed and complexity of
the topologic network [1].

The hypercube architecture has many other limitations.
Primarily k-dimensional hypercube have N=2n vertices, so
their structures are restricted to having exactly 2k nodes.
Because structures size must be 2, there are large gaps in the
size of systems that can be built with the hypercube. This

restricts the numher of possihle nodes The perfect difference
set establishes the structure that can be constructed for every
prime power n=pr. This provides a large advantage over the
hypercube architecture, where structures exist only for the
powers of2 [6][12].

The hypercube is well known as one of the most efficient
network topologies, especially for interconnection in parallel
computers. The configuration of a three-dimensional (3D)
hypercube (the familiar cube) network is shown in Figure-3 as
an example. A 3D hypercube has 8 vertices and 12 edges,
which correspond to network nodes and links, respectively.
We defme an n-dimensional hypercube network as follows. It
consists of N=2n nodes, each of which is labeled by a unique
binary node number. Nodes whose nodes numbers differ by
only one bit from each other are interconnected by a
bidirectional link. As shown in Figure-3, Node (000) is link-
connected to Node (001), (010), and (l00) since their numbers
differ by only one bit from Node (000), in accordance with the
definition. The total number of bidirectional links for an n-
dimensional hypercube is (N/2) Log2N. This characteristic
makes the hypercube scalable since the number of links in this
network is proportional to 0 (NLog2N), which for large-scale
networks is much smaller than 0 (N2), the number of links in
a full mesh network, which is the richest network topology.
The hypercube network subsumes lower-order network
topologies such as mesh, tree, and ring, and thus exhibits the
features of these network topologies [6][10].

A unique feature of the hypercube with three or more
dimensions is that it can form at least three disjoint paths
between any arbitrary pair of nodes, which makes the
hypercube robust and reliable enough to secure the network
against multiple failures, these features make the hypercube
network attractive.

7) Topological properties of Hypercube: A hypercube is a
multidimensional mesh of nodes with exactly two nodes in
each dimension. A d-dimensional hypercube consists of k
nodes, where k=2n [13].

• A hypercube has n dimensions; where n can be any
positive integer (including zero).

• The n cube is a connected graph of diameter n.

Fig. 3: Configuration of a 3D hypercube network.
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• A hypercube has 2n vertices.

• There are n connections (line) that meet at each vertex of a
hypercube.

• All connections at a hypercube vertex meet at right angles
with respect to each other.

• The hypercube can be constructed recursively from lower
dimensional cubes.

• An architecture where the degree and diameter of a graph
is the same then they will achieve a good balance between,
the communication speed and complexity of the topology
network [7].

• An n-cube graph is an undirected graph of k=211vertices
labeled from 0 to 211-1 and such that there is an edge
between any two vertices if and only if the binary
representations of their labels differ by one and only one
bit [8].

• Any two adjacent nodes A and B of an N cube are such
that the nodes adjacent to A and those adjacent to Bare
connected in one-to-one fashion.

• There are n different ways of tearing an n-cube, i.e., of
splitting it into two (n - 1) sub cubes so that their
respective vertices are connected in a one-to-one way [4].

• There are n! 211different ways in which the 211nodes of an
n-cube can be numbered.

• A graph G=(V,E) is an n-cube if and only if

• V has 211vertices;

• Every vertex has degree n;

• G is connected;

• Any two adjacent nodes A and B are such that the
nodes adjacent to A and those adjacent to B are linked
one-to-one fashion.

II LINK UTILIZATION OF PDN AND HYPERCUBE

Network topologies offer additional design points to
accommodate the needs of new and emerging technologies.
Therefore, further study is needed to resolve some open
questions and to derive cost/performance, robustness in terms
of lemmas to study comparisons between PDN and Hypercube
architectures.

Lemma 1: The total number of chordal diagonals in a PDN is
always even.

Proof - Consider a PDS of order n, (where n = &2+ &+ 1 and
o is a prime or power of prime) then it gives the following
conclusions.

In PDN, we have total degree of a node = 25 vertices and
since each node is connected to two ring links, therefore, we
have total number of chordal diagonals = 25 - 2.

Case 1: if 5 is even then 2 * 5 result an even integer and
therefore (2*5 - 2) also result an even integer.

Case 2: if 5 is odd then 2 * 5 again result an even integer
and therefore (2*& - 2) also result an even integer.

As, we know that subtracting 2 in even integer always
turns an even integer.

So, the total number of chordal diagonals in PDN is always
even.

Lemma 2: The 'diameter of the PDN' remains always same
while removing one node of the PDN

Proof: We know that 5 = 2, n = 52 + 5 + 1, then on removing
one node of the PDN will loses its properties and n becomes n
- 1 nodes i.e., n = 02 + 5.

The other properties becomes as:

• Total number of edges 'n.S' becomes 'n.S - 25'.

• Total degree 2n.5 of PDN architecture becomes 25(n -
I). These changes can be reflected in chordal diagonals
also.

But the only property of the PDN i.e., diameter of the PDN
remains always same as shown in the Fig. 4. Hence the
remaining network works as a normal network with maximum
diameter 2.

From the Fig. 4 if we have to visit node 6 from node 4, we
have to visit only two edges to reach to the destination node
i.e., 4-5-6 or 4-3-6.similarly, if the source node is 4 and
destination node is 2 then paths can be 4-3-2, 4-5-2 and 4-1-2.
It shows that paths can be more than 2 but the maximum
diameter is always 2. In other words, PDN is robust.

Lemma 3: The 'diameter of the PDN' remains always same
while removing one edge of the PDN.

Proof: As we know 0 = 2, n = 02 + 0 + 1, then on removing one
edge from the PDN, its properties becomes as:

• Total number of edges 'n.S' becomes 'n.S - I'.

• Total degree of PDN is equal to 2no - 2 as one edge is
removed.

• The chordal ring property is also lost.

Fig. 4: PDN without one node
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Fig. 5: PDN without one edge

• Lesser number of circuits are formed.

The only property of the PDN i.e., diameter of the PDN
remains always same as shown in the Fig. 5. Hence the
remaining network works as a normal network with maximum
diameter 2.

From the figure if we have to visit node I from node 6, we
have to visit only two edges to reach to the destination node
i.e., 6-2-1 or 6-5-1. Similarly, if the source node is 0 and
destination node is I then path can be 0-4-1. It shows that there
is change is path formation circuits but the maximum diameter
is always 2. So it is clear from the figure that PDN loses its
properties except the 'diameter' and the remaining network
will be used as a normal network with maximum diameter 2. It
also shows that PDN is robust in nature.

Lemma 4: The 'chordal ring property of the PDN' remains
same while removing more than one chordal diagonals of the
PDN. The remaining network will work as ring topology.

Proof: As we know 8 = 2, n = 82 + 8 + 1, then on removing
more than one chordal diagonal from the PDN, its properties
becomes as:

• Total number of edges 'n.S' becomes 'n.8 - number of
edges to be removed'.

• Total degree of PDN is not equal to 2n& as more than
one diagonal edge is removed.

• The diameter property in this situation is also lost.

The only chordal ring property of the PDN remains same
as shown in the Fig. 6. Hence the remaining network works as
a normal ring topology network.

In the Fig. 6, given above, it is clear that the chordal ring
property of the PDN is not lost by removing the chordal
diagonals. It is also clear from the figure that the diameter

Fig. 6: PDN without More than One Chordal Diagonal

property is not no more exist. For example, if we have to
move from the node 0 to node 4, there are different ways to
reach to the destination node, like 0 - 6 - 5 - 4 or 0 - 6 - 2 - 3
- 4 or 0 - 6 - 3 - 4 or 0 - I - 2 - 3 - 4. So it is clear that the
diameter of the PDN is lost by removing the chordal diagonals
(more than one).

Lemma 5: Diameter of Perfect Difference Network (PDN) is
equal to total degree of node/Prime number or power of prime.

Proof: To prove that diameter of a PDN = 2

Let, Prime or power of prime = 8

Then, Total degree of a node = 28

Therefore,

Diameter = 28/8

= 2 Hence it is proved.

Lemma 6: Total number of vertices in a PDN is always odd.
Each vertex of PDN has always even number of edges.

Proof: Consider a PDS is of order n, (where n = 82 + 8 +1 and
8 is a prime or power of prime) then it gives the following
conclusions.

Since, a PDN has n = 62 + 6 + I vertices.

Case 1: if 6 is even then 62 + 6 result in an even integer

Case 2: if 8 is odd then 82 + 8 again result an even integer

As, we know that adding I in even integer always turns an
odd integer.

So, the total number of vertices in PDN is always odd.

Again, since each ilh node of PDN is connected to (i ± 1)
mod nand (i ± Sj ) mod n node, where 2 ::;j ::S6 and any two
vertex having one edge between them.

Therefore d (v) = 2.8, where 6 is also equal to total number
of non-zero elements in a PDS.

So each node ofPDN has even number of edges.

Lemma 7: The degree of a node is increased by 2 in case of
PDN of PDNs. In this case the diameter also changes while
traversingfrom one PDN to another PDN.

Proof: Since each ilh node of PDN is connected to (i±l) node
of other PDN, and any two vertexes having one edge between
them. Therefore, each node requires 2 more edges to connect
to the 2 nodes of the PDN in a PDN ofPDN's.

The given below Figure-7 depicts the above assumption.
Similarly if we want to traverse from one node of a PDN to
another node of another PDN in a PDN of PDN s, the diameter
can be changed as shown in the figure given below:

In this case the diameter changes from one PDN to another
PDN and can be equal to 2 + shortest distance between two
concerned PDN's.
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Fig. 7: PDN ofPDN's

Lemma 8: The circuits formed in a PDN are a combination of
odd and even length. And the smallest circuit in a PDN is of
length 3.

Proof: The circuits formed from the PDN with 7 nodes are
shown below:
0---+4---+3---+0
0---+4---+1---+0
0-..3-..6---+0
0---+6-..5-..1-..0
0---+6---+5---+2---+1---+0
0---+6---+5---+4---+1---+0
0---+6-..5---+4---+0
0---+6---+5---+4---+3---+0
0---+6---+5---+4---+3---+2---+1---+0
0---+1---+2---+6---+0
0---+1---+2---+3---+0
0---+1---+2-..3---+6---+0
0-..1---+2---+3-..4---+0
1---+5---+4-"1
1---+5---+2---+1
1---+5---+4---+3---+2---+1
1---+4---+3---+2---+1
2---+6---+5---+2
2---+3---+6---+2
2---+5---+4---+3---+2
2-..6---+5---+4---+3-2
3-..6-..5-..4-..3

(Odd Length)
(Odd Length)
(Odd Length)
(Even Length)
(Odd Length)
(Odd Length)
(Even Length)
(Odd Length)
(Odd Length)
(Even Length)
(Even Length)
(Odd Length)
(Odd Length)
(Odd Length)
(Odd Length)
(Odd Length)
(Even Length)
(Odd Length)
(Odd Length)
(Even Length)
(Odd Length)
(Even Length)

From the circuit calculations given above, it is clear that
the circuits formed in PDN are a combination of odd and even
lengths.

Lemma 9: The matrix of PDN is always n <n. In a PDN
matrix, the row i is formed from row (i±l) by shifting i number
of bits.

Proof: The adjacency matrix of the PDN is shown below:

From the adjacency matrix of the Perfect Difference
Network, the second row of the PDN is obtained by shifting
the bits of first row towards right as given below:

First row:

0101101

Now shift the bits of first row by one towards right, then
the row will be:

1010110
The row that we obtained after the shifting of bits of first

row towards right is same as the second row:

1010110
Now we will do this for the third row of the adjacency

matrix. For this we have to shift the bits of second row by one
towards right, already obtained from first row by shifting of
bits by one, as given below:

Second row:

010 1 0

Now shift the bits towards right by one, the row will be:

o I 0 I 01
The row that is obtained from the second row is same as

third row of the adjacency matrix of the Perfect Difference
Network. Ifwe do it for the remaining rows, we can easily get
the next rows of adjacency matrix of the Perfect Difference
Network.

Lemma 10: Diameter of a Perfect Difference Network and
Hypercube can be calculatedfrom their adjacency matrices.

Proof: The adjacency matrix of the PDN having 7 nodes is
shown in Fig. 9. It shows dotted lines between rows/columns
for Diameter ofPDN when n=7.

{I 1 .2 3 ••(o

J

0 1 I} 1 1
1 0 0

2 'it 1/ '0

.'1

l
o 0

4- 0 1 .'0

~ n 0 1

6 1 0 '0\.

5
o

Fig. 8: Adjacency Matrix ofPDN Having 7 Nodes

n I
l} n 1

0

2 It 1

2 3 •• 5

+-+ (}
o -1--41

o n -l ->-: l-~--; c
~ a -+--+ (}
6'1..10+-+

(} ()

o 0

Fig. 9: Diameter ofPDN when n=7
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Fig. 10: Diameter ofPDN when n=13
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The adjacency matrix of the PDN having 13 nodes is
shown in Fig. 10.

From the matrices Fig. 10 & Fig.Ll , the consecutive two I' s
represented as dotted lines in each matrices shows the diameter
of these two architecture i.e., the maximum length from any
source node to the destination node in Perfect Difference
Network is 2 while as it is 3 in case of Hypercube. It shows
dotted lines between rows/columns for Diameter of PDN when
n=13.

Similarly the diameter of Hypercube can be calculated as
shown below in the Fig.l1. It shows dotted lines between two
rows/columns as diameter of Hypercube.

Lem mall: The number of circuits formed in hypercube is of
even length.

Proof: 3D hypercube and its circuits whose source and
destination node is '0' is shown below as:

Circuits Length
0----> 1 ---->2 ---->3---->0
0----> 1 ---->2 ---->3---->4---->7---->0
0----> 1 ---->2 ---->3---->4---->5---->6---->7---->0
0----> 1 ---->2 ---->5 ---->4---->3---->0
0---->1---->2---->5->4---->7->0
o ---->1 -> 2 ---->5 -> 6 -> 7---->0
0----> 1 -> 2 -> 5 -> 6---->7->4---->3->0
o ---->I -> 6 ---->5 ---->4 -> 7->0
o ---->1 ->6 ---->7 -> 0
o ---->1 ---->6 -> 7 ---->4---->3-> 0
o -> 1 -> 6 -> 5 -> 2-> 3-> 0
o ---->1 ---->6 ---->5 -> 2 -> 3 ->4----> 7 ->0
0----> 1 -> 6 -> 7 -> 4 -> 5-> 2---->3---->0
0---->3->2->5---->4->7---->0
0---->3->2---->5->4->7---->6---->1->0
0->3->2->5---->6->7->0
0---->3->2->5->6->1->0
0---->3->2->1---->6->7---->0
0->3->2---->1---->6->5->4---->7---->0
0->3->4---->7->0

(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)

0---->3---->4->7->6---->0
0---->3->4->5---->6---->7---->0
0---->3---->4---->7->6---->5---->2---->1---->0
0---->3---->4->5->6->1->0
0---->3---->4---->5->2---->1->0
0---->3---->4---->5---->2->1->6->7---->0
0->7->4->3---->2---->5---->6---->1---->0
0---->7->4---->5---->2->1---->0
0->7---->4---->5---->2---->3---->0
0->7---->4---->5---->6->1->2->3---->0
0->7->4->5->6---->1---->0
0->7->6---->5---->4---->3---->0
0->7->6---->5---->2---->3---->0
0->7->6->5---->2---->1---->0
0->7->6->5---->4---->3---->2---->1---->0
0->7->6---->1---->2---->3->0
0->7->6---->1---->2---->5---->4---->3---->0

(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)
(Even Length)

From the above circuit calculations it is shown that the
length of each circuit is even. Therefore, number of nodes in
hypercube is Z", if the nodes are even then the associated
adjacent edges are also even, hence proved.

a 1 :2 s 4- 5 (> '7

0 o ,f 0 _'1. e 0 i) •.,,1
" "

,
:t ~,- {} ~: u 0 0

~~..• o
Z 0: .A' n /1 0 ,"1 0 o

" ,..
"~ ;'" J

0 ;£' ~'0 Q il Q

" 0 0 0 ,{( 0 /t ;0 ;1.-,- "
. .,

:$ (} 0 ~- 0 .;r o ;.,,' (J

6 0 "l 0 (I o A a ,.3,.
J . -."7 J-' a 0 a ~ 0 }o' 0

Fig. 11: Diameter of Hypercube.

o

Fig. 12: 3D Hypercube
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Lemma 12: The minimum cycle length of the circuits formedin
Hypercube is 4 and maximum is 8.

Proof: As shown in the Lemma 11, it is clear that the
minimum length of the circuit is 4 and its maximum length is
8, hence proved.

Lemma 13: All the rows and columns of sub-graph of matrix
of hypercube is a circuit if the sub-graph matrix of matrix of
hypercube is minimum 4 x4 matrix.

Proof: From the Lemma 11, it is clear that each face of the
hypercube is a combination of 4 vertices; therefore each face
of the hypercube is a sub graph of the 3D hypercube graph. It
is also shown in the above matrix (Fig. 13) that sub-graph
matrix of matrix of hypercube is minimum of 4x4 matrix,
hence proved.

Lemma 14: When two Hypercubes are connected then the
degree ofmiddle vertices are increased by one and the degree
or corner vertices remains same.

Proof: As we know that the degree of the hypercube is n i.e., 3
, but it can be seen from the Fig. 14 that node' 1', '4', '7', and
, 10' has degree n+ 1 i.e. 4 and the remaining nodes have the
same degree. Hence when two hypercubes are connected then
the degree of middle vertices are increased by one and the
degree or corner vertices remains same.

0 2 2, ::I •• ~ G ,.
0 0 1. I) .1 ! 0- 0 0 i

'1 :t Q 2 0 ! [I () :i. o

:2 Q Ji Q Ol 0 Cl 0 o

s ; 1, (I ::I.• o :1 o " {;I.- -.,---_. -..•..-~---.-- _ .._.'_ ..- .--,.-~.. -,----" _._.
4 Q Q 0 Ji {;I '1 0 '1

5 0: () () ,I Q ."
IS 0 1 j) () n- o
7' 1 o 0 00 1. 0 .1 "

Fig. 13: Matrix of hypercube is 4 sub-matrices of 4x4

1

Fig. 14: Two connected hypercubes.

III CONCLUSION

A comparative study of hypercube and perfect difference
network is done on the basis of topological properties.

Hypercubes are loosely coupled parallel processors based
on the binary n-cube network; n-cube parallel processor
consists of 2" identical processors. In hypercube architecture,
the degree and diameter of the graph is same i.e. n. So because
of this equality they achieve a good balance between the
communication speed and the complexity of the topology
network Perfect difference networks (PDNs) that are based on
the mathematical notion of perfect difference sets to comprise
an asymptotically optimal method for connecting a number of
nodes into a network with diameter 2 and its performance lies
between hypercube and complete graph.

In this paper, we have derived the properties of hypercube
and perfect difference network in the form of lemmas for
comparing these two architectures. The comparison between
these architectures has been shown with the help of circuits.
The circuits formed in hypercube are of even length while as
in PDN, it is a combination of odd and even lengths. We have
derived that the minimum length of circuits formed in
hypercube is 4 and maximum 2" while as in PDN, minimum
length is 3 and maximum length is the total number of nodes
formed in PDN. We have studied that the adjacency matrix of
hypercube is a combination of 4 sub-matrices of order 4x4,
while as in PDN, there is only nxn matrix. We have explored
that the degree of middle vertices of two connected hypercubes
is increased by one while as in PDN of PDN s, the degree of a
node is increased by 2. We have studied that the number of
vertices in PDN is odd and has even number of edges while as,
it is not the case in Hypercube. We have made attempts to
study the circuits to show the robustness of these architectures.
In these architectures, the diameter remains same during
normal course and during link failure.

The comparison between these two architectures and their
diameters can be shown on their adjacency matrices as well.
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Abstract—This paper describes an architecture to deploy
scalable Software Practice Environments (SPE) to support the
practice lessons that require computer resources that can be
remotely accessed. The architecture enables (i) to dynamically
and on-demand provision the required computing resources
from different IaaS Cloud providers, (ii) to perform the
automatic software configuration to satisfy the requirements
of the practical lesson, (iii) to suspend and resume the virtual
infrastructure in order to cut down costs during a course
and (iv) to support different elasticity approaches in order to
create scalable virtual infrastructures. The paper describes the
proposed architecture and details a case study that involves
deploying the virtual infrastructure of an online course on
Cloud Computing with Amazon Web Services (AWS) on top of
AWS itself. It also describes scalability approaches that can be
employed to provide infrastructure access to SPEs for larger
audiences, such as those found in MOOCs.

Keywords: Cloud computing, virtual infrastructures, automated
deployment, elasticity

I. INTRODUCTION

The students of Computer Science, specially those of
Distributed Computing subjects, require access to different
computing infrastructures in order to develop the appropriate
skills required to efficiently use them. For example, when
developing distributed algorithms, the students require access
to a set of computers with the appropriate software tools
(i.e., compilers, libraries, debuggers, etc.) that allow them
to efficiently program those algorithms during the practice
lessons. In the context of this paper, a Software Practice
Environment (SPE) includes:

• A hardware configuration that satisfies the requirements
of the practice lesson. This includes the CPU architecture,
the disk size available for students and also special de-
vices (as an example, a practical lesson on programming
GPUs requires access to a GPU on which to run the
developed codes).

• A software configuration that satisfies the requirements of
the practice lesson. This includes the Operating System
(OS), the required software, libraries and utilities required
for the students to develop the practice lesson. It also
includes the user accounts and the configuration of each
account.

• Supporting Data. This includes all the data required to
perform the practice lesson. For example, the developed
algorithms might require certain input data files to per-
form some benchmarks.

However, deploying and configuring SPEs is far from being
a trivial task. Traditionally, many organizations prepare Golden
Images that encapsulate the software and data configuration to
perform the duties of some (or all of the) subjects. These disk
images are then deployed on the PCs of a physical laboratory.
However, these approach exhibits many problems. First of
all, it hinders extensibility, since including a new application
implies modifying the golden image and redeploy it on all
the PCs of the laboratory. Second, using a physical laboratory
sets an upper bound to the scalability of the computational
resources configured to perform the practice lessons (typically
no more than two students per PC).

Nowadays, there are two trends that coexist and which
enable to surpass the limitations of traditional approaches
when it comes to providing a customized software experience
for students. On the one hand, Cloud computing is a model that
provides network access to a pool of configurable computing
resources which can be rapidly provisioned with minimal
effort, typically on a pay-per-use basis in the case of public
Clouds [1]. On the other hand, the Bring Your Own Device
(BYOD) [2] approach enables students to use their own
computers and devices in order to access the subject materials.
Specially in the case of online courses, where users are not
required to attend a physical laboratory, these two trends can
be combined in order to offer the users a remote Software
Practice Environment (SPE).

This way, the professor can automatically deploy in a Cloud
provider (which involves provisioning the virtual infrastructure
and configuring it) right before the course starts the required
virtual infrastructure that the students require. In the case of
using a public Cloud provider, the cost is proportional to the
computational and storage resources consumed (mainly hours
of Virtual Machine and GBytes of data stored and transferred).
Once the course has finished, the infrastructure is relinquished
in order to avoid additional costs. In addition, we propose
to suspend the deployed infrastructure during unused hours
(for example at night) in order to cut down costs. For online
courses with different editions through an academic year,
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this approach is very beneficial, since a new edition of the
course simply involves deploying an instance of the virtual
infrastructure, which represents a fresh and new install for the
new users (without any potentially malicious modifications by
the previous students).

The remainder of the paper is structured as follows. First,
section II describes related work in this area. Next, section III
introduces the main architecture of the proposed system and
describes its main components. Later, section IV describes a
case study that involves deploying the virtual infrastructure
required to support an online course on Cloud Computing
with AWS. Next, section V extends the proposed architecture
to consider the case of MOOCs, where a scalable virtual
infrastructure is required for a large number of students.
Finally, section VI summarises the paper and points to future
work.

II. RELATED WORK

This paper focuses on the automatic deployment of a virtual
infrastructure in a Cloud back-end to support a Software
Practice Environment (SPE) that can be remotely accessed by
students.

There are different tools that enable to deploy virtual infras-
tructures in a Cloud. If we focus on open-source tools, Nimbus
[3] is project that provides Nimbus Infrastructure, which
enables to create Infrastructure as a Service (IaaS) Clouds.
It also deals with application contextualization, enabling to
deploy virtual clusters on the Cloud. StarCluster [4] also
enables to create and manage distributed computing clusters
hosted on Amazon EC2. This is also the case of ViteraaS [5], a
tool that provides on-demand high performance computing, in
the shape of virtual clusters, for research projects, e-learning
and teaching within a private Cloud.

All the aforementioned previous works focuses on clusters
of PCs deployed on the Cloud. However, our proposed archi-
tecture does not focus exclusively on virtual clusters (although
it is also able to deploy virtual clusters in a Cloud). In addition,
this work extends previous works with two contributions:
i) it leverages dynamic configuration without requiring pre-
configuration of the Virtual Machine Images, and ii) it focuses
on scalability approaches in order to accommodate a large
number of users.

There are also commercial tools that automate application
deployment and software configuration. For example, rPath,
before it was acquired by SAS in November 2012, provided
methods to automate the process of packaging, deploying and
updating software stacks across physical, virtual and cloud-
based environments. Tools such as Kace or BMC Application
Automation provide software deployment tools together with
automated solutions in order to deploy and manage software
throughout an organization.

In our case, we combine application provisioning from a
Cloud provider and application deployment and configuration,
relying on open-source DevOps tools. This enables to have
high level recipes to specify the desired infrastructure and
enact them on different Clouds.

III. PROPOSED ARCHITECTURE

The proposed architecture enables to dynamically provision
and configure virtual infrastructures. It features both horizontal
and vertical elasticity capabilities to enable scaling the virtual
infrastructure, composed of multiple replicated Software Prac-
tice Environments (SPEs), to accommodate an increased or
reduced number of students. The students can remotely access
them using their own devices, typically via SSH, in order to
perform a practice lesson.

The proposed architecture builds on some previous devel-
opments which, for the sake of completeness, are summarised
here:

• The Resource Application Description Language (RADL)
[6] is a high level declarative language that includes
the hardware, software and configuration requirements of
the virtual infrastructure to be deployed. For example,
one could describe the requirements for 10 VMs with
GNU/Linux Ubuntu 12.04, JDK 1.7+, the installation of
the ImageMagick software and 15 user accounts with a
set of pre-defined passwords.

• The Infrastructure Manager (IM) [6] is a service-oriented
component that takes as input a RADL description of
a virtual infrastructure and it provisions the required
resources and configures them in order to satisfy the
requirements imposed by the RADL description. The
IM supports different IaaS Cloud backends, such as
OpenNebula [7], OpenStack [8] and Amazon EC2 [9].
As such, it provides a uniform layer to deploy virtual
infrastructures on multiple Clouds with the same RADL
document. Provisioning resources from multiple Cloud
providers is typically known as Sky Computing [10].

• The Configuration Manager. This component is part of
the IM and is in charge of performing the deployment and
configuration of software, together with the customization
of the Virtual Machines (VM). It automates the creation
of user accounts, downloading software packages, mod-
ifying files, etc. The Configuration Manager currently
supports Puppet [11] and Ansible [12]. Both software
packages belong to the DevOps category and they allow
to create recipes in order to automate software deploy-
ment and configuration, thus guaranteeing determinism.
Puppet uses a pull approach, where agents installed in
the VMs of the virtual infrastructure contact a server
for instructions on how to configure the VMs. However,
Ansible uses a push approach, where configuration is
pushed into the VMs from a central server. In our case, we
currently rely on Ansible which has proved to be highly
scalable.

• The Virtual Machine image Repository & Catalog
(VMRC) [13] enables to index and store Virtual Machine
Images (VMIs). A VMI is an encapsulation of a vir-
tual hardware configuration together with an Operating
System (OS), a set of applications and data. VMs can
then be created as instances of a VMI, thus exposing the
configuration specified by the VMI. Unlike other catalogs
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Fig. 1. Simplified architecture to deploy a multi-node Software Practice
Environment in a hybrid Cloud scenario.

of VMIs, VMRC stores metadata of the VMIs (such as
the OS, the hypervisor employed to create it, the appli-
cations installed, etc.). This metadata can be employed
using a query language in order to obtain a ranked list
of VMIs that satisfy a given set of requirements (the
rank is user-dependent according to the satisfaction of
the requirements imposed by the user). For example,
one could query the catalog for a suitable list of VMIs
based on GNU/Linux Ubuntu greater than 12.04 (hard
requirement) and it would be desirable that it had SciLab
4.2+ (this is an example of a soft requirement, where
this software can be installed at runtime to satisfy the
requirement of the user).

Figure 1 summarises a simplified version of the architecture
employed to provision and configure a Software Practice
Environment (SPE). The figure assumes an scenario in which
the organization (an education center) has an on-premise IaaS
Cloud deployment (these are also known as private Clouds,
supported by tools such as OpenNebula [7], OpenStack [8] or
Eucalyptus [14]). It has also access to a public IaaS Cloud
provider such as Amazon Web Services [15], or Rackspace
[16], among many others.

The idea is to deploy the SPE in the on-premise Cloud and
in the public Cloud. This could be performed simultaneously
or using a Cloud bursting approach [17], where the public
Cloud is only employed when the on-premise Cloud cannot
cope with the workload (an increase in the number of SPE
instances due to a large number of users). Regardless of the
scenario, using a hybrid approach composed of an on-premise

and a public Cloud where the same precise configuration exists
on both instances of the SPE, introduces fault-tolerance and
better ability to workload distribution (different students can
connect to different SPE instances).

We summarize the steps required for the professor (or
sysadmin) to deploy a SPE using the proposed architecture.
First of all, the professor describes the requirements of the
infrastructure in a RADL document. This description is sub-
mitted to the Infrastructure Manager (IM) which queries the
VMRC system to obtain a list of the most appropriate VMIs
that satisfy the requirements imposed by the user (the professor
in our case). The IM provisions the VMs with the credentials
supplied by the professor to access each Cloud infrastructure.
Notice that the very same RADL document serves to deploy
similar virtual infrastructures with the same configuration.
Then, the IM delegates on Ansible to perform all the software
installation and configuration. In particular this means:

• To download and install software and required data from
both the Software & Data Repository (SDR) or from
other external repositories (such as the Ubuntu software
repositories). The SDR stores course-dependent data files
such as practice guides, input data sets, specific software
versions, etc.

• To configure system services. For example, to provide a
specific configuration for the SSH server.

• To create user accounts. Using a pre-defined list of
account names and passwords, this enables to provide
SSH-based access to the SPE for the students.

Once the SPE is up and running, the students connect
to it via SSH (or using a graphical desktop via tools such
as FreeNX). The ability to define the virtual infrastructure
only once in a high-level declarative recipe (using RADL)
to deploy a similar virtual infrastructure on different Cloud
providers represents a huge step forward when compared to
the manual installation and configuration of software. First of
all, the professor is now able to perform multiple, determin-
istic deployments of a similar virtual infrastructure regardless
of the Cloud back-end. Secondly, software updates become
automatic, since new deployments of the virtual infrastructure,
if accompanied by on-demand installation of software, results
in an updated virtual infrastructure. Finally, it is possible to
deploy new SPE instances on-demand (either in the on-premise
Cloud or in the public Cloud) in order to accommodate a larger
number of students.

IV. CASE STUDY: THE ONLINE COURSE OF CLOUD
COMPUTING AND AWS

The Institute for Molecular Imaging Technologies (I3M) at
the Universitat Politècnica de València in Spain offers a three-
week online course on Cloud Computing with Amazon Web
Services (AWS)1. The course involves theoretical concepts
about the Cloud and hands-on practice lessons that demon-
strate the usage of the AWS services to create scalable Cloud
applications that efficiently access data in the Cloud. The aws

1Further information available at http://www.grycap.upv.es/cursocloud

660 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



command-line tool [18] is used to manage AWS services such
as Amazon EC2 (Elastic Compute Cloud), Amazon S3 (Simple
Storage Service), Amazon SQS (Simple Queue Service) and
Amazon SimpleDB. In addition, the official command-line
tools to interact with Amazon CloudWatch and Auto Scaling
are used. Other services such as Amazon RDS (Relational
Database Service) are accessed via a web browser and a
database client.

The students connect to a GNU/Linux machine (the SPE) on
which they find a pre-configured environment (user accounts,
AWS credentials, required tools to interact with AWS). There
can be many replicas of this machine since the user state
during the practice lessons is always stored in AWS and not in
the SPE and, thus, students can connect to whichever instance
of the SPE is available. Therefore, students need access to a
SPE with the following configuration:

• A VM with GNU/Linux Ubuntu 12.04+, 512+ MB,
outbound and inbound connectivity.

• A set of user accounts, each one with the following
configuration:

– A specific username and password pre-allocated by
the professor.

– The Access Key ID and the Secret Access Key to
authenticate the student to use the AWS services.

• The following software packages installed:
– The aws tool, described earlier.
– The Auto Scaling and CloudWatch tools to access

those services.
– A MySQL client (to access databases created with

Amazon RDS).
– OpenJDK JRE 7. This is a requirement for the Auto

Scaling and CloudWatch tools.
• The following services configuration:

– Enable password-based SSH access to the instance
(which is disabled by default in Amazon EC2’s
instances).

• The following data:
– A package containing the practice guides, sample

scripts that demonstrate some AWS services, scripts
to populate databases, sample files to be uploaded to
Amazon S3, etc.

All this information is specified in an RADL document,
which is summarized in Figure 2. The syntax and data has been
slightly modified to accommodate the formatting of the paper.
Notice that the RADL specifies: i) the physical requirements
(such as network with outbound connectivity or a minimum
number of RAM), ii) the OS requirements (a minimum version
of Ubuntu) and iii) the software and services configuration
required in the SPE. Notice that software is automatically
downloaded from the SDR and installed. If files are updated in
the SDR, the next deployment of the virtual infrastructure will
have updated software. The SSH is automatically configured
(not shown in RADL) and restarted to allow password-based
connections, which is by default disabled in Amazon EC2.

network public (outbound = ’yes’)
system cursoaws (
cpu.arch=’x86_64’ and
cpu.count>=1 and
memory.size>=512m and
net_interfaces.count = 1 and
net_interface.0.connection = ’public’ and
net_interface.0.dns_name = ’cursoaws’ and
disk.0.os.name=’linux’ and
disk.0.os.flavour=’ubuntu’ and
disk.0.os.version>=’12.04’
)
configure cursoaws (
@begin
- vars:
- pw_00: O3Je2QxgM0w
- ak_00: AKIAJAIPMN42O7ADSC5A
- sk_00: ft0ftS7FD0M5L5Tu3V/
tasks:

- user: name=alucloud00 password=$pw_00
- copy: dest=/home/alucloud00/.awssecret

content="$ak_00 $sk_00"
- get_url: url=<sdr_url>/${item} dest=/tmp/${item}

with_items:
- cursoaws_1.0_all.deb
- autoscaling_1.0.61.2_all.deb
- cloudwatch_1.0.13.4_all.deb

- command: dpkg -i /tmp/${item}
with_items:
- cursoaws_1.0_all.deb
- autoscaling_1.0.61.2_all.deb
- cloudwatch_1.0.13.4_all.deb

- apt: pkg=openjdk-7-jre state=latest
- get_url: url=<location>/aws

dest=/usr/local/bin/aws
- apt: pkg=mysql-client-5.5 state=installed
- service: name=ssh state=restarted

@end
)
deploy cursoaws 1

Fig. 2. An excerpt of the RADL document to deploy the SPE for the course
on Cloud Computing with AWS.

In this online course, the SPE is deployed on Amazon EC2,
although in past courses we also deployed the SPE in an on-
premise Cloud based on OpenNebula. Using an on-premise
Cloud enables to reduce the costs and offer the same SPE for
the students. The number of SPE instances depends on the
number of users enrolled in each edition. In order to cut down
costs it is convenient to schedule the practice lessons (or at
least to have available the infrastructure only during the day,
and suspend it at night) in a suspend-resume approach that
will be described in the next section.

With the developed system it is possible to deploy, for
example, two SPE instances in an average of 7 minutes,
involving resource provisioning, software and data download-
ing and installation and customization (user accounts, ssh
configuration, etc.). Notice that multiple instances of SPE are
submitted and configured in parallel.

V. SCALABLE VIRTUAL INFRASTRUCTURES FOR MOOCS

With the advent of Massively Open Online Courses
(MOOC), we wanted to explore the feasibility of providing
a scalable cost-effective access to a Software Practice Envi-
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ronment (SPE) for remote users. Popular courses enroll tens
of thousands of students. At the moment, the most common
approach to provide a SPE for MOOC students is to prepare a
Virtual Machine Image (VMI) with a predefined configuration
of the OS, tools and data required to perform the course
activities. However, if online services have to be employed
(as in the case of the online course on Cloud Computing
and AWS), there is no other alternative than providing stu-
dents with remote access to a GNU/Linux-based SPE so
that the student can perform the practice lessons. Some of
these courses distribute the cost of using Cloud resources by
encouraging students to sign up with a public Cloud provider.
In this section, we wanted to explore the possibility that the
educational center pays for the infrastructure costs.

Figure 3 describes an architecture to offer scalable SPEs,
by leveraging different services from Amazon Web Services
(AWS). The proposed architecture is generic enough to be
deployed in other public Cloud provider (such as Windows
Azure) using the corresponding services.

AWS consists of geographically distributed regions across
the world which consist of several isolated locations called
availability zones. The Amazon EC2 service provisions Virtual
Machines (called instances) from Amazon Machine Images
(AMIs). AWS includes many services that fit in the proposed
architecture:

• AWS Identity and Access Management (IAM). The pro-
fessor creates one user credential per student from a
single AWS account. These accounts can be temporarily
suspended (useful to prevent AWS usage when an edition
of the course has finished) and reused by the students of
the new edition (since those are not personal accounts).

• Amazon CloudFront. It enables to distribute content at a
scale by distributing replicas to different edge locations
in the world. Users that request the content will access
the nearest replica. This is useful when starting a MOOC
with expected peaks in data access (for example, an
introductory video accessed by 70k students).

• Auto Scaling. It enables to increase (scale out) and
decrease (scale in) the size of the virtual infrastructure.
The next subsection focuses specifically on scaling ap-
proaches.

A. On Scaling the Virtual Infrastructure

When considering a variable number of users requiring
access to a SPE, elasticity, or the ability to increase and
decrease the number of instances and the capacities of a SPE,
is a key feature. AWS supports different elasticity schemes:

1) Horizontal Elasticity: Within a region, the Auto Scaling
service enables to create fleets of instances (an auto scaling
group (ASG)) that can shrink and grow according to some
elasticity rules based mainly on workload or schedule. The
ASG includes an Elastic Load Balancer (ELB) that distributes
incoming requests for the ELB to the instances of the ASG.
The elasticity rules can indicate for example that if the average
CPU usage of the instances of the ASG exceeds a 70% during

the last 3 periods of 5 minutes, then increase the ASG with 4
additional instances (there are similar rules to scale in).

This approach can accommodate new online students that
are performing the practice lessons. If workload is increased,
the ASG is increased, and new students that connect to the
ELB will be forwarded to an instance of the SPE. Since all the
SPE instances are clones and provide the same environment,
it does not matter which instance fulfills the request. However,
if shared state among the different instances of SPEs is
mandatory, these data can be stored in Amazon S3 and pulled
by the user to the local instance upon login in the SPE.

Notice that ELB at the moment only supports HTTP(S).
Therefore, if access via SSH is required to the SPE then
another load balancer such as HAProxy [19], or specific
solutions for SSH load balancing such as Ballast [20] should
be employed.

In fact Figure 3 depicts an scenario with a two-level load
balancing scheme. The students connect to an instance of
HAProxy (there could be several of them) which distributes the
requests among different ASG in different regions. As such,
this provides an scalable approach to perform access to a SPE
for multiple students.

Notice that horizontal elasticity automatically manages the
number of SPE instances to accommodate an increased or
decreased number of students accessing to perform the practice
lessons.

2) Vertical Elasticity: In the right lower side of Figure 3,
a vertical elasticity approach to scalability is shown. Vertical
elasticity is the ability to modify the performance features of a
Virtual Machine in order to accommodate an increased (scale
up) or reduced (scale down) workload.

Many hypervisors support the ability of dynamically in-
creasing the memory of a running VM without downtime (see
for example [21] for a case study with the KVM hypervisor).
However, in the case of Amazon EC2, the performance fea-
tures of an instance cannot be modified without downtime.

Amazon EC2 offers different instance types that range from
m1.small (1.7 GB of RAM, 160 GB of disk, 32-bit or 64-bit
CPU architecture) to cr1.8xlarge (244 GB of RAM, 32 virtual
CPUs, 240 GB of SSD disk).

AMIs in Amazon EC2 can be of two types: (i) instance-
store, where changes in the filesystem are lost when the
instance is terminated and (ii) EBS-backed, where an EBS
volume (block-based storage) is attached to the instance to
store the filesystem changes. An EBS-backed instance can be
started (where a per-hour cost for the running instance and
a per GB-month for the allocated EBS volume is charged).
These instances can be stopped and thus, only the per GB-
month cost applies (which is in the order of $0.10 per GB-
month in the region on Virginia as of June 2013).

Therefore, vertical elasticity can be achieved by stopping
the instance, modifying the instance type for an increased or
reduced performance and start the instance again, to be able
to accommodate a larger workload (a larger number of users).
However, the resumed instance changes its IP, a problem that
can be circumvented by using Amazon’s Elastic IP, an IP
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address that can be dynamically allocated to different instances
(by making the resumed instance to attach itself to the Elastic
IP).

B. Virtual Infrastructure Life Cycle

Depending on each course, the SPE might be available
24x7 for students to perform the practice lessons at anytime

(probably because there are students from different time zones,
as in the case of MOOCs). However, consider an scenario in
which practice lessons are performed at scheduled intervals (or
only during the day). Then it is possible to suspend the virtual
infrastructure so that only storage costs (of the EBS volume)
are charged. This assumes a suspend-resume approach of the
virtual infrastructure, like the one depicted in Figure 4.

When an edition of the course starts, the professor auto-
matically provisions and configures the virtual infrastructure
(composed by the SPEs) so that they are ready for users to
access them via SSH.

To have an idea of the costs, consider the following scenario
of a 3-week course with 400 enrolled students and 10 SPEs
to accommodate 40 students per SPE (a GNU/Linux box to
which students connect via SSH to use some online services).
Deploying a virtual infrastructure 24x7 with 10 m1.medium
instances on the Virginia region, and 10 EBS volumes with 80
GB each, costs $955 per month. If you implement a suspend-
and-resume approach to maintain the SPEs only accessible
for 8-hours a day the cost can be cut down to $369.80, thus
achieving a reduction of 61%.

Having the infrastructure suspended enables to have the
virtual infrastructure ready for service much faster (in the order
of a minute) than dynamically deploying and configuring the
virtual infrastructure from scratch (which can be performed in
the order of 7-10 minutes depending on the complexity of the
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recipe).
Once the course has finished and the infrastructure of SPEs

is no longer required it can be torn down to avoid unnecessary
costs.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed an architecture to dynamically
deploy virtual infrastructures to create Scalable Software
Practice Environments (SPE) in IaaS Cloud providers. The
infrastructure features automatic provision of computational
resources from multiple Cloud back-ends, with the help of
the Infrastructure Manager (IM). It also provides automatic
deployment and configuration of software and data into the
SPEs, with the help of Ansible.

The usage of the architecture has been described to create
the SPEs required for an online course. In addition, the
architecture has been extended to accommodate larger number
of students such as those typically found in popular MOOCs.

The ability to specify in a high level language a declarative
description of an infrastructure and to let the system provision,
deploy and configure it represents a step forwards towards
the widespread adoption of Cloud technologies in online
education.

Future works involves providing this tool as a SaaS ap-
plication so that external users can access its functionality
to deploy on other Clouds on behalf of the user. We also
plan to extend the tool in order to coordinate the deployment
of complex virtual infrastructures (hybrid clusters, Grids,
etc.) on the computational resources of an education center.
These technologies can greatly simplify the administration of
computing resources in an educational center, dealing with
the multiple configurations required by the different subjects
or courses.
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ABSTRACT
This research article provides a new approach to the stan-
dard [Q, R]-decomposition algorithm. The decomposition
demonstrations has now been deduced using the concept of
partial reconfiguration. The analysis of reconfiguration will
develop a method to solve linear systems using the hard-
ware partial reconfiguration concept. With this research ar-
ticle, we present a new matrix decomposition methodology
that will be of great importance in matrix related problems.
We develop and efficiently apply the algorithm to classi-
cal problems. In addition to this analysis, we propose an
implementation of the algorithm in pseudo codes and its
FPGA implementation.

KEY WORDS
Partial, Reconfiguration, Linear, Process, Recursion,
[Q,R]-Decomposition.

1 Introduction

Dynamic reconfigurability is essential when it comes to
modifying a system during runtime. For an FPGA device,
partial reconfiguration means modifying a subset of logic in
an operating FPGA design by downloading a partial con-
figuration file [1–5]. In general, a system that is change
sensitive will be reconfigurable. In addition, the following
conditions are valid for FPGA dynamic reconfigurability:
the resources of the FPGA are must be time-multiplexed,
the FPGA must be able to switch tasks, the FPGA must
have the capacity to be reused, and the FPGA must have a
reconfiguration portion optimization ability [6–8]. For this
research article we suppose that these premises are valid
when it comes to reconfiguration of algorithms. The ex-
periment that we conduct in this research article supposes
that, given a general recursive linear process, this process
is specified by a starting state q1 and the states qj,
j ∈ {2, 3 · · · ,N} related to each other. This state dy-
namic is a linear recursive process given by the following
equation:

qj =
j−1∑
i=1

αji qi.

This will be denoted by:{
q1, qj =

∑j−1

i=1
αjiqi, j ∈ {2, 3, · · · ,N}

}
.

This research article will focus on the presentation of the
dynamic and deduce the [Q, R]-decomposition from the
dynamic. A descriptive comparison of the results will be
provided. In addition to this description, we propose an
algorithm that can solve the [Q,R]-decomposition problem
with the partial reconfiguration based analysis. Although
this research article is concerned with the recursive dy-
namic process, it assumes some matrix analysis and com-
putation basics [9–14]. We suppose that the dynamic of
this research article takes place in a vector space denoted
VectSpace of dimension N. Computations that are valid
with this research article include scalar-vector multiplica-
tion and addition, matrix-vector multiplication and addi-
tion, matrix-matrix multiplication and addition and the in-
verse of a matrix M denoted M−1. We suppose that
any dynamic state is an element of VectSpace. A linear
combination of N several states of the same size, is given
by

N∑
i=1

αiAi,

where αi ∈ R, i ∈ {1, 2, · · ·N}. A linear transforma-
tion that operates on the state vector space VectSpace is
denoted by L . To this experimentation we join the least
square estimator that finds the norm minimality under [Q,
R]-decompostion. That is,

optimize Norm2 = ‖Aq− Z‖2 = AqqtAt − 2AqZt + ZZt

set to [Q,R]-decomposition for finding the optimum q̂ = q,

where A and Z satisfy the normal equation qtAtA =

ZtA. We suppose further that the product qqt is the
square of the 2-norm of q and the sum of two states
q1 and q2 is {q := q1 + q2}. The aim of this research
article is to analyse the linear recursive process that leads
to the [Q,R]-decomposition computational algorithm and
the presentation of the PR-[Q,R] algorithm that implements
its computations. In addition to the proposed algorithm,
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we construct the hardware for the recursive linear scheme
using references [16–18].

2 Method: Recursive Linear Process

2.1 Principles and Theorems

The development and construction of the [Q,R]-
decomposition based on any recursive linear process
assumes some principles and theorems for a better un-
derstanding of this dynamic. We postulate the following
three principles. The first principle states that the recursive
dynamic process is stable by adding. The second principle
states that, given a linear transformation L, there exists
a [Q,R]-decomposition that minimises the square of the 2-
Norm. The third is the mapping of a linear transformation
L on a recursive linear process is still a recursive linear
process.

The following equation describes the fact that addition
of two linear processes results in a recursive linear pro-
cess{

s1, sj =
∑j−1

i=1
αjisi, j ∈ {2, 3, · · · ,N}

}
.

Principle 2.1. Recursive Linear Process Stability

Optimize AL {q}L
{

qt
}

At − 2AL {q}L
{

Zt
}
+

L {Z}L
{

Zt
}

and use [Q, R]-decomposition to find the optimum.
L {q̂} = L {q}

Principle 2.2. [Q, R]-Decomposition under Linear Trans-
formation L

The mapping of a linear transformation L on a recur-
sive linear process is given by{

q1, qj =
∑j−1

i=1
αjiqi, j ∈ {2, 3, · · · ,N}

}
.

Theorem 2.3. Linear Recursive Process Mapping Theo-
rem

In theorem 2.3 we assume that L {q1} = l1 and

L
{

qj
}

= lj, j ∈ {2, · · · ,N}. We suppose further that
any state vector is qj. The following four steps perform
the proof.

Proof. Because L is a linear transformation,

1. L
{

qj
}
= L

{∑j−1

i=2
αjiqi

}
per definition of L

2. L
{

qj
}
=
∑j−1

i=1
αjiL

{
qi
}

per linearity of L

3. L
{

qj
}
=
∑j−1

i=2
αjili

4.
{

l1, lj =
∑j−1

i=2
αjili, j ∈ {2, 3, · · · ,N}

}
is the re-

cursive linear process under the linear transformation
L.

2.2 The Dynamic Equations and Partial Reconfigura-
tion Analysis

Let’s consider the general recursive process{
q1, qj =

∑j−1

i=1
αjiqi, j ∈ {2, 3, · · · ,N}

}
.

A dynamic system is represented by the following state
configurations:

q2
q3
...

qN

 = q1


α21

α31

...
αN1

+ q2


0
α32

...
αN2

+ · · · (1)

We assume that 1 is satisfied for any recursive dynamic
process. For the partial reconfiguration, we consider the
following objects: the coefficients of the recursive dynamic
system represented by the m × n matrix Alpha, the
initial state matrix represented by Beta that contains all
possible initial states of the recursive process. Beta will be
of the same size as the matrix Alpha and Gama, which
represents all state qj, j ∈ {1, 2, · · · ,N}. Further we
assume that the following classes apply: operation, addi-
tion, multiplication, and transpose. The analysis of these
operations gives the θ

(
N2
)

for the addition class and
θ
(
N2
)

for the multiplication class. In oder to implement
the recursive linear process we need the exact number of
additions and multiplications and set the number of trans-
pose operations to zero. If the state index j is set to
2, then the exact number of additions and multiplications
is 1. If we iterate this process by setting j equals N,
then the number of additions and multiplications is equal to
N-1. This gives a total number of addition operations and
multiplication operations by

N (N− 1)

2
.

3 Construction of the Algorithm

The analysis conducted in the previous section gives the
following algorithm, which constructs the recursive linear
dynamic process{

q1, qj =
∑j−1

i=1
αjiqi, j ∈ {2, 3, · · · ,N}

}
.
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We assume, that the matrices Alpha, Beta, and Gama
exist and satisfy the specifications given in the previous
section

Algorithm 3.1.

function PROBLEM(Alpha,Beta)
[m, n]← size(Alpha)
if size(Alpha) = size(Beta) then

Gama[1]← Beta[k],
k ∈ {1, 2, · · · ,m}
for j = 2, 3, · · · , n do

Gama[j] = 0
for i = 1 : j− 1 do

Rr(i, j)← Alpha(i, j)
Gama[j]← Gama[j]+
Rr(i, j) ∗ Gama[i]

end for
end for
Gama[j] = Gama[j]

end if
end function

4 Partial Reconfiguration and Simulation of
the Recursive Dynamic Process

In the recursive dynamic process in equation 1, parts of
the process are reconfigurable. For these we partially trans-
form the process in the following way:

1. The coefficient matrix Alpha will be set to any
m× n matrix A .

2. The dynamic is reconfigured as{
p1 − q1 = 0, pj − qj =

∑j−1

i=1
αjiqi,

j ∈ {2, 3, · · · ,N}

}
.

3. The coefficients of the matrix Alpha see ( 1 ) are
reconfigured according to the following table.

q1 q2 q3 · · · · · · qN−1

p2 · q1 0 0 0
... 0

p3.q1 p3.q2 0 0
...

...

p4 · q1 p4 · q2 p4 · q3 0 0
...

...
...

...
. . . 0 0

...
...

...
. . . 0

pN · q1 pN · q2 pN · q3 · · · · · · pN · qN−1

The simulation shown in the following figures con-
struct the recursive dynamic system by providing the ma-
trix Rr and the recursive linear process states Gama
considering a pascal matrix and the identity matrix of size
5. We consider a 5×5 dimensional positive integer matrix.
A pascal matrix of order 5, represents the matrix Alpha,
while the matrix Beta is the 5 × 5 dimensional identity

matrix. All matrix entries in the simulation are positive in-
tegers, as algorithm 3.1 anticipated. The first column of
the matrix Rr is reduced to zero; and cancelling that
column results in an upper triangular matrix with positive
matrix entries as expected in algorithm 3.1,( see figure 2
). The state matrix Gama is made of column vectors that
represent

qj =
j−1∑
i=1

αjiqi, j ∈ {2, 3, · · · ,N}.

See the construction in figure 2 right. For this simulation
we suppose further, that the starting state q1 is Beta (2)

1

1

Figure 1
Construction of the Recursive Linear Process
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The diagonals of the constructed recursive linear pro-
cess, represent the columns of Rr and Gama respec-
tively as a histogram. The first histogram represents the
first column of Rr and a last histogram representing the
last state q5.

5 Results and FPGA Realization of the Dy-
namic Recursive Process

1

Figure 2
Construction of the Recursive Linear Process in Hardware

1

Figure 3
Construction of the Recursive Linear Process in Hardware

Listing 1: RLDProcess

1 Generated from Simulink block
RLDProcess

2
3 entity rldprocess is
4 port (
5 ce_1: in std_logic;
6 clk_1: in std_logic;
7 gateway_in1: in std_logic_vector

(15 downto 0);
8 gateway_out: out

std_logic_vector(15 downto
0);

9 gateway_out1: out
std_logic_vector(15 downto
0);

10 gateway_out2: out
std_logic_vector(17 downto
0);

11 gateway_out3: out
std_logic_vector(22 downto
0)

12 );
13 end rldprocess;
14
15 architecture structural of

rldprocess is
16 attribute core_generation_info:

string;
17 attribute core_generation_info of

structural : architecture is "
RLDProcess,sysgen_core,{
clock_period=10.00000000,
clocking=Clock_Enables,
compilation=HDL_Netlist,
sample_periods=1.00000000000,
testbench=0,total_blocks=51,
xilinx_adder_subtracter_block
=3,xilinx_gateway_in_block=1,
xilinx_gateway_out_block=4,
xilinx_input_scaler_block=7,
xilinx_system_generator_block
=1,}";

18
19 signal ce_1_sg_x1: std_logic;
20 signal clk_1_sg_x1: std_logic;
21 signal gateway_in1_net:

std_logic_vector(15 downto 0);
22 signal gateway_out1_net:

std_logic_vector(15 downto 0);
23 signal gateway_out2_net:

std_logic_vector(17 downto 0);
24 signal gateway_out3_net:

std_logic_vector(22 downto 0);
25 signal gateway_out_net:

std_logic_vector(15 downto 0);
26
27 begin
28 ce_1_sg_x1 <= ce_1;
29 clk_1_sg_x1 <= clk_1;
30 gateway_in1_net <= gateway_in1;
31 gateway_out <= gateway_out_net;
32 gateway_out1 <= gateway_out1_net;
33 gateway_out2 <= gateway_out2_net;
34 gateway_out3 <= gateway_out3_net;
35
36 rdpsg_4c3d9f806b: entity work.

rdpsg_entity_4c3d9f806b
37 port map (
38 ce_1 => ce_1_sg_x1,
39 clk_1 => clk_1_sg_x1,
40 in1 => gateway_in1_net,
41 addsub1_x0 => gateway_out2_net

,
42 addsub2_x0 => gateway_out3_net

,
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43 scale1_x0 => gateway_out_net,
44 scale2_x0 => gateway_out1_net
45 );
46
47 end structural;

The constructed hardware is an instance of the lin-
ear recursive process. A 4 × 4 matrix is considered
with pascal entries. The hardware will generate the four
states that are predicted by the algorithm 3.1. The harware
were created by the Ise Design Tools and System Genera-
tor [15–17]. In the figure that follows, the predicted input
vector is a unit vector. This vector corresponds to Gama[1]
in the 3.1 algorithm. The hardware in figure 2 shows the
gateway input In[15:0]. Because the integer matrix is a pas-
cal matrix of order 4, applying the algorithm 3.1 to this
matrix generates four output states labeled gate outputs:
Out[15:0], Out[15:0], Out[17:0], and Out[22:0], ( see fig-
ure 2 ). Figure 3 constructs the extended hardware of the
linear recursive process. This hardware will represent the
register transfer level graphical representation of the linear
recursive process, as described in [15, 18, 19]. Figure 4
gives a model of the constructed hardware. This model will

Figure 4
Model of the Recursive Linear Process Construction in

Hardware

be viewed as an upper triangular matrix and the output will
give the four states of the system. This is a reduced matrix
that will not have zero entries in row 2. This is true pro-
vided that Beta (k) in algorithm 3.1 is set to Beta(2).
This method allows us reduce all integer matrices of all
size. In the special case of the pascal integer matrix, the
model will be made of an upper triangular 3 × 3 matrix
with the first row consisting of 1s, the second containing a
3 and a 4 and the third row containing 10. When the
system is on, the display will show the sequence of integers[
1 1 4 45

]
on Matlab and Simulink programming en-

vironments [20–25]

Listing 2: RLDProcess Architecture

1 architecture structural of
rldprocess_cw is

2 component xlpersistentdff
3 port (
4 clk: in std_logic;
5 d: in std_logic;
6 q: out std_logic
7 );
8 end component;
9 attribute syn_black_box: boolean;

10 attribute syn_black_box of
xlpersistentdff: component is
true;

11 attribute box_type: string;
12 attribute box_type of

xlpersistentdff: component is
"black_box";

13 attribute syn_noprune: boolean;
14 attribute optimize_primitives:

boolean;
15 attribute dont_touch: boolean;
16 attribute syn_noprune of

xlpersistentdff: component is
true;

17 attribute optimize_primitives of
xlpersistentdff: component is
false;

18 attribute dont_touch of
xlpersistentdff: component is
true;

19
20 signal ce_1_sg_x1: std_logic;
21 attribute MAX_FANOUT: string;
22 attribute MAX_FANOUT of ce_1_sg_x1

: signal is "REDUCE";
23 signal clkNet: std_logic;
24 signal clk_1_sg_x1: std_logic;
25 signal gateway_in1_net:

std_logic_vector(15 downto 0);
26 signal gateway_out1_net:

std_logic_vector(15 downto 0);
27 signal gateway_out2_net:

std_logic_vector(17 downto 0);
28 signal gateway_out3_net:

std_logic_vector(22 downto 0);
29 signal gateway_out_net:

std_logic_vector(15 downto 0);
30 signal persistentdff_inst_q:

std_logic;
31 attribute syn_keep: boolean;
32 attribute syn_keep of

persistentdff_inst_q: signal
is true;

33 attribute keep: boolean;
34 attribute keep of

persistentdff_inst_q: signal
is true;

35 attribute preserve_signal: boolean
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;
36 attribute preserve_signal of

persistentdff_inst_q: signal
is true;

37
38 begin
39 clkNet <= clk;
40 gateway_in1_net <= gateway_in1;
41 gateway_out <= gateway_out_net;
42 gateway_out1 <= gateway_out1_net;
43 gateway_out2 <= gateway_out2_net;
44 gateway_out3 <= gateway_out3_net;
45
46 default_clock_driver_x0: entity

work.default_clock_driver
47 port map (
48 sysce => ’1’,
49 sysce_clr => ’0’,
50 sysclk => clkNet,
51 ce_1 => ce_1_sg_x1,
52 clk_1 => clk_1_sg_x1
53 );
54
55 persistentdff_inst:

xlpersistentdff
56 port map (
57 clk => clkNet,
58 d => persistentdff_inst_q,
59 q => persistentdff_inst_q
60 );
61
62 rldprocess_x0: entity work.

rldprocess
63 port map (
64 ce_1 => ce_1_sg_x1,
65 clk_1 => clk_1_sg_x1,
66 gateway_in1 => gateway_in1_net

,
67 gateway_out => gateway_out_net

,
68 gateway_out1 =>

gateway_out1_net,
69 gateway_out2 =>

gateway_out2_net,
70 gateway_out3 =>

gateway_out3_net
71 );
72
73 end structural;

6 Conclusion

This research article focuses on the partial reconfiguration
of the linear recursive process. The analysis in this pa-
per prepares the linear recursive to be implemented within
hardware. This method allows us to program the linear
recursive process on an FPGA. The approach in this pa-

per is new, from the invention of the linear recursive pro-
cess to its construction in hardware using the “Xilinx and
System Generator”. The use of partial reconfiguration will
have the following consequences: It will modify the [Q,R]-
decomposition, it will create novel matrix inverse compu-
tation method, it will solve of linear systems of equations.
The hardware will construct two matrices that are inverse to
each other, from any given integer matrix. The approach of
reconfiguration in this article is new. The linear recursive
process is analysed as a new mathematical concept. The
resulting research, algorithms, and the hardware construc-
tions will serve computer scientists, computer engineers,
and mathematicians.
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Abstract— The complexity of parallel programming for
hybrid architectures composed of multicores, GPUs and
clusters of these, either private or in the cloud, calls for
flexible programming environments wherein users can bet-
ter concentrate at the programming task at hand. We are
developing GDEC, a Graphical Development Environment
of parallel applications in the Cloud. GDEC will provide a
GUI for program development, and allow users to develop
applications from any computer with a web browser and to
run their applications on private or cloud-based platforms.

The focus of this paper is the GDEC graphical language
and its grammar based on hyperedge replacement grammars.
Programmers must select adequate GDEC icons to compose
their application and configure them to specify particular
input/output data and sequential code for processing. How-
ever, users do not need to specify low-level communication
based on shared variables or message passing. GDEC may
run sequential code in parallel if specified for an icon
representing a parallel computing model such as SPMD.
A comparison of GDEC to other graphical platforms for
developing parallel applications is also presented.

Keywords: Parallel Computing, Graphical Language, Graph
Grammars

1. Introduction
The use of parallel computing for the solution of de-

manding applications in science and business intelligence
is widening thanks to the increasing availability of parallel
architectures. Multicores, Graphics Processing Units (GPUs)
and clusters of these are now readily available at institutions
and in the cloud, offering unprecedented processing capacity
at a very reasonable price. However, the development of
efficient parallel applications for these architectures is a
real challenge, despite the many software tools available
[survey], if made using basic communication primitives,
such as shared variables (e.g., locks and barriers) for multi-
cores and GPUs and message passing for clusters of these.
The challenge lies not only on specifying communication
for processing elements to share data and code and to
synchronise their tasks; a load balancing mechanism must
also be developed in order to ensure good performance since

the response time of a parallel application corresponds to the
response time of the slowest processing element.

To hide the complexity of parallel programming, various
middlewares for parallel computing have been developed
that provide programmers with a simpler interface than that
provided by the Message Passing Interface (MPI) [1] [2],
Pthreads [3] and OpenMP [4] [5]. Examples of these mid-
dlewares included Skeletons [6], the Data List Management
Library (DLML) [7] and Mapreduce [8]. Mapreduce, for ex-
ample, is a programming model and environment developed
by Google that requires from programmers only sequential
functions. The Mapreduce environment runs multiple in-
stances of these sequential functions in parallel, taking care
both of synchronising them and of load balancing and fault
tolerance throughout the computation.

Graphical user interface (GUI) platforms have also been
developed for the purpose of hiding the complexity of paral-
lel and distributed programming. They support graphical de-
sign of workflows through interconnecting icons (graphical
elements) that represent web/grid services [9], [10]. Users
basically need to drag, drop and interconnect relevant icons,
and thus can concentrate better on the conceptual solution
of their problems. Kepler [11], Taverna [12] and Triana [13]
are open free software examples of these GUI platforms.
They all were initially targeted to assist a particular area of
science (biology, biology and astronomy, respectively). But
being organised around web/grid services, they can be used
in other areas simply by developing the relevant web/grid
services framework.

We are designing GDEC, a Graphical Development En-
vironment of parallel applications in the Cloud. Like other
GUI platforms, GDEC offers a GUI for program develop-
ment through interconnecting icons that represent data or
some form of processing. Being based on the cloud, GDEC
will allow users to access their applications and resources
from any computer with a web browser. In contrast, the
GUI platforms mentioned above require the GUI module
to be installed in a client computer. GDEC will also allow
users to choose different computing platforms to run their
applications, through configuring their account with the
specification of available computing platforms which may
be private or cloud-based.
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The focus of this paper is the design of GDEC graphical
language. The GDEC language offers programmers various
different icons that represent input data, various forms of
processing (e.g., SPMD, MPMD, etc.) and output data.
Programmers must select adequate icons for their application
and configure them to specify particular input/output data or
files and sequential code for processing but, as in Mapreduce,
do not need to specify low-level communication based on
shared variables or message passing. GDEC icons represent
software modules that include such communication and thus
only need to be configured as just described. The grammar
of the GDEC language is based on hyperedge replacement
grammars, a formalism that facilitates the visualisation of
graphical representations and their functioning. For GDEC,
it will facilitate the implementation of debugging and mon-
itoring functions.

The paper continues as follows. In Section 2 we present
the main icons of the GDEC language. In Section 3 we
describe the grammar of the GDEC language. A comparison
of GDEC and other graphical languages is presented in
Section 4. We conclude and present future work in Section
5.

2. GDEC Model
The GDEC language supports an icon-based composition

model for the development of parallel applications. The
programmer selects GDEC icons that represent the data and
the processing of an application. GDEC icons are classified
into three main types:
• Input Data
• Processing / Computation
• Output Data / Results
Each icon, when selected by the programmer, requires

information from the programmer in order for the icon to be
configured for a particular way of functioning or accessing
particular resources.

2.1 Data Icons
2.1.1 Input Data Icons

Input data icons refer to data to be processed. When the
icon shown in Figure 1.(a) is used, the programmer must
type in the data to be processed. When the icon shown in
Figure 1.(b) is used, the programmer must type the name of
the file that contains the data to be processed.

(a) (b)

Fig. 1: Input Data Icons

2.1.2 Output Data Icons

Output data icons are used to specify how the final results
of a GDEC application should be managed. When the icon
shown in Figure 2.(a) is used, results are displayed on the
screen. When the icon shown in Figure 2.(b) is used, results
are written to a file whose name must be specified. The
results of a computation icon can both be displayed on the
screen and written to a file.

(a) (b)

Fig. 2: Output Icons

2.2 Processing/Computation Icons
Processing (computation) icons correspond to parallel

computation patterns commonly used [14] [15] [16]. The
most representative patterns include:
• Reduction
• Sequential Processing
• Grid (Embarrassingly Parallel)
• Master / Slave
• Work Pool (or Independent Data)
• Pipeline
The behaviour of these patterns is considered by the

proposed graphical processing icons, which can be intercon-
nected following the GDEC language grammar. Below we
briefly describe each processing icon.

2.2.1 Reduction

Reduction refers to combining multiple results produced
by multiple tasks into a single result. GDEC supports
two types of reduction icons. The first icon, called Task-
Reduction (Figure 3), allows the parallel execution of N
tasks, where N is a default value that can be modified
by the programmer. Each receives an input data set. The
programmer must specify the sequential code for each task,
which can be the same for all tasks (SPMD model), or
different (MPMD model). The reduction operator combines
(reduces) the partial results generated by all tasks into a
single global result.

Fig. 3: Task-Reduction Icon
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The second reduction icon of GDEC is called Component-
Reduction (Figure 4). This icon receives a set of partial
results coming from other distinct processing icons (not
necessarily parallel processing icons), and combines all the
partial into a single global result.

Fig. 4: Component-Reduction Icon

2.2.2 Sequential Processing

The Sequential-Processing icon, shown in Figure 5, is
a particular Task-Reduction icon where N=1. This icon
receives a data set as input and generates a data set as output.

input

output

Fig. 5: Sequential Processing Icon

2.2.3 Grid

The Grid icon, shown in Figure 6, performs the processing
of a data set using NxN tasks, where N has a default value
that can be modified by the programmer. The tasks generate
NxN results, one from each task.

Grid

input

output

Fig. 6: Grid Icon

2.2.4 Master/Slave

This icon represents a Master/N-Slave processing, where
N establishes the total number of slave tasks; N has a default
value that can modified by the programmer. The master task
receives an input data set to be processed by the slaves as
assigned by the master. The code of the slave tasks may
be the same or different. The processing ends when the
whole data collection has been processed and each slave
has transferred its results to the master task.

Master/Slave

input

output

Fig. 7: Master-Slave Icon

2.2.5 Work Pools
The Work Pool icon, shown in Figure 8, processes a

non-determined number of data items with no dependency
between them for processing. A data container is linked
to this icon, representing the data (work pool) to be pro-
cessed. Initially, this icon requires at least one data item
in the container; more new data items can be generated
dynamically and placed in the container. The sequential code
specified by the programmer to process each data item may
run in parallel. The processing finishes when the container
becomes empty. The container may actually be distributed
among the multiple instances running the sequential code. In
this case, the Work Pool icon underlying structure (not the
sequential code specified by the programmer) will implement
work stealing of data items between the various containers,
thus balancing the workload. Work Pools can be used to
implement Peer-to-Peer computations.

Fig. 8: Work Pool Icon

2.2.6 Pipeline
This icon is shown in Figure 9. It represents an N-tasks

pipeline, where N has a default value that can modified by
the programmer. The programmer must specify the sequen-
tial code of all the N tasks. The initial task receives an input
data set, and the final tasks produces the results data set.
Another property of this icon is the repetition behaviour,
shown in Figure 10, wherein the data from the last task is
fed to first task of the pipeline. The stop condition of the
repetition must be entered by the programmer when applying
this property.

3. GDEC Language
The set of programs that can be composed with the GDEC

language are specified by the formalism of Hyperedge Re-
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Pipeline

input

output

Fig. 9: Pipeline Icon

Pipeline

input

output

Fig. 10: Pipeline Icon using Repetition

placement Grammars. A brief introduction to this theory
is presented in Section 3.1. Section 3.2 then describes our
proposed GDEC grammar.

3.1 Hyperedge Replacement Grammars
In computer science it is often easier and more natural

to represent things as graphs as opposed to strings. This
was the main reason for the development of graph gram-
mars, which started in the late 1960’s, as an extension
to the concept of formal grammars on strings. Hyperedge
replacement grammars were introduced early in the 1970s, to
simplify the visualisation of graphical components and their
functions. They have found useful applications in pattern
recognition, database systems, semantics of programming
languages, etc. [17] [18]. This section presents the main
concepts of Hyperedge replacement grammars, which are
the basis for our GDEC language definition.

Definition (Hyperedge) The hyperedge is an atomic item
that has an ordered set of tentacles. A hyperedge e has a
type, denoted type(e), which is the same as the number of
tentacles of e. Figure 11 shows a hyperedge with k tentacles.

k

1 2
..
.

e

Fig. 11: Hyperedge with k tentacles; type(e)=k.

A collection of hyperedges and set of nodes form a hyper-
graph if each tentacle is attached to a node. A hypergraph is
equipped with a set of especial nodes called external nodes,
which are used to perform the replacement of hyperedges
by hypergraphs.

Definition (Hypergraph) Let C be an arbitrary but fixed
set of labels. A hypergraph H over C is a tuple (V, E, lab,
att, ext), where:
• V and E are disjoint finite sets of nodes and hyperedges,

respectively.

• lab : E → C is a mapping that labels each hyperedge
such that type(lab(e)) = |att(e)|.

• att : E → V∗ is a mapping assigning a set of pairwise
distinct attachment nodes att(e) to each e ε E.

• ext ε V∗ is a set of pairwise distinct external nodes.

If H is a hypergraph, its components can be denoted by
VH , EH , attH , labH and extH respectively. We use
the expression typeH(e) to mean e ε EH . The type of a
hypergraph H is |extH |, and is denoted type(H).

Figure 12 shows an example of a hypergraph. In order
to emphasise the external node in that hypergraph, its
background color is black; and is identified with number
1.

V={a,b,c,d,1}

A b c

ext = {1}

1 2 1 2

E=

lab: E ---> C

lab =   A =   Slab

att: E ---> V*

att =   {a,b,d}

=   {b,c}att

Hypergraph

a S 1

1 2

3

1 2

1 2

d

1

2

3

1

2

3

1

2

3
A

S

C={A,S}

Fig. 12: Hypergraph

Definition (Hyperedge replacement) Let H and H ′ be two
hypergraphs, so that e ε EH with typeH(e) = type(H ′).
Then the replacement of e by H ′ in H is obtained as follows:

• Build H - e by removing e from H .
• Take the disjoint union of H - e and H ′.
• For all i ε {1, ..., typeH(e)}, identify and replace the

i-th attached node of e with the i-th external node of
H ′.

Figure 13 shows an example of hyperedge replacement,
where the S hyperedge is replaced by the hypergraph B. Note
that this replacement is possible because type(Hypergraph B)
= 2 = type(S).

Definition (Hyperedge replacement grammar) A hyper-
edge replacement grammar is a tuple G = (N , Σ, R, S),
where

• N , Σ ⊆ C are finite and disjoint sets of nonterminal
and terminal labels, respectively.

• R is a set of rules of the form A → H with A ⊆ N
and H is a hypergraph such that type(A) = type(H).

• S ε N is the initial nonterminal.
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Hypergraph

Hypergraph B  

S

S

Replacement of S in Hypergraph

A b c1 1 2a S 1
3

A b c1a 1
3

1 2

S

S

1 2

1 2

1

1

2

2

2
d

2
d

Fig. 13: Hyperedge Replacement

3.2 GDEC Language Grammar
The grammar of the GDEC language is shown in Figures

14 and 15.

Fig. 14: GDEC Grammar, Part 1.

The set of graphs generated by the GDEC grammar are
the set of programs that can be developed in GDEC. The
GDEC grammar is defined by the tuple (N , Σ, R, S), whose
components are initialized as follows.

• N = { Program, Computation, Data, Calculation,
BranchR y Out }

• Σ = GDEC icons
• R Corresponds to:

– Program: Initial rule (initial nonterminal).

Fig. 15: GDEC Grammar, Part 2.

– Computation: Defines the types of computation
icons that can be used in GDEC.

– Data: Define data containers, which as shown in
the grammar, may or may not be the beginning
of a program, and may or may not connect to a
computation icon.

– Calculation: Rule to connect (to define) sequences
of computation icons.

– BranchR: Rule for reducing a set of partial results
generated by a set of computation icons.

– Out: Rule that defines the different ways to manage
the results in GDEC.

• S = Program
Any application developed through the GDEC language

begins and ends with the labelling icons Begin and End.
The example in Figure 16 shows the derived structure of a
GDEC application that uses a pipeline and gets data both
from a file and from a container; both data sources must be
declared and initialized by the programmer. The result of
the pipeline is passed on to a sequential processing, which
finally shows the result on the screen.

PipelineBegin End

Fig. 16: Using the Pipeline Icon
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Figure 17 presents another example of a GDEC program.
It consists of three tasks that perform sequential processing
on an input data set. A reduction operator is applied to
the results of three tasks to obtain a global result, which
is displayed on the screen.

Fig. 17: Using Component-Reduction

4. Other Graphical programming lan-
guages

There is a variety of graphical languages to develop par-
allel and distributed applications. Some of these languages
are focused on representing applications as workflows, like
Condor DAGMan (Condor Directed Acyclic Graph Man-
ager), JOpera, Taverna and P-GRADE. Other languages are
focused on specifying the implementation of the applications
(VisualGOP, PNPL and PNVPL), i.e. how the applications
are structured, how are synchronized, the flow of information
between applications, and how applications can be moni-
tored.

In more detail, Condor DAGMan [19] is a tool to High
Throughput Computing (HTC)1. Condor DAGMan allows
applications to run and to be monitored on different in-
frastructures such as Globus, Amazon EC2, PBS and LSF.
Applications executed by this tool must define pre- and post-
conditions (e.g., a file to read the input data or to write the
results). These applications are sent to Condor DAGMan
through a graphical interface called PyDAG [20].

JOpera [21] provides users with a GUI where icons
represent web services. Users can create applications as
workflows to run, debug and monitor through the Eclipse
development environment. JOpera offers a few basic web
services for data management, and remote connections. User
are responsible to develop the web services relevant to their
application area.

Taverna [22] provides a graphical interface to generate
applications as workflows and it must run from a client ma-
chine. Taverna is focused mainly on applications of Biology

1Parallel computing where applications require long processing time.

and Bioinformatics, and it offers a variety of implemented
services (components) to researchers from these areas. Like
Taverna, Kepler [23] provides a graphical interface to gen-
erate workflows and must also run in a client machine.
Kepler is focused mainly on ecological applications. These
platforms platforms are organised around web/grid services,
and thus can be used in other areas simply by developing the
relevant web/grid services framework. However, designing,
implementing and deploying web services is not a trivial
task. End user may thus be hindered to develop new appli-
cations.

GDEC icons only require from the programmer sequential
code which GDEC may run in parallel. They are already
deployed and only need to be configured for a particular
function.

P-GRADE [24] is a web portal that provides users with
a graphical editor to create workflows to run on different
Middlewares such as Globus or Glite. The workflows corre-
spond to sequential applications or parallel MPI applications.
The editor runs on the client machine but there is no
need to install it therein. P-GRADE internally uses Condor
DAGMan as engine to execute the workflows.

VisualGOP [25] allows programmers to compose their
applications as graphs. However, programmers must spec-
ify communication and synchronization among application
components based on message passing.

PNPL [26] [27] is a parallel programming language based
on Petri nets. Concurrent applications developed with PNPL
can run on multiprocessor machines. However, as in Visu-
alGOP, programmers in PNPL must specify communication
and synchronisation based on message passing.

We note that the graphical components offered by P-
GRADE, VisualGOP and PNPL, require from the program-
mer the specification of communication for synchronisation
and for sharing data between the graphical components.
GDEC icons only require from the programmer sequential
code which GDEC may run in parallel. GDEC icons are
designed and implemented with internal communication and
synchronisation to combine them according the grammar of
the GDEC language. Basically, this communication is based
on the standard input and output of each computation icon,
and thus can be implemented through pipes.

5. Conclusions and Future Work
The graphical programming language GDEC was de-

signed using Hyperedge Replacement Grammar theory. Its
purpose is to simplify the development of general purpose
parallel applications by eliminating the complexity of spec-
ifying the communication for data sharing and synchroniza-
tion. The computation icons of GDEC correspond to widely
used parallel programming patterns which must configured
with sequential code provided by the programmer. GDEC
may run sequential code in parallel, providing the necessary
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synchronisation among the multiple copies of the running
code.

We are currently implementing a beta version of our
GDEC programming language, and designing new compu-
tation icons components. Our beta version of GDEC runs
through a web browser and is based on HTML 5, JavaScript,
and PHP. We are currently evaluating the suitability of using
MPI and OpenMP primitives to generate the code for GDEC
icons communication.
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Abstract- During this research we spot several key issues 

concerning WSN design process. Due to the nature of these 

networks, debugging after deployment is unrealistic, thus an 

efficient testing method is required. WSN simulators perform 

the task, but still code implementing mote sensing and RF 

behaviour consists of layered and/or interacting protocols 

that for the sake of designing accuracy are tested working as 

a whole, running on specific hardware. Simulators that 

provide cross layer simulation and hardware emulation 

options may be regarded as the last milestone of the WSN 

design process. The herein proposed multi-agent simulation 

architecture aims at designing a novel WSN simulation system 

independent of specific hardware platforms but taking into 

account all hardware entities and events for testing and 

analysing the behaviour of a realistic WSN system. 

Keywords- Wireless Sensor Networks; Simulation; MCU 

Emulation; CUDA; OpenCL; GPGPU. 

 

1 Introduction 
A WSN is a distributed system. It consists of a usually 

large number of autonomous devices that form a network. The 

diversity of missions and environments deployed in, 

introduces issues and parameters of paramount importance 

during design process. Success of this process is considered 

delivering specific code running on specific hardware, both 

meeting mission and production cost requirements.  

In general, a mote is a device that consists of a medium 

access hardware interface, a processing module and a sensor 

array. In case of WSN, the medium is the RF channel, and the 

hardware interface is a RF transceiver. In case of submerged 

SNs the medium is water (acoustic signals) and the hardware 

interface is a microphone and a loudspeaker. The trivial case 

scenario is a Wireless Sensor Network, running on batteries, 

with limited computational ability and memory, operating in a 

harsh and hostile environment. By using simulation tools we 

gain pre-deployment knowledge estimating the network’s 

behavior. In most cases, the design and implementation of 

application and protocol stack code, running on specific 

hardware setup, are viewed through energy consumption, 

security and production cost prisms.     

The first task of a WSN after deployment is to configure 

itself. Every mote uses its transceiver to establish connections 

with its neighbors, in order to construct a topology. The mote 

acquires its location which is unknown at the beginning, 

through collaboration with other motes, starting from a few 

motes with known locations. The Localization protocol 

responsible for the above task uses physical quantities such as 

RSS AoA, ToA, to calculate the mote’s location. After 

identifying its neighbors, and being identified, the mote is part 

of the network, able to produce sensor data, propagate data to 

sink, collaborate with neighboring motes to perform a 

computational or sensing task, create cluster, and so on. The 

total activity of a mote extends to multiple levels – or layers – 

each having its own procedure and parameters to calculate 

QoS. The overall performance is derived from the 

combination and cross layer code collaboration [1], and as 

stated in [2] does not necessarily means optimal performance 

in every layer. 

In the next part of this paper, we highlight topology, 

simulation and hardware design issues that back up our 

choices in design of our optimal simulator. We spot the 

parameters taken in consideration in order to calculate the 

simulation metrics in each case. Our goal is to design a sensor 

simulator able to perform cross layer code , communication 

medium and environmental simulation, while keeping an 

inside view in every aspect of this process, giving every detail 

needed  in order to extract   conclusions about network 

behavior, in mote, local (an area containing a number of motes) 

or global (entire network) level. 
 

2 A Critical Overview of WSN Field  
From our point of view, WSN coding may be categorized 

in two main categories. Application Code and Network / 

Maintenance Code.  Application code is responsible for the 

collection and interpretation / processing  of sensor data, or 

for actions in case of collaborating actuators.  Application 

code operates on the platform provided by Network / 

maintenance code, which implements the WSN backbone.  

The backbone includes network protocol stack, topology, 

security, and configuring protocols, and provides services to 

the application code clear of such issues. All  above share in 

most cases limited resources, eg memory, and processing time. 

Simulating a protocol spans from a single protocol testing 

to testing the entire MCU code. The simulator runs protocol 

models or emulates the processing unit of the mote running 

the actual code to be uploaded. Modelling protocol is prone to 

errors of inaccuracy, for there is a gap between model and 

final code, in terms of behaviour and interactions with the rest 

of the code in the MCU memory. In addition modelling 

requires additional work.  

Any mote after deployment completes tasks related to 

network configuration. Starting from authentication of 

neighbours, proceeding to synchronization and localization. 
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A.  Authentication 
    After deployment, a mote searches for neighbours. This is 

done by transmitting its presence at maximum power, waiting 

for replies. Any protocol that uses the network leaves traces in 

the mote’s transmissions. Keeping this in mind and in the case 

of authentication, in order to gain access, an adversary’s mote 

presents itself as a trusted one, becoming part of the network, 

by being included in neighbouring mote’s list of motes that 

have faulty authenticated it. Authentication protocols have 

thein own front of attack, thus security issues, starting from 

their transmission traces. This is an attack on topology, 

varying from communication disturbing, gaining access to 

cryptographic keys and routing tables in order to launch fake 

messages to sink [3][4]  

B. Synchronization 
    Due to the nature of oscillators, every mote’s clock function 

differs from the ideal ( c(t)=t ) and is modelled[5] as : 

 

The parameters φi and ωi,  are called the clock offset (phase 

difference) and clock skew (frequency difference), in relation 

to the reference clock respectively, and e stands for random 

noise. The goal of synchronization is to provide to each mote 

the reference clock, by calculating these parameters for every 

mote i.[6]: Other tasks depend on the accuracy of  the 

synchronization protocol : 

1) Data Fusion:The interpretation of collected data in most 

cases requires that the data is time stamped. For example in 

target tracking, if the target if k covered, k event packets will 

be created for the same target. In network processing by 

neighboring motes according to event time, will determine the 

report packet sent to sink. 

2) Power Management: Using redundant motes organized in 

groups, a network of sensor motes creates a reduced topology 

by switching off groups in turns. Accurate synchronization is 

required for the sleep-wake-up circle of  topology 

maintenance[7]. 

3) Slotted transmission schemes: Slotted ALOHA, TDMA 

use time synchronization in order to determine the slot time 

boundaries. Accurate synchronization avoids collisions, 

reduces retransmissions thus saves energy. 

4) Protocols: Localization protocols, routing protocols (eg 

LEACH) require synchronization or time stamped messages. 

It is clear that evaluation of a synchronization protocol is 

related to cross layer simulation, due to dependency among 

protocols. The LEACH protocol uses TDMA scheme for in-

cluster communication, thus its performance is proportional to 

synchronization protocol accuracy. Also, simulation of the 

synchronization protocol without assumptions requires a 

hardware aware simulator able to emulate e.g. clock drift. 

C. Localization 
After identifying neighbors, every mote estimates its 

position by activating the Localization Protocol. The 

Localization Protocol uses hardware input parameters related 

to physical quantities such as received signal strength (RSS), 

time of arrival (ToA, TDoA), angle of arrival (AoA) or 

sound[11]  , to calculate the mote’s location. This process 

begins from motes with known locations (anchors) and 

gradually is spread throughout the entire network. 

 Some localization schemes rely on additional hardware 

to operate, or their simulation is somehow hardware related: 

1) Time Difference of Arrival, is used in two ways: difference 

between two signals of different nature e.g. RF and ultrasonic, 

and difference between RF signals of different motes of 

known location. The former scheme requires additional 

hardware, increasing complexity and mote cost. In addition, 

ultrasonic pulse reception suffers from severe multipath 

effects. The distance between the motes is derived obviously 

without the need of synchronization. But due to multipath 

effects, this method provides fairly accurate distance 

estimation. 

2) Roundtrip propagation time measurements measure the 

difference between the time when a signal is sent by a sensor 

and the time when the signal returned by a second sensor 

comes back to the original sensor. Since the same local clock 

is used to compute the roundtrip propagation time, there is no 

synchronization problem[8]. The response of the second mote 

must include the processing time of the reply, which is sent to 

the first sensor to be subtracted. It is clear that processing time 

in the second mote depends on its clock, and on the number of 

machine cycles needed to execute code that handles and 

transmits the reply. The above properties depend on the 

chosen MCU or MCUs in case of an heterogeneous WSN. In 

addition, in some energy saving strategies, one solution is 

adjusting the clock to lower frequencies through software 

during runtime. This spots the need for simulation tool that 

can handle different MCUs, clocks and clock adjustments 

and able to calculate processing time of a subroutine. 

3) Beacons using directional antennas, transmit their location 

and angle of transmission, or motes use their directional 

antenna to calculate transmissions of anchors. In general, 

protocols using AoA require a channel simulator that can 

handle sector type transmissions e.g. Opnet[9] . 

4)  Underwater: In [10] a localization protocol is proposed for 

underwater sensor networks using the DNR (dive end rise) of 

anchors equipped with GPS, in order to update their location, 

and then using sound waves to transmit their locations. 

Besides that a pressure sensor in every mote helps in 

estimating the depth underwater. The whole scenario takes 

place not on a 2d plane but in 3d space. The localization is 

constant, considering the fact that the simulated UWSN may 

operate in a area with strong currents. 
  An imaginary scenario[11]  where localization is not 

needed goes as follows: The electrical company connects 

every flat of a district with its network through a consumption 

accumulator device. Once every two months a company’s 

clerk visits every accumulator device and records its reading 

of consumption. In case of a WSN, the reading is transmitted 

to a local sink along with the accumulator device serial 

number. In this scenario, as in many other cases of data 

acquisition e.g. industrial plants, the question “where” does 

not need an answer containing geographical coordinates. 

In every case, simulation of localization protocols 

require (a). Hardware aware simulator, able to emulate 

behavior of components such as antennas, MCUs for accurate 

time measurement (b). An accurate medium simulator (RF 

spectrum, sound) able to represent the nature of signal 

eittCi ++= ωφι)(
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propagation (multipath fading, reflection, diffraction, 

attenuation). (c). An environmental simulator, in case that 

environmental properties or phenomena (obstacles, sea 

currents, water pressure, forest fires[2]) should be taken in 

consideration. 

Authentication. Synchronization and Localization 

protocols are activated during topology construction phase 

and during every topology maintenance phase[12].  The 

topology construction phase provides the initial (full) 

topology, where motes have authenticated all their neighbors, 

and are synchronized.  The topology maintenance phase 

updates neighbor motes tables by deleting energy depleted, 

deactivated or destroyed motes, or by inserting new ones, in 

case of a redeployment over a blind hole. Topology protocols 

such as [7] provide the reduced (logical)  topology, the 

platform on which routing operates. However, in [13]  authors 

introduce a rooting protocol under the concept of virtual 

coordinates, which are randomly initialized in each mote, and 

updated each time the mote relays a packet. This updating 

process consists of the sending mote retrieving the virtual 

coordinates of its neighbors and updating its virtual 

coordinates by using a centroid transformation. In this case, 

localization and routing are processes that run concurrently. 
Concluding, all the above three types of protocols have 

their own trace in motes transmissions, and share processing 

time. The fact that sensing ability looses MCU focus is taken 

in consideration during design process, with solutions on both 

software and hardware level.  

D. Routing 
In [15] the routing protocol Directed Diffusion [21] is 

examined, using a diagnostic tool, plugged in Tossim[14]. 

The case study is the fact that despite good communication, 

the protocol fails to deliver packets of interest to the sink. As 

stated “The diagnostic simulator is motivated by the idea that, 

in a distributed computing environment, nodes have to interact 

with each other in some manner defined  by their distributed 

protocols in order to perform tasks correctly. These interaction 

patterns are the concatenation of distributed sequences of 

events on multiple nodes. In a correctly functioning system, 

these sequences of events follow a path that the protocol is 

designed to handle. Occasionally, design flaws or omissions 

lead to sequences that the protocol designer did not envision, 

potentially causing the protocol to fail or manifest a bug. The 

challenge is to identify this special sequence of events which 

is responsible for the failure among hundreds of other 

common sequences that are logged during the execution but 

are unrelated to the failure. [15]”.  In this fine work the need 

for fine grained debugging is pointed out, providing also a 

solution as a plug in tool.  However, Tossim lacks ability of 

simulating different code in every mote and using a different 

hardware platform eg a PIC or a Freescale MCU  based mote. 

   In [2], The EMA routing protocol is introduced, in which 

main concept is the environmental awareness of the protocol. 

The low consumption orientation of routing protocols such as 

LEACH [16], PEGASIS [17] TEEN [18], is not the optimal 

solution when a mote is facing destruction threat from e.g. 

forest fire. The protocol estimates also the probability of  that 

threat in order to use resources of motes that are about to fail. 

  The Greedy-Face-Greedy (GFG) and Greedy Perimeter 

Stateless Routing (GPSR) protocols are the most widely 

adopted geographic routing protocols for WSN.[19]. Every 

node applies Gabriel Graph Transformation to the 

connectivity graph, for the protocol to perform over its planar 

version the left hand rule. In this way, protocol recovers from 

geographical dead ends caused by blind holes. The 

assumption that communication regions are perfectly circular 

disks does not hold in real-world propagation conditions, 

causing the protocols to fail, in case [13] of obstacles. In 

addition Gabriel Graph Transformation does not function with 

limited positioning accuracy [20]. 

      Concluding, protocol relies on topology to operate. 

Topology protocols or topology related protocols  provide the 

platform whose accuracy routing protocol QoS depends on. In 

[2] is shown that even efficient protocols do not operate well 

in all situations. The goal is the overall performance of 

protocol code and this is tested by cross layer simulation, 

provided the ability to monitor protocol interactions.  

E. Sensing 
The sensor array of a mote is consisted of at least one 

sensor or sensor device. They are mostly analog, and 

connected to MCU through an Analog to Digital converter, 

which is built-in or external. In most cases, the MCU-ADC 

channel is shared among all sensors of the mote, using a time 

slot mechanism. Sensors as electronic parts, function 

according to their physical properties, such as range, energy 

consumption, response delay, drifting over time etc. Their 

performance characteristics introduce problems that span from 

coding to security and life expectancy of the sensor itself, and 

as a consequence, life expectancy of the network [22]: 

Transfer Function: Is the function that shows the relationship 

between physical stimulus and the electrical signal. The signal 

is processed (eg amplified, converted to digital) and 

transferred to the MCU for interpretation by the application 

level. The problems that arise in order select the suitable 

sensor is the computational load of the interpretation, and the 

energy consumption of the in-circuit processing of the signal. 

The above spot the need of modeling the sensor itself, and for 

simulator tools that have the ability to switch between sensor 

devices and able to model the hardware specs of these devices, 

including energy consumption of the circuitry that supports 

the sensor. 

 Sensitivity: Is the factor between variation of stimulus and 

consequent variation of electrical signal. A sensor is sensitive, 

if a small change of stimulus results in a large change of the 

electrical signal. Is sensitivity of the selected sensor devices 

adequate for the desired detect ability of the entire network? Is 

it safe to assume detect ability modeled by an deterministic 

(binary) sensing model? What computational load would 

contribute a process that detects events in a continuously 

streaming sensor data in case of a stochastic sensing model? 

(e.g. correlating sound) [23].The answer lies on the ability of 

the simulator to model real world phenomena or scenarios. A 

crack on the concrete construction of a bridge lasts for 

milliseconds and has to be identified among sounds and noises 

of various amplitudes and frequencies e.g. car tires, engines, 

contraction – expansion of metal skeleton etc. Simulating 
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WSN for sniper detection through identifying   sound source 

position of multiple sensor readings requires modeling of the 

environment e.g buildings, echoes, sound attenuation etc. 

 Dynamic Range or Span: The range of physical signal that 

can be converted to electrical according to specs, is the 

dynamic range of the sensor device. The response of the 

sensor outside of this range is faulty. In real life, it is 

impossible to detect inaccurate reading coming from the 

sensor array, unless we use a variety of sensor types to 

measure the same physical quantity. During design process it 

is essential to know the probability of an inaccurate reading 

coming from sensor array, and the impact on the network. To 

cope with this task, we need simulation tools that (a) model 

the sensor, the environmental phenomena of which we collect 

readings, and (b) provide the ability to implement metrics 

over the accuracy of these readings. 

 Noise and Resolution: The output signal of a sensor, is 

contaminated with noise, which is usually distributed across 

the frequency spectrum. In case that noise is similar to 

minimum detectable signal fluctuation (resolution), the 

performance of the system is limited, thus during the design 

process, the selections in hardware are examined on how they 

contribute to noise. 

 Sensing Range: A sensor’s sensing area is a disc or sector, 

sphere or cone. The sensitivity of a sensor may depend on the 

distance of the stimulus. The binary sensing model is not 

always a wise choice without taking in consideration the 

sensor specifications related to stimulus distance from the 

device. When referring to network lifetime, the dominant 

issue is energy consumption. Main resource is considered to 

be the battery, and main consumer the transceiver.  Active 

sensors e.g. accelerometers, require energy to provide output 

electrical signal. Thus the volume of measurements affect 

network lifetime, and along with communication management 

and MCU sleep-wake up cycle, sensor activation management 

needs to be included in the total energy consumption policy.  

Chemical sensors, sensors used in contamination spread 

scenarios, detection of explosives, toxics etc. employ 

substances, e.g. electrolytes, which quantity decrease in every 

measurement. Draining a sensor of that resource makes the 

mote useless in terms of coverage.  In addition, the sensor is 

exposed to unlimited numbers of chemical combinations [26], 

able to alter the sensor’s behavior.  

In conclusion, sensors as electronic devices have 

properties that may have a major impact on sensor network 

behavior. Modeling of sensors, along with the environmental 

properties or phenomena that provide data as sensor 

measurements, contributes to the fact that it is feasible to 

obtain a fine grained detail of the environment – WSN 

interaction, revealing possible failures or bug prone design 

choices during simulation. 

Coverage and Connectivity : Every sensor has a sensing 

range. Range varies from type to type, spanning from a single 

point e.g. temperature sensor to an area usually of circular 

shape. A point of an area or space is covered if it is in range of 

at least one sensor. Coverage is the QoS that quantifies the 

ability of a deployed sensor network to report an event or a 

reading in the deployment area. Sensor readings and their 

processing produce data to be routed to sink. The Sink is 

aware of the events spotted or data produced by motes if 

routing protocol succeeds in delivering data. Thus apart from 

being in range of at least one sensor, a point in the area of 

interest is covered, if there is a routing path available to 

deliver  consequent data to sink. If there is no available path, 

then from the sink’s  view point, there is no response from the 

motes of the disconnected area, and even though an event is 

tracked by a sensor, this area is regarded as a blind hole.  

Every mote has a sensing range (coverage) for each type 

of sensor it carries and a communication range (connectivity). 

Assuming that a WSN is static and isotropic [25], and 

modeling a network as such, reduces our ability to test the 

protocol performance (of any layer) over a transmission power 

– energy management or mobility scheme [24]. Finding 

neighbors by transmitting In full power or in permitted power 

according to battery power level, is one of choices in reacting 

to a connectivity loss scenario. In general a mote has the 

ability to adjust its transmission power during runtime, if the 

total resource management strategy contains the ability. That 

includes the hardware choice of including a battery level 

indicator on the mote.  

In [27], the model of Trap Coverage is introduced. From 

our point of view this model is a realistic one, for it allows 

lack of coverage over bounded areas, in other words, the WSN 

continues to operate when in real life blind holes appear due 

to node energy depletion. The same model generalizes full 

coverage, when the diameter of the permitted blind hole is 

near 0.  

Apart from managing transmission power, mobility [24] 

is among choices, where mobile motes are moving to a 

position that restores connectivity. From obviously expensive 

motes, we move to motes that we are able to use in large 

quantities: Deploying redundant motes, organizing them to 

operate in turns in order to prolong network lifetime. In Cover 

Sets [7][28][29] motes are organized in sets that cover the 

same area, and scheduled in a way that one set is active at the 

time. In many schemes, like [7][28][29] a cross layer 

simulation is needed, for deriving in this case the appropriate 

MAC layer, considering the flood in transmissions. 

Event detection in most cases requires multiple readings 

from different sensors. Processing of sensor data in mote 

clusters or at the sink, produces the report message. Even 

though simulated models of mote collaboration, successful 

routing at most circumstances and hard conditions, data fusion 

at the sink may conclude to success in event tracking thus 

coverage, after deployment, hardware details may prove the 

protocols inadequate. The assumption that sensors of a mote 

can sense at the same time is not valid in case of a single 

MCU ADC channel. Sensors are triggered in turns, and in 

case of a time bounded event (a crack of concrete) some 

sensors of the sensor array of the mote will miss the event. 

Dealing with the problem in [30] authors introduce the 

concept of logical sensor , in which sensors are distributed 

over different motes, kept active and the cluster of motes that 

provide all types of sensors is considered as a logical sensor. 

In the cluster the fusion of data occurs, creating the necessary 

report to be routed to sink. The problem of sensor cost is dealt 
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also. In the same concept, the problem of minimizing 

expensive sensors while maintaining coverage is dealt with 

logical sensors. In the past, one of the assumptions made, was 

the disk model of a sensor, usually binary. Technology has to 

offer a variety of products, in this case sensors, with properties 

to be taken into consideration in the design process of a WSN. 

There are directional sensors (e.g. ultrasonic, cameras, etc), 

thus simulating a WSN equipped with these sensors requires 

simulator with the ability to model in every extension the 

nature of sensors used. In [31] authors propose Maximum 

Coverage with Rotatable Angles (MCRA), in which the 

goal of the protocol is to increase coverage by turning the 

orientation of directional sensors, while minimizing the angles 

of rotation. Minimizing angle of rotation concludes to low 

energy consumption, minimum movement detection of the 

deployed WSN, and positioning of motes in adequate manner 

to cover a given area (surveillance applications) 

Concluding, coverage is not only a matter of sensing 

radius and routing backbone. Details that affect coverage are 

spread across layers, and cross layer simulation is needed to 

obtain precise evaluation of code – protocol performance, in 

terms of reducing mote cost, increasing  network lifetime, and 

of course coverage itself. 
  

3 The Proposed  Simulator Architecture  
 In the previous part, we spotted details taken into 

consideration while designing a protocol or the entire protocol 

collection running on mote’s MCU. Hardware specific 

simulators like Tossim and Atemu lack flexibility concerning 

hardware for they are bounded with a specific platform. 

Avrora emulates every mote in its own thread, and thus 

performs and scales according to thread ability of the 

computer it runs on. None of the above takes advantage of 

GPGPU abilities (CUDA, OpenCL) 

 We propose an architecture, able of scaling, providing 

fine grain detail of the simulation, and configuring all the 

parameters of RF channel, Environment and Hardware. Our 

goal is to provide a multi agent simulation tool, to serve 

among others as a WSN Simulator. 

A. Architecture  
Our proposal consists of four basic elements: (a) Agents 

(b) The Controller (c) Interfaces (d) Services. 

Agents: There are two types of agents. (a) Built in agents. 

They are commonly used components such as plotters, 

visualizers, or emulators. They are at the disposal of the user 

and not necessarily part of every simulation. (b) User defined 

agents. User writes code to define the agent behaviour. These 

are implemented by an interpreter, whose functionality is 

described later.   

The Controller: The controller activates or deactivates agents 

according to simulation clock and/or event handling 

instructions written in user defined code. In case of a 

simulation clock, the controller uses a basic time step which is 

the greatest common divisor GCD of all time steps of the 

clocks of time dependant agents. In case of time independent 

agents, their code is activated at every pace of the controller. 

Interfaces: The interfaces of agents are implemented with a 

byte array. Two agents communicate through a set of bytes eg 

from index a to index b in this array, using b-a bytes. These 

two integers (a and b), describe the interface. All interchanged 

data (numerical quantities, text, fluctuation of a quantity for a 

period of time eg a waveform from t=k to t=k+10, signals or 

combinations) is described in bytes. Every interface may be 

used by two or more agents putting interchanged data in wide 

scope. An event handling mechanism notifies every agent 

using the interface (eg form a to b) that contents are changed. 

An agent may use as many interfaces as user requires. By 

using interfaces the user may project data from inside the 

agent to defined scope. Below is an example of a mote built 

up using four agents and the interface array. The parts of the 

interface array that are used by this mote are coloured with 

grey.  

    

 

 

 

 

 

 

Fig. 1  A Mote Example 

In the above example the PIC emulator uses 3 interfaces, 

of different width. The pace of the emulator is one machine 

cycle, (usually for MCUs execution of one instruction). In the 

lab we may measure the exact energy consumption of one 

cycle. This emulator uses as input the compiled program to be 

uploaded to the real device. The battery agent subtracts from a 

starting quantity energy consumption of MCU and radio, 

sending a shutdown signal to MCU emulator in case of energy 

depletion deactivating the virtual mote. Sensor array agent 

sends analog data to MCU emulator. The interface is as wide 

as needed to describe the possible value range of data. Due to 

ADC conversion latency, the ADC may be modelled 

separately using a fifth agent.  

Services: There are two types of services: (a) built in library. 

They are functions and procedures widely used in fields of 

engineering or science. (b) User defined: user writes code to 

describe the functionality of their procedure or function. 

Services are sets of procedures and/or functions in scope of 

any agent. They are activated when called by agents and their 

data is valid even when they are inactive. An implementation 

example is the RF medium. When a mote transmits, sends to 

RF medium service its coordinates, time, and transmission 

power along with data. RF medium service stores these values 

in a table. When a mote listens, the service calculates the 

signal at his location, according to all active signals above a 

given SNR. In case of an CSMA-CD MAC layer, both 

services (transmitting, listening) are active at the same time. 

B. Interpreter     
The interpreter consists of three main parts: (a) A 4XN 

integer array (b) The actual code that executes user programs 

(c) A byte array where data is stored. 
1) 4XN Integer Array     The simple program is: 
1. If (A>0)       2. B���� B+1   3. else     4. C����C+5   5. Endif   6. D����B+C 

Ends up translated in tokens and stored in the 4XN 

Sensor 

array 

PIC 16f887 

Emulator 

MRF24J40 

Tranceiver 
Battery 
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integer array. There are 4 basic types of token supported: (a) 

decision (b) operator (c) assignment (d) variable or value. At 

the first column contains the token code. Columns 2 and 3 

contain pointers pointing at the next token to execute in the 

token (4XN) array. Column 4 contains pointer pointing to data 

memory. In detail : 

Decision: if A>0 is true then the next token to execute is the 

assignment token in line 2, else executes assignment token in 

line 4. Assuming that decision token code is number 1, and x 

and y are the indexes that tokens in lines 2 and 4 are stored 

respectively, then the line in which the decision token is 

stored in the 4XN would be like: 

There is no pointer to data memory 

for there is no value involved. The expression A>0 is stored 

directly below the decision token row. When the interpreter 

reaches a decision token, evaluates the expression below and 

according to its truth selects next token (x or y). With the 

decision token we may also implement for, while, do until 

statements using the pointers x,y accordingly.   

Operator: Operator > compares variable A with value 0. 

Assuming that operator > token code is 2, and variable-value 

token code is 3 then the expression is stored: 

 

 

 

Fig 2. 4XN Token Array and Memory Array  

The algorithm that evaluates expressions is  
Evaluate (x) 

{ y=Token(x,2); z=Token(x,3) 

IF z=0 and y=0 THEN return mem(Token(x,4)); 

ELSEIF z=0 THEN return op(Token(x,1),evaluate(y))  

ELSEIF y=0 THEN Return op(Token(x,1),evaluate(z)) 

ELSE Return op(Token(x,1),evaluate(y),evaluate(z)) 

ENDIF },    where x,y,z are indexes in the 4XN array of tokens, and 

m,n are indexes in the data memory  (array of type byte).   
Assignment: The assignment token evaluates the expression 

on its right, stores the result in memory, and proceeds to next 

token execution. From assignment token in line 2, next to be 

executed is the assignment token in line 6. The same for 

assignment token in line 4. The token code for the assignment 

is 4 and for the + is 5. The memory pointer in column 4 in an 

assignment row, points the location to store the results. 

Completing the arrays: 

 

 

 

 

 

 

 

 

 

 

 
Fig 3. The representation of the program in the two arrays. 

Data Types: The interpreter engine uses its own set of basic 

data types: Char, string, int, real, bool, byte, binary and their 

combinations (structs). Binary is used for binary numbers 

bigger than 255. From the user’s point of view, data memory 

and interfaces are transparent. From inside the agent, interface 

is seen and used as a simple variable or a struct. The 

interpreter’s engine is responsible for any transformation 

needed, relieving user from the task. 

The basic advantage of this interpreter implementation is 

that is simple and can be used also: 

MCUs: The interpreter is uploaded in the MCU EEPROM. 

Application and protocol coding now becomes data. Sink 

transmits code along with data altering WSN mission at 

runtime.  

In the 4XN array we may store 1 or more programs. Each 

program starts at a specific index of this array. The interpreter 

using a priority mechanism may execute these programs 

concurrently, by executing a number of tokens of each, in 

every pace. This feature makes the interpreter able to serve as 

a base of a WSN OS.  

GPGPU: The function evaluate(x) is the part of the 

interpreter that calculates expressions. The other part is a 

simple switch (x) statement where x is the token code. Using a 

non recursive version of evaluate(x) we eliminate external 

dependencies and calls. One would expect difficulty in 

handling the sum of data involved due to variety of data types. 

In our case all data and code are contained in two arrays. Code 

and data can fit in a CUDA thread. In other words, one agent 

in every thread. The amount of data is constant (arrays). Both 

are copied to GPU memory using: 
#define X 100; #define Y 4;  #define Z 1000 ; 

Int Tkn [X] [Y]; Byte mem [Z]; 

cudaMemcpy(dTkn,Tkn,X*Y*sizeof(int),cudaMemcpyHostTo

Device); 

cudaMemcpy(devicemem,mem,z,cudaMemcpyHostToDevice); 

4 Other Simulators and prospects             

for  the Proposed Design 
The proposed architecture is similar with the architecture 

of SENSE[32]. SENSE is built on top of COST. A simulation 

is dealt as a composition of components. Each component is 

implemented in C++, and communicates with other 

components via inports and outports. Inports and outports are 

used to reduce interdependencies between components and 

allow code reuse. The universal interface mechanism in our 

architecture provides the ability of interchanging any type of 

data and of any size and organization (structs). An interface 

may serve as a private channel used by two agents, or as a 

group channel, only by the use of two indexes that specify the 

channel width and location on the byte array.  

Avrora, AvroraZ, tossim and Atemu, are AVR emulators, 

with  AvroraZ[33] giving the ability of emulating the cc2420 

chip. All are limited to AVR MCU’s implementations, and 

they do no support network-communication level 

simulation[34]. SensorMaker [34] is written in C, provides 

network information in fine grain, (packet collisions, packet 

path, cluster layout) along with mote information mainly 

energy level. However, modelling – coding gap still remains 

1 x Y  

Indx   1        2        3        4 

10 1 x y  

11 2 12 13  

12 3 0 0 m 

13 3 0 0 n 

Memory 
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for the designer to fill. Collecting ideas and implementations, 

we conclude the set of desired features of a simulating tool: 

(1) Easy to use [34] (2) code reuse [32] (3) Hardware 

emulation [14][33] (4) Visualization and interpretation of data 

[34] (5) Network toolbox[34] (6) precise timing [14][33]. 

Our proposal is a multi agent simulator. Using agents 

and services the user may implement hardware emulation, 

channel – medium (RF sound) modelling, environmental 

phenomena modelling, event monitors and handlers, data 

visualisation interpretation and storage. All  the components 

of the simulator are connected directly, or via the multi type 

interface structure. The simulation controller activates each 

agent (a) according to a time interval (time dependant agents), 

(b) at every pace (continually), (c) or according to an event (a 

change in an interface, a memory location, a variation of an 

environmental parameter etc). Agent or service behaviour is 

implemented in code which is executed by the interpreter or 

the simulator. The interpreter’s back end is en array of tokens 

in which the user’s code is translated. The interpreter’s front 

end is a C like language, but in the future others will be 

supported (Delphi, Basic). Controller may control channel 

(RF or sound) simulation, Environmental (temperature 

variations over an area) simulation and device 

simulation/emulation (model/real code)  
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Abstract—Tools that aim to automatically map parallel com-
putations to heterogeneous and hierarchical systems try to divide
the whole computation in parts with computational loads adjusted
to the capabilities of the target devices. Some parts are executed
in node cores, while others are executed in accelerator devices.
Each part requires one or more data-structure pieces that should
be allocated in the device memory during the computation.

In this paper we present a model that allows such automatic
mapping tools to transparently assign computations to hetero-
geneous devices with different memory size restrictions. The
model requires the programmer to specify the access patterns
of the computation threads in a simple abstract form. This
information is used at run-time to determine the second-level
partition of the computation assigned to a device, ensuring that
the data pieces required by each sub-part fit in the target device
memory, and that the number of kernels launched is minimal.
We present experimental results with a prototype implementation
of the model that works for regular polyhedral expressions. We
show how it works for different example applications and access
patterns, transparently executing big computations in devices
with different memory size restrictions.

Keywords—Heterogeneous devices, Polyhedral model, Memory-
size restrictions, Automatic mapping tools

I. INTRODUCTION

Heterogeneous systems can be built with very different
hardware devices (CPU-cores, accelerators) grouped in sev-
eral nodes and interconnected in a distributed environment.
Portable codes for such systems should implement parallel
algorithms, while abstracting them from the mapping activities
that adapt the computation to the platform. Thus, the program-
ming model should encapsulate the mapping techniques and
the CPU/accelerator synchronization with appropriate abstrac-
tions.

Taking into account the memory size limitations of hetero-
geneous target devices is an additional challenge. Currently,
many approaches do not focus in this problem, working with
fixed sized middle-grain tasks [1], or assuming that the tasks
fit, or are generated to fit into the devices [2], [3]. Other
approaches simply advise to add more computation devices
to allow finer partitions [4]. A simple way to tackle the
problem is to generate more distributed processes than system
nodes, mapping several of them to the same device [5]. In
this way, each process is responsible for a smaller part of

the computation. When enough processes are launched, the
parts are small enough to fit in any target device. However,
this leads to more costly inter-process communications and
scalability problems. A more sophisticated approach is to
consider the device memory limitations while creating the
high-level partition [6]. This approach highly complicates the
whole partitioning activity.

An associated problem for memory-restrictions-aware sys-
tems is to find a proper representation of the parallel com-
putation that allows the system to locate, and measure the
size, of the data portions required by a generic part of the
computation. This information is needed for both generating
a balanced partition, and mapping the parts adequately [6],
even for libraries that make transparent the node to device
communication [7].

In this work we propose a solution to allow a hidden layer
to: (1) Split an arbitrarily large computation in parts that fit
the memory limitations of an assigned target device; (2) trans-
parently launch the partial kernels generated; and (3) move
the required pieces of the data structures between the main
node memory and the target device memory when needed. We
present a model of parallel applications that allows to express
access patterns to data structures in terms of the thread index
domains. These expressions allow the system to automatically
compute the memory requirements of a computation part (a
block of threads). We introduce a generic algorithm for regular
polyhedral computations to compute at run-time an appropriate
partitioning of the thread space that minimizes the number of
kernels launched, ensuring that the pieces of the data structures
needed by each kernel fit into the target device memory.

We also present examples of how to represent with this
model parallel kernels and applications. Experimental results
obtained with a prototype implementation of the model show
its feasibility.

The rest of the paper is organized as follows: Section II
describes the proposed approach and how it integrates in a
previous run-time mapping framework. Section III describes
the model for parallel computations and access patterns. Sec-
tion IV presents an algorithm for computing a partition with
memory size limitations. Section V shows experimental results
with a prototype implementation, while Sect. VI presents our
conclusions.
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Fig. 1. Mapping/Coordination levels. The new level of automatic partitioning
is highlighted with a dark-grey shadowed box.

II. RUN-TIME APPROACH FOR MAPPING

A. Hitmap run-time mapping framework

In a previous work [5] we proposed a programming ap-
proach and framework based on: (1) Several layers of plug-in
modules that encapsulate mapping functions; and (2) function-
alities to build the coordination (synchronization and commu-
nication) structures of an algorithms, which are transparently
adapted at run-time in terms of the results of the mapping
functions. The approach was incorporated into Hitmap [8],
[9], a parallel programming library where partition policies
are implemented through a set of plug-ins with a common
interface.

Figure 1 shows the original mapping and coordination
layers (white boxes). There are two levels of partition. The
first one is designed to encapsulate coarse-grain mapping
techniques, appropriate for distributed-memory nodes. At this
level logical processes are assigned to processing nodes, or
accelerator devices. Coordination patterns are built with high-
level point-to-point, or collective communications, using the
results automatically generated at run-time by the partition
strategies. Thus, if partition or distributed topology details
change, the communication structure will reflect the changes
automatically.

Given the computation part in a logical process, assigned to
a target device, the second mapping level allows to compute a
proper middle-grain blocking partition. The mapping plug-ins
at this level encapsulate heterogeneous policies to generate ap-
propriate tiling sizes for CPU cores, thread-block geometry for
GPU devices, etc. The coordination, data movement between
the CPU and accelerators, and kernel launch, is automatized
by a run-time system, using the second-level partition results.

The programmer naturally introduces a third level of map-
ping inside the kernel code by implementing specific, thread-
level memory access patterns.

B. Integration approach

In the previous mapping approach, the computation par-
titioning is done top-down. The whole computation is first
split and coordinated among logical processes in a distributed-
memory environment. Load balancing techniques can be used
at this level to adapt the amount of computation of each part
to the computation power and characteristics of each device
assigned to a process.

As we mentioned in the previous section, although device
memory restrictions can be considered at this level in the
partition policies, these policies would become much more
complicated. For huge computations, they will lead to the
creation of a higher number of logical processes, with the
associated penalties for coordination and communication.

Our solution is to keep using simple partition policies at
the highest level, that do not take into account the memory
restrictions of heterogeneous accelerator devices attached to
the system nodes. Then, we introduce a hidden abstraction
layer that splits the computation in several parts which memory
requirements fit the device limits. This layer is applied after
determining the appropriate tile or block geometry (see the
dark shaded box in Fig. 1). To keep the optimizations obtained
by the tiling/blocking techniques of the upper layer, this new
internal partition uses as basic mapping elements the tiles or
blocks. Sections of the grid of tiles/blocks are going to be
sequentially launched to the device as separate kernels.

In general, due to communication costs between the main
node and the device memories, the partition of a computation
should be minimal. Besides this, when launching a subpart
of a computation, the exact pieces of data structures accessed
by each part are determined by the application algorithm, and
the design details of the parallel solution. In our approach, we
introduce a simple abstraction to help the programmer express
the access patterns of the threads to any data structure involved.
Thus, the system can automatically derive expressions to
compute at run-time the exact memory requirements, and the
exact locations of data pieces needed for a given computation
subpart (a section of the tiles/blocks grid).

III. MODEL FOR PARALLEL COMPUTATIONS AND
ACCESSES PATTERNS

A. Polyhedral domain spaces

We define a domain D as a collection of n-tuples of integer
numbers that define a space of n-dimensional indexes. For
dense arrays, the index domain is a subspace of Zn, defined
by a rectangular parallelotope. In this work we also allow
strided domains, where the parallelotopes are defined by its
dimensional limits, and a stride value for each dimension.
A Signature is a 3-tuple of integer numbers S = (b, e, s) :
b, e, s ∈ Z representing a subset of integer numbers where the
begin or lower limit is b, the end or upper limit is e, and the
elements are selected using the stride value s. We denote this
subset of integer numbers as the range of the signature S̆.

S = (b, e, s); S̆ = {x ∈ Z : x ≥ b, x ≤ e, (x− b) mod s = 0}
D < S0, . . . , Sn >= {(p0, . . . , pn) : pi ∈ S̆i}

Domains are used in this work to represent the index space
of a data structure, a set of indexed threads, the geometry of
a tile/block of threads, a grid of tiles/blocks, or a superblock
geometry (a subdomain of a grid of tiles/blocks).

B. Parallel computations

A data structure or tile T is a map between elements
of a domain and data elements of a given type: T : D →
dataType. We denote with d(T ) the Domain of a tile.
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We define a Parallel Computation P < D, f, T0, . . . , Tm >
as a collection of threads manipulating data in one or more data
structures or tiles T0, . . . , Tm. The domain of the computation
D defines the number and indexes of the threads to be
executed. The computation is the application of the function f
(or collection of statements) by each thread on data elements.
A Polyhedral Computation is a parallel computation where its
domain D can be expressed as a parallelotope, and where the
function f uses affine expressions on the thread indexes to
locate and access data elements in any data structure Ti.

C. Access patterns

An Access Pattern AP is a set of access expressions.
An Access Expression represents a domain transformation
A : D,Zn → D. It is a tuple of n Signature Functions
A = (A0, . . . , An). Each signature function maps a signature,
and one domain element, to another signature: Ai : S,Zn → S.

Affine Access Expressions are those whose signature func-
tions determine the resulting signatures using affine expres-
sions in terms of the input domain element ~x ∈ D, to compute
the begin and end elements of the new signature and the
resulting stride is proportional to the original one.

Ai < ~ab, bb,~ae, be, c > (S, ~x) = (b′, e′, s′) :

b′ = ~ab · ~x+ bb,

e′ = ~ae · ~x+ be,

s′ = c× s

In some real parallel computations one dimension of a data
structure is fully traversed by any thread. We model this special
behavior using infinity values in the signature function to refer
to the limits of the input signature. If bb = −∞, then b′ = b.
If be =∞, then e′ = e.

D. Union of domains

The union of generic domains expressed by signatures, can-
not always be expressed themselves by signatures. As an ex-
ample, consider the situation where there is a gap between their
extremes, such in S = (2, 100, 2), S′ = (250, 300, 2), or when
the strides are not compatible, such in S = (2, 100, 2), S′ =
(2, 100, 3).

We define the Signature coarse union operator t as: S t
S′ = (b′′, e′′, s′′) : b′′ = min(b, b′), e′′ = max(e, e′), s′′ =
m.c.d.(s, s′). We can also extent the operator definition to
n-dimensional domains. The Domain coarse union of two
domains is calculated applying the signature coarse operator
to each pair of signatures with the same index: D t D′ =
(S0 t S′

0, . . . , Sn t S′
n). The application of this operator to

merge two strided parallelotope domains generates another
strided parallelotope that can be expressed with signatures,
with minimal number of extra added elements.

E. Domain transformations

We define a Domain transformation Γ : D,AP,D → D
as the coarse union of the domains obtained applying each
access pattern to each element of the second domain, using as
reference the first domain, or data-structure domain.

Γ(D,AP,D′) = t{A(D,~x)} ∀~x ∈ D′ ∧ ∀A ∈ AP

We call Regular access expressions to those that for two
given input domain elements ~x, ~y, the signatures Ai(D,~x) =
(b, e, s) are a translation of the signatures Ai(D, ~y) =
(b′, e′, s′) such that ∀i: (1) b′ = b, e′ = e, s′ = s, or (2)
b′ = b + (yi − xi), e

′ = e + (yi − xi), s
′ = s. A Regular

access pattern is a pattern with only regular access expressions.
Memory requirements of regular access patterns grow linearly
when the threads space grows in only one dimension.

IV. PARTITION OF REGULAR COMPUTATIONS FOR
HETEROGENEOUS DEVICES WITH MEMORY LIMITATIONS

This section presents a general algorithm that, given a
polyhedral parallel computation with regular access patterns,
determines how to split in regular parts the grid of tiles/blocks
of threads, in such a way that the number of parts is minimal,
and the memory requirements of each part does not exceed
an arbitrary memory limit. To introduce the basic concept we
present first the special case for 1-dimensional domains. Then,
we present the solution for 2-dimensional domains. Algorithms
for higher dimensions can be deduced from these ones.

To simplify the presentation, in the following algorithms
we assume that the thread index space has stride 1, and starts
at 1, for all dimensions. It is straightforward to extend the
algorithm to use generic thread index domains with any stride
or starting positions.

A. Inputs/Outputs

The algorithms have the following parameters:

Input: The device memory limit devLim ∈ N.
Input: The dimensional sizes of the grid of tiles/blocks

~g ∈ Nn.
Input: The dimensional sizes of the tile/block ~b ∈ Nn.
Input: A collection of data structures or tiles T0, . . . , Tm.
Input: A collection of access patterns, one for each tile

AP0, . . . APm.
Output: The number of blocks in each dimension that will

form a subpart ~r ∈ Nn.

B. Algorithm for 1-dimensional spaces

The algorithm is based on determining the linear increasing
rate of memory requirements when more blocks are grouped
together, and represent it with a line equation. Substituting
the device memory limit into the equation, we can obtain the
higher number of blocks which memory requirements fits in
the available space.

1. B1 = ((1, b, 1)), B2 = ((1, 2× b, 1))
2. s1 =

∑
i |Γ(d(Ti), APi, B1)|, s2 =

∑
i |Γ(d(Ti), APi, B2)|

3. Compute α, β, γ : 0 = αx+βy+γ is the line equation that
contains both (1, s1) and (2, s2).
4. Return r = b−(β · devLim+ γ)/αc

C. Algorithm for 2-dimensional spaces and beyond

For two dimensional spaces we obtain a plane equation for
the memory requirements of three samples of block groups.
Substituting the device memory limit into the equation, we
obtain a line equation. The points of this equation determine
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Vector addition
1. ∀i ∈ d(~z)
1.1. zi = xi + yi
2. Return ~z

Cellular automata
1. for i=1. . . t
1.1. A′ = A
1.2. ∀(i, j) ∈ d(A)
1.2.1. A(i, j) = (A′(i− 1, j) +A′(i+ 1, j)

+A′(i, j − 1) +A′(i, j + 1))/4
2. Return A

Matrix-matrix multiplication

1. C = 0
1. ∀(i, j) ∈ d(C)
1.1. ∀ k ∈ [0,m− 1]
1.1.1. C(i, j) = C(i, j) +A(i, k)×B(k, i)
2. Return C

Fig. 2. Algorithms for the three study cases.

the best candidates for the solution. These candidates are
checked to determine which one leads to less number of parts
due to better alignment of multiples of the new superblock
sizes with the grid dimensions.

1. B1 = ((1, b0, 1), (1, b1, 1)), B2 = ((1, b0, 1), (1, 2 ×
b1, 1)), B3 = ((1, 2× b0, 1), (1, b1, 1))
2. s1 =

∑
i |Γ(d(Ti), APi, B1)|,

s2 =
∑

i |Γ(d(Ti), APi, B2)|,
s3 =

∑
i |Γ(d(Ti), APi, B3)|,

3. Compute α, β, γ, δ : 0 = αx + βy + γz + δ is the plane
equation that contains (1, 1, s1), (1, 2, s2), and (2, 1, s3).
4. Substitute z = devLim to obtain a line equation 0 =
αx+ βy + δ′.
5. ∀ ~r = (r0, r1) : r0 = bq0c, r1 = bq1c : 0 = αq0 + βq1 + δ′

5.1. Compute k(~r) = dg0/r0e × dg1/r1e
6. Return ~r with the minimum value of k(~r).

D. Study cases

In this section we present some examples of regular kernels
and applications to show how our model can be used to express
different access patterns. The base algorithms for the study
cases are presented in Fig. 2.

1) Vector addition: This simple kernel computes ~z = ~y+~x
using one thread to compute the result of each zi element.
It uses a 1-dimensional thread space of as many threads as
elements in the arrays. The access pattern for this kernel have
a single access expression:

A0 < 1, 0, 1, 0, 1 >

Thus, the resulting signature

S′ = A0(S, ~x) = (1× x0 + 0, 1× x0 + 0, 1) = (x0, x0, 1)

contains only one point in its range S̆′ = ~x.

2) Stencil program: Cellular automata: This is an example
of an stencil application in a two dimensional array space. It
implements a PDE solver to compute the heat distribution is a
2-dimensional discretized space using the Jacobi method. The
application has a step loop that applies a stencil computation,
computing the new value of a matrix position using the old
values of its four neighbors. There is only one input/output
parameter, a matrix A.

The thread domain is the same as the matrix index do-
main. Each thread compute one matrix position. All threads
synchronize on each i loop step.

The access pattern for this kernel can be expressed with
one access expression for each matrix access, or in a compact
form with only one expression:

A = (A0 < 1,−1, 1, 1, 1 >,A1 < 1,−1, 1, 1, 1 >)

Thus, the resulting signatures are

S′
0 = A0(S0, ~x) = (x0 − 1, x0 + 1, 1)

S′
1 = A1(S1, ~x) = (x1 − 1, x1 + 1, 1)

This compact form directly includes in the access pattern
result the four corner elements that are not really accessed.
However, the resulting domain is a parallelotope. When the
pattern is applied to a subset of the thread index space, the
amount of added data is negligible, and the parallelotope shape
conveniently simplifies the movement of data between node
and device memories.

Note that, for threads in the limits of the thread domain,
the resulting accessed pattern exceeds the limits of the original
matrix. To avoid the use of costly conditional evaluations in
the fine-grain threads, the A matrix should be extended with
ghost borders, or the thread index space should be reduced by
one element on each border.

3) Matrix multiplication: In all the previous examples the
resulting domains do not need to take into account the domain
description of the data structures. Thus, the input signatures
on the access expressions are simply ignored.

This study case is a direct implementation of the classical
matrix-matrix multiplication Cn,n = An,m×Bm.n, with three
loops. It implements a fine-grain parallelization of the first
two loops. Each thread executes the third loop to compute one
position of the resulting matrix.

There are three different access patterns for this applica-
tion, one for each matrix. Each pattern has a single access
expression:

For matrix A: (A0 < 0,−∞, 0,+∞, 1 >,A1 < 1, 0, 1, 0, 1 >)

For matrix B: (A0 < 1, 0, 1, 0, 1 >,A1 < 0,−∞, 0,+∞, 1 >)

For matrix C: (A0 < 1, 0, 1, 0, 1 >,A1 < 1, 0, 1, 0, 1 >)

This access patterns indicate that each thread accesses to a
full row of the A matrix, a full column of the B matrix, and
one element of the C matrix, with the same indexes as the
thread.
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Vector Addition
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels . . . . 49 25 13 7 3 2 1
Kernel size . . . . 16 32 64 128 256 512 767
Cellular Automata
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels . . . . 48 24 13 7 4 2 1
Kernel size . . . . 11 21 43 85 170 241 512
MM Multiplication
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels . . 1103 433 128 43 19 9 1 . .
Kernel size . . 0.4 1.2 4 12 28 60 192 . .

Fig. 3. Execution times for: (a) Vector addition; (c) Stencil computation;
(d) Matrix-matrix multiplication. The tics in the x-axis indicate the value of
the memory-size-limit parameter. The table shows for each program and each
memory-size-limit value, the number of sub-kernels generated by our system
for this case, and the memory size actually used.

V. EXPERIMENTAL STUDY

We have developed a prototype implementation of the
algorithms presented in Sect. IV. The implementation uses
Hitmap, a library for automatic partition and mapping of
parallel applications using hierarchical tiling arrays, that was
briefly described in Sect. II. Our prototype layer implements
the automatic computation of the best partition, the transparent
movement of the required portions of the data structures
to/from the target device memory, and the sequential execution
of each part as a different kernel. The hidden layer is integrated
in a new kernel launching function, that receives one access
pattern specification along with each tile parameter.

We have implemented the three study cases presented
above using the new tools. The codes are similar to the original
ones, with expressions of the access patterns for each data
structure involved in the computation. We have tested the
prototype with a GPU target device, manually changing the
memory-size-limit parameter to simulate different scenarios.

Our experimental platform is a GForce GTX 680 (Kepler,
2048 MB GDDR5) NVIDIA GPU device. The host machine
is a 64-bits Intel(R) Core(TM) i7 CPU 960 3.20GHz, with a
global memory of 6 GB DDR3. It runs an UBUNTU desktop
10.10 (64 bits) operating system. The applications have been
developed using CUDA 4.2 toolkit and the 295.41 64-bit
driver.

The use of integer or float data element lead to practically
the same execution time in CUDA. Thus, we select integer as
data type. The data structures size chosen for each benchmarks
are different, in order to obtain stable execution time values.
The number of items are the following: (1) Vector addition:
n = 67 107 840; (2) cellular automata: n = m =8 192, and
(3) matrix multiplication n = m = 4 096. These sizes are
multiple of the selected threadBlock size to avoid any padding
operation.

To simulate results for different kinds of devices, we
decided to manually change the memory-size-limit parameter.
We have selected values that are powers of two in the range of
1 to 1024 Mbytes. For each kernel there is a different range of
this parameter that leads to a feasible number of sub-kernels
with a reasonable kernel size. Figure 3 shows the execution
times (in milliseconds) obtained for some memory-size-limit
parameter values. The first bar indicates the total execution
time, while the second bar indicates the time devoted to real
computation. The rest of the time is spent in node-device
communications.

The results show that, as expected, for the kernels with
low computational load per thread (vector addition and cellular
automata), the ratio of communication vs. computation is very
high, being very small in the remaining cases. When commu-
nication times dominate the total execution time, we observe a
trend to reduced communication times for particular memory
restrictions. This effect can be explained by the fact that the
PCI Express bus works faster for memory transactions of
particular sizes. Thus, when the subkernels generated require
memory sizes that fit well in the PCI bus, the communication
times are reduced. This information can be exploited by a
library to split the communication in proper block sizes [10].

For the unidimensional example, vector addition, we can
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see that the algorithm generates kernels that fit the memory
limit almost perfectly. However, this is not the case for
2-dimensional problems. In the current implementation, the
stage 5 of the 2-dimensional algorithm has not been yet
implemented, leading to suboptimal partition results. However,
the performance results show the same trends when manually
selecting the best candidate.

The intensive reutilization of caches by the concurrent dot
products in matrix multiplication application, leads to reduced
total execution times when the kernels have bigger sizes.

The results show that the hidden layer does not impose a
substantial overhead on the execution of the whole computa-
tion, and it can take away the burden of considering memory-
size restrictions from upper mapping layers. Moreover, a
deeper research on the information provided by the access
patterns may also leads to detect situations where the system
can get profit of the artificial automatic partition of the kernels
to improve performance results.

VI. CONCLUSIONS

In this paper we present a model of parallel computations
that allows to build a transparent mapping layer that divides
and executes a computation taking into account the memory
restrictions of the assigned device. The model requires the
programmer to specify the access patterns of the computation
threads in a simple abstract form. This information is used
at run-time to compute the pieces of data-structures required
by a generic partition, and to determine the best partition that
ensures that each subpart fits in the device memory.

We discuss an implementation of this concept into an auto-
matic mapping tool that allows to apply high-level distributions
in heterogeneous devices without the need to take into account
the memory limitations of the target devices. Our experimental
results show that feasibility of the solution proposed.

Future work includes a further study of the opportunities
to deal with more irregular access patterns at run-time, adding
to the model considerations about optimal kernel sizes, and
analyzing memory transactions cost between node and target
devices.
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Optimizing Data Locality for Iterative Matrix Solvers on CUDA
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Abstract— Solving systems of linear equations is an im-
portant problem that spans almost all fields of science and
mathematics. When these systems grow in size, iterative
methods are used to solve these problems. This paper looks
at optimizing these methods for CUDA Architectures. It
discusses a multi-threaded CPU implementation, a GPU
implementation, and a data optimized GPU implementation.
The optimized version uses an extra kernel to rearrange
the problem data so that there are a minimal number
of memory access and minimum thread divergence. The
normal GPU implementation achieved a total speedup of
1.60X over the CPU version whereas the optimized version
was able to achieve a total speedup of 1.78X. This paper
demonstrates the importance of pre-organizing the data in
iterative methods and its impact.

Keywords: Block Jacobi, CUDA, Multi-GPU, Iterative Methods,
GPGPU

1. Introduction
Systems of linear equations are ubiquitous in computer

engineering, as well as throughout all of science. They are
used to solve problems from linear circuits all the way
to discretization of more complex problems such as Finite
Element Methods. The fact that they are deeply imbedded
in so much of the work done in these areas means that there
has always been a scientific advantage in being able to solve
these systems faster.

Generally these systems are solved through algorithms
that are referred to as direct approaches. They are called
direct approaches because they involve a series of steps
that can be followed and, when completed, the matrix has
been solved. These direct approaches generally have two
drawbacks; they are inherently sequential and are often
extremely slow for large numbers of variables. This is where
indirect or iterative solvers take the stage. Iterative methods
involve performing a step or series of steps over and over
again. There is no direct way of knowing how many steps
are required; instead they converge towards a solution. There
are a variety of ways of telling if the solution is close to
convergence, and therefore close to correct.

This paper focuses on the implementation of the Jacobi
Algorithm, which is used mostly for simplicity. This mod-
ification to the algorithm should be easily adaptable to use
a variety of iterative methods. This algorithm has been
implemented for a single and multiple CPUs using C++
and the pthreads library. This implementation will serve as

a baseline for the tests performed on a single GPU. The
addition of GPU support will be a CUDA-based solver.

2. Related Work
The natural parallel nature of iterative linear solvers are

generally very attractive to the GPGPU environment [1].
Iterative linear solvers have been implemented on GPUs for a
variety of problems in several areas of science. Both CUDA
and OpenGL implementations were tested by Amorim et al
in 2009 [2]. CUDA based systems were successfully tested
by Wang et al 2009 [3], Zhang et al 2009 [4], and Amador
and Gomes 2009 [5] to mention a few examples. In most
cases there was a noticeable benefit for iterative solvers
running on the GPU.

Amorim et al 2009 performed a comparison of OpenGL
and CUDA implementations with a single threaded SSE-
enabled CPU baseline. The OpenGL code was implemented
by writing a shader that would read the current iteration
from one texture and write the next iteration into another.
The CUDA implementation showed to be noticeably better
than OpenGL, with a maximum speedup of 31x vs only 17x
achieved through OpenGL. This was a good comparison of
the two approaches however it was only tested on fairly small
problems (n < 10). [2]

Wang et al 2009 performed some testing up to much
larger sizes (n < 4000). This implementation was, however,
a much less efficient implementation that was only able to
reach speedups between 1.5x and 3x. It did show that to
utilize the full potential of the GTX280 being tested (240
Processors) that the n must be greater than or equal to 512.
The performance showed the most computational power at
n = 512, decreasing slightly for n > 512. [3]

Zhang et al 2009 created an implementation that per-
formed well and was tested on matrix sizes up to 10,000.
This implementation had support for both single and double
precision, which both performed significantly better than the
CPU. The single precision had a peak speedup of 59x, while
the double had a peak speedup of 19x. [4]

Amador and Gomes 2009 did a comparison of three differ-
ent iterative solvers. They were the Jacobi Method, Gauss-
Seidel (A Derivative of Jacobi), and Conjugate Gradient.
Their results showed significantly greater speedup of Ja-
cobi and Gauss-Seidel implementations. This suggested that
Jacobi-based methods are significantly more parallelizable,
and a better candidate for multi-GPU applications. [5]

Iterative methods have been implemented on a GPU
cluster at least once before by Ali Cevahir 2010. [6] It was an
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implementation of a conjugate gradient method. It had 15x
more processing power by using 2 GPUs/node rather than
2 CPUs/node. This method required a significant amount of
preconditioning to the matrix.

3. Iterative Solvers
There are many types of iterative methods that are used

commonly in solving large linear systems. Many of them
are arguably better at producing solutions than the Jacobi
Method. What the Jacobi Method lacks in convergence rate
it makes up for in how parallelizable it is as well as the
simplicity in implementing it.

3.1 Jacobi
For a brief explanation of the Jacobi Method let us

examine the matrix equation below. Where A is a matrix
of size n by n, b is a column vector of size n, and x is a
column vector of unknowns of size n.

A ∗ x = b (1)

The simplest explanation of the Jacobi Method can be
described by splitting the system into a series of rows. Each
row can represent a single linear equation. The following
would be a single equation representing row i, in a system
of size n.

Ai,0 ∗ x0 +Ai,1 ∗ x1 + ...+Ai,n ∗ xn = bi (2)

The basis of the Jacobi Method is to solve the ith equation
for the ith unknown for all i.

xi =

bi −
∑
j!=i

Ai,j ∗ xj

Ai,i
(3)

By inserting the current values of x into the right hand
side of the above equation, the Jacobi method produces the
next iteration for x. The equation below shows how x moves
from one iteration to the next.

xk+1
i =

bi −
∑
j!=i

Ai,j ∗ xk
j

Ai,i
(4)

Now the benefit of the Jacobi Method is clear because
each of the unknowns can be solved for completely indepen-
dently within each iteration, making this a very parallelizable
algorithm.

3.2 Block-based Jacobi
The Block Jacobi Algorithm takes this already parallel

method and lends itself even more so to the CUDA archi-
tecture. The modification of the algorithm is a small one. It
divides the matrix into blocks of unknowns and each block is
iterated separately; the results are only communicated after
several iterations have passed.

If the block algorithm was being applied with two group-
ings then each of the blocks B1 and B2 could be [x0, xn/2]
and [xn/2+1,xn]. Both B1 and B2 are iterated separately
without updating any values outside their respective blocks;
this is referred to as an inner iteration. Several inner it-
erations are completed before values outside a block are
updated. When all of the values are updated this is referred
to as an outer iteration.

The division of the unknowns cuts down on the com-
munication bandwidth that is needed. It also allows for
some computational optimization that is discussed in the
Reorganization section.

4. Parallel Block Jacobi
This section describes how the version of the Block Jacobi

Algorithm was implemented. First it describes the CPU
version and how the block algorithm applies to multithread-
ing. Then this section discusses the CUDA structuring and
applications related to the architecture.

4.1 CPU Structure
To focus on the calculation of the solution the process

is divided into three different stages. The program reads
from input, then calculates the solution in parallel, and
finally writes the output. Figure 1 shows this flow for three
processing threads.

Fig. 1: Program Flow for 3 Threads

While in the processing stage there are a number of
processing threads that handle inner iterations and a master
thread that tracks convergence of the group. When an outer
iteration occurs, each of the slave processors transmits
updates to each of the other slave processors and sends
information about its convergence state to the master thread.
Figure 2 shows the flow between threads during an outer
iteration.
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Fig. 2: Outer Iteration Communication

Given that on the CPU each of the threads controls a
block, the size of the blocks being used in the algorithm can
be controlled by the number of threads being used.

4.2 GPU Structure
The Block GPU Algorithm lends itself extremely well

to the CUDA kernel structures. A CUDA Block can share
memory and fits well to hold a single block of the Block
Jacobi algorithm. This allows each CUDA thread to update
the values of a single variable, unlike the CPU where each
thread controls an entire Jacobi Block.

Each group of inner iterations is contained within a
single kernel, and between each kernel an outer iteration
is performed by doing a Device-to-Device memory copy.

4.3 Multi-GPU Structure
This structure lends itself well when porting to a multiple

GPU system using each processing thread to control a GPU.
Figure 3 below shows the modified data flow for a multi-
GPU system.

Fig. 3: Program Flow for 3 GPUs

The kernel requires little modification because inner itera-
tions are isolated to occur on a single GPU. Outer iterations

require that the updated X values are shared between each
of the GPUs using a similar structure to the CPU Implemen-
tation.

4.4 Sparse Storage
A sparse matrix is a matrix that is composed mostly of

zeros. These kinds of matrices are very common in some
types of modeling (e.g., FEM). Figure 4 shows an example
of a matrix generated by a 2-D FEM problem, where black
pixels represent non-zero elements.

Fig. 4: Non-zero Elements in Sparse Matrix

When a matrix is composed mostly of zeros it becomes
more efficient to only store the non-zero elements rather
than the entire array in memory. The linear equations solver
implements a simple form of sparse storage. Each row of the
matrix is stored as a list of indices and a list of coefficients.
A pair consisting of an index and a coefficient represent one
value in the row and the index into the row where the value
should reside.

4.5 Reorganization
To handle large systems the data passed to the GPU is

sparsely stored to save space. Each CUDA thread loops
across the summation shown in Equation 4. This is not a
good structure for CUDA because for each time through
the summation there are two categories it can fall into. A
variable can be within the Jacobi block so the value must
be pulled from an updated list in shared memory, or it
can be outside of the Jacobi block meaning a static value
should be pulled from global memory. Since CUDA has 32-
thread groups operating in an SIMD nature, having divergent
threads in each loop is bad for performance.
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To make the code more optimized for CUDA, a second
kernel was added. This second kernel was run once at the
beginning of operation and would reorganize the data to
remove conditional situation within the main loop. To do
this the kernel takes the lists describing the coefficients in
a specific equation and divides them into the groups for
static coefficients (coefficients multiplied by values outside
the Jacobi block) and dynamic coefficients (coefficients
multiplied by values within the jacobi block). Figure 5 shows
an example of this division, where static coefficients are
indicated by an S. Global indices are represented by I and
local indices (within a Jacobi block) are represented by L.

Fig. 5: Reorganization of Sparse Matrix Row

Figure 5 also shows that when storing the indices for the
dynamic list the problem converts the indices from global
indices to local indices. These lists are created for each of
the threads. When stored in memory the array is transposed
to ensure that each thread read happens within a single cache
line to minimize memory accesses.

5. Performance Analysis
The code was tested on both a small and large linear

system for analysis. The inputs were generated using Finite
Element Models. The small test was generated with a
simple 1-D heat flow finite element model with 100 nodes
(unknowns). The larger test case is one generated using the
University of Maine Ice Sheet Model, a 2-D problem with
168,861 nodes (unknowns).

5.1 Hardware Configuration
Having insufficient supporting hardware can be detrimen-

tal to performance of the GPU. The configuration used was
built for GPU computing at the University of Maine. Table
1 shows an overview of the hardware for the machine.

Table 1: GPGPU Machine Configuration

CPU: Intel Core i7 990X
GPU: 2 x NVIDIA GTX 580

1 x NVIDIA GTX 680
Memory: 24 GB DDR 1600
Motherboard: ASUS Rampage III Extreme
Storage: 50 GB SSD

500 GB HDD

5.2 CPU Tests
The CPU implementation was tested on each of the inputs

described above. The number of processing threads was
varied from one to eleven. Figure 6 shows the runtime
averaged over three runs for each of the numbers of threads
for the smaller test data.

Fig. 6: CPU Runtime for Small Test Data

The results clearly show the total runtime starting to level
off around six threads, the number of physical cores the
processor being used for testing. Figure 7 below is the results
for the same tests with the larger input set.

Fig. 7: CPU Runtime for Large Test Data

5.3 GPU Tests
The same data was tested on 1-3 GPUs. All single GPU

tests use the NVIDIA GTX 680. All multi-GPU tests use
one NVIDIA GTX 680 and all additional GPUs are NVIDIA
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GTX 580s. Figure 8 shows the runtimes for these tests. It
shows that the runtime increased as the GPUs were added.
This was a fairly small test set (only 100 unknowns), so the
lack of performance is expected.

Fig. 8: GPU Runtime for Small Test Data

Figure 9 shows the GPU performance on the larger
dataset. With the larger dataset there was a very slight
decrease in runtime from one to two GPUs being used (not
existent in the reorganized version).

Fig. 9: GPU Runtime for Large Test Data

Table 2 shows the total speedup for the large dataset with
one, two, and three GPUs for both normal and reorganized
runs. For this dataset, two GPUs offered the best speedup,
1.60X.

Table 2: Table of Large Dataset Total Speedup

Number Normal Reorganized
of GPUs Speedup Speedup

1 1.55X 1.78X
2 1.60X 1.73X
3 1.56X 1.65X

Given the lack of significant increase in performance from
the addition of GPUs, the processing time (excluding setup
and shutdown of program) was examined. Figures 10 and
11 show the processing time for each of the datasets.

Fig. 10: GPU Processing Time for Small Test Data

The small dataset shows a noticable increase in process-
ing time taken from adding GPUs. This indicates that the
communication overhead of the GPUs is not worth the extra
computational power given.

Fig. 11: GPU Processing Time for Large Test Data
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Table 3 shows the processing speedup for the large
dataset with one, two, and three GPUs for both normal and
reorganized runs. For this dataset, one GPU offered the best
speedup for the reorganized data, 6.72X, while two GPUs
offered the best speedup for normal data, 3.86X.

Table 3: Table of Large Dataset Processing Speedup

Number Normal Reorganized
of GPUs Speedup Speedup

1 3.30X 6.72X
2 3.86X 5.77X
3 3.82X 4.78X

The larger dataset shows much better results for adding
GPUs. The processing time decreased for GPUs being added
for both the normal and reorganized versions of the code.
Analysis of the rest of the code showed that there was an
increase in the setup time for the GPUs as more were added.
This setup time was used to transfer the problem data to all
of the GPUs. Figures 12 and 13 show the setup times for
each of the tests.

Fig. 12: GPU Setup Time for Small Test Data

Fig. 13: GPU Setup Time for Large Test Data

The increase in setup time is nearly linear for both cases.
This is easily explained by the limited bandwidth of the PCI-
E bus. As the number of GPUs increases the amount of data
that must be transferred increases almost linearly as each of
the GPUs requires the full initial state of most of the values.

6. Conclusion
The Linear Equations Solver described in this paper had

good results when ported to the GPU. Including the complete
runtime, the GPU had a maximum speedup of 1.78X over the
CPU. Looking at only the processing time, the GPU had a
speedup of 6.72X over the CPU. The processing went 6.72X
faster on a data set significantly larger than the related work
described in Section 2. The reorganization of the data for
CUDA had a significant impact on the runtime in all tests.
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Abstract— The analysis of large volumes of data is common
nowadays and MapReduce applications are widely used for
this task. The Data List Management Library (DLML) has
some similarities with MapReduce in that it processes data
lists in parallel and balances the workload dynamically and
transparently to the programmer. Unlike MapReduce, DLML
was initially designed to process data lists resident in main
memory.
This paper presents DLML-IO, a new design of DLML
extended to process large volumes of data in files. The design
of DLML-IO borrows from the design of MapReduce, partic-
ularly the partitioning of data in files for the purpose of IO
to proceed in parallel in order to improve performance. We
present experimental results comparing the performance of
DLML-IO and MapReduce using four applications. DLML-
IO performs better than MapReduce running two of those
applications, but worse than MapReduce running the other
two applications.

Keywords: Parallel Computing, MapReduce, Load Balancing,
Message Passing

1. Introduction
Processing large data volumes is common in many areas

including scientific analysis in nuclear physics, decision-
making for designing new products, and simulations of large-
scale visualizations [1], [2], [3]. A popular tool to process
large amounts of data is MapReduce, a programming model
and runtime environment developed by Google. Sorting data,
data mining and machine learning are some of the tasks
that Google carries out with MapReduce [4]. MapReduce
has been widely adopted by the academia and enterprises
in general. Hadoop [5] is a free open source version of
MapReduce that can run on a private commodity cluster or in
the Cloud, e.g., through Amazon web services [6]. Hadoop
is currently a core part of the computing infrastructure of
Yahoo, Facebook, LinkedIn, and Twitter.

MapReduce has been widely adopted for a number of rea-
sons. It can be used to process both structured and unstruc-
tured data and is thus more flexible than database systems.
It runs in parallel on clusters of commodity processors and
network hardware. Yet the programming is sequential. It sup-
ports both fault tolerance and load balancing transparently

to the programmer. A number of open free projects are cur-
rently enhancing the MapReduce applicability and its ease
of use. For example, CGL-MapReduce [7] is a MapReduce
implementation that uses streaming for all communications
and it enables iterative MapReduce computations. In [8]
a MapReduce implementation is described that uses MPI
to exploit the high bandwidth to send intermediate data.
Another MapReduce version described in [9] allows setting
data access semantics to improve performance by reducing
the number of phases in applications.

The Data List Management Library (DLML) processes
data lists in parallel. DLML users only need to organise
their data into items toinsert into andget from a list using
DLML functions; the programming looks sequential. DLML
applications run under the Single Program Multiple Data
(SPMD) model: all processors run the same program but
operate on distinct data lists. When a list becomes empty, it is
refilled (by DLML) throughstealingdata items from another
list transparently to the programmer. Thus the workload
gets balanced according to the processing capacity of each
processor.

The first version of DLML was a design based on multi-
process parallelism and message passing, with MPI. It runs
an application process and a DLML process for each pro-
cessing element (processor or core) running an application.
The DLML process is in charge of making and serving
data requests to/from remote nodes, using a global auction
policy which is not scalable as it involves all compute nodes
running an application. In [10], a design based on partial
information was presented to improve the scalability of the
auction policy. Multicore-DLML was presented in [11], a
design aimed at improving intra-node parallelism in clusters
of multicore nodes, performing twice as fast as DLML in
such platforms. The hierarchical design of DLML reported
in [12] was targeted at Grid environments. However, in all
these DLML designs, data lists are restricted to be resident
in main memory prior to being processed.

This paper presents DLML-IO, an extension to DLML
that allows processing data in files, creating data items to
process as such data is read into memory. This mechanism
allows DLML to process large amounts of data much
larger than the available memory. We compare DLML-IO
to MapReduce (including programming models) using four
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applications. DLML-IO performs better than MapReduce
running two of those applications, but worse than MapRe-
duce running the other two applications.

The paper continues as follows. Section 2 presents
MapReduce and a sample MapReduce application used in
our experiments. Section 3 presents background material to
the operation of DLML, the design of DLML-IO, and the
same sample application coded for DLML-IO. Section 4
presents our experimental platform, applications and results
on the performance of DLML-IO and of MapReduce. We
conclude in Section 5.

2. MapReduce
MapReduce is a programming model and a runtime envi-

ronment. A MapReduce application consists of one or more
pairs of map-reduce functions. Each function is a sequential
program that reads from its standard input, carries out some
processing for each record it reads, and writes a result to the
standard output. Map and reduce functions can be written in
Java, Python and a few other languages.

Input
 files

HDFS

S1

S2

S3

S4

Sn

 Map
phase

MAP1

MAP2

MAP3

REDUCE1

REDUCE2

REDUCE3

 Reduce
  phase

Output
 file03

Output
 file01

Output
 file02

HDFS

Output
  files

Shuffle
 phase

Fig. 1: MapReduce runtime environment.

2.1 MapReduce Environment
Figure 1 shows the MapReduce Hadoop runtime environ-

ment. It replicates and runs in parallel each map function and
reduce function, in various nodes of a cluster. The number
of copies of the map function is determined by the number
of blocks in disks to be processed. The input data to the map
phase reside in a parallel distributed file system, generally of
the kind of HDFS (Hadoop Distributed File System). HDFS
is fault tolerant (this feature is based on replicating data
blocks in various distinct nodes) and allows to process in
parallel distinct data by distinct copies of the map function
(see Figure 1).

The reduce function also runs in parallel after all instances
of the (pair) map function have finished. The user can specify
how many instances of the reduce function should run (the
reduce phase). Note theshufflephase between the map phase

and the reduce phase in the figure. This phase collects the
data produced by all the replicas of a map function, partitions
that data according to a user-specified key, and then passes
one or moreentirepartitions as input to each of the replicas
of the (pair) reduce function. That is, each instance of a
reduce function receives all the data items with the same
key. Note that the reduce phase writes to HDFS. In contrast,
the shuffle phase uses local files in each node running the
map function.

When a map phase is running, the MapReduce environ-
ment waits for all the map (function) replicas to finish. If one
replica is late after a threshold, the environment launches
another copy of the map function to run in a different
process, possibly in a different node, and waits for either
the new copy or the old copy to finish; whichever finishes
first, the other one is discarded.

2.2 Matrix Addition in MapReduce
Suppose we have two matrices B and C of size2 × 2

stored each in a different file. In each file, each record
contains the values of a row but the first value corresponds
to the row number, as shown in Figure 2.a. With this setting,
Figure 2.b and Figure 2.c show a possible implementation
of a map function and areduce function to carry out the
matrix additionA = B + C.

Row Data 1 map( key, values ) {
2 first_element = 0;
3 column = 0;
4 for each element in values {

0 1 2 5 if ( first_element == 0 ) {
1 3 4 6 row = element;

7 first_element = 1;
B: file1 8 } else {

9 key2 = new_key( row, column );
0 5 6 10 EmitIntermediate(key2, element);
1 7 8 11 column++;

12 }
C: file2 13 } // end for

14 }
a) b)

1 reduce( key2, List_of_values ) {
2 sum = 0;
3 for each element in List_of_values
4 sum = sum + element;
5 EmitIntermediate(key2, new_element);
6 }

c)

Fig. 2: Example of matrix addition in MapReduce: (a) data
layout in input matrix files B and C; (b) map function code;
(c) reduce function code.

The map function receives two parameters: 1) the offset
of a record, a row, within file B or C, and 2) the values in
that row. The offset of each record is not shown in the figure
and in our matrix addition is not used.

The purpose of the map function is to generate and
emit, for each matrix element, a record consisting of
the position of the element in a matrix and the value
of the element. The position, generated by the function
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new_key( row, column), is a string consisting of the
row and column numbers separated by one space, .e.g.: “0
0” for the first element in the first row, in either file B or C.

The reduce function (Figure 2.c) receives two parameters
(iteratively): akey2value (generated by the map function)
and the list of values associated with the value of the key.
As each copy of a reduce function receives all the values
associated with a particular key value, the reduce function
simply adds those values and emits both the position and
final value of the corresponding element in the results matrix.
The output of the reduce function is written onto HDFS.

3. DLML-IO
The Data List Management Library (DLML) processes

data lists in parallel. DLML users only need to organise their
data into items toinsert and get from a list using DLML
functions DLML_get() and DLML_insert. Internally,
DLML uses one list for each processing element, and when
a list becomes empty, DLMLrefills it through stealing data
items from another list transparently to the programmer, thus
balancing the workload according to the processing capacity
of each processor. Only whenDLML_get() does not return
a data item the processing in all nodes is over. DLML
functions hide synchronization communication from users,
while automatic list refilling tends to balance the workload,
which is essential for good performance. DLML is written
in C and uses MPI.

Application0 Applicationp-1
Synchronization

List

Insert/Get

Data Transfer

Load Balancing

List

DLML0 DLMLp-1

Processor0
Processorp-1

Fig. 3: DLML Architecture.

3.1 DLML Environment
Figure 3 shows the architecture of DLML. An application

process and a DLML process are run for each processor
or for each core within a multicore node. The application
process runs the application code: inserting, getting and
processing data items from its list. When an application
process finds its list empty, it sends a message to its sibling
DLML process indicating it to request data items from
remote nodes; the application process then locks waiting for
a message from its sibling DLML process. The response
message will indicate either the number of (new) data items
to be received or to terminate execution because no data
was found in remote nodes. DLML processes also serve

data requests from remote nodes whose lists have become
empty, if possible. DLML was first designed to use data lists
resident entirely in main memory.

3.2 DLML-IO Design
DLML-IO is an extension to DLML for the purpose

of processing large amounts of data in files. The main
extensions added to DLML are the following functions:

• DLML_distributeOffsets: partitions the input files to be
processed into logical data segments, and informs each
DLML application process as to the data segment(s) it
will process.

• DLML_Load: receives the data segments to process,
out of which creates data items to insert into the
DLML list of the DLML application process that called
DLML_Load. For that purpose, it receives information
about the data layout in data segments and theoperation
to carry out with the data in order to create the data
items accordingly. The operations currently supported
are: “+”, “*”, and “w”, each operator determines how
data in one or two files are to be read and how to create
the relevant data item. For example, with the operators
“+” and “*”, the data in input files are considered a
matrix data, and for both options, a data item to create
and insert into a DLML list will contain: 1) the position
of the element in the results matrix to be computed, and
2) the values of the elements in the input matrices to use
in the computation. For the “w” option, each element
created from the file contains only the word (string) that
was read. See Figure 4.

Fig. 4: Operations of function DLML_Load.
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During the creation of data items,DLML_Load uses a
threshold of free available main memory. If creating
a new data item reduces main memory below that
threshold, no more items are created and the processing
of the items (already created and inserted) in the list of
the relevant application process is started or continued.
As data items are processed, memory is freed and more
data items are created from data segments in files.

• DLML_Write allows the writing of partial results in
files. This function takes as input parameters the file id
to write in, the position (offset) where the write should
take place (optional), and the result to write.

3.3 Matrix Addition in DLML-IO
Suppose we have the same input files for the matrix

addition example in MapReduce (Figure 2.a). Their data
will be loaded as data items into lists with the operator
“+”. Figure 5 shows the structure of each list item and the
DLML application for matrix addition in pseudocode. First,
each application process in each node initialises the DLML
environment which involves creating the sibling DLML
process (line 6). Then, only the application process with id
0 is responsible for executing theDLML_distributeOffsets
function (line 9-10), in order for the input files to be logically
partitioned among the application processes available.

1 typedef struct DLML_item item;
2 struct DLML_item{
3 int a, b, position;
4 item *next;
5 };

a)

6 DLML_Init();
7 item element;
8 int result;
9 if ( id_application == 0 )
10 DLML_distributeOffsets( "file01", "file02");
11 info_segments = receive_offsets();
12 while( DLML_Load( &info_segments, &List, "+") ){
13 while(DLML_Get(&List, &element)){
14 result = element.a + element.b;
15 DLML_Write( "file", element.position, result );
16 }
17 }
18 DLML_Finalize();

b)

Fig. 5: Matrix addition in DLML-IO: (a) structure of each
list data item, and (b) DLML application in pseudocode.

Once each application process knows which data segments
it will process (line 11), it periodically calls the function
DLML_Load (line 12) to create list items out of the data
in segments and insert them in the DLML application list.
While doing so, it checks the main memory size threshold
described above. Finally, every time that a list item is ob-
tained and processed, the application calls theDLML_Write
function to write the corresponding result in its position
(lines 13-16). Once no data is found in file segments nor
in lists, the DLML environment finishes (line 18).

Note that the partitioning of data segments among DLML
application processes remains fixed once it takes place,
i.e.: each DLML application process will load in memory
the data in segments assigned to it and will create the
relevant list items. However, load balancing (through list
refilling/work stealing as described earlier) remains dynamic
throughout computation. This is possible in our implemen-
tation because, as shown in Figure 4, each list item contains
all the values to compute an element in the results matrix.

4. Experimental Evaluation
This section presents our experimental platform, applica-

tions and results to compare the performance of DLML-IO
and MapReduce. We first describe the hardware and software
used with all our applications, then for each application we
give a brief description of it and present the results.

Our hardware platform is a cluster with 5 nodes, where
1 acts as a server and the remaining 4 as slave nodes.
The server node has an Intel Core2 Quad processor at 2.4
GHz, 4G RAM, and each slave node has 2 Intel Dual Core
processors at 3GHz, 2GB RAM, all running CentOS 5.4. All
nodes are connected through a Gigabit Ethernet switch.

For the MapReduce runs, we use Hadoop and HDFS v.
0.20.2. For the DLML-IO runs, we use the MPI library
LAM/MPI v. 7.1.4., and PVFS2 [13]. PVFS2 is a parallel file
system that partitions and stores files throughout the nodes
in a cluster for parallel access.

This is the first, preliminary evaluation of DLML-IO in
order to gain insight into possible improvements without
having to make major changes to the software involved.
Thus we changed little some parameters aiming to improve
performance. The base software configurations used are as
follows unless otherwise stated.

Files stored in HDFS are partitioned into 64MB blocks by
default and stored in different slave nodes using a random
policy. In PVFS2, a file is divided into blocks of 64 KB by
default, which are stored in different nodes of the cluster
using a round-robin policy [14].

Our applications are the WordCount (WC) typical appli-
cation to describe the workings of MapReduce, a Matrix
Addition (MA) algorithm, a Matrix Multiplication (MM)
algorithm, and the Non-Attacking Queens (NAQs) [15].

4.1 Word Count
WC consists of counting the number of occurrences of

each work in a collection of documents. It is the kind of
application where MapReduce performs well.

WC for MapReduce uses a map function that prints
1 for each occurrence of a word, and a reduce function
that, for each word, adds the number 1’s and prints the
sum (see Figure 6). In WC for DLML-IO, the use of the
DLML_distributeOffsets and DLML_Load functions allows
reading words from files and building a list item for each
word until the memory threshold is reached or until no
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Hello everybody bye everybody

Hello world bye world

File

MAP

MapReduce

(Hello, 1)

(everybody, 1)

(bye, 1)

(everybody, 1)

Hello      IF00

everybody    IF01

bye         IF00

everybody    IF01

DLML-IO

(Hello, 1)

(world, 1)

(bye, 1)

(world, 1)

Hello           IF10

world           IF11

bye              IF10

world           IF11

REDUCE

MapReduce
(Hello, (1,1))

(bye, (1,1))

bye
bye
Hello
Hello

DLML-IO

(everybody, (1,1))

(world, (1,1))

everybody
everybody
world
world

OUTPUT
Hello 2

bye 2
everybody 2

world 2

INPUT

IF{00,01} IF{10,11}

Output-00 Output-01

Fig. 6: WordCount flow for MapReduce and DLML-IO.

more words are found. Later, they get a list item and by
using a hash function, the word is saved in an specific local
intermediate file (IF). Note that each application manages
a total amount ofIF files equal to the total number of
application process in the system. After all the words are
stored, the files are transferred to the application process
taking into account the last digit of file ID. As Figure 6
shows, theIF files with IDs 00 and 01 are transferred to
the application process with ID 0, and theIF files with IDs
10 and 11 are transferred to the application process with ID
1. The process of creating the IF files and transferring for
their processing corresponds to the shuffle of MapReduce as
described in Section 2. Finally the counting of occurrences
of each word is made with the UNIX commands: sort and
uniq.

Our experiments process data files from Freebase [16].
Particularly we used files of size 300, 400, 500, 600 and 700
MB, which were grouped into folders. For MapReduce, we
are showing results using two map processes and two reduce
processes per node. (We also tried with one map process and
one reduce process per node, and with 4 map processes and
4 reduce processes per node, but performance deteriorated
— we think this was because the relatively small memory of
the slave nodes, 2GB.) For DLML, we are showing results
with four application processes and four DLML processes
per node.

Figure 7 shows the response time of MapReduce and
DLML-IO for WC, for different data volumes in GB (2
to 16 GB). DLML-IO with PVFS2 performs worse than
MapReduce with HDFS. WC is an I/O intensive application,
i.e., the cost of IO is relatively high compared to the cost of
processing each of the data fetched from secondary storage
to main memory. Therefore it is convenient to read into

memory as much data as possible every time secondary
storage is accessed. The larger disk block used by HDFS,
64MB, compared to that of PVFS2, 64KB, means a smaller
number of accesses to disk by MapReduce than by DLML-
IO, and hence better performance.
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4.2 Matrix Addition
MA for MapReduce and DLML-IO was implemented as

shown in Figures 2 and 5, respectively.
Figure 8 shows the response time of MapReduce and

DLML-IO for MA for different sizes of matrices. DLML-
IO performs much better than MapReduce consistently,
generally over twice better. Note that the scale is logarithmic.

The main factor for DLML-IO to perform better than
MapReduce with MA is that DLML-IO has no shuffle phase,
and thus no local IO operations are incurred. As shown in
Figure 5, MA for DLML-IO builds list items that contain all
the information to compute the value of an element in the
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results matrix. Once the parallel phase begins, the processing
of each item does not involve communication. In contrast,
MapReduce does involve a shuffle phase and, in addition,
MA for MapReduce partitions the data in both input matrices
with the id row-column, and this means that reducers need
to wait for the two values to add probably from different
nodes, which involves synchronisation.

4.3 Matrix Multiplication
MM for MapReduce was developed multiplying each row

× the corresponding column and then adding the values for
each element in the results matrix. So we created two map-
reduce jobs: one carries out the multiplications and the other
the additions.

MM for DLML-IO was also developed using the structure
for data items shown in Figure 4 for “*" operating mode.
Recall that in this mode, list items are built such that each
item contains one row and the corresponding column to
multiply by. Therefore, the MM code for DLML-IO is very
similar to the MA code for DLML-IO in Figure 5, except
that the MM code involves the multiplication of the row and
column and then the addition of the multiplication results,
as opposed to only the addition of two values.
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Fig. 9: Matrix Multiplication response time.

Figure 9 shows the response time of MapReduce and
DLML-IO for MM for different sizes of matrices. DLML-IO
performs better than MapReduce for the two smallest sizes
of matrices, while MapReduce performs better than DLML-
IO for all other runs.

As in MA, in MM there is no shuffle phase. Hence
DLML-IO has in principle a performance advantage over
MapReduce, which shows itself for the two smallest sizes of
matrices. However, as the size of matrices increases, another
factor comes into play which is that MM for DLML-IO
incurs more accesses to disk in order to build the list items
shown in Figure 4. Both input matrices, say A and B, are
stored in disk by rows: a file record corresponds to a row.

Hence, building each list item with the corresponding row
and column, involves reading matrix B as many times as the
number of elements in each column, and eachread is made
after aseekoperation. This overhead increases with the size
of the matrices.

4.4 Non-Attacking Queens

The NAQs application consists of finding all possible
ways of placing N queens on an NxN chessboard, so
that no queen attacks another queen [15]. NAQs for both
MapReduce and DLML-IO was developed using a search on
amplitude algorithm using a table that represents the chess-
board and the queens placed so far. Both MapReduce and
DLML-IO read the initial configuration of the chessboard
from a small file, a few tens of bytes. Then NAQs generate
new data dynamically at run time.

For MapReduce, we launched as many map phases (to
compute the solutions) as the number queens-1. If a solution
is found a map process emits a number 1 (much the same
as in the WC problem); otherwise nothing is emitted. There
is only one reduce process which adds all the 1’s and prints
the result.

For DLML-IO, we do not need to use the functions
DLML_Load and DLML_distributteOffsets (unlike the other
applications) because, as mentioned above, the bulk of
the data processed by NAQs is dynamically generated at
runtime. We only use DLML_Write function to write the
final result.

 0.1

 1

 10

 100

 1000

 10000

 100000

 13  14  15  16

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Queens Number

Average processing time of Non-Attacking Queens

MapReduce_HDFS
DLML-IO_PVFS2

Fig. 10: Non-Attacking Queens response time.

Figure 10 shows the response time for various numbers
of Non-Attacking Queens. DLML-IO with PVFS2 performs
much better than MapReduce consistently. This is because of
the cost of the shuffle phase of MapReduce, which involves
local writes — even though there is only one reduce process.
This overhead is not present in DLML-IO.
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5. Conclusions and Future Work
We have presented DLML-IO, an extension to DLML

that allows processing large volumes of data in files with
typical list operations. Our extension was compared with
MapReduce using static and dynamic applications, four in
total. DLML-IO performs better than MapReduce for two
applications, while MapReduce performs better for the other
applications. Overall, our preliminary evaluation has let us
understand better the issues in involved in processing in
parallel large data sets stored in disk. We plan to extend
DLML-IO with HDFS and improve it in various ways to
make its use more intuitive.
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Abstract— The key advantage of massively parallel 

systems is to allow concurrent execution of workload 

characterized by computation units known as processes or 

tasks, which can be independent programs or partitioned 

modules of a single program. The scheduling problem is to 

maintain a balanced execution of all the tasks among the 

various available processors (nodes) in a multiprocessor 

network. In this paper a novel dynamic scheduling scheme 

named as Multi Round Scheduling (MRS) scheme has been 

proposed for scheduling the load on various multiprocessor 

interconnection networks. In particular, the performance of 

the proposed scheme is evaluated for linearly extensible 

multiprocessor systems, however, a comparison is also 

made with other standard existing multiprocessor systems. 

The MRS operates in multiple steps to make the network 

fully balanced with minimum overhead. The comparative 

simulation study shows that the proposed MRS scheme 

gives better performance in terms of task scheduling on 

various linearly extensible multiprocessor networks. 

 

Keywords: Dynamic Scheduling, Multiprocessor, 

Interconnection Network, Tasks, Muli Round Scheme. 

 

1. Introduction 

 

The idea of a single-processor computer is fast 

becoming ancient and it is almost impossible to improve 

computer performance using a single processor system due 

to several reasons. The possible reasons may be high power 

consumption, conflicting performance indices, like the 

minimization of communication and parallel overheads. It is 

more practical to use many simple processors (nodes) to 

attain the desired performance at low cost. The benefits of 

parallel computing need to take into consideration the 

number of nodes in the systems as well as the 

communication cost overhead incurred in the uniform 

distribution of load among the nodes. In such a system 

optimizing the system performance will spin on good 

parallel programming at all level. The main objective is how 

to distribute the tasks evenly and run them concurrently 

among different nodes while utilizing these nodes 

efficiently. 

 

A fundamental problem is that the conventional parallel 

schedulers are static in nature. Once a job is allocated to 

various nodes, the nodes remain busy until the completion of 

job. A more flexible approach may be the dynamic 

allocation of load, where the set of nodes allocated to jobs 

can be expanded or contracted at run time. The dynamic 

algorithm makes its decision on fly according to the status of 

the system [1], [2], [3]. 

The processes of implementing scheduling algorithms 

in hardware or in software for parallel machines are more 

related. We can not think of parallel algorithm without 

thinking of the parallel architectures. Therefore, considering 

the efficient and scalable configuration of the 

interconnection network is also an important issue in 

evaluating the performance of such systems. The parallel 

system generally uses a regular point-to-point 

interconnection network, instead of a random network 

configuration. Over the last decade, many different 

interconnection networks have been used commercially. 

Some examples are found in ring network, hypercube, 

folded hypercube, debruijn network, Linearly Extensible 

Tree (LET) network, Linearly Extensible Cube (LEC) 

network, star graphs etc. [4], [5], [6], [7], [8]. In this paper 

two linearly extensible multiprocessor interconnection 

networks having similar topological properties [9], [10] are 

considered for the purpose of simulation  (Figure 1 to 

Figure 2). In addition the performance is also evaluated for 

a modified hypercube architecture known as Folded 

Hypercube (FH) [11] shown in figure 3 and a comparative 

study is made. The important properties of these 

interconnection networks are given in Table 1. 

 

Table 1: Summary of some Interconnection Network 

Characteristics 
 

Type Size (N) 

(Nodes) 

Degree 

(d) 

Diameter 

(D) 

Bisection 

Width (B) 

Extensibility 

Folded 
Hypercube 

N = 2n N+1 n/2 2
n
 Exponential  

LET 




n

k

k
1

 

4 √N 2log2(n+2) Linear 

LEC N=2*n 4 O ([N]) N Linear 
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The rest of the paper is organised into five sections. 

Section 1 is the introduction. Section 2 is an overview of the 

given scheduling problem, while section 3 describes the 

proposed Multi Round Scheduling scheme. The simulation 

results of  the proposed scheme is discussed in section 4. 

Section 5 concludes the paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A six processor LET network 

 

 

 

 
 

Figure 2. A six processor LEC network 

 

 

 

 
 

Figure 3. An eight processor folded hypercube network 
 

 

2.   DYNAMIC TASK SCHEDULING 

MODEL 

 

Designing an efficient task scheduling algorithm is 

more difficult since multiple tasks may cooperate with each 

other to achieve the common goal. Many algorithms attempt 

to design strategic algorithms which can provide an 

automatic way of communicating with each other and to 

follow the optimal network structure [9], [10]. The 

performance of a parallel system can be characterized by 

communication delay, distribution of load among the 

processors and scheduling overhead. The important issues in 

dynamic schemes are: 

 When to invoke a balancing operation. 

 Who makes load balancing decision according to 

what information and, 

 How to manage load migration between processors. 

Besides, there are two important parameters when 

dynamic scheduling algorithms are implemented on parallel 

systems. The first is that, parallel systems generally use a 

regular point-to-point interconnection network, instead of 

random network configuration. Similarly, the load 

imbalance occurs mainly, because of the un-even and 

unpredictable nature of tasks. There are many schemes 

which are based on the principle of minimum distance 

feature [12] [13]. Minimum distance is the property which 

assures the minimization of the communication in 

distributing subtasks and collecting partial results. A 

scheduling scheme operates with this property such as 

Minimum Distance Scheduling (MDS) minimizes overhead 

and ensures the maximum possible speedup. Similarly a 

Two Round Scheduling Scheme has been reported which 

consider only one intermediate node of the network to 

perform task migration [13], [14], [15]. 

For the purpose of simulation we assume a simple 

problem characterization in which the load is partitioned 

into a number of tasks. All tasks are independent and may 

be executed on any processor in any sequence. The 

scheduling performance of the strategy has been tested on 

the three different networks by simulating artificial 

dynamic load. In order to simulate the load on the proposed 

network, it is characterized as a group of task structures i.e. 

uniform load. The primary inputs needed by the algorithm 

are the number of tasks, structure of the tasks and the nature 

of the interconnection networks. 

 

Using the above pattern of task structure (load), the 

performance of the networks has been tested for various 

scheduling schemes as well as with a new scheduling 

scheme. The performance is measured in terms of Load 

Imbalance Factor (LIF) i.e. the load imbalance left after a 

balancing action at each stage of the load. The above 

simulation has been performed on various similar 

multiprocessor networks using IBM server X series 226 

having Intel Xeon 3.0 GHz processor. 

 

P0 

P1 

 

P4 

 

P3 

 
P5 

 

P2 
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3. MUTI Round Scheduling (MRS) 

Scheme 

The scheme has been developed for a tree type problem 

structure. It is dynamic in the sense that no priory 

knowledge of problem tree is assumed except that the 

problem can be represented as a tree. The proposed 

algorithm works as a logical extension of MDS and TRS. It 

takes into consideration those destination nodes which are 

not connected directly to source node. There may be more 

than one path between the donor and acceptor processors 

which require multi-hop. However, large number of hopes 

are there greater will be the communication cost. There is a 

trade-off between the number of hopes and the 

communication cost when mapping parallel applications on 

the systems. To perform the load balancing, the algorithm 

calculates ideal load (IL) value for each iteration, which is 

used by load balancer as a threshold to detect load 

imbalances and make load migration decisions. The load 

imbalance factor for k
th

 iteration, denoted as LIFk, is 

defined as 

LIFk = [max{loadk(Pi)}-(ideal_load)k] / (ideal_load)k 

Where, 

  (ideal_load)k =[loadk(P0)+loadk(P1)+…+loadk(PN-1)] / N, 

 and max(loadk(Pi)) denotes the maximum load pertaining 

to iteration k on a processor Pi ,0 ≤I ≤ N-1,and Loadk (Pi ) 

stands for the load on processor Pi due to k
th

 iteration. 

Based on the IL value, the donor (overloaded) processors 

and acceptors (underloaded) processors are identified. 

Migration of task, if any can take place between donor and 

acceptor processors only. The scheme may be define in the 

following three steps: 

i) Calculate IL and identify the donors and 

acceptors processors. 

ii) Check the connectivity of donor and acceptors 

with the help of adjacency matrix and migrate 

tasks. 

iii) If no direct connection is there between donor 

and acceptor, then find the alternative path by 

considering intermediate nodes in successive 

manner, and perform migrations. 

The whole algorithm is implemented in ‘C’ language. A 

pseudo code of the algorithm is shown in Table 2. 

 

Table 2 : The MRS Algorithm 

 

proposed_dynamic_schedulinng 

{ 

lif, prev = 0, n_donr = 0, n_accr = 0; 

     Let level of connectivity = 1; 

  Identify the donors and set n_donr. 

  Identify the acceptors and set n_accr 

. while (lifac > LIF) 

     { 

       for (i = 0; i < n_donor; i++) 

     {  

       while (donr[i] is overloaded) 

     { 

     { for (j = 0; j < n_accr; j++) 

     {  

        if (donr[i] is connected to accr [j]) 

           migrate load; 

      } 

        donr (i) is exhausted or balanced; 

s(n) = tp(i) tp(N) 

      }} 

if desired level of Lif is not achieved then set the level 

of connectivity to higher level and repeat above 

procedure 

start = clock (); 

  call the procedure to balance the processor load. 

  end = clock (); 

  time = (end – start) * 1000 / CLK_TCK 

s(n) = tp(i) tp(N) 

       } 

End of procedure 

 

4. COMPARATIVE STUDY OF 

RESULTS 
  

 In this section, we show the different results obtained 

while scheduling the tasks on various multiprocessor 

systems. Let us assume we have a parallel algorithm of N 

independent tasks that can be mapped on an interconnection 

network of n-nodes. Under ideal circumstances it is also 

assumed that there is no interprocessor communication due 

to the task independence. Therefore, the cost of 

interprocessor and interthread communication is not 

considered. The simulation run consists of generating 

various types of task structures and mapping them on the 

six processors Linearly Extensible Tree (LET), six 

processors LEC and eight processors folded hypercube 

architectures. The estimation of LIF is obtained for various 

levels of the tasks structures and the curves are plotted as 

the average percent LIF against the load for different stages 

shown in Figure 4. 

 

Figure 4.  Performance of MRS scheme on LEC network 
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The trends of curves obtained in figure 4 indicate the 

behaviors of the load imbalance factor with respect to the 

number of task on LEC network. The P0 is considered as a 

root processor which has a direct connectivity to n-1 nodes 

in the network. Initially, when the tasks are lesser the value 

of LIF is greater and shows a similar pattern in all the 

scheduling schemes. However, when the tasks are 

increasing the LIF also start reducing. The curve clearly 

shows the behavior of reducing the value of LIF. At level 

14 of the task structure the LIF is approximately tend to 

zero in case of the proposed scheduling scheme. The other 

schemes i.e. MDS and TRS are also producing similar 

results but at greater levels of task structures. Therefore, a 

good balancing could be obtained when sufficient number 

numbers of tasks are available. The experimental results 

show that the optimal results of MRS scheme are obtained 

with larger of nodes in the system. 

Similarly, the estimation of average percentage of LIF 

is obtained and the curves are plotted against the various 

levels of task structure on LET network, shown in Figure 5. 

The results indicate that MDS scheme initially having a 

higher imbalance as there is lesser number of nodes which 

are directly connected. It is also observed that both TRS 

and MRS producing similar results at lesser level of tasks. 

However, the MRS scheme shows the lesser imbalance 

with negligible average value of LIF as we tend to higher 

load stages. The value of LIF becomes almost zero, when 

the network receives good amount of number of tasks. 

Therefore, it can be argued that MDS scheme is not 

performing better for tree types of architectures.  
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Figure 5. Performance of MRS scheme on LET network 

 

To further analyze the results all the three scheduling 

schemes are also implemented on a cube type of 

architecture. The folded hypercube with eight processors 

has taken into consideration and the results are obtained as 

shown in Figure 6. 
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 Figure 6.  Performance of MRS scheme on FH network 

 

Observing the results in figure 6 we can analyze that 

the pattern of balancing action exhausted in case of both 

MDS and TRS after certain level of task structures. Though 

TRS is making the value of LIF approximately to 

zero but at higher levels of task structure. It may cause a 

lengthy balancing operation which ultimately increases the 

cost. On the other hand MRS scheme is making the network 

fully balanced at lower level of task structures with lesser 

overhead. Therefore, it can be concluded that MRS scheme 

is equally good for cube type of architectures. 

 

5.   Conclusion 

 
The model discussed here determines the performance of 

a new dynamic scheduling scheme over multiprocessor 
systems. We have considered a simple class of system 
known as linearly extensible multiprocessor systems for 
evaluating the performance of the proposed algorithm. 
However, its performance is also evaluated on cube based 
architecture. The comparison study shows that the proposed 
scheme is performing better on various classes of 
multiprocessor architectures. All nodes available in the 
system are performing computations evenly which results 
proper utilization of the system. It reduces the response time 
of tasks running in parallel by proper mapping of tasks 
among different nodes. Similarly, it is also reducing the 
Load Imbalance Factor (LIF) at a very fast rate as compared 
to other scheduling schemes.  

The experimental results obtained show that the MRS 
scheme producing optimal results with larger number of 
nodes and with higher level of task structure. Therefore, it 
can be concluded that proposed scheme is performing better 
by monitoring the task pattern and help to reduce under-
utilization of nodes in the system. The proposed MRS 
scheme may be applied to other similar multiprocessor 
networks for better network utilization. 

 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 709



6. References 
 

[1] R. Sudarsan, and C. J. Ribbens, “Design and performance of a 

scheduling framework for resizable parallel applications,” Journal of 
Parallel Computing, vol. 36, p.p. 48-64, 2010. 

[2] Z. Zeng, B. Veeravalli, “Design and Performance Evaluation of 
Queue-and-Rate-Adjustment Dynamic Load Balancing Policies for 
Distributed Networks,” IEEE Transaction on Computers, vol. 55, no. 
11, pp. 1410-1422, 2006. 

[3] S. Salleh, N. A. B. Aziz, N. A. Azmee and N. H. Mohammed, 
“Dynamic Multiprocessor Scheduling for the Reconfigurable mesh 
Computing Network,” Journal of Technology, University of 
Technology, Malaysia, vol. 37, pp. 55-66, Dec. 2002. 

[4] B Parhami, “Challenges in Interconnection Network Design in the 
era of Multiprocessor and Massively Parallel Microchips,”  Proc. 
Int’l Conf. comm. in Computing, pp. 241-246, June 2000. 

[5] N. Adhikari and C.R. Tripathy, “Folded crossed Cube: A New 
Interconnection Network for Parallel Systems,” International Journal 
of Computer Applications (0975 – 8887), vol. 4, no. 3, pp. 43-50, 
2010. 

[6] Ahmed EI-Amaway, Shahram Latifi, “Properties and Performance     
of Folded Hypercubes,” IEEE Transactions on Parallel and   
Distributed Systems, vol. 2, no. 1, Jan-1991. 

[7] M. Q. Rafiq, P. Kumar and J. P. Gupta, “A Novel Tree-Structured 
Multiprocessor Network,” In Proceedings of International 
Conference of on Robotics Vision and Parallel Processing for 
Automation, Malaysia, vol. 2, pp. 576-585. 

[8] P. Rajput and V. Kumari, “Modelling and Evaluation of 
Multiprocessor Architecture” International Journal of Computer 
Applications (0975 – 8887) Vol. 51, No. 22, 2012. 

[9] A. Samad, M. Q. Rafiq and O. Farooq, “A Novel Algorithm for Fast 
Retrieval of Information from A Multiprocessor Server,” In 
Proceedings of 7th WSEAS International Conference on Software 
Engineering, Parallel and Distributed Systems (SEPADS '08), 
University of Cambridge, UK, pp. 68-73. 

[10] L. Peng, B.Yang, L. Zhang, and Y. Chen, “A parallel evolving 

algorithm for flexible neural tree,” Journal of parallel computing, vol. 

37, pp. 653-666, 2011. 

[11] Y. Q. Zhang, “Folded-Crossed Hypercube: A Complete 
Interconnection Network,” journal of System architecture, Elsevier 

Science, vol. 47, pp. 917-922, 2002. 

[12] A. Samad and M. Q. Rafiq, “A Novel Server Architecture for 
Networking. In Proc. Int’l Conf. on Robotics, Vision Information and 
Signal Processing, Malaysia, pp. 1029-1032, July 2005.     

[13] B. Towles and W. Dally, “Principles and Practices of Interconnection 
Network,” Morgan Kaufmann Press, san Francisco. 

[14] A. Samad, M. Q. Rafiq and O. Farooq, “Two Round Scheduling 
(TRS) Scheme for Linearly Extensible Multiprocessor Systems” 
International Journal of Computer Applications (0975 – 8887) Vol. 
38, No. 10, pp. 34-40, 2012. 

[15] N. Kumar, “Simulation Study for Performance and Prediction of 
Parallel Computations,” International Journal of IT (BIJIT), vol. 4, 
no. 2, ISSN 0973-5655. 

 

710 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



Pathfinding on a Specialized Vector Processor
*
 

 

M.M. Tatur
1
, Y.N. Seitkulov

2
, N.L. Verenik

1
, A.I. Girel

1
  

1Department of Computer Systems and Networks,  

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus 

E-mail: tatur@bsuir.by, nick.verenik@gmail.com, alexey.girel@gmail.com  
2Department of Information Technology,  

L.N. Gumilyov Eurasian National University, Astana, Republic of Kazakhstan 

E-mail: seitkulov_y@enu.kz  

 

 

 

                                                           
*
 Supported by a grant of Kazakhstan, Project: Mapping of semantic information processing algorithms on massive 

parallelism computers architecture.  

Abstract - The article describes the algorithm of the shortest 

path search in the specific graph structure of self-developed 

architecture of semantic processor. A simulation model of the 

processor was developed for using in research, model also 

discussed in the article. Described basic principles used for 

development of GDM. Also it’s given a short description of the 

processor architecture, data format, instruction set and basic 

operation principles. Formal solution algorithm which 

includes processor computer code is constructed.  

Keywords: information processing; semantic network; vector 

processor; parallel computing.  

 

1 Introduction 

  At the heart of any "intelligent" information 

processing it can be identified a number of topical basic tasks 

such as the presentation of information in the form of semantic 

networks, semantic analysis of the information and associative 

search of information on some key. Semantic net is understood 

to be the graph structure, vertices and arcs which, in 

accordance with certain rules are endowed with some 

meaning. 

Semantic networks there is still nothing as a model of 

knowledge representation, generally accepted theory that 

determines the methods of coding and processing of 

information in semantic networks. According to several 

undertaken studies [1], theoretical foundation for necessary 

unification can be the concept of platform independence. 

Created methods and algorithms of semantic information 

processing top-level intelligent system developed 

independently of their hardware and software implementation 

at a lower level. This is possible only under the condition that 

the semantic network can be formally converted (recoded) into 

a graph. Then the information processing in the lower level of 

intelligent system will represent graph-dynamic process, i.e. 

the process of transforming the graph structure of the semantic 

web, in which not only the state of the structure elements 

changes, but also its configuration. 

Figure 1 shows the general scheme of intelligent system 

based on the principle of platform independence. For 

mathematical notation (algorithmic) of lower level semantic 

processing apparatus the successful (according to the opinions 

of authors) term - an abstract graph-dynamic machine (GDM) 

is suggested.  

 

 

 

Fig. 1. General scheme of intelligent system, illustrating the principle 

of platform independence 

 

It is believed that systems built on this principle, can 

have the flexibility to evolve in an upward direction – 

designing ontologies in different areas, developing methods 

and algorithms of semantic representation and knowledge 

analysis, and in a downward direction - software and hardware 

implementation. Platform independence is implemented by 

software interpreter that translates (encoding) programs of 

high level semantic processing into format of specific GDM 

commands.  

Researchers mostly use GPU as a kind of affordable 

hardware platform with a parallel architecture. Indeed, using 

universal multi-processor systems can improve the efficiency 

of solving problems of certain class, but ultimately leads to a 

number of other different fundamental difficulties. The 

division of tasks between processors, data between memory 

blocks, interaction between processors, high computational 

complexity and irregularity of computing pose intractable 
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problems during parallelizing algorithms. Ultimately, this 

leads to the effect of slowdown in productivity growth by 

increasing the number of processing elements, formulated in 

the form of laws of Gustafson-Barsis’s [2] and Amdahl-Ware 

[3]. According to the experience of using parallel systems in 

the case of irregular structure of graph computations, the 

computational efficiency is maximized when working four or 

five processors, and connecting a larger number of processors, 

it begins to drop because of the rapidly increasing costs of 

providing interaction between the processors.   

A kind of "golden mean" between universal systems 

and special processors oriented on knowledge processing, are 

problem-oriented processors [4, 5, 6]. The basic idea of using 

them is to provide processor unification within "some" limits, 

while maintaining a sufficient level of performance. At the 

same time, achievable technical specifications and cost of 

providing original architecture versatility must be competitive 

in comparison with special and serial parallel processors 

(multi-core CPU, GPU, DSP). 

The article gives a brief description of original 

architecture of developed problem-based SIMD-processor, 

and then discusses a simulation model of such processor. 

Simulation of architecture on typical tasks of semantic 

processing and associative search is a key step in the 

development of software and hardware platform. In the work 

[7] there was shown a possibility of conversing an arbitrary 

semantic network (written in the language of SC) to the graph 

of a regular structure, and developed a formal mechanism for 

this transformation. The main idea of network transformation 

is a transformation of many types and properties of its 

components and connectors (similar to the vertices and arcs, 

respectively) to the usual heights (or arcs) of the graph, which 

is associated with a finite set of attributes. In fact, it is possible 

to judge about the possibility of informing the task of semantic 

analysis to a set of classical graph tasks, the solution of which, 

however, is often not a trivial. 

For example (and further detailed architecture) there 

was chosen as one of the most widely-known problems of 

graph theory - finding the shortest path in the graph. In the 

course of solving a test problem has been validated simulation 

model developed by the vector processor.  

 

 

2 Graph-dynamic machine model 

 As the typical architecture of GDM is encouraged to 

use SIMD-architecture of the main type with the local random 

access memory. Fig. 2 shows a scheme of the proposed GDM 

SIMD-architecture. 

The system can allocate the total control unit and a 

plurality of processing elements (PE), parallel to the 

performing team overall. Each PE has its own independent 

(local) memory and is responsible for interaction with it. For a 

hardware implementation PE is maximally simplified 

(functionally comparable to a simple comparator), and this, in 

turn, allows for a great number of them on the same chip. By 

changing the amount of memory per one PE, you can adjust 

various features of the system, such as volume of processed 

knowledge base, cost, etc., to achieve the best compliance 

with the technical specifications. At the same time, the 

property of variable graph structure regularity and hence 

executable algorithms enables to provide the effective 

parallelism of computational process.  

The first rapid assessment of processor effectiveness 

can be made during the operation of associative search by the 

key. In our case, the search is the simultaneous (parallel) poll 

device control all the connected to it PE, which is equivalent 

to an exhaustive search of knowledge of the system in one 

standard unit of time. On the other hand, the sequential 

architecture would require to sort out all memory cells, having 

spent N standard units of time. Obviously, increasing the 

number of PE in the present system leads to a linear increase 

of overall system performance.  

Fig. 3 presents the scheme of processor data output, 

allowing to read the contents of table cells consistently. In 

general, priority is given to the cell connected to the data bus 

above the rest. This means that if the search command 

"answered" has more than one table element, then when you 

try reading the highest priority cell contents is given to the 

data bus. In this case, all elements below it will be broadcasted 

signal that disables them from the data bus. This scheme has 

the property of scalability, which is consistent with the overall 

architectural concept of the processor. 

 

 

 

 
 

 

Fig. 2.  Scheme of GDM architecture 
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Fig.  3. Scheme of output from the cell memory of the processor (an 

element of the graph). 

 

3 Instruction system of the processor 

 Consider the general principle of the command 

processor building. For this enter the following notations: 

 COP – code of operation, used in decoding 

commands; 

 ID – vertex identifier field; 

 А – field of incidence graph vertices (arc) attributes; 

 М – bit mask field for attributes. 

Fig. 4 shows a scheme according to which processor 

commands construct. Conditionally command format can be 

divided into 3 parts: code of operation, the address of the 

target element and arguments of the operation. Code of 

operation is used in decoding commands. 

Under the target element cell table is understood (or 

multiple cells) that will be targeted by the operation. Address 

of the target command element can be one of two ways: 

specific identifier vertex (or two identifiers in the case of 

referring to an arc) or search query. Search query is described 

with the fields of AS and MS, which corresponds to the address 

to all the cells in which the bits of field attributes A 

highlighted by mask MS, are equal to AS bits. In fact, the 

search is a bitwise comparison of each element of the graph 

followed by a reaction according to the type of operation. 

When working with a table of arcs a variant of treatment to all 

arcs is also possible entering the definite vertex or going out 

of it, which is fixed one of the corresponding identifiers (ID1 

or ID2).  

 

By analogy, the data for recording in the element is 

also represented by two fields: the attributes of A and M mask 

that defines the bits of the field A, which will be recorded in 

the target cell.   

Consider the implementation of a search query 

processor more closely. First of all recording operation is 

performed for graph elements which correspond to a 

condition. For example, those elements which have a value of 

"5" in the first byte field attribute record unit in i-th bit 

attribute field (not included in the byte value). Marked in this 

way vertices form a set of not read results of the initial search 

query (elements with a value of "5").  

 

 
Fig. 4. Construction scheme of command processor format 

 

In a second step we have to consider all the results for 

which read operation for all elements having a value "1" in i-

th bit of the attribute field with simultaneous reset to "0» i-th 

bit is performed. Eventually only one memory cell will be read 

(according to the above scheme of priorities), which will also 

be excluded from the set of unread search query results (due to 

reset of i-bit). Consequently, the next analogous read 

command will return next not repeat element from the result of 

the initial search query. Thus, consistently performing a read 

operation as long as at least one cell of data table works, we 

are able to read the entire search result. 

It should be noted that the provision of bit access to 

attributes of graph elements allows removing the dependence 

of processor data format from task in hand. In fact, the 

responsibility for how to interpret the attributes of elements 

lies on the programmer. However, it is possible to implement 

some complex commands (obviously, being a superposition of 

base) at the level of the unit control that allows to "tune" the 

processor for  more effectively solving a wide range of 

problems. 

 

4 Problem of finding the shortest path 

in the graph  

 Given a weighted graph G (V, A) without loops and 

arcs of negative weight. Need to find the shortest path from a 

vertex of a graph G to all other vertices of the graph.  

We enter the following notations: 
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 V – set of graph vertices; 

 A –set of graph arcs; 

 c[ij]– cost (weight, length) of arc ij; 

 a – vertex, the distance from which sought; 

 U –set of graph vertices; 

 W – set of vertices containing the wave front; 

 d[u] – at the end of algorithm it is equal to the 

distance of the shortest path from a vertex to u 

vertex; 

 p[u] – at the end of algorithm it contains the shortest 

path from a vertex to u vertex. 

Pseudo-code of the proposed algorithm can be written 

as the following: 

 

Label d[a]  0, p[a]  a 

Enter a in W 

While uW 

 delete u from W 

 For vV, uvA 

  If vU or d[v] > d[u] + c[uv]  

   enter v in U 

   enter v in W 

   change d[v]  d[u] + c[uv] 

   change p[v]  p[u], v 

 

At the beginning of the algorithm the distance for the 

initial vertex is set equal to zero and all other distances can be 

ignored, because it is believed that if the vertex vU then 

d[v]=∞. Further so called wave front forms initially 

comprising only one vertex a. Then main cycle starts. 

At each step of the cycle the wave is spread from vertices that 

make up wave front to all vertices connected to their outgoing 

arcs. The distance to the vertex is calculated as the distance to 

the previous vertex plus the arc value between them. In 

contrast to the classical wave algorithm, we consider each 

vertex not one single time when it achieving the wave.  In 

fact, each vertex v is considered for all possible paths of wave 

in the graph, but changes its state (shortest path), only if the 

distance in it (in v) is bigger than the sum of the distances to 

the current vertex u and arc length uv. All vertices that 

changed its state in the current cycle iteration comprise the 

wave front for the next iteration. Thus, the cycle is complete 

when at all vertices it will be set the minimum possible value 

of the distance d [u], which would correspond to the iteration, 

at which there will not be changed any vertex, i.e. wave would 

damp.  

5 Implementation of decision algorithm 

Consider the implementation of decision algorithm 

described above based on the architecture developed by the 

vector processor. First of all, perform "tuning" of processor 

under the task. To do this, we will specify processor data 

format (for each bit the attribute fields are according to certain 

variable used in the solution), and extend the command system 

(in terms of the algorithm used).  

 

 
 

Fig. 5.  Detailed format of processor data (interpretation of 

attribute fields by software programmers) 

 

Detail the format of processor data in accordance with 

the decision algorithm (see fig.5): 

 ID, ID1, ID2 – vertex identifiers, N bit; 

 distancemin – minimum found distance to the vertex, 

M bit; 

 prevID – vertex identifier through which the path was 

conducted with a minimum distance (used while 

road-building solutions after the end of the main 

algorithm), N bit; 

 v – (visited) flag, defining whether the wave reaches 

the vertex (in case that the flag is set «0», minimum 

found distance to vertex is accepted equal to 

infinity), 1 bit; 

 f – (wave front) vertices labeled with this flag contain 

the front wave for the current algorithm iteration, 1 

bit; 

 n – (next wave front) vertices labeled with this flag 

contain the front wave for the next algorithm 

iteration, 1 bit; 

 с – (connected) flag used while searching for all arcs 

going from the vertex, 1 bit. 

Thus the size of one cell vertex table is (N+2M+3) bit. 

Size of one cell arc table – (2N+M+1) bit. 

Entering additional processor commands focused on a 

specific algorithm solution, enables to avoid working directly 

with the bits of element graph attribute field, thus simplifying 

the final solution of the problem by programmer. List of 

commands thus obtained is shown in Table 1.  

 

Table 1. Extensive system of processor 

commands 

Commands for working with vertex table 

 

createVertex(ID) Creates vertex in 

processor graph. ID identifier of new 

vertex 
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Init For all vertices a processor 

graph resets flags v, n, f and 

variables distancemin, prevID 

into zero. 

 

setMinDistance(ID, 

distance, prevID) 

Records value distance and 

prevID in vertex ID. 

ID  identifier of 

target vertex 

distance minimum 

distance to 

vertex 

prevID identifier of 

previous vertex 

in the path 

 

setWaveStartVertex(ID) Adds vertex ID into wave 

front (sets bit f in «1»). ID  identifier of 

target vertex 

 

readNextVertexFromWave

front 

Reads next vertex from 

many vertices containing 

wave front (bit f is set to 

«1»), simultaneously 

resetting bit into «0». 

 

readVertex Reads vertex ID 

ID  identifier of 

target vertex 

 

moveWavefront For all vertices labeled with 

bit n, makes resetting bit n 

into «0» and setting bit f into 

«1». 

 

Commands for working with arc table 

 

createArc Creates arc (going out from 

the vertex ID1, going into 

vertex ID2, with cost cost) 

into processor graph. 

ID1 vertex identifier 

that is incident 

to the arc 

ID2 vertex identifier 

that is incident 

to the arc 

cost arc cost (weight, 

length) 

 

findAllOutputArcs Finds all output arcs from 

vertex ID, by flag c ID  identifier of 

target vertex 

 

readNextOutputArc Reads next arc from 

many arcs labeled with 

bit c, simultaneously 

resetting bit into «0». 

 

Hereafter a fragment of program is presented that 

implements considered algorithm on the basis of constructed 

simulation model of the processor. The function input receives 

objects vertexTable and arcTable, that provide an interface for 

the access to processor data (to vertex table and arc table 

respectively), as well as additional methods for decoding the 

attribute fields. The variables ID1 and ID2 represent the 

vertex identifiers the path between them must be found. The 

output function returns a Boolean value indicating whether the 

path is found.  

 

bool findPath(MVertexTable&vertexTable, 

MArcTable&arcTable, uint ID1, uint ID2){ 

vertexTable.init(); 

vertexTable.setWaveStartVertex(ID1); 

 

while (true) { 

while (vertexTable.readNextVertexFromWavefront() == true) 

{ 

MVertexsrcVertex = vertexTable.getBuffer(); 

arcTable.findAllOutputArcs(srcVertex.m_ID); 

while (arcTable.readNextOutputArc() == true) { 

MArc arc = arcTable.getBuffer(); 

uint distance = 

vertexTable.getMinDistance(srcVertex.m_attributes) + 

arcTable.getCost(arc.m_attributes); 

vertexTable.readVertex(arc.m_ID2); 

MVertexdstVertex = vertexTable.getBuffer(); 

if ((vertexTable.isVertexVisited(dstVertex.m_attributes) == 

false) || (distance 

<vertexTable.getMinDistance(dstVertex.m_attributes))) { 

vertexTable.setMinDistance(dstVertex.m_ID, distance, 

srcVertex.m_ID); 

} } } 

if (vertexTable.moveWavefront() == false) break; 

} 

if (vertexTable.readVertex(ID2) == true) { 

MVertex vertex = vertexTable.getBuffer(); 

returnvertexTable.isVertexVisited(vertex.m_attributes); } 

return false; 

} 

 

6 Conclusions 

 This paper describes an approach to create applied 

intelligent systems (systems-oriented on intelligent 

information processing), based on the principle of platform 

independence. As a hardware implementation of GDM (graph-

dynamic machine) vector task-oriented processor was used 

with the original architecture.  

To verify and evaluate the effectiveness of the 

proposed architecture software simulation processor model 
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has been built which allowed detailing data format and 

commanding system, testing the basic principles of processor 

operation as a whole.  As the target purpose one of the typical 

problems of semantic information processing was chosen, in 

particular, the problem of finding the shortest path in the 

graph. To solve it, parallel decision algorithm was built. 

In the future we plan to continue detailing the possibilities of 

the processor through simulation of other typical tasks of 

semantic processing. It is planned to formalize and automate 

the process of carrying out of tests that will systematize 

obtained results of the research of productivity growth with 

various configurations of the original graph. The ultimate goal 

of the study is to build a hardware prototype of the semantic 

processor with SIMD-architecture. 
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Abstract - Pipelining has been a basic technology for high 

performance digital system, but handling loops in pipeline 

system is very difficult problem to be solved. In this paper we 

discuss how to model nested loops in pipeline scheduling and 

perform automated control synthesis. In our work loops are 

unrolled partially and treated as conditional branches. We 

propose a global controller that consists of an FSM controller 

for each cluster and the FSM activation control part. And we 

also discuss how to generate control specifications for each 

FSM. 

Keywords: Control synthesis, Loop, Pipeline architecture  

 

1 Introduction 

  Pipelining is the key implementation technique used to 

make fast digital systems for many DSP algorithms. In 

pipelining, each input computation task (e.g. an instruction) is 

subdivided into a sequence of subtasks and each of these 

subtasks is executed during the clock cycle by a specialized 

hardware stage that operates concurrently with other stages in 

the pipeline. Every clock cycle has the same time period. 

Successive tasks are initiated at some fixed or variable 

intervals, which are integer multiples of a clock cycle and are 

bounded by the execution time of a task.  In this fashion, 

execution of subtasks of consecutive tasks may overlap in 

time on different parts of the pipeline circuits. If a task is 

initiated every clock cycle, i.e., the initiation interval is 1, this 

is the fastest pipeline design and there is no resource sharing 

between the executions of subtasks.  However, if the design is 

constrained on the cost, i.e., there are not enough functional 

modules to be allocated, some resources must be shared by 

more than one subtask. Since operators are shared between 

stages of the pipe and within a stage, handling loop in pipeline 

system is very difficult problem to be solved. There are 

several loop pipelining algorithms used in high level synthesis 

or optimizing compiler [1][2][3]. The loop folding is to 

achieve pipelining effect by initiating the next iteration of a 

loop before the current iteration is finished. Thus this 

transformation achieves speedups. However, if there are data 

dependency between successive loop iterations, i.e., the data 

produced at the last operation of the current iteration is 

consumed at the first operation of the next iteration, the loop 

folding has no advantages. For-loop is deterministic loop 

construct which uses an index variable. This index specifies 

the range of loop iteration and is assumed to be known prior 

to entering the loop body. Loops are either unrolled 

completely or treated as conditional branches. Figure 1 shows 

a general model for a nested loop. The nested loops are 

numbered 1 through n from the inner most nested loop to the 

outer most one. The number of time steps in a loop body i can 

be calculated using the following recursive formula.  

 

 

where  is the size of the inner most loop,  denotes the 

number of iterations for the nth nested loop,  and  are the 

number of time steps before, and after the (n - 1)th nested 

loop. T  denotes the number of time steps in the loop upto 

the nth nested loop from the inner most nested loop and 

T means the number of time steps for the inner most nested 

loops of the loop body i. 

 

Figure 1 A model of nested loop body 
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Let’s also assume that there are m different loop bodies in a 

DFG and each loop body i is nested  times as shown in 

Figure 2, where i = 1, 2 , , m. The total number of time 

steps P for the input CDFG is given by 

 where T . is the total number of 

the time steps in the ith loop body which has  nested loops, 

is the number of time steps between loop bodies, p1 is the 

time steps before the first loop body, and pm+1 is the number 

of time steps after the last loop body.In our model loop 

capacity  , where T  is the number of time 

steps in the inner most nested loop of the loop body i. The 

loop capacity LCi is defined as the maximum number of 

different jobs that can be executed concurrently by a loop 

body. 

 

2 Pipeline Scheduling 

 If loop unrolling is not practical, we schedule the DFG 

as follows. First, the input DFG is partitioned with the 

intention of clustering the loops separately from the rest of the 

DFG. For example, in Figure 3, this method would result in 3 

clusters: Cluster 1 (nodes before the loop body), Cluster 2 (the 

loop body), and Cluster 3 (the nodes after the loop body). 

Loops are detected easily during syntax analysis of structured 

languages so that the CDFG can be marked accordingly. 

Loops are transformed into a DAG by breaking the feedback 

edge and adding the node vL after the last operation of the 

loop body as in the Figure 3(a). Next, each cluster is 

scheduled separately. The performance depends on the loop 

body i which has the minimum time steps of the inner most 

loop. 

 

3 Control Synthesis 

3.1 Control Specification 

 In this section we discuss how to synthesize control 

specifications for FSMs. As explained in the previous section, 

the input DFG is clustered so that loops are isolated from the 

rest. Each of the resulting clusters is scheduled independently 

and the controller for each cluster is implemented as a 

separate FSM. Initially each FSM is in a wait state until the 

loop handler generates control signals to activate the FSMs. 

The Global controller consists of an FSM controller for each 

cluster and the FSM activation control part. We describe how 

to construct these components later in this section. Figure 3.11 

shows the global controller of the CDFG shown in Figure 3.9. 

There are 3 clusters which are the set of operations before, 

within, and after the loop body. There are 3 corresponding 

FSMs: FSM 1, 2, and 3 control cluster 1, 2, and 3, 

respectively. 

3.2 Synthesizing the FSMs 

 The outline of the process to generate control 

specifications for each FSM is as follows: 

 

1.  Find MESs and PEMs for each time step. 

2. Attain the patterns of the overlapping time 

steps for each FSM from the scheduling and 

allocation phases. 

3.  Decide the states for each pattern. 

4.  For each FSM determine the state transition. 
 

 

Figure 2 A generalized DFG with loops 

 

 Initially each FSM is in a wait state and will be activated 

as soon as the necessary conditions are met and these 

conditions are provided by initiation control and the loop 

control part. Looking at Figure 4 as an example, the initiation, 

loop enter, and loop exit control signals activate the FSM for 

Cluster 1, the FSM for cluster 2, and the FSM for cluster 3, 

respectively. The FSM for cluster 1 in Figure 4  is in a wait 

state until the loop enter signal from the control counter is 
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received, it will then be activated at time step 1, and goes 

back to the wait state at time step 4. 

 

 

Figure 3 Clustering and Loop transformation 

 

3.3 FSM Activation Control 

 FSM activation control provides the initiation, loop 

enter, loop exit control signals. A simple way to construct the 

initiation controller is by using an Lt-bit vector whose ith bit 

is 1 if a new initiation is started at the ith time unit of each 

cycle. For example for the cycle , 

the 10-bit initiation vector is 1010100000. Then a shift 

register controller takes this vector and cyclically rotates it 

once every clock cycle. If at the start of any clock the left-

most bit is 1, a new initiation signal is sent to the necessary 

FSM. This is very simple method, but if Lt is very large 

(especially if loops are involved) this is not practical. Instead 

of using this method we can build the initiation controller 

using a counter and the supporting combinational circuits. 

Counter counts up to Lt and is reset at Lt. The combinational 

circuit provides the initiation control and reset signals. 

 

Figure 4 Global Controller for CDFG with loops 

 

4 Conclusions 

 Pipelining has been a good methodology for designing 

fast digital system, but pipeline architectures become quite 

complex to design if loops are involved. Automated controller 

design tools in high level for pipeline system are necessary to 

cope with such complexity and explore the design space 

efficiently. In this paper we discuss how to model nested 

loops in pipeline scheduling and how to synthesize of 

controllers for pipelined data paths. We use the general nested 

loop model and loops are unrolled partially and treated as 

conditional branches in our work. We propose a global 

controller that consists of an FSM controller for each cluster 

and the FSM activation control part. And we also discuss how 

to generate control specifications for each FSM. 
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Abstract— The cloud platform has abundant resources for
users to choose. To reduce communication overhead of
virtual machine (VM) deployment, this paper proposes a
Deployment of Customized Virtual Machine (DCVM) strat-
egy. This algorithm utilizes Linux From Scratch (LFS) to
customize VM image. LFS can reduce the size of VM image
efficiently and user can customize the VM image flexibility.
This algorithm also applies a rapid deployment method for
customized VM. It is a mixed approach for enhancing the
speed of deployment validly and efficiently. It uses multicast
to transmit data to reduce the communication overhead. It
also achieves running sub-VMs independent of parent-VM by
synchronizing the VM disk data. The experimental results
have shown that LFS reduces the size of customized VM
image efficiently and the proposed VM deployment algorithm
is more effectiveness and efficiency in terms of deployment
time and boot time than traditional VM deployment strategy.

Keywords: Cloud computing, Linux From Scratch, Customized
Virtual Machine, Virtual Machine Deployment

1. Introduction
Cloud computing is forefront technology of the infor-

mation field. To provide a better infrastructure service [1]
and improve the utilization rate of resources, virtualization
technology has been applied to the cloud computing. The
underlying hardware provides more and more support to
virtualization [2]. The results of Nathan Regola and Jean-
Christophe Docum [3] show that under the conditions of
hardware virtualization technology and InfiniBand high-
performance network, a typical MPI program in the virtual
cluster system only has a slight performance loss. Studies
[4,5] have shown the typical applications running on high
performance system are also suitable for running in the cloud
computing environment.

Deployment of virtual machine (VM) has attracted much
more attention and quickly became a research hotspot of
industrial circles. The traditional VM deployment strategy
is mainly composed of dispatch center, host, and image
template library. To provide better service and reduce the
user waiting time, a strategy to improve the efficiency of VM
deployment is necessary. Our research focuses on reducing

the size of VM image and optimizing the deployment
strategy. It will take a long time to transfer a big size
VM image and reduces deployment efficiency. This paper
analyses to reduce the size of VM image through Linux
From Scratch (LFS) [6]. The traditional VM deployment
strategy needs frequently hangs the source VM during the
deployment process then leading to long downtime of the
source VM. It also transfers many memory pages during the
deployment process. This paper proposes a Deployment of
Customized VM (DCVM) method. It is a mixed approach
combines pre-copy [7,8] algorithm and post-copy [9,10]
algorithm to reduce the downtime of deployment process. It
uses the incremental compressed mechanism [11,12,13] to
compress the data of memory pages and use the multicast
to transmit the data in order to reduce the communication
overhead. It also achieves running sub-VMs independent of
parent-VM through synchronizing the VM disk data.

2. Relevant work
The traditional VM image is so large that has a profound

impact on the VM deployment and system operation. Linux
kernel cutting methods are usually used to customize the
Linux kernel for embedded system [14,15] and many specific
field [16]. These methods are not appropriate for cloud
computing and micro-kernel technology is not yet univer-
sally applied to the cloud computing. With cloud computing
application development on mobile platforms and others,
the micro-kernel technology will be more demanded under
cloud computing environment. This paper analysis to get
customized VM image through LFS. The process of LFS is
as follow: (1) Temporary tool chain compiled by source code
of the tool set on the host system. (2) Get an independent
glibc library by compile the glibc source code using the
temporary toolchain. (3) Use the independent glibc library in
the host system environment to build independent toolchain,
independent build environment completed. (4) Compile the
Linux source code package in the independent build environ-
ment and build the Linux kernel for the operating system.
(5) Remove the source package, temporary toolchain, and
independent build environment.

VM deployment is always performed in conjunction with
VM migration [17]. Many idea of VM migration can be
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applied to VM deployment. Pre-copy [7,8] algorithm is a
dynamic migration of virtual machine mechanism. Many
optimized solutions for pre-copy algorithm have been pro-
posed. Some solutions [11,12,13] use memory compression
to reduce the communication data size. Paper [18] tries to
change the order of transferring dirty memory pages for
many pages modified frequently should be transferred at
last to reduce retransfers. CPU scheduling mechanism [19]
adjusts the CPU time slices allocated to the VM being
migrated to reduce the rate of dirty memory pages.

In contrast to the classic pre-copy algorithm, post-copy
[9,10] dynamic migration algorithm postponed memory syn-
chronization process to run the VM on the destination host.
Incremental compression [11,12,13] is a way that saves the
memory page before the changes of the memory state to
gain incremental data through XOR the current memory page
with prior saved memory pages.

Schmidt Matthias [17] compared multiple data transmis-
sion methods include unicast, binary tree, bit torrent and
multicast in VM deployment process. As the result that
multicast is significantly faster than all other methods. Ref-
erence [20] compared bittorrent and multicast for different
VM size in VM deployment process and compared multicast
file transfer tools UDPcast and UFTP. As the result that
multicast is faster than other transfer methods if deploy a
certain amount of VMs.

So far, there is a series of projects devoted to the study of
virtual machine cloning technology. SnowFlock mentioned
in [21,22] is the first project that solves the low-latency
problem of virtual machine cloning under a cluster or cloud
computing environment. Potemkin project [23] implements
a honeypot spanning a large IP address range. Reference
[24] defined cloud deployment time and application running
time as cloud time. It designed an efficient cloud deployment
scheme for large-scale cloud applications called Jump-start
cloud to minimize cloud time. The proposed method DCVM
references current VM deployment method and combine the
optimized live migration method to achieve better deploy-
ment efficiency. It also synchronizes the VM disk data when
multicast the VM memory data to achieve running sub-VMs
independent of parent-VM.

3. LFS technology achieves customized
VM image

According to user needs, there are many applications and
components need to install on user customized VM image.
To achieve incremental installation of customized VM image
and provide interface for management process, this paper
analysis to realize automatically generate customized VM
image with our own shell scripts.

(1) User interface. It’s easy to access and operate by using
the interactive interface of traditional web, and gives a list
of applications and components in a platform. User can

select their needs through a user interactive interface, and
sent the request information to management process. The
applications and components provided by the management
side of the cloud platform also can be dynamically updated
when new applications or components need to be updated to
the cloud platform. Administrators of cloud platform can dy-
namically update the existing applications and components.

(2) Configuration file. The user selects their needs through
user interface and sends the request information to the
management process. Then the management process receives
the request information and extracts it to form a customized
XML configuration file.

(3) Customize VM image. The management process ex-
tracts the information Iconf from the configuration file. The
information of Iconf includes the user request. According
to Iconf, user needs K VM nodes. There are N exist VM
image copies stored on cloud platform. The VM image
copy is used to generate VM image which users customized
previously. The match degree is calculated by matching
configuration file information of VM image copy with Iconf.
The customized VM image generation process is as follows: 

1: P0 ← initial VM image copy 

2: S0 ← size of P0 

3: I0 ← configuration file information of P0 

4: M0 ← match degree of P0 

5: Ptarget ← target VM image copy 

6: Starget ← size of Ptarget 

7: Mtarget ← match degree of Ptarget 

8: Ptarget = P0, Starget = S0, Mtarget = M0 

9: c = 0 

10: While c < N do 

11:  If Ic exactly matches with Iconf 

12:   Ptarget = Pc 

13:   Break 

14:  Else 

15:   If Ic exist other information beyond Iconf 

16:    Sc = 0, Mc = -1 

17:   Else 

18:    If Mc > Mtarget 

19:     Ptarget = Pc, Starget = Sc, Mtarget = Mc. 

20:    End if 

21:    If Mc = Mtarget and Starget < Sc 

22:     Ptarget = Pc, Starget = Sc, Mtarget = Mc 

23:    End if 

24:   End if 

25:  End if 

26:  c = c + 1 

27: End while 

28: If c == N 

29:  Ptemp ← According to Iconf, complete the Ptarget installing 

30:  Ptarget = Ptemp 

31: End if 

32: store the Ptarget and Itarget on cloud platform, set the host as target host 

33: generate customize VM image through Ptarget, create K VM nodes 
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4. Deployment of Customized VM
(DCVM)

In this paper, we use LFS to customize VM image. The
customized VM image process generates the customized
VM image and selects the target host and the parent-VM
instantiates it. At the same time, the deployment process is
deploying the sub-VMs. This paper introduces a strategy of
deployment of customized VM combining with the advan-
tage of pre-copy and post-copy as well as using incremental
compression technology to reduce network load. In order to
transfer data to all sub-VMs effectively, multicast subsystem
is being built to the daemon on the host.We assume that
network environment is good enough and dirty page transfer
speed is faster than dirty page growth speed. The process of
Deployment of Customized VM as showed in Fig.1. 

Parent-VM Sub-VMs

Start booting

Complete booting

Full-Ram copy

VM disk

VM memory

Start booting
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Dirty page bitmap

Disk bitmap
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Complete booting
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Fig. 1: Deployment of Customized VM Process

4.1 Full-Ram copy stage
The purpose of Full-Ram copy is synchronizing the most

pages for just one transporting. Create a disk bitmap for
recording the VM disk address has been read or written.
According to disk bitmap, transfer the VM disk in Parent-
VM downtime push stage and it can avoid the data retransfer.

In the whole booting process, when parent-VM reading
or writing the VM disk data, records the VM disk address
and marks the flag as read or write in disk bitmap. One
VM disk address only has one disk bitmap record at most.
If the VM disk has been written, the flag of this VM disk
address record will always be marked as write. The process
of recording disk bitmap is as follows: 1) If read VM disk
data, go to 2). 2) DA ← the VM disk address. If no record
of DA in disk bitmap, go to 3). 3) DB ← new disk bitmap
record, DB->DA = DA, DB->flag ← mark as read. Go
to 4). 4) If write VM disk data, go to 5). 5) DA ← the VM

disk address. If no record of DA in disk bitmap, go to 6),
else go to 7). 6) DB ← new disk bitmap record, DB->DA
← DA, DB->flag ← mark as write. 7) DBE ← the exist
record of DA in disk bitmap. If DBE->flag marked as
read, DBE->flag ← mark as write.

Create a memory-disk bitmap for recording the VM mem-
ory data written by the VM disk data and restore the VM
disk data in sub-VMs. It can ensure the VM memory data is
exactly the VM disk data and avoid the data retransfer.When
parent-VM writes the VM memory, update memory-disk
bitmap and disk bitmap. One VM memory address only
has one memory-disk bitmap record at most. The process
of writing VM memory in the full-Ram copy stage is as
follows: 1) Write VM memory, MA ← the VM memory
address, If VM memory data read from VM disk, go to 2),
else go to 8). 2) DA ← the VM disk address. If no record
of MA in memory-disk bitmap, go to 3), else go to 4). 3)
MDB← new memory-disk bitmap record, MDB->MA←
MA, MDB->DA ← DA. 4) MDBE ← the exists record
of MA in memory-disk bitmap. If MDBE->DA != DA,
go to 5). 5) DBE ← the record of MDBE->DA in disk
bitmap. If DBE->flag marked as read, go to 6), else go
to 7). 6)Delete DBE in disk bitmap, go to 7). 7) MDBE-
>DA = DA. 8) If there is exist record of MA in memory-
disk bitmap, go to 9). 9) MDBE← the exists record of MA
in memory-disk bitmap, DBE ← the record of MDBE-
>DA in disk bitmap. If DBE->flag marked as read, go to
10), else go to 11). 10) Delete DBE in disk bitmap, go to
11). 11) Delete MDEB in memory-disk bitmap.

When the parent-VM reaches a certain booting status, VM
kernel of the parent-VM quiesces its I/O devices, and issues
a hypercall suspending the VM’s execution. When the hyper-
call succeeds, a privileged process maps the suspended VM
memory to populate the descriptor [21]. A VM Descriptor
is a condensed VM image contains: (1) metadata describing
the VM and its virtual devices, (2) memory pages of parent-
VM current booting status, (3) a few memory pages shared
between the VM and the Xen hypervisor, (4) the registers
of the main VCPU, (5) the Global Descriptor Tables, (6) the
page tables of the VM.

After populating the descriptor, multicast the descriptor
and memory-disk bitmap to the sub-VMs, and continuing
the parent-VM booting process. When sub-VMs receive
the descriptor and memory-disk bitmap, sub-VMs load the
descriptor and set the memory address mapping status.
According to memory-disk bitmap, save the data on VM
disk in sub-VMs when sub-VMs load the memory data, and
then resume the sub-VMs booting process.

4.2 Parent-VM timing push stage
After the Full-Ram copy stage, parent-VM starts the

timing push process. After resuming the parent-VM booting
process, create an improved dirty page bitmap.
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If the parent-VM memory is rewritten, use dirty page
bitmap record the information of VM dirty memory page.
One VM memory address only has one dirty page bitmap
record at most. Maybe the same memory page can be rewrit-
ten for many times, so we record the timestamp in the dirty
page bitmap. It can make sure the memory page only has
one incremental compressed data relative to current memory
page in parent-VM and reduce frequency of restoring the
same memory page in sub-VMs. The process of rewriting
the memory in parent-VM timing push stage is as follows:
1) B ← new dirty page bitmap record, B->MA ← VM
memory address. If VM memory is new VM memory, go
to 2), else go to 3). 2) T ← all memory page data is 0,
go to 4). 3) T ← memory page data before rewrite, go to
4). 4) Rewrite memory page, R ← VM memory data after
rewrite. If no record of B->MA in dirty page bitmap, go to
5), else go to 7). 5) B->IC = XBRLE(T XOR R), B->TS
← timestamp. If VM memory rewrite data read from VM
disk, go to 6). 6) B->DA ← VM disk address. 7) BE ←
the exists record of B->MA in dirty page bitmap, B->IC
= XBRLE((XBRLE(BE->IC) XOR T ) XOR R), B->TS
← timestamp. If VM memory rewrite data read from VM
disk, go to 8), else go to 9). 8) B->DA← VM disk address,
go to 9). 9) If BE->DA != null and BE->DA != B->DA,
go to 10), else go to 12). 10) DB ← the exists record of
BE->DA in disk bitmap. If DB->flag marked as read, go
to 11), else go to 12). 11) Delete DB in disk bitmap, go to
12). 12) Delete BE in dirty page bitmap.

After the Full-Ram copy stage, parent-VM continuing
booting process and timing push the dirty page bitmap
generated by rewriting VM memory pages. Set up a pushing
timer in parent-VM and then set the preset time of pushing
timer and the preset length of dirty page bitmap. If pushing
timer reaches the preset time and no dirty page record in
dirty page bitmap, stop the timing push process. If pushing
timer reaches the preset time or the length of dirty page
bitmap reaches preset length, multicast dirty page bitmap
to sub-VMs if dirty page bitmap has the record of dirty
page, then reset pushing timer and clear dirty page bitmap,
continue the timing push process.

4.3 On-demand copy stage
After sub-VMs received the dirty page bitmap from

parent-VM, set the VM memory address mapping status
immediately. Tag the VM memory page mapping to the
“missing page”. When sub-VMs reading the “missing page”
status memory page in sub-VMs booting process, start On-
demand copy process of sub-VMs. On-demand process of
sub-VMs is as follows: 1) If VM memory page is actually
ąřmissing pageąś, go to 2), else go to 3). 2) T ← all VM
memory page data is 0, go to 4). 3) T ← VM memory page
data, go to 4). 4) MA ← VM memory address. If there is
no record of MA in dirty page bitmap, go to 5), else go
to 6). 5) Send memory request of MA to parent-VM, wait

sub-VMs receive the record of MA in dirty page bitmap, go
to 6). 6) Blist ← record list of MA in dirty page bitmap
with timestamp in ascending order, go to 7). 7) For each B
in Blist, T = T XOR XBRLE(B->IC), if B->DA not null,
store T to VM disk address B->DA. go to 8). 8) Rewrite
VM memory of MA with T , delete all record of MA in
dirty page bitmap.

When parent-VM receives the missing page request from
sub-VMs, notify On-demand copy process of parent-VM to
handle the request. In this process, we achieve the page
prefetching. On-demand process of parent-VM is as follows:
1) MA ← VM memory address of missing page request. If
parent-VM is handling the request of MA, go to 2), else go
to 3). 2) Delete this request. 3) If there is no record of MA
in dirty page bitmap, go to 4), else go to 5). 4) Send hang-up
order to sub-VMs, wait parent-VM rewrite VM memory of
MA, go to 5). 5) Multicast dirty page bitmap to sub-VMs.
If timing push process is not stopped, go to 6), else go to 7).
6) Reset pushing timer, go to 7). 7) Clear dirty page bitmap.

4.4 Parent-VM downtime push stage
If parent-VM meet the condition that stops the timing push

process before parent-VM complete the booting process,
parent-VM will continue generating the dirty page bitmap.
Parent-VM stop running temporarily and multicast dirty page
bitmap to sub-VMs when parent-VM completed the boot
process. Then multicast VM disk data that do not record in
VM disk bitmap to sub-VMs. After parent-VM down time
push process, stop parent-VM deployment process, resume
the running of parent-VM, and start receiving calculating
tasks. Continuing the sub-VM booting process at the same
time, when the sub-VM booting finished, clear the sub-VM
deployment information, notify cloud computing platform
management process to start receiving assigned computing
task. So far deployment processes accomplished initial status
creation of virtual cluster in the cloud computing platform.

5. Evaluation
To establish a customized LFS system requires about

1.3GB of the partition so as to have enough space to store
and compile all the source packages. The LFS system itself
does not occupy so much space and most of the space
required used to provide adequate temporary space for the
software compiler. The kernel uses swap space to store the
data in order to free up memory space for running processes.
The swap partition that LFS system uses can be the same
with the one that the host system uses. So we do not have to
create a new one for the LFS system when the host system
already has a swap partition.

In our experimental configuration, hosts with the same
type are selected. We use HP proLiant ML350 as hosts in
cloud platform. These hosts are configured with Xeon E5506
2.13GHz four core processor, 8GB DDRIII RAM, 4TB
7.2K 6Gbps hard disk and NC326i PCI Express 1000Mbit/s
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NIC. In order to simplify the process of customized VM
image generation, we install LFS Live CD 6.2-3 with ker-
nel 2.6.16.26 on all hosts as host system. Virtual Tool is
Xen 4.1.1. We configure all VMs with single core, 40GB
VM hard disk. To ensure parent-VM boot successfully,
we configure VM memory size with 128M, 512M and
1G respectively in experiments. We respectively customize
VM image with 38.6M, 405M and 1021M for deployment
experiments. We use the Linux traffic shaping interface
to limit network bandwidth for deployment process. We
limit bandwidth to 500Mbit/sec, 400Mbit/sec, 300Mbit/sec,
200Mbit/sec, 100Mbit/sec, 50Mbit/sec and 5Mbit/sec. We
deploy VMs ten times in each experiment and take average
data of the ten tests as results. We compare DCVM with
the following method: 1) Full State Copy (FSC). This
method completes the parent-VM boot process with loading
customized VM image first. Then multicast the full parent-
VM state to target hosts. After target hosts receive the
VM state, sub-VMs on target hosts load the VM state. 2)
SnowFlock. This method boots the parent-VM with loading
customized VM image. After parent-VM complete the boot
process, clone the parent-VM to sub-VMs with VM fork.

5.1 VM image size
To reduce system resource occupation and fundamentally

solve the problem of too long virtual machine downtime in
the deployment process, the VM image size should be as
small as possible. We compare the customized VM image
generated by LFS with current lite release version of Linux.
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Fig. 2: VM image size

We customize VM image as web servers. Each VM
image installs Apache 2.2.22 and network components.
Comparison result as showed in Fig.2. We can limit the
size of customized VM image generated by LFS at 38.63M.
We install Apache on other lite version of Linux, size of
Debian is 70.95M, size of suse is 165.02M, size of ubuntu
is 181.66M and size of Redhat is 252.71M. LFS visibly
reduce the system consumption. LFS is much easier in
the minimizing process comparing with others. By LFS,
it also has much advantage in booting speed and system
consumption, comparison result as showed in Fig.3, we
configure VM memory size with 512M. LFS only take 6.76s
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Fig. 3: VM Boot time of every VM image

to complete the booting process. Debian boot time is 8.94s,
suse boot time is 12.55s, ubuntu boot time is 12.93s and
Redhat boot time is 15.37s. The boot speed of VM that
load customized VM image generated by LFS is faster than
others. By the reduction of VM image size, we effectively
reduce the VMs communication consumption and optimize
the VM deployment speed between virtual nodes.

5.2 VM image deployment time
To provide better cloud service for users, deployment time

should be as short as possible. We customize three VM
images with different size and set all installed services as
daemon. We deploy 8 VMs compare the deployment time
of DCVM with Full state copy and SnowFlock in different
network bandwidth.

We customize a small VM image with size of 38.6M, load
the image in parent-VM configure with 128M RAM, 512M
RAM and 1024M RAM respectively in different bandwidths.
It means a low dirty page rate and less dirty pages during
parent-VM boot process. The experiment result is displayed
in Fig.4. The deployment time of DCVM and SnowFlock are
shorter than FSC. The deployment time of DCVM is close
to SnowFlock, but we also can see the deployment time of
DCVM is weakly shorter than SnowFlock. 
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Fig. 4: VM deployment time with loading 38.6M customized
VM image in different bandwidths

We customize a VM image with middle size of 405M,
load the image in parent-VM configure with 128M RAM,
512M RAM and 1024M RAM respectively in different
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bandwidths. Load the image in VM of 128M RAM means
high dirty page rate and many dirty pages during parent-VM
boot process. Load the image in VM of 512M RAM means
common dirty page rate and less dirty pages during parent-
VM boot process. Load the image in VM of 1G RAM means
a low dirty page rate and less dirty pages during parent-VM
boot process. The experiment result is displayed in Fig.5.
The deployment time of DCVM and SnowFlock are shorter
than FSC. The deployment time of DCVM is shorter than
SnowFlock in most cases. In 5Mbit/sec network bandwidth,
deploy 128M RAM VM with SnowFlock will take about 80s
and DCVM will take 89s which represents SnowFlock is a
little faster than DCVM when generate many dirty pages in
a low LAN.  
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Fig. 5: VM deployment time with loading 405M customized
VM image in different bandwidths

We customize big VM image with size of 1021M, load
the image in parent-VM configure with 128M RAM, 512M
RAM and 1024M RAM respectively in different bandwidths.
Load the image in VM of 128M RAM means fairly high
dirty page rate and a lot of dirty pages during parent-VM
boot process. Load the image in VM of 512M RAM means
high dirty page rate and many dirty pages during parent-VM
boot process. Load the image in VM of 1G RAM means
less dirty page rate and many dirty pages during parent-
VM boot process. The experiment result is displayed in
Fig.6. The deployment time of DCVM and SnowFlock are
shorter than FSC. SnowFlock is less affected by network
bandwidth change in high dirty page rate cases. In a low
LAN, SnowFlock is faster than DCVM in high dirty page
rate cases. But with increasing the bandwidth, DCVM is
faster than SnowFlock.

Summarizing the above experimental results, FSC and
SnowFlock deploy parent-VM after parent-VM complete
boot process, but DCVM deploy parent-VM company with
parent-VM boot process. Deployment time of DCVM and
SnowFlock are shorter than FSC. FSC is not affected by dirty
page rate and the amount of dirty pages. Network bandwidth
and RAM size determine the efficiency of FSC. SnowFlock
is faster than DCVM in high dirty page rate and low LAN
cases, but SnowFlock does not synchronize the VM disk
data. In most cases, DCVM is faster than SnowFlock and it
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Fig. 6: VM deployment time with loading 1021M cus-
tomized VM image in different bandwidths

synchronizes the VM disk data.

5.3 Total transfer data size of deployment pro-
cess

To decrease the network overhead, transfer data during
deployment process should be as little as possible. We set
the bandwidth to 100Mbit/sec for above experiments and
compare the total transfer data size of DCVM with FSC
and SnowFlock.  
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 Fig. 7: Total transfer data size of FSC, SnowFlock and
DCVM

Experimental comparison results as showed in Fig.7. Total
transfer data size of DCVM and SnowFlock are significantly
less than FSC. Total transfer data size of SnowFlock is
much less than DCVM in high dirty page rate cases showed
in Fig.7 (b), (c). When VM configure with a small RAM
relative to customized VM image, SnowFlock will transfer
less data. Total transfer data size of DCVM will close
to SnowFlock with increase of memory size. When VM
configure with an enough RAM size relative to image,
DCVM transfer a little more data than SnowFlock, but
DCVM synchronize the VM disk data with less extra data
transfer. DCVM achieves sub-VMs independent of parent-
VM by synchronizing VM disk data.

6. Conclusion
In this paper, we presented the design, implementation and

evaluation of a rapid deployment method for customized VM
in the cloud platform. We customize the VM image with LFS
to reduce the VM image size. The customized VM satisfy
the user request and consume less space. It also speeds up
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the VM deployment process and decreases the amount of
transfer data. To improve the efficiency of VM deployment
we use a rapid deployment method combines pre-copy
algorithm and post-copy algorithm. To decrease the transfer
data and reduce the communication overhead in deployment
process, we use the incremental compressed mechanism to
compress the data of memory pages and use the multicast
to transfer the data. In order to achieve running sub-VMs
independent of parent-VM, we synchronize the VM disk data
during the deployment process. The experimental results
show that our approach is efficient for VM deployment.

To further improve the performance of VM deployment,
there are also many problems need to be solved in the
future. In customized VM image generation process, we
find the target host only considers the match degree. In a
cloud platform with workload or in a heterogeneous cloud
platform, it is not enough to only consider the match degree
and the target host we find may be not the best one. We
plan to add the performance parameter for finding the target
host. It usually selects the hosts for deploying the VMs with
simple methods. It is unreasonable in a cloud platform with
workload or in a heterogeneous cloud platform. To select
reasonable hosts for VM deployment, we plan to abstraction
hosts selection problem for a packing problem and consider
the performance and power consumption as parameters. In
our approach, trigger condition of Full-Ram copy process is
VM memory page rewritten. In a few cases, it is too late to
rewrite VM memory page firstly and it causes the Full-Ram
copy process starts too late in boot process. In these cases,
advantage of our approach cannot be expressed. Assign the
time of trigger Full-Ram copy process is an open question.
Our approach uses the multicast to transfer the data in a
LAN, but multicast is not appropriate for WAN. We plan to
use multicast in LAN and bit torrent in WAN in order to
extend our approach to a wide area network.
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Abstract—The Coalition Structure Generation (CSG) problem
is well-known in the area of Multi-Agent Systems. Its goal
is establishing coalitions between agents while maximizing the
global welfare. Between the existing different algorithms designed
to solve the CSG problem, DP and IDP are the ones with smaller
temporal complexity. After analyzing the performance of the
DP and IDP algorithms, we identify which is the most frequent
operation and propose an optimized method. Then, we analyze
the memory access pattern and find that its irregular behavior
represents a potential performance bottleneck. In addition, we
study and implement a method for dividing the work in different
threads. We show that selecting the best algorithmic options
can improve performance by 10x or more. Furthermore, the
execution in a dual-socket, six-core processor computer may
increase performance by an additional 5x-6x.

I. INTRODUCTION

In the multi-agent systems area, coalition formation is one
of the central types of collaboration. It involves the creation of
disjoint groups of autonomous agents that collaborate in order
to satisfy their individual or collective goals. One of the major
research challenges in the field is the search for an effective
set of coalitions that maximises the global satisfaction [1] of
the agents.

Coalition formation is applied to many actual-world prob-
lems such as distributed vehicle route planning [2], task
allocation [1], and airport slots allocation [3]. More recently,
it has been considered in the realm of social networks [4].

According to [2], the coalition formation process is divided
into three activities. In this paper we focus on the first
one, namely coalition structure generation (CSG). Notice that
finding the optimal coalition structure is NP-complete [2].
The search space handled by CSG is very large since the
number of possible coalition structures grows exponentially
with the number of agents.

Several algorithms in the literature tackle the CSG problem.
In particular, we distinguish three approaches: (i) optimal

algorithms based on dynamic programming (e.g. DP [5], IDP
[6]), which offer guaranteed run-times over arbitrary coalition
value distributions; their complexity is Θ(3n), where n is
the number of agents; (ii) optimal algorithms with anytime
properties whose convergence time to a solution largely de-
pends on the coalition value distribution, which present a
complexity Θ(nn); and (iii) heuristic approximate algorithms
(e.g. [1]), which aim at computing solutions faster than optimal
algorithms without offering quality guarantees. Unfortunately,
as widely noticed in the literature, the computational costs of
optimal algorithms are highly demanding even for a moderate
number of agents.

Against this background, in this paper we propose to
optimize the algorithms based on dynamic programing. The
implementation can be used as a building block for heuristic
algorithms as a means to explore complete subspaces in an
effective way.

As proposed in D-IP [7], where a distributed anytime algo-
rithm is presented, in this paper we present an algorithm able to
exploit the power of distribution but using a different paradigm.
Our proposal is building a IDP based algorithm able to run
in a shared memory scenario, which is common in nowadays
computers [8]. Using a shared memory paradigm simplifies the
communication between computation nodes, since there is no
need to send messages between them, but it requires a data
dependence study, because of possible synchronization.

As far as we are concerned, no reference implementation
neither of DP nor IDP algorithms has been published. When
studying and evaluating different implementation alternatives,
we have found, though, non-negligible issues on the algorith-
mic details that have a considerable impact on the overall per-
formance. The contributions of this work can be summarized
as:

• We analyze and evaluate fast methods for generating
splittings, the most critical operation, establishing that
a bad choice can degrade performance by 10x or more.
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• We parallelize the generation of splittings and execute
the problem on a shared-memory, multi-core, multi-
thread and multi-processor system.

• We identify the main performance bottleneck: both the
sequential and parallel execution are limited by the
lack of temporal and spatial locality of the memory
access pattern, and by the weak support for irregular
and scattered accesses provided by current memory
hierarchies.

• We find out that the performance advantage of IDP
versus DP is only realized for large problems, when
reducing memory bandwidth requirements pay off.

• We make our code publicly available at the following
URL:
https://github.com/CoalitionStructureGeneration/DPIDP.

The paper is organized as follows. Section 2 introduces the
CSG problem and describes the state of the art on dynamic
programming techniques. Section 3 analyzes implementation
issues such as data representation, most frequent operations
and bottlenecks in a single core environment and proposes
solutions to reduce execution time. Section 4 studies how
to parallelize the IDP algorithm and Section 5 evaluates the
performance of single and multi-threaded implementations.
The paper ends summarizing the conclusions and presenting
future work in Section 6.

II. THE COALITION STRUCTURE GENERATION (CSG)
PROBLEM

In this section we describe what a Coalition Structure
Generation (CSG) problem is and how dynamic programming
algorithms have addressed it to find an optimal solution. To
do so, we will use the following terminology:

• Agent (ax): A single agent. E.g. Ann or Bob.

• Agent Set (A): The set of all available agents. A =
{a1, a2, . . . , an}.
E.g. A= {Ann, Bob, Chris, Dave}.

• Coalition (C): C ⊆ A. C is a subset of A that contains
the agents participating in a coalition.
E.g. C= {Ann, Chris, Dave}.

• Split : Is the operation performing a binary partition
of a coalition.
E.g. {Ann,Chris,Dave} → ({Ann},{Chris,Dave}).

• Splitting : Is the result of the split operation. A split-
ting is a 2-tuple represented by (C1, C2). C=C1 ∪C2

where |C1|,|C2| >0, C1 ∩ C2=∅.
E.g. ({Ann},{Chris,Dave}) or ({Ann,Chris},{Dave}).

• Coalition Structure (CS): Is a collection of disjoint
Coalitions such that their union constitute the Agent
Set.
E.g. ({Ann},{Bob},{Chris,Dave}).

Consider a group of n agents A={a1,a2,. . . , an}. Agents
can establish coalitions with other agents in order to perform
a task. Each agent has its own preferences, meaning that some
coalitions are preferred. These preferences are expressed by a
value assigned to each possible coalition, denoted value[C]. It

can be predefined or can be computed by every agent on the
basis of its view of the world. In any case, coalition values
are inputs known before solving the CSG problem. They can
be represented by a table of size 2n, one per coalition. Table
I shows an example of the input data for a CSG Problem of
size 4.

The goal of the CSG problem is to find the coalition
structure providing maximum global satisfaction. From Table
I one can notice that the coalition formed by {a2,a3} has
lower value than the sum of value[{a2}] and value[{a3}],
meaning that agents a2 and a3 prefer to work alone rather
than collaborate.

C value[C] C value[C] C value[C]

{a1} 33 {a1,a3} 87 {a1,a2,a3} 97
{a2} 39 {a1,a4} 70 {a1,a2,a4} 111
{a3} 13 {a2,a3} 36 {a1,a3,a4} 100
{a4} 40 {a2,a4} 52 {a2,a3,a4} 132
{a1,a2} 87 {a3,a4} 67 {a1,a2,a3,a4} 151

TABLE I: Coalition values for a CSG problem of size 4.

A. DP Algorithm

The DP[5] algorithm uses Dynamic Programming to find
the optimal solution of the problem. For a given input data,
DP first evaluates all the possible coalitions of size 2. For each
possible pair of agents ax and ay , DP evaluates if it is better to
form a coalition or not. This is done by comparing value[{ax
,ay}] with value[{ax}]+ value[{ay}]. The maximum value
represents the preferred formation and substitutes the previous
value[{ax, ay}].

After evaluating all coalitions of size 2, DP starts evaluating
all possible coalitions of size 3, saving the maximum between
value[{ax, ay , az}] and all its possible splittings. There
are three ways to split the coalition: {ax, ay}+{az}, {ax,
az}+{ay} and {ax}+{ay , az}. Note that all the splittings
for coalitions of size 3 have at most 2 elements. Since DP
evaluates the coalitions of size 3 after evaluating and finding
optimal values for coalitions of size 2, the new coalition values
computed for size 3 will also be optimal. This process is
repeated incrementing the size of the coalitions (m).

Algorithm 1 Pseudo-code of the DP Algorithm
1: for m = 2→ n do
2: for C ← coalitionsOfSize(m) do .

(
n
m

)
iterations

3: max value← value[C]
4: C1 ← getF irstSplit(C)
5: while (C1) do . 2n−1 − 1 iterations
6: C2 ← C − C1

7: if (max value < value[C1] + value[C2] then
8: max value← value[C1] + value[C2]
9: end if

10: C1 ← getNextSplit(C1)
11: end while
12: value[C]← max value
13: end for
14: end for

The DP algorithm (see Algorithm 1) is composed of three
nested loops: (i) the outer loop (line 1), where coalition size
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(m) grows from 2 to the total number of agents (n), (ii) the
intermediate loop (line 2), where all coalitions of size m are
generated, a total of

(
n
m

)
, and (iii) the inner loop (line 5),

where each coalition is split and evaluated, a total of 2m−1−1
splittings. The temporal complexity of the DP algorithm is
determined by these three loops: Θ(3n).

B. IDP Algorithm

While DP generates all the possible splittings of each
coalition, IDP [6] introduces conditions to avoid the generation
and evaluation of a large amount of splittings. The performance
advantage of IDP is a reduction in the total number of
operations and memory accesses. Overall, IDP explores only
between 38% and 40% of the splittings explored by DP for
problems from 22 to 28 agents. Algorithm 2 presents the
pseudo-code of IDP, where the main changes are the filters
introduced on lines 4 and 6.

Algorithm 2 Pseudo-code of the IDP Algorithm
1: for m = 2→ n do
2: for C ← coalitionsOfSize(m) do .

(
n
m

)
iterations

3: max value← value[C]
4: (lower bound, high bound)← IDPBounds(n,m)
5: C1 ← getF irstSplit(C, lower bound)
6: while (sizeOf(C1) ≤ high bound do
7: C2 ← C − C1

8: if (max value < value[C1] + value[C2] then
9: max value← value[C1] + value[C2]

10: end if
11: C1 ← getNextSplit(C1, C)
12: end while
13: value[C]← max value
14: end for
15: end for

III. SINGLE-THREAD IMPLEMENTATION

In this section we analyze the operations of generating and
evaluating splittings inside the inner loop, which consumes ≈
99 % of the execution time. We compare two suitable options
and analyze their performance and the impact of the memory
access pattern.

A. Data representation

The coalitions and their associated values are stored in a
vector. A coalition is represented using an integer index where
the bit at position x of the index indicates that agent x is a
member of the coalition. The index determines the vector ele-
ment containing the coalition value. Using this representation,
the input of the CSG problem fits into a vector of 2n − 1
positions. With coalitions represented by 4-byte words, we can
run problems up to 32 agents.

B. Splitting generation

The splitting generation problem can be reduced to the
subset enumeration problem, since each coalition splitting is
composed by a subset, C1, and its complementary, C2. Gener-
ating all the subsets C1 from a coalition C and then calculating
the complementary C2 = C −C1, though, would produce the
same splitting twice: once for each of the splitting subsets.

Fig. 1: a) Banker’s sequence versus b) lexicographical order.

We remove one element from the coalition (the agent with the
highest rank) when performing the subset enumeration, so that
the removed element is never part of the enumerated subset
and always belongs to its complementary.

There exist several ways of enumerating subsets [9], like
banker’s sequence, lexicographical order, and gray codes. The
banker’s sequence seems a suitable option for IDP, since
it generates the splittings in growing order of |C1|, and
then simplifies the filtering of splittings by its size. Figure
1a shows a scheme of the banker’s sequence operation for
C={a1,a4,a5,a6,a7}, and assuming that only coalitions with
|C1|=2 need to be evaluated. Note that element a7 is always
assigned to the complementary subset (lighted colour). The
generation starts directly from the first splitting of size |C1| =
2, follows with the remaining

(
4
2

)
−1 subsets of the same size,

and stops before generating the first subset of size 3. The code
does not waste instructions generating useless subsets.

When generating splittings in lexicographical order (see
Fig. 1b), some filtering code is required to check that the
size of the splitting ranges between a given pair of bounds.
Execution resources are wasted to generate splittings that are
then discarded, and to perform the filter check. In Fig. 1, only
6 out of 14 splittings are actually needed (note the check and
discard crossed signs).

Both methods were implemented using recurrent functions
that calculate the next splitting from the previous one. The
lexicographical order was implemented with a few number of
very simple operations: C1 ← (C1 + C∗∗) AND C, where
C∗∗ is the two’s complement of C, that can be precalculated
for all the splittings of a given coalition. The whole splitting
code requires only 7 machine code instructions in a current
x86 ISA. On the other hand, our implementation of banker’s
sequence, an improved version of the algorithm published in
[9], required, on average, 6 times more instructions. More
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details about the implementation, like the usage of a special
population count instruction for computing |C1|, can be found
in the published code.

C. Memory accesses

All memory accesses correspond to reads from the vector
of coalition values performed in the inner loop of the algo-
rithm, and a few writes on the intermediate loop. The total
number of data read operations done by the DP algorithm
is around 2×3n. As explained above, IDP evaluates only a
subset of the splittings, corresponding to 38%-40% of the read
operations performed by DP.

The memory-level parallelism of the algorithm is moderate.
The inner loop recurrence can generate multiple independent
read requests, without having to wait for data, subject to
storage availability for pending requests and for the window
of instructions blocked on those data.

The data-reuse degree of the algorithm is high. There are
2n elements in the value vector, and so the average number
of reads to the same data item is ≈ 2×(3/2)n (≈100, 000 for
n = 27). However, accesses to the same item are scattered
in time, specially when the algorithm analyzes medium- or
large-size coalitions. The combinatorial nature of the problem
involves a pseudo-random read access pattern, where reads that
are consecutive in time refer to data from distant positions in
memory.

The bad performance behavior of the memory access
pattern arises for vectors that do not fit into the processor’s
cache. The vector size is 2n+2 bytes, which is 16 MBytes for
n=22. For larger n’s an important amount of vector accesses
will miss the cache and will request a full 64-Byte cache block
to DRAM. This creates both latency and bandwidth problems.
The moderate memory-level parallelism helps hiding part of
the DRAM latency but, as we will show later, an important
amount of this latency is exposed in the execution time. Also,
given the lack of spatial locality, most of the 64-Byte block
read from DRAM will be unused. In the worst situation, only
4 Bytes out of 64 will be used, giving a bandwidth efficiency
of 1/16= 0.0625.

IV. MULTI-THREAD IMPLEMENTATION

This section analyzes the algorithm’s data workflow in
order to find its potential thread-level parallelism (TLP). Ex-
ploiting concurrency efficiently is not straightforward, and a
new method to generate coalitions is devised. Finally, potential
performance problems are described.

A. Identifying sources of TLP

The simplest and most efficient approach is always to paral-
lelize the outer loop of a program. DP and IDP, though, exhibit
loop-carried dependencies on the outer loop: the optimal values
for coalitions of size m must be generated before using them
for generating the optimal values for coalitions of size m+ 1.

The intermediate loop generates all the coalitions of a
given size, and for each coalition it analyzes all the split-
tings of certain sizes. Tasks corresponding to coalitions are
independent: they only modify the value associated to the
coalition, and only read values corresponding to coalitions

of lower size. Therefore, there cannot exist read-after-write
(RAW) dependencies nor any other false data dependence
among the tasks. However, the single-thread code was designed
to accelerate coalition generation by using an inherently se-
quential algorithm that uses the previous coalition to generate
the next one in lexicographical order. The next subsection
describes a method for breaking this artificial dependence.

B. Speeding up Work distribution among threads

Assume we have t threads and we want each thread to
evaluate a disjoint set of coalitions. We must distribute work
to assure good load balance, and do it in a fast and efficient
way. Table II illustrates the generation of all the possible
coalitions of size m=3 from a set of n=6 agents. The single-
thread code implements a sequential algorithm to generate
in lexicographical order all

(
6
3

)
=20 coalitions, represented as

bitmaps in the binary encoding columns of Table II. In practice,
we must calculate cnt=

(
n
m

)
and then assign cnt/t coalitions to

each thread. Once a thread obtains its starting position in the
coalition series, say k, it can generate the whole range with
the fast sequential method. But we need an efficient strategy
to generate the kth coalition without having to compute all the
previous coalitions from the beginning.

Order Encoding Coalitions Order Encoding Coalitions
(k) Bin Dec (k) Bin Dec

1 ...111 7 {a1, a2, a3} 11 ..111. 14 {a2, a3, a4}
2 ..1.11 11 {a1, a2, a4} 12 .1.11. 22 {a2, a3, a5}
3 .1..11 19 {a1, a2, a5} 13 1..11. 38 {a2, a3, a6}
4 1...11 35 {a1, a2, a6} 14 .11.1. 26 {a2, a4, a5}
5 ..11.1 13 {a1, a3, a4} 15 1.1.1. 42 {a2, a4, a6}
6 .1.1.1 21 {a1, a3, a5} 16 11..1. 50 {a2, a5, a6}
7 1..1.1 37 {a1, a3, a6} 17 .111.. 28 {a3, a4, a5}
8 .11..1 25 {a1, a4, a5} 18 1.11.. 44 {a3, a4, a6}
9 1.1..1 41 {a1, a4, a6} 19 11.1.. 52 {a3, a5, a6}
10 11...1 49 {a1, a5, a6} 20 111... 56 {a4, a5, a6}

TABLE II: Coalitions generated using lexicographical order.

Algorithm 3 describes getCoalition(n,m, k), a function
that generates the kth coalition in lexicographical order of
m elements from a set of n. The description is done recur-
sively to help understand how it works, although the actual
implementation is iterative in order to improve its performance.
The coalition is created recursively, bit by bit, starting from
the least significant bit and considering

(
n
m

)
possibilities. The

first half of the possible coalitions have the less significant bit
set to 1. If the requested rank, k, is lower than or equal to
h=1/2×

(
n
m

)
, then the bit is set to 1, and m is decremented by

one. Otherwise, the bit is set to zero, and the rank k is reduced
to k−h. Each recursive call decrements the number of bits to
consider to (n− 1).

C. Potential Parallel Performance Hazards

The first and last iterations of the outer loop exhibit few
TLP, compromising the efficiency of the parallel execution.
We tuned the implementation so that threads are launched
in parallel only for iterations that have a minimum amount
of work. A minor problem is the need for a few number
of synchronization barriers at the end of every iteration of
the outer loop. They can be neglected, except for very small
problem sizes.
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Algorithm 3 pseudocode of getCoalition(n,m, k)

1: if ((m == 0) OR (k == 0)) then
2: return 0
3: end if
4: h←

(
n− 1

m− 1

)
5: if (k ≤ h) then
6: return 1 + 2×getCoalition(n− 1,m− 1, k)
7: end if
8: return 2×getCoalition(n− 1,m, k − h)

An important performance issue is the occurrence of false
cache sharing misses. They occur when different threads
update different positions in the vector of values that happen
to be mapped to the same cache line.

Finally, there is also the issue of true cache sharing.
Threads generate values for coalitions of size m that are stored
into local caches. When all the threads need to access those
values for handling larger coalitions, data has to be moved
from local storage to all the execution cores.

V. EXPERIMENTAL RESULTS

The computer system used in our experiments is a dual-
socket Intel Xeon E5645, each socket containing 6 Westmere
cores at 2.4 GHz, and each core executing up to 2 H/W threads
using hyperthreading (it can simultaneously execute up to 24
threads by H/W). The Last Level Cache (LLC) provides 12
MiB of shared storage for all the cores in the same socket. 96
GiB of 1333-MHz DDR3 RAM is shared by the 2 sockets,
providing a total bandwidth of 2×32 GB/sec. The Quickpath
interconnection (QPI) between the two sockets provides a peak
bandwidth of 11.72 GB/sec per link direction.

Input data was created using a uniform distribution as
described by [10] for problem sizes n = 18 . . . 27.

A. Single-thread Execution

DP and IDP were executed using both the banker’s and
lexicographical splitting generation methods. Figure 2a plots
the execution time in logarithmic scale for the four algorithmic
variants. Lexicographic order is around 7x to 11x faster than
banker’s and, therefore, in the remaining of the paper we will
use the first splitting method.

Figure 2b represents the execution time of DP and IDP
divided by 3n (algorithmic complexity). This metric evaluates
the average time taken by the program to execute a basic algo-
rithmic operation, in this case a splitting evaluation. It is similar
to the CPI (Cycles Per Instruction) metric, but at a higher
level. The metric helps identifying performance problems at
the architecture level. Figure 2b shows two different problem
size regions: those that fit into the LLC (n<22), and those that
do not. A small problem size determines a computation-bound
scenario, where DP slightly outperforms IDP, even when it
executes around 20% more instructions. The reason is that IDP
is penalized by a moderate number of branch mispredictions.

Large problem sizes determine a memory-bound scenario,
where IDP amortizes its effort on saving expensive memory
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accesses to outperform DP by 40-50%. Figure 2c shows the ef-
fective memory bandwidth consumption seen by the programs.
The shape of the curves can be deduced from Figure 2b, but
we are interested on the actual values. The effective bandwith
ranges between 0.5 and 1.0 GB/sec. A small fraction of this
bandwidth comes from the LLC and lower-level caches, and
the remaining fraction comes from DRAM. Even considering
the worst case described in section 3.3, that only 4 bytes out of
the 64-Byte cache block are effectively used, it is still a very
small value compared to the peak 32 GB/sec. The conclusion is
that DRAM latency is the primary performance limiter. Results
on the next subsection corroborate this conclusion.

B. Multi-thread Execution

We focus our multi-thread analysis on IDP, which outper-
forms DP for interesting problem sizes. We run IDP using
t= 6, 12, and 24 threads. The case t=6 corresponds with
using a single processor socket. The case t=12 uses only one
socket but also exploits its hyperthreading capability. Finally,
t= 24 is an scenario where all 2 sockets have their 6 cores
running 2 threads each, using hyperthreading. Figure 3 shows
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Fig. 2: Experimental data (BAN: Banker’s sequence; LEX:
Lexicographical order).

the speedup compared to the single-thread execution. Again,
distinguishing between small and big problem sizes is useful.
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Fig. 3: Single-thread IDP versus 6-, 12- and 24-thread IDP
execution

The t=6 configuration provides a speedup of 5 for small
problems, and lower than 4 for large problems. The t=12
configuration further increases performance around 60% for
small problems, and 30% for bigger problems. The fact that
executing two threads per core do improves performance
corroborates previous latency limitations, since hyperthreading
is a latency-hiding mechanism. It also indicates that 6 threads
do not generate enough LLC and DRAM requests to fully
exploit the available LLC and DRAM bandwidth.

The effective memory bandwidth achieved with 12 threads
is around 2.5 GB/sec for the bigger problem sizes, or around

13 times lower than the peak achievable bandwidth. Given the
lack of spatial locality of DRAM accesses, we are probably
reaching the maximum bandwidth available for the pseudo-
random memory access pattern of the problem.

The t=24 configuration checks the benefit of using a second
socket. Performance is highly penalized for small problems,
due to the overhead of communication traffic along the QPI
links for both false and true cache sharing coherence. On
average, half of the data accessed by a thread is fetched
from the other socket. Compared to the single-socket scenario,
where all data is provided from local caches, performance
drops up to 7 times for very small problems.

Large problems benefit very little from a second socket,
with improvements near to 10%. The advantage of the 2-
socket configuration is that the available DRAM bandwidth
is duplicated, and the overhead due to coherence traffic is not
so important, given that most of the data is obtained from
DRAM. Anyway, the small performance gain does not justify
using a second socket. Again, the symmetric, scattered memory
access pattern does not fit well with the NUMA hierarchy. We
are currently working on a way to partition data that reduces
communication between sockets.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an optimized implementation of the
DP and IDP algorithm and a novel contribution describing the
first parallel version of DP and IDP.

Our implementations clearly outperform the results found
in the literature. According to [11], they need 2.5 days to solve
a CSG problem with 27 agents, in some unspecified computer,
and using a code implementation that is not provided. Our
best single-thread implementation solves a same sized CSG
problem in 5.8 hours. The multi-core implementation reduces
execution time to 1.2 hours. Therefore, we claim that our
implementation is the fast implementation of IDP published
so far. We have made available to the community our source
code.

We have analyzed the bottlenecks of DP and IDP. The
pseudo-random memory access pattern lacks locality, and
exploits the memory system capabilities very inefficiently.
The latency tolerance ability of multi-threading improves per-
formance on a multi-core processor. However, a dual-socket
NUMA system is not appropriate for solving neither small nor
big problems. The use of GPUs or accelerators with massive
thread parallelism will be analyzed in the future.

We also want to study alternatives for coalition indexing
and storage that provide higher locality, even at the expense
of increasing instruction count, which is not a performance
limiter for large problems.
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Goiânia, Brazil

Arlindo Rodrigues Galvão Filho
Department of System and Control

Technological Institute of Aeronautics
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Abstract—This paper proposes a partial parallelization for the
Successive Projections Algorithm (SPA), which is a variable selec-
tion technique designed for use with Multiple Linear Regression.
This implementation is aimed at improving the computational
efficiency of SPA, without changing the outcome of the algorithm.
For this purpose, a new strategy of inverse matrix calculation
is employed. The advantage of the proposed implementation is
demonstrated in an example involving large matrixes. In this
example, gains of speedup were obtained.

Keywords: Successive Projections Algorithm, parallelization,
Multiple Linear Regression, CUDA.

I. INTRODUCTION

The Successive Projections Algorithm (SPA) is a tech-
nique that aims at selecting variables to minimize collinearity
problems in Multiple Linear Regression (MLR). Originally
proposed in [9], the SPA has the restriction that the variable
incorporated in each iteration must be as less multicolinear
possible with the previously selected variables [11], [16], [18].
Through the use of SPA, it is possible to obtain good results in
various problems of multivariate analysis, such as determining
sulfur in diesel samples [2], determining the quality parameters
in vegetable oils [15], determining the levels of moisture and
protein in wheat samples [12], among others. The SPA is
composed of three stages. In phase 1 are generated chains of
minimally redundant variables. Phase 2 evaluates the subsets
of variables with higher predictive potential from the variable
chains obtained in stage 1. Such assessment is measured by the
prediction error in the multiple linear regression models. The
equation 1 shows how regression coefficients are calculated,
and the equation 2 shows how the predictive ability of a
particular subset of variables is measured by calculating the
error RMSEP (Root Mean Square Error).

β = (XTX)−1XTy, (1)

where X is the matrix of variables and samples, y is the
vector of dependent variables and β is the vector of regression
coefficients.

RMSEP =

√∑N
i=0(yi − ŷi)2

N
, (2)

where ŷ is the estimated value and y is the actual value of the
property of interest.

Regarding the computational cost, phase 2 represents the
highest cost compared to the other phases, because this stage
involves the calculation of an inverse matrix as shown in
equation 1. In [7] was proposed to reduce the cost of Phase 2 of
the SPA through sequential regressions. This idea is based on
updating the calculation of the inverse of the linear regression
when adding a new variable instead of performing any inverse
calculation. The benefit of the proposed implementation was
shown through an example involving a data set near-infrared
(NIR) of wheat samples. In such example, computational gains
were achieved compared with the traditional SPA implemen-
tation. Despite the results obtained, such technique does not
exploit the recent advances in computing power of computers,
in particular the possibility of performing tasks in parallel,
since sequential regressions have a sequential formulation.

In [17] was proposed the SPA parallelization in order to
explore the ability of multiple processing cores (multicore)
on new computer architectures. The results obtained showed
that it was possible to reduce the computational cost of the
algorithm as more than one processing core becomes available.
However, this processing architecture currently is limited to
using a maximum of eight cores.

Despite the use of sequential regressions and multicore
parallelization reducing the computational time, both strategies
do not make use of the latest advances in terms of processing
capacity in architecture computers Intel R©. Calculating the
inverse matrices using parallel programming can be more
interesting due to the fact of using the parallel computing
resources provided by GPUs (Graphics Processing Unit) [3],
[1], [10], [20].

In this work, a new strategy for reducing the computational
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cost of the SPA is proposed. In particular a partial parallelizing
of phase 2 of the algorithm is proposed, involving calculation
of matrix inversion by using the Compute Unified Device
Architecture (CUDA) on GPUs. While the current multi-
core architectures have two, four or eight cores, GPUs have
hundreds or even thousands of processing cores. However,
unlike the parallelization on CPUs (Central Processing Unit)
multicore, the organization and number of threads, which
are executed independently on the GPU cores, are managed
manually by the programmer.

This article is organized as follows. Section 2 details the
Successive Projections Algorithm. The proposed paralleliza-
tion on phase 2 of the SPA is detailed in section 3. Section
4 describes the materials and methods used. The results are
discussed in section 5. Section 6 shows the conclusions.

II. SUCCESSIVE PROJECTIONS ALGORITHM REVIEW

The multivariate calibration refers to obtaining a mathemat-
ical model that allows to provide the value of a quantity y
based on values measured from a set of explanatory variables
x1, x2, ..., xk [12]. Thus, it is possible to obtain a suitable
model

y = β0 + β1x1 + ...+ βkxk + ε, (3)

where β0, β1, ..., βk, k = 1, 2, ..., K, are the coefficients
to be determined, and ε is a portion of random error. The
process for obtaining coefficients is also known as MLR,
typically being performed by the least squares method [8].
The Multiple Linear Regression is a statistical technique used
to build models that describe reasonably relationships between
several explanatory variables of a given process [14], [4].

The goal of SPA is to select a subset of variables with
low collinearity that allows the construction of a MLR model
with a capacity of adequate prediction. Data modeling for the
SPA implementation are divided into two sets: calibration,
containing Nc observations, and validation containing Nv

observations, where Nc + Nv = N . The data calibration and
validation are arranged respectively in matrixes Xc (Nc × K)
and Xv (Nv × K). In SPA’s phase 1 are generated K chains
with M variables each, being

M = min(Nc − 1,K). (4)

In step 2, the SPA uses the validation set to evaluate subsets
of variables extracted from the chains generated in stage 1. As
a result of phase 2, the best subset of variables is the one that
leads to the smallest value of RMSEP among subsets tested.
The algorithm of phase 2 is shown in the algorithm 1.

Obtaining RMSEP can be performed in two ways:
• If validation is used to test series, a set of
validation samples must be defined. Soon after, the
best subset is determined by the lowest root value
of mean squared error on a validation set calculated
by the equation 2 for all subsets of variables;

Algorithm 1: Step 2 of the SPA
1) Do k = 1
2) While k < K
3) Do m = 1
4) While m < M
5) Let Xkm be a subset of varibles formed by m first

elements of k-th chain generated on phase 1.
6) Let S−1

km
be the inverse of the equation 1.

7) Using the variables contained in Xkm, calculate the inverse
S−1
km

and subsequently the remainder of the equation 1.
8) Calculate the error RMSEP of k-th chain with m

variables, according to equation 2.
9) Do m = m+ 1

10) End While m < M
11) Do k = k + 1
12) End While k < K

• If the cross-validation is used, the best subset is
determined by the lowest root value of mean squared
error of cross validation in the calibration set, which
can be obtained by an equation similar to equation 2.

The third and last phase consists of eliminating variables
that do not contribute significantly to the predictive capacity
of the resulting MLR model. For such, each variable selected
in phase 2 is associated with a “relevancy index” given by the
product of the sample standard deviation and the regression
coefficient modulus of this variable [18].

III. PROPOSED PARALLELIZATION

A square matrix A is said to be invertible if there exists
another matrix A−1 such that A−1A = I and AA−1 = I ,
where I is called identity matrix. According to the literature,
A matrix has an inverse if and only if det(A) 6= 0.

Calculating the inverse of a matrix can require significant
computational effort, especially when A is large. Therefore,
using the parallel computing resources provided by a GPU
can be viable. The GPU was initially developed as a driven-
flow technology, optimized for calculations of intensive data
use, where many identical operations can be accomplished in
parallel on different data. Unlike a multicore CPU, which
normally executes some threads in parallel, the GPU was
designed to run thousands of threads in parallel [5].

Programming models such as CUDA [5] and OpenCL [19],
allows that applications can be run more easily on the GPU.
CUDA was the first architecture and interface for program-
ming application (API), created by NV IDIA R© in 2006 to
allow the GPU could be used for a wide variety of applications.
Like any technology, the GPU has its limitations. Depending
on the data volume, GPU’s computational performance may
prove inferior when compared to CPU performance. In this
case, the data amount to be transferred to the GPU memory
must be taken into account, because there is an overhead
associated with the parallelization of tasks on the GPU [13].
Factors regarding the access time to memory can also influence
the computational performance. In other words, access to GPU
global memory usually has a high latency and it is subject to
a coalesced access to data in memory [6].
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In this paper, a strategy for the parallelization at step of the
calculation of inverse matrix used in phase 2 of the Successive
Projections Algorithm is presented.

Let An×n and In×n be the matrix to be calculated the
inverse and identity matrix, respectively. Recursively, i = 0, 1,
..., n−1, through the use of two kernel functions (kernel1 and
kernel2), each thread performs an operation on each element
of the matrix . In the first kernel function are set

√
n blocks

with
√
n threads each, where each thread accesses a single

element and divide it by the pivot of row i of the matrix A.
In the second function are created n blocks with n threads
each. Each block of threads handles a line of matrices, and
only threads whose its global identifier (id) divided by the
number of columns ( idn ) is different from index i implementing
operations. For example, in the first iteration (i = 0), threads
with id = 0, 1, ..., n − 1 do not satisfy the condition id

n
6= i. Only the threads that satisfy this condition continue
its execution and, after all threads have been executed, the
elements below the pivot of the first column are zeroed.

Figure 1 shows the strategy used. Each arrow in the figure
represents an iteration of the algorithm. Initially, there are the
matrixes A3×3 and I3×3. All operations applied to the matrix
elements A are also applied in parallel to the elements of the
matrix I . After the last iteration, the matrix A becomes the
identity matrix, and the matrix I becomes A−1.

𝐴 =  
5 6 9
4 1 7
1 7 6

   
1 1.2 1.8
0 −3.8 −0.2
0 5.8 4.2

   
1 0 1.73
0 1 0.05
0 0 3.89

     
1 0 0
0 1 0
0 0 1

  

𝐼 =   
1 0 0
0 1 0
0 0 1

   
0.2 0 0

−0.8 1 0
−0.2 0 1

     
−0.05 0.31 0
0.21 −0.26 0

−1.42 1.52 1
     

0.58 −0.36 −0.44
0.22 −0.28 −0.01

−0.36 0.39 0.25
  

Fig. 1. Parallelization strategy used in the calculation of the inverse of a 3x3
matrix.

Algorithms 2 and 3 respectively show the implementation
of the functions kernel1 and kernel2.

Algorithm 2: kernel1 implementation.

begin
Parameters: A, I , index, size = number of columns;

id ← thread global identification
if id < size then

pivo ← A(index, index)

A(index, id) ← A(index,id)
pivo

I(index, id) ← I(index,id)
pivo

end if
end

Algorithm 3: kernel2 implementation.

begin
Parameters: A, I , index, n = number of columns,
size = number of rows × number of columns;

id ← thread global identification
idBlock ← block identification
idThread ← thread local identification
if id < size then

if ( idn ) 6= index then
m ← A( idn , index)

A(idBlock, idThread) ← A(idBlock,
idThread) - (m × A(index, idThread))

I(idBlock, idThread) ← I(idBlock,
idThread) - (m × I(index, idThread))

end if
end if

end

IV. EXPERIMENTAL

The dataset employed in this work consists of 775 NIR
spectra of whole-kernel wheat, which were used as shoot-
out data in the 2008 International Diffuse Reflectance Confer-
ence (http://www.idrc-chambersburg.org/shootout.html). Each
spectrum comprises 1050 variables in the range 400-2500
nm. Protein content (%) was used as the y-property in the
regression calculations.

A. Computational setup

All calculations were carried out by using a desktop com-
puter with an Intel Core i7 2600 (3.40 GHz), 8 GB of RAM
memory and a NV IDIA R© GeForce GTX 550Ti graphics
card with 192 CUDA cores and 2 GB of memory config.
The Matlab 7.12.0 (R2011a) software platform was employed
throughout. All the matrices used in this paper were generated
by using randn(), which is a built-in function of Matlab.

V. RESULTS AND DISCUSSION

Figure 2 presents the time required for completion of Phase
2 depending on the maximum number M of variables to be
selected. For M = 100, for instance, regressions involving one
up to 100 variables are carried out and matrix inversion in the
same order (100x100). As can be observed, the computational
time increases with the matrix size, but the increase is less
pronounced if the parallel regression procedure is used. For
M = 1000, for example, this procedure reduces the time by
a factor of two. Although the computational gains obtained
for the sizes of small matrices time required for execution of
Phase 2 is lower by using CPU. This case can be observed
in Figure 3. The implementation using GPU is more efficient
for matrices from 300x300. Although the proposal is feasible
for matrices larger than 300x300, we believe that the proposal
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is important once the devices used in this type of problem
have generated data with ever larger. Until five years ago the
appliances generated matrixes with few hundreds of variables,
while recently it is in the thousands. In this sense, the
development of computational algorithms used in this type of
problem is important to computational not to become unviable.
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Fig. 2. Comparison of computational performance between CPU and GPU.

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

Matrix dimension

C
om

pu
ta

tio
na

l t
im

e 
(s

)

 

 

CPU time
GPU time

Fig. 3. Detail of Figure 2, showing a comparison of computational perfor-
mance between CPU and GPU for matrix size up to 500x500.

VI. CONCLUSION

This paper proposed a partial parallelization of the Succes-
sive Projections Algorithm based on Compute Unified Device
Architecture. This procedure was employed in Phase 2 of SPA,
which is the computational bottleneck of the overall algorithm.
The results obtained by using a large dataset of NIR spectra
(775 samples and 1050 variables) revealed that substantial
gains in computational efficiency can be obtained by using
the proposed implementation.
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Abstract - Privacy issue is an important security problem in 

body sensor networks, and key negotiation method is the 

foundation to address the problem. In the paper, we first 

present a formal definition of key negotiation method which 

includes two aspects, correction and security. And then, 

according to the definition, we further give a concrete 

structure of a new fuzzy-extractor-based key negotiation 

method that not only enlarges the option of physiological 

signals to produce shared keys, but also can resist a new 

attack based on ultra wide band technology. Analyses show 

the new key negotiation method is suitable to body sensor 

networks. 

Keywords: Key Management; Physiological Signals; 

Security; Body Sensor Networks; Fuzzy Extractor  

 

1 Introduction 

  Compared with enormous research efforts made on the 

cyber security of critical infrastructure 

[1][2][3][4][5][6][7][8], security of body sensor network is 

virtually an unchartered territory.  

Body sensor networks (BSNs) is an important branch of 

wireless sensor networks (WSNs) [9]. A BSN is a medical 

information system in the field of e-health, and consists of 

some biosensor nodes that form a wireless micro-network on 

the human body. These biosensor nodes are micro-scale 

equipment integrated with biosensors and transceivers [15], 

and can provide a capability of automated, continuous human 

monitoring when they are worn on or implanted in the human 

body. At present, various biosensors has been designed to 

measure diverse physiological values, such as Blood Pressure 

(systolic and diastolic), Electrocardiogram (ECG), Blood 

Oxygen level (SpO2) etc., and are available in many different 

forms including wrist wearable, ambulatory devices and as 

part of biomedical smart clothes [16][17]. Based on the 

functions of biosensors, BSNs can not only monitor people’s 

health, but also execute intelligent treatment, such as accurate 

drug delivery. Applications of BSNs will greatly improve the 

society’s medical conditions and promote living qualities of 

people. 

Data exchanged in a BSN contain sensitive medical 

information which should be protected [18]. For example, the 

leaked medical data will divulge personal privacy, and the 

tampered medical data will cause serious medical accidents 

which could threaten a patient’s life. National regulations are 

being established to ensure the privacy and security of 

healthcare data from data generation, transmission, storage 

and usage where the HIPAA (The Health Insurance 

Portability and Accountability Act USA) has set a benchmark 

[19]. However, the computational and bandwidth limitations 

of BSNs are on par with those found in the so-called micro-

sensor network, which makes traditional security paradigms 

[19][20] designed for conventional WSNs not directly 

applicable to BSNs. So, there are great challenges in 

designing security schemes for BSNs. One of the core 

problems is how to establish shared keys among biosensor 

nodes. Note that biometric data coming from physiological 

signals themselves have an advantage over conventional 

cryptography in authenticating genuine users [19], a natural 

solution of protecting biometric data will be the combination 

of conventional cryptography and biometric data, i.e., bio-

cryptography [22]. 

In this paper, to design a key negotiation method suitable to 

body sensor networks, we make the following contributions: 

(1) we design two attack games to simulate the practical 

attacks launched by the adversary, and then according to the 

two attacks, we give a formal definition of key negotiation 

method based on fuzzy extractor. (2) By the definition we 

build a concrete key negotiation method that not only can 

enlarge the option of physiological signals, but also can resist 

the developing ultra wide band technology. 

The rest of the paper is organized as follows: Section 2 

presents current research work related to key negotiation 

schemes for body sensor networks and fuzzy extractor 

technology. Section 3 proposes a formal definition of key 

negotiation based on fuzzy extractor. A new key negotiation 

method and its correctness and security analyses are given in 

Section 4. Finally, in Section 5 conclusions are drawn. 
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2 Related work 

2.1 Key Management Methods Based on Fuzzy 

Commitment 

 In a human body, some physiological signals have high 
level randomness, and can be encoded as pseudo-random 
numbers, so biometric data coming from these signals can be 
used in biometric security. Reference [25] proposed to use a 
group of similar random numbers generated from these 
physiological signals at different sites of the human body to 
encrypt and decrypt a symmetric key. Since the same 
biometric value captured at different locations of the body 
have slight differences, they employed a fuzzy commitment 
scheme [26] to ensure that errors in a recovered encryption 
key can be removed by a certain error-correcting code C. At 
the transmission terminal, a biometric value coming from a 
high-entropy physiological signal, x, is used to commit the 

key
sharedk  that is a secret code word of C: 

( , ) ( ) || ( )shared shared sharedF k x h k x k  , where  is the bitwise 

XOR operation and  || means concatenation. At the receiving 

terminal, if the same kind of collected biometric value x’ is 
similar to x, and the difference between them is tolerable to C, 
the receiving terminal can use x’ and C to decommit the 

key
sharedk . Compared with traditional key negotiation 

schemes, the non-interactive fuzzy commitment scheme has 
less energy consumption in messages transmission, and is 
suitable for BSNs. A number of algorithms have been 
developed following the work of [25]. The method proposed 
in [27] only transfers commitments to complete keys 
negotiation. The method is conductive in reducing messages 
transferred in negotiation of shared keys, and is suitable to 
establish shared keys among biosensor more than two nodes. 
Reference [28] used a hybrid topology that combines two 
topologies, star and mesh, to establish shared keys. In the 
scheme, identities of biosensor nodes are used to authenticate 
shared keys, and a mechanism of changing cluster heads 
according to energy is proposed to maximize the lifetime of 
BSNs. Reference [29] proposed a method that uses time slots 
to solve synchronization problem of high-entropy biometric 
data between biosensors. Reference [30] pointed out by 
experiment that the timing information of heartbeats has high 
entropy characteristic, and can be used to negotiate shared 
keys in BSNs. Reference [30] further brought forward that a 
developing technology, UWB (Ultra Wideband Radar), can 
remotely capture some biometric data (such as heart rate), and 
could post a new attack, called as RCB (remotely capturing 
biometric data) attack, to key negotiation methods based on 
biometric methods. 

Though many achievements have been made on this topic, 
several challenging problems remain: (1) Only high-entropy 
physiological signals are considered to negotiate keys. Up to 
now, only the timing information of heartbeats is proved by 
experiment in [30] to be high-entropy signals, which greatly 
limits applications of the technology in key negotiation. (2) 
Shared keys are only generated from the set of error-correcting 
codes, which restrict the choice space of keys. (3) Shared keys 
are vulnerable to the developing RCB attack, that is, when an 

adversary remotely captures a physiological signal x that is 
used to negotiate shared keys, and eavesdrops the 

corresponding commitment:
sharedp x k  , he can easily get 

the shared key by : 
shared sharedp x x k x k     . 

2.2 Fuzzy extractor technology 

 Following the development of the fuzzy commitment 
technology, another biometric cryptography, fuzzy extractor 
technology, was proposed in [31]. The technology includes 
two procedures: one is called secure sketch, and can help two 
parts to negotiate the same biometric value using the same 
kind of physiological signal; another is called extractor, and is 
used to extract a secret value from biometric value. Since 
fuzzy extractor technology can help two parts produce a 
shared key from the same kind of physiological signals, and 
the key space does not depend on error-correcting codes, 
which makes it be superior to fuzzy commitment technology in 
negotiating shared keys in body sensor networks. 

However, recently, many researchers have found out that 
the construction of fuzzy extractor is not adequate for multiple 
uses of the same secret biometric value. Reference [32] 
pointed out that an improper sketch construction and a biased 
error correction code are both the source of leaking secret 
biometric data. Reference [33] pointed out that fuzzy extractor 
cannot resist active attack, and when commitments are 
tampered, the authentication service provided by fuzzy 
extractor will be invalid. Reference [34] showed that some of 
more popular constructions that have been shown to have 
serious security weaknesses in presence of even very weak 
adversaries. Reference [35] explained the root of vulnerability 
of fuzzy extractor, that is, because the key derived from 
biometric data must be indistinguishable to uniform random 
distribution, the leakage of information associated with the 
biometric data is unavoidable. According to above results, 
reference [36] proposed a series of robust key management 
methods that decrease the leakage of entropies, however the 
methods also depend on high-entropy physiological signals, 
and also cannot resist RCB attack. 

 

3 Formal definition of key negotiation 

based on fuzzy extractor  
 

In this section, we propose a new key negotiation method 
called as fuzzy negotiation that is based on fuzzy extractor 
technology and is superior to fuzzy extractor technology in 
terms of practicality and security. 

Like fuzzy commitment and fuzzy extractor, fuzzy 
negotiation makes use of error-correcting codes to negotiate 
shared keys. Let M be a space of messages with distance 

function ( )dist  , more formally an error-correcting code C is a 

subset of K number of distinct code words 0 1{ ,..., }kc c   of M . 

The minimized distance of C is the smallest d such 

that ( , )i jdist c c d for all i j , which means that C  can 

detect up to 1d  errors, and the error-correcting distance 

is ( 1) / 2t d    . 
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As our work is in the computational setting, we use to 
denote the security parameter. All algorithms are assumed to 

be a polynomial time in . Then a function ( )  is negligible 

if for all positive polynomial ( )p  and sufficiently 

large , ( ) 1/ ( )p   . 

In a BSNs, let K denote the preloaded secret of all 

biosensor nodes, W is a variable of M with length | |W l , w 

and w’ are values of W, r is a random value with length l, and t 
is the error-correcting distance of a selected public error-
collecting code C where the length of each code word c is l.  
Then, we give a formal definition of fuzzy negotiation as 
follows: 

Definition1: 
A structure of fuzzy negotiation is a pair of randomized 

procedures, “Trans” and “Rec”, with the following properties: 

On input w, K, r and c, the generation procedure “Trans” 

outputs an extracted secure string {0,1}lR  and a public 

string {0,1}*P to commit R . 

Correction: The reproduction production “Rec” takes an 

element w’ and a public string {0,1}*P as inputs. The 

correctness property of fuzzy negotiation guarantees that 

if ( , ')dist w w t , and R, P are generated 

by ( , ) ( , , , )R P Trans K w r c , then ( , ', , )Rec K w P C R . 

If ( , ')dist w w t , then no guarantee is provided about the 

output of “Rec”. 

Security: Any adversary wins the adaptive chosen 
biometric data attack game and adaptive chosen commitment 
attack game defined as follows with negligible possibilities. 

3.1 Adaptive chosen biometric data attack 

game 

We define an adaptive chosen biometric data attack game 
against fuzzy negotiation as the following game between a 
challenger and an adversary. In the initialization, the 
challenger is assigned with a secret K . 

Preparation: The adversary chooses a kind of physiological 
signal, and describes it as a biometric variableW M . And 

then, the adversary gives the specification of W (such as the 

kind of the physiological signal) to the challenger. 

Queries: The adversary makes up to q possibly adaptive 

queries: To form adaptive query i , the adversary produces a 

value iw  ofW , a random value r, and a code word c from C, 

and then sends all of them to the challenger. The challenger 

produces ( , ) ( , , , )i i iP R Trans K w r c , and sends iP to  the 

adversary. 

Challenge: The adversary produces a value w of W , a 

random value 'w with length | |w , a random value r and 

selects a code word c from C, and then sends all of them to the 

challenger. The challenger randomly produces a bit b , if 1b  , 

the challenger computes ( *, *) ( , , , )P R Trans K w r c , and 

if 0b  , the challenger 

computes ( *, *) ( , ', , )P R Trans K w r c instead. Finally, the 

challenger sends *P to the adversary. 

More Queries: The adversary runs additional queries as 
described in step “Queries”. 

Response: The adversary eventually produces a bit 'b , and 

wins if 'b b . 

Let ( *)adversary P  be the output of the adversary when it 

gets P*, and | 'w w be an alternative choice with a probability 

of 1/2. Then, the adversary’s advantage in this game is defined 
as: 

( ) | [ ( *) | * ( , | ', , )]Acbadv Pr b adversary P P Trans K w w r c   

 1/ 2 | . 

3.2 Adaptive chosen commitments attack game  

Let  be the set of perturbation functions over a messages 

space M , i.e., { : }M M   where ( , ( ))dist w w can be 

greater than t . We define an adaptive chosen commitments 

attack game against a fuzzy negotiation as the following game 
between a challenger and an adversary. In the initialization, 
the challenger is assigned with an error-correcting code C and 

a secret K . 

Preparation: The adversary points a kind of physiological 
signal as a biometric variableW M . And then, the adversary 

gives the specification of W (such as the kind of the 
physiological signal) to the challenger. 

Public queries: The adversary makes up to q  possibly 

adaptive queries: to form adaptive query i , the adversary 

produces a value
iw ofW , a random value r , and chooses a 

code word c from C, and then sends all of them to the 
challenger. The challenger 

produces ( , ) ( , , , )i i iP R Trans K w r c , and sends
iP to the 

adversary. 

Keys queries: The adversary makes up to 'q possible 

adaptive reproduction queries that can be interspersed with 
public queries as follows: To form query i , the adversary 

chooses '

i  , a biometric value 'w and P’ that is generated 

from 'w in the “public queries” step, and then sends them to 

the challenger. The challenger computes 
' ' '( , ( '), , )i i iR Rec K w P C and returns '

iR to the adversary. In 

order to let the adversary do enough exercises, the procedure 

“Rec” will return the adversary a value, such as a fault '

iR  

even '

i satisfies '( ', ( '))idist w w t  . 

Challenge: The adversary chooses 1* { ,..., }qP P P from 

strings returned by the challenger in a public query and in any 

key query '( , ', *)i w P the distance has '( ', ( '))idist w w t  . The 

adversary sends *P to the challenger. The challenger 

randomly produces a bit b , if 1b  , the challenger 

computes ' ( , ', *, )R Rec K w P C  with unperturbed 'w , and 

744 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



gives it to the adversary. Otherwise, if 0b  , it chooses a 

random string with length of |R’| and gives it to the adversary 
instead. 

More Queries: The adversary runs additional queries as 
described in step “Public queries”. 

Response: the adversary eventually produces a bit 'b and 

wins if 'b b . 

The adversary’s advantage in this game is defined as: 

( ) | [ ( ) | ( , ', *, )]Accadv Pr b adversary key R Rec K w P C     

1/ 2 | .□ 

Theorem 1: We say that the fuzzy negotiation can be 
against adaptive chosen biometric data attack, if for any PPT 
(Probability Polynomial Time) adversary, it holds 

that ( ) ( )Acbadv    for a negligible small ( )  . 

The adaptive chosen biometric data attack game simulates 
adaptive attack to the “Trans” procedure of fuzzy negotiation 
in practice: an adversary can adaptively capture some kind of 
biometric value w (such as timing information of heartbeats) 

by RCB (remote capturing biometric data) attack, and get the 
corresponding commitment P by eavesdropping. In such way, 
the adversary can do enough adaptive exercises to analyze the 
relationships between biometric data and corresponding 
commitments. If in such attacks, the adversary’s advantage is 
negligible in step “challenge”, it means that the adversary 
cannot find the relationships between them, and then, he 
cannot make use of commitments to compute biometric data 
which he cannot capture remotely. 

Theorem 2: We say that the fuzzy negotiation can be 
against adaptive chosen commitments attack in  , if for any 

PPT adversary, it holds that ( ) ( )Accadv    for a negligible 

small ( )  . 

The attack simulates the adaptive chosen commitments 
attack to the “Rec” procedure of fuzzy negotiation in practice: 
Before a user uses a BSN product, an adversary can get the 
BSN product by some means (e.g. the adversary unpacks the 
BSN product unauthorizedly in the transportation) to launch 
adaptive chosen commitments attack where, for a pair of 
biometric value and commitment adaptively chosen, the 
adversary can get corresponding shared key. So, the adversary 
can do enough adaptive exercises to analyze the relationships 
between commitments and corresponding shared keys.  

 

 

 

4 The concrete structure of fuzzy 

negotiation and its correction and 

security analyses 

 

4.1 The Concrete Structure of Fuzzy 

Negotiation 

 According to the above definition in section III we design 
a fuzzy negotiation structure as follows: The structure consists 
of a pair of procedures:” Trans” and “Rec”. In the 
initialization of the structure, each biosensor node is preloaded 

a secret K that is divided into two keys,
0k and 

1k , with 

0 1| | | |k k l  . In addition, each biosensor node is assigned 

with a keyed one-way pseudo-random 

function ( ) :{0,1} {0,1}l l

kF   with | |k l , an error-correcting 

function ( )Dec  belonging to a selected error-correcting 

code C and a function ( ) :{0,1} {0,1} {0,1}l l lf    that 

satisfies ( , ) ( , ) ( , )z f x y y f x z x f z y     . 

Procedure “Trans” 

Collecting a biometric value from a pointed physiological 

signal, and encoding it into a binary value w with | |w l ; 

Selecting a code word c from the error-correcting code C , 

and computing the relationship between c and : ( , )w v f w c ; 

Generating an open random value r with | |r l , and then 

using ( )F  to hide v :
0
( )ku v F r  ; 

Finally, deriving the shared 

key:
0 1
( ( ))shared k kk F F w r  (  is bitwise XOR operation), 

and outputting the commitment 

corresponding w :
0

, , ( || || )kP u r F u r c  (“||” denotes 

concatenation operation ). 

Procedure “Rec” 

Collecting the same kind of biometric value, and encoding 

it into a binary value 'w with | ' |w l ; 

Using the pre-deployed key
0k to recover the 

relationship v :
0
( )kv u F r  ; 

Encoding 'w and v  into *c : * ( ', )c f w v  that is a fuzzy 

version of c ; 

Using ( )Dec  to correct *c : ' ( *)c Dec c . 

If
0 0
( || || ) ( || || ')k kF u r c F u r c , the correction is successful, 

and w can be recovered as: ( , )w f v c . And then, the shared 

key can be reproduced as: 
0 1
( ( ))shared k kk F F w r  . 

Otherwise, if
0 0
( || || ) ( || || ')k kF u r c F u r c , it means the failure 

of shared keys’ negotiation. 

The structure of fuzzy negotiation is shown by Fig.1. 

4.2 Correctness of Fuzzy Negotiation 

For simplicity, we define ( )f  as bitwise XOR 

operation , and then in procedure “Trans” v and u can be 

defined as v w c  and 
0
( )ku w c F r   respectively. 
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Accordingly, P can be defined as: 

0 0 0
( ), , ( ( ) || || )k k kw c F r r F w c F r r c      , and the 

shared key can be defined as: 
0 1
( ( ))shared k kk F F w r  . 

In procedure “Rec”, *c  can be defined 

as
0

* ( , ') ( ) ' 'kc f v w u F r w w c w e c         , where 

e is the difference between w  and 'w . If e t , procedure 

“Rec” can recover c by the error-correcting function ( )Dec   

which causes 
0 0
( || || ) ( || || ')k kF u r c F u r c . And then, 

procedure “Rec” can recover w by ( , )w f v c to generate 

0 1
( ( ))shared k kk F F w r   that is shared with procedure 

“Trans”. If e t , procedure “Rec” cannot recover c 

effectively, and the key negotiation fails. 

 

4.3 Security of fuzzy negotiation 

Here we also define ( )f  as bitwise XOR 

operation .Let 128l  bits, 128 128 128( ) :{0,1} {0,1} {0,1}f    , 

and 
0

128 128( ) :{0,1} {0,1}kF   . In the following, we analyze 

security of fuzzy negotiation according to the two attack 
games: adaptive chosen biometric data attack game and 
adaptive chosen commitments attack game. Firstly, we 
suppose that a 128-bit value is secure to the exhaustive attack, 
the adversary can get biometric value w by RCB attack, and 
the error-correcting code C is open. 

In the former attack game, when the adversary gets 
commitment

0 0 0
( ), , ( ( ) || || )k k kP w c F r r F w c F r r c      , it can 

compute
0
( )kF r . Since 

0
( )kF  is a keyed one-way function, the 

adversary only can guess the right 
0k from 

0
( )kF r and r with a 

negligible probability. Then, we can say that though the 
adversary can get a biometric value by RCB attack and its 
commitment by eavesdropping, it only finds the relationship 
between them with a negligible probability. In other words, 
the adversary wins the former attack game with a negligible 
probability. In the situation, the adversary cannot launch RCB 
attack to a biometric value which he cannot capture remotely, 
as he cannot deduce the biometric value by its public 
commitment. This can protect these biometric data from being 
known by the adversary. 

In the latter attack game, the adversary can get enough 

pairs of w and
0 1

( , ( ), , ) ( ( ))k kRec K w P C F F w r   . Though 

w, r and 
0 1
( ( ))k kF F w r are known to the adversary, it will 

search the key space of 128 1282 2  before getting the right 

0k and 1k , which is an infeasible task. Then, without 0k and 1k , 

the adversary can hardly compute the relationship between the 

commitment of w and the shared key sharedk , even given w, 

( )w and C. So, we can say that the adversary wins the latter 

attack game with a negligible probability.  

It is worthy to note that, in fuzzy negotiation we don’t 
require w must be a high-entropy biometric value. The reason 

is that in the equation
0 1( ( ))shared k kk F F w r  , r is a random 

value and ( )kF  is a keyed pseudo-random function, which 

causes the input of 
0
( )kF  is a secret value that is computing-

indistinguishable from a uniformly random value even w is a 
constant value. Thus, in the “key queries” step of the adaptive 
chosen commitments attack game, the adversary cannot obtain 

any knowledge of 
sharedk from w. So, in our fuzzy negotiation 

structure, biometric values with any entropy can be used to 
establish shared keys. 

 

5 Conclusions 

Up to now, many researches have been made to design key 
negotiation methods based on physiological signals, however 
they come up short in respects of practicality and security. In 
the paper, we merge fuzzy extractor technology with 
technology of predistributed keys and pseudo-function to 
design a new key negotiation method called as fuzzy 
negotiation. Fuzzy negotiation not only can use physiological 
signals with any entropy to negotiate shared keys, but also can 
use predistributed keys to resist the new RCB attack, which 
make the method is superior to existing key negotiation 
methods based on fuzzy commitment and fuzzy extractor in 
terms of practicality and security. 
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Abstract - A major characteristic of distributed 

computing systems is their heterogeneity. In practical 

computing, the computers or processing elements 

that make up any given distributed system may have 

varying processing speeds. Efficient loop scheduling 

schemes for concurrent processing of computational 

tasks on such systems need to take into consideration, 

the varying speeds of the component processors. In 

this paper we evaluate the performance of a two-

dimensional distributed factoring self-scheduling 

scheme for parallel loops by comparing with its one-

dimensional counterpart. The schemes are 

implemented on the Ranger Computer Cluster at the 

Texas Advanced Computing Center with varying 

number of processors and problem sizes. 

Key words: Load balancing, scheduling, parallel 

loops, heterogeneity, distributed systems. 

1.  Introduction 

Distributed computing systems are often used to 

solve computation intensive scientific problems. 

These computation intensive problems or 

applications often consist of parallel code which 

when scheduled for concurrent execution can reduce 

the total execution of the application significantly. 

Parallel code can be in the form of loops with or 

without any dependencies between the loop 

iterations. Parallel loops without dependencies are 

commonly known as DOALL loops [1] and loops 

with dependencies among the iterations are known as 

DOACROSS loops [2]. 

However, scheduling in large-scale distributed 

systems for achieving a load balanced execution that 

minimizes the loop completion time is not 

straightforward. Factors such as the non-uniformity 

of iterate execution times and geographic distribution 

of the computing and communication resources lead 

to application performance degradation. Hence, 

efficient loop scheduling schemes are invaluable for 

improving the performance of applications on 

distributed systems. Also, the computing resources 

(processors) of distributed systems are usually 

heterogeneous (e.g. have different speeds). Hence, 

efficient loop scheduling schemes should consider 

the heterogeneity into account in making allocation 

decisions.  

Loop scheduling schemes which do not take the 

heterogeneity of a distributed system into account are 

called ‘simple’ schemes whereas the schemes that 

take the heterogeneity of the system into account are 

called ‘distributed’ schemes. Also, depending on 

when the scheduling decisions are made, loop 

scheduling can be categorized into ‘static’ and 

‘dynamic’. Static scheduling schemes determine the 

task allocation to the processors prior to the 

execution of the application. Dynamic scheduling (or 

self-scheduling) is an automatic loop scheduling 

method in which idle processors request new loop 

iterations to be assigned to them during run time. 

2. Related Work and Contribution 

Various simple and distributed loop scheduling 

schemes have been proposed and analyzed in the 

past. For example, please see [3 - 10] and references 

therein. Some loop scheduling schemes partition only 

the outermost loop of a program loop structure and 

assign tasks (chunks of iterations) to the processors. 

This may not be efficient for multi-dimensional 
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nested loops. Studies on two-dimensional (2D) loop 

scheduling can be found in [4, 9, 10] and references 

therein.  

In this paper we evaluate the performance of a two-

dimensional distributed factoring self-scheduling 

scheme (DFSS-2D) for parallel loops by comparing 

with its one-dimensional counterpart (DFSS-1D). 

The schemes are implemented on the Ranger 

Computer Cluster at the Texas Advanced Computing 

Center with varying number of processors and 

problem sizes. Preliminary results related to the 

above can be found in [10]. 

3. Two-Dimensional Distributed 

Factoring Self-Scheduling 

Self-scheduling is an automatic loop scheduling 

method in which idle computers (or processors) (PEs) 

request new loop iterations to be assigned to them [2, 

9, 10]. These self-scheduling schemes are based on 

the Master-Slave (Master-Worker) architecture 

model. In a generic self-scheduling scheme, at the i-

th scheduling step, the master computes the chunk-

size (a few consecutive iterations) Ci, a starting 

(iteration) index istart, and the remaining number of 

tasks (iterations) Ri as follows: 

Initially, R0 = I, istart = J (lower loop bound). The 

Master PE computes the chunk-size for the i-th 

scheduling step as: 

Ci = f (Ri−1 ,p)   

  

where p is the number of processors. The function f( ) 

can possibly have more inputs than just Ri−1 and p. 

Then the master assigns to a slave PE Ci tasks and a 

starting (iteration) index istart. Then the istart and Ri 

for the next scheduling step are updated as: 

istart = istart + Ci Ri = Ri−1 −  Ci  

  

Factoring Self –Scheduling (FSS): FSS consists of 

rounds of p scheduling steps.  In each round    the 

master distributes ⌈       ⌉ iterations to the p 

workers. Thus,          ⌈        ⌉ for   

       and the remaining iterations are     

          . 

One dimensional self-scheduling schemes partition 

only the outermost loop of a nested loop construct. 

Two dimensional self-scheduling schemes partition 

both the outer loop and the inner loop of a two-level 

nested loop construct.  

To offer load balancing in heterogeneous distributed 

systems, loop scheduling schemes must take into 

account the processing speeds of the computers 

forming the system. Here, the relative computing 

powers of the processors in the system are used as 

weights that scale the size of the sub-problem each 

processor is assigned to compute [9, 10]. This can 

significantly reduce the total execution time when a 

heterogeneous computing environment is used. 

The methodology for computing the two-dimensional 

chunks is described in [9]. The two-dimensional 

chunks will be allocated to the worker processors by 

the master PE based on the worker available powers. 

A worker with higher available power will be 

allocated more chunks than compared to a worker 

with lower available power. 

The algorithm for Two-Dimensional Distributed 

Factoring Self-Scheduling (DFSS-2D) is similar to 

the Two-Dimensional Distributed Trapezoid Self-

Scheduling (DTSS-2D) presented in [9] with Two-

Dimensional Trapezoid Self-Scheduling (TSS-2D) 

replaced by Two-Dimensional Factoring Self-

Scheduling (FSS-2D). 

4. Implementation and Results 

The scheduling schemes are implemented in C++ 

using the distributed programming framework 

offered by the Message Passing Interface (MPI) [11]. 

The Sun Constellation Linux Cluster named Ranger 

at the Texas Advanced Computing Center (TACC) 

[12] at the University of Texas at Austin is used for 

the experiments.  

The schemes are evaluated with the number of slave 

(worker) PEs ranging from 4 to 12. The test problem 

used is the Mandelbrot computation [13]. The 

Mandelbrot computation is a doubly nested loop 

without any dependencies. The schemes are 

evaluated with the problem sizes ranging from 8000 

x 8000 to 32000 x 32000. To simulate a 

heterogeneous system (processing elements with 

varying speeds), we added loads (continuously 

running matrix multiplication process) in the 

background on half of the slave processors 

considered to reduce their available power. 

In the following, we present the experimental results 

for various problem sizes and number of slave 

processors. Tp denotes the total execution time (for a 

given problem size) measured on the 
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master processor. The times presented for the worker 

processors are their total compute times for the 

iterations assigned to them by the master processor. 

All timings are in seconds (s) and milliseconds (ms). 

Table’s 1 - 11 present the Tp of DFSS-1D and DFSS-

2D with varying number of slave PEs and problem 

sizes. It can be observed that DFSS-2D shows 

substantial performance improvement compared to 

DFSS-1D. It can also be observed that the slave 

computation times in the case of DFSS-2D are very 

well load balanced compared to DFSS-1D. 

Table 1. Slave PEs: 4, Problem Size: 8000x8000 

 

Table 2. Slave PEs: 4, Problem Size: 16000x16000 

 

Table 3. Slave PEs: 4, Problem Size: 32000x32000 

 

 

Table 4. Slave PEs: 6, Problem Size: 8000x8000 

 

Table 5. Slave PEs: 6, Problem Size: 16000x16000 

 

Table 6. Slave PEs: 6, Problem Size: 32000x32000 

 

 

 

 

 

 

 

 

 

 

 

 

 

PE DFSS-1D DFSS-2D 

1 143s 784ms 47s 907ms 

2 170s 424ms 52s 559ms 

3 169s 910ms  61s 739ms 

4 185s 830ms 52s 140ms 

Tp 185s 830ms 61s 739ms 

PE DFSS-1D DFSS-2D 

1 35s 954ms 10s 515ms 

2 42s 635ms 12s 471ms 

3 41s 924ms 10s 512ms 

4 45s 910ms 10s 835ms 

Tp 45s 913ms 12s 474ms 

PE DFSS-1D DFSS-2D 

1 574s 919ms 207s 4ms 

2 681s 869ms 174s 635ms 

3 681s 867ms 230s 141ms 

4 739s 343ms 212s 307ms 

Tp 739s 344ms 230s 144ms 

PE DFSS-1D DFSS-2D 

1 26s 25ms 8s 206ms 

2 24s 580ms 8s 526ms 

3 29s 107ms 7s 532ms 

4 28s 288ms 7s 959ms 

5 24s 123ms 7s 529ms 

6 32s 855ms 8s 631ms 

Tp 32s 855ms 8s 631ms 

PE DFSS-1D DFSS-2D 

1 103s 933ms 31s 95ms 

2 98s 240ms 31s 850ms 

3 116s 569ms 32s 724ms 

4 114s 148ms 33s 552ms 

5 97s 955ms 31s 111ms 

6 132s 703ms 32s 814ms 

Tp 132s 704ms 33s 553ms 

PE DFSS-1D DFSS-2D 

1 415s 792ms 124s 513ms 

2 393s 5ms 127s 307ms 

3 466s 243ms 130s 786ms 

4 458s 797ms 135s 54ms 

5 393s 680ms 125s 938ms 

6 533s 782ms 131s 643ms 

Tp 533s 783ms 135s 54ms 
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Table 7. Slave PEs: 8, Problem Size: 32000x32000 

 

Table 8. Slave PEs: 10, Problem Size: 8000x8000 

Table 10. Slave PEs: 10, Problem Size: 

32000x32000 

 

Table 11. Slave PEs: 12, Problem Size: 

32000x32000 

 

 

Table 9. Slave PEs: 10, Problem Size: 

16000x16000 

 

 

 

 

5. Conclusions 

In this paper, we compared the performance of Two-

Dimensional Distributed Factoring Self-Scheduling 

scheme (DFSS-2D) with its One-Dimensional 

counterpart (DFSS-1D). The schemes are 

implemented and their performance compared using 

the Ranger high performance computing cluster. 

Results showed that DFSS-2D performs substantially 

better compared to DFSS-1D and also present a more 

balanced load distribution of the workload among the 

computers in the system. 

 

PE DFSS-1D DFSS-2D 

1 288s 278ms 104s 214ms 

2 291s 212ms 102s 416ms 

3 294s 968ms 104s 127ms 

4 364s 486ms 102s 416ms 

5 356s 768ms 121s 566ms 

6 368s 260ms 102s 413ms 

7 334s 648ms 111s 421ms 

8 404s 822ms 102s 615ms 

Tp 404s 823ms 121s 567ms 

PE DFSS-1D DFSS-2D 

1 15s 309ms 4s 987ms 

2 15s 44ms 4s 987ms 

3 14s 980ms 4s 987ms 

4 15s 846ms 5s 13ms 

5 18s 924ms 5s 10ms 

6 17s 207ms 5s 504ms 

7 16s 163ms 5s 849ms 

8 14s 988ms 5s 41ms 

9 19s 499ms 5s 199ms 

10 20s 930ms 5s 401ms 

Tp 20s 930ms 5s 850ms 

PE DFSS-1D DFSS-2D 

1 246s 466ms 82s 46ms 

2 240s 546ms 81s 240ms 

3 239s 118ms 79s 760ms 

4 253s 925ms 79s 760ms 

5 295s 925ms 79s 760ms 

6 288s 75ms 79s 756ms 

7 258s 662ms 87s 809ms 

8 226s 661ms 92s 604ms 

9 298s 9ms 77s 993ms 

10 321s 653ms 88s 532ms 

Tp 322s 62ms 92s 605ms 

PE DFSS-1D DFSS-2D 

1 61s 141ms 19s 991ms 

2 60s 136ms 20s 413ms 

3 59s 852ns 19s 992ms 

4 63s 231ms 19s 991ms 

5 73s 903ms 19s 991ms 

6 71s 858ms 20s 685ms 

7 64s 137ms 21s 982ms 

8 79s 836ms 21s 414ms 

9 56s 162ms 22s 458ms 

10 74s 74ms 20s 115ms 

Tp 79s 837ms 22s 459ms 

PE DFSS-1D DFSS-2D 

1 194s 2ms 68s 790ms 

2 197s 305ms 69s 500ms 

3 183s 542ms 67s 59ms 

4 195s 921ms 67s 59ms 

5 224s 86ms 67s 121ms 

6 246s 1ms 67s 59ms 

7 241s 670ms 68s 438ms 

8 209s 829ms 66s 992ms 

9 261s 984ms 70s 972ms 

10 206s 643ms 67s 96ms 

11 264s 979ms 69s 696ms 

12 266s 553ms 71s 854ms 

Tp 266s 554ms 72s 106ms 

752 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  |



 

References 

 

[1] A. Kejariwal, A. Nicolau, and C. 

Polychronopoulos, History-aware self-

scheduling, International Conference on Parallel 

Processing, pp. 185–192, Aug 2006, Columbus, 

OH. 

[2] F. M. Ciorba, I. Riakiotakis, T. Andronikos, G. 

Papakonstantinou, and A. T. Chronopoulos, 

Enhancing self-scheduling algorithms via 

synchronization and weighting, Journal of 

Parallel and Distributed Computing, vol. 68, no. 

2, pp. 246–264, 2008. 

[3] I. Banicescu, F. M. Ciorba, and R. L. Carino, 

Towards the robustness of dynamic loop 

scheduling on large-scale heterogeneous 

distributed systems, The 8
th

 International 

Symposium on Parallel and Distributed 

Computing, Page(s): 129 - 132, June 30 - July 4, 

2009, Lisbon. 

[4] R. L. Carino and I. Banicescu, A dynamic load 

balancing tool for one and two dimensional 

parallel loops, The 5
th

 International Symposium 

on Parallel and Distributed Computing, Page(s): 

107 - 114, 6-9 July 2006, Timisoara. 

[5] F. M. Ciorba, T. Hansen, S. Srivastava, I. 

Banicescu, A. A. Maciejewski, and H. J. Siegel, 

A Combined Dual-stage Framework for Robust 

Scheduling of Scientific Applications in 

Heterogeneous Environments with Uncertain 

Availability, 26
th

 IEEE International Parallel 

and Distributed Processing Symposium 

Workshops & PhD Forum, Page(s): 193 - 207, 

21-25 May 2012, Shanghai.  

[6] J. Herrera, E. Huedo, R. S. Montero, and I. M. 

Llorente, Loosely-coupled loop scheduling in 

computational grids, Proc. of the 20
th

 IEEE Intl. 

Parallel and Distributed Processing Symp., 

Rhodes Island, Greece, 25 - 29 April 2006. 

[7] J. Diaz, S. Reyes, A. Nino, and C. Munoz-Caro, 

Derivation of self-scheduling algorithms for 

heterogeneous distributed computer systems: 

Application to internet-based grids of computers, 

Future Generation Computer Systems, Elsevier 

Publishers, vol. 25, no. 6, pp. 617-626, 2009. 

[8] C. T. Yang, C. C. Wu, and J. H. Chang, 

Performance-based parallel loop self-scheduling 

using hybrid openMP and MPI programming on 

multicore SMP clusters, Concurrency and 

Computation: Practice and Experience, vol. 23, 

no. 8, pp. 721-744, 2011. 

[9] A. T. Chronopoulos, L. M. Ni, and S. Penmatsa, 

Multidimensional dynamic loop scheduling 

algorithms, IEEE International Conference on 

Cluster Computing, Austin, TX, 17-20 Sept. 

2007, pp. 241 – 248. 

[10] A. T. Chronopoulos, S. Penmatsa, N. Jayakumar, 

and E. Ogharandukun, Two-Dimensional 

Dynamic Loop Scheduling Schemes for 

Computer Clusters, Proceedings of the 11th 

IEEE International Symposium on Network 

Computing and Applications, Cambridge, MA, 

USA, August 23-25, 2012. 

[11] P. Pachecho, Parallel Programming with MPI. 

Morgan Kauffman, 1997. 

[12] http://www.tacc.utexas.edu. 

[13] M. F. Bransley, R. L. Devaney, B. B. 

Mandelbrot, H. O. Peitgen, D. Saupe, R. F. Voss, 

Y. Fisher, and M. McGuire, The Science of 

Fractal Images, NY: Springer-Verlag, 1988. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'13  | 753

http://www.tacc.utexas.edu/


A Method for Eliminating Abnormal Values of Received 

Signal Strength Indicator (RSSI) in WLAN 

 

Yanfang Jing
1,2

, Minglei Shu
2
,Ming Yang

2
,Huawei Zhao

3,2
, Jiankun Hu

4,2 

1School of Computer Science, Liaocheng University, Liaocheng , China 

 2Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Ji’nan , 

China 
3School of Computer Science and Technology, Shandong University of Finance and Economics, 

Ji’nan,China 
4School of Engineering and Information Technology,University of New South Wales, Canberra, Australia 

 

Abstract - Received signal strength indicator plays a very 

important role in many WLAN applications. However 

wireless signal strength will be greatly affected by noise 

and disturbance. It is critical to remove the abnormal data 

in order to provide a reliable estimation of the received 

signal strength indicator. Conventional mean value based 

approaches require large amount of data which would lead 

to unreliable results for applications with small amount of 

data. This paper proposes a practical method of capturing 

the received signal strength indicator in WLAN, and gives 

the improved Grubbs rule for effectively eliminating 

abnormal value of measuring signal strength. 

Keywords: WLAN; RSSI; abnormal value; Grubbs 

criterion 

1 Introduction 

Wireless communication signal propagates in the 

electromagnetic wave form in the atmospheric 

environment, and the signal strength will decrease with the 

increase of the propagation distance 
[1]

. Measuring the 

RSSI (received signal strength indicator) is important for 

many applications, such as mobile device location 
[2]

, 

wireless channel estimation and transmission scheduling
 

[3][4]
.  

However, the measured values are different at each 

time. Even with the same measuring instruments and 

environments, some large abnormal values may appear 

during measurement, due to the external disturbance such 

as obstacles and people walking. Theoretically, we can 

obtain more accurate mathematical expectation value by 

calculating the average of infinitely measured values. But 

in the experiments especially in actual applications, we 

usually have limited measurements, so these abnormal 

values will greatly reduce the quality of measurement data, 

which leads to the significant variation in the result of 

statistical analysis. The skewed estimation can lead to 

incorrect overall reasoning, prediction and control actions. 

Therefore, identifying and eliminating abnormal data is 

very important. 

2 A practical method for capturing 

packets in wlan 

Most of Windows network applications achieve the 

network communication by the Winsock API of operating 

system, a kind of high-level programming interface which 

can access the TCP/IP protocol stack. The normal 

transmission path of data packet is via NIC card, device 

driver layer, data link layer, IP layer, transport layer, and 

application, respectively
 [5]

. Through the third party capture 

components or libraries, such as WinPcap, network 

program can bypass the TCP/IP protocol stack of the 

operating system, add a bypass process in data link layer, 

filter and buffer the transmitted and received data packets, 

and finally passed directly to the application program. This 

packet capture mechanism can achieve some lower, more 

flexible network function than ordinary method, and do not 
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influence the data packets process of operating system in 

network stack. 

The conventional method of wireless packet capture is 

data sniffer based on LibPcap/WinPcap. But the loss rate 

of packets will increase rapidly with the network 

throughput increases, and the CPU occupancy rate is 

relatively large. In order to improve the performance of 

packet capture, this paper improves the method in the 

following aspects: 

1) Using a special wireless network card. In the Linux 

platform, the common wireless NIC can be set to monitor 

mode. But most of the Windows driver does not support 

this function. This paper provides improved driver which 

can combine with a special network adapter to realize the 

mode conversion, whose core chip is Atheros AR9170 and 

can be applied to Windows platform and support RF 

monitoring mode.  

2) Removing the step of filtering packages in the 

conventional acquisition process. The wireless network 

card cooperates with Winpcap to capture 802.11 a/b/g/n 

control, management and data frames. It can realize the 

multi-channel data acquisition by using the multichannel 

composite technology.  

Wpcap.dll

Packet.dll

NPF
TCP/IP

NIC  Driver

Capture
Application

Kernel Level

Kernel
Buffer

Kernel
Buffer

User-Buffer

Packets

Application

Wpcap.dll

File System

Hardware level

User Level

Winsock32.dll

 

Figure 1. Architecture of Winpcap data packet capture  

3) Using the improved packet process algorithm, we can 

directly read data package from the kernel buffer provided 

for application solution. By which we can reduce the CPU 

occupancy rate and packet loss rate, and can solve the 

packet loss problems when the network data packet is large 

(such as large file transfer). Fig 1 shows the process 

diagram about data packet capture using Winpcap. 

3 Analysis of packet capture 

 In this paper, the network packet capture and analysis 

are implemented in Visual Studio 2012 under Windows 8. 

In order to improve the stability and efficiency of the whole 

system, a new thread is created from the main thread to 

complete the packet capture and analysis. The process of 

obtaining and processing RSSI by capturing and analyzing 

network packets from the wireless network card is 

illustrated in Fig 2. 
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Figure 2. The procedure of packets capture and RSSI’ process  

 The process module achieves real-time analysis of the 

captured data packets by defining a packet processing class. 

First it extracts the packet head, and obtains the 

information of channel, RSSI, receiving time etc, then 

according to the frame header structure defined in the 

802.11 protocol it obtains the name and MAC address of 

each AP and STA, and subsequently establishes the AP list. 

Because each AP MAC address is different, so we can 

judge different AP’s RSSI according to the MAC address. 

4 Process of RSSI 

 RSSI plays a very important role in many applications. 

But the signal strength is highly sensitive to the 

environment
 [6]

. Hence all kinds of interferences caused by 

uncertain external factors will affect the measurement 

accuracy. It can be seen from Fig 3 that the original data 
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acquisition will show a great fluctuation. So recognition 

and elimination of RSSI singular value is an important step 

after extraction of signal intensity. 

 

Figure 3. The signal level fluctuation in real situation 

4.1 Identification of Abnormal Data 

 The abnormal data will greatly reduce the data quality, 

resulting in significant variation of the statistical analysis 

results, such as parameter estimation, hypothesis testing, 

analysis of variance, correlation analysis, regression 

analysis, and cluster analysis. It may cause the wrong 

overall reasoning, control and prediction work based on the 

noisy sample. 

 In order to improve the efficiency and meet the 

real-time requirement, currently most of the systems 

computes the mean value to calculate the target signal 

strength. But when the transmitted data quantity between 

the sending and receiving node is not enough, abnormal 

values of signal strength will produce large interference on 

the estimation results. 

For repeated measurement data, these methods, such as 

Pauta criterion method, Chauvenet criterion method, Dixon 

criterion method, Grubbs criterion method, are commonly 

used to identify and eliminate outliers. In the case of small 

sample data size, Grubbs criterion method is internationally 

recommended. The working of the Grubbs is as follows 

extracting signal data, calculating the mean value and 

standard deviation, comparing the original data to the mean, 

identifying outlier and eliminating it. Grubbs' test detects 

one outlier at a time. This outlier is expunged from the 

dataset and the test is iterated until no outliers are detected. 

In practical applications, the outliers in the collected 

signal strength data are significantly smaller in number 

than that of true values. When the data are few and the 

outliers are highly singular, the calculation of mean value 

and standard deviation will be influenced greatly by these 

abnormal data. In this case，the Grubbs' algorithm may not 

produce accurate and reliable results. 

4.2 The Modified Grubbs Criterion 

 When RSSI data collected from some APs are few, the 

mean will be influenced greatly by these abnormal values. 

To address this problem, this paper proposes to use the 

median instead of the mean, as the Grubbs criterion. The 

median of a finite list of numbers can be found by 

arranging all the observations from lowest value to highest 

value and picking the middle one or the mean of the two 

middle values if there is an even number of observations. 

The median is obtained by sorting, and it is not affected by 

large or small data. Therefore, the median is more 

appropriate than mean in the Grubbs criterion method. It 

can effectively eliminate the shielding effect of the 

ipsilateral abnormal data, and getting the more robust 

result. 

 Suppose the number of repeated measurements is n  

and repeated measurement values are ( 1,2,..., )iX i n , 

the modified Grubbs criterion method used for testing 

whether iX  is an abnormal value is given as below: 

  1) Sort iX  in an ascending order, i.e., 

X1≤X2≤…≤Xn.  

  2) Compute the median 1rX X   ( n is an odd 

number) or 1( ) / 2r rX X X     ( n is an even number), 

in which 2r n    ; 

  3) Calculate the standard deviation using the median 

instead of the mean. 
2

1

1 ( )
n

i

i

S X X
n



  .  

  4) Calculation of Grubbs statistics, including lower 

Grubbs number (1)g  and upper Grubbs number ( )g n . 

1
(1)

X X
g

S


   ， ( )

nX X
g n

S


  

 In the formula: ,X s  is the median and standard 
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deviation of n repeated measurement data; 

  5) For the significant level  (usually 0.05 or 0.01), 

according to and n ( n is the number of samples) ，

select the Grubbs criterion number ( , )T n   in table; 

  6)  If (1) ( , )g T n  , then 1X  is an abnormal 

data, remove it; 

     If ( ) ( , )g n T n  , then nX  is an abnormal data, 

remove it; 

  7) Repeat the above steps and reject the abnormal 

values until all the abnormal values are eliminated. 

 It can be seen from Fig 4: we can get rid of 4 abnormal 

data in 30 sample data if the mean is used as the calculation 

factor in Grubbs criterion, while 6 abnormal values can be 

removed if the median based Grubbs criterion is adopted. 

The experimental results show that the improved Grubbs 

criterion can better reject the abnormal data. 

 

Figure 4. the impression drawing of rejecting the outlier 

Because the Grubbs criterion is suitable for small 

sample data，when the number of data between the send 

and receive nodes is very large, we can take advantage of 

modified Grubbs criterion based on data grouping 

calculation. In the process of realization, we store the 

collected signal strength of AP in memory as an array. 

Before these data are written into a file or database, we use 

the modified Grubbs criterion to reject the abnormal data. 

4.3 Filtering the White Noise 

Because wireless networks have wide coverage range, 

high transmission rate and short access time, it is 

susceptible to interference from channel. In the process of 

communication, due to the influence of various factors, 

wireless signal may produce diffraction, reflection or 

scattering, so there are many invalid redundant data in the 

collected signal strength. These data do not deviate 

obviously but fluctuate around a mean value，and we call 

them the white noise. In order to further improve the 

accuracy of data, we read all data from the database in 

which the outlier have been rejected, and filter the white 

noise by Kalman filter, then we can get a relatively stable 

signal strength range. The parameter of Kalman filter can 

be obtained by literature [7]. Finally, by calculating the 

mean we can get an expected value closer to the real 

value.  

The original data and the processed data by the 

Grubbs criterion and Kalman filter are shown in Fig 5. 

From the results we can see that the method proposed is 

suitable for removing the white noise and singular values, 

and the mean of data accurately reflects the real value of 

signal strength. 

 

Figure 5. Comparison of original and processed data 

5 Conclusion 

This paper proposed an improved Grubbs criterion 

for processing RSSI data that contain significant singular 

abnormal data. The advantage is that it can deal with small 

sample data size A practical method of wireless 

transmission packet capturing has also been proposed. 

Numberic experiments have been conducted to validate the 

proposed scheme. 
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